diff --git a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb
index c4431088e4a5e693f9e89cd3464c8183471240b5..7ca70a974be7c05d321b7e5f994567414c28590b 100644
--- a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb
+++ b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb
@@ -105,6 +105,7 @@
     "# Plotting parameters\n",
     "skip_plots = False # exit after writing corrected files and metadata\n",
     "cell_id_preview = 1 # cell Id used for preview in single-shot plots\n",
+    "cmap = \"viridis\"  # matplolib.colormap for almost all heatmap. Other options ['plasma', 'inferno', 'magma', 'cividis', 'jet', ...]\n",
     "\n",
     "# Parallelization parameters\n",
     "chunk_size = 1000  # Size of chunk for image-wise correction\n",
@@ -114,6 +115,7 @@
     "max_nodes = 8 # Maximum number of SLURM jobs to split correction work into\n",
     "max_tasks_per_worker = 1  # the number of tasks a correction pool worker process can complete before it will exit and be replaced with a fresh worker process. Leave as -1 to keep worker alive as long as pool.\n",
     "\n",
+    "\n",
     "def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da, max_nodes):\n",
     "    from xfel_calibrate.calibrate import balance_sequences as bs\n",
     "    return bs(in_folder, run, sequences, sequences_per_node, karabo_da, max_nodes=max_nodes)"
@@ -909,24 +911,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "def do_3d_plot(data, edges, x_axis, y_axis):\n",
-    "    fig = plt.figure(figsize=(10, 10))\n",
-    "    ax = fig.gca(projection='3d')\n",
-    "\n",
-    "    # Make data.\n",
-    "    X = edges[0][:-1]\n",
-    "    Y = edges[1][:-1]\n",
-    "    X, Y = np.meshgrid(X, Y)\n",
-    "    Z = data.T\n",
-    "\n",
-    "    # Plot the surface.\n",
-    "    ax.plot_surface(X, Y, Z, cmap=colormap.coolwarm, linewidth=0, antialiased=False)\n",
-    "    ax.set_xlabel(x_axis)\n",
-    "    ax.set_ylabel(y_axis)\n",
-    "    ax.set_zlabel(\"Counts\")\n",
-    "\n",
-    "\n",
-    "def do_2d_plot(data, edges, y_axis, x_axis):\n",
+    "def do_2d_plot(data, edges, y_axis, x_axis, title=\"\"):\n",
     "    fig = plt.figure(figsize=(10, 10))\n",
     "    ax = fig.add_subplot(111)\n",
     "    extent = [np.min(edges[1]), np.max(edges[1]),\n",
@@ -935,6 +920,7 @@
     "                   norm=LogNorm(vmin=1, vmax=max(10, np.max(data))))\n",
     "    ax.set_xlabel(x_axis)\n",
     "    ax.set_ylabel(y_axis)\n",
+    "    ax.set_title(title)\n",
     "    cb = fig.colorbar(im)\n",
     "    cb.set_label(\"Counts\")"
    ]
@@ -1031,12 +1017,19 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "hist, bins_x, bins_y = calgs.histogram2d(raw[:,0,...].flatten().astype(np.float32),\n",
-    "                                         raw[:,1,...].flatten().astype(np.float32),\n",
-    "                                         bins=(100, 100),\n",
-    "                                         range=[[4000, 8192], [4000, 8192]])\n",
-    "do_2d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Analogue gain (ADU)\")\n",
-    "do_3d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Analogue gain (ADU)\")"
+    "raw_float = raw.astype(np.float32)\n",
+    "signal = raw[:, 0, ...]\n",
+    "gain = raw[:, 1, ...]\n",
+    "hist, bins_x, bins_y = calgs.histogram2d(\n",
+    "    signal.flatten().astype(np.float32),\n",
+    "    gain.flatten().astype(np.float32),\n",
+    "    bins=(100, 100),\n",
+    "    range=[\n",
+    "        np.percentile(signal, [0.02, 99.8]),\n",
+    "        np.percentile(gain, [0.02, 99.8]),\n",
+    "        ],\n",
+    "    )\n",
+    "do_2d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Analogue gain (ADU)\")"
    ]
   },
   {
@@ -1054,9 +1047,16 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "hist, bins_x, bins_y = calgs.histogram2d(corrected.flatten().astype(np.float32),\n",
-    "                                         gains.flatten().astype(np.float32), bins=(100, 3),\n",
-    "                                         range=[[-50, 8192], [0, 3]])\n",
+    "vmin, vmax = np.nanmin(corrected), np.nanmax(corrected)\n",
+    "hist, bins_x, bins_y = calgs.histogram2d(\n",
+    "    corrected.flatten().astype(np.float32),\n",
+    "    gains.flatten().astype(np.float32), bins=(100, 3),\n",
+    "    range=[\n",
+    "        # The range boundaries and decided by DET expert.\n",
+    "        [max(vmin, -50), min(vmax, 8192)],\n",
+    "        [0, 3]\n",
+    "        ],\n",
+    "    )\n",
     "do_2d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Gain bit value\")"
    ]
   },
@@ -1089,26 +1089,33 @@
    "source": [
     "pulse_range = [np.min(pulseId[pulseId>=0]), np.max(pulseId[pulseId>=0])]\n",
     "\n",
+    "\n",
+    "def clamp(value, min_value, max_value):\n",
+    "    return max(min_value, min(value, max_value))\n",
+    "\n",
+    "\n",
     "# Modify pulse_range, if only one pulse is selected.\n",
     "if pulse_range[0] == pulse_range[1]:\n",
     "    pulse_range = [0, pulse_range[1]+int(acq_rate)]\n",
     "\n",
     "mean_data = np.nanmean(corrected, axis=(2, 3))\n",
-    "hist, bins_x, bins_y = calgs.histogram2d(mean_data.flatten().astype(np.float32),\n",
-    "                                      pulseId.flatten().astype(np.float32),\n",
-    "                                      bins=(100, int(pulse_range[1])),\n",
-    "                                      range=[[-50, 1000], pulse_range])\n",
-    "\n",
-    "do_2d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Pulse id\")\n",
-    "do_3d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Pulse id\")\n",
-    "\n",
-    "hist, bins_x, bins_y = calgs.histogram2d(mean_data.flatten().astype(np.float32),\n",
-    "                                      pulseId.flatten().astype(np.float32),\n",
-    "                                      bins=(100,  int(pulse_range[1])),\n",
-    "                                      range=[[-50, 200000], pulse_range])\n",
+    "vmin, vmax = mean_data.min(), mean_data.max()\n",
+    "hist, bins_x, bins_y = calgs.histogram2d(\n",
+    "    mean_data.flatten().astype(np.float32),\n",
+    "    pulseId.flatten().astype(np.float32),\n",
+    "    bins=(100, int(pulse_range[1])),\n",
+    "    range=[[clamp(vmin, -50, -0.2), min(vmax, 1000)], pulse_range],\n",
+    ")\n",
+    "do_2d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Pulse id\", title=\"Signal-Pulse ID\")\n",
     "\n",
-    "do_2d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Pulse id\")\n",
-    "do_3d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Pulse id\")"
+    "if vmax > 1000:  # a zoom out plot.\n",
+    "    hist, bins_x, bins_y = calgs.histogram2d(\n",
+    "        mean_data.flatten().astype(np.float32),\n",
+    "        pulseId.flatten().astype(np.float32),\n",
+    "        bins=(100,  int(pulse_range[1])),\n",
+    "        range=[[clamp(vmin, -50, -0.2), min(vmax, 20000)], pulse_range]\n",
+    "    )\n",
+    "    do_2d_plot(hist, (bins_x, bins_y), \"Signal (ADU)\", \"Pulse id\", title=\"Signal-Pulse ID (Extended View)\")"
    ]
   },
   {
@@ -1143,7 +1150,7 @@
     "fig = plt.figure(figsize=(10, 10))\n",
     "corrected_ave = np.nansum(corrected, axis=(2, 3))\n",
     "plt.scatter(corrected_ave.flatten()/10**6, blshift.flatten(), s=0.9)\n",
-    "plt.xlim(-1, 1000)\n",
+    "plt.xlim(np.nanpercentile(corrected_ave/10**6, [2, 98]))\n",
     "plt.grid()\n",
     "plt.xlabel('Illuminated corrected [MADU] ')\n",
     "_ = plt.ylabel('Estimated baseline shift [ADU]')"
@@ -1176,8 +1183,9 @@
     "    fig = plt.figure(figsize=(20, 10))\n",
     "    ax = fig.add_subplot(111)\n",
     "    data = np.mean(raw[slice(*cell_sel.crange), 0, ...], axis=0)\n",
-    "    vmin, vmax = get_range(data, 5)\n",
-    "    ax = geom.plot_data_fast(data, ax=ax, cmap=\"jet\", vmin=vmin, vmax=vmax)\n",
+    "    vmin, vmax = np.percentile(data, [5, 95])\n",
+    "    ax = geom.plot_data_fast(data, ax=ax, vmin=vmin, vmax=vmax, cmap=cmap)\n",
+    "    pass\n",
     "else:\n",
     "    print(\"Skipping mean RAW preview for single memory cell, \"\n",
     "          f\"see single shot image for selected cell ID {cell_id_preview}.\")"
@@ -1192,8 +1200,10 @@
     "display(Markdown(f'Single shot of the RAW data from cell {cell_id_preview} \\n'))\n",
     "fig = plt.figure(figsize=(20, 10))\n",
     "ax = fig.add_subplot(111)\n",
-    "vmin, vmax = get_range(raw[cell_idx_preview, 0, ...], 5)\n",
-    "ax = geom.plot_data_fast(raw[cell_idx_preview, 0, ...], ax=ax, cmap=\"jet\", vmin=vmin, vmax=vmax)"
+    "vmin, vmax = np.percentile(raw[cell_idx_preview, 0, ...], [5, 95])\n",
+    "ax = geom.plot_data_fast(\n",
+    "    raw[cell_idx_preview, 0, ...], ax=ax, vmin=vmin, vmax=vmax, cmap=cmap)\n",
+    "pass"
    ]
   },
   {
@@ -1209,8 +1219,9 @@
     "    fig = plt.figure(figsize=(20, 10))\n",
     "    ax = fig.add_subplot(111)\n",
     "    data = np.mean(corrected, axis=0)\n",
-    "    vmin, vmax = get_range(data, 7)\n",
-    "    ax = geom.plot_data_fast(data, ax=ax, cmap=\"jet\", vmin=-50, vmax=vmax)\n",
+    "    vmax = np.nanpercentile(data, 99.8)\n",
+    "    ax = geom.plot_data_fast(data, ax=ax, vmin=max(-50, np.nanmin(data)), vmax=vmax, cmap=cmap)\n",
+    "    pass\n",
     "else:\n",
     "    print(\"Skipping mean CORRECTED preview for single memory cell, \"\n",
     "          f\"see single shot image for selected cell ID {cell_id_preview}.\")"
@@ -1225,9 +1236,15 @@
     "display(Markdown(f'A single shot of the CORRECTED image from cell {cell_id_preview} \\n'))\n",
     "fig = plt.figure(figsize=(20, 10))\n",
     "ax = fig.add_subplot(111)\n",
-    "vmin, vmax = get_range(corrected[cell_idx_preview], 7, -50)\n",
-    "vmin = - 50\n",
-    "ax = geom.plot_data_fast(corrected[cell_idx_preview], ax=ax, cmap=\"jet\", vmin=vmin, vmax=vmax)"
+    "vmax = np.nanpercentile(corrected[cell_idx_preview], 99.8)\n",
+    "ax = geom.plot_data_fast(\n",
+    "    corrected[cell_idx_preview],\n",
+    "    ax=ax,\n",
+    "    vmin=max(-50, np.nanmin(corrected[cell_idx_preview])),\n",
+    "    vmax=vmax,\n",
+    "    cmap=cmap,\n",
+    ")\n",
+    "pass"
    ]
   },
   {
@@ -1239,13 +1256,15 @@
     "fig = plt.figure(figsize=(20, 10))\n",
     "ax = fig.add_subplot(111)\n",
     "vmin, vmax = get_range(corrected[cell_idx_preview], 5, -50)\n",
-    "nbins = np.int((vmax + 50) / 2)\n",
+    "nbins = int((vmax + 50) / 2)\n",
     "h = ax.hist(corrected[cell_idx_preview].flatten(),\n",
     "            bins=nbins, range=(-50, vmax),\n",
     "            histtype='stepfilled', log=True)\n",
     "plt.xlabel('[ADU]')\n",
     "plt.ylabel('Counts')\n",
-    "ax.grid()"
+    "ax.grid()\n",
+    "plt.title(f'Log-scaled histogram for corrected data for cell {cell_idx_preview}')\n",
+    "pass"
    ]
   },
   {
@@ -1259,8 +1278,8 @@
     "vmin, vmax = get_range(corrected, 10, -100)\n",
     "vmax = np.nanmax(corrected)\n",
     "if vmax > 50000:\n",
-    "    vmax=50000\n",
-    "nbins = np.int((vmax + 100) / 5)\n",
+    "    vmax = 50000\n",
+    "nbins = int((vmax + 100) / 5)\n",
     "h = ax.hist(corrected.flatten(), bins=nbins,\n",
     "            range=(-100, vmax), histtype='step', log=True, label = 'All')\n",
     "ax.hist(corrected[gains == 0].flatten(), bins=nbins, range=(-100, vmax),\n",
@@ -1272,7 +1291,9 @@
     "ax.legend()\n",
     "ax.grid()\n",
     "plt.xlabel('[ADU]')\n",
-    "plt.ylabel('Counts')"
+    "plt.ylabel('Counts')\n",
+    "plt.title(f'Overlaid Histograms for corrected data for multiple gains')\n",
+    "pass"
    ]
   },
   {
@@ -1293,8 +1314,10 @@
    "source": [
     "fig = plt.figure(figsize=(20, 10))\n",
     "ax = fig.add_subplot(111)\n",
-    "ax = geom.plot_data_fast(np.max(gains, axis=0), ax=ax,\n",
-    "                         cmap=\"jet\", vmin=-1, vmax=3)"
+    "ax = geom.plot_data_fast(\n",
+    "    np.max(gains, axis=0), ax=ax,\n",
+    "    cmap=cmap, vmin=-0.3, vmax=2.3)  # Extend cmap for wrong gain values.\n",
+    "pass"
    ]
   },
   {
@@ -1336,7 +1359,9 @@
    "source": [
     "fig = plt.figure(figsize=(20, 10))\n",
     "ax = fig.add_subplot(111)\n",
-    "geom.plot_data_fast(np.log2(mask[cell_idx_preview]), ax=ax, vmin=0, vmax=32, cmap=\"jet\")"
+    "geom.plot_data_fast(\n",
+    "    np.log2(mask[cell_idx_preview]), ax=ax, vmin=0, vmax=32, cmap=cmap)\n",
+    "pass"
    ]
   },
   {
@@ -1384,7 +1409,9 @@
    "source": [
     "fig = plt.figure(figsize=(20, 10))\n",
     "ax = fig.add_subplot(111)\n",
-    "geom.plot_data_fast(np.mean(mask>0, axis=0), vmin=0, ax=ax, vmax=1, cmap=\"jet\")"
+    "geom.plot_data_fast(\n",
+    "    np.mean(mask>0, axis=0), vmin=0, ax=ax, vmax=1, cmap=cmap)\n",
+    "pass"
    ]
   },
   {
@@ -1404,8 +1431,9 @@
     "ax = fig.add_subplot(111)\n",
     "cm = np.copy(mask)\n",
     "cm[cm > BadPixels.NO_DARK_DATA.value] = 0\n",
-    "ax = geom.plot_data_fast(np.mean(cm>0, axis=0),\n",
-    "                         vmin=0, ax=ax, vmax=1, cmap=\"jet\")"
+    "ax = geom.plot_data_fast(\n",
+    "    np.mean(cm>0, axis=0), vmin=0, ax=ax, vmax=1, cmap=cmap)\n",
+    "pass"
    ]
   }
  ],