diff --git a/cal_tools/cal_tools/agipdlib.py b/cal_tools/cal_tools/agipdlib.py index 176f1dde5e2c8e6e5608c98316afdcdb43655001..4530e5d77cdc83881b4f1228a1df5f4120f18756 100644 --- a/cal_tools/cal_tools/agipdlib.py +++ b/cal_tools/cal_tools/agipdlib.py @@ -59,10 +59,10 @@ def get_acq_rate(fast_paths: Tuple[str, str, int], with h5py.File(slow_data_file, "r") as fin: if slow_data_path in fin: # The acquisition rate value is stored in a 1D array of type - # float. Use the 3rd value, arbitrarily chosen. It's okay to - # loose precision here because the usage is about defining the - # rate for meta-data. - return round(fin[slow_data_path][3], 1) + # float. Use the 3rd value, arbitrarily chosen. + # It is desired to loose precision here because the usage is + # about bucketing the rate for managing meta-data. + return round(float(fin[slow_data_path][3]), 1) # Compute acquisition rate from fast data fast_data_file, karabo_id, module = fast_paths @@ -210,6 +210,8 @@ class AgipdCorrections: self.baseline_corr_noise_threshold = -1000 self.snow_resolution = SnowResolution.INTERPOLATE self.cm_dark_fraction = 0.66 + self.cm_dark_min = -25. + self.cm_dark_max = 25. self.cm_n_itr = 4 self.mg_hard_threshold = 100 self.hg_hard_threshold = 100 @@ -272,8 +274,9 @@ class AgipdCorrections: f = h5py.File(file_name, 'r') group = f[data_path] - valid, first_index, last_index, valid_trains, valid_indices, \ - zero_count = self.get_valid_image_idx(idx_base, f) + (_, first_index, last_index, _, + valid_indices, zero_count) = self.get_valid_image_idx(idx_base, f) + firange = self.gen_valid_range(first_index, last_index, self.max_cells, agipd_base, f, valid_indices) @@ -352,7 +355,8 @@ class AgipdCorrections: arr = data_dict[field][:n_img] kw = {'fletcher32': True} if field in compress_fields: - kw.update(compression='gzip', compression_opts=1, shuffle=True) + kw.update(compression='gzip', compression_opts=1, + shuffle=True) if arr.ndim > 1: kw['chunks'] = (1,) + arr.shape[1:] # 1 chunk = 1 image @@ -374,17 +378,18 @@ class AgipdCorrections: if not self.corr_bools.get("common_mode"): return - + dark_min = self.cm_dark_min + dark_max = self.cm_dark_max fraction = self.cm_dark_fraction n_itr = self.cm_n_itr - + cell_id = self.shared_dict[i_proc]['cellId'] train_id = self.shared_dict[i_proc]['trainId'] n_img = self.shared_dict[i_proc]['nImg'][0] cell_ids = cell_id[train_id == train_id[0]] n_cells = cell_ids.size - data = self.shared_dict[i_proc]['data'][:n_img].reshape(-1, n_cells, 8, - 64, 2, 64) + data = self.shared_dict[i_proc]['data'][:n_img].reshape(-1, n_cells, + 8, 64, 2, 64) # Loop over iterations for i in range(n_itr): @@ -398,7 +403,8 @@ class AgipdCorrections: # Cell common mode cell_cm_sum, cell_cm_count = \ - calgs.sum_and_count_in_range_cell(asic_data, -25., 25.) + calgs.sum_and_count_in_range_cell(asic_data, dark_min, + dark_max) cell_cm = cell_cm_sum / cell_cm_count cell_cm[cell_cm_count < fraction * 32 * 256] = 0 @@ -406,7 +412,8 @@ class AgipdCorrections: # Asics common mode asic_cm_sum, asic_cm_count = \ - calgs.sum_and_count_in_range_asic(asic_data, -25., 25.) + calgs.sum_and_count_in_range_asic(asic_data, dark_min, + dark_max) asic_cm = asic_cm_sum / asic_cm_count asic_cm[asic_cm_count < fraction * 64 * 64] = 0 @@ -523,6 +530,7 @@ class AgipdCorrections: # if not we continue with initial data else: dd = data[i] + sh = 0 # if we have enough pixels in medium or low gain and # correction via hist matching is requested to this now @@ -570,9 +578,12 @@ class AgipdCorrections: data[gain == 1] += mgbc[gain == 1] del mgbc - # Do xray correction if requested + # Do xray correction if requested + # The slopes we have in our constants are already relative + # slopeFF = slopeFFpix/avarege(slopeFFpix) + # To apply them we have to / not * if self.corr_bools.get("xray_corr"): - data *= self.xray_cor[module_idx] + data /= self.xray_cor[module_idx] if self.corr_bools.get('melt_snow'): melt_snowy_pixels(raw_data, data, gain, rgain, @@ -766,8 +777,8 @@ class AgipdCorrections: uq, fidxv, cntsv = np.unique(trains, return_index=True, return_counts=True) - # Validate calculated CORR INDEX contents by checking difference between - # trainId stored in RAW data and trains from + # Validate calculated CORR INDEX contents by checking + # difference between trainId stored in RAW data and trains from train_diff = np.isin(np.array(infile["/INDEX/trainId"]), uq, invert=True) @@ -852,43 +863,38 @@ class AgipdCorrections: to medium gain is used, as no reliable CI data for all memory cells exists of the current AGIPD instances. - Relative gain is derived both from pulse capacitor as well as flat - field data: - - * from the pulse capacitor data we get the relative slopes of a - given pixel's memory cells with respect to all memory cells of that - pixel: - - rpch = m_h / median(m_h) - - where m_h is the high gain slope m of each memory cell of the pixel. + Relative gain is derived both from pulse capacitor as well as low + intensity flat field data, information from flat field data is + needed to 'calibrate' pulse capacitor data, if there is no + available FF data, relative gain for High Gain stage is set to 1: - * we also derive the factor between high and medium gain in a - similar way and scale it to be relative to the pixels memory cells: + * Relative gain for High gain stage - from the FF data we get + the relative slopes of a given pixel and memory cells with + respect to all memory cells and all pixels in the module, + Please note: Current slopesFF avaialble in calibibration + constants are created per pixel only, not per memory cell: - fpc = m_m/m_h - rfpc = fpc/ median(fpc) + rel_high_gain = 1 if only PC data is available + rel_high_gain = rel_slopesFF if FF data is also available - where m_m is the medium gain slope of all memory cells of a given - pixel and m_h is the high gain slope as above + - * finally, we get the relative X-ray gain of all memory cells for a - given pixel from flat field data: + * Relative gain for Medium gain stage: we derive the factor + between high and medium gain using slope information from + fits to the linear part of high and medium gain: - ff = median(m_ff) - ff /= median(ff) + rfpc_high_medium = m_h/m_m - where m_ff is the flat field derived (high gain) slope of all - memory cells of a given pixel. The pixel values are then scaled to - the complete module_idx. Note that the first 32 memory cells are known - to exhibit differing behaviour and are skipped if possible. + where m_h and m_m is the medium gain slope of given memory cells + and pixel and m_h is the high gain slope as above + rel_gain_medium = rel_high_gain * rfpc_high_medium With this data the relative gain for the three gain stages evaluates to: - high gain = ff * rpch - medium gain = ff * rfpc - low gain = medium gain / 4.48 + rel_high gain = 1 or rel_slopesFF + rel_medium gain = rel_high_gain * rfpc_high_medium + rel_low gain = _rel_medium gain * 4.48 :param cons_data: A dictionary for each retrieved constant value. :param module_idx: A module_idx index @@ -925,8 +931,16 @@ class AgipdCorrections: else: xray_cor = np.squeeze(slopesFF[..., 0]) - # relative X-ray correction is normalized by the median of all pixels - xray_cor /= np.nanmedian(xray_cor) + # relative X-ray correction is normalized by the median + # of all pixels + + # TODO: A check is required to know why it is again divided by + # median. If we have relative slopes in the constants + # and (we have!) + # xray cor = (slopeFF/avarege_slopeFF)/avarege_slopeFF. + # It didn't not make sense and was removed. + # xray_cor /= np.nanmedian(xray_cor) + self.xray_cor[module_idx][...] = xray_cor.transpose()[...] # add additional bad pixel information @@ -936,7 +950,7 @@ class AgipdCorrections: slopesPC = cons_data["SlopesPC"].astype(np.float32) - # this will handle some historical data in a different format + # This will handle some historical data in a different format # constant dimension injected first if slopesPC.shape[0] == 10 or slopesPC.shape[0] == 11: slopesPC = np.moveaxis(slopesPC, 0, 3) @@ -951,23 +965,38 @@ class AgipdCorrections: pc_med_m = slopesPC[..., :self.max_cells, 3] pc_med_l = slopesPC[..., :self.max_cells, 4] - # calculate ratio high to medium gain over memory cells + # calculate ratio high to medium gain pc_high_ave = np.nanmean(pc_high_m, axis=(0,1)) pc_med_ave = np.nanmean(pc_med_m, axis=(0,1)) + # ration between HG and MG per pixel per mem cell + # used for rel gain calculation + frac_high_med_pix = pc_high_m / pc_med_m + # avarage ration between HG and MG as a function of + # mem cell (needed for bls_stripes) + # TODO: Per pixel would be more optimal correction frac_high_med = pc_high_ave / pc_med_ave - # calculate additional medium-gain offset md_additional_offset = pc_high_l - pc_med_l * pc_high_m / pc_med_m - # Calculate relative gain - rel_gain[..., 0] = pc_high_m / pc_high_ave - rel_gain[..., 1] = pc_med_m / pc_med_ave * frac_high_med + # Calculate relative gain. If FF constants are available, + # use them for high gain + # if not rel_gain is calculated using PC data only + # if self.corr_bools.get("xray_corr"): + # rel_gain[..., :self.max_cells, 0] /= xray_corr + + # PC data should be 'calibrated with X-ray data, + # if it is not done, it is better to use 1 instead of bias + # the results with PC arteffacts. + # rel_gain[..., 0] = 1./(pc_high_m / pc_high_ave) + + # High-gain (rel_gain[..., 0]) stays the same + rel_gain[..., 1] = rel_gain[..., 0] * frac_high_med_pix rel_gain[..., 2] = rel_gain[..., 1] * 4.48 self.md_additional_offset[module_idx][...] = md_additional_offset.transpose()[...] # noqa self.rel_gain[module_idx][...] = rel_gain[...].transpose() self.frac_high_med[module_idx][...] = frac_high_med - + self.mask[module_idx][...] = bpixels.transpose()[...] return diff --git a/cal_tools/cal_tools/agipdutils.py b/cal_tools/cal_tools/agipdutils.py index daad14eb3a9218c24ecd26febb82483ef591a1cb..c6a7ae4a6c97cb9eccf98281ccdbb2fd502f9e25 100644 --- a/cal_tools/cal_tools/agipdutils.py +++ b/cal_tools/cal_tools/agipdutils.py @@ -141,7 +141,7 @@ def baseline_correct_via_stripe(d, g, m, frac_high_med): if len(idx) < 3: return d, 0 - shift = np.nanmean(dd[idx, :]) + shift = np.nanmedian(dd[idx, :]) d[g == 0] -= shift d[g == 1] -= shift / frac_high_med return d, shift diff --git a/cal_tools/cal_tools/tools.py b/cal_tools/cal_tools/tools.py index 0f46f959ec4433b264c5591f08ed5c1bdeb572a4..5f1170d52d52f63d55ed8a535f24e52d435c1e55 100644 --- a/cal_tools/cal_tools/tools.py +++ b/cal_tools/cal_tools/tools.py @@ -2,8 +2,9 @@ from collections import OrderedDict import datetime from glob import glob import json -from os import environ, listdir, path, stat -from os.path import isfile, splitext +from os import environ, listdir, path +from os.path import isfile +from pathlib import Path from queue import Queue import re from time import sleep @@ -11,6 +12,7 @@ from typing import Optional from urllib.parse import urljoin import dateutil.parser +import h5py import ipykernel from metadata_client.metadata_client import MetadataClient from notebook.notebookapp import list_running_servers @@ -229,47 +231,57 @@ def get_run_info(proposal, run): def get_dir_creation_date(directory: str, run: int, - tsdir: Optional[bool] = False, - verbosity: Optional[int] = 0): + verbosity: Optional[int] = 0) -> datetime.datetime: """ - Return run starting time from the MDC. - If not succeeded, return modification time of oldest file.h5 - in [directory]/[run]04. + Return run start time from MyDC. + If not available from MyMDC, retrieve the data from the dataset's metadata + in [directory]/[run] or, if the dataset is older than 2020, from the + directory's creation time. + + If the data is not available from either source, this function will raise a + ValueError. :param directory: path to directory which contains runs :param run: run number - :param tsdir: to get modification time of [directory]/[run]04. :param verbosity: Level of verbosity (0 - silent) :return: (datetime) modification time + """ + directory = Path(directory) + proposal = int(directory.parent.name[1:]) try: - path_list = list(filter(None, directory.strip('/').split('/'))) - proposal = int(path_list[-2][1:]) run_info = get_run_info(proposal, run) return dateutil.parser.parse(run_info['begin_at']) except Exception as e: if verbosity > 0: print(e) + directory = directory / 'r{:04d}'.format(run) + + # Loop a number of times to catch stale file handle errors, due to + # migration or gpfs sync. ntries = 100 while ntries > 0: try: - if tsdir: - creation_time = stat("{}/r{:04d}".format(directory, run)).st_mtime - else: - rfiles = glob("{}/r{:04d}/*.h5".format(directory, run)) - rfiles.sort(key=path.getmtime) - creation_time = stat(rfiles[0]).st_mtime - - creation_time = datetime.datetime.fromtimestamp(creation_time) - return creation_time - except: # catch stale file handle errors etc and try again + dates = [] + for f in directory.glob('*.h5'): + with h5py.File(f, 'r') as fin: + cdate = fin['METADATA/creationDate'][0].decode() + cdate = datetime.datetime.strptime(cdate, "%Y%m%dT%H%M%SZ") + dates.append(cdate) + return min(dates) + except (IOError, ValueError): ntries -= 1 + except KeyError: # The files are here, but it's an older dataset + return datetime.datetime.fromtimestamp(directory.stat().st_ctime) + + msg = 'Could not get the creation time from the directory' + raise ValueError(msg, directory) def save_const_to_h5(device, constant, condition, data, - file_loc, creation_time, out_folder): + file_loc, creation_time, out_folder): """ Save constant in h5 file with its metadata (e.g. db_module, condition, creation_time) @@ -280,7 +292,7 @@ def save_const_to_h5(device, constant, condition, data, :type constant: iCalibrationDB.know_constants object :param condition: Calibration condition :type condition: iCalibrationDB.know_detector_conditions object - :param data: Constant data to save + :param data: Constant data to save :type data: ndarray :param file_loc: Location of raw data "proposal:{} runs:{} {} {}" :type file_loc: str diff --git a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb index fb7020187e316b6dc56fb1f438d0d7a9a36017b1..0403184c1ab4f4e4a5c78cd32bfa36bb6c63e946 100644 --- a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb +++ b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb @@ -55,12 +55,12 @@ "\n", "# Correction parameters\n", "blc_noise_threshold = 5000 # above this mean signal intensity now baseline correction via noise is attempted\n", - "chunk_size_idim = 1 # chunking size of imaging dimension, adjust if user software is sensitive to this.\n", + "cm_dark_fraction = 0.66 # threshold for fraction of empty pixels to consider module enough dark to perform CM correction\n", + "cm_dark_range = [-50.,30] # range for signal value ADU for pixel to be consider as a dark pixel\n", + "cm_n_itr = 4 # number of iterations for common mode correction\n", "hg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel to high gain\n", "mg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel from low to medium gain\n", "noisy_adc_threshold = 0.25 # threshold to mask complete adc\n", - "cm_dark_fraction = 0.66 # threshold for empty pixels to consider module enough dark to perform CM correction\n", - "cm_n_itr = 4 # number of iterations for common mode correction\n", "\n", "# Correction Booleans\n", "only_offset = False # Apply only Offset correction. if False, Offset is applied by Default. if True, Offset is only applied.\n", @@ -75,19 +75,20 @@ "zero_orange = False # set to 0 very negative and very large values in corrected data\n", "blc_set_min = False # Shift to 0 negative medium gain pixels after offset corr\n", "corr_asic_diag = False # if set, diagonal drop offs on ASICs are correted\n", - "force_hg_if_below = True # set high gain if mg offset subtracted value is below hg_hard_threshold\n", - "force_mg_if_below = True # set medium gain if mg offset subtracted value is below mg_hard_threshold\n", + "force_hg_if_below = False # set high gain if mg offset subtracted value is below hg_hard_threshold\n", + "force_mg_if_below = False # set medium gain if mg offset subtracted value is below mg_hard_threshold\n", "mask_noisy_adc = False # Mask entire ADC if they are noise above a relative threshold\n", - "common_mode = True # Common mode correction\n", + "common_mode = False # Common mode correction\n", "melt_snow = False # Identify (and optionally interpolate) 'snowy' pixels\n", "mask_zero_std = False # Mask pixels with zero standard deviation across train\n", - "low_medium_gap = True # 5% separation in thresholding between low and medium gain\n", + "low_medium_gap = False # 5 sigma separation in thresholding between low and medium gain\n", "\n", "# Paralellization parameters\n", - "sequences_per_node = 2 # number of sequence files per cluster node if run as slurm job, set to 0 to not run SLURM parallel\n", "chunk_size = 1000 # Size of chunk for image-weise correction\n", + "chunk_size_idim = 1 # chunking size of imaging dimension, adjust if user software is sensitive to this.\n", "n_cores_correct = 16 # Number of chunks to be processed in parallel\n", "n_cores_files = 4 # Number of files to be processed in parallel\n", + "sequences_per_node = 2 # number of sequence files per cluster node if run as slurm job, set to 0 to not run SLURM parallel\n", "\n", "def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):\n", " from xfel_calibrate.calibrate import balance_sequences as bs\n", @@ -131,8 +132,13 @@ "matplotlib.use(\"agg\")\n", "%matplotlib inline\n", "import numpy as np\n", + "import seaborn as sns\n", + "sns.set()\n", + "sns.set_context(\"paper\", font_scale=1.4)\n", + "sns.set_style(\"ticks\")\n", "\n", - "from cal_tools.agipdlib import (AgipdCorrections, get_num_cells, get_acq_rate, get_gain_setting)\n", + "from cal_tools.agipdlib import (AgipdCorrections, get_acq_rate,\n", + " get_gain_setting, get_num_cells)\n", "from cal_tools.cython import agipdalgs as calgs\n", "from cal_tools.ana_tools import get_range\n", "from cal_tools.enums import BadPixels\n", @@ -392,6 +398,8 @@ "agipd_corr.hg_hard_threshold = hg_hard_threshold\n", "agipd_corr.mg_hard_threshold = mg_hard_threshold\n", "\n", + "agipd_corr.cm_dark_min = cm_dark_range[0]\n", + "agipd_corr.cm_dark_max = cm_dark_range[1]\n", "agipd_corr.cm_dark_fraction = cm_dark_fraction\n", "agipd_corr.cm_n_itr = cm_n_itr\n", "agipd_corr.noisy_adc_threshold = noisy_adc_threshold\n" @@ -839,7 +847,7 @@ "fig = plt.figure(figsize=(10, 10))\n", "corrected_ave = np.nansum(corrected, axis=(2, 3))\n", "plt.scatter(corrected_ave.flatten()/10**6, blshift.flatten(), s=0.9)\n", - "plt.xlim(-1,1000)\n", + "plt.xlim(-1, 1000)\n", "plt.grid()\n", "plt.xlabel('Illuminated corrected [MADU] ')\n", "_ = plt.ylabel('Estimated baseline shift [ADU]')" @@ -910,7 +918,6 @@ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", "vmin, vmax = get_range(corrected[cell_id_preview], 7, -50)\n", - "#TODO why is this hot fix created?\n", "vmin = - 50\n", "ax = geom.plot_data_fast(corrected[cell_id_preview], ax=ax, cmap=\"jet\", vmin=vmin, vmax=vmax)" ] @@ -929,8 +936,10 @@ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", "vmin, vmax = get_range(corrected[cell_id_preview], 5, -50)\n", - "nb = np.int((vmax+50)/2)\n", - "h = ax.hist(corrected[cell_id_preview].flatten(), bins=nb, range=(-50, vmax), histtype='stepfilled',log=True)\n", + "nbins = np.int((vmax + 50) / 2)\n", + "h = ax.hist(corrected[cell_id_preview].flatten(), \n", + " bins=nbins, range=(-50, vmax), \n", + " histtype='stepfilled', log=True)\n", "_ = plt.xlabel('[ADU]')\n", "_ = plt.ylabel('Counts')\n", "_ = ax.grid()" @@ -960,8 +969,8 @@ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", "data = np.mean(corrected, axis=0)\n", - "vmin, vmax = get_range(data, 5)\n", - "ax = geom.plot_data_fast(data, ax=ax, cmap=\"jet\", vmin=vmin, vmax=vmax)" + "vmin, vmax = get_range(data, 7)\n", + "ax = geom.plot_data_fast(data, ax=ax, cmap=\"jet\", vmin=-50, vmax=vmax)" ] }, { @@ -977,23 +986,23 @@ "source": [ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", - "vmin, vmax = get_range(corrected, 10,-100)\n", + "vmin, vmax = get_range(corrected, 10, -100)\n", "vmax = np.nanmax(corrected)\n", "if vmax > 50000:\n", " vmax=50000\n", - "nb = np.int((vmax+100)/5)\n", - "h = ax.hist(corrected.flatten(), bins=nb,\n", + "nbins = np.int((vmax + 100) / 5)\n", + "h = ax.hist(corrected.flatten(), bins=nbins,\n", " range=(-100, vmax), histtype='step', log=True, label = 'All')\n", - "_ = ax.hist(corrected[gains == 0].flatten(), bins=nb, range=(-100, vmax),\n", + "_ = ax.hist(corrected[gains == 0].flatten(), bins=nbins, range=(-100, vmax),\n", " alpha=0.5, log=True, label='High gain', color='green')\n", - "_ = ax.hist(corrected[gains == 1].flatten(), bins=nb, range=(-100, vmax),\n", + "_ = ax.hist(corrected[gains == 1].flatten(), bins=nbins, range=(-100, vmax),\n", " alpha=0.5, log=True, label='Medium gain', color='red')\n", - "_ = ax.hist(corrected[gains == 2].flatten(), bins=nb,\n", - " range=(-100,vmax), alpha=0.5, log=True, label='Low gain', color='yellow')\n", + "_ = ax.hist(corrected[gains == 2].flatten(), bins=nbins,\n", + " range=(-100, vmax), alpha=0.5, log=True, label='Low gain', color='yellow')\n", "_ = ax.legend()\n", "_ = ax.grid()\n", "_ = plt.xlabel('[ADU]')\n", - "_ = plt.ylabel('Counts')" + "_ = plt.ylabel('Counts')\n" ] }, { diff --git a/tests/test_cal_tools.py b/tests/test_cal_tools.py new file mode 100644 index 0000000000000000000000000000000000000000..865eb90c46705d8cd858eb5530a999cbda2b24e7 --- /dev/null +++ b/tests/test_cal_tools.py @@ -0,0 +1,24 @@ +from datetime import datetime +from pathlib import Path + +import pytest +from cal_tools.tools import get_dir_creation_date + + +def test_dir_creation_date(): + folder = '/gpfs/exfel/exp/DETLAB/202031/p900172/raw' + + date = get_dir_creation_date(folder, 10) + assert isinstance(date, datetime) + assert str(date) == '2020-07-20 10:39:03' + + with pytest.raises(ValueError) as e: + get_dir_creation_date(folder, 4) + assert e.value.args[1] == Path(folder) / 'r0004' + + # The following data predates the addition of creation_time in metadata + folder = '/gpfs/exfel/exp/SQS/201930/p900075/raw/' + + date = get_dir_creation_date(folder, 365) + assert isinstance(date, datetime) + assert str(date) == '2019-07-04 11:02:41.280000' diff --git a/xfel_calibrate/finalize.py b/xfel_calibrate/finalize.py index df620c5136eb31582541fbfa7162cc2d7e686151..6bdc1117cc5eba7ce18e08300044e41ad7cd2cee 100644 --- a/xfel_calibrate/finalize.py +++ b/xfel_calibrate/finalize.py @@ -186,8 +186,8 @@ def make_timing_summary(run_path, joblist, request_time, submission_time): time_table=time_table.split('\n')))) -def make_report(run_path, tmp_path, out_path, project, author, version, - report_to): +def make_report(run_path: str, tmp_path: str, out_path: str, project: str, + author: str, version: str, report_to: str): """ Create calibration report (pdf file) @@ -201,12 +201,13 @@ def make_report(run_path, tmp_path, out_path, project, author, version, :param project: Project title :param author: Author of the notebook :param version: Version of the notebook - :param report_to: Name or path of the report file + :param report_to: report path tailed with report name """ run_path = path.abspath(run_path) report_path, report_name = path.split(report_to) - if report_path != '': - out_path = report_path + + if not report_path: + report_path = out_path try: check_call([sys.executable, "-m", "sphinx.cmd.quickstart", @@ -299,16 +300,18 @@ def make_report(run_path, tmp_path, out_path, project, author, version, # finally call the make scripts chdir(run_path) try: - check_call(["make", f"SPHINXBUILD={sys.executable} -m sphinx", "latexpdf"]) + check_call(["make", f"SPHINXBUILD={sys.executable} -m sphinx", + "latexpdf"]) except CalledProcessError: print("Failed to make pdf documentation") - print("Temp files will not be deleted and " + - "can be inspected at: {}".format(run_path)) + print("Temp files will not be deleted and " + f"can be inspected at: {run_path}") return - print("Moving report to final location: {}".format(out_path)) - makedirs(out_path, exist_ok=True) - copy('{}/_build/latex/{}.pdf'.format(run_path, report_name), out_path) + + print(f"Moving report to final location: {report_path}") + makedirs(report_path, exist_ok=True) + copy(f'{run_path}/_build/latex/{report_name}.pdf', report_path) temp_dirs = glob(f'{tmp_path}/*/') # Remove folders with figures and sphinx files. @@ -318,15 +321,15 @@ def make_report(run_path, tmp_path, out_path, project, author, version, # Archiving files in slurm_tmp if os.path.isfile(f'{out_path}/retrieved_constants.yml'): - move(f'{out_path}/retrieved_constants.yml', + copy(f'{out_path}/retrieved_constants.yml', f"{tmp_path}") # Moving temporary files to out-folder after successful execution # This helps in keeping elements needed for re-producibility. print(f"Moving temporary files to final location" - f": {out_path}/{os.path.basename(tmp_path)} with name: " + f": {report_path}/{os.path.basename(tmp_path)} with name: " f"slurm_out_{report_name}") - move(tmp_path, f"{out_path}/slurm_out_{report_name}") + move(tmp_path, f"{report_path}/slurm_out_{report_name}") def make_titlepage(sphinx_path, project, data_path, version):