diff --git a/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb b/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb
index 67b052ab358ec5f3fbb678fa062982c932ed09ba..0b5f1c966a23d46ac014612c967240be4e314c05 100644
--- a/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb
+++ b/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb
@@ -10,9 +10,9 @@
     "\n",
     "#  Summary for processed of dark calibration constants and a comparison with previous injected constants.\n",
     "\n",
-    "out_folder = \"/gpfs/exfel/data/scratch/ahmedk/test/fixed_gain/SPB_summary_fix2\" # path to output to, required\n",
+    "out_folder = \"/gpfs/exfel/data/scratch/kluyvert/lpd-dark-p900320-r26_27_28\" # path to output to, required\n",
     "metadata_folder = \"\"  # Directory containing calibration_metadata.yml when run by xfel-calibrate\n",
-    "karabo_id = \"SPB_DET_AGIPD1M-1\" # detector instance\n",
+    "karabo_id = \"FXE_DET_LPD1M-1\" # detector instance\n",
     "gain_names = ['High gain', 'Medium gain', 'Low gain'] # a list of gain names to be used in plotting\n",
     "threshold_names = ['HG-MG threshold', 'MG_LG threshold'] # a list of gain names to be used in plotting\n",
     "local_output = True  # Boolean indicating that local constants were stored in the out_folder\n",
@@ -43,6 +43,7 @@
     "import h5py\n",
     "import matplotlib\n",
     "import numpy as np\n",
+    "import pasha as psh\n",
     "import yaml\n",
     "from IPython.display import Latex, Markdown, display\n",
     "\n",
@@ -175,7 +176,7 @@
     "elif \"DSSC\" in karabo_id:\n",
     "    dinstance = \"DSSC1M1\"\n",
     "    nmods = 16\n",
-    "    expected_constants = ['Offset', 'Noise', 'BadPixelsDark']\n",
+    "    expected_constants = ['Offset', 'Noise']\n",
     "    display(Markdown(\"\"\"\n",
     "    \n",
     "# Summary of DSSC dark characterization #\n",
@@ -199,11 +200,34 @@
     "    module = fdict[\"module\"]\n",
     "    mod_mapping[module] = fdict[\"pdu\"]\n",
     "    old_constant_metadata[module] = fdict[\"old-constants\"]\n",
-    "    fn.unlink()\n",
     "\n",
     "metadata.save()"
    ]
   },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# In AGIPD fixed gain mode, ThresholdsDark is not expected\n",
+    "if 'AGIPD' in karabo_id:\n",
+    "    for i in range(nmods):\n",
+    "        qm = module_index_to_qm(i)\n",
+    "        if not mod_mapping.get(qm):\n",
+    "            continue\n",
+    "        mod_pdu = mod_mapping[qm]\n",
+    "        fpath = out_folder / f\"const_Offset_{mod_pdu}.h5\"\n",
+    "        if not fpath.exists():\n",
+    "            continue\n",
+    "\n",
+    "        with h5py.File(fpath, 'r') as f:\n",
+    "            if 'Gain mode' in f['condition']:\n",
+    "                if f[\"condition\"][\"Gain mode\"][\"value\"][()]:\n",
+    "                    expected_constants.remove(\"ThresholdsDark\")\n",
+    "        break"
+   ]
+  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -217,57 +241,54 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "# TODO: After changes in the Cal DB interface read files from cal repository\n",
-    "# Load constants from local files\n",
-    "data = OrderedDict()\n",
-    "old_cons = OrderedDict()\n",
-    "mod_names = []\n",
-    "\n",
-    "gain_mode = None if \"AGIPD\" in karabo_id else False\n",
-    "\n",
-    "# Loop over modules\n",
-    "for i in range(nmods):\n",
-    "    qm = module_index_to_qm(i)\n",
-    "    if not mod_mapping.get(qm):\n",
-    "        continue\n",
-    "    mod_pdu = mod_mapping[qm]\n",
-    "    # Loop over expected dark constants in out_folder.\n",
-    "    # Some constants can be missing in out_folder.\n",
-    "    # e.g. ThresholdsDark for fixed gain AGIPD, DSSC and LPD.\n",
-    "    for const in expected_constants:\n",
-    "        # first load new constant\n",
-    "        fpath = out_folder / f\"const_{const}_{mod_pdu}.h5\"\n",
-    "        # No ThresholdsDark expected for AGIPD in fixed gain mode.\n",
-    "        if const == \"ThresholdsDark\" and gain_mode:\n",
+    "# Get shape, dtype, and number of files for each constant.\n",
+    "# Also build lists of the files involved, to be loaded in parallel in a later cell.\n",
+    "const_shape_and_dtype = {}\n",
+    "found_module_nums = set()\n",
+    "pieces_to_load = []\n",
+    "pieces_to_load_prev = []\n",
+    "\n",
+    "for cname in expected_constants:\n",
+    "    for i in range(nmods):\n",
+    "        qm = module_index_to_qm(i)\n",
+    "        if not mod_mapping.get(qm):\n",
     "            continue\n",
+    "        mod_pdu = mod_mapping[qm]\n",
+    "        fpath = out_folder / f\"const_{cname}_{mod_pdu}.h5\"\n",
     "        if not fpath.exists():\n",
-    "            print(f\"No local output file {fpath} found\")\n",
     "            continue\n",
-    "\n",
-    "        with h5py.File(fpath, 'r') as f:\n",
-    "            if qm not in data:\n",
-    "                mod_names.append(qm)\n",
-    "            data.setdefault(qm, OrderedDict())[const] = f[\"data\"][()]\n",
-    "\n",
-    "            if gain_mode is None:\n",
-    "                if 'Gain Mode' in f['condition'].keys():\n",
-    "                    gain_mode = bool(f[\"condition\"][\"Gain Mode\"][\"value\"][()])\n",
-    "                else:\n",
-    "                    gain_mode = False\n",
+    "        \n",
+    "        pieces_to_load.append((cname, i, fpath))\n",
+    "        found_module_nums.add(i)\n",
+    "        \n",
     "        # try finding old constants using paths from CalCat store\n",
+    "        if qm not in old_constant_metadata:\n",
+    "            continue\n",
     "        qm_mdata = old_constant_metadata[qm]\n",
     "\n",
-    "        if const not in qm_mdata:\n",
+    "        if cname not in qm_mdata:\n",
     "            continue\n",
     "\n",
-    "        filepath = qm_mdata[const][\"filepath\"]\n",
-    "        h5path = qm_mdata[const][\"h5path\"]\n",
+    "        fpath_prev = qm_mdata[cname][\"filepath\"]\n",
+    "        h5path_prev = qm_mdata[cname][\"h5path\"]\n",
     "\n",
-    "        if not filepath or not h5path:\n",
-    "            continue\n",
-    "\n",
-    "        with h5py.File(filepath, \"r\") as fd:\n",
-    "            old_cons.setdefault(qm, OrderedDict())[const] = fd[f\"{h5path}/data\"][:]"
+    "        if fpath_prev and h5path_prev:\n",
+    "            pieces_to_load_prev.append((cname, i, fpath_prev, h5path_prev))\n",
+    "    \n",
+    "    # Get the constant shape from one of the module files\n",
+    "    with h5py.File(fpath, 'r') as f:\n",
+    "        const_shape_and_dtype[cname] = (f['data'].shape, f['data'].dtype)\n",
+    "    \n",
+    "# Allocate arrays for these constants (without space for missing modules)\n",
+    "nmods_found = len(found_module_nums)\n",
+    "constants = {\n",
+    "    cname: psh.alloc((nmods_found,) + module_const_shape, dtype=dt, fill=0)\n",
+    "    for cname, (module_const_shape, dt) in const_shape_and_dtype.items()\n",
+    "}\n",
+    "prev_const = {\n",
+    "    cname: psh.alloc((nmods_found,) + module_const_shape, dtype=dt, fill=0)\n",
+    "    for cname, (module_const_shape, dt) in const_shape_and_dtype.items()\n",
+    "}"
    ]
   },
   {
@@ -276,28 +297,29 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "cons_shape = {}\n",
-    "# extracting constant shape.\n",
-    "for qm, constant in data.items():\n",
-    "    for cname, cons in constant.items():\n",
-    "        shape = data[qm][cname].shape\n",
-    "        if cname not in cons_shape:\n",
-    "            cons_shape[cname] = shape\n",
-    "    break\n",
-    "\n",
-    "constants = {}\n",
-    "prev_const = {}\n",
-    "\n",
-    "for cname, sh in cons_shape.items():\n",
-    "    constants[cname]= np.zeros((len(mod_names),) + sh[:])\n",
-    "    prev_const[cname]= np.zeros((len(mod_names),) + sh[:])\n",
-    "for i in range(len(mod_names)):\n",
-    "    for cname, cval in constants.items():\n",
-    "        cval[i] = data[mod_names[i]][cname]\n",
-    "        if mod_names[i] in old_cons.keys():\n",
-    "            prev_const[cname][i] = old_cons[mod_names[i]][cname]\n",
-    "        else:\n",
-    "            print(f\"No previous {cname} found for {mod_names[i]}\")"
+    "# Load the constant data in parallel\n",
+    "found_module_nums = sorted(found_module_nums)\n",
+    "mod_names = [module_index_to_qm(n) for n in found_module_nums]\n",
+    "\n",
+    "def load_piece(wid, ix, entry):\n",
+    "    cname, mod_no, fpath = entry\n",
+    "    mod_ix = found_module_nums.index(mod_no)\n",
+    "    \n",
+    "    with h5py.File(fpath, 'r') as f:\n",
+    "        f['data'].read_direct(constants[cname][mod_ix])\n",
+    "\n",
+    "psh.map(load_piece, pieces_to_load)\n",
+    "print(f\"Loaded constant data from {len(pieces_to_load)} files\")\n",
+    "\n",
+    "def load_piece_prev(wid, ix, entry):\n",
+    "    cname, mod_no, fpath, h5path = entry\n",
+    "    mod_ix = found_module_nums.index(mod_no)\n",
+    "    \n",
+    "    with h5py.File(fpath, 'r') as f:\n",
+    "        f[h5path]['data'].read_direct(prev_const[cname][mod_ix])\n",
+    "\n",
+    "psh.map(load_piece_prev, pieces_to_load_prev)\n",
+    "print(f\"Loaded previous constant data from {len(pieces_to_load_prev)} files\")"
    ]
   },
   {
@@ -330,32 +352,87 @@
     "                                                                   (-11.5, 8),\n",
     "                                                                   (254.5, -16),\n",
     "                                                                   (278.5, 275)])\n",
-    "    pixels_y = 256\n",
-    "    pixels_x = 256\n",
+    "    module_shape = (256, 256)\n",
     "\n",
     "elif dinstance in ('AGIPD1M1', 'AGIPD1M2'):\n",
     "    geom = extra_geom.AGIPD_1MGeometry.from_quad_positions(quad_pos=[(-525, 625),\n",
     "                                                                     (-550, -10),\n",
     "                                                                     (520, -160),\n",
     "                                                                     (542.5, 475)])\n",
-    "    pixels_y = 128\n",
-    "    pixels_x = 512\n",
+    "    module_shape = (512, 128)\n",
     "\n",
     "elif dinstance == \"AGIPD500K\":\n",
     "    geom = extra_geom.AGIPD_500K2GGeometry.from_origin()\n",
-    "    pixels_y = 128\n",
-    "    pixels_x = 512\n",
+    "    module_shape = (512, 128)\n",
     "    \n",
     "elif \"DSSC\" in dinstance:\n",
-    "    pixels_y = 512\n",
-    "    pixels_x = 128\n",
+    "    module_shape = (128, 512)\n",
     "    quadpos = [(-130, 5), (-130, -125), (5, -125), (5, 5)]\n",
-    "\n",
-    "    extrageom_pth = os.path.dirname(extra_geom.__file__)\n",
-    "    geom = extra_geom.DSSC_1MGeometry.from_h5_file_and_quad_positions(\n",
-    "                f\"{extrageom_pth}/tests/dssc_geo_june19.h5\", positions=quadpos)\n",
-    "\n",
-    "Mod_data=OrderedDict()\n",
+    "    geom = extra_geom.DSSC_1MGeometry.from_quad_positions(quadpos)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def plot_const_and_delta(const, delta, const_name, gain_name):\n",
+    "    gs = gridspec.GridSpec(2, 2)\n",
+    "    fig = plt.figure(figsize=(24, 32))\n",
+    "    \n",
+    "    ax0 = fig.add_subplot(gs[0, :])\n",
+    "    vmin, vmax = get_range(const, 2)\n",
+    "    geom.plot_data_fast(\n",
+    "        const, vmin=vmin, vmax=vmax, ax=ax0, colorbar={\n",
+    "            'shrink': 0.9, 'pad': 0.05, 'label': 'ADUs'\n",
+    "    })\n",
+    "    ax0.set_title(f\"{const_name} - {gain_name}\", fontsize=15)\n",
+    "    \n",
+    "    if np.count_nonzero(delta) == np.count_nonzero(np.isnan(delta)):\n",
+    "        fig.text(0.5, 0.4, \"No difference from previous constant\",\n",
+    "                 ha='center', va='center', fontsize=15)\n",
+    "        return\n",
+    "    \n",
+    "    # Plot delta from previous constant\n",
+    "    ax1 = fig.add_subplot(gs[1, 0])\n",
+    "    vmin, vmax = get_range(delta, 2)\n",
+    "    vmax = max(vmax, abs(vmin))  # Center around zero\n",
+    "    geom.plot_data_fast(\n",
+    "        delta, vmin=-vmax, vmax=vmax, ax=ax1, cmap=\"RdBu\", colorbar={\n",
+    "            'shrink': 0.6, 'pad': 0.1, 'label': 'ADUs'\n",
+    "    })\n",
+    "    ax1.set_title(f\"Difference with previous {const_name} - {gain_name}\", fontsize=15)\n",
+    "    \n",
+    "    # Plot % delta from previous constant\n",
+    "    delta_pct = delta / const * 100\n",
+    "    ax2 = fig.add_subplot(gs[1, 1])\n",
+    "    vmin, vmax = get_range(delta_pct, 2)\n",
+    "    vmax = max(vmax, abs(vmin))  # Center around zero\n",
+    "    geom.plot_data_fast(\n",
+    "        delta_pct, vmin=-vmax, vmax=vmax, ax=ax2, cmap=\"RdBu\", colorbar={\n",
+    "            'shrink': 0.6, 'pad': 0.1, 'label': '%'\n",
+    "    })\n",
+    "    ax2.set_title(\"Percentage difference\", fontsize=15)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "psh_ctx = psh.ProcessContext(nmods)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [],
+   "source": [
     "gainstages = 1\n",
     "\n",
     "for const_name, const in constants.items():\n",
@@ -366,9 +443,6 @@
     "        gainstages = 3\n",
     "    else:\n",
     "        gainstages = 1\n",
-    "\n",
-    "    for dname in ['{}', 'd-{}', 'dpct-{}']:\n",
-    "        Mod_data[dname.format(const_name)] = OrderedDict()\n",
     "    \n",
     "    display(Markdown(f'##### {const_name}'))\n",
     "    print_once = True\n",
@@ -376,72 +450,38 @@
     "        if const_name == 'ThresholdsDark':\n",
     "            if gain > 1:\n",
     "                continue\n",
-    "            glabel = threshold_names\n",
+    "            glabel = threshold_names[gain]\n",
     "        else:\n",
-    "            glabel = gain_names\n",
-    "        for i in range(nmods):\n",
+    "            glabel = gain_names[gain]\n",
+    "\n",
+    "        stacked_const = psh_ctx.alloc((nmods,) + module_shape, dtype=np.float64, fill=0)\n",
+    "        stacked_delta = psh_ctx.alloc((nmods,) + module_shape, dtype=np.float64, fill=0)\n",
+    "            \n",
+    "        def average_module(wid, i, _):\n",
     "            qm = module_index_to_qm(i)\n",
     "            if qm in mod_names:\n",
     "                m_idx = mod_names.index(qm)\n",
     "                # Check if constant shape of 5 indices e.g. AGIPD, LPD\n",
-    "                if len(const.shape) == 5:\n",
+    "                if const.ndim == 5:\n",
     "                    values = np.nanmean(const[m_idx, :, :, :, gain], axis=2)\n",
-    "                    dval = np.nanmean(prev_const[const_name][m_idx, :, :, :, gain], axis=2)\n",
+    "                    prev_val = np.nanmean(prev_const[const_name][m_idx, :, :, :, gain], axis=2)\n",
     "                else:\n",
     "                    values = np.nanmean(const[m_idx, :, :, :], axis=2)\n",
-    "                    dval = np.nanmean(prev_const[const_name][m_idx, :, :, :], axis=2)\n",
+    "                    prev_val = np.nanmean(prev_const[const_name][m_idx, :, :, :], axis=2)\n",
     "                values[values == 0] = np.nan\n",
-    "                dval[dval == 0] = np.nan\n",
-    "                dval = values - dval\n",
-    "                dval_pct = dval/values * 100\n",
-    "\n",
-    "                values = np.moveaxis(values, 0, -1).reshape(1, values.shape[1], values.shape[0])\n",
-    "                dval = np.moveaxis(dval, 0, -1).reshape(1, dval.shape[1], dval.shape[0])\n",
-    "                dval_pct = np.moveaxis(dval_pct, 0, -1).reshape(1, dval_pct.shape[1], dval_pct.shape[0])\n",
+    "                prev_val[prev_val == 0] = np.nan\n",
+    "                stacked_const[i] = np.moveaxis(values, 0, -1)\n",
+    "                stacked_delta[i] = np.moveaxis(values - prev_val, 0, -1)\n",
     "            else:\n",
-    "                # if module not available fill arrays with nan\n",
-    "                values = np.zeros((1, pixels_x, pixels_y),dtype=np.float64)\n",
-    "                values[values == 0] = np.nan\n",
-    "                dval = values \n",
-    "                dval_pct = dval\n",
-    "            for k, v in {'{}': values, 'd-{}': dval , 'dpct-{}': dval_pct}.items():\n",
-    "                try:\n",
-    "                    Mod_data[k.format(const_name)][gain_names[gain]] = \\\n",
-    "                            np.concatenate((Mod_data[k.format(const_name)][gain_names[gain]],\n",
-    "                                                                         v), axis=0)\n",
-    "                except:\n",
-    "                    Mod_data[k.format(const_name)][gain_names[gain]] = v\n",
-    "        if np.count_nonzero(dval) == 0 and print_once:\n",
-    "            display(Markdown(f'New and previous {const_name} are the same, hence there is no difference.'))\n",
-    "            print_once = False\n",
+    "                # if module not available fill space with nan\n",
+    "                stacked_const[i] = np.nan\n",
+    "\n",
+    "        psh_ctx.map(average_module, range(nmods))\n",
+    "        \n",
     "        # Plotting constant overall modules.\n",
-    "        display(Markdown(f'###### {glabel[gain]} ######'))\n",
-    "\n",
-    "        gs = gridspec.GridSpec(2, 2)\n",
-    "        fig = plt.figure(figsize=(24, 32))\n",
-    "\n",
-    "        axis = OrderedDict()\n",
-    "        axis = {\"ax0\": {\"cname\": \"{}\" ,\"gs\": gs[0, :], \"shrink\": 0.9, \"pad\": 0.05, \"label\": \"ADUs\", \"title\": '{}'},\n",
-    "                \"ax1\": {\"cname\": \"d-{}\",\"gs\": gs[1, 0], \"shrink\": 0.6, \"pad\": 0.1, \"label\": \"ADUs\", \"title\": 'Difference with previous {}'},\n",
-    "                \"ax2\": {\"cname\": \"dpct-{}\", \"gs\": gs[1, 1], \"shrink\": 0.6, \"pad\": 0.1, \"label\": \"%\", \"title\": 'Difference with previous {} %'}}\n",
-    "\n",
-    "        for ax, axv in axis.items():\n",
-    "            # Add the min and max plot values for each axis.\n",
-    "            vmin, vmax =  get_range(Mod_data[axv[\"cname\"].format(const_name)][gain_names[gain]], 2)\n",
-    "            ax = fig.add_subplot(axv[\"gs\"])\n",
-    "            geom.plot_data_fast(Mod_data[axv[\"cname\"].format(const_name)][gain_names[gain]],\n",
-    "                                vmin=vmin, vmax=vmax, ax=ax, \n",
-    "                                colorbar={'shrink': axv[\"shrink\"],\n",
-    "                                          'pad': axv[\"pad\"]\n",
-    "                                         }\n",
-    "                               )\n",
-    "\n",
-    "            colorbar = ax.images[0].colorbar\n",
-    "            colorbar.set_label(axv[\"label\"])\n",
-    "\n",
-    "            ax.set_title(axv[\"title\"].format(f\"{const_name} {glabel[gain]}\"), fontsize=15)\n",
-    "            ax.set_xlabel('Columns', fontsize=15)\n",
-    "            ax.set_ylabel('Rows', fontsize=15)\n",
+    "        display(Markdown(f'###### {glabel} ######'))\n",
+    "\n",
+    "        plot_const_and_delta(stacked_const, stacked_delta, const_name, glabel)\n",
     "\n",
     "        plt.show()"
    ]
@@ -449,48 +489,55 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "scrolled": false
+   },
    "outputs": [],
    "source": [
     "# Loop over modules and constants\n",
     "for const_name, const in constants.items():\n",
+    "    if const_name == 'BadPixelsDark':\n",
+    "        continue  # Displayed separately below\n",
+    "    \n",
     "    display(Markdown(f'### Summary across Modules - {const_name}'))\n",
     "\n",
     "    for gain in range(gainstages):\n",
     "        if const_name == 'ThresholdsDark':\n",
     "            if gain == 2:\n",
     "                continue\n",
-    "            glabel = threshold_names\n",
+    "            glabel = threshold_names[gain]\n",
     "        else:\n",
-    "            glabel = gain_names\n",
+    "            glabel = gain_names[gain]\n",
     "\n",
-    "        if len(const.shape) == 5:\n",
-    "            data = np.copy(const[:, :, :, :, gain])\n",
+    "        if const.ndim == 5:\n",
+    "            data = const[:, :, :, :, gain]\n",
     "        else:\n",
-    "            data = np.copy(const[:, :, :, :])\n",
-    "        if const_name != 'BadPixelsDark':\n",
-    "            if \"BadPixelsDark\" in constants.keys():\n",
-    "                label = f'{const_name} value [ADU], good pixels only'\n",
-    "                if len(const.shape) == 5:\n",
-    "                    data[constants['BadPixelsDark'][:, :, :, :, gain] > 0] = np.nan\n",
-    "                else:\n",
-    "                    data[constants['BadPixelsDark'][:, :, :, :] > 0] = np.nan\n",
+    "            data = const\n",
+    "\n",
+    "        # Bad pixels are per gain stage, and you need thresholds to pick the gain\n",
+    "        # stage, so we don't mask the thresholds.\n",
+    "        if ('BadPixelsDark' in constants) and (const_name != 'ThresholdsDark'):\n",
+    "            label = f'{const_name} value [ADU], good pixels only'\n",
+    "            if const.ndim == 5:\n",
+    "                goodpix = constants['BadPixelsDark'][:, :, :, :, gain] == 0\n",
     "            else:\n",
-    "                label = f'{const_name} value [ADU], good and bad pixels'\n",
-    "            datamean = np.nanmean(data, axis=(1, 2))\n",
-    "\n",
-    "            fig = plt.figure(figsize=(15, 6), tight_layout={\n",
-    "                             'pad': 0.2, 'w_pad': 1.3, 'h_pad': 1.3})\n",
-    "            ax = fig.add_subplot(121)\n",
+    "                goodpix = constants['BadPixelsDark'] == 0\n",
     "        else:\n",
-    "            label = 'Fraction of bad pixels'\n",
-    "            data[data > 0] = 1.0\n",
-    "            datamean = np.nanmean(data, axis=(1, 2))\n",
-    "            datamean[datamean == 1.0] = np.nan\n",
-    "\n",
-    "            fig = plt.figure(figsize=(15, 6), tight_layout={\n",
-    "                             'pad': 0.2, 'w_pad': 1.3, 'h_pad': 1.3})\n",
-    "            ax = fig.add_subplot(111)\n",
+    "            label = f'{const_name} value [ADU], good and bad pixels'\n",
+    "            goodpix = [True] * data.shape[0]\n",
+    "\n",
+    "        # Reduce data in parallel (one worker per module):\n",
+    "        datamean = psh_ctx.alloc(data.shape[:1] + data.shape[3:], data.dtype)\n",
+    "        datastd = psh_ctx.alloc(data.shape[:1] + data.shape[3:], data.dtype)\n",
+    "        \n",
+    "        def average_mem_cells(wid, i, _):\n",
+    "            datamean[i] = np.mean(data[i], axis=(0, 1), where=goodpix[i])\n",
+    "            datastd[i] = np.std(data[i], axis=(0, 1), where=goodpix[i])\n",
+    "        psh_ctx.map(average_mem_cells, range(data.shape[0]))\n",
+    "\n",
+    "        fig = plt.figure(figsize=(15, 6), tight_layout={\n",
+    "                         'pad': 0.2, 'w_pad': 1.3, 'h_pad': 1.3})\n",
+    "        ax = fig.add_subplot(121)\n",
     "\n",
     "        d = []\n",
     "        for im, mod in enumerate(datamean):\n",
@@ -504,32 +551,80 @@
     "                            x_label='Memory Cell ID',\n",
     "                            y_label=label,\n",
     "                            use_axis=ax,\n",
-    "                            title='{}'.format(glabel[gain]),\n",
+    "                            title=glabel,\n",
+    "                            title_position=[0.5, 1.18],\n",
+    "                            legend='outside-top-ncol6-frame', legend_size='18%',\n",
+    "                            legend_pad=0.00)\n",
+    "\n",
+    "        # Plot standard deviation\n",
+    "        ax = fig.add_subplot(122)\n",
+    "        if \"BadPixelsDark\" in constants.keys():\n",
+    "            label = f'$\\sigma$ {const_name} [ADU], good pixels only'\n",
+    "        else:\n",
+    "            label = f'$\\sigma$ {const_name} [ADU], good and bad pixels'\n",
+    "        d = []\n",
+    "        for im, mod in enumerate(datastd):\n",
+    "            d.append({'x': np.arange(mod.shape[0]),\n",
+    "                      'y': mod,\n",
+    "                      'drawstyle': 'steps-pre',\n",
+    "                      'label': mod_names[im],\n",
+    "                      })\n",
+    "\n",
+    "        _ = simplePlot(d, figsize=(10, 10), xrange=(-12, 510),\n",
+    "                            x_label='Memory Cell ID',\n",
+    "                            y_label=label,\n",
+    "                            use_axis=ax,\n",
+    "                            title=f'{glabel} $\\sigma$',\n",
+    "                            title_position=[0.5, 1.18],\n",
+    "                            legend='outside-top-ncol6-frame', legend_size='18%',\n",
+    "                            legend_pad=0.00)\n",
+    "\n",
+    "        plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "if 'BadPixelsDark' in constants:\n",
+    "    display(Markdown(f'### Summary across Modules - BadPixelsDark'))\n",
+    "\n",
+    "    bad_px_dark = constants['BadPixelsDark']\n",
+    "\n",
+    "    for gain in range(gainstages):\n",
+    "        glabel = gain_names[gain]\n",
+    "\n",
+    "        if bad_px_dark.ndim == 5:\n",
+    "            data = bad_px_dark[:, :, :, :, gain]\n",
+    "        else:\n",
+    "            data = bad_px_dark[:, :, :, :]\n",
+    "\n",
+    "        bad_px_per_cell = np.count_nonzero(data, axis=(1, 2))\n",
+    "        fraction_bad_per_cell = bad_px_per_cell / (data.shape[1] * data.shape[2])\n",
+    "        fraction_bad_per_cell[fraction_bad_per_cell == 1.0] = np.nan\n",
+    "\n",
+    "        fig = plt.figure(figsize=(15, 6), tight_layout={\n",
+    "                         'pad': 0.2, 'w_pad': 1.3, 'h_pad': 1.3})\n",
+    "        ax = fig.add_subplot(1, 1, 1)\n",
+    "\n",
+    "        d = []\n",
+    "        for im, mod in enumerate(fraction_bad_per_cell):\n",
+    "            d.append({'x': np.arange(mod.shape[0]),\n",
+    "                      'y': mod,\n",
+    "                      'drawstyle': 'steps-pre',\n",
+    "                      'label': mod_names[im],\n",
+    "                      })\n",
+    "\n",
+    "        _ = simplePlot(d, figsize=(10, 10), xrange=(-12, 510),\n",
+    "                            x_label='Memory Cell ID',\n",
+    "                            y_label='Fraction of bad pixels',\n",
+    "                            use_axis=ax,\n",
+    "                            title=glabel,\n",
     "                            title_position=[0.5, 1.18],\n",
     "                            legend='outside-top-ncol6-frame', legend_size='18%',\n",
     "                            legend_pad=0.00)\n",
-    "        if const_name != 'BadPixelsDark':\n",
-    "            ax = fig.add_subplot(122)\n",
-    "            if \"BadPixelsDark\" in constants.keys():\n",
-    "                label = f'$\\sigma$ {const_name} [ADU], good pixels only'\n",
-    "            else:\n",
-    "                label = f'$\\sigma$ {const_name} [ADU], good and bad pixels'\n",
-    "            d = []\n",
-    "            for im, mod in enumerate(np.nanstd(data, axis=(1, 2))):\n",
-    "                d.append({'x': np.arange(mod.shape[0]),\n",
-    "                          'y': mod,\n",
-    "                          'drawstyle': 'steps-pre',\n",
-    "                          'label': mod_names[im],\n",
-    "                          })\n",
-    "\n",
-    "            _ = simplePlot(d, figsize=(10, 10), xrange=(-12, 510),\n",
-    "                                x_label='Memory Cell ID',\n",
-    "                                y_label=label,\n",
-    "                                use_axis=ax,\n",
-    "                                title='{} $\\sigma$'.format(glabel[gain]),\n",
-    "                                title_position=[0.5, 1.18],\n",
-    "                                legend='outside-top-ncol6-frame', legend_size='18%',\n",
-    "                                legend_pad=0.00)\n",
     "\n",
     "        plt.show()"
    ]
@@ -565,58 +660,91 @@
     "head = ['Module', 'High gain', 'Medium gain', 'Low gain']\n",
     "head_th = ['Module', 'HG_MG threshold', 'MG_LG threshold']\n",
     "for const_name, const in constants.items():\n",
+    "    if const_name == 'BadPixelsDark':\n",
+    "        continue  # Handled below\n",
+    "\n",
+    "    if const.ndim == 4:  # Add gain dimension if not present\n",
+    "        const = const[:, :, : , :, np.newaxis]\n",
+    "        \n",
+    "    if ('BadPixelsDark' in constants) and (const_name != 'ThresholdsDark'):\n",
+    "        goodpix = constants['BadPixelsDark'] == 0\n",
+    "        if goodpix.ndim == 4:\n",
+    "            goodpix = goodpix[:, :, : , :, np.newaxis]\n",
+    "        \n",
+    "        label = f'### Average {const_name} [ADU], good pixels only'\n",
+    "    else:\n",
+    "        goodpix = [True] * const.shape[0]\n",
+    "        label = f'### Average {const_name} [ADU], good and bad pixels'\n",
+    "\n",
+    "    # Reduce data in parallel (one worker per module)\n",
+    "    mean_by_module_gain = psh.alloc(const.shape[:1] + const.shape[4:], const.dtype)\n",
+    "    std_by_module_gain  = psh.alloc(const.shape[:1] + const.shape[4:], const.dtype)\n",
+    "    \n",
+    "    def average_module(wid, i, _):\n",
+    "        mean_by_module_gain[i] = np.mean(const[i], axis=(0, 1, 2), where=goodpix[i])\n",
+    "        std_by_module_gain[i]  = np.std (const[i], axis=(0, 1, 2), where=goodpix[i])\n",
+    "    psh_ctx.map(average_module, range(const.shape[0]))\n",
+    "\n",
+    "    table = []\n",
+    "\n",
+    "    for i_mod, mod in enumerate(mod_names):\n",
+    "        t_line = [mod]\n",
+    "        for gain in range(gainstages):\n",
+    "            if const_name == 'ThresholdsDark' and gain == 2:\n",
+    "                continue\n",
+    "\n",
+    "            datamean = mean_by_module_gain[i_mod, gain]\n",
+    "            datastd = std_by_module_gain[i_mod, gain]\n",
+    "            t_line.append(f'{datamean:6.1f} $\\\\pm$ {datastd:6.1f}')\n",
+    "\n",
+    "        table.append(t_line)\n",
+    "\n",
+    "    display(Markdown(label))\n",
+    "    header = head_th if const_name == 'ThresholdsDark' else head\n",
+    "    md = display(Latex(tabulate.tabulate(\n",
+    "        table, tablefmt='latex', headers=header)))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Bad pixels summary table\n",
+    "if 'BadPixelsDark' in constants:    \n",
+    "    bad_px_dark = constants['BadPixelsDark']\n",
+    "\n",
     "    table = []\n",
     "\n",
     "    for i_mod, mod in enumerate(mod_names):\n",
     "\n",
     "        t_line = [mod]\n",
     "        for gain in range(gainstages):\n",
-    "            \n",
-    "            if const_name == 'ThresholdsDark': \n",
-    "                if gain == 2:\n",
-    "                    continue\n",
-    "                header = head_th\n",
-    "            else:\n",
-    "                header = head\n",
-    "            if len(const.shape) == 5:    \n",
-    "                data = np.copy(const[i_mod, :, :, :, gain])\n",
+    "            if bad_px_dark.ndim == 5:    \n",
+    "                data = bad_px_dark[i_mod, :, :, :, gain]\n",
     "            else:\n",
-    "                data = np.copy(const[i_mod, :, :, :])\n",
-    "            if const_name == 'BadPixelsDark':\n",
-    "                data[data > 0] = 1.0\n",
-    "\n",
-    "                datasum = np.nansum(data)\n",
-    "                datamean = np.nanmean(data)\n",
-    "                if datamean == 1.0:\n",
-    "                    datamean = np.nan\n",
-    "                    datasum = np.nan\n",
-    "\n",
-    "                t_line.append(f'{datasum:6.0f} ({datamean:6.3f}) ')\n",
-    "                label = '## Number(fraction) of bad pixels'\n",
-    "            else:\n",
-    "                if \"BadPixelsDark\" in constants.keys():\n",
-    "                    data[constants['BadPixelsDark']\n",
-    "                         [i_mod, :, :, :, gain] > 0] = np.nan\n",
-    "                    label = f'### Average {const_name} [ADU], good pixels only'\n",
-    "                else:\n",
-    "                    label = f'### Average {const_name} [ADU], good and bad pixels'\n",
+    "                data = bad_px_dark[i_mod]\n",
     "\n",
-    "                t_line.append(f'{np.nanmean(data):6.1f} $\\\\pm$ {np.nanstd(data):6.1f}')\n",
-    "                label = f'## Average {const_name} [ADU], good pixels only'\n",
+    "            datasum = np.count_nonzero(data)\n",
+    "            datamean = datasum / data.size\n",
+    "\n",
+    "            t_line.append(f'{datasum:6.0f} ({datamean:6.3f}) ')\n",
+    "            label = '## Number(fraction) of bad pixels'\n",
     "\n",
     "        table.append(t_line)\n",
     "\n",
     "    display(Markdown(label))\n",
     "    md = display(Latex(tabulate.tabulate(\n",
-    "        table, tablefmt='latex', headers=header)))"
+    "        table, tablefmt='latex', headers=head)))"
    ]
   }
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "Offline Cal",
    "language": "python",
-   "name": "python3"
+   "name": "offline-cal"
   },
   "language_info": {
    "codemirror_mode": {
@@ -628,7 +756,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.12"
+   "version": "3.8.10"
   }
  },
  "nbformat": 4,