From d5c6b94287287992c6e9b6450c170bf0c453e58a Mon Sep 17 00:00:00 2001 From: David Hammer <dhammer@mailbox.org> Date: Thu, 25 Mar 2021 10:36:49 +0100 Subject: [PATCH] Satisfying flake8 for agipdlib.py --- cal_tools/cal_tools/agipdlib.py | 58 +++++++++++++++++---------------- 1 file changed, 30 insertions(+), 28 deletions(-) diff --git a/cal_tools/cal_tools/agipdlib.py b/cal_tools/cal_tools/agipdlib.py index 103bbc162..a098b07b8 100644 --- a/cal_tools/cal_tools/agipdlib.py +++ b/cal_tools/cal_tools/agipdlib.py @@ -329,7 +329,7 @@ class AgipdCorrections: data_dict['rawgain'][:n_img] = raw_data[:, 1] data_dict['cellId'][:n_img] = allcells[firange] data_dict['pulseId'][:n_img] = allpulses[firange] - data_dict['trainId'][:n_img] = np.squeeze(group['trainId'][:][firange]) + data_dict['trainId'][:n_img] = np.squeeze(group['trainId'][:][firange]) # noqa except Exception as e: print(f'Error during reading data from file {file_name}: {e}') print(f'Error traceback: {traceback.format_exc()}') @@ -502,10 +502,10 @@ class AgipdCorrections: t0 = self.thresholds[module_idx][0] t1 = self.thresholds[module_idx][1] - # load raw_data and rgain to be used during gain_correction if requested if self.corr_bools.get("melt_snow"): - self.shared_dict[i_proc]["t0_rgain"][first:last] = rawgain / t0[cellid, ...] - self.shared_dict[i_proc]["raw_data"][first:last] = np.copy(data) + # load raw_data and rgain to be used during gain_correction + self.shared_dict[i_proc]["t0_rgain"][first:last] = rawgain / t0[cellid, ...] # noqa + self.shared_dict[i_proc]["raw_data"][first:last] = np.copy(data) # noqa # Often most pixels are in high-gain, so it's more efficient to # set the whole output block to zero than select the right pixels. @@ -522,10 +522,10 @@ class AgipdCorrections: # force into high or medium gain if requested if self.corr_bools.get("force_mg_if_below"): - gain[(gain == 2) & ((data - offsetb[1]) < self.mg_hard_threshold)] = 1 + gain[(gain == 2) & ((data - offsetb[1]) < self.mg_hard_threshold)] = 1 # noqa if self.corr_bools.get("force_hg_if_below"): - gain[(gain > 0) & ((data - offsetb[0]) < self.hg_hard_threshold)] = 0 + gain[(gain > 0) & ((data - offsetb[0]) < self.hg_hard_threshold)] = 0 # noqa # choose constants according to gain setting off = calgs.gain_choose(gain, offsetb) @@ -637,7 +637,7 @@ class AgipdCorrections: # same for relative gain and then bad pixel mask if hasattr(self, "rel_gain"): # Get the correct rel_gain depending on cell-id - rel_corr = calgs.gain_choose(gain, self.rel_gain[module_idx][:, cellid]) + rel_corr = calgs.gain_choose(gain, self.rel_gain[module_idx][:, cellid]) # noqa # Correct for relative gain if self.corr_bools.get("rel_gain") and hasattr(self, "rel_gain"): @@ -700,7 +700,9 @@ class AgipdCorrections: # Copy the data across into the existing shared-memory array mask[...] = msk[...] - def get_valid_image_idx(self, idx_base: str, infile: str, raw_format_version: int = 2): + def get_valid_image_idx( + self, idx_base: str, infile: str, raw_format_version: int = 2 + ): """Return the indices of valid data""" if raw_format_version == 2: count = np.squeeze(infile[idx_base + "image/count"]) @@ -962,11 +964,11 @@ class AgipdCorrections: # Extract parameters through identifying # unique trains, index and numbers. - uq, fidxv, cntsv = np.unique(trains, return_index=True, return_counts=True) + uq, fidxv, cntsv = np.unique(trains, return_index=True, return_counts=True) # noqa # Validate calculated CORR INDEX contents by checking # difference between trainId stored in RAW data and trains from - train_diff = np.isin(np.array(infile["/INDEX/trainId"]), uq, invert=True) + train_diff = np.isin(np.array(infile["/INDEX/trainId"]), uq, invert=True) # noqa # Insert zeros for missing trains. # fidxv and cntsv should have same length as @@ -1244,12 +1246,12 @@ class AgipdCorrections: """Initialize calibration constants from a yaml file :param karabo_da: a karabo data aggregator - :param const_yaml: from the "retrieved-constants" part of a yaml - file from pre-notebook, which consists of metadata of either the constant + :param const_yaml: from the "retrieved-constants" part of a yaml file + from pre-notebook, which consists of metadata of either the constant file path or the empty constant shape, and the creation-time of the retrieved constants - :param module_idx: Index of module. - :return when: Dictionary of retrieved constants with their creation-time. + :param module_idx: Index of module + :return when: dict of retrieved constants with their creation-time """ # string of the device name. @@ -1357,17 +1359,17 @@ class AgipdCorrections: :param constant_shape: Shape of expected constants (gain, cells, x, y) """ for module_idx in modules: - self.offset[module_idx] = sharedmem.empty(constant_shape, dtype="f4") + self.offset[module_idx] = sharedmem.empty(constant_shape, dtype="f4") # noqa if self.gain_mode is AgipdGainMode.ADAPTIVE_GAIN: - self.thresholds[module_idx] = sharedmem.empty(constant_shape, dtype="f4") - self.noise[module_idx] = sharedmem.empty(constant_shape, dtype="f4") + self.thresholds[module_idx] = sharedmem.empty(constant_shape, dtype="f4") # noqa + self.noise[module_idx] = sharedmem.empty(constant_shape, dtype="f4") # noqa - self.md_additional_offset[module_idx] = sharedmem.empty(constant_shape[1:], dtype="f4") - self.rel_gain[module_idx] = sharedmem.empty(constant_shape, dtype="f4") - self.frac_high_med[module_idx] = sharedmem.empty(constant_shape[1], dtype="f4") + self.md_additional_offset[module_idx] = sharedmem.empty(constant_shape[1:], dtype="f4") # noqa + self.rel_gain[module_idx] = sharedmem.empty(constant_shape, dtype="f4") # noqa + self.frac_high_med[module_idx] = sharedmem.empty(constant_shape[1], dtype="f4") # noqa self.mask[module_idx] = sharedmem.empty(constant_shape, dtype="i4") - self.xray_cor[module_idx] = sharedmem.empty(constant_shape[1:], dtype="f4") + self.xray_cor[module_idx] = sharedmem.empty(constant_shape[1:], dtype="f4") # noqa def allocate_images(self, shape, n_cores_files): """ @@ -1381,18 +1383,18 @@ class AgipdCorrections: self.shared_dict = [] for i in range(n_cores_files): self.shared_dict.append({}) - self.shared_dict[i]["cellId"] = sharedmem.empty(shape[0], dtype="u2") - self.shared_dict[i]["pulseId"] = sharedmem.empty(shape[0], dtype="u8") - self.shared_dict[i]["trainId"] = sharedmem.empty(shape[0], dtype="u8") + self.shared_dict[i]["cellId"] = sharedmem.empty(shape[0], dtype="u2") # noqa + self.shared_dict[i]["pulseId"] = sharedmem.empty(shape[0], dtype="u8") # noqa + self.shared_dict[i]["trainId"] = sharedmem.empty(shape[0], dtype="u8") # noqa self.shared_dict[i]["moduleIdx"] = sharedmem.empty(1, dtype="i4") self.shared_dict[i]["nImg"] = sharedmem.empty(1, dtype="i4") self.shared_dict[i]["mask"] = sharedmem.empty(shape, dtype="u4") self.shared_dict[i]["data"] = sharedmem.empty(shape, dtype="f4") self.shared_dict[i]["rawgain"] = sharedmem.empty(shape, dtype="u2") self.shared_dict[i]["gain"] = sharedmem.empty(shape, dtype="u1") - self.shared_dict[i]["blShift"] = sharedmem.empty(shape[0], dtype="f4") + self.shared_dict[i]["blShift"] = sharedmem.empty(shape[0], dtype="f4") # noqa # Parameters shared between image-wise correction functions self.shared_dict[i]["msk"] = sharedmem.empty(shape, dtype="i4") - self.shared_dict[i]["raw_data"] = sharedmem.empty(shape, dtype="f4") - self.shared_dict[i]["rel_corr"] = sharedmem.empty(shape, dtype="f4") - self.shared_dict[i]["t0_rgain"] = sharedmem.empty(shape, dtype="u2") + self.shared_dict[i]["raw_data"] = sharedmem.empty(shape, dtype="f4") # noqa + self.shared_dict[i]["rel_corr"] = sharedmem.empty(shape, dtype="f4") # noqa + self.shared_dict[i]["t0_rgain"] = sharedmem.empty(shape, dtype="u2") # noqa -- GitLab