diff --git a/notebooks/ePix100/Correction_ePix100_NBC.ipynb b/notebooks/ePix100/Correction_ePix100_NBC.ipynb
index 5158373979d84e14ac643d0c5f61dbd6ccaab81c..2f6e0d90b5dc28443fc38b9bf14a361904810ef1 100644
--- a/notebooks/ePix100/Correction_ePix100_NBC.ipynb
+++ b/notebooks/ePix100/Correction_ePix100_NBC.ipynb
@@ -24,15 +24,15 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "in_folder = \"/gpfs/exfel/exp/HED/202202/p003121/raw\" # input folder, required\n",
+    "in_folder = \"/gpfs/exfel/exp/MID/202301/p003346/raw\" # input folder, required\n",
     "out_folder = \"\"  # output folder, required\n",
     "metadata_folder = \"\"  # Directory containing calibration_metadata.yml when run by xfel-calibrate\n",
     "sequences = [-1]  # sequences to correct, set to -1 for all, range allowed\n",
     "sequences_per_node = 1  # number of sequence files per cluster node if run as slurm job, set to 0 to not run SLURM parallel\n",
-    "run = 156  # which run to read data from, required\n",
+    "run = 55  # which run to read data from, required\n",
     "\n",
     "# Parameters for accessing the raw data.\n",
-    "karabo_id = \"HED_IA1_EPX100-1\"  # karabo karabo_id\n",
+    "karabo_id = \"MID_EXP_EPIX-1\"  # karabo karabo_id\n",
     "karabo_da = \"EPIX01\"  # data aggregators\n",
     "db_module = \"\"  # module id in the database\n",
     "receiver_template = \"RECEIVER\"  # detector receiver template for accessing raw data files\n",
@@ -92,14 +92,16 @@
     "import matplotlib.pyplot as plt\n",
     "from IPython.display import Latex, Markdown, display\n",
     "from extra_data import RunDirectory, H5File\n",
+    "from extra_geom import Epix100Geometry\n",
+    "from mpl_toolkits.axes_grid1 import make_axes_locatable\n",
     "from pathlib import Path\n",
     "\n",
     "import cal_tools.restful_config as rest_cfg\n",
-    "from XFELDetAna import xfelpyanatools as xana\n",
     "from XFELDetAna import xfelpycaltools as xcal\n",
     "from cal_tools.calcat_interface import EPIX100_CalibrationData\n",
     "from cal_tools.epix100 import epix100lib\n",
     "from cal_tools.files import DataFile\n",
+    "from cal_tools.restful_config import restful_config\n",
     "from cal_tools.tools import (\n",
     "    calcat_creation_time,\n",
     "    write_constants_fragment,\n",
@@ -110,6 +112,7 @@
     "\n",
     "prettyPlotting = True\n",
     "\n",
+    "\n",
     "%matplotlib inline"
    ]
   },
@@ -134,6 +137,8 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "prop_str = in_folder[in_folder.find('/p')+1:in_folder.find('/p')+8]\n",
+    "\n",
     "in_folder = Path(in_folder)\n",
     "out_folder = Path(out_folder)\n",
     "\n",
@@ -250,13 +255,12 @@
    ]
   },
   {
-   "attachments": {},
    "cell_type": "markdown",
    "metadata": {},
    "source": [
     "## Retrieving calibration constants\n",
     "\n",
-    "As a first step, calibration constants have to be loaded."
+    "As a first step, dark maps have to be loaded."
    ]
   },
   {
@@ -321,35 +325,8 @@
     "# Initializing some parameters.\n",
     "hscale = 1\n",
     "stats = True\n",
-    "hrange = np.array([-50, 1000])\n",
-    "nbins = hrange[1] - hrange[0]\n",
-    "commonModeBlockSize = [x//2, y//2]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "histCalOffsetCor = xcal.HistogramCalculator(\n",
-    "    sensorSize,\n",
-    "    bins=nbins,\n",
-    "    range=hrange,\n",
-    "    parallel=run_parallel,\n",
-    "    nCells=memoryCells,\n",
-    "    blockSize=blockSize\n",
-    ")\n",
-    "\n",
-    "# *****************Histogram Calculators****************** #\n",
-    "histCalCor = xcal.HistogramCalculator(\n",
-    "    sensorSize,\n",
-    "    bins=1050,\n",
-    "    range=[-50, 1000],\n",
-    "    parallel=run_parallel,\n",
-    "    nCells=memoryCells,\n",
-    "    blockSize=blockSize\n",
-    ")"
+    "bins = np.arange(-50,1000)\n",
+    "hist = {'O': 0} # dictionary to store histograms"
    ]
   },
   {
@@ -359,14 +336,9 @@
    "outputs": [],
    "source": [
     "if common_mode:\n",
-    "    histCalCMCor = xcal.HistogramCalculator(\n",
-    "        sensorSize,\n",
-    "        bins=nbins,\n",
-    "        range=hrange,\n",
-    "        parallel=run_parallel,\n",
-    "        nCells=memoryCells,\n",
-    "        blockSize=blockSize,\n",
-    "    )\n",
+    "    \n",
+    "    commonModeBlockSize = [x//2, y//8]\n",
+    "    \n",
     "    cmCorrectionB = xcal.CommonModeCorrection(\n",
     "        shape=sensorSize,\n",
     "        blockSize=commonModeBlockSize, \n",
@@ -402,7 +374,9 @@
     "        stats=stats,\n",
     "        minFrac=cm_min_frac,\n",
     "        noiseSigma=cm_noise_sigma,\n",
-    "    )"
+    "    )\n",
+    "    \n",
+    "    hist['CM'] = 0"
    ]
   },
   {
@@ -412,12 +386,11 @@
    "outputs": [],
    "source": [
     "if relative_gain:\n",
-    "    gain_cnst = np.median(const_data[\"RelativeGainEPix100\"])\n",
-    "    hscale = gain_cnst\n",
-    "    plot_unit = 'keV'\n",
-    "    if photon_energy > 0:\n",
-    "        plot_unit = '$\\gamma$'\n",
-    "        hscale /= photon_energy\n",
+    "    \n",
+    "    # gain constant is given by the mode of the gain map \n",
+    "    # because all bad pixels are masked using this value\n",
+    "    _vals,_counts = np.unique(const_data[\"RelativeGainEPix100\"], return_counts=True)\n",
+    "    gain_cnst = _vals[np.argmax(_counts)] \n",
     "    \n",
     "    gainCorrection = xcal.RelativeGainCorrection(\n",
     "        sensorSize,\n",
@@ -427,25 +400,16 @@
     "        blockSize=blockSize,\n",
     "        gains=None,\n",
     "    )\n",
-    "\n",
-    "    histCalRelGainCor = xcal.HistogramCalculator(\n",
-    "        sensorSize,\n",
-    "        bins=nbins,\n",
-    "        range=hrange,\n",
-    "        parallel=run_parallel,\n",
-    "        nCells=memoryCells,\n",
-    "        blockSize=blockSize\n",
-    "    )\n",
+    "    \n",
+    "    hist['RG'] = 0\n",
     "\n",
     "    if absolute_gain:\n",
-    "        histCalAbsGainCor = xcal.HistogramCalculator(\n",
-    "            sensorSize,\n",
-    "            bins=nbins,\n",
-    "            range=hrange*hscale,\n",
-    "            parallel=run_parallel,\n",
-    "            nCells=memoryCells,\n",
-    "            blockSize=blockSize\n",
-    "        )"
+    "        hscale = gain_cnst\n",
+    "        plot_unit = 'keV'\n",
+    "        if photon_energy > 0:\n",
+    "            plot_unit = '$\\gamma$'\n",
+    "            hscale /= photon_energy\n",
+    "        hist['AG'] = 0"
    ]
   },
   {
@@ -467,30 +431,8 @@
     "        blockSize=[x, y],\n",
     "        parallel=run_parallel,\n",
     "    )\n",
-    "    histCalCSCor = xcal.HistogramCalculator(\n",
-    "        sensorSize,\n",
-    "        bins=nbins,\n",
-    "        range=hrange,\n",
-    "        parallel=run_parallel,\n",
-    "        nCells=memoryCells,\n",
-    "        blockSize=blockSize,\n",
-    "    )\n",
-    "    histCalGainCorClusters = xcal.HistogramCalculator(\n",
-    "        sensorSize,\n",
-    "        bins=nbins,\n",
-    "        range=hrange*hscale,\n",
-    "        parallel=run_parallel,\n",
-    "        nCells=memoryCells,\n",
-    "        blockSize=blockSize\n",
-    "    )\n",
-    "    histCalGainCorSingles = xcal.HistogramCalculator(\n",
-    "        sensorSize,\n",
-    "        bins=nbins,\n",
-    "        range=hrange*hscale,\n",
-    "        parallel=run_parallel,\n",
-    "        nCells=memoryCells,\n",
-    "        blockSize=blockSize\n",
-    "    )"
+    "    hist['CS'] = 0\n",
+    "    hist['S'] = 0"
    ]
   },
   {
@@ -511,11 +453,11 @@
     "    d = d[..., np.newaxis].astype(np.float32)\n",
     "    d = np.compress(\n",
     "        np.any(d > 0, axis=(0, 1)), d, axis=2)\n",
-    "    \n",
+    "\n",
     "    # Offset correction.\n",
     "    d -= const_data[\"OffsetEPix100\"]\n",
+    "    hist['O'] += np.histogram(d,bins=bins)[0]\n",
     "\n",
-    "    histCalOffsetCor.fill(d)\n",
     "    # Common Mode correction.\n",
     "    if common_mode:\n",
     "        # Block CM\n",
@@ -524,12 +466,15 @@
     "        d = cmCorrectionR.correct(d)\n",
     "        # COL CM\n",
     "        d = cmCorrectionC.correct(d)\n",
-    "        histCalCMCor.fill(d)\n",
     "\n",
-    "    # relative gain correction.\n",
+    "        hist['CM'] += np.histogram(d,bins=bins)[0]\n",
+    "\n",
+    "\n",
+    "    # Relative gain correction.\n",
     "    if relative_gain:\n",
     "        d = gainCorrection.correct(d)\n",
-    "        histCalRelGainCor.fill(d)\n",
+    "\n",
+    "        hist['RG'] += np.histogram(d,bins=bins)[0]\n",
     "\n",
     "    \"\"\"The gain correction is currently applying\n",
     "    an absolute correction (not a relative correction\n",
@@ -552,34 +497,31 @@
     "        data_clu[index, ...] = np.squeeze(d_clu)\n",
     "        data_patterns[index, ...] = np.squeeze(patterns)\n",
     "\n",
-    "        histCalCSCor.fill(d_clu)\n",
+    "        hist['CS'] += np.histogram(d_clu,bins=bins)[0]\n",
     "\n",
-    "    # absolute gain correction\n",
+    "        d_sing = d_clu[patterns==100] # pattern 100 corresponds to single photons events\n",
+    "        if len(d_sing):\n",
+    "            hist['S'] += np.histogram(d_sing,bins=bins)[0]\n",
+    "\n",
+    "    # Absolute gain correction\n",
     "    # changes data from ADU to keV (or n. of photons)\n",
     "    if absolute_gain:\n",
     "\n",
     "        d = d * gain_cnst\n",
     "        if photon_energy > 0:\n",
     "            d /= photon_energy\n",
-    "        histCalAbsGainCor.fill(d)\n",
+    "\n",
+    "        hist['AG'] += np.histogram(d,bins=bins)[0]\n",
     "\n",
     "        if pattern_classification:\n",
     "            # Modify pattern classification.\n",
     "            d_clu = d_clu * gain_cnst\n",
-    "            \n",
     "            if photon_energy > 0:\n",
     "                d_clu /= photon_energy\n",
     "\n",
     "            data_clu[index, ...] = np.squeeze(d_clu)\n",
     "\n",
-    "            histCalGainCorClusters.fill(d_clu)\n",
-    "            \n",
-    "            d_sing = d_clu[patterns==100] # pattern 100 corresponds to single photons events\n",
-    "            if len(d_sing):\n",
-    "                histCalGainCorSingles.fill(d_sing)\n",
-    "\n",
-    "    data[index, ...] = np.squeeze(d)\n",
-    "    histCalCor.fill(d)"
+    "    data[index, ...] = np.squeeze(d)"
    ]
   },
   {
@@ -712,80 +654,52 @@
     "    exit(0)"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Plot Histograms"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "bins_ADU = bins[:-1]+np.diff(bins)[0]/2\n",
+    "bins_keV = bins_ADU*hscale"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
-    "ho, eo, co, so = histCalCor.get()\n",
-    "\n",
-    "d = [{\n",
-    "    'x': co,\n",
-    "    'y': ho,\n",
-    "    'y_err': np.sqrt(ho[:]),\n",
-    "    'drawstyle': 'steps-mid',\n",
-    "    'errorstyle': 'bars',\n",
-    "    'errorcoarsing': 2,\n",
-    "    'label': 'Total corr.'\n",
-    "}]\n",
-    "\n",
-    "ho, eo, co, so = histCalOffsetCor.get()\n",
-    "\n",
-    "d.append({\n",
-    "    'x': co,\n",
-    "    'y': ho,\n",
-    "    'y_err': np.sqrt(ho[:]),\n",
-    "    'drawstyle': 'steps-mid',\n",
-    "    'errorstyle': 'bars',\n",
-    "    'errorcoarsing': 2,\n",
-    "    'label': 'Offset corr.'\n",
-    "})\n",
+    "# Histogram in ADU\n",
     "\n",
-    "if common_mode:\n",
-    "    ho, eo, co, so = histCalCMCor.get()\n",
-    "    d.append({\n",
-    "        'x': co,\n",
-    "        'y': ho,\n",
-    "        'y_err': np.sqrt(ho[:]),\n",
-    "        'drawstyle': 'steps-mid',\n",
-    "        'errorstyle': 'bars',\n",
-    "        'errorcoarsing': 2,\n",
-    "        'label': 'CM corr.'\n",
-    "    })\n",
-    "    \n",
-    "if relative_gain :\n",
-    "    ho, eo, co, so = histCalRelGainCor.get()\n",
-    "    d.append({\n",
-    "        'x': co,\n",
-    "        'y': ho,\n",
-    "        'y_err': np.sqrt(ho[:]),\n",
-    "        'drawstyle': 'steps-mid',\n",
-    "        'errorstyle': 'bars',\n",
-    "        'errorcoarsing': 2,\n",
-    "        'label': 'Relative gain corr.'\n",
-    "    })\n",
+    "plt.figure(figsize=(12,8))\n",
+    "plt.plot(bins_ADU,hist['O'], label='Offset corr')\n",
     "\n",
+    "if common_mode:\n",
+    "    plt.plot(bins_ADU,hist['CM'], label='CM corr')\n",
+    "if relative_gain:\n",
+    "    plt.plot(bins_ADU,hist['RG'], label='Relative Gain corr')\n",
     "if pattern_classification:\n",
-    "    ho, eo, co, so = histCalCSCor.get()\n",
-    "    d.append({\n",
-    "        'x': co,\n",
-    "        'y': ho,\n",
-    "        'y_err': np.sqrt(ho[:]),\n",
-    "        'drawstyle': 'steps-mid',\n",
-    "        'errorstyle': 'bars',\n",
-    "        'errorcoarsing': 2,\n",
-    "        'label': 'Charge sharing corr.'\n",
-    "    })\n",
-    "\n",
-    "fig = xana.simplePlot(\n",
-    "    d, aspect=1, x_label=f'Energy (ADU)',\n",
-    "    y_label='Number of occurrences', figsize='2col',\n",
-    "    y_log=True, x_range=(-50, 500),\n",
-    "    legend='top-center-frame-2col',\n",
-    ")\n",
-    "plt.title(f'run {run} - {karabo_da}')\n",
-    "plt.grid()"
+    "    plt.plot(bins_ADU[bins_ADU>10],hist['CS'][bins_ADU>10], label='Charge Sharing corr')\n",
+    "    if np.any(hist['S']):\n",
+    "        plt.plot(bins_ADU,hist['S'], label='Singles')\n",
+    "\n",
+    "xtick_step = 50\n",
+    "plt.xlim(bins[0], bins[-1]+1)\n",
+    "plt.xticks(np.arange(bins[0],bins[-1]+2,xtick_step))\n",
+    "plt.xlabel('ADU',fontsize=12)\n",
+    "\n",
+    "plt.yscale('log')\n",
+    "plt.title(f'{karabo_id} | {prop_str}, r{run}', fontsize=14, fontweight='bold')\n",
+    "plt.legend(fontsize=12)\n",
+    "plt.grid(ls=':')"
    ]
   },
   {
@@ -794,54 +708,30 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "if absolute_gain :\n",
-    "    d = []\n",
-    "    ho, eo, co, so = histCalAbsGainCor.get()\n",
-    "    if co is not None:  # avoid adding None array, if calculator is empty.\n",
-    "        d.append({\n",
-    "            'x': co,\n",
-    "            'y': ho,\n",
-    "            'y_err': np.sqrt(ho[:]),\n",
-    "            'drawstyle': 'steps-mid',\n",
-    "            'errorstyle': 'bars',\n",
-    "            'errorcoarsing': 2,\n",
-    "            'label': 'Absolute gain corr.'\n",
-    "        })\n",
+    "# Histogram in keV/number of photons\n",
+    "\n",
+    "if absolute_gain:\n",
+    "    colors = plt.rcParams['axes.prop_cycle'].by_key()['color']\n",
+    "    plt.figure(figsize=(12,8))\n",
     "\n",
+    "    if relative_gain:\n",
+    "        plt.plot(bins_keV,hist['RG'], label='Absolute Gain corr', c=colors[2])\n",
+    "    \n",
     "    if pattern_classification:\n",
-    "        ho, eo, co, so = histCalGainCorClusters.get()\n",
-    "        if co is not None:  # avoid adding None array, if calculator is empty.\n",
-    "            d.append({\n",
-    "                'x': co,\n",
-    "                'y': ho,\n",
-    "                'y_err': np.sqrt(ho[:]),\n",
-    "                'drawstyle': 'steps-mid',\n",
-    "                'errorstyle': 'bars',\n",
-    "                'errorcoarsing': 2,\n",
-    "                'label': 'Charge sharing corr.'\n",
-    "            })\n",
-    "        \n",
-    "        ho, eo, co, so = histCalGainCorSingles.get()\n",
-    "        if co is not None:  # avoid adding None array, if calculator is empty.\n",
-    "            d.append({\n",
-    "                'x': co,\n",
-    "                'y': ho,\n",
-    "                'y_err': np.sqrt(ho[:]),\n",
-    "                'drawstyle': 'steps-mid',\n",
-    "                'errorstyle': 'bars',\n",
-    "                'errorcoarsing': 2,\n",
-    "                'label': 'Isolated photons (singles)'\n",
-    "            })\n",
-    "        \n",
-    "    fig = xana.simplePlot(\n",
-    "        d, aspect=1, x_label=f'Energy ({plot_unit})',\n",
-    "        y_label='Number of occurrences', figsize='2col',\n",
-    "        y_log=True, \n",
-    "        x_range=np.array((-50, 500))*hscale,\n",
-    "        legend='top-center-frame-2col',\n",
-    "    )\n",
-    "    plt.grid()\n",
-    "    plt.title(f'run {run} - {karabo_da}')"
+    "        plt.plot(bins_keV[bins_keV>.5],hist['CS'][bins_keV>.5], label='Charge Sharing corr', c=colors[3])\n",
+    "        if np.any(hist['S']):\n",
+    "            plt.plot(bins_keV[bins_keV>.5],hist['S'][bins_keV>.5], label='Singles', c=colors[4])\n",
+    "    \n",
+    "    if photon_energy==0: # if keV instead of #photons\n",
+    "        xtick_step = 5\n",
+    "        plt.xlim(left=-2)\n",
+    "        plt.xticks(np.arange(0,plt.gca().get_xlim()[1],xtick_step))\n",
+    "    plt.xlabel(plot_unit,fontsize=12)\n",
+    "\n",
+    "    plt.yscale('log')\n",
+    "    plt.title(f'{karabo_id} | {prop_str}, r{run}', fontsize=14, fontweight='bold')\n",
+    "    plt.legend(fontsize=12)\n",
+    "    plt.grid(ls=':')"
    ]
   },
   {
@@ -857,15 +747,48 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "step_timer.start()\n",
-    "fig = xana.heatmapPlot(\n",
-    "    np.nanmedian(data, axis=0),\n",
-    "    x_label='Columns', y_label='Rows',\n",
-    "    lut_label=f'Signal ({plot_unit})',\n",
-    "    x_range=(0, y),\n",
-    "    y_range=(0, x),\n",
-    "    vmin=-50, vmax=50)\n",
-    "step_timer.done_step(f'Plotting mean image of {data.shape[0]} trains.')"
+    "geom = Epix100Geometry.from_relative_positions(top=[386.5, 364.5, 0.], bottom=[386.5, -12.5, 0.])\n",
+    "\n",
+    "if pattern_classification:\n",
+    "    plt.subplots(1,2,figsize=(18,18)) if pattern_classification else plt.subplots(1,1,figsize=(9,9))\n",
+    "    ax = plt.subplot(1,2,1)\n",
+    "    ax.set_title(f'Before CS correction',fontsize=12,fontweight='bold');\n",
+    "else:\n",
+    "    plt.subplots(1,1,figsize=(9,9))\n",
+    "    ax = plt.subplot(1,1,1)\n",
+    "    ax.set_title(f'{karabo_id} | {prop_str}, r{run} | Average of {data.shape[0]} trains',fontsize=12,fontweight='bold');\n",
+    "    \n",
+    "# Average image before charge sharing corrcetion\n",
+    "divider = make_axes_locatable(ax)\n",
+    "cax = divider.append_axes('bottom', size='5%', pad=0.5)\n",
+    "\n",
+    "image = data.mean(axis=0)\n",
+    "vmin = max(image.mean()-2*image.std(),0)\n",
+    "vmax = image.mean()+3*image.std()\n",
+    "geom.plot_data(image,\n",
+    "               ax=ax,\n",
+    "               colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'},\n",
+    "               origin='upper',\n",
+    "               vmin=vmin,\n",
+    "               vmax=vmax)\n",
+    "\n",
+    "# Average image after charge sharing corrcetion\n",
+    "if pattern_classification:\n",
+    "\n",
+    "    ax = plt.subplot(1,2,2)\n",
+    "    divider = make_axes_locatable(ax)\n",
+    "    cax = divider.append_axes('bottom', size='5%', pad=0.5)\n",
+    "\n",
+    "    image = data_clu.mean(axis=0)\n",
+    "    geom.plot_data(image,\n",
+    "                   ax=ax,\n",
+    "                   colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'},\n",
+    "                   origin='upper',\n",
+    "                   vmin=vmin,\n",
+    "                   vmax=vmax)\n",
+    "    ax.set_title(f'After CS correction',fontsize=12,fontweight='bold');\n",
+    "\n",
+    "    plt.suptitle(f'{karabo_id} | {prop_str}, r{run} | Average of {data.shape[0]} trains',fontsize=14,fontweight='bold',y=.72);"
    ]
   },
   {
@@ -881,23 +804,56 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "step_timer.start()\n",
-    "fig = xana.heatmapPlot(\n",
-    "    data[0, ...],\n",
-    "    x_label='Columns', y_label='Rows',\n",
-    "    lut_label=f'Signal ({plot_unit})',\n",
-    "    x_range=(0, y),\n",
-    "    y_range=(0, x),\n",
-    "    vmin=-50, vmax=50)\n",
-    "step_timer.done_step(f'Plotting single shot of corrected data.')"
+    "train_idx = -1\n",
+    "\n",
+    "if pattern_classification:\n",
+    "    plt.subplots(1,2,figsize=(18,18)) if pattern_classification else plt.subplots(1,1,figsize=(9,9))\n",
+    "    ax = plt.subplot(1,2,1)\n",
+    "    ax.set_title(f'Before CS correction',fontsize=12,fontweight='bold');\n",
+    "else:\n",
+    "    plt.subplots(1,1,figsize=(9,9))\n",
+    "    ax = plt.subplot(1,1,1)\n",
+    "    ax.set_title(f'{karabo_id} | {prop_str}, r{run} | Single frame',fontsize=12,fontweight='bold');\n",
+    "    \n",
+    "# Average image before charge sharing corrcetion\n",
+    "divider = make_axes_locatable(ax)\n",
+    "cax = divider.append_axes('bottom', size='5%', pad=0.5)\n",
+    "\n",
+    "image = data[train_idx]\n",
+    "vmin = max(image.mean()-2*image.std(),0)\n",
+    "vmax = image.mean()+3*image.std()\n",
+    "geom.plot_data(image,\n",
+    "               ax=ax,\n",
+    "               colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'},\n",
+    "               origin='upper',\n",
+    "               vmin=vmin,\n",
+    "               vmax=vmax)\n",
+    "\n",
+    "# Average image after charge sharing corrcetion\n",
+    "if pattern_classification:\n",
+    "\n",
+    "    ax = plt.subplot(1,2,2)\n",
+    "    divider = make_axes_locatable(ax)\n",
+    "    cax = divider.append_axes('bottom', size='5%', pad=0.5)\n",
+    "\n",
+    "    image = data_clu[train_idx]\n",
+    "    geom.plot_data(image,\n",
+    "                   ax=ax,\n",
+    "                   colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'},\n",
+    "                   origin='upper',\n",
+    "                   vmin=vmin,\n",
+    "                   vmax=vmax)\n",
+    "    ax.set_title(f'After CS correction',fontsize=12,fontweight='bold');\n",
+    "\n",
+    "    plt.suptitle(f'{karabo_id} | {prop_str}, r{run} | Single frame',fontsize=14,fontweight='bold',y=.72);"
    ]
   }
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Python 3",
+   "display_name": "cal_venv",
    "language": "python",
-   "name": "python3"
+   "name": "cal_venv"
   },
   "language_info": {
    "codemirror_mode": {
@@ -909,7 +865,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.12"
+   "version": "3.8.11"
   },
   "latex_envs": {
    "LaTeX_envs_menu_present": true,