diff --git a/.git-blame-ignore-revs b/.git-blame-ignore-revs index a02c88ca8b9c9746ebc81c2e5c8f059abe18b3a9..1c8ba674c4f8e75fff4887708a49579bf47beed1 100644 --- a/.git-blame-ignore-revs +++ b/.git-blame-ignore-revs @@ -11,3 +11,7 @@ e7dfadaf4e189ef0e0f67798e8984695111257e3 # fix/requirements-into-setuppy - Reformat setup.py without content changes 31b402966a4a741d08cb1e89db96f252fbb41c54 +# fix/pre-commit-isort - Apply isort to notebooks +604d51278aa137d151c4b693582925d1eedb7c4e +# fix/pre-commit-isort - Apply isort to .py files +881392a435e73478d07e37fcfecfaa804cabd0e6 diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index da0c4977b26c4052c8663682a6efc5a727435354..10959e513ce6bd8b9799fcc8f21eff646624958d 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -3,24 +3,25 @@ repos: hooks: - id: identity - repo: https://github.com/nbQA-dev/nbQA - rev: 0.3.6 + rev: 0.5.9 hooks: - id: nbqa-isort - additional_dependencies: [isort==5.6.4] + additional_dependencies: [isort==5.7.0] args: [--nbqa-mutate] - id: nbqa-flake8 - additional_dependencies: [flake8==3.8.4] + additional_dependencies: [flake8==3.9.0] args: [--nbqa-mutate] + - id: nbqa-check-ast - repo: https://github.com/kynan/nbstripout rev: 0.3.9 hooks: - id: nbstripout - repo: https://github.com/pycqa/isort - rev: 5.6.4 + rev: 5.7.0 hooks: - id: isort - repo: https://gitlab.com/pycqa/flake8 - rev: 3.8.4 + rev: 3.9.0 hooks: - id: flake8 # If `CI_MERGE_REQUEST_TARGET_BRANCH_SHA` env var is set then this will @@ -33,7 +34,7 @@ repos: hooks: - id: rstcheck - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v2.3.0 + rev: v3.4.0 hooks: - id: check-added-large-files - id: check-ast diff --git a/README.rst b/README.rst index 167a2ece7c628d8b783f7bd04065851ea7b26bf6..f87324e951ff9b68a309d7755f962db9eafc460d 100644 --- a/README.rst +++ b/README.rst @@ -81,11 +81,13 @@ This can be useful for Jupyter notebook tools as https://max-jhub.desy.de/hub/lo Contributing ************ + Guidelines ========== Development guidelines can be found on the GitLab Wiki page here: https://git.xfel.eu/gitlab/detectors/pycalibration/wikis/GitLab-Guidelines + Basics ====== @@ -101,6 +103,7 @@ GitLab. To do this check the settings page here: https://git.xfel.eu/gitlab/profile/keys + Pre-Commit Hooks ================ @@ -239,6 +242,7 @@ to provide accurate relative gain correction constants. You'll get a series of plots in the output directory as well. + Appendix ******** @@ -246,6 +250,7 @@ Important information that doesn't really fit in as part of the readme. TODO: Place this into the docs? Also, improve docs (out of scope for PR !437) + GitLab Access for ``xcaltst`` and ``xcal`` ========================================== diff --git a/cal_tools/cal_tools/agipdlib.py b/cal_tools/cal_tools/agipdlib.py index e797a3bdea662b5ef7fa47c01dbf9f824f52073d..073c106be034cd064c4cf8d2216492ddacdcb7a2 100644 --- a/cal_tools/cal_tools/agipdlib.py +++ b/cal_tools/cal_tools/agipdlib.py @@ -5,16 +5,16 @@ from typing import Any, Dict, Optional, Tuple import h5py import numpy as np import sharedmem -from iCalibrationDB import Conditions, Constants - -from cal_tools.agipdutils import (assemble_constant_dict, - baseline_correct_via_noise, - baseline_correct_via_stripe, - correct_baseline_via_hist, - correct_baseline_via_hist_asic, - make_noisy_adc_mask, match_asic_borders, - melt_snowy_pixels) -from cal_tools.cython import agipdalgs as calgs +from cal_tools.agipdutils import ( + assemble_constant_dict, + baseline_correct_via_noise, + baseline_correct_via_stripe, + correct_baseline_via_hist, + correct_baseline_via_hist_asic, + make_noisy_adc_mask, + match_asic_borders, + melt_snowy_pixels, +) from cal_tools.enums import BadPixels, SnowResolution from cal_tools.tools import get_constant_from_db_and_time diff --git a/cal_tools/cal_tools/agipdutils.py b/cal_tools/cal_tools/agipdutils.py index ae06e49bf9d661a6cc90265b445c93860bfee030..9d58ccf83ba9cc692a043c64c562d78f1c1afb99 100644 --- a/cal_tools/cal_tools/agipdutils.py +++ b/cal_tools/cal_tools/agipdutils.py @@ -2,12 +2,11 @@ import copy from typing import Tuple import numpy as np +from cal_tools.enums import BadPixels, SnowResolution from scipy.signal import cwt, ricker from sklearn.mixture import GaussianMixture from sklearn.preprocessing import StandardScaler -from cal_tools.enums import BadPixels, SnowResolution - def assemble_constant_dict(corr_bools, pc_bools, memory_cells, bias_voltage, gain_setting, acquisition_rate, diff --git a/cal_tools/cal_tools/agipdutils_ff.py b/cal_tools/cal_tools/agipdutils_ff.py index 6774e5a0e85a619796e8d1c510e3a5a8b52852bf..4cae853275d5683c9760ca5565472d019ea56763 100644 --- a/cal_tools/cal_tools/agipdutils_ff.py +++ b/cal_tools/cal_tools/agipdutils_ff.py @@ -1,9 +1,8 @@ from typing import Any, Dict, List, Optional, Tuple import numpy as np -from iminuit import Minuit - from cal_tools.enums import BadPixelsFF +from iminuit import Minuit def any_in(mask: np.ndarray, bits: int) -> bool: diff --git a/cal_tools/cal_tools/lpdlib.py b/cal_tools/cal_tools/lpdlib.py index 217c769fcc6faef919697b2b671a1c9e3a65c488..fd0d5132f78eded0210b0df32fca7244fc85a2df 100644 --- a/cal_tools/cal_tools/lpdlib.py +++ b/cal_tools/cal_tools/lpdlib.py @@ -3,10 +3,9 @@ from typing import Optional, Tuple import h5py import numpy as np -from iCalibrationDB import Conditions, Constants, Detectors - from cal_tools.enums import BadPixels from cal_tools.tools import get_constant_from_db, get_constant_from_db_and_time +from iCalibrationDB import Conditions, Constants, Detectors class LpdCorrections: diff --git a/cal_tools/cal_tools/plotting.py b/cal_tools/cal_tools/plotting.py index d85cbd1716a887edcd37f7058915f25538d87f70..63c98c5d561dffc005a0b0d2b35345f3c1b5c0db 100644 --- a/cal_tools/cal_tools/plotting.py +++ b/cal_tools/cal_tools/plotting.py @@ -3,8 +3,12 @@ from typing import Any, Dict, Optional import matplotlib.pyplot as plt import numpy as np -from extra_geom import (AGIPD_1MGeometry, AGIPD_500K2GGeometry, - DSSC_1MGeometry, LPD_1MGeometry) +from extra_geom import ( + AGIPD_1MGeometry, + AGIPD_500K2GGeometry, + DSSC_1MGeometry, + LPD_1MGeometry, +) from extra_geom import tests as eg_tests from matplotlib import colors from matplotlib.patches import Patch diff --git a/notebooks/AGIPD/AGIPD_Characterize_Gain_Combine_NBC.ipynb b/notebooks/AGIPD/AGIPD_Characterize_Gain_Combine_NBC.ipynb index 67525d3db1a65ccd8507a2c478863161f3dcdd31..253789c14f642f41c4fe62ef44f8b44533ebf041 100644 --- a/notebooks/AGIPD/AGIPD_Characterize_Gain_Combine_NBC.ipynb +++ b/notebooks/AGIPD/AGIPD_Characterize_Gain_Combine_NBC.ipynb @@ -74,9 +74,10 @@ }, "outputs": [], "source": [ - "from cal_tools.enums import BadPixels\n", - "from IPython.display import HTML, display, Markdown, Latex\n", "import tabulate\n", + "from cal_tools.enums import BadPixels\n", + "from IPython.display import HTML, Latex, Markdown, display\n", + "\n", "table = []\n", "for item in BadPixels:\n", " table.append((item.name, \"{:016b}\".format(item.value)))\n", @@ -104,30 +105,40 @@ }, "outputs": [], "source": [ + "import os\n", + "\n", "# std library imports\n", "from functools import partial\n", + "\n", "import h5py\n", - "import os\n", + "import matplotlib\n", "\n", "# numpy and matplot lib specific\n", "import numpy as np\n", - "import matplotlib\n", + "\n", "matplotlib.use(\"agg\")\n", "import matplotlib.pyplot as plt\n", + "\n", "%matplotlib inline\n", "\n", "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", - "# pyDetLib imports\n", - "import XFELDetAna.xfelpycaltools as xcal\n", - "import XFELDetAna.xfelpyanatools as xana\n", + "from datetime import datetime\n", "\n", - "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", - "from cal_tools.tools import gain_map_files, parse_runs, run_prop_seq_from_path, get_notebook_name\n", + "import XFELDetAna.xfelpyanatools as xana\n", "\n", - "from cal_tools.plotting import show_overview, plot_badpix_3d\n", - "from datetime import datetime\n", + "# pyDetLib imports\n", + "import XFELDetAna.xfelpycaltools as xcal\n", + "from cal_tools.plotting import plot_badpix_3d, show_overview\n", + "from cal_tools.tools import (\n", + " gain_map_files,\n", + " get_notebook_name,\n", + " parse_runs,\n", + " run_prop_seq_from_path,\n", + ")\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", "\n", "# usually no need to change these lines\n", "sensor_size = [128, 512]\n", @@ -185,8 +196,10 @@ }, "outputs": [], "source": [ - "from dateutil import parser\n", "from collections import OrderedDict\n", + "\n", + "from dateutil import parser\n", + "\n", "offset_g = OrderedDict()\n", "noise_g = OrderedDict()\n", "threshold_o = OrderedDict()\n", @@ -635,7 +648,7 @@ " bp[th[...,1] == 0, 2] |= BadPixels.GAIN_THRESHOLDING_ERROR.value\n", " \n", " constants[qm]['BadPixels'] = bp\n", - " \n" + " " ] }, { @@ -667,6 +680,7 @@ "import matplotlib.pyplot as plt\n", "from mpl_toolkits.axes_grid1 import AxesGrid\n", "\n", + "\n", "def show_overview(cell_to_preview, gain_to_preview):\n", " \n", " for module, data in constants.items():\n", @@ -949,7 +963,7 @@ " bp = data['BadPixels'][...,gain]\n", " any_bd = np.zeros_like(bp)\n", " any_bd[bp != 0] = 1\n", - " plot_badpix_3d(any_bd, cols, title=mod, rebin_fac=rebin, azim=22.5)\n" + " plot_badpix_3d(any_bd, cols, title=mod, rebin_fac=rebin, azim=22.5)" ] }, { diff --git a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb index 926498bd0c239437fbe7df7592337c1e3748af8d..c4cbf1ef2759f6ade29cb6f4861bca470707e085 100644 --- a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb +++ b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb @@ -142,14 +142,21 @@ "sns.set_style(\"ticks\")\n", "\n", "import seaborn as sns\n", - "from cal_tools.agipdlib import (AgipdCorrections, get_acq_rate,\n", - " get_gain_setting, get_num_cells)\n", + "from cal_tools.agipdlib import (\n", + " AgipdCorrections,\n", + " get_acq_rate,\n", + " get_gain_setting,\n", + " get_num_cells,\n", + ")\n", "from cal_tools.ana_tools import get_range\n", "from cal_tools.cython import agipdalgs as calgs\n", "from cal_tools.enums import BadPixels\n", "from cal_tools.step_timing import StepTimer\n", - "from cal_tools.tools import (CalibrationMetadata, get_dir_creation_date,\n", - " map_modules_from_folder)\n", + "from cal_tools.tools import (\n", + " CalibrationMetadata,\n", + " get_dir_creation_date,\n", + " map_modules_from_folder,\n", + ")\n", "\n", "sns.set()\n", "sns.set_context(\"paper\", font_scale=1.4)\n", diff --git a/notebooks/AGIPD/AGIPD_FF_Histogramming.ipynb b/notebooks/AGIPD/AGIPD_FF_Histogramming.ipynb index a774ea46a5d6ed6c7b6e93f943f92551d8a7161a..f136170e0a1d7a8965115e60230b410ab14b3392 100644 --- a/notebooks/AGIPD/AGIPD_FF_Histogramming.ipynb +++ b/notebooks/AGIPD/AGIPD_FF_Histogramming.ipynb @@ -39,7 +39,7 @@ "h_sums_tresh = 100 # Threshold for number of entries in histograms\n", "\n", "n_cores_hists = 20 # Number of processes (cores) to create histograms\n", - "n_cores_files = 10 # Number of processes (cores) to read files\n" + "n_cores_files = 10 # Number of processes (cores) to read files" ] }, { @@ -49,22 +49,21 @@ "outputs": [], "source": [ "import glob\n", - "from multiprocessing import Pipe, Process, Queue, Pool\n", "import os\n", "import sys\n", - "from time import sleep, time, perf_counter\n", + "import traceback\n", "import warnings\n", + "from multiprocessing import Pipe, Pool, Process, Queue\n", + "from time import perf_counter, sleep, time\n", "\n", "import h5py\n", - "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import sharedmem\n", - "import traceback\n", - "from XFELDetAna.plotting.heatmap import heatmapPlot\n", - "\n", - "from cal_tools.cython import agipdalgs as calgs\n", "from cal_tools.ana_tools import save_dict_to_hdf5\n", + "from cal_tools.cython import agipdalgs as calgs\n", + "from XFELDetAna.plotting.heatmap import heatmapPlot\n", "\n", "%matplotlib inline\n", "warnings.filterwarnings('ignore')" @@ -129,7 +128,7 @@ " processed[run] = sharedmem.empty((max(run_sequences+[1])+1, max(cells+[1])+1), dtype='i4')\n", " n_files += len(fnames)\n", " for file in fnames:\n", - " file_to_read.put((file, np.array(cells)))\n" + " file_to_read.put((file, np.array(cells)))" ] }, { @@ -180,7 +179,7 @@ " n_img = len(sel)\n", " shared_data[i_proc]['data'][:n_img] = group['data'][()][sel]\n", " shared_data[i_proc]['cellId'][:n_img] = group['cellId'][sel]\n", - " shared_data[i_proc]['nImg'][:] = n_img\n" + " shared_data[i_proc]['nImg'][:] = n_img" ] }, { @@ -473,7 +472,7 @@ "hist_std = np.sqrt(np.sum(hist_norm[:, :n_bins-1, ...] * hist_sqr, axis=1))\n", "\n", "h_out = (h_sums.astype(np.float32) - total_img[:, None, None].astype(\n", - " np.float32))/total_img[:, None, None].astype(np.float32)\n" + " np.float32))/total_img[:, None, None].astype(np.float32)" ] }, { @@ -597,7 +596,7 @@ "ax0.set_xlabel('Cell', fontsize=14)\n", "ax0.set_ylabel('Average fraction of outliers', fontsize=14)\n", "ax0.set_title(f'Module {module}', fontsize=16, fontweight='bold')\n", - "ax0.grid()\n" + "ax0.grid()" ] }, { diff --git a/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb b/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb index 6ce5f20bfc96f50caf3a6f6dd72a89d38c7bf467..8126a0a01a063d298eb2d950f61978d08f923d4f 100644 --- a/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb +++ b/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb @@ -107,8 +107,11 @@ "\n", "import matplotlib.pyplot as plt\n", "from cal_tools.agipdlib import get_gain_setting\n", - "from cal_tools.tools import (CalibrationMetadata, get_dir_creation_date,\n", - " map_modules_from_folder)\n", + "from cal_tools.tools import (\n", + " CalibrationMetadata,\n", + " get_dir_creation_date,\n", + " map_modules_from_folder,\n", + ")\n", "from dateutil import parser\n", "from iCalibrationDB import Conditions, Constants, Detectors" ] diff --git a/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb b/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb index 18d532b1639687b7f0b043d03178befa8748deb0..8d11bae6992695d8f4e4220f9b5b2c7b0a27b8de 100644 --- a/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb +++ b/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb @@ -85,35 +85,50 @@ }, "outputs": [], "source": [ + "import warnings\n", + "\n", "# imports and things that do not usually need to be changed\n", "from datetime import datetime\n", + "\n", "import dateutil.parser\n", - "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", - "from collections import OrderedDict\n", "import os\n", - "from typing import Tuple, List\n", + "from collections import OrderedDict\n", + "from typing import List, Tuple\n", + "\n", "import h5py\n", - "import numpy as np\n", "import matplotlib\n", + "import numpy as np\n", "import tabulate\n", "\n", "matplotlib.use('agg')\n", "import matplotlib.pyplot as plt\n", - "from IPython.display import display, Markdown, Latex\n", + "from IPython.display import Latex, Markdown, display\n", + "\n", "%matplotlib inline\n", "\n", - "from cal_tools.tools import (get_dir_creation_date, get_from_db,\n", - " get_notebook_name, get_pdu_from_db,\n", - " get_random_db_interface, get_report,\n", - " map_gain_stages, parse_runs,\n", - " run_prop_seq_from_path, save_const_to_h5,\n", - " send_to_db)\n", - "from cal_tools.enums import BadPixels\n", - "from cal_tools.plotting import (create_constant_overview,\n", - " plot_badpix_3d, show_processed_modules,\n", - " show_overview)\n", "from cal_tools.agipdlib import get_bias_voltage, get_gain_setting\n", + "from cal_tools.enums import BadPixels\n", + "from cal_tools.plotting import (\n", + " create_constant_overview,\n", + " plot_badpix_3d,\n", + " show_overview,\n", + " show_processed_modules,\n", + ")\n", + "from cal_tools.tools import (\n", + " get_dir_creation_date,\n", + " get_from_db,\n", + " get_notebook_name,\n", + " get_pdu_from_db,\n", + " get_random_db_interface,\n", + " get_report,\n", + " map_gain_stages,\n", + " parse_runs,\n", + " run_prop_seq_from_path,\n", + " save_const_to_h5,\n", + " send_to_db,\n", + ")\n", "\n", "# make sure a cluster is running with ipcluster start --n=32, give it a while to start\n", "from ipyparallel import Client\n", @@ -121,7 +136,7 @@ "view = Client(profile=cluster_profile)[:]\n", "view.use_dill()\n", "\n", - "from iCalibrationDB import Constants, Conditions, Detectors, Versions\n", + "from iCalibrationDB import Conditions, Constants, Detectors, Versions\n", "\n", "gains = np.arange(3)\n", "\n", @@ -287,6 +302,8 @@ "source": [ "import copy\n", "from functools import partial\n", + "\n", + "\n", "def characterize_module(il_mode: bool,\n", " cells: int,\n", " bp_thresh: Tuple[List[int], float, List[int], float], \n", @@ -298,11 +315,12 @@ " control_names: List[str],\n", " karabo_id_control: str,\n", " inp: Tuple[str, int, int]) -> Tuple[np.array, np.array, np.array, np.array, int, np.array, int, float]:\n", - " import numpy as np\n", " import copy\n", + "\n", " import h5py\n", + " import numpy as np\n", + " from cal_tools.agipdlib import get_acq_rate, get_num_cells\n", " from cal_tools.enums import BadPixels\n", - " from cal_tools.agipdlib import get_num_cells, get_acq_rate\n", "\n", " fast_data_filename, channel, gg = inp\n", " \n", diff --git a/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb b/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb index 695eb6634ff61193d8665a58812667821ad55a6c..9d24310f85738222a28c9592b3d1e21c2803dc3a 100644 --- a/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb +++ b/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb @@ -76,27 +76,31 @@ "outputs": [], "source": [ "import glob\n", - "from multiprocessing import Pool\n", "import os\n", "import traceback\n", "import warnings\n", + "from multiprocessing import Pool\n", "\n", "import h5py\n", - "from iminuit import Minuit\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import sharedmem\n", - "from XFELDetAna.plotting.heatmap import heatmapPlot\n", - "from XFELDetAna.plotting.simpleplot import simplePlot\n", "import XFELDetAna.xfelpyanatools as xana\n", - "\n", - "from cal_tools.ana_tools import save_dict_to_hdf5, get_range\n", "from cal_tools.agipdlib import get_bias_voltage\n", "from cal_tools.agipdutils_ff import (\n", - " any_in, gaussian, gaussian_sum, get_mask,\n", - " get_starting_parameters, set_par_limits, fit_n_peaks\n", + " any_in,\n", + " fit_n_peaks,\n", + " gaussian,\n", + " gaussian_sum,\n", + " get_mask,\n", + " get_starting_parameters,\n", + " set_par_limits,\n", ")\n", + "from cal_tools.ana_tools import get_range, save_dict_to_hdf5\n", "from cal_tools.enums import BadPixelsFF\n", + "from iminuit import Minuit\n", + "from XFELDetAna.plotting.heatmap import heatmapPlot\n", + "from XFELDetAna.plotting.simpleplot import simplePlot\n", "\n", "# %load_ext autotime\n", "%matplotlib inline\n", @@ -407,7 +411,7 @@ "gain_mean = np.nanmean(gains, axis=(1,2))\n", "\n", "fit_result['mask'][fit_result['gain'] > gain_mean[:,None,None]*gain_lim[1] ] |= BadPixelsFF.GAIN_DEVIATION.value\n", - "fit_result['mask'][fit_result['gain'] < gain_mean[:,None,None]*gain_lim[0] ] |= BadPixelsFF.GAIN_DEVIATION.value\n" + "fit_result['mask'][fit_result['gain'] < gain_mean[:,None,None]*gain_lim[0] ] |= BadPixelsFF.GAIN_DEVIATION.value" ] }, { @@ -606,7 +610,7 @@ " ax0.set_xlabel('Memory Cell ID', fontsize=14)\n", " ax0.set_ylabel(labels[i], fontsize=14)\n", " ax0.grid()\n", - " _ = ax0.legend()\n" + " _ = ax0.legend()" ] }, { diff --git a/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_Summary.ipynb b/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_Summary.ipynb index da71858d2a7021f315e5692bb4c4a057574a5199..e5c31dd6c69912ad55c9467003b6b799694278df 100644 --- a/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_Summary.ipynb +++ b/notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_Summary.ipynb @@ -70,30 +70,39 @@ "outputs": [], "source": [ "import glob\n", - "from multiprocessing import Pool\n", - "import re\n", "import os\n", + "import re\n", "import traceback\n", "import warnings\n", + "from multiprocessing import Pool\n", "\n", - "from dateutil import parser\n", - "from extra_data import RunDirectory, stack_detector_data\n", - "from extra_geom import AGIPD_1MGeometry\n", "import h5py\n", - "from iCalibrationDB import Detectors, Conditions, Constants\n", - "from iminuit import Minuit\n", - "from IPython.display import HTML, display, Markdown, Latex\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import tabulate\n", - "from XFELDetAna.plotting.heatmap import heatmapPlot\n", - "from XFELDetAna.plotting.simpleplot import simplePlot\n", - "\n", + "from cal_tools.agipdlib import (\n", + " get_acq_rate,\n", + " get_bias_voltage,\n", + " get_gain_setting,\n", + " get_num_cells,\n", + ")\n", + "from cal_tools.agipdutils_ff import (\n", + " any_in,\n", + " fit_n_peaks,\n", + " gaussian_sum,\n", + " get_starting_parameters,\n", + ")\n", "from cal_tools.ana_tools import get_range, save_dict_to_hdf5\n", - "from cal_tools.agipdlib import get_acq_rate, get_bias_voltage, get_gain_setting, get_num_cells\n", - "from cal_tools.agipdutils_ff import any_in, fit_n_peaks, gaussian_sum, get_starting_parameters\n", - "from cal_tools.tools import get_dir_creation_date, send_to_db\n", "from cal_tools.enums import BadPixels, BadPixelsFF\n", + "from cal_tools.tools import get_dir_creation_date, send_to_db\n", + "from dateutil import parser\n", + "from extra_data import RunDirectory, stack_detector_data\n", + "from extra_geom import AGIPD_1MGeometry\n", + "from iCalibrationDB import Conditions, Constants, Detectors\n", + "from iminuit import Minuit\n", + "from IPython.display import HTML, Latex, Markdown, display\n", + "from XFELDetAna.plotting.heatmap import heatmapPlot\n", + "from XFELDetAna.plotting.simpleplot import simplePlot\n", "\n", "%matplotlib inline\n", "warnings.filterwarnings('ignore')" @@ -181,7 +190,7 @@ " modules.append(mod)\n", " except Exception as e:\n", " err = f\"Error: {e}\\nError traceback: {traceback.format_exc()}\"\n", - " print(f\"No fit data available for module {qm}\")\n" + " print(f\"No fit data available for module {qm}\")" ] }, { @@ -331,7 +340,7 @@ "for i in range(16):\n", " if i in slopesFF:\n", " const_data['slopesFF'][i,:,pixel_range[0]:pixel_range[2],\n", - " pixel_range[1]:pixel_range[3]] = slopesFF[i]\n" + " pixel_range[1]:pixel_range[3]] = slopesFF[i]" ] }, { @@ -479,7 +488,7 @@ "corrections = const_data['slopesFF'] # (16,shape[0],512,128) shape[0]= cell_range[1]-cell_range[0] /\n", "corrections = np.moveaxis(corrections,1,0) # (shape[0],16,512,128)\n", "rel_corr = corrections/np.nanmedian(corrections)\n", - "corrected = orig / rel_corr\n" + "corrected = orig / rel_corr" ] }, { @@ -574,7 +583,7 @@ "plt.xlabel('[ADU]')\n", "plt.legend()\n", "plt.yscale('log')\n", - "plt.show()\n" + "plt.show()" ] }, { diff --git a/notebooks/AGIPD/Chracterize_AGIPD_Gain_PC_NBC.ipynb b/notebooks/AGIPD/Chracterize_AGIPD_Gain_PC_NBC.ipynb index d3d9dbfc349e4114ce4c09772b8f068f8e507940..d8a42e40137e402c4827cc0d5c64edd9991528cb 100644 --- a/notebooks/AGIPD/Chracterize_AGIPD_Gain_PC_NBC.ipynb +++ b/notebooks/AGIPD/Chracterize_AGIPD_Gain_PC_NBC.ipynb @@ -74,29 +74,39 @@ "source": [ "# imports, usually no need to change anything here\n", "\n", - "from datetime import datetime\n", - "from functools import partial\n", "import os\n", "import warnings\n", + "from datetime import datetime\n", + "from functools import partial\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "import dateutil.parser\n", "import h5py\n", - "from ipyparallel import Client\n", - "import numpy as np\n", "import matplotlib\n", + "import numpy as np\n", + "from ipyparallel import Client\n", + "\n", "matplotlib.use(\"Qt4Agg\")\n", "import matplotlib.pyplot as plt\n", + "\n", "%matplotlib inline\n", "\n", + "import XFELDetAna.xfelpyanatools as xana\n", "from cal_tools.agipdlib import get_acq_rate, get_gain_setting, get_num_cells\n", "from cal_tools.enums import BadPixels\n", "from cal_tools.plotting import plot_badpix_3d, show_overview\n", - "from cal_tools.tools import (gain_map_files, get_dir_creation_date, get_notebook_name,\n", - " parse_runs, run_prop_seq_from_path, get_dir_creation_date,\n", - " get_pdu_from_db, get_report, send_to_db)\n", - "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", - "import XFELDetAna.xfelpyanatools as xana\n", + "from cal_tools.tools import (\n", + " gain_map_files,\n", + " get_dir_creation_date,\n", + " get_notebook_name,\n", + " get_pdu_from_db,\n", + " get_report,\n", + " parse_runs,\n", + " run_prop_seq_from_path,\n", + " send_to_db,\n", + ")\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", "\n", "# make sure a cluster is running with ipcluster start --n=32, give it a while to start\n", "view = Client(profile=cluster_profile)[:]\n", @@ -246,9 +256,10 @@ "source": [ "def read_and_merge_module_data(cells, path_temp, image_name_temp,\n", " runs, seqs, il_mode, rawversion, instrument, channel):\n", + " import os\n", + "\n", " import h5py\n", " import numpy as np\n", - " import os\n", "\n", " \n", " def cal_bursts_per_file(run, dseq=0):\n", @@ -390,7 +401,7 @@ "p = partial(read_and_merge_module_data, maxcells, path_temp, image_name_temp,\n", " runs, seqs, IL_MODE, rawversion, instrument)\n", "# chunk this a bit, so that we don't overuse available memory\n", - "res = list(map(p, modules))\n" + "res = list(map(p, modules))" ] }, { @@ -425,9 +436,10 @@ }, "outputs": [], "source": [ - "from sklearn.cluster import KMeans\n", "from iminuit import Minuit\n", - "from iminuit.util import make_func_code, describe\n", + "from iminuit.util import describe, make_func_code\n", + "from sklearn.cluster import KMeans\n", + "\n", "\n", "def calc_m_cluster(x, y):\n", " scan_range = 15\n", @@ -561,6 +573,7 @@ "outputs": [], "source": [ "from cal_tools.tools import get_constant_from_db_and_time\n", + "\n", "offsets = {}\n", "noises = {}\n", "thresholds = {}\n", @@ -628,6 +641,7 @@ " test_cells = tcell.tolist()\n", " \n", "from mpl_toolkits.axes_grid1 import ImageGrid\n", + "\n", "for mod, r in enumerate(res):\n", " dig, ana, cellId = r\n", " d = []\n", @@ -1025,7 +1039,7 @@ "\n", " fig = xana.simplePlot(d3, secondpanel=True, y_label=\"PC signal (ADU)\", figsize='2col', aspect=2,\n", " x_label=\"step #\", y2_label=\"Residuals ($\\sigma$)\", y2_range=(-5,5))\n", - " fig.savefig(\"{}/module_{}_pixel_plot_fits_fail.png\".format(out_folder, modules[mod]))\n" + " fig.savefig(\"{}/module_{}_pixel_plot_fits_fail.png\".format(out_folder, modules[mod]))" ] }, { @@ -1043,10 +1057,10 @@ "# Here we perform the calculations in column-parallel for all modules\n", "def calibrate_single_row(cells, fit_hook, inp):\n", " \n", - " from sklearn.cluster import KMeans\n", - " from iminuit import Minuit\n", - " from iminuit.util import make_func_code, describe\n", " import numpy as np\n", + " from iminuit import Minuit\n", + " from iminuit.util import describe, make_func_code\n", + " from sklearn.cluster import KMeans\n", " \n", " yrd, yra, offset, noise = inp\n", "\n", @@ -1382,6 +1396,7 @@ "outputs": [], "source": [ "from collections import OrderedDict\n", + "\n", "bad_pixels = OrderedDict()\n", "for qm, data in fres.items(): \n", " mask = np.zeros(data['ml'].shape, np.uint32)\n", @@ -1439,7 +1454,6 @@ }, "outputs": [], "source": [ - "\n", "# TODO: add db_module when received from myMDC\n", "# Create the modules dict of karabo_das and PDUs\n", "qm_dict = OrderedDict()\n", @@ -1529,9 +1543,9 @@ }, "outputs": [], "source": [ + "import matplotlib.patches as patches\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits.axes_grid1 import AxesGrid\n", - "import matplotlib.patches as patches\n", "\n", "cell_to_preview = min(59, mem_cells-1)\n", "for module, data in fres.items():\n", @@ -1626,6 +1640,7 @@ " \"ml\": \"Slope (linear)\",\n", " \"bl\": \"Offset (linear) (ADU)\"}\n", "from matplotlib.colors import LogNorm, PowerNorm\n", + "\n", "for module, data in fres.items():\n", " \n", " bins = 100\n", @@ -1709,6 +1724,7 @@ "else:\n", " test_cells = tcell.tolist()\n", "from mpl_toolkits.axes_grid1 import ImageGrid\n", + "\n", "for mod, r in enumerate(res):\n", " dig, ana, cellId = r\n", " d = []\n", diff --git a/notebooks/AGIPD/playground/Characterize_AGIPD_Gain_FlatFields_Coupling.ipynb b/notebooks/AGIPD/playground/Characterize_AGIPD_Gain_FlatFields_Coupling.ipynb index 887a4edbdfb37e6aad04887f195fb9699faa2aa8..738892f6aa07ed9bce39b9cbecd01fbad504e009 100644 --- a/notebooks/AGIPD/playground/Characterize_AGIPD_Gain_FlatFields_Coupling.ipynb +++ b/notebooks/AGIPD/playground/Characterize_AGIPD_Gain_FlatFields_Coupling.ipynb @@ -23,7 +23,10 @@ "cell_type": "code", "execution_count": 1, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -102,7 +105,10 @@ "cell_type": "code", "execution_count": 2, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [], "source": [ @@ -136,7 +142,10 @@ "cell_type": "code", "execution_count": 3, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [], "source": [ @@ -266,6 +275,9 @@ "execution_count": 29, "metadata": { "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "scrolled": true }, "outputs": [ @@ -331,7 +343,10 @@ "cell_type": "code", "execution_count": 35, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [], "source": [ @@ -367,7 +382,9 @@ "execution_count": 12, "metadata": { "collapsed": false, - "scrolled": false + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -562,6 +579,9 @@ "execution_count": 37, "metadata": { "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "scrolled": true }, "outputs": [ @@ -608,7 +628,9 @@ "execution_count": 14, "metadata": { "collapsed": false, - "scrolled": false + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -817,7 +839,10 @@ "cell_type": "code", "execution_count": 38, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "outputs": [], "source": [ @@ -854,6 +879,9 @@ "execution_count": 21, "metadata": { "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "scrolled": true }, "outputs": [ @@ -1049,7 +1077,9 @@ "execution_count": 39, "metadata": { "collapsed": false, - "scrolled": false + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -1084,21 +1114,12 @@ ] }, { - "cell_type": "code", - "execution_count": 40, + "cell_type": "markdown", "metadata": { - "collapsed": false - }, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (<ipython-input-40-9478b32c4bfd>, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"<ipython-input-40-9478b32c4bfd>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m We plot the distributions of the inidividual pixel coupling for all pixels and memory cells on a given module.\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] + "jupyter": { + "outputs_hidden": false } - ], + }, "source": [ "We plot the distributions of the inidividual pixel coupling for all pixels and memory cells on a given module." ] @@ -1108,7 +1129,9 @@ "execution_count": 23, "metadata": { "collapsed": false, - "scrolled": false + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -1320,9 +1343,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.3" + "version": "3.6.7" } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 4 } diff --git a/notebooks/AGIPD/playground/Investigate_Baseline_Drift.ipynb b/notebooks/AGIPD/playground/Investigate_Baseline_Drift.ipynb index a013fec502b3094880042dbceaf6d79e9a3bbfec..5d944cca8be5ef31394edfb504c8806297fd3ebc 100644 --- a/notebooks/AGIPD/playground/Investigate_Baseline_Drift.ipynb +++ b/notebooks/AGIPD/playground/Investigate_Baseline_Drift.ipynb @@ -4,7 +4,10 @@ "cell_type": "code", "execution_count": 11, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "outputs": [], "source": [ @@ -29,7 +32,10 @@ "cell_type": "code", "execution_count": 12, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [], "source": [ @@ -51,7 +57,10 @@ "cell_type": "code", "execution_count": 13, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -91,7 +100,10 @@ "cell_type": "code", "execution_count": 14, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -138,7 +150,10 @@ "cell_type": "code", "execution_count": 15, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -185,7 +200,10 @@ "cell_type": "code", "execution_count": 16, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "outputs": [], "source": [ @@ -198,7 +216,10 @@ "cell_type": "code", "execution_count": 17, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -228,7 +249,10 @@ "cell_type": "code", "execution_count": 18, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -253,7 +277,10 @@ "cell_type": "code", "execution_count": 19, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [], "source": [ @@ -265,7 +292,10 @@ "cell_type": "code", "execution_count": 20, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [], "source": [ @@ -290,7 +320,10 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "outputs": [], "source": [ @@ -301,7 +334,10 @@ "cell_type": "code", "execution_count": 21, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [], "source": [ @@ -317,6 +353,9 @@ "execution_count": 193, "metadata": { "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "scrolled": true }, "outputs": [], @@ -471,7 +510,10 @@ "cell_type": "code", "execution_count": 194, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "outputs": [], "source": [ @@ -492,7 +534,10 @@ "cell_type": "code", "execution_count": 196, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -555,7 +600,10 @@ "cell_type": "code", "execution_count": 162, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -597,7 +645,9 @@ "execution_count": 36, "metadata": { "collapsed": false, - "scrolled": false + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -712,7 +762,7 @@ " # maximum high gain signal\n", " dd = copy.copy(d)\n", " # shift while the medium gain produces negative values on aver\n", - " def get_neg_med_fraction(pc)\n", + " def get_neg_med_fraction(pc):\n", " np.nanmedian(dd[g==1])\n", " \n", "\n", @@ -786,7 +836,10 @@ "cell_type": "code", "execution_count": 428, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -830,7 +883,10 @@ "cell_type": "code", "execution_count": 546, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "outputs": [], "source": [ @@ -843,7 +899,10 @@ "cell_type": "code", "execution_count": 549, "metadata": { - "collapsed": false + "collapsed": false, + "jupyter": { + "outputs_hidden": false + } }, "outputs": [ { @@ -1066,7 +1125,10 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "outputs": [], "source": [] @@ -1075,7 +1137,10 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, "outputs": [], "source": [] @@ -1097,9 +1162,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.3" + "version": "3.6.7" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/notebooks/DSSC/Characterize_DSSC_Darks_NBC.ipynb b/notebooks/DSSC/Characterize_DSSC_Darks_NBC.ipynb index 6ad80ff6010432c439814a1a91905b44fb842682..e3381c13eebacc4b44b644edb19bc1e55e47c847 100644 --- a/notebooks/DSSC/Characterize_DSSC_Darks_NBC.ipynb +++ b/notebooks/DSSC/Characterize_DSSC_Darks_NBC.ipynb @@ -60,7 +60,7 @@ "instrument = \"SCS\" # the instrument\n", "high_res_badpix_3d = False # set this to True if you need high-resolution 3d bad pixel plots. Runtime: ~ 1h\n", "slow_data_aggregators = [1,2,3,4] # quadrant/aggregator\n", - "operation_mode = '' # Detector operation mode, optional\n" + "operation_mode = '' # Detector operation mode, optional" ] }, { @@ -74,37 +74,49 @@ }, "outputs": [], "source": [ - "# imports and things that do not usually need to be changed\n", - "from datetime import datetime\n", "import os\n", "import warnings\n", + "\n", + "# imports and things that do not usually need to be changed\n", + "from datetime import datetime\n", + "\n", "warnings.filterwarnings('ignore')\n", "from collections import OrderedDict\n", "\n", "import h5py\n", - "from ipyparallel import Client\n", - "from IPython.display import display, Markdown, Latex\n", "import matplotlib\n", + "from ipyparallel import Client\n", + "from IPython.display import Latex, Markdown, display\n", + "\n", "matplotlib.use('agg')\n", "import matplotlib.pyplot as plt\n", + "\n", "%matplotlib inline\n", "import numpy as np\n", "import tabulate\n", - "\n", + "from cal_tools.dssclib import get_dssc_ctrl_data, get_pulseid_checksum\n", "from cal_tools.enums import BadPixels\n", - "from cal_tools.plotting import (create_constant_overview,\n", - " plot_badpix_3d, show_overview,\n", - " show_processed_modules)\n", - "from cal_tools.tools import (get_dir_creation_date, get_from_db, \n", - " get_pdu_from_db, get_notebook_name,\n", - " get_random_db_interface, get_report,\n", - " map_gain_stages, parse_runs,\n", - " run_prop_seq_from_path,\n", - " save_const_to_h5, send_to_db)\n", - "from cal_tools.dssclib import (get_dssc_ctrl_data,\n", - " get_pulseid_checksum)\n", - "\n", - "from iCalibrationDB import Constants, Conditions, Detectors, Versions\n", + "from cal_tools.plotting import (\n", + " create_constant_overview,\n", + " plot_badpix_3d,\n", + " show_overview,\n", + " show_processed_modules,\n", + ")\n", + "from cal_tools.tools import (\n", + " get_dir_creation_date,\n", + " get_from_db,\n", + " get_notebook_name,\n", + " get_pdu_from_db,\n", + " get_random_db_interface,\n", + " get_report,\n", + " map_gain_stages,\n", + " parse_runs,\n", + " run_prop_seq_from_path,\n", + " save_const_to_h5,\n", + " send_to_db,\n", + ")\n", + "from iCalibrationDB import Conditions, Constants, Detectors, Versions\n", + "\n", "view = Client(profile=cluster_profile)[:]\n", "view.use_dill()\n", "\n", @@ -187,7 +199,7 @@ "os.makedirs(out_folder, exist_ok=True)\n", "gmf = map_gain_stages(in_folder, offset_runs, path_template, karabo_da, sequences)\n", "gain_mapped_files, total_sequences, total_file_size = gmf\n", - "print(f\"Will process a total of {total_sequences} file.\")\n" + "print(f\"Will process a total of {total_sequences} file.\")" ] }, { @@ -212,10 +224,13 @@ "source": [ "import copy\n", "from functools import partial\n", + "\n", + "\n", "def characterize_module(cells, bp_thresh, rawversion, karabo_id, h5path, h5path_idx, inp):\n", - " import numpy as np\n", " import copy\n", + "\n", " import h5py\n", + " import numpy as np\n", " from cal_tools.enums import BadPixels\n", " \n", " def get_num_cells(fname, h5path):\n", @@ -367,7 +382,7 @@ " max_cells = np.max(all_cells)\n", " print(f\"Using {max_cells} memory cells\")\n", "else:\n", - " raise ValueError(\"0 processed memory cells. No raw data available.\")\n" + " raise ValueError(\"0 processed memory cells. No raw data available.\")" ] }, { @@ -513,7 +528,7 @@ " print(f\"• memory_cells: {max_cells}\\n• bias_voltage: {bias_voltage}\\n\"\n", " f\"• pulseid_checksum: {pidsum}\\n• acquisition_rate: {opfreq}\\n\"\n", " f\"• target_gain: {targetgain}\\n• encoded_gain: {encodedgain}\\n\"\n", - " f\"• creation_time: {creation_time}\\n\")\n" + " f\"• creation_time: {creation_time}\\n\")" ] }, { @@ -528,7 +543,7 @@ " display(Markdown(f'## Position of the module {qm} and its ASICs##'))\n", " mnames.append(qm)\n", " \n", - "show_processed_modules(dinstance=dinstance, constants=None, mnames=mnames, mode=\"position\")\n" + "show_processed_modules(dinstance=dinstance, constants=None, mnames=mnames, mode=\"position\")" ] }, { diff --git a/notebooks/DSSC/DSSC_Correct_and_Verify.ipynb b/notebooks/DSSC/DSSC_Correct_and_Verify.ipynb index 75ead05e79776c5489d0d7907799369c6b74c3c6..4d5bc0eb53bac3158b4950f7679f82976016e13c 100644 --- a/notebooks/DSSC/DSSC_Correct_and_Verify.ipynb +++ b/notebooks/DSSC/DSSC_Correct_and_Verify.ipynb @@ -71,32 +71,37 @@ }, "outputs": [], "source": [ + "# make sure a cluster is running with ipcluster start --n=32, give it a while to start\n", + "import os\n", "import sys\n", "from collections import OrderedDict\n", "\n", - "# make sure a cluster is running with ipcluster start --n=32, give it a while to start\n", - "import os\n", "import h5py\n", - "import numpy as np\n", "import matplotlib\n", + "import numpy as np\n", + "\n", "matplotlib.use(\"agg\")\n", "import matplotlib.pyplot as plt\n", "from ipyparallel import Client\n", - "from IPython.display import display, Markdown, Latex\n", + "from IPython.display import Latex, Markdown, display\n", + "\n", "print(f\"Connecting to profile {cluster_profile}\")\n", "view = Client(profile=cluster_profile)[:]\n", "view.use_dill()\n", "\n", - "from iCalibrationDB import (ConstantMetaData, Constants, Conditions,\\\n", - " Detectors, Versions)\n", - "from cal_tools.tools import (map_modules_from_folder, parse_runs,\\\n", - " run_prop_seq_from_path, get_notebook_name,\n", - " get_dir_creation_date, get_constant_from_db)\n", - "\n", - "from cal_tools.dssclib import (get_dssc_ctrl_data, get_pulseid_checksum)\n", - "\n", + "from datetime import timedelta\n", + "\n", + "from cal_tools.dssclib import get_dssc_ctrl_data, get_pulseid_checksum\n", + "from cal_tools.tools import (\n", + " get_constant_from_db,\n", + " get_dir_creation_date,\n", + " get_notebook_name,\n", + " map_modules_from_folder,\n", + " parse_runs,\n", + " run_prop_seq_from_path,\n", + ")\n", "from dateutil import parser\n", - "from datetime import timedelta" + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions" ] }, { @@ -139,6 +144,7 @@ " raise AttributeError(\"Output path exists! Exiting\")\n", "\n", "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "print(f\"Detector in use is {karabo_id}\")" @@ -180,8 +186,10 @@ "outputs": [], "source": [ "import copy\n", - "from IPython.display import HTML, display, Markdown, Latex\n", + "\n", "import tabulate\n", + "from IPython.display import HTML, Latex, Markdown, display\n", + "\n", "print(f\"Processing a total of {total_sequences} sequence files in chunks of {MAX_PAR}\")\n", "table = []\n", "mfc = copy.copy(mapped_files)\n", @@ -216,21 +224,29 @@ "source": [ "import copy\n", "from functools import partial\n", + "\n", + "\n", "def correct_module(total_sequences, sequences_qm, karabo_id, dinstance, mask_noisy_asic, \n", " mask_cold_asic, noisy_pix_threshold, chunksize, mem_cells, bias_voltage,\n", " cal_db_timeout, creation_time, cal_db_interface, h5path, h5path_idx, inp):\n", " \n", - " import numpy as np\n", + " import binascii\n", " import copy\n", + " import struct\n", + " from hashlib import blake2b\n", + "\n", " import h5py\n", - " from cal_tools.dssclib import (get_dssc_ctrl_data, get_pulseid_checksum)\n", + " import numpy as np\n", + " from cal_tools.dssclib import get_dssc_ctrl_data, get_pulseid_checksum\n", " from cal_tools.enums import BadPixels\n", " from cal_tools.tools import get_constant_from_db_and_time\n", - " from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", - " \n", - " from hashlib import blake2b\n", - " import struct\n", - " import binascii\n", + " from iCalibrationDB import (\n", + " Conditions,\n", + " ConstantMetaData,\n", + " Constants,\n", + " Detectors,\n", + " Versions,\n", + " )\n", " \n", " filename, filename_out, channel, karabo_da, qm, conditions = inp\n", " \n", @@ -488,11 +504,12 @@ }, "outputs": [], "source": [ - "from mpl_toolkits.mplot3d import Axes3D\n", "import matplotlib.pyplot as plt\n", - "from matplotlib import cm\n", - "from matplotlib.ticker import LinearLocator, FormatStrFormatter\n", "import numpy as np\n", + "from matplotlib import cm\n", + "from matplotlib.ticker import FormatStrFormatter, LinearLocator\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "\n", "%matplotlib inline\n", "def do_3d_plot(data, edges, x_axis, y_axis):\n", " fig = plt.figure(figsize=(10,10))\n", @@ -535,7 +552,7 @@ " cb = fig.colorbar(im)\n", " cb.set_label(\"Counts\")\n", " \n", - " \n" + " " ] }, { @@ -863,9 +880,10 @@ }, "outputs": [], "source": [ - "from cal_tools.enums import BadPixels\n", - "from IPython.display import HTML, display, Markdown, Latex\n", "import tabulate\n", + "from cal_tools.enums import BadPixels\n", + "from IPython.display import HTML, Latex, Markdown, display\n", + "\n", "table = []\n", "for item in BadPixels:\n", " table.append((item.name, \"{:016b}\".format(item.value)))\n", diff --git a/notebooks/FastCCD/Characterize_Darks_NewDAQ_FastCCD_NBC_New_Common_Mode.ipynb b/notebooks/FastCCD/Characterize_Darks_NewDAQ_FastCCD_NBC_New_Common_Mode.ipynb index b72c092174d599bfd474bca09b7a3a48c6ebbbb8..a91683d1ba28baf421109730ba4bcc9d60056a00 100644 --- a/notebooks/FastCCD/Characterize_Darks_NewDAQ_FastCCD_NBC_New_Common_Mode.ipynb +++ b/notebooks/FastCCD/Characterize_Darks_NewDAQ_FastCCD_NBC_New_Common_Mode.ipynb @@ -60,7 +60,7 @@ "ADU_to_electron_upper_mg = 23.4 # for upper hemisphere and medium gain\n", "ADU_to_electron_lower_mg = 23.4 # for lower hemisphere and medium gain\n", "ADU_to_electron_upper_lg = 49.3 # for upper hemisphere and low gain\n", - "ADU_to_electron_lower_lg = 47.3 # for lower hemisphere and low gain\n" + "ADU_to_electron_lower_lg = 47.3 # for lower hemisphere and low gain" ] }, { @@ -77,30 +77,38 @@ "# Required Packages:\n", "import copy\n", "import datetime\n", - "import time\n", "import os\n", + "import time\n", "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "import h5py\n", - "from IPython.display import display, Markdown\n", "import matplotlib.pyplot as plt\n", + "from IPython.display import Markdown, display\n", + "\n", "%matplotlib inline\n", "import numpy as np\n", - "from prettytable import PrettyTable\n", - "\n", - "from cal_tools.tools import (get_dir_creation_date, get_random_db_interface,\n", - " get_pdu_from_db, get_report,\n", - " save_const_to_h5, send_to_db)\n", "from cal_tools.enums import BadPixels\n", - "from iCalibrationDB import Constants, Conditions, Detectors, Versions\n", + "from cal_tools.tools import (\n", + " get_dir_creation_date,\n", + " get_pdu_from_db,\n", + " get_random_db_interface,\n", + " get_report,\n", + " save_const_to_h5,\n", + " send_to_db,\n", + ")\n", + "from iCalibrationDB import Conditions, Constants, Detectors, Versions\n", "from iCalibrationDB.detectors import DetectorTypes\n", + "from prettytable import PrettyTable\n", "from XFELDetAna import xfelpyanatools as xana\n", "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n", "from XFELDetAna.util import env\n", + "\n", "env.iprofile = cluster_profile\n", "import XFELDetAna.xfelprofiler as xprof\n", + "\n", "profiler = xprof.Profiler()\n", "profiler.disable()\n", "from XFELDetAna.xfelreaders import ChunkReader" @@ -689,8 +697,9 @@ "source": [ "def create_circular_mask(h, w, center=None, radius=None):\n", "\n", - " import numpy as np\n", " import math\n", + "\n", + " import numpy as np\n", " \n", " if center is None: # use the middle of the image\n", " center = [int(w/2), int(h/2)]\n", diff --git a/notebooks/FastCCD/CorrectionNotebook_NewDAQ_FastCCD_NBC.ipynb b/notebooks/FastCCD/CorrectionNotebook_NewDAQ_FastCCD_NBC.ipynb index c879d49e8fb22ba19c94ffc59b1982443f33ddf1..4e08d0f39fddc4c2841445f9c5059621f2ca8159 100644 --- a/notebooks/FastCCD/CorrectionNotebook_NewDAQ_FastCCD_NBC.ipynb +++ b/notebooks/FastCCD/CorrectionNotebook_NewDAQ_FastCCD_NBC.ipynb @@ -67,7 +67,7 @@ "\n", "def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):\n", " from xfel_calibrate.calibrate import balance_sequences as bs\n", - " return bs(in_folder, run, sequences, sequences_per_node, karabo_da)\n" + " return bs(in_folder, run, sequences, sequences_per_node, karabo_da)" ] }, { @@ -118,37 +118,38 @@ "profiler = xprof.Profiler()\n", "profiler.disable()\n", "from XFELDetAna.util import env\n", + "\n", "env.iprofile = cluster_profile\n", "\n", "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", - "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna import xfelpyanatools as xana\n", + "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna.plotting.util import prettyPlotting\n", + "\n", "prettyPlotting=True\n", - "from XFELDetAna.xfelreaders import ChunkReader\n", - "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n", + "import copy\n", + "import os\n", + "import time\n", + "from datetime import timedelta\n", "\n", - "import numpy as np\n", - "import h5py\n", "import dateutil.parser\n", + "import h5py\n", "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from cal_tools.tools import (\n", + " get_constant_from_db_and_time,\n", + " get_dir_creation_date,\n", + " get_random_db_interface,\n", + ")\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", + "from iCalibrationDB.detectors import DetectorTypes\n", "from iminuit import Minuit\n", - "\n", - "import time\n", - "import copy\n", - "import os\n", - "\n", "from prettytable import PrettyTable\n", - "\n", - "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", - "from iCalibrationDB.detectors import DetectorTypes\n", - "from cal_tools.tools import (get_dir_creation_date,\n", - " get_random_db_interface,\n", - " get_constant_from_db_and_time)\n", - "\n", - "from datetime import timedelta\n", + "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n", + "from XFELDetAna.xfelreaders import ChunkReader\n", "\n", "%matplotlib inline\n", "\n", @@ -156,7 +157,7 @@ " sequences = None\n", "\n", "# select a random port for the data base \n", - "cal_db_interface = get_random_db_interface(cal_db_interface)\n" + "cal_db_interface = get_random_db_interface(cal_db_interface)" ] }, { @@ -193,12 +194,12 @@ "print(\"Data is output to: {}\".format(out_folder))\n", "\n", "import datetime\n", + "\n", "creation_time = None\n", "if use_dir_creation_date:\n", " creation_time = get_dir_creation_date(in_folder, run) + timedelta(days=time_offset_days)\n", "if creation_time:\n", - " print(\"Using {} as creation time\".format(creation_time.isoformat()))\n", - "\n" + " print(\"Using {} as creation time\".format(creation_time.isoformat()))" ] }, { @@ -212,7 +213,6 @@ }, "outputs": [], "source": [ - "\n", "sensorSize = [x, y]\n", "chunkSize = 100 #Number of images to read per chunk\n", "blockSize = [sensorSize[0]//2, sensorSize[1]] #Sensor area will be analysed according to blocksize\n", @@ -245,7 +245,7 @@ " os.makedirs(out_folder)\n", "elif not overwrite:\n", " # Stop Notebook not only this cell\n", - " raise SystemExit(\"Output path exists! Exiting\") \n" + " raise SystemExit(\"Output path exists! Exiting\") " ] }, { @@ -298,8 +298,10 @@ "outputs": [], "source": [ "import copy\n", - "from IPython.display import HTML, display, Markdown, Latex\n", + "\n", "import tabulate\n", + "from IPython.display import HTML, Latex, Markdown, display\n", + "\n", "print(\"Processing a total of {} sequence files\".format(total_sequences))\n", "table = []\n", "\n", @@ -549,7 +551,7 @@ " flip_rgain = creation_time.replace(tzinfo=None) >= flipped_between[0] and creation_time.replace(tzinfo=None) <= flipped_between[1]\n", " flip_rgain &= (relgain_time.replace(tzinfo=None) >= flipped_between[0] \n", " and relgain_time.replace(tzinfo=None) <= flipped_between[1])\n", - " print(\"Accounting for flipped detector: {}\".format(flip_rgain))\n" + " print(\"Accounting for flipped detector: {}\".format(flip_rgain))" ] }, { @@ -600,9 +602,7 @@ " blockSize=[x//2, y],\n", " runParallel=True)\n", "\n", - " \n", - "\n", - "\n" + " " ] }, { @@ -913,7 +913,7 @@ " single_im_cc = data[...,0]\n", " \n", " except Exception as e:\n", - " print(\"Couldn't calibrate data in {}: {}\".format(f, e))\n" + " print(\"Couldn't calibrate data in {}: {}\".format(f, e))" ] }, { @@ -1047,7 +1047,7 @@ " pmap = ax.imshow(patternStatsUH[m][j], interpolation=\"nearest\", vmax=np.median(patternStatsUH[m][j]))\n", " ax.set_title(m+\"(\"+str(j)+\")\")\n", " cb = fig.colorbar(pmap)\n", - " k+=1\n" + " k+=1" ] }, { diff --git a/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb index f1c6c165d58328b8be8e5fbc215825c9d6309f52..cd968ed1f16d1109ae4175e64337aa8d30bcf9f0 100644 --- a/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb +++ b/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb @@ -73,8 +73,11 @@ "import numpy as np\n", "import tabulate\n", "from cal_tools.enums import BadPixels\n", - "from cal_tools.tools import (get_constant_from_db_and_time,\n", - " get_dir_creation_date, map_modules_from_folder)\n", + "from cal_tools.tools import (\n", + " get_constant_from_db_and_time,\n", + " get_dir_creation_date,\n", + " map_modules_from_folder,\n", + ")\n", "from iCalibrationDB import Conditions, Constants\n", "from IPython.display import Latex, display\n", "from matplotlib.colors import LogNorm\n", diff --git a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb index a0d0bfef4937f2d075385a66f2acb824924fac50..5edd0344aa075d478e9c6820f92a66df4fe1b624 100644 --- a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb +++ b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb @@ -67,29 +67,40 @@ "import glob\n", "import os\n", "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "import h5py\n", - "from h5py import File as h5file\n", "import matplotlib\n", + "from h5py import File as h5file\n", + "\n", "matplotlib.use('agg')\n", "import matplotlib.pyplot as plt\n", + "\n", "%matplotlib inline\n", "import numpy as np\n", - "\n", - "from cal_tools.enums import BadPixels\n", - "from cal_tools.tools import (get_dir_creation_date, get_pdu_from_db,\n", - " get_random_db_interface, get_report,\n", - " save_const_to_h5, send_to_db)\n", "from cal_tools.ana_tools import save_dict_to_hdf5\n", - "from iCalibrationDB import Constants, Conditions, Detectors, Versions\n", - "\n", + "from cal_tools.enums import BadPixels\n", + "from cal_tools.tools import (\n", + " get_dir_creation_date,\n", + " get_pdu_from_db,\n", + " get_random_db_interface,\n", + " get_report,\n", + " save_const_to_h5,\n", + " send_to_db,\n", + ")\n", + "from iCalibrationDB import Conditions, Constants, Detectors, Versions\n", "from XFELDetAna.util import env\n", + "\n", "env.iprofile = cluster_profile\n", - "from XFELDetAna.detectors.jungfrau import readerPSI as jfreaderPSI\n", "from XFELDetAna.detectors.jungfrau import reader as jfreader\n", + "from XFELDetAna.detectors.jungfrau import readerPSI as jfreaderPSI\n", "from XFELDetAna.detectors.jungfrau.jf_chunk_reader import JFChunkReader\n", - "from XFELDetAna.detectors.jungfrau.util import count_n_files, rollout_data, sanitize_data_cellid\n", + "from XFELDetAna.detectors.jungfrau.util import (\n", + " count_n_files,\n", + " rollout_data,\n", + " sanitize_data_cellid,\n", + ")\n", "from XFELDetAna.plotting.heatmap import heatmapPlot\n", "from XFELDetAna.plotting.histogram import histPlot" ] @@ -282,8 +293,7 @@ " print('Lost {:d} images out of {:d}'.format(n_empty_sc, this_run_mcells * (n_tr - n_empty_trains)))\n", "\n", " else:\n", - " print('missing G{:01d}'.format(i))\n", - "\n" + " print('missing G{:01d}'.format(i))" ] }, { @@ -303,11 +313,12 @@ "source": [ "import matplotlib.pyplot as plt\n", "from XFELDetAna.core.util import remove_nans\n", + "\n", "%matplotlib inline\n", "#%matplotlib notebook\n", "\n", - "from XFELDetAna.plotting.histogram import histPlot\n", "from XFELDetAna.plotting.heatmap import heatmapPlot\n", + "from XFELDetAna.plotting.histogram import histPlot\n", "\n", "g_name = ['G0', 'G1', 'G2']\n", "g_range = [(0, 8000), (8000, 16000), (8000, 16000)]\n", @@ -324,7 +335,6 @@ }, "outputs": [], "source": [ - "\n", "for g_idx in gains:\n", " for cell in range(0, memoryCells):\n", " f_o0 = heatmapPlot(np.swapaxes(offset_map[..., cell, g_idx], 0, 1), \n", diff --git a/notebooks/LPD/Characterize_LPD_GAIN_CI_per_pixel_NBC.ipynb b/notebooks/LPD/Characterize_LPD_GAIN_CI_per_pixel_NBC.ipynb index b8b17cf511c4601f63021f7c42d40e743969a1bc..e52ca2afaefe83ddadd28dfd177a3111c82b071e 100644 --- a/notebooks/LPD/Characterize_LPD_GAIN_CI_per_pixel_NBC.ipynb +++ b/notebooks/LPD/Characterize_LPD_GAIN_CI_per_pixel_NBC.ipynb @@ -55,36 +55,49 @@ }, "outputs": [], "source": [ + "import os\n", + "import warnings\n", + "\n", "# std library imports\n", "from functools import partial\n", + "\n", "import h5py\n", - "import os\n", - "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", + "import matplotlib\n", + "\n", "# numpy and matplot lib specific\n", "import numpy as np\n", - "import matplotlib\n", + "\n", "matplotlib.use(\"agg\")\n", "import matplotlib.pyplot as plt\n", + "\n", "%matplotlib inline\n", "\n", "# parallel processing via ipcluster\n", "# make sure a cluster is running with ipcluster start --n=32, give it a while to start\n", "from ipyparallel import Client\n", + "\n", "view = Client(profile=cluster_profile)[:]\n", "view.use_dill()\n", "\n", "from datetime import datetime\n", "\n", - "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", - "from cal_tools.tools import gain_map_files, parse_runs, run_prop_seq_from_path, get_notebook_name, get_dir_creation_date\n", - "from cal_tools.enums import BadPixels\n", - "from cal_tools.plotting import show_overview, plot_badpix_3d, create_constant_overview\n", + "import XFELDetAna.xfelpyanatools as xana\n", "\n", "# pyDetLib imports\n", "import XFELDetAna.xfelpycaltools as xcal\n", - "import XFELDetAna.xfelpyanatools as xana\n", + "from cal_tools.enums import BadPixels\n", + "from cal_tools.plotting import create_constant_overview, plot_badpix_3d, show_overview\n", + "from cal_tools.tools import (\n", + " gain_map_files,\n", + " get_dir_creation_date,\n", + " get_notebook_name,\n", + " parse_runs,\n", + " run_prop_seq_from_path,\n", + ")\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", "\n", "# usually no need to change these lines\n", "sensor_size = [256, 256]\n", @@ -136,7 +149,6 @@ }, "outputs": [], "source": [ - "\n", "offset_g = {}\n", "noise_g = {}\n", "if not db_input:\n", @@ -313,9 +325,9 @@ " \"\"\"\n", " channel, offset, mod_corr = inp\n", " \n", - " import XFELDetAna.xfelpycaltools as xcal\n", - " import numpy as np\n", " import h5py\n", + " import numpy as np\n", + " import XFELDetAna.xfelpycaltools as xcal\n", "\n", " def splitOffGainLPD(d):\n", " msk = np.zeros(d.shape, np.uint16)\n", @@ -405,6 +417,7 @@ "outputs": [], "source": [ "from collections import OrderedDict\n", + "\n", "res_uncorr = OrderedDict()\n", "indices_in_settings = {}\n", "\n", @@ -527,7 +540,7 @@ "sort_low = np.argsort(ref_pk_pos_low)\n", "sort_med = np.argsort(ref_pk_pos_med)\n", "sort_high = np.argsort(ref_pk_pos_high)\n", - "ref_pos = ref_pk_pos_low[sort_low], ref_pk_pos_med[sort_med], ref_pk_pos_high[sort_high]\n" + "ref_pos = ref_pk_pos_low[sort_low], ref_pk_pos_med[sort_med], ref_pk_pos_high[sort_high]" ] }, { @@ -560,7 +573,7 @@ " #idx2 = sort_low[indices_in_settings[\"low\"].index(idx2)]\n", " slope = np.mean(ref_pk_pos_med[idx1]/ref_pk_pos_low[idx2])\n", " slopes.append(slope)\n", - "slope_10_1 = np.mean(slopes)\n" + "slope_10_1 = np.mean(slopes)" ] }, { @@ -579,7 +592,6 @@ }, "outputs": [], "source": [ - "\n", "cell = 1\n", "for qm, r in res_uncorr.items():\n", " i = list(modules)[ii]\n", @@ -916,9 +928,9 @@ " def calibrate_single_row(cells, inp):\n", "\n", " \n", - " from iminuit import Minuit\n", - " from iminuit.util import make_func_code, describe\n", " import numpy as np\n", + " from iminuit import Minuit\n", + " from iminuit.util import describe, make_func_code\n", "\n", " yrd, xrd = inp\n", "\n", @@ -1242,7 +1254,7 @@ }, "outputs": [], "source": [ - "mask_low = plot_for_gain(fres_low)\n" + "mask_low = plot_for_gain(fres_low)" ] }, { @@ -1260,7 +1272,7 @@ }, "outputs": [], "source": [ - "mask_med = plot_for_gain(fres_med)\n" + "mask_med = plot_for_gain(fres_med)" ] }, { @@ -1324,7 +1336,6 @@ }, "outputs": [], "source": [ - "\n", "ofile = \"{}/lpd_ci_store_{}_16_{}.h5\".format(out_folder,\n", " \"_\".join([str(m) for m in modules]),\n", " capacitance)\n", @@ -1487,9 +1498,9 @@ " return [], [], []\n", " channel, om, mod_corr, rg, rbg = inp\n", " \n", - " import XFELDetAna.xfelpycaltools as xcal\n", - " import numpy as np\n", " import h5py\n", + " import numpy as np\n", + " import XFELDetAna.xfelpycaltools as xcal\n", "\n", " def splitOffGainLPD(d):\n", " msk = np.zeros(d.shape, np.uint16)\n", @@ -1577,7 +1588,6 @@ }, "outputs": [], "source": [ - "\n", "cell = 1\n", "for i, r in enumerate(res_corr):\n", " means_low, means_med, means_high = r\n", diff --git a/notebooks/LPD/LPDChar_Darks_NBC.ipynb b/notebooks/LPD/LPDChar_Darks_NBC.ipynb index d9c9fa6dddbc646fb9202a3c4dcf4f2ccd651e70..cf833d99f362bfe84f22e780b505deae9b85cedc 100644 --- a/notebooks/LPD/LPDChar_Darks_NBC.ipynb +++ b/notebooks/LPD/LPDChar_Darks_NBC.ipynb @@ -66,37 +66,49 @@ "metadata": {}, "outputs": [], "source": [ - "from collections import OrderedDict\n", "import copy\n", - "from datetime import datetime\n", - "from functools import partial\n", "import os\n", "import warnings\n", + "from collections import OrderedDict\n", + "from datetime import datetime\n", + "from functools import partial\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "import dateutil.parser\n", "import h5py\n", - "from ipyparallel import Client\n", - "from IPython.display import display, Markdown, Latex\n", "import matplotlib\n", + "from ipyparallel import Client\n", + "from IPython.display import Latex, Markdown, display\n", + "\n", "matplotlib.use(\"agg\")\n", "import matplotlib.patches as patches\n", "import matplotlib.pyplot as plt\n", + "\n", "%matplotlib inline\n", "import numpy as np\n", "import tabulate\n", - "\n", "from cal_tools.enums import BadPixels\n", - "from cal_tools.plotting import (show_overview, plot_badpix_3d, \n", - " create_constant_overview,\n", - " show_processed_modules)\n", - "from cal_tools.tools import (get_dir_creation_date, get_from_db,\n", - " get_notebook_name, get_pdu_from_db,\n", - " get_random_db_interface, get_report,\n", - " map_gain_stages, parse_runs, \n", - " run_prop_seq_from_path,\n", - " save_const_to_h5, send_to_db)\n", - "from iCalibrationDB import Constants, Conditions, Detectors, Versions\n", + "from cal_tools.plotting import (\n", + " create_constant_overview,\n", + " plot_badpix_3d,\n", + " show_overview,\n", + " show_processed_modules,\n", + ")\n", + "from cal_tools.tools import (\n", + " get_dir_creation_date,\n", + " get_from_db,\n", + " get_notebook_name,\n", + " get_pdu_from_db,\n", + " get_random_db_interface,\n", + " get_report,\n", + " map_gain_stages,\n", + " parse_runs,\n", + " run_prop_seq_from_path,\n", + " save_const_to_h5,\n", + " send_to_db,\n", + ")\n", + "from iCalibrationDB import Conditions, Constants, Detectors, Versions\n", "from XFELDetAna.plotting.heatmap import heatmapPlot\n", "from XFELDetAna.plotting.simpleplot import simplePlot" ] @@ -187,11 +199,12 @@ "# the actual characterization\n", "def characterize_module(cells, bp_thresh, skip_first_ntrains, ntrains, test_for_normality, \n", " h5path, h5path_idx, inp):\n", - " import numpy as np\n", " import copy\n", + "\n", " import h5py\n", - " from cal_tools.enums import BadPixels\n", + " import numpy as np\n", " import scipy.stats\n", + " from cal_tools.enums import BadPixels\n", "\n", " def splitOffGainLPD(d):\n", " msk = np.zeros(d.shape, np.uint16)\n", @@ -641,7 +654,7 @@ " use_axis=ax,\n", " y_log=False, legend='outside-top-ncol3-frame', legend_pad=0.05, legend_size='5%')\n", " ax.ticklabel_format(style='sci', axis='y', scilimits=(4,6))\n", - " \n" + " " ] }, { @@ -901,7 +914,7 @@ " cmap='viridis', # cb_loc='right',cb_aspect=15,\n", " x_ticklabels=np.arange(16)+1,\n", " x_ticks=np.arange(16)+0.5)\n", - " plt.show()\n" + " plt.show()" ] }, { @@ -1163,7 +1176,6 @@ "metadata": {}, "outputs": [], "source": [ - "\n", "header = ['Parameter', \n", " \"New constant\", \"Old constant \", \n", " \"New constant\", \"Old constant \", \n", diff --git a/notebooks/LPD/LPD_Correct_and_Verify.ipynb b/notebooks/LPD/LPD_Correct_and_Verify.ipynb index 07ba55d4a3d3396b3a1145f2cab11104e52ebfe9..d1fb2336cd3ad84be3af1e2898172e900c9ca276 100644 --- a/notebooks/LPD/LPD_Correct_and_Verify.ipynb +++ b/notebooks/LPD/LPD_Correct_and_Verify.ipynb @@ -64,7 +64,7 @@ "\n", "def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):\n", " from xfel_calibrate.calibrate import balance_sequences as bs\n", - " return bs(in_folder, run, sequences, sequences_per_node, karabo_da)\n" + " return bs(in_folder, run, sequences, sequences_per_node, karabo_da)" ] }, { @@ -79,8 +79,9 @@ "outputs": [], "source": [ "import sys\n", - "from datetime import datetime\n", "import warnings\n", + "from datetime import datetime\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "max_cells = mem_cells\n", @@ -107,24 +108,30 @@ "\n", "# make sure a cluster is running with ipcluster start --n=32, give it a while to start\n", "import os\n", + "\n", "import h5py\n", - "import numpy as np\n", "import matplotlib\n", + "import numpy as np\n", + "\n", "matplotlib.use(\"agg\")\n", - "import matplotlib.pyplot as plt\n", - "from ipyparallel import Client\n", + "from collections import OrderedDict\n", + "from datetime import datetime\n", "\n", - "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", - "from cal_tools.tools import (gain_map_files, parse_runs, run_prop_seq_from_path, \n", - " get_notebook_name, get_dir_creation_date, \n", - " get_constant_from_db, map_modules_from_folder)\n", + "import matplotlib.pyplot as plt\n", "from cal_tools.enums import BadPixels\n", - "from cal_tools.plotting import show_overview, plot_badpix_3d, create_constant_overview\n", "from cal_tools.lpdlib import LpdCorrections\n", - "from datetime import datetime\n", - "\n", - "from collections import OrderedDict\n", - "from datetime import datetime\n", + "from cal_tools.plotting import create_constant_overview, plot_badpix_3d, show_overview\n", + "from cal_tools.tools import (\n", + " gain_map_files,\n", + " get_constant_from_db,\n", + " get_dir_creation_date,\n", + " get_notebook_name,\n", + " map_modules_from_folder,\n", + " parse_runs,\n", + " run_prop_seq_from_path,\n", + ")\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", + "from ipyparallel import Client\n", "\n", "print(\"Connecting to profile {}\".format(cluster_profile))\n", "view = Client(profile=cluster_profile)[:]\n", @@ -193,8 +200,10 @@ "outputs": [], "source": [ "import copy\n", - "from IPython.display import HTML, display, Markdown, Latex\n", + "\n", "import tabulate\n", + "from IPython.display import HTML, Latex, Markdown, display\n", + "\n", "print(\"Processing a total of {} sequence files in chunks of {}\".format(total_sequences, MAX_PAR))\n", "table = []\n", "mfc = copy.copy(mapped_files)\n", @@ -228,17 +237,20 @@ "source": [ "import copy\n", "from functools import partial\n", + "\n", + "\n", "def correct_module(max_cells, do_ff, index_v, CHUNK_SIZE, total_sequences, sequences_qm, \n", " bins_gain_vs_signal, bins_signal_low_range, bins_signal_high_range, max_pulses,\n", " dbparms, fileparms, nodb, no_non_linear_corrections, mark_non_lin_region, linear_between,\n", " nlc_version, h5path, h5path_idx, karabo_id, inp):\n", - " import numpy as np\n", " import copy\n", - " import h5py\n", + " import os\n", + " import re\n", " import socket\n", " from datetime import datetime\n", - " import re\n", - " import os\n", + "\n", + " import h5py\n", + " import numpy as np\n", " from cal_tools.enums import BadPixels\n", " from cal_tools.lpdlib import LpdCorrections\n", "\n", @@ -379,7 +391,6 @@ "metadata": {}, "outputs": [], "source": [ - "\n", "print(\"Offset was injected on: \")\n", "for k, v in whens.items():\n", " if v['err'] is None:\n", @@ -399,11 +410,12 @@ }, "outputs": [], "source": [ - "from mpl_toolkits.mplot3d import Axes3D\n", "import matplotlib.pyplot as plt\n", - "from matplotlib import cm\n", - "from matplotlib.ticker import LinearLocator, FormatStrFormatter\n", "import numpy as np\n", + "from matplotlib import cm\n", + "from matplotlib.ticker import FormatStrFormatter, LinearLocator\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "\n", "%matplotlib inline\n", "def do_3d_plot(data, edges, x_axis, y_axis):\n", " fig = plt.figure(figsize=(10,10))\n", @@ -526,6 +538,7 @@ "d_quads = [(-19+dc[0],-300+dc[1]),(10+dc[0],-9+dc[1]),(-256+dc[0],19+dc[1]),(-285+dc[0],-271+dc[1])] # MAY 2019\n", "\n", "import cal_tools.metrology as metro\n", + "\n", "in_files = \"{}/CORR*LPD*S{:05d}*.h5\".format(out_folder, sequences[0] if sequences else 0)\n", "datapath = \"{}/data\".format(h5path)\n", "print(\"Preview is from {}\".format(in_files))" @@ -664,6 +677,7 @@ "# We obtain a histogram for each module, according to its position defined\n", "# in the coord_list.\n", "from scipy.stats import binned_statistic_2d\n", + "\n", "hs = []\n", "bins_nums = []\n", "edges = []\n", diff --git a/notebooks/LPD/LPD_FlatField_Radial_per_pixel_CI_NBC.ipynb b/notebooks/LPD/LPD_FlatField_Radial_per_pixel_CI_NBC.ipynb index 5eeebf141753a5147c9ff5650073b77a4100e9d1..33522e672c31ec05bb170c2e27b21e4f7514140f 100644 --- a/notebooks/LPD/LPD_FlatField_Radial_per_pixel_CI_NBC.ipynb +++ b/notebooks/LPD/LPD_FlatField_Radial_per_pixel_CI_NBC.ipynb @@ -52,31 +52,39 @@ }, "outputs": [], "source": [ - "\n", "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "# make sure a cluster is running with ipcluster start --n=32, give it a while to start\n", "\n", "import os\n", + "\n", "import h5py\n", - "import numpy as np\n", "import matplotlib\n", + "import numpy as np\n", + "\n", "matplotlib.use(\"agg\")\n", "import matplotlib.pyplot as plt\n", + "\n", "%matplotlib inline\n", "\n", "\n", + "from collections import OrderedDict\n", "from datetime import datetime\n", "\n", - "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", - "from cal_tools.tools import (gain_map_files, parse_runs, run_prop_seq_from_path, get_notebook_name,\n", - " get_dir_creation_date, get_constant_from_db)\n", - "from cal_tools.enums import BadPixels\n", - "from cal_tools.plotting import show_overview, plot_badpix_3d, create_constant_overview\n", "import cal_tools.metrology as metro\n", - "\n", - "from collections import OrderedDict\n", + "from cal_tools.enums import BadPixels\n", + "from cal_tools.plotting import create_constant_overview, plot_badpix_3d, show_overview\n", + "from cal_tools.tools import (\n", + " gain_map_files,\n", + " get_constant_from_db,\n", + " get_dir_creation_date,\n", + " get_notebook_name,\n", + " parse_runs,\n", + " run_prop_seq_from_path,\n", + ")\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", "\n", "creation_time = None\n", "if use_dir_creation_date:\n", @@ -122,6 +130,7 @@ "source": [ "# set everything up filewise\n", "from queue import Queue\n", + "\n", "if not os.path.exists(out_folder):\n", " os.makedirs(out_folder)\n", " \n", @@ -155,7 +164,7 @@ " if \"{:05d}.h5\".format(seq) in abs_entry:\n", " file_list.append(os.path.abspath(abs_entry))\n", " \n", - "mapped_files, mod_ids = map_modules_from_files(file_list)\n" + "mapped_files, mod_ids = map_modules_from_files(file_list)" ] }, { @@ -167,8 +176,9 @@ "outputs": [], "source": [ "import copy\n", - "from IPython.display import HTML, display, Markdown, Latex\n", + "\n", "import tabulate\n", + "from IPython.display import HTML, Latex, Markdown, display\n", "\n", "table = []\n", "mfc = copy.copy(mapped_files)\n", @@ -206,7 +216,7 @@ " continue\n", " fout = os.path.abspath(\"{}/{}\".format(in_folder, (os.path.split(fname_in)[-1]).replace(\"RAW\", \"CORR\")))\n", " \n", - " first_files.append((fname_in, fout))\n" + " first_files.append((fname_in, fout))" ] }, { @@ -269,6 +279,7 @@ "outputs": [], "source": [ "import cal_tools.metrology as metro\n", + "\n", "in_files = \"{}/CORR*S{:05d}*.h5\".format(in_folder, sequences[0] if sequences else 0)\n", "datapath = \"INSTRUMENT/FXE_DET_LPD1M-1/DET/{}CH0:xtdf/image/data\"\n", "posarr = metro.positionFileList(in_files, datapath, geometry_file, d_quads, nImages = 100)" @@ -397,7 +408,6 @@ }, "outputs": [], "source": [ - "\n", "positions = []\n", "mn_tiles = []\n", "gn_tiles = []\n", @@ -426,6 +436,7 @@ "source": [ "from matplotlib.colors import LogNorm, PowerNorm\n", "\n", + "\n", "def translateToModuleBL(tilePositions):\n", " tileHeight = 17.7 # mm\n", " # The module origin is the top left corner of the\n", @@ -540,7 +551,7 @@ " \n", " \n", " \n", - " \n" + " " ] }, { @@ -589,6 +600,7 @@ "# We obtain a histogram for each module, according to its position defined\n", "# in the coord_list.\n", "from scipy.stats import binned_statistic_2d\n", + "\n", "hs = []\n", "bins_nums = []\n", "edges = []\n", diff --git a/notebooks/LPD/Mine_RadIntensity_vs_XGM_NBC.ipynb b/notebooks/LPD/Mine_RadIntensity_vs_XGM_NBC.ipynb index ce9c4e4d4b6ba70c5d9ff88d55fd0fd582717795..b2e4b1ff9ed05f556ef7e07b6dba55e66f6a487c 100644 --- a/notebooks/LPD/Mine_RadIntensity_vs_XGM_NBC.ipynb +++ b/notebooks/LPD/Mine_RadIntensity_vs_XGM_NBC.ipynb @@ -39,7 +39,7 @@ "runs = \"69-72\"\n", "method = \"average\" # method to use for evaluation of images: radial, average\n", "\n", - "sequences = [-1] # range allowed\n" + "sequences = [-1] # range allowed" ] }, { @@ -51,8 +51,9 @@ "outputs": [], "source": [ "def create_run_list(proposal_folder, file_prefix, xgm_folder, xgm_prefix, runs):\n", - " from cal_tools.tools import parse_runs\n", " import glob\n", + "\n", + " from cal_tools.tools import parse_runs\n", " in_runs = parse_runs(runs, return_type=int)\n", " runs_to_process = []\n", " for r in in_runs:\n", @@ -80,17 +81,22 @@ "outputs": [], "source": [ "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "import os\n", + "\n", "import h5py\n", - "import numpy as np\n", "import matplotlib\n", + "import numpy as np\n", + "\n", "matplotlib.use(\"agg\")\n", "import matplotlib.pyplot as plt\n", + "\n", "%matplotlib inline\n", "from functools import partial\n", "\n", "from ipyparallel import Client\n", + "\n", "print(\"Connecting to profile {}\".format(cluster_profile))\n", "view = Client(profile=cluster_profile)[:]\n", "view.use_dill()\n", @@ -115,6 +121,7 @@ "def get_sequences(in_folder, run, sequences):\n", " import glob\n", " import re\n", + "\n", " import numpy as np\n", " \n", " sequence_files = glob.glob(\"{}/r{:04d}/*-S*.h5\".format(in_folder, run))\n", @@ -140,11 +147,11 @@ " file_prefix, xgm_prefix, data_path, xgm_path, xgm_path_td, raw_prefix, \n", " geometry_file, d_quads, temp_out_folder, gain_path, \n", " adc_folder, adc_prefix, adc_root, adc_paths, method, sequence):\n", + " import cal_tools.metrology as metro\n", " import h5py\n", " import numpy as np\n", - " import cal_tools.metrology as metro\n", " from scipy.stats import binned_statistic_2d\n", - " \n", + "\n", " # convert the Carthesian coordinates of the detector to polar coordinates\n", " def mod_cart_to_pol(d, dx, dy, filter_by_val=True):\n", " \"\"\" Convert carthesian coords to polar coords\n", diff --git a/notebooks/Tutorial/calversion.ipynb b/notebooks/Tutorial/calversion.ipynb index 80feabac1bdf3489370e8f53453464ad1caf9744..ca40a9d242ce398911e759990d6a410b1fe90039 100644 --- a/notebooks/Tutorial/calversion.ipynb +++ b/notebooks/Tutorial/calversion.ipynb @@ -69,10 +69,11 @@ "outputs": [], "source": [ "import matplotlib\n", + "\n", "%matplotlib inline\n", "\n", - "import numpy as np\n", "import matplotlib.pyplot as plt\n", + "import numpy as np\n", "\n", "# if not using slurm: make sure a cluster is running with \n", "# ipcluster start --n=4 --profile=tutorial\n", @@ -195,6 +196,7 @@ "source": [ "from functools import partial\n", "\n", + "\n", "def parallel_stats(input):\n", " return input.mean(), input.std()\n", "\n", @@ -202,8 +204,7 @@ "results = view.map_sync(p, fake_data)\n", "\n", "p_mean= [ x[0] for x in results ]\n", - "p_std= [ x[1] for x in results ]\n", - "\n" + "p_std= [ x[1] for x in results ]" ] }, { diff --git a/notebooks/Tutorial/startversion.ipynb b/notebooks/Tutorial/startversion.ipynb index 1a5e4042b4eda3bc0aac57bf262752934b2b1b12..0f3d05fc05b24eaa82d8aa9fc638b9efdddf690b 100644 --- a/notebooks/Tutorial/startversion.ipynb +++ b/notebooks/Tutorial/startversion.ipynb @@ -16,10 +16,11 @@ "outputs": [], "source": [ "import matplotlib\n", + "\n", "%matplotlib inline\n", "\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt" + "import matplotlib.pyplot as plt\n", + "import numpy as np" ] }, { diff --git a/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb b/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb index 8270ef2e5deb6c40bcc55ad394c2a9f0b28e0773..89ea1f460e2b16e56cbe860f328686722c901af2 100644 --- a/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb +++ b/notebooks/ePix100/Characterize_Darks_ePix100_NBC.ipynb @@ -45,7 +45,7 @@ "bias_voltage = 200 # bias voltage\n", "in_vacuum = False # detector operated in vacuum\n", "fix_temperature = 290. # fix temperature to this value\n", - "operation_mode = '' # Detector operation mode, optional\n" + "operation_mode = '' # Detector operation mode, optional" ] }, { @@ -56,27 +56,36 @@ "source": [ "import os\n", "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "import h5py\n", - "from IPython.display import display, Markdown, Latex\n", "import matplotlib.pyplot as plt\n", + "from IPython.display import Latex, Markdown, display\n", + "\n", "%matplotlib inline\n", "import numpy as np\n", - "\n", - "from cal_tools.tools import (get_dir_creation_date, get_pdu_from_db,\n", - " get_random_db_interface, get_report,\n", - " save_const_to_h5, send_to_db)\n", - "from iCalibrationDB import Constants, Conditions, Detectors, Versions\n", + "from cal_tools.tools import (\n", + " get_dir_creation_date,\n", + " get_pdu_from_db,\n", + " get_random_db_interface,\n", + " get_report,\n", + " save_const_to_h5,\n", + " send_to_db,\n", + ")\n", + "from iCalibrationDB import Conditions, Constants, Detectors, Versions\n", "from iCalibrationDB.detectors import DetectorTypes\n", "from XFELDetAna.util import env\n", + "\n", "env.iprofile = cluster_profile\n", - "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna import xfelpyanatools as xana\n", + "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n", "from XFELDetAna.plotting.util import prettyPlotting\n", + "\n", "prettyPlotting = True\n", "import XFELDetAna.xfelprofiler as xprof\n", + "\n", "profiler = xprof.Profiler()\n", "profiler.disable()\n", "from XFELDetAna.xfelreaders import ChunkReader\n", @@ -164,7 +173,7 @@ " nImages, chunkSize,\n", " path=h5path,\n", " pixels_x=sensorSize[0],\n", - " pixels_y=sensorSize[1], )\n" + " pixels_y=sensorSize[1], )" ] }, { @@ -179,7 +188,7 @@ "histCalRaw = xcal.HistogramCalculator(sensorSize, bins=1000,\n", " range=[0, 10000], parallel=False,\n", " memoryCells=memoryCells,\n", - " cores=cpuCores, blockSize=blockSize)\n" + " cores=cpuCores, blockSize=blockSize)" ] }, { @@ -199,7 +208,7 @@ "constant_maps['Noise'] = noiseCal.get() #Produce noise map\n", "\n", "noiseCal.reset() #Reset noise calculator\n", - "print(\"Initial maps were created\")\n" + "print(\"Initial maps were created\")" ] }, { @@ -249,7 +258,7 @@ " x_label='Columns', y_label='Rows',\n", " lut_label='Noise (ADU)',\n", " x_range=(0, y),\n", - " y_range=(0, x), vmax=2 * np.mean(constant_maps['Noise']))\n" + " y_range=(0, x), vmax=2 * np.mean(constant_maps['Noise']))" ] }, { diff --git a/notebooks/ePix100/Correction_ePix100_NBC.ipynb b/notebooks/ePix100/Correction_ePix100_NBC.ipynb index 2c4fd8da983e9f9f7476a63995bba52221066a8b..083e048249c03e15a6ea821b4e0601766dcc361a 100644 --- a/notebooks/ePix100/Correction_ePix100_NBC.ipynb +++ b/notebooks/ePix100/Correction_ePix100_NBC.ipynb @@ -58,7 +58,7 @@ " \n", "def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):\n", " from xfel_calibrate.calibrate import balance_sequences as bs\n", - " return bs(in_folder, run, sequences, sequences_per_node, karabo_da)\n" + " return bs(in_folder, run, sequences, sequences_per_node, karabo_da)" ] }, { @@ -77,27 +77,29 @@ "profiler = xprof.Profiler()\n", "profiler.disable()\n", "from XFELDetAna.util import env\n", + "\n", "env.iprofile = cluster_profile\n", "\n", "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", - "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna import xfelpyanatools as xana\n", + "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna.plotting.util import prettyPlotting\n", - "prettyPlotting=True\n", - "from XFELDetAna.xfelreaders import ChunkReader\n", - "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n", "\n", - "import numpy as np\n", - "import h5py\n", - "import time\n", + "prettyPlotting=True\n", "import copy\n", "import os\n", + "import time\n", "\n", - "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", + "import h5py\n", + "import numpy as np\n", + "from cal_tools.tools import get_constant_from_db, get_dir_creation_date\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", "from iCalibrationDB.detectors import DetectorTypes\n", - "from cal_tools.tools import get_dir_creation_date, get_constant_from_db\n", + "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n", + "from XFELDetAna.xfelreaders import ChunkReader\n", "\n", "%matplotlib inline\n", "\n", @@ -139,6 +141,7 @@ "print(\"Data is output to: {}\".format(out_folder))\n", "\n", "import datetime\n", + "\n", "creation_time = None\n", "if use_dir_creation_date:\n", " creation_time = get_dir_creation_date(in_folder, run)\n", @@ -182,7 +185,7 @@ "if not os.path.exists(out_folder):\n", " os.makedirs(out_folder)\n", "elif not overwrite:\n", - " raise AttributeError(\"Output path exists! Exiting\") \n" + " raise AttributeError(\"Output path exists! Exiting\") " ] }, { @@ -234,8 +237,9 @@ }, "outputs": [], "source": [ - "from IPython.display import HTML, display, Markdown, Latex\n", "import tabulate\n", + "from IPython.display import HTML, Latex, Markdown, display\n", + "\n", "print(\"Processing a total of {} sequence files\".format(total_sequences))\n", "table = []\n", "\n", @@ -336,7 +340,7 @@ " gainMap = np.ones(sensorSize, np.float32)\n", "\n", "else:\n", - " gainMap = np.ones(sensorSize, np.float32)\n" + " gainMap = np.ones(sensorSize, np.float32)" ] }, { @@ -366,8 +370,7 @@ " parallel=run_parallel,\n", " cores=cpuCores,\n", " blockSize=blockSize,\n", - " gains=None)\n", - "\n" + " gains=None)" ] }, { @@ -388,7 +391,7 @@ " range=[-50, 1000], parallel=run_parallel,\n", " nCells=memoryCells, \n", " cores=cpuCores,\n", - " blockSize=blockSize)\n" + " blockSize=blockSize)" ] }, { @@ -457,7 +460,7 @@ " range=[-50, 1000], parallel=run_parallel,\n", " nCells=memoryCells, \n", " cores=cpuCores,\n", - " blockSize=blockSize)\n" + " blockSize=blockSize)" ] }, { diff --git a/notebooks/ePix10K/Characterize_Darks_ePix10K_NBC.ipynb b/notebooks/ePix10K/Characterize_Darks_ePix10K_NBC.ipynb index 9023752ac105dd3f9b985e7c638edf9f586aebbe..7929498d2fdbe58afcb6d873e810cbae36e30c97 100644 --- a/notebooks/ePix10K/Characterize_Darks_ePix10K_NBC.ipynb +++ b/notebooks/ePix10K/Characterize_Darks_ePix10K_NBC.ipynb @@ -45,7 +45,7 @@ "bias_voltage = 200 # bias voltage\n", "in_vacuum = False # detector operated in vacuum\n", "fix_temperature = 290. # fix temperature to this value\n", - "operation_mode = '' # Detector operation mode, optional\n" + "operation_mode = '' # Detector operation mode, optional" ] }, { @@ -55,27 +55,36 @@ "outputs": [], "source": [ "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "import os\n", "\n", "import h5py\n", "import matplotlib.pyplot as plt\n", + "\n", "%matplotlib inline\n", "import numpy as np\n", - "\n", - "from cal_tools.tools import (get_dir_creation_date, get_pdu_from_db,\n", - " get_random_db_interface, get_report,\n", - " save_const_to_h5, send_to_db)\n", - "from iCalibrationDB import Constants, Conditions, Detectors, Versions\n", + "from cal_tools.tools import (\n", + " get_dir_creation_date,\n", + " get_pdu_from_db,\n", + " get_random_db_interface,\n", + " get_report,\n", + " save_const_to_h5,\n", + " send_to_db,\n", + ")\n", + "from iCalibrationDB import Conditions, Constants, Detectors, Versions\n", "from iCalibrationDB.detectors import DetectorTypes\n", "from XFELDetAna import xfelpyanatools as xana\n", "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna.plotting.util import prettyPlotting\n", + "\n", "prettyPlotting = True\n", "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n", "from XFELDetAna.util import env\n", + "\n", "env.iprofile = cluster_profile\n", "import XFELDetAna.xfelprofiler as xprof\n", + "\n", "profiler = xprof.Profiler()\n", "profiler.disable()\n", "from XFELDetAna.xfelreaders import ChunkReader\n", @@ -88,7 +97,7 @@ " if limit == 0:\n", " return nImages\n", " else:\n", - " return min(nImages, limit)\n" + " return min(nImages, limit)" ] }, { @@ -115,7 +124,7 @@ "print(\"HDF5 path: {}\".format(h5path))\n", "if use_dir_creation_date:\n", " creation_time = get_dir_creation_date(in_folder, run)\n", - " print(\"Using {} as creation time\".format(creation_time.isoformat()))\n" + " print(\"Using {} as creation time\".format(creation_time.isoformat()))" ] }, { @@ -167,7 +176,7 @@ " nImages, chunkSize,\n", " path=h5path,\n", " pixels_x=sensorSize[0],\n", - " pixels_y=sensorSize[1], )\n" + " pixels_y=sensorSize[1], )" ] }, { @@ -182,7 +191,7 @@ "histCalRaw = xcal.HistogramCalculator(sensorSize, bins=1000,\n", " range=[0, 10000], parallel=False,\n", " memoryCells=memoryCells,\n", - " cores=cpuCores, blockSize=blockSize)\n" + " cores=cpuCores, blockSize=blockSize)" ] }, { @@ -203,7 +212,7 @@ "constant_maps['Noise'] = noiseCal.get() #Produce noise map\n", "\n", "noiseCal.reset() #Reset noise calculator\n", - "print(\"Initial maps were created\")\n" + "print(\"Initial maps were created\")" ] }, { @@ -253,7 +262,7 @@ " x_label='Columns', y_label='Rows',\n", " lut_label='Noise (ADU)',\n", " x_range=(0, y),\n", - " y_range=(0, x), vmax=2 * np.mean(constant_maps['Noise']))\n" + " y_range=(0, x), vmax=2 * np.mean(constant_maps['Noise']))" ] }, { diff --git a/notebooks/ePix10K/Correction_ePix10K_NBC.ipynb b/notebooks/ePix10K/Correction_ePix10K_NBC.ipynb index 53646280d7b2bee429531cdff5be19a3ce6213fe..a85e3ae3afca1bb4193deaa4178c8612a001dedf 100644 --- a/notebooks/ePix10K/Correction_ePix10K_NBC.ipynb +++ b/notebooks/ePix10K/Correction_ePix10K_NBC.ipynb @@ -74,27 +74,29 @@ "profiler = xprof.Profiler()\n", "profiler.disable()\n", "from XFELDetAna.util import env\n", + "\n", "env.iprofile = cluster_profile\n", "\n", "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", - "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna import xfelpyanatools as xana\n", + "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna.plotting.util import prettyPlotting\n", - "prettyPlotting=True\n", - "from XFELDetAna.xfelreaders import ChunkReader\n", - "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n", "\n", - "import numpy as np\n", - "import h5py\n", - "import time\n", + "prettyPlotting=True\n", "import copy\n", "import os\n", + "import time\n", "\n", - "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", + "import h5py\n", + "import numpy as np\n", + "from cal_tools.tools import get_constant_from_db, get_dir_creation_date\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", "from iCalibrationDB.detectors import DetectorTypes\n", - "from cal_tools.tools import get_dir_creation_date, get_constant_from_db\n", + "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n", + "from XFELDetAna.xfelreaders import ChunkReader\n", "\n", "%matplotlib inline\n", "\n", @@ -130,6 +132,7 @@ "print(\"Data is output to: {}\".format(out_folder))\n", "\n", "import datetime\n", + "\n", "creation_time = None\n", "if use_dir_creation_date:\n", " creation_time = get_dir_creation_date(in_folder, run)\n", @@ -175,7 +178,7 @@ "if not os.path.exists(out_folder):\n", " os.makedirs(out_folder)\n", "elif not overwrite:\n", - " raise AttributeError(\"Output path exists! Exiting\") \n" + " raise AttributeError(\"Output path exists! Exiting\") " ] }, { @@ -227,8 +230,9 @@ }, "outputs": [], "source": [ - "from IPython.display import HTML, display, Markdown, Latex\n", "import tabulate\n", + "from IPython.display import HTML, Latex, Markdown, display\n", + "\n", "print(\"Processing a total of {} sequence files\".format(total_sequences))\n", "table = []\n", "\n", @@ -328,7 +332,7 @@ " nCells = memoryCells, \n", " cores=cpuCores, gains=None,\n", " blockSize=blockSize,\n", - " parallel=run_parallel)\n" + " parallel=run_parallel)" ] }, { @@ -349,7 +353,7 @@ " range=[-50, 1000], parallel=run_parallel,\n", " nCells=memoryCells, \n", " cores=cpuCores,\n", - " blockSize=blockSize)\n" + " blockSize=blockSize)" ] }, { @@ -417,7 +421,7 @@ " range=[-50, 1000], parallel=run_parallel,\n", " nCells=memoryCells, \n", " cores=cpuCores,\n", - " blockSize=blockSize)\n" + " blockSize=blockSize)" ] }, { diff --git a/notebooks/generic/DB_Constants_to_HDF5_NBC.ipynb b/notebooks/generic/DB_Constants_to_HDF5_NBC.ipynb index c6f0b34783e6a50460ec8d8a6b4dda1f1c327cd3..78522d66048689388a5e99d544f8873986d8df06 100644 --- a/notebooks/generic/DB_Constants_to_HDF5_NBC.ipynb +++ b/notebooks/generic/DB_Constants_to_HDF5_NBC.ipynb @@ -55,14 +55,16 @@ "source": [ "import copy\n", "import datetime\n", - "import h5py\n", "import inspect\n", "\n", - "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", + "import h5py\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", + "\n", "\n", "def extend_parms(detector_instance):\n", - " from iCalibrationDB import Conditions\n", " import inspect\n", + "\n", + " from iCalibrationDB import Conditions\n", " existing = set()\n", " def extract_parms(cls):\n", " args, varargs, varkw, defaults = inspect.getargspec(cls.__init__)\n", diff --git a/notebooks/generic/Interpolate_Constants.ipynb b/notebooks/generic/Interpolate_Constants.ipynb index a1fa814b03eb1b3303540e16c2f7feb2251c3ef7..d3c46c223ddbffb6ab6d5fffe28f6e84be5b16e6 100644 --- a/notebooks/generic/Interpolate_Constants.ipynb +++ b/notebooks/generic/Interpolate_Constants.ipynb @@ -65,18 +65,22 @@ "source": [ "import copy\n", "import datetime\n", - "import h5py\n", "import inspect\n", + "\n", + "import h5py\n", + "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from cal_tools.enums import BadPixels\n", - "import matplotlib.pyplot as plt\n", + "\n", "%matplotlib inline\n", "\n", - "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", + "\n", "\n", "def extend_parms(detector_instance):\n", - " from iCalibrationDB import Conditions\n", " import inspect\n", + "\n", + " from iCalibrationDB import Conditions\n", " existing = set()\n", " def extract_parms(cls):\n", " args, varargs, varkw, defaults = inspect.getargspec(cls.__init__)\n", diff --git a/notebooks/generic/Interpolate_Constants_NBC.ipynb b/notebooks/generic/Interpolate_Constants_NBC.ipynb index 7ac1b8c4ddd0753c01550b0337d8232d51d400bb..203a7a8528d8504051690ff5fce73da81a6405fa 100644 --- a/notebooks/generic/Interpolate_Constants_NBC.ipynb +++ b/notebooks/generic/Interpolate_Constants_NBC.ipynb @@ -61,16 +61,18 @@ "source": [ "import copy\n", "import datetime\n", - "import h5py\n", "import inspect\n", + "\n", + "import h5py\n", "import numpy as np\n", "from cal_tools.enums import BadPixels\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", "\n", - "from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions\n", "\n", "def extend_parms(detector_instance):\n", - " from iCalibrationDB import Conditions\n", " import inspect\n", + "\n", + " from iCalibrationDB import Conditions\n", " existing = set()\n", " def extract_parms(cls):\n", " args, varargs, varkw, defaults = inspect.getargspec(cls.__init__)\n", diff --git a/notebooks/generic/PlotFromCalDB_NBC.ipynb b/notebooks/generic/PlotFromCalDB_NBC.ipynb index 8240ddf2f6d95173151f0fec4d283d5da27e9cde..45c18e7b2a52bca0b14243eabd4be0d92b6c8548 100644 --- a/notebooks/generic/PlotFromCalDB_NBC.ipynb +++ b/notebooks/generic/PlotFromCalDB_NBC.ipynb @@ -66,20 +66,28 @@ "source": [ "import copy\n", "import datetime\n", - "import dateutil.parser\n", - "import numpy as np\n", "import os\n", "import sys\n", "import warnings\n", + "\n", + "import dateutil.parser\n", + "import numpy as np\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "import matplotlib.pyplot as plt\n", - "\n", - "from iCalibrationDB import Constants, Conditions, Detectors, ConstantMetaData\n", + "from cal_tools.ana_tools import (\n", + " HMType,\n", + " IMType,\n", + " combine_constants,\n", + " combine_lists,\n", + " get_range,\n", + " hm_combine,\n", + " load_data_from_hdf5,\n", + " save_dict_to_hdf5,\n", + ")\n", "from cal_tools.tools import get_from_db, get_random_db_interface\n", - "from cal_tools.ana_tools import (save_dict_to_hdf5, load_data_from_hdf5, \n", - " HMType, IMType, hm_combine, combine_constants,\n", - " combine_lists, get_range)" + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors" ] }, { @@ -656,7 +664,7 @@ " 'MeanBP': ['dataBP', 'Good pixels only', 'Mean over pixels'],\n", " 'NBP': ['nBP', '', 'Fraction of BP'],\n", " 'stdBP': ['dataBPStd', 'Good pixels only', '$\\sigma$ over pixels'],\n", - "}\n" + "}" ] }, { @@ -847,7 +855,7 @@ " plt.ylabel('{}, {} {}'.format(const[0], keys[key][2], unit)) \n", " plt.legend(loc='best guess')\n", " plt.title(title)\n", - " fig.savefig(fname)\n" + " fig.savefig(fname)" ] } ], diff --git a/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb b/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb index 8d6d6e884b1bfe342e963782e9a51f30feaabe7a..21215acfbe46ca594a091b1793fea7fd21e756a4 100644 --- a/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb +++ b/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb @@ -48,12 +48,17 @@ "outputs": [], "source": [ "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "import numpy as np\n", - "\n", - "from cal_tools.ana_tools import (load_data_from_hdf5, \n", - " HMType, IMType, multi_union,\n", - " hm_combine, get_range)" + "from cal_tools.ana_tools import (\n", + " HMType,\n", + " IMType,\n", + " get_range,\n", + " hm_combine,\n", + " load_data_from_hdf5,\n", + " multi_union,\n", + ")" ] }, { @@ -110,7 +115,7 @@ " 'stdBP': ['dataBPStd', 'Good pixels only', '$\\sigma$ over pixels'],\n", " 'stdASIC': ['', '', '$\\sigma$ over ASICs'],\n", " 'stdCell': ['', '', '$\\sigma$ over Cells'],\n", - "}\n" + "}" ] }, { @@ -246,7 +251,7 @@ " fname='{}/{}_all_g{}_{}.png'.format(\n", " out_folder, const[0], gain, key),\n", " vmin=vmin, vmax=vmax,\n", - " pad=[0.125, 0.151, 0.12, 0.17], htype=htype)\n" + " pad=[0.125, 0.151, 0.12, 0.17], htype=htype)" ] } ], diff --git a/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb b/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb index d82f8d52bdf243615f014900b63b22c1ba6597b3..d64e6f485787f0be3cd0f28d9e9b119e97a2dc73 100644 --- a/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb +++ b/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb @@ -21,27 +21,31 @@ "metadata": {}, "outputs": [], "source": [ - "from collections import OrderedDict\n", "import copy\n", - "from datetime import datetime\n", "import os\n", "import warnings\n", + "from collections import OrderedDict\n", + "from datetime import datetime\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "import glob\n", + "\n", "import h5py\n", - "from IPython.display import display, Markdown, Latex\n", - "import numpy as np\n", "import matplotlib\n", + "import numpy as np\n", + "from IPython.display import Latex, Markdown, display\n", + "\n", "matplotlib.use(\"agg\")\n", "import matplotlib.gridspec as gridspec\n", "import matplotlib.patches as patches\n", "import matplotlib.pyplot as plt\n", + "\n", "%matplotlib inline\n", + "import extra_geom\n", "import tabulate\n", "from cal_tools.ana_tools import get_range\n", "from cal_tools.plotting import show_processed_modules\n", - "import extra_geom\n", "from iCalibrationDB import Detectors\n", "from XFELDetAna.plotting.heatmap import heatmapPlot\n", "from XFELDetAna.plotting.simpleplot import simplePlot" diff --git a/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb b/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb index d1d59f69a31ad596e68135872f2d1f96964701a0..b23ef32bfcfde18bba57315e5f93fe120e7b07df 100644 --- a/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb +++ b/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb @@ -70,7 +70,7 @@ "\n", "run_parallel = True # for parallel computation\n", "cpuCores = 40 # specifies the number of running cpu cores\n", - "operation_mode = '' # Detector operation mode, optional\n" + "operation_mode = '' # Detector operation mode, optional" ] }, { @@ -84,37 +84,46 @@ }, "outputs": [], "source": [ - "import os\n", "import copy\n", "import datetime\n", + "import os\n", "import warnings\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "import h5py\n", - "import numpy as np\n", "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "from prettytable import PrettyTable\n", - "from IPython.display import display, Markdown\n", + "import numpy as np\n", "\n", + "%matplotlib inline\n", + "import XFELDetAna.xfelprofiler as xprof\n", "from cal_tools.enums import BadPixels\n", - "from cal_tools.pnccdlib import extract_slow_data, VALID_GAINS\n", - "from cal_tools.tools import (get_dir_creation_date, get_pdu_from_db,\n", - " get_random_db_interface, get_report, \n", - " save_const_to_h5, send_to_db)\n", - "from iCalibrationDB import (Constants, Conditions, Detectors, Versions)\n", + "from cal_tools.pnccdlib import VALID_GAINS, extract_slow_data\n", + "from cal_tools.tools import (\n", + " get_dir_creation_date,\n", + " get_pdu_from_db,\n", + " get_random_db_interface,\n", + " get_report,\n", + " save_const_to_h5,\n", + " send_to_db,\n", + ")\n", + "from iCalibrationDB import Conditions, Constants, Detectors, Versions\n", "from iCalibrationDB.detectors import DetectorTypes\n", - "import XFELDetAna.xfelprofiler as xprof\n", + "from IPython.display import Markdown, display\n", + "from prettytable import PrettyTable\n", + "\n", "profiler = xprof.Profiler()\n", "profiler.disable()\n", "from XFELDetAna.util import env\n", + "\n", "env.iprofile = cluster_profile\n", - "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna import xfelpyanatools as xana\n", + "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna.plotting.util import prettyPlotting\n", + "\n", "prettyPlotting=True\n", - "from XFELDetAna.xfelreaders import ChunkReader\n", - "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5" + "from XFELDetAna.detectors.fastccd import readerh5 as fastccdreaderh5\n", + "from XFELDetAna.xfelreaders import ChunkReader" ] }, { diff --git a/notebooks/pnCCD/Characterize_pnCCD_Gain.ipynb b/notebooks/pnCCD/Characterize_pnCCD_Gain.ipynb index f76e5d7058da86af23a9e7c8adcfbace38f5e238..1c300edaf15236abf7d7579d0eef23c4038e3ee1 100644 --- a/notebooks/pnCCD/Characterize_pnCCD_Gain.ipynb +++ b/notebooks/pnCCD/Characterize_pnCCD_Gain.ipynb @@ -81,39 +81,48 @@ "source": [ "import copy\n", "import datetime\n", - "from datetime import timedelta\n", "import glob\n", "import os\n", "import traceback\n", "import warnings\n", + "from datetime import timedelta\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "from functools import partial\n", + "\n", "import h5py\n", "import iminuit as im\n", - "from iminuit import Minuit\n", - "from IPython.display import display, Markdown\n", "import matplotlib\n", + "from iminuit import Minuit\n", + "from IPython.display import Markdown, display\n", + "\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", - "from mpl_toolkits.axes_grid1 import ImageGrid, AxesGrid\n", "import numpy as np\n", + "import XFELDetAna.xfelprofiler as xprof\n", + "from cal_tools.pnccdlib import VALID_GAINS, extract_slow_data\n", + "from cal_tools.tools import (\n", + " get_dir_creation_date,\n", + " get_pdu_from_db,\n", + " get_report,\n", + " save_const_to_h5,\n", + " send_to_db,\n", + ")\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", + "from iCalibrationDB.detectors import DetectorTypes\n", + "from mpl_toolkits.axes_grid1 import AxesGrid, ImageGrid\n", "from prettytable import PrettyTable\n", "\n", - "from cal_tools.pnccdlib import extract_slow_data, VALID_GAINS\n", - "from cal_tools.tools import (get_dir_creation_date, get_pdu_from_db,\n", - " get_report, save_const_to_h5, send_to_db)\n", - "from iCalibrationDB import (Conditions, ConstantMetaData,\n", - " Constants, Detectors, Versions)\n", - "from iCalibrationDB.detectors import DetectorTypes\n", - "import XFELDetAna.xfelprofiler as xprof\n", "profiler = xprof.Profiler()\n", "profiler.disable()\n", "from XFELDetAna.util import env\n", + "\n", "env.iprofile = cluster_profile\n", - "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna import xfelpyanatools as xana\n", + "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna.plotting.util import prettyPlotting\n", + "\n", "prettyPlotting=True\n", "\n", "if sequences[0] == -1:\n", diff --git a/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb b/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb index 1f206f73f61493e04264ed614faf9befa0d32d4e..9bbaf925b071be253560c81f4ebae5ebce3b87cb 100644 --- a/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb +++ b/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb @@ -105,38 +105,43 @@ "source": [ "import copy\n", "import datetime\n", - "from datetime import timedelta\n", "import glob\n", "import os\n", "import time\n", "import traceback\n", - "from typing import Tuple\n", "import warnings\n", + "from datetime import timedelta\n", + "from typing import Tuple\n", + "\n", "warnings.filterwarnings('ignore')\n", "\n", "import h5py\n", - "from IPython.display import display, Markdown\n", - "from iminuit import Minuit\n", "import matplotlib.pyplot as plt\n", + "from iminuit import Minuit\n", + "from IPython.display import Markdown, display\n", + "\n", "%matplotlib inline\n", "import numpy as np\n", + "import XFELDetAna.xfelprofiler as xprof\n", + "from cal_tools.pnccdlib import VALID_GAINS, extract_slow_data\n", + "from cal_tools.tools import (\n", + " get_constant_from_db_and_time,\n", + " get_dir_creation_date,\n", + " get_random_db_interface,\n", + ")\n", + "from iCalibrationDB import Conditions, ConstantMetaData, Constants, Detectors, Versions\n", + "from iCalibrationDB.detectors import DetectorTypes\n", "from prettytable import PrettyTable\n", "\n", - "from cal_tools.pnccdlib import extract_slow_data, VALID_GAINS\n", - "from cal_tools.tools import (get_constant_from_db_and_time,\n", - " get_dir_creation_date,\n", - " get_random_db_interface)\n", - "from iCalibrationDB import (Conditions, ConstantMetaData,\n", - " Constants, Detectors, Versions)\n", - "from iCalibrationDB.detectors import DetectorTypes\n", - "import XFELDetAna.xfelprofiler as xprof\n", "profiler = xprof.Profiler()\n", "profiler.disable()\n", "from XFELDetAna.util import env\n", + "\n", "env.iprofile = cluster_profile\n", - "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna import xfelpyanatools as xana\n", + "from XFELDetAna import xfelpycaltools as xcal\n", "from XFELDetAna.plotting.util import prettyPlotting\n", + "\n", "prettyPlotting=True\n", "\n", "\n", diff --git a/pyproject.toml b/pyproject.toml index dc67ef6f76d0b6b251eba4eeed85b7b7e2c8da05..caca0f78278c771d34a230c10378041a35644366 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,2 +1,5 @@ [build-system] requires = ["cython==0.29.21", "numpy==1.19.1", "setuptools>=40.8.0", "wheel"] + +[tool.isort] +profile = "black" diff --git a/tests/test_webservice.py b/tests/test_webservice.py index ff368afe247b878a0e61cafac1c746beae829848..604668a93b4db1365ff1c0773866451bf122373e 100644 --- a/tests/test_webservice.py +++ b/tests/test_webservice.py @@ -6,8 +6,7 @@ import pytest from testpath import MockCommand sys.path.insert(0, Path(__file__).parent / 'webservice') -from webservice.webservice import (check_files, merge, parse_config, - wait_on_transfer) +from webservice.webservice import check_files, merge, parse_config, wait_on_transfer def test_check_files(): diff --git a/webservice/serve_overview.py b/webservice/serve_overview.py index b8c6c5593a8a385a9ed044d9d85031e822f18f4b..a741c6a2071ddee6245b9e3b94044caa95688d31 100644 --- a/webservice/serve_overview.py +++ b/webservice/serve_overview.py @@ -11,8 +11,7 @@ from uuid import uuid4 import yaml from jinja2 import Template -from xfel_calibrate.settings import (free_nodes_cmd, preempt_nodes_cmd, - reservation) +from xfel_calibrate.settings import free_nodes_cmd, preempt_nodes_cmd, reservation class LimitedSizeDict(OrderedDict): diff --git a/webservice/webservice.py b/webservice/webservice.py index 43b0ecc6e6145361dca6d1d767d8135de1a8ec6d..e07b8a42890d1f884682bb61dae5865bea51e793 100644 --- a/webservice/webservice.py +++ b/webservice/webservice.py @@ -14,7 +14,7 @@ import urllib.parse from asyncio import get_event_loop, shield from datetime import datetime from pathlib import Path -from subprocess import run, PIPE +from subprocess import PIPE, run from threading import Thread from typing import Any, Dict, List, Optional diff --git a/xfel_calibrate/calibrate.py b/xfel_calibrate/calibrate.py index c85c1e6b9092ed9d309af83308bd6f2a9a764d22..004193424919dc4339e2fe425a41750b67a3f190 100755 --- a/xfel_calibrate/calibrate.py +++ b/xfel_calibrate/calibrate.py @@ -20,8 +20,7 @@ import nbconvert import nbformat import numpy as np from jinja2 import Template -from nbparameterise import (extract_parameters, parameter_values, - replace_definitions) +from nbparameterise import extract_parameters, parameter_values, replace_definitions from .finalize import tex_escape from .notebooks import notebooks