diff --git a/notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb b/notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb
index 1a3a829012d659b239715c1727a933e7c03600f7..c80308496724f7d00fd6a0c627fffcf5ae7f5f72 100644
--- a/notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb
+++ b/notebooks/Gotthard2/Characterize_Darks_Gotthard2_NBC.ipynb
@@ -163,12 +163,12 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 23,
    "id": "ac9c5dc3-bc66-4e7e-b6a1-360259be535c",
    "metadata": {},
    "outputs": [],
    "source": [
-    "def specifiy_trains_to_process(\n",
+    "def specify_trains_to_process(\n",
     "    img_key_data: \"extra_data.KeyData\",  # noqa\n",
     "    max_trains: int = 0,\n",
     "    min_trains: int = 0,\n",
@@ -214,63 +214,191 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 32,
    "id": "4e8ffeae",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "DA01 has 1042 trains with empty frames out of 2041 trains\n",
+      "Processing 999 trains.\n",
+      "preparing raw data: 0.0 s\n",
+      "convert to 10bit: 4.3 s\n",
+      "Processing darks: 12.1 s\n"
+     ]
+    }
+   ],
    "source": [
     "# Calculate noise and offset per pixel and global average, std and median\n",
-    "\n",
     "noise_map = dict()\n",
     "offset_map = dict()\n",
-    "bad_pixels_map = dict()\n",
+    "badpixels_map = dict()\n",
     "\n",
     "context = psh.context.ProcessContext(num_workers=multiprocessing.cpu_count())\n",
     "\n",
-    "\n",
     "for mod in karabo_da:\n",
     "    # Path to pixels ADC values\n",
     "    instr_mod_src = instrument_src.format(int(mod[-2:]))\n",
-    "    pixels_src = (instr_mod_src, \"data.adc\")\n",
     "    data_path = \"INSTRUMENT/\"+instr_mod_src+\"/data\"\n",
     "\n",
     "    # TODO: Validate the final shape to store constants.\n",
     "    cshape = (3, 2, 1280)\n",
     "    offset_map[mod] = np.zeros(cshape, dtype=np.float32)\n",
     "    noise_map[mod] = np.zeros_like(offset_map[mod])\n",
-    "    bad_pixels_map[mod] = np.zeros_like(offset_map[mod], dtype=np.uint32)\n",
+    "    badpixels_map[mod] = np.zeros_like(offset_map[mod], dtype=np.uint32)\n",
     "\n",
     "    for run_num, [gain, run_dc] in run_dcs_dict.items():\n",
     "        step_timer.start()\n",
-    "        n_trains = specifiy_trains_to_process(run_dc[pixels_src])\n",
+    "        n_trains = specify_trains_to_process(run_dc[instr_mod_src, \"data.adc\"])\n",
     "\n",
     "        # Select requested number of trains to process.\n",
-    "        dc = run_dc.select(*pixels_src, require_all=True).select_trains(np.s_[:n_trains])  # noqa\n",
-    "        dshape = dc[instr_mod_src, \"data.adc\"].shape\n",
+    "        dc = run_dc.select(\n",
+    "            instr_mod_src, require_all=True).select_trains(np.s_[:n_trains])  # noqa\n",
+    "\n",
     "        step_timer.done_step(\"preparing raw data\")\n",
     "\n",
     "        step_timer.start()\n",
     "        # Convert 12bit data to 10bit\n",
-    "        data_10bit = context.alloc(shape=dshape, dtype=np.float32)\n",
+    "        data_10bit = context.alloc(\n",
+    "            shape=dc[instr_mod_src, \"data.adc\"].shape,\n",
+    "            dtype=np.float32\n",
+    "        )\n",
     "        context.map(convert_train, dc)\n",
     "        step_timer.done_step(\"convert to 10bit\")\n",
     "\n",
     "        step_timer.start()\n",
+    "\n",
+    "        # Split even and odd data to calculate the two storage cell constants.\n",
     "        even_data = data_10bit[:, ::2, :]\n",
     "        odd_data = data_10bit[:, 1::2, :]\n",
-    "        \n",
+    "        data_gain = dc[instr_mod_src, \"data.gain\"].ndarray()\n",
+    "        even_gain = data_gain[:, ::2, :]\n",
+    "        odd_gain = data_gain[:, 1::2, :]\n",
+    "\n",
     "        def offset_noise_cell(wid, index, d):\n",
-    "            offset[index] = np.mean(d, axis=(0, 1))\n",
-    "            noise[index] = np.std(d, axis=(0, 1))\n",
+    "            offset_map[mod][gain, index, ...] = np.mean(d, axis=(0, 1))\n",
+    "            noise_map[mod][gain, index, ...] = np.std(d, axis=(0, 1))\n",
     "\n",
-    "        offset = context.alloc(shape=cshape[-2:], dtype=np.float32)\n",
-    "        noise = context.alloc(like=offset)\n",
+    "        offset_map[mod] = context.alloc(shape=cshape, dtype=np.float32)\n",
+    "        noise_map[mod] = context.alloc(like=offset_map[mod])\n",
+    "        badpixels_map[mod] = context.alloc(like=offset_map[mod], dtype=np.int32)\n",
     "        context.map(offset_noise_cell, (even_data, odd_data))\n",
-    "        offset_map[mod][gain, ...] = offset.copy()\n",
-    "        noise_map[mod][gain, ...] = noise.copy()\n",
     "\n",
-    "        step_timer.done_step(\"Processing darks\")\n",
-    "        "
+    "        raw_g = 3 if gain == 2 else gain\n",
+    "\n",
+    "        def badpixels_cell(wid, index, g):\n",
+    "            \"\"\"Check if there are wrong bad gain values.\n",
+    "            Indicate pixels with wrong gain value across all trains for each cell.\"\"\"\n",
+    "            badpixels_map[mod][gain, index,\n",
+    "                np.mean(g, axis=(0, 1)) != raw_g] |= BadPixels.WRONG_GAIN_VALUE.value\n",
+    "        context.map(badpixels_cell, (even_gain, odd_gain))\n",
+    "\n",
+    "        step_timer.done_step(\"Processing darks\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 42,
+   "id": "4b81a3e7",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(3, 2, 1280)"
+      ]
+     },
+     "execution_count": 42,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "badpixels_map[mod].shape"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 43,
+   "id": "7ec0e569",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([], dtype=uint8)"
+      ]
+     },
+     "execution_count": 43,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "np.where(badpixels_map[mod] != 0])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3fc17e05-17ab-4ac4-9e79-c95399278bb9",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def print_bp_entry(bp):\n",
+    "    print(\"{:<30s} {:032b} -> {}\".format(bp.name, bp.value, int(bp.value)))\n",
+    "\n",
+    "print_bp_entry(BadPixels.OFFSET_OUT_OF_THRESHOLD)\n",
+    "print_bp_entry(BadPixels.NOISE_OUT_OF_THRESHOLD)\n",
+    "print_bp_entry(BadPixels.OFFSET_NOISE_EVAL_ERROR)\n",
+    "print_bp_entry(BadPixels.WRONG_GAIN_VALUE)\n",
+    "\n",
+    "def eval_bpidx(d):\n",
+    "\n",
+    "    mdn = np.nanmedian(d, axis=(0, 1))[None, None, :, :]\n",
+    "    std = np.nanstd(d, axis=(0, 1))[None, None, :, :]    \n",
+    "    idx = (d > badpixel_threshold_sigma*std+mdn) | (d < (-badpixel_threshold_sigma)*std+mdn)\n",
+    "\n",
+    "    return idx"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "40c34cc5-fe93-4b83-bf39-f465f37c40b4",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "step_timer.start()\n",
+    "\n",
+    "for mod in karabo_da:\n",
+    "    display(Markdown(f\"### Badpixels for module {mod}:\"))\n",
+    "    offset_abs_threshold = np.array(offset_abs_threshold)\n",
+    "\n",
+    "    bad_pixels_map[mod][eval_bpidx(offset_map[mod])] |= BadPixels.OFFSET_OUT_OF_THRESHOLD.value\n",
+    "\n",
+    "    bad_pixels_map[mod][~np.isfinite(offset_map[mod])] |= BadPixels.OFFSET_NOISE_EVAL_ERROR.value\n",
+    "\n",
+    "    bad_pixels_map[mod][eval_bpidx(noise_map[mod])] |= BadPixels.NOISE_OUT_OF_THRESHOLD.value\n",
+    "\n",
+    "    bad_pixels_map[mod][~np.isfinite(noise_map[mod])] |= BadPixels.OFFSET_NOISE_EVAL_ERROR.value\n",
+    "\n",
+    "    bad_pixels_map[mod][(offset_map[mod] < offset_abs_threshold[0][None, None, None, :]) | (offset_map[mod] > offset_abs_threshold[1][None, None, None, :])] |= BadPixels.OFFSET_OUT_OF_THRESHOLD.value  # noqa\n",
+    "\n",
+    "    for g_idx in gains:\n",
+    "        for cell in range(memory_cells):\n",
+    "            bad_pixels = bad_pixels_map[mod][:, :, cell, g_idx]\n",
+    "            fn_0 = heatmapPlot(\n",
+    "                np.swapaxes(bad_pixels, 0, 1),\n",
+    "                y_label=\"Row\",\n",
+    "                x_label=\"Column\",\n",
+    "                lut_label=f\"Badpixels {g_name[g_idx]} [ADCu]\",\n",
+    "                aspect=1.,\n",
+    "                vmin=0, vmax=5,\n",
+    "                title=f'G{g_idx} Bad pixel map - Cell {cell:02d} - Module {mod}')\n",
+    "step_timer.done_step(f'Creating bad pixels constant and plotting it.')"
    ]
   },
   {