From b7feeb4e7ab5fa47cbf836d3a7225c20e860d3eb Mon Sep 17 00:00:00 2001 From: ahmedk <karim.ahmed@xfel.eu> Date: Thu, 21 Apr 2022 18:08:10 +0200 Subject: [PATCH] Draft: Gotthard2 dark notebook --- .../Characterize_Darks_Gotthard2_NBC.ipynb | 408 ++++++++++++++++++ 1 file changed, 408 insertions(+) create mode 100644 notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb diff --git a/notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb b/notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb new file mode 100644 index 000000000..1a3a82901 --- /dev/null +++ b/notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb @@ -0,0 +1,408 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "49b6577f-96a5-4dd2-bdd9-da661b2c4619", + "metadata": {}, + "source": [ + "# Gotthard2 Dark Image Characterization\n", + "\n", + "Author: European XFEL Detector Group, Version: 1.0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "818e24e8", + "metadata": {}, + "outputs": [], + "source": [ + "in_folder = \"/gpfs/exfel/exp/DETLAB/202230/p900276/raw\" # the folder to read data from, required\n", + "out_folder = \"/gpfs/exfel/data/scratch/ahmedk/test/gotthard2/darks\" # the folder to output to, required\n", + "run_high = 10 # run number for G0 dark run, required\n", + "run_med = 10 # run number for G1 dark run, required\n", + "run_low = 10 # run number for G2 dark run, required\n", + "sequences = [-1] # sequences to correct, set to [-1] for all, range allowed\n", + "sequences_per_node = 1 # number of sequence files per node if notebook executed through xfel-calibrate, set to 0 to not run SLURM parallel\n", + "\n", + "# Parameters used to access raw data.\n", + "karabo_id = \"DET_LAB_G2\" # karabo prefix of Jungfrau devices\n", + "karabo_da = [\"DA01\"] # data aggregators\n", + "receiver_template = \"GOT{:02d}\" # receiver template used to read INSTRUMENT keys.\n", + "control_template = \"CTRL{:02d}\" # control template used to read CONTROL keys.\n", + "instrument_source_template = '{}/DET/{}:daqOutput' # template for source name (filled with karabo_id & receiver_id). e.g. 'SPB_IRDA_JF4M/DET/JNGFR01:daqOutput'\n", + "ctrl_source_template = '{}/DET/{}' # template for control source name (filled with karabo_id_control)\n", + "karabo_id_control = \"\" # if control is on a different ID, set to empty string if it is the same a karabo-id\n", + "\n", + "# Parameters for the calibration database.\n", + "use_dir_creation_date = True\n", + "cal_db_interface = \"tcp://max-exfl016:8020\" # calibration DB interface to use\n", + "cal_db_timeout = 300000 # timeout on caldb requests\n", + "db_output = False # Output constants to the calibration database\n", + "local_output = True # Output constants locally\n", + "\n", + "# Conditions used for injected calibration constants.\n", + "\n", + "# Parameters used during selecting raw data trains.\n", + "min_trains = 1 # Minimum number of trains that should be available to process dark constants. Default 1.\n", + "max_trains = 1000 # Maximum number of trains to use for processing dark constants. Set to 0 to use all available trains.\n", + "\n", + "# Don't delete! myMDC sends this by default.\n", + "operation_mode = '' # Detector operation mode, optional" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8085f9aa", + "metadata": {}, + "outputs": [], + "source": [ + "import h5py\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import multiprocessing\n", + "import pasha as psh\n", + "from extra_data import RunDirectory\n", + "from pathlib import Path\n", + "\n", + "from cal_tools.enums import BadPixels\n", + "from cal_tools.gotthard2algs import convert_to_10bit\n", + "from cal_tools.step_timing import StepTimer\n", + "from cal_tools.tools import (\n", + " get_dir_creation_date,\n", + " get_from_db,\n", + " get_pdu_from_db,\n", + " get_report,\n", + " save_const_to_h5,\n", + " send_to_db,\n", + ")\n", + "from iCalibrationDB import Conditions, Constants" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "18fe4379", + "metadata": {}, + "outputs": [], + "source": [ + "run_nums = [run_high, run_med, run_low]\n", + "in_folder = Path(in_folder)\n", + "out_folder = Path(out_folder)\n", + "out_folder.mkdir(exist_ok=True)\n", + "\n", + "print(f\"Process modules: {karabo_da}\")\n", + "\n", + "run_dc = RunDirectory(in_folder / f\"r{run_high:04d}\")\n", + "file_loc = f\"proposal:{run_dc.run_metadata()['proposalNumber']} runs:{run_high} {run_med} {run_low}\" # noqa\n", + "\n", + "instrument_src = instrument_source_template.format(\n", + " karabo_id, receiver_template)\n", + "ctrl_src = ctrl_source_template.format(\n", + " karabo_id_control, control_template)\n", + "\n", + "# Read report path to associate it later with injected constants.\n", + "report = get_report(out_folder)\n", + "\n", + "if use_dir_creation_date:\n", + " creation_time = get_dir_creation_date(in_folder, run_high)\n", + " print(f\"Using {creation_time.isoformat()} as creation time\")\n", + "\n", + "if not karabo_id_control:\n", + " karabo_id_control = karabo_id" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "108be688", + "metadata": {}, + "outputs": [], + "source": [ + "step_timer = StepTimer()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fb80b98e", + "metadata": {}, + "outputs": [], + "source": [ + "# load constants temporarely using defined local paths.\n", + "\n", + "constants_file = \"/gpfs/exfel/data/user/mramilli/gotthard2/constants/GH2-0124/calibration_constants_GH2-0124.h5\"\n", + "\n", + "with h5py.File(constants_file, 'r') as cfile:\n", + " lut = cfile[\"LUT\"][()]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ff9149fc", + "metadata": {}, + "outputs": [], + "source": [ + "# Read parameter conditions\n", + "\n", + "step_timer.start()\n", + "run_dcs_dict = dict()\n", + "\n", + "ctrl_src = ctrl_source_template.format(karabo_id_control, control_template)\n", + "\n", + "for gain, run in enumerate(run_nums):\n", + " run_dc = RunDirectory(in_folder / f\"r{run:04d}/\")\n", + " run_dcs_dict[run] = [gain, run_dc]\n", + "\n", + " # TODO: Read every condition from slow data.\n", + "\n", + " # TODO: Validate that the conditions are the same and as expected for all runs." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ac9c5dc3-bc66-4e7e-b6a1-360259be535c", + "metadata": {}, + "outputs": [], + "source": [ + "def specifiy_trains_to_process(\n", + " img_key_data: \"extra_data.KeyData\", # noqa\n", + " max_trains: int = 0,\n", + " min_trains: int = 0,\n", + "):\n", + " \"\"\"Specify total number of trains to process.\n", + " Based on given min_trains and max_trains, if given.\n", + "\n", + " Print number of trains to process and number of empty trains.\n", + " Raise ValueError if specified trains are less than min_trains.\n", + " \"\"\"\n", + " # Specifies total number of trains to proccess.\n", + " n_trains = img_key_data.shape[0]\n", + " all_trains = len(img_key_data.train_ids)\n", + " print(f\"{mod} has {all_trains - n_trains} \"\n", + " f\"trains with empty frames out of {all_trains} trains\")\n", + "\n", + " if n_trains < min_trains:\n", + " raise ValueError(\n", + " f\"Less than {min_trains} trains are available in RAW data.\"\n", + " \" Not enough data to process darks.\")\n", + "\n", + " if max_trains > 0:\n", + " n_trains = min(n_trains, max_trains)\n", + "\n", + " print(f\"Processing {n_trains} trains.\")\n", + "\n", + " return n_trains" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e2eb2fc0-df9c-4887-9691-f81474f8c131", + "metadata": {}, + "outputs": [], + "source": [ + "def convert_train(wid, index, tid, d):\n", + " \"\"\"Convert a Gotthard2 train from 12bit to 10bit.\"\"\"\n", + " d_10bit = np.zeros_like(d[instr_mod_src][\"data.adc\"], dtype=np.float32)\n", + " convert_to_10bit(d[instr_mod_src][\"data.adc\"], lut, d_10bit)\n", + " data_10bit[index, ...] = d_10bit\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4e8ffeae", + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate noise and offset per pixel and global average, std and median\n", + "\n", + "noise_map = dict()\n", + "offset_map = dict()\n", + "bad_pixels_map = dict()\n", + "\n", + "context = psh.context.ProcessContext(num_workers=multiprocessing.cpu_count())\n", + "\n", + "\n", + "for mod in karabo_da:\n", + " # Path to pixels ADC values\n", + " instr_mod_src = instrument_src.format(int(mod[-2:]))\n", + " pixels_src = (instr_mod_src, \"data.adc\")\n", + " data_path = \"INSTRUMENT/\"+instr_mod_src+\"/data\"\n", + "\n", + " # TODO: Validate the final shape to store constants.\n", + " cshape = (3, 2, 1280)\n", + " offset_map[mod] = np.zeros(cshape, dtype=np.float32)\n", + " noise_map[mod] = np.zeros_like(offset_map[mod])\n", + " bad_pixels_map[mod] = np.zeros_like(offset_map[mod], dtype=np.uint32)\n", + "\n", + " for run_num, [gain, run_dc] in run_dcs_dict.items():\n", + " step_timer.start()\n", + " n_trains = specifiy_trains_to_process(run_dc[pixels_src])\n", + "\n", + " # Select requested number of trains to process.\n", + " dc = run_dc.select(*pixels_src, require_all=True).select_trains(np.s_[:n_trains]) # noqa\n", + " dshape = dc[instr_mod_src, \"data.adc\"].shape\n", + " step_timer.done_step(\"preparing raw data\")\n", + "\n", + " step_timer.start()\n", + " # Convert 12bit data to 10bit\n", + " data_10bit = context.alloc(shape=dshape, dtype=np.float32)\n", + " context.map(convert_train, dc)\n", + " step_timer.done_step(\"convert to 10bit\")\n", + "\n", + " step_timer.start()\n", + " even_data = data_10bit[:, ::2, :]\n", + " odd_data = data_10bit[:, 1::2, :]\n", + " \n", + " def offset_noise_cell(wid, index, d):\n", + " offset[index] = np.mean(d, axis=(0, 1))\n", + " noise[index] = np.std(d, axis=(0, 1))\n", + "\n", + " offset = context.alloc(shape=cshape[-2:], dtype=np.float32)\n", + " noise = context.alloc(like=offset)\n", + " context.map(offset_noise_cell, (even_data, odd_data))\n", + " offset_map[mod][gain, ...] = offset.copy()\n", + " noise_map[mod][gain, ...] = noise.copy()\n", + "\n", + " step_timer.done_step(\"Processing darks\")\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6e10ed93-66de-4fb1-bf97-f8d25af22edb", + "metadata": {}, + "outputs": [], + "source": [ + "# # set the operating condition\n", + "# # TODO: add the final conditions for constants.\n", + "# condition = Conditions.Dark.Gotthard2(\n", + "# bias_voltage=bias_voltage,\n", + "# )\n", + "\n", + "# db_modules = get_pdu_from_db(\n", + "# karabo_id=karabo_id,\n", + "# karabo_da=karabo_da,\n", + "# constant=Constants.Gotthard2.Offset(),\n", + "# condition=condition,\n", + "# cal_db_interface=cal_db_interface,\n", + "# snapshot_at=creation_time)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fde8e1cf-bc74-462f-b6e5-cfee8279090d", + "metadata": {}, + "outputs": [], + "source": [ + "from XFELDetAna.plotting.heatmap import heatmapPlot\n", + "unit = '[ADCu]'\n", + "\n", + "for mod in karabo_da:\n", + " for _, [gain, _] in run_dcs_dict.items():\n", + " heatmapPlot(\n", + " offset_map[mod][gain],\n", + " y_label=\"Row\",\n", + " x_label=\"Column\",\n", + " lut_label=unit,\n", + " title=f\"Even / Odd Offset map G{gain} - Module {mod}\", # TODO: add PDU name({pdu})',\n", + " )\n", + " plt.show()\n", + " heatmapPlot(\n", + " noise_map[mod][gain],\n", + " y_label=\"Row\",\n", + " x_label=\"Column\",\n", + " lut_label=unit,\n", + " title=f\"Even / Odd noise map G{gain} - Module {mod}\", # TODO: add PDU name({pdu})',\n", + " )\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1c4eddf7-7d6e-49f4-8cbb-12d2bc496a8f", + "metadata": {}, + "outputs": [], + "source": [ + "step_timer.start()\n", + "for mod, db_mod in zip(karabo_da, db_modules):\n", + " constants = {\n", + " 'Offset': offset_map[mod],\n", + " 'Noise': noise_map[mod],\n", + " }\n", + "\n", + " md = None\n", + "\n", + " for key, const_data in constants.items():\n", + "\n", + " const = getattr(Constants.Gotthard2, key)()\n", + " const.data = const_data\n", + "\n", + " if db_output:\n", + " md = send_to_db(\n", + " db_module=db_mod,\n", + " karabo_id=karabo_id,\n", + " constant=const,\n", + " condition=condition,\n", + " file_loc=file_loc,\n", + " report_path=report,\n", + " cal_db_interface=cal_db_interface,\n", + " creation_time=creation_time,\n", + " timeout=cal_db_timeout,\n", + " )\n", + " if local_output:\n", + " md = save_const_to_h5(\n", + " db_module=db_mod,\n", + " karabo_id=karabo_id,\n", + " constant=const,\n", + " condition=condition,\n", + " data=const.data,\n", + " file_loc=file_loc,\n", + " report=report,\n", + " creation_time=creation_time,\n", + " out_folder=out_folder,\n", + " )\n", + " print(f\"Calibration constant {key} is stored locally at {out_folder}.\\n\")\n", + "\n", + "print(\"Constants parameter conditions are:\\n\")\n", + "# TODO: add the final conditions for constants.\n", + "print(\n", + " f\"• Bias voltage: {bias_voltage}\\n\"\n", + " f\"• Creation time: {md.calibration_constant_version.begin_at if md is not None else creation_time}\\n\") # noqa\n", + "step_timer.done_step(\"Injecting constants.\")" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "767d51c1340bd893661ea55ea3124f6de3c7a262a8b4abca0554b478b1e2ff90" + }, + "kernelspec": { + "display_name": "cal4_venv", + "language": "python", + "name": "cal4_venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} -- GitLab