diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 5189ae59f64f4cd001e4e7170f3eb3748c9059b8..7ae2b28ae72dca0aff0b83c2059f13f209dde184 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -67,7 +67,7 @@ automated_test: - python3 -m pip install ".[automated_test]" - echo "Running automated test. This can take sometime to finish depending on the test data." - echo "Given variables are REFERENCE=$REFERENCE, OUTPUT=$OUTPUT, DETECTORS=$DETECTORS, CALIBRATION=$CALIBRATION" - - python3 -m pytest ./tests/test_reference_runs --color yes --verbose --release-test --reference-folder /gpfs/exfel/d/cal_tst/reference_folder --out-folder /gpfs/exfel/data/scratch/xcaltst/test/$OUTPUT --detectors $DETECTORS --calibration $CALIBRATION --find-difference + - python3 -m pytest ./tests/test_reference_runs --color yes --verbose --release-test --reference-folder /gpfs/exfel/d/cal_tst/reference_folder --out-folder /gpfs/exfel/data/scratch/xcaltst/test/$OUTPUT --detectors $DETECTORS --calibration $CALIBRATION timeout: 24 hours cython-editable-install-test: diff --git a/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb b/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb index cc60547a57f228e12bf9315ef3088fbf8ef8425c..76987d79519ae0f2642d001ec22fd94b05d5c8d3 100644 --- a/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb +++ b/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb @@ -145,17 +145,8 @@ "\n", "run_numbers = [run_high, run_med, run_low]\n", "\n", - "creation_time=None\n", - "if use_dir_creation_date:\n", - " creation_time = get_dir_creation_date(in_folder, run_high)\n", - "\n", - "print(f\"Using {creation_time} as creation time of constant.\")\n", - "\n", "run, prop, seq = run_prop_seq_from_path(in_folder)\n", "\n", - "# Read report path and create file location tuple to add with the injection\n", - "file_loc = f\"proposal:{prop} runs:{run_low} {run_med} {run_high}\"\n", - "\n", "report = get_report(metadata_folder)\n", "cal_db_interface = get_random_db_interface(cal_db_interface)\n", "print(f'Calibration database interface: {cal_db_interface}')\n", @@ -271,6 +262,13 @@ ")\n", "# Update run_numbers list in case it was sorted.\n", "run_numbers = agipd_ctrl_dark.runs\n", + "\n", + "creation_time = None\n", + "if use_dir_creation_date:\n", + " creation_time = get_dir_creation_date(in_folder, run_numbers[0])\n", + "\n", + "print(f\"Using {creation_time} as creation time of constant.\")\n", + "\n", "if mem_cells == 0:\n", " mem_cells = agipd_ctrl_dark.get_memory_cells()\n", "\n", @@ -648,6 +646,8 @@ "step_timer.start()\n", "\n", "md = None\n", + "# Location of source data, injected with the constants\n", + "file_loc = f\"proposal:{prop} runs:{' '.join([str(r) for r in reversed(run_numbers)])}\"\n", "\n", "for qm in res:\n", " db_module = qm_dict[qm][\"db_module\"]\n", diff --git a/tests/test_reference_runs/conftest.py b/tests/test_reference_runs/conftest.py index ce3b9745888821e5e75fe4c6ef02e76a35047c56..c2c50991ea1806d3454a79a8169bc1f324cef2ec 100644 --- a/tests/test_reference_runs/conftest.py +++ b/tests/test_reference_runs/conftest.py @@ -38,15 +38,6 @@ def pytest_addoption(parser): "apply validation test on numerical data only."), ) - parser.addoption( - "--find-difference", - action="store_true", - default=False, - help=( - "In case of non numerical validation of h5file. " - "Find the different attribute and fail on the first one."), - ) - parser.addoption( "--use-slurm", action="store_true", @@ -80,8 +71,6 @@ def release_test_config(request): "--no-numerical-validation") validate_only = request.config.getoption( "--validation-only") - find_difference = request.config.getoption( - "--find-difference") use_slurm = request.config.getoption( "--use-slurm") picked_test = request.config.getoption("--picked-test") @@ -90,8 +79,7 @@ def release_test_config(request): return ( detectors, calibration, picked_test, skip_numerical_validation, validate_only, - find_difference, use_slurm, reference_folder, - out_folder, + use_slurm, reference_folder, out_folder, ) diff --git a/tests/test_reference_runs/test_pre_deployment.py b/tests/test_reference_runs/test_pre_deployment.py index c6b2f573ac7b00d081725b7731fdea7db721fb61..cdd8a0f015baca42d15d9f3aa123ff992786fbdb 100644 --- a/tests/test_reference_runs/test_pre_deployment.py +++ b/tests/test_reference_runs/test_pre_deployment.py @@ -1,11 +1,10 @@ -import hashlib import io import logging import multiprocessing import pathlib -import tempfile import time from contextlib import redirect_stdout +from dataclasses import dataclass from datetime import datetime from functools import partial from subprocess import PIPE, run @@ -22,253 +21,122 @@ from .callab_tests import automated_test_config LOGGER = logging.getLogger(__name__) -def file_md5( - tested_file: str, - block_size: int = 2 ** 20, -) -> bytes: - """Generating MD5 checksum for a file. +@dataclass +class ComparisonResult: + filename: str + new_dsets: list + missing_dsets: list + changed_dsets: list - Args: - tested_file: File to be tested. - block_size (_type_, optional): Block size for reading the file. - Defaults to 2**20. - """ - f = open(tested_file, "rb") - md5 = hashlib.md5() - while True: - data = f.read(block_size) - if not data: - break - md5.update(data) - f.close() - return md5.digest() - - -def collect_attrs(groups, datasets, objects, exclude_attrs, name, node): - """Collect h5 attrs in groups, datasets, and objects lists.""" - if node.name not in exclude_attrs: - if isinstance(node, h5py.Group): - groups.append(name) - elif isinstance(node, h5py.Dataset): - if node.dtype == 'object': - objects.append(name) - else: - datasets.append(name) + def found_differences(self): + return bool(self.new_dsets or self.missing_dsets or self.changed_dsets) + def show(self): + if not self.found_differences(): + print(f"{self.filename} - ✓ no changes") + return -def compare_datasets( - file1, - file2, - datasets: list -): - """Compare the values of datasets in two h5 files.""" - h5_diff = [] - for d in datasets: - try: - if not np.allclose(file1[d][()], file2[d][()], equal_nan=True): - h5_diff.append(d) - except ValueError as e: - LOGGER.error(f"ValueError: {e}, {d}") - h5_diff.append(d) - except AttributeError as e: - LOGGER.error(f"AttributeError: {e}, {d}") - h5_diff.append(d) - return h5_diff - - -def compare_objects( - file1, - file2, - objects: list -): - """Compare the objects in two h5 files.""" - h5_diff = [] - for d in objects: - try: - if isinstance(file1[d][()], bytes): - if ( - file1[d][()].decode('utf-8') != file2[d][()].decode('utf-8') # noqa - ): - h5_diff.append(d) - elif ( - file1[d][()].dtype != file1[d][()].dtype and - not file1[d][()] != file2[d][()] - ): # pnccd files has only list of bytes - h5_diff.append(d) - except ValueError as e: - LOGGER.error(f"ValueError: {e}, {d}") - h5_diff.append(d) - except AttributeError as e: - LOGGER.error(f"AttributeError: {e}, {d}, " - f"{file1[d][()].decode('utf-8')}") - h5_diff.append(d) - return h5_diff - - -def find_differences( - test_file, - reference_file, - exclude_attrs, -): - """ - Find difference in groups, datasets, and objects between two h5files. - Args: - file1: first h5 file. - file2: second h5 file. - """ + print(self.filename) + for ds in self.new_dsets: + print(f" + NEW: {ds}") + for ds in self.missing_dsets: + print(f" - MISSING: {ds}") + for ds, detail in self.changed_dsets: + print(f" ~ CHANGED: {ds} ({detail})") - groups_f1 = [] - datasets_f1 = [] - objects_f1 = [] - - groups_f2 = [] - datasets_f2 = [] - objects_f2 = [] - - with h5py.File(test_file, 'r') as file1, h5py.File(reference_file, 'r') as file2: # noqa - - # Fill groups, datasets, and objects list - # to compare both h5files' attrs. - file1.visititems( - partial( - collect_attrs, - groups_f1, - datasets_f1, - objects_f1, - exclude_attrs, - )) - file2.visititems( - partial( - collect_attrs, - groups_f2, - datasets_f2, - objects_f2, - exclude_attrs, - )) - start_time = time.perf_counter() - # Compare groups, datasets, and objects to have the same content. - assert set(groups_f1) == set(groups_f2), f"{test_file} and {reference_file} consists of different groups." # noqa - assert set(datasets_f1) == set(datasets_f2), f"{test_file} and {reference_file} consists of different datasets." # noqa - assert set(objects_f1) == set(objects_f2), f"{test_file} and {reference_file} consists of different datasets." # noqa - duration = time.perf_counter() - start_time - LOGGER.debug("Elapsed time comparing groups, " - f"datasets, and objects: {duration} seconds") - LOGGER.debug("Groups, datasets, and objects have the same content.") - - # Compare datasets and objects. - start_time = time.perf_counter() - h5_diff_datasets = compare_datasets(file1, file2, datasets_f1) - duration = time.perf_counter() - start_time - LOGGER.debug(f"Elapsed time comparing datasets: {duration} seconds") - start_time = time.perf_counter() - h5_diff_objects = compare_objects(file1, file2, objects_f1) - LOGGER.debug(f"Elapsed time comparing objects: {duration} seconds") - - assert not h5_diff_datasets, f"{[d for d in h5_diff_datasets]} datasets contain different values for {test_file} and {reference_file}" # noqa - LOGGER.debug("Datasets are validated.") - assert not h5_diff_objects, f"{[d for d in h5_diff_objects]} objects contain different values for {test_file} and {reference_file}" # noqa - LOGGER.debug("Objects are validated.") - - -def validate_files( +def gather_dsets(f: h5py.File): + res = set() + + def visitor(name, obj): + if isinstance(obj, h5py.Dataset): + res.add(name) + + f.visititems(visitor) + return res + + +def iter_sized_chunks(ds: h5py.Dataset, chunk_size: int): + """Make slices of the dataset along the first axis + + Aims for block_size bytes per block""" + if ds.ndim == 0: # Scalar + yield () + return + + chunk_l = min(chunk_size // (ds.dtype.itemsize * np.prod(ds.shape[1:])), 1) + for start in range(0, ds.shape[0], chunk_l): + yield slice(start, start + chunk_l) + + +def validate_file( ref_folder: pathlib.PosixPath, out_folder: pathlib.PosixPath, - exclude_attrs: list, - test_file: pathlib.PosixPath, -) -> Tuple[bool, pathlib.PosixPath]: - """Validate file similarities. Create temporary files to exclude - h5 attributes known to be different. e.g `report` for constants. - If both files are not identical, the function is able to loop over - both files and find and fail on the difference. - - Args: - ref_folder: The reference folder for validating the files - out_folder: The output folder for the test constant files. - test_file: The output file to be validated. - exclude_attrs: A list of datasets, groups to exclude - from validated files. - Returns: - result: validation result for metadata. - test_file: The validated file. - """ - import h5py - start_validating = time.perf_counter() - - def exclude_sources(source_file, dest, excluded_sources): - # Open the source file in read-only mode - with h5py.File(source_file, 'r') as source: - - # Recursively visit all objects in the source file - def visit_func(name, obj): - # Check if the object should be excluded - if name in excluded_sources: - return - - # Check if the object is a dataset - if isinstance(obj, h5py.Dataset): - # Create a new dataset in the destination - # file and copy the data - dest.create_dataset(name, data=obj[()]) - - # Visit all objects in the source file and - # copy them to the destination file - source.visititems(visit_func) - - with tempfile.NamedTemporaryFile( - dir=out_folder, - suffix=".tmp", - prefix="cal_", - delete=True, - ) as out_tf, tempfile.NamedTemporaryFile( - dir=out_folder, - suffix=".tmp", - prefix="cal_", - delete=True, - ) as ref_tf: - - # Create in-memory HDF5 files for validation - with h5py.File(out_tf.name, 'a') as hp1, h5py.File(ref_tf.name, 'a') as hp2: # noqa - - start_time = time.perf_counter() - # Copy h5 files for validation and exclude selected attrs. - exclude_sources(test_file, hp1, exclude_attrs) - - duration = time.perf_counter() - start_time - LOGGER.debug(f"Elapsed time copying {test_file}: " - f"{duration} seconds") - - start_time = time.perf_counter() - exclude_sources(ref_folder / test_file.name, hp2, exclude_attrs) - - duration = time.perf_counter() - start_time - LOGGER.debug(f"Elapsed time copying {ref_folder / test_file.name}: " - f"{duration} seconds") - - start_time = time.perf_counter() - result = file_md5(out_tf.name) == file_md5(ref_tf.name) - LOGGER.debug(f"MD5 validation for {test_file}: {duration} seconds") - duration = time.perf_counter() - start_validating - return result, test_file + exclude_dsets: set, + test_file: str, +) -> ComparisonResult: + ref_file = ref_folder / test_file + out_file = out_folder / test_file + with h5py.File(ref_file) as fref, h5py.File(out_file) as fout: + ref_dsets = gather_dsets(fref) + out_dsets = gather_dsets(fout) + changed = [] + for dsname in sorted((ref_dsets & out_dsets) - exclude_dsets): + ref_ds = fref[dsname] + out_ds = fout[dsname] + if out_ds.shape != ref_ds.shape: + changed.append(( + dsname, f"Shape: {ref_ds.shape} -> {out_ds.shape}" + )) + elif out_ds.dtype != ref_ds.dtype: + changed.append(( + dsname, f"Dtype: {ref_ds.dtype} -> {out_ds.dtype}" + )) + else: + floaty = np.issubdtype(ref_ds.dtype, np.floating) \ + or np.issubdtype(ref_ds.dtype, np.complexfloating) + + # Compare data incrementally rather than loading it all at once; + # read in blocks of ~64 MB (arbitrary limit) along first axis. + for chunk_slice in iter_sized_chunks(ref_ds, 64 * 1024 * 1024): + ref_chunk = ref_ds[chunk_slice] + out_chunk = out_ds[chunk_slice] + if floaty: + eq = np.allclose(ref_chunk, out_chunk, equal_nan=True) + else: + eq = np.array_equal(ref_chunk, out_chunk) + if not eq: + # If just 1 entry, show the values + if ref_ds.size == 1: + r, o = np.squeeze(ref_chunk), np.squeeze(out_chunk) + changed.append((dsname, f"Value: {r} -> {o}")) + else: + changed.append((dsname, "Data changed")) + break + + return ComparisonResult( + test_file, + new_dsets=sorted(out_dsets - ref_dsets), + missing_dsets=sorted(ref_dsets - out_dsets), + changed_dsets=changed, + ) def parse_config( - cmd: List[str], - config: Dict[str, Any], - out_folder: str + cmd: List[str], config: Dict[str, Any], out_folder: str ) -> List[str]: """Convert a dictionary to a list of arguments. - Values that are not strings will be cast. - Lists will be converted to several strings following their `--key` - flag. - Booleans will be converted to a `--key` flag, where `key` is the - dictionary key. + Values that are not strings will be cast. + Lists will be converted to several strings following their `--key` + flag. + Booleans will be converted to a `--key` flag, where `key` is the + dictionary key. """ for key, value in config.items(): - if ' ' in key or (isinstance(value, str) and ' ' in value): - raise ValueError('Spaces are not allowed', key, value) + if " " in key or (isinstance(value, str) and " " in value): + raise ValueError("Spaces are not allowed", key, value) if isinstance(value, list): cmd.append(f"--{key}") @@ -286,11 +154,9 @@ def parse_config( def validate_hdf5_files( - test_key: str, out_folder: pathlib.Path, reference_folder: pathlib.Path, cal_type: str, - find_difference: bool ): """Apply HDF5 data validation. @@ -301,59 +167,48 @@ def validate_hdf5_files( the reference data to validate against cal_type (str): The type of calibration processing. e.g. dark or correct. - find_difference (bool): A flag indicating a need to find the - difference between two files if tested data was - not identical to the reference data. """ - # 3rd Check number of produced h5 files. - h5files = list(out_folder.glob("*.h5")) - expected_h5files = list(reference_folder.glob("*.h5")) - assert len(h5files) == len(expected_h5files), f"{test_key} failure, number of files are not as expected." # noqa - LOGGER.info(f"{test_key}'s calibration h5files numbers are as expected.") + print("\n--- Compare HDF5 files ----") + print("REF:", reference_folder) + print("NEW:", out_folder) + ok = True + + result_h5files = {p.name for p in out_folder.glob("*.h5")} + ref_h5files = {p.name for p in reference_folder.glob("*.h5")} + missing_files = ref_h5files - result_h5files + if missing_files: + print("Files missing from result (*.h5):", ", ".join(missing_files)) + ok = False + new_files = result_h5files - ref_h5files + if new_files: + print("New files in result (*.h5):", ", ".join(new_files)) + ok = False + + files_to_check = sorted(result_h5files & ref_h5files) - non_valid_files = [] # Hard coded datasets to exclude from numerical validation. # These datasets are know to be updated everytime. if cal_type.lower() == "correct": - exclude_attrs = ["METADATA/creationDate", "METADATA/updateDate"] + exclude_attrs = {"METADATA/creationDate", "METADATA/updateDate"} else: - exclude_attrs = ["report"] + exclude_attrs = {"report"} - # 4th check that test and reference h5files are identical. - _validate_files = partial( - validate_files, + _validate_file = partial( + validate_file, reference_folder, out_folder, exclude_attrs, ) - with multiprocessing.pool.ThreadPool(processes=8) as executor: - result = executor.map(_validate_files, h5files) - - # Collect non-valid files, if any, to display them in the error message. - for valid, file in result: - if not valid: - non_valid_files.append(file) - - if len(non_valid_files) > 0: - if find_difference: - LOGGER.error(f"Found non valid files: {non_valid_files}. " - f"Checking differences for {non_valid_files[0]}") - find_differences( - non_valid_files[0], - reference_folder / non_valid_files[0].name, - exclude_attrs - ) - LOGGER.info(f"No difference found for {non_valid_files[0]}") - else: - assert len(non_valid_files) == 0, f"{test_key} failure, while validating metadata for {non_valid_files}" # noqa - LOGGER.info(f"{test_key}'s calibration h5files" - " are validated successfully.") + with multiprocessing.Pool(processes=8) as pool: + for comparison in pool.imap(_validate_file, files_to_check): + comparison.show() + if comparison.found_differences(): + ok = False + return ok -def slurm_watcher( - test_key: str, - std_out: str -): + +def slurm_watcher(test_key: str, std_out: str): """ Watch for submitted slurm jobs and wait for them to finish. After they finish apply first test and check @@ -380,19 +235,25 @@ def slurm_watcher( res = run(cmd, stdout=PIPE) states = res.stdout.decode().split("\n")[2:-1] - if not any(s.strip() in [ - "COMPLETING", - "RUNNING", - "CONFIGURING", - "PENDING", - ] for s in states): + if not any( + s.strip() + in [ + "COMPLETING", + "RUNNING", + "CONFIGURING", + "PENDING", + ] + for s in states + ): slurm_watcher = False else: time.sleep(2) # 1st check that all jobs were COMPLETED without errors. states = res.stdout.decode().split("\n")[2:-1] - assert all(s.strip() == "COMPLETED" for s in states), f"{test_key} failure, calibration jobs were not completed. {jobids}: {states}" # noqa + assert all( + s.strip() == "COMPLETED" for s in states + ), f"{test_key} failure, calibration jobs were not completed. {jobids}: {states}" # noqa LOGGER.info(f"{test_key}'s jobs were COMPLETED") @@ -403,10 +264,9 @@ def slurm_watcher( ids=list(automated_test_config.keys()), ) def test_xfel_calibrate( - test_key: str, val_dict: dict, - release_test_config: Tuple[bool, bool, bool, bool] + test_key: str, val_dict: dict, release_test_config: Tuple ): - """ Test xfel calibrate detectors and calibrations written + """Test xfel calibrate detectors and calibrations written in the given callab_test YAML file. Args: test_key : Key for the xfel-calibrate test. @@ -416,9 +276,14 @@ def test_xfel_calibrate( """ ( - detectors, calibration, picked_test, - skip_numerical_validation, only_validate, find_difference, - use_slurm, reference_dir_base, out_dir_base, + detectors, + calibration, + picked_test, + skip_numerical_validation, + only_validate, + use_slurm, + reference_dir_base, + out_dir_base, ) = release_test_config cal_type = val_dict["cal_type"] @@ -426,10 +291,9 @@ def test_xfel_calibrate( if not picked_test: # Skip non-selected detectors - if ( - detectors != ["all"] and - det_type.lower() not in [d.lower() for d in detectors] - ): + if detectors != ["all"] and det_type.lower() not in [ + d.lower() for d in detectors + ]: pytest.skip() # Skip non-selected calibration @@ -444,32 +308,35 @@ def test_xfel_calibrate( cal_conf = val_dict["config"] out_folder = pathlib.Path(cal_conf["out-folder"].format( - out_dir_base, cal_conf["karabo-id"], test_key)) - reference_folder = pathlib.Path(val_dict["reference-folder"].format( - reference_dir_base, cal_conf["karabo-id"], test_key)) + out_dir_base, cal_conf["karabo-id"], test_key + )) + reference_folder = pathlib.Path( + val_dict["reference-folder"].format( + reference_dir_base, cal_conf["karabo-id"], test_key + ) + ) - report_name = ( - out_folder / - f"{test_key}_{datetime.now().strftime('%y%m%d_%H%M%S')}") + report_name = out_folder / f"{test_key}_{datetime.now():%y%m%d_%H%M%S}" cal_conf["report-to"] = str(report_name) cmd = parse_config(cmd, cal_conf, out_folder) if only_validate: - validate_hdf5_files( - test_key, - out_folder, - reference_folder, - cal_type, - find_difference, - ) + assert validate_hdf5_files( + out_folder, reference_folder, cal_type + ), "HDF5 files changed - see details above" return if not use_slurm: # e.g. for Gitlab CI. cmd += ["--no-cluster-job"] - cmd += ["--slurm-name", test_key, "--cal-db-interface", "tcp://max-exfl-cal001:8015#8045"] + cmd += [ + "--slurm-name", + test_key, + "--cal-db-interface", + "tcp://max-exfl-cal001:8015#8045", + ] f = io.StringIO() LOGGER.info(f"Submitting CL: {cmd}") with redirect_stdout(f): @@ -495,10 +362,6 @@ def test_xfel_calibrate( # Stop tests at this point, if desired. if not skip_numerical_validation: - validate_hdf5_files( - test_key, - out_folder, - reference_folder, - cal_type, - find_difference, - ) + assert validate_hdf5_files( + out_folder, reference_folder, cal_type + ), "HDF5 files changed - see details above"