diff --git a/cal_tools/cal_tools/agipdlib.py b/cal_tools/cal_tools/agipdlib.py index ee6367de2abe4c64348d91d8fd9025ece334f6f8..cb4a1ca9891671d372494883b90252ec26492fdb 100644 --- a/cal_tools/cal_tools/agipdlib.py +++ b/cal_tools/cal_tools/agipdlib.py @@ -215,6 +215,7 @@ class AgipdCorrections: self.mg_hard_threshold = 100 self.hg_hard_threshold = 100 self.noisy_adc_threshold = 0.25 + self.ff_gain = 1 # Shared variables for data and constants self.shared_dict = [] @@ -955,15 +956,32 @@ class AgipdCorrections: if self.corr_bools.get("xray_corr"): bpixels |= cons_data["BadPixelsFF"].astype(np.uint32)[..., :bpixels.shape[2], None] # noqa slopesFF = cons_data["SlopesFF"] + # This could be used for backward compatibility + # for very old SlopesFF constants if len(slopesFF.shape) == 4: slopesFF = slopesFF[..., 0] - # Memory cell resolved xray_cor correction - xray_cor = slopesFF # (128, 512, mem_cells) - - # relative X-ray correction is normalized by the median - # of all pixels - - xray_cor /= np.nanmedian(xray_cor) + # This is for backward compatability for old FF constants + # (128, 512, mem_cells) + if slopesFF.shape[-1] == 2: + xray_cor = np.squeeze(slopesFF[...,0]) + xray_cor_med = np.nanmedian(xray_cor) + xray_cor[np.isnan(xray_cor)]= xray_cor_med + xray_cor[(xray_cor<0.8) | (xray_cor>1.2)] = xray_cor_med + xray_cor = np.dstack([xray_cor]*self.max_cells) + else: + # Memory cell resolved xray_cor correction + xray_cor = slopesFF # (128, 512, mem_cells) + if xray_cor.shape[-1] < self.max_cells: + # In case of having new constant with less memory cells, + # due to lack of enough FF data or during development. + # xray_cor should be expanded by last memory cell. + xray_cor = np.dstack(xray_cor, + np.dstack([xray_cor[..., -1]] + * (self.max_cells - xray_cor.shape[-1]))) # noqa + # This is already done for old constants, + # but new constant is absolute and we need to have + # global ADU output for the moment + xray_cor /= self.ff_gain self.xray_cor[module_idx][...] = xray_cor.transpose()[...] @@ -1078,22 +1096,6 @@ class AgipdCorrections: # cells are used. with h5py.File(mdata["file-path"], "r") as cf: cons_data[cname] = np.copy(cf[f"{dname}/{cname}/0/data"]) - shape = cons_data[cname].shape # (128, 512, mem_cells) - extra_dims = shape[:2] + (self.max_cells-shape[2], ) - - if extra_dims[-1] != 0 and cname == "BadPixelsFF": - extra_temp = np.zeros(extra_dims, dtype=np.int32) - cons_data[cname] = np.concatenate( - (cons_data[cname], extra_temp), axis=2) - print('An extra dimension was added to the constants ' - 'for the benefit of BadPixelsFF') - - if extra_dims[-1] != 0 and cname == "SlopesFF": - extra_temp = np.ones(extra_dims, dtype=np.float32) - cons_data[cname] = np.concatenate( - (cons_data[cname], extra_temp), axis=2) - print('An extra dimension was added to the constants ' - 'for the benefit of SlopesFF') else: # Create empty constant using the list elements cons_data[cname] = getattr(np, mdata["file-path"][0])(mdata["file-path"][1]) # noqa diff --git a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb index 09b22f1b248153b378723956e7df32ae2987cec4..1ed75fb8c07ee59eda97faa435be60bd38e2dcf1 100644 --- a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb +++ b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb @@ -63,6 +63,7 @@ "hg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel to high gain\n", "mg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel from low to medium gain\n", "noisy_adc_threshold = 0.25 # threshold to mask complete adc\n", + "ff_gain = 7.2 # conversion gain for absolute FlatField constants, while applying xray_gain\n", "\n", "# Correction Booleans\n", "only_offset = False # Apply only Offset correction. if False, Offset is applied by Default. if True, Offset is only applied.\n", @@ -404,7 +405,8 @@ "agipd_corr.cm_dark_max = cm_dark_range[1]\n", "agipd_corr.cm_dark_fraction = cm_dark_fraction\n", "agipd_corr.cm_n_itr = cm_n_itr\n", - "agipd_corr.noisy_adc_threshold = noisy_adc_threshold\n" + "agipd_corr.noisy_adc_threshold = noisy_adc_threshold\n", + "agipd_corr.ff_gain = ff_gain" ] }, {