diff --git a/notebooks/REMI/REMI_Digitize_and_Transform.ipynb b/notebooks/REMI/REMI_Digitize_and_Transform.ipynb
index a96af99d1be3c2968481175eaba32ccadd4c9ebd..55515eb7185ecd3666b5ef6b440b53e9685064be 100644
--- a/notebooks/REMI/REMI_Digitize_and_Transform.ipynb
+++ b/notebooks/REMI/REMI_Digitize_and_Transform.ipynb
@@ -1010,9 +1010,36 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "# Try to figure out proposal number from in_folder to work with older files.\n",
+    "m = re.match(r'p(\\d{6})', Path(in_folder).parts[-2])\n",
+    "if not proposal and m is not None:\n",
+    "    proposal = int(m[1])\n",
+    "\n",
     "seq_len = out_seq_len if out_seq_len > 0 else len(dc.files[0].train_ids)\n",
     "dataset_kwargs = {k[8:]: v for k, v in locals().items() if k.startswith('dataset_compression')}\n",
     "\n",
+    "control_sources = [det_device_id.format(karabo_id=karabo_id, det_name=det_name.upper())\n",
+    "                   for det_name in remi['detector']]\n",
+    "\n",
+    "channels = []\n",
+    "if save_raw_triggers or save_raw_edges:\n",
+    "    channels.append('raw')\n",
+    "if save_rec_signals or save_rec_hits:\n",
+    "    channels.append('rec')\n",
+    "    \n",
+    "instrument_channels = [\n",
+    "    f'{device_id}:{det_output_key}/{channel}'\n",
+    "    for device_id in control_sources\n",
+    "    for channel in channels\n",
+    "]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
     "Path(out_folder).mkdir(parents=True, exist_ok=True)\n",
     "print('Writing sequence files', flush=True, end='')\n",
     "\n",
@@ -1023,6 +1050,8 @@
     "    seq_train_ids = dc.train_ids[train_mask]\n",
     "\n",
     "    with DataFile.from_details(out_folder, out_aggregator, run, seq_id) as outp:\n",
+    "        outp.create_metadata(like=dc, proposal=proposal, run=run, sequence=seq_id,\n",
+    "                             control_sources=control_sources, instrument_channels=instrument_channels)\n",
     "        outp.create_index(seq_train_ids)\n",
     "        \n",
     "        for det_name in remi['detector']:\n",
@@ -1052,8 +1081,6 @@
     "                                         chunks=tuple(chunks_hits), **dataset_kwargs)\n",
     "                \n",
     "            cur_fast_data.create_index(raw=pulse_counts[train_mask], rec=pulse_counts[train_mask])\n",
-    "                \n",
-    "        outp.create_metadata(like=dc)\n",
     "        \n",
     "    print('.', flush=True, end='')\n",
     "    \n",