diff --git a/notebooks/DynamicFF/Characterize_DynamicFF_NBC.ipynb b/notebooks/DynamicFF/Characterize_DynamicFF_NBC.ipynb
index 1b848008d85f1f7f44263883a9833209e6f87e7e..40897d331b0b8f0389d0df0251711f607ea147a3 100644
--- a/notebooks/DynamicFF/Characterize_DynamicFF_NBC.ipynb
+++ b/notebooks/DynamicFF/Characterize_DynamicFF_NBC.ipynb
@@ -20,26 +20,25 @@
     "in_folder = \"/gpfs/exfel/exp/SPB/202430/p900425/raw\"  # input folder, required\n",
     "out_folder = '/gpfs/exfel/data/scratch/esobolev/test/shimadzu'  # output folder, required\n",
     "metadata_folder = \"\"  # Directory containing calibration_metadata.yml when run by xfel-calibrate\n",
-    "dark_run = 1 # which run to read data from, required\n",
-    "flat_run = 2 # which run to read\n",
+    "runs = [1, 2]  # list of two run numbers: dark field and flat field\n",
     "\n",
     "# Data files parameters.\n",
-    "karabo_da = ['HPVX01/1', 'HPVX01/2'] # data aggregators\n",
-    "karabo_id = \"SPB_EHD_MIC\" # karabo prefix of Shimadzu HPV-X2 devices\n",
+    "karabo_da = ['-1'] # data aggregators\n",
+    "karabo_id = \"SPB_MIC_HPVX2\" # karabo prefix of Shimadzu HPV-X2 devices\n",
     "\n",
     "#receiver_id = \"PNCCD_FMT-0\" # inset for receiver devices\n",
     "#path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5'  # the template to use to access data\n",
-    "instrument_source_template = 'SPB_EHD_MIC/CAM/HPVX2_{module}:daqOutput'  # data source path in h5file.\n",
+    "#instrument_source_template = 'SPB_EHD_MIC/CAM/HPVX2_{module}:daqOutput'  # data source path in h5file.\n",
     "#instrument_source_template = 'SPB_EHD_HPVX2_{module}/CAM/CAMERA:daqOutput'\n",
-    "image_key = \"data.image.pixels\"  # image data key in Karabo or exdf notation\n",
+    "#image_key = \"data.image.pixels\"  # image data key in Karabo or exdf notation\n",
     "\n",
-    "db_module_template = \"Shimadzu_HPVX2_{}\"\n",
+    "#db_module_template = \"Shimadzu_HPVX2_{}\"\n",
     "\n",
     "# Database access parameters.\n",
     "use_dir_creation_date = True  # use dir creation date as data production reference date\n",
     "cal_db_interface = \"tcp://max-exfl-cal001:8021\"  # calibration DB interface to use\n",
     "cal_db_timeout = 300000 # timeout on caldb requests\n",
-    "db_output = False # if True, the notebook sends dark constants to the calibration database\n",
+    "db_output = True # if True, the notebook sends dark constants to the calibration database\n",
     "local_output = True # if True, the notebook saves dark constants locally\n",
     "creation_time = \"\" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC.00 e.g. 2019-07-04 11:02:41.00\n",
     "\n",
@@ -69,14 +68,16 @@
     "from cal_tools.step_timing import StepTimer\n",
     "from cal_tools.tools import (\n",
     "    get_dir_creation_date,\n",
-    "    get_pdu_from_db,\n",
+    "#    get_pdu_from_db,\n",
     "    get_random_db_interface,\n",
     "    get_report,\n",
-    "    save_const_to_h5,\n",
+    "#    save_const_to_h5,\n",
     "    save_dict_to_hdf5,\n",
-    "    send_to_db,\n",
+    "#    send_to_db,\n",
     "    run_prop_seq_from_path,\n",
     ")\n",
+    "from cal_tools.restful_config import calibration_client\n",
+    "from cal_tools.shimadzu import ShimadzuHPVX2\n",
     "\n",
     "import dynflatfield as dffc\n",
     "from dynflatfield.draw import plot_images, plot_camera_image"
@@ -90,42 +91,54 @@
    "source": [
     "creation_time=None\n",
     "if use_dir_creation_date:\n",
-    "    creation_time = get_dir_creation_date(in_folder, max(dark_run, flat_run))\n",
+    "    creation_time = get_dir_creation_date(in_folder, max(runs))\n",
     "\n",
     "print(f\"Using {creation_time} as creation time of constant.\")\n",
     "\n",
-    "run, prop, seq = run_prop_seq_from_path(in_folder)\n",
-    "file_loc = f'proposal: {prop}, runs: {dark_run} {flat_run}'\n",
+    "run, proposal, seq = run_prop_seq_from_path(in_folder)\n",
+    "#file_loc = f'proposal: {prop}, runs: {dark_run} {flat_run}'\n",
     "\n",
     "# Read report path and create file location tuple to add with the injection\n",
-    "file_loc = f\"proposal:{prop} runs:{dark_run} {flat_run}\"\n",
+    "#file_loc = f\"proposal:{proposal} runs:\" + ' '.join(str(run) for run in runs)\n",
     "\n",
     "report = get_report(metadata_folder)\n",
     "cal_db_interface = get_random_db_interface(cal_db_interface)\n",
     "print(f'Calibration database interface: {cal_db_interface}')\n",
     "print()\n",
     "\n",
-    "instrument, part, component = karabo_id.split('_')\n",
+    "cc = calibration_client()\n",
+    "pdus = cc.get_all_phy_det_units_from_detector(\n",
+    "    {\"detector_identifier\": karabo_id})\n",
     "\n",
-    "sources = {}\n",
-    "source_to_db = {}\n",
-    "print(\"Sources:\")\n",
-    "for da in karabo_da:\n",
-    "    aggr, _, module = da.partition('/')\n",
-    "    source_name = instrument_source_template.format(\n",
-    "        instrument=instrument, part=part, component=component,\n",
-    "        module=module\n",
-    "    )\n",
-    "    sources[source_name] = aggr\n",
-    "    source_to_db[source_name] = db_module_template.format(module)\n",
-    "    print('-', source_name)\n",
-    "print()\n",
+    "if not pdus[\"success\"]:\n",
+    "    print(\"exception\")\n",
+    "\n",
+    "detector_info = pdus['data'][0]['detector']\n",
+    "detector = ShimadzuHPVX2(detector_info[\"source_name_pattern\"])\n",
     "\n",
+    "print(f\"Instrument {detector.instrument}\")\n",
     "print(f\"Detector in use is {karabo_id}\")\n",
-    "print(f\"Instrument {instrument}\")\n",
     "\n",
-    "step_timer = StepTimer()\n",
-    "constants = {}"
+    "modules = {}\n",
+    "for pdu_no, pdu in enumerate(pdus[\"data\"]):\n",
+    "    db_module = pdu[\"physical_name\"]\n",
+    "    module = pdu[\"module_number\"]\n",
+    "    da = pdu[\"karabo_da\"]\n",
+    "    if karabo_da[0] != \"-1\" and da not in karabo_da:\n",
+    "        continue\n",
+    "\n",
+    "    instrument_source_name = detector.instrument_source(module)\n",
+    "    print('-', da, db_module, module, instrument_source_name)\n",
+    "\n",
+    "    modules[da] = dict(\n",
+    "        db_module=db_module,\n",
+    "        module=module,\n",
+    "        raw_source_name=instrument_source_name,\n",
+    "        pdu_no=pdu_no,\n",
+    "    )\n",
+    "\n",
+    "constants = {}\n",
+    "step_timer = StepTimer()"
    ]
   },
   {
@@ -141,15 +154,20 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "for source, aggr in sources.items():\n",
-    "    display(Markdown(f\"## {source}\"))\n",
+    "dark_run = runs[0]\n",
+    "for da, meta in modules.items():\n",
+    "    source_name = detector.instrument_source(meta[\"module\"])\n",
+    "    image_key = detector.image_key\n",
+    "\n",
+    "    display(Markdown(f\"## {source_name}\"))\n",
     "\n",
     "    # read\n",
     "    step_timer.start()\n",
+    "    file_da, _, _ = da.partition('/')\n",
     "    dark_dc = RunDirectory(f\"{in_folder}/r{dark_run:04d}\",\n",
-    "                           include=f\"RAW-R{dark_run:04d}-{aggr}-S*.h5\")\n",
-    "    dark_dc = dark_dc.select([(source, image_key)])\n",
-    "    key_data = dark_dc[source][image_key]\n",
+    "                           include=f\"RAW-R{dark_run:04d}-{file_da}-S*.h5\")\n",
+    "    dark_dc = dark_dc.select([(source_name, image_key)])\n",
+    "    key_data = dark_dc[source_name, image_key]\n",
     "\n",
     "    images_dark = key_data.ndarray()\n",
     "    ntrain, npulse, ny, nx = images_dark.shape\n",
@@ -161,8 +179,12 @@
     "    # process\n",
     "    step_timer.start()\n",
     "    dark = dffc.process_dark(images_dark)\n",
-    "    module_constants = constants.setdefault(source, {})\n",
-    "    module_constants[\"Offset\"] = dark\n",
+    "\n",
+    "    # put results in the dict\n",
+    "    conditions = detector.conditions(dark_dc, meta[\"module\"])\n",
+    "    module_constants = constants.setdefault(meta[\"db_module\"], {})\n",
+    "    module_constants[\"Offset\"] = dict(\n",
+    "        conditions=conditions, data=dark, pdu_no=meta[\"pdu_no\"])\n",
     "    step_timer.done_step(\"Process dark images\")\n",
     "    display()\n",
     "\n",
@@ -188,15 +210,20 @@
    },
    "outputs": [],
    "source": [
-    "for source, aggr in sources.items():\n",
-    "    display(Markdown(f\"## {source}\"))\n",
+    "flat_run = runs[1]\n",
+    "for da, meta in modules.items():\n",
+    "    source_name = detector.instrument_source(meta[\"module\"])\n",
+    "    image_key = detector.image_key\n",
+    "\n",
+    "    display(Markdown(f\"## {source_name}\"))\n",
     "\n",
     "    # read\n",
     "    step_timer.start()\n",
+    "    file_da, _, _ = da.partition('/')\n",
     "    flat_dc = RunDirectory(f\"{in_folder}/r{flat_run:04d}\",\n",
-    "                           include=f\"RAW-R{flat_run:04d}-{aggr}-S*.h5\")\n",
-    "    flat_dc = flat_dc.select([(source, image_key)])\n",
-    "    key_data = flat_dc[source][image_key]\n",
+    "                           include=f\"RAW-R{flat_run:04d}-{file_da}-S*.h5\")\n",
+    "    flat_dc = flat_dc.select([(source_name, image_key)])\n",
+    "    key_data = flat_dc[source_name][image_key]\n",
     "\n",
     "    images_flat = key_data.ndarray()\n",
     "    ntrain, npulse, ny, nx = images_flat.shape\n",
@@ -209,9 +236,14 @@
     "    step_timer.start()\n",
     "    flat, components, explained_variance_ratio = dffc.process_flat(\n",
     "        images_flat, dark, n_components)\n",
+    "    flat_data = np.concatenate([flat[None, ...], components])\n",
     "\n",
-    "    module_constants = constants.setdefault(source, {})\n",
-    "    module_constants[\"DynamicFF\"] = np.concatenate([flat[None, ...], components])\n",
+    "    # put results in the dict\n",
+    "    conditions = detector.conditions(flat_dc, meta[\"module\"])\n",
+    "    module_constants = constants.setdefault(meta[\"db_module\"], {})\n",
+    "    module_constants[\"DynamicFF\"] = dict(\n",
+    "        conditions=conditions, data=flat_data, pdu_no=meta[\"pdu_no\"]\n",
+    "    )\n",
     "    step_timer.done_step(\"Process flat-field images\")\n",
     "\n",
     "    # draw plots\n",
@@ -253,31 +285,40 @@
     "# Output Folder Creation:\n",
     "os.makedirs(out_folder, exist_ok=True)\n",
     "\n",
-    "for source, module_constants  in constants.items():\n",
-    "    for constant_name, data in module_constants.items():\n",
-    "        db_module = source_to_db[source]\n",
-    "\n",
-    "        conditions = {\n",
-    "            'Frame Size': {'value': 1.0},\n",
-    "        }\n",
-    "\n",
-    "        data_to_store = {\n",
-    "            'condition': conditions,\n",
-    "            'db_module': db_module,\n",
-    "            'karabo_id': karabo_id,\n",
-    "            'constant': constant_name,\n",
-    "            'data': data,\n",
-    "            'creation_time': creation_time.replace(microsecond=0),\n",
-    "            'file_loc': file_loc,\n",
-    "            'report': report,\n",
-    "        }\n",
+    "def inject_ccv(metadata_folder, calibration, cond, pdu, proposal, runs, const_file, begin_at):\n",
+    "    print(\"* Send to db:\", const_file)\n",
+    "    print(\"  -\", metadata_folder)\n",
+    "    print(\"  -\", calibration)\n",
+    "    print(\"  -\", cond)\n",
+    "    print(\"  - proposal\", proposal)\n",
+    "    print(\"  - runs\", runs)\n",
+    "    print(\"  -\", begin_at)\n",
+    "\n",
+    "for db_module, module_constants in constants.items():\n",
+    "    for constant_name, constant in module_constants.items():\n",
+    "        conditions = constant[\"conditions\"]\n",
+    "        conditions_dict = conditions.make_dict(\n",
+    "            conditions.calibration_types[constant_name])\n",
+    "        \n",
+    "        data_to_store = {db_module: {constant_name: {'0': {\n",
+    "            'conditions': conditions_dict,\n",
+    "            'data': constant[\"data\"],\n",
+    "        }}}}\n",
     "\n",
     "        ofile = f\"{out_folder}/const_{constant_name}_{db_module}.h5\"\n",
     "        if os.path.isfile(ofile):\n",
     "            print(f'File {ofile} already exists and will be overwritten')\n",
-    "        save_dict_to_hdf5(data_to_store, ofile)\n",
     "\n",
-    "step_timer.done_step(\"Storing calibration constants\")"
+    "        save_dict_to_hdf5(data_to_store, ofile)\n",
+    "        if db_output:\n",
+    "            inject_ccv(\n",
+    "                metadata_folder, constant_name, conditions,\n",
+    "                pdus[\"data\"][constant[\"pdu_no\"]],\n",
+    "                proposal, runs, ofile, creation_time\n",
+    "            )\n",
+    "\n",
+    "        if not local_output:\n",
+    "            os.unlink(ofile)"
    ]
   },
   {