diff --git a/notebooks/AGIPD/PlotFromCalDB_AGIPD_NBC.ipynb b/notebooks/AGIPD/PlotFromCalDB_AGIPD_NBC.ipynb index 7f4b500b3cdbcb40cc4149e1f51f4fbbbf1011a8..3d9032582b7d2da7f2e1fc33c9cefa49eb675ebe 100644 --- a/notebooks/AGIPD/PlotFromCalDB_AGIPD_NBC.ipynb +++ b/notebooks/AGIPD/PlotFromCalDB_AGIPD_NBC.ipynb @@ -21,21 +21,21 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cluster_profile = \"noDB\" # The ipcluster profile to use\n", "start_date = \"2019-01-01\" # Date to start investigation interval from\n", - "end_date = \"2019-12-12\" # Date to end investigation interval at, can be \"now\"\n", + "end_date = \"NOW\" # Date to end investigation interval at, can be \"now\"\n", "nconstants = 20 # Number of time stamps to plot. If not 0, overcome start_date.\n", - "constants = [\"Noise\", \"SlopesFF\", \"SlopesPC\", \"Offset\"] # Constants to plot\n", + "constants = [\"Noise\", \"Offset\", \"SlopesFF\", \"SlopesPC\"] # Constants to plot\n", "modules = [1] # Modules, set to -1 for all, range allowed\n", - "bias_voltages = [300, 500] # Bias voltage\n", - "mem_cells = [128, 176, 202, 250] # Number of used memory cells. Typically: 4,32,64,128,176.\n", + "bias_voltages = [300] # Bias voltage\n", + "mem_cells = [250] # Number of used memory cells. Typically: 4,32,64,128,176.\n", "acquisition_rate = [0.0, 1.1, 2.2, 4.5]\n", "photon_energy = 9.2 # Photon energy of the beam\n", - "out_folder = \"/gpfs/exfel/data/scratch/karnem/test_AGIPD/\" # Output folder, required\n", + "out_folder = \"/gpfs/exfel/data/scratch/karnem/test_AGIPD55/\" # Output folder, required\n", "use_existing = \"\" # If not empty, constants stored in given folder will be used\n", "cal_db_timeout = 120000 # timeout on caldb requests\",\n", "adu_to_photon = 33.17 # ADU to photon conversion factor (8000 / 3.6 / 67.)\n", @@ -50,12 +50,13 @@ "range_noise_e = [85., 500., 85., 500.] # plotting range for noise in [e-]: high gain l, r, medium gain l, r \n", "range_slopesPC = [22.0, 27.0, -0.5, 1.5] # plotting range for slope PC: high gain l, r, medium gain l, r \n", "range_slopesFF = [0.8, 1.2, 0.6, 1.2] # plotting range for slope FF: high gain l, r, medium gain l, r \n", - "plot_range = 3 # range for plotting in units of median absolute deviations" + "plot_range = 3 # range for plotting in units of median absolute deviations\n", + "x_labels = ['Acquisition rate', 'Memory cells'] # parameters to be shown on X axis" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "scrolled": true }, @@ -79,21 +80,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Bad pixels data: {'SlopesFF': 'BadPixelsFF', 'SlopesPC': 'BadPixelsPC', 'Noise': 'BadPixelsDark', 'Offset': 'BadPixelsDark'}\n", - "CalDB Interface: tcp://max-exfl016:8015#8025\n", - "Start time at: 2019-01-01 00:00:00\n", - "End time at: 2019-12-12 00:00:00\n", - "Modules: ['Q1M2']\n" - ] - } - ], + "outputs": [], "source": [ "# Prepare variables\n", "nMem = max(mem_cells) # Number of mem Cells to store\n", @@ -133,17 +122,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[{'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 128, 'acquisition_rate': None}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 128, 'acquisition_rate': 1.1}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 128, 'acquisition_rate': 2.2}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 128, 'acquisition_rate': 4.5}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 176, 'acquisition_rate': None}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 176, 'acquisition_rate': 1.1}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 176, 'acquisition_rate': 2.2}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 176, 'acquisition_rate': 4.5}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 202, 'acquisition_rate': None}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 202, 'acquisition_rate': 1.1}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 202, 'acquisition_rate': 2.2}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 202, 'acquisition_rate': 4.5}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 250, 'acquisition_rate': None}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 250, 'acquisition_rate': 1.1}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 250, 'acquisition_rate': 2.2}, {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 250, 'acquisition_rate': 4.5}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 128, 'acquisition_rate': None}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 128, 'acquisition_rate': 1.1}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 128, 'acquisition_rate': 2.2}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 128, 'acquisition_rate': 4.5}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 176, 'acquisition_rate': None}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 176, 'acquisition_rate': 1.1}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 176, 'acquisition_rate': 2.2}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 176, 'acquisition_rate': 4.5}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 202, 'acquisition_rate': None}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 202, 'acquisition_rate': 1.1}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 202, 'acquisition_rate': 2.2}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 202, 'acquisition_rate': 4.5}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 250, 'acquisition_rate': None}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 250, 'acquisition_rate': 1.1}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 250, 'acquisition_rate': 2.2}, {'bias_voltage': 500, 'module': 'Q1M2', 'mem_cells': 250, 'acquisition_rate': 4.5}]\n" - ] - } - ], + "outputs": [], "source": [ "parameter_list = combine_lists(bias_voltages, modules, mem_cells, acquisition_rate,\n", " names = ['bias_voltage', 'module', 'mem_cells', 'acquisition_rate'])\n", @@ -152,91 +133,11 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { "scrolled": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Request: Noise with paramters: {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 128, 'acquisition_rate': None}\n", - "constantDark: BadPixelsDark\n", - "Item: {'id': 6990, 'name': '20190220_072419_sIdx=0', 'file_name': 'cal.1550647458.8201447.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2019-02-19T15:54:20.000+01:00', 'end_validity_at': None, 'begin_at': '2019-02-19T15:54:20.000+01:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2019-02-19 15:54:20+01:00\n", - "Found bad pixels at 2019-02-19 15:54:20+01:00\n", - "Item: {'id': 5471, 'name': '20181027_075853_sIdx=0', 'file_name': 'cal.1540627132.6379695.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2018-10-27T09:20:58.000+02:00', 'end_validity_at': None, 'begin_at': '2018-10-27T09:20:58.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2018-10-27 09:20:58+02:00\n", - "Found bad pixels at 2018-10-27 09:20:58+02:00\n", - "Item: {'id': 6791, 'name': '20181213_160158_sIdx=0', 'file_name': 'cal.1544716917.4122818.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2018-10-22T22:24:16.000+02:00', 'end_validity_at': None, 'begin_at': '2018-10-22T22:24:16.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2018-10-22 22:24:16+02:00\n", - "Found bad pixels at 2018-10-22 22:24:16+02:00\n", - "Item: {'id': 6834, 'name': '20190207_135120_sIdx=0', 'file_name': 'cal.1549547479.2884257.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2018-10-21T20:55:02.000+02:00', 'end_validity_at': None, 'begin_at': '2018-10-21T20:55:02.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2018-10-21 20:55:02+02:00\n", - "Found bad pixels at 2018-10-21 20:55:02+02:00\n", - "Item: {'id': 4670, 'name': '20180923_021047_sIdx=0', 'file_name': 'cal.1537668646.6458402.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2018-09-23T04:10:45.000+02:00', 'end_validity_at': None, 'begin_at': '2018-09-23T04:10:45.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2018-09-23 04:10:45+02:00\n", - "Found bad pixels at 2018-09-23 04:10:50+02:00\n", - "Item: {'id': 4546, 'name': '20180923_000251_sIdx=0', 'file_name': 'cal.1537660970.398414.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2018-09-23T02:02:49.000+02:00', 'end_validity_at': None, 'begin_at': '2018-09-23T02:02:49.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2018-09-23 02:02:49+02:00\n", - "Found bad pixels at 2018-09-23 02:02:57+02:00\n", - "Item: {'id': 4482, 'name': '20180922_235703_sIdx=0', 'file_name': 'cal.1537660622.794079.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2018-09-23T01:57:01.000+02:00', 'end_validity_at': None, 'begin_at': '2018-09-23T01:57:01.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2018-09-23 01:57:01+02:00\n", - "Found bad pixels at 2018-09-23 01:57:06+02:00\n", - "Item: {'id': 5269, 'name': '20181025_061038_sIdx=0', 'file_name': 'cal.1540447837.275528.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2018-09-02T16:25:41.000+02:00', 'end_validity_at': None, 'begin_at': '2018-09-02T16:25:41.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2018-09-02 16:25:41+02:00\n", - "Found bad pixels at 2018-09-02 16:25:41+02:00\n", - "Item: {'id': 3431, 'name': '20180901_173920_sIdx=0', 'file_name': 'cal.1535823559.5818477.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2018-09-01T19:39:13.000+02:00', 'end_validity_at': None, 'begin_at': '2018-09-01T19:39:13.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2018-09-01 19:39:13+02:00\n", - "Found bad pixels at 2018-09-01 19:39:29+02:00\n", - "Item: {'id': 3229, 'name': '20180830_164924_sIdx=0', 'file_name': 'cal.1535647763.2838182.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2018-08-30T18:49:21.000+02:00', 'end_validity_at': None, 'begin_at': '2018-08-30T18:49:21.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2018-08-30 18:49:21+02:00\n", - "Found bad pixels at 2018-08-30 18:49:26+02:00\n", - "Item: {'id': 6413, 'name': '20181210_082033_sIdx=0', 'file_name': 'cal.1544430032.7715538.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2018-01-29T17:10:23.000+01:00', 'end_validity_at': None, 'begin_at': '2018-01-29T17:10:23.000+01:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2018-01-29 17:10:23+01:00\n", - "Found bad pixels at 2018-01-29 17:10:23+01:00\n", - "Item: {'id': 6348, 'name': '20181210_081739_sIdx=0', 'file_name': 'cal.1544429858.2109814.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2017-12-04T20:15:40.000+01:00', 'end_validity_at': None, 'begin_at': '2017-12-04T20:15:40.000+01:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Bad pixels are not found!\n", - "Item: {'id': 6590, 'name': '20181210_092654_sIdx=0', 'file_name': 'cal.1544434013.2191806.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2017-10-10T19:00:34.000+02:00', 'end_validity_at': None, 'begin_at': '2017-10-10T19:00:34.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2017-10-10 19:00:34+02:00\n", - "Found bad pixels at 2017-10-10 19:00:34+02:00\n", - "Item: {'id': 6509, 'name': '20181210_085802_sIdx=0', 'file_name': 'cal.1544432281.1941464.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2017-09-19T15:10:49.000+02:00', 'end_validity_at': None, 'begin_at': '2017-09-19T15:10:49.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2017-09-19 15:10:49+02:00\n", - "Found bad pixels at 2017-09-19 15:10:49+02:00\n", - "Item: {'id': 6543, 'name': '20181210_085904_sIdx=0', 'file_name': 'cal.1544432342.903418.h5', 'path_to_file': 'xfel/cal/agipd-type/agipd_siv1_agipdv11_m315/', 'data_set_name': '/AGIPD_SIV1_AGIPDV11_M315/Noise/0', 'flg_deployed': True, 'flg_good_quality': True, 'begin_validity_at': '2017-09-15T23:33:29.000+02:00', 'end_validity_at': None, 'begin_at': '2017-09-15T23:33:29.000+02:00', 'start_idx': 0, 'end_idx': 0, 'raw_data_location': '', 'description': '', 'calibration_constant': {'id': 913, 'name': 'AGIPD-Type_Noise_AGIPD DefJAwEUE0Km+', 'flg_auto_approve': True, 'flg_available': True, 'description': 'Per-pixel (per-memory cell) noise', 'device_type_id': 2, 'calibration_id': 2, 'condition_id': 271}, 'physical_device': {'id': 58, 'name': 'AGIPD_SIV1_AGIPDV11_M315', 'device_type_id': 2, 'flg_available': True, 'parent_id': None, 'description': ''}}\n", - "Found constant Noise: begin at 2017-09-15 23:33:29+02:00\n", - "Found bad pixels at 2017-09-15 23:33:29+02:00\n", - "Request: Noise with paramters: {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 128, 'acquisition_rate': 1.1}\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "constantDark: BadPixelsDark\n", - "Request: Noise with paramters: {'bias_voltage': 300, 'module': 'Q1M2', 'mem_cells': 128, 'acquisition_rate': 2.2}\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m<ipython-input-5-a602d73b9ab9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcal_db_timeout\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[0mmeta_only\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 40\u001b[0;31m version_info=True)\n\u001b[0m\u001b[1;32m 41\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0;31m# Request BP constant versions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/gpfs/exfel/data/scratch/karnem/calibration3/pycalibration/cal_tools/cal_tools/tools.py\u001b[0m in \u001b[0;36mget_from_db\u001b[0;34m(device, constant, condition, empty_constant, cal_db_interface, creation_time, verbosity, timeout, ntries, meta_only, version_info)\u001b[0m\n\u001b[1;32m 512\u001b[0m r = metadata.retrieve(this_interface, timeout=timeout,\n\u001b[1;32m 513\u001b[0m \u001b[0mwhen\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mwhen\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmeta_only\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmeta_only\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 514\u001b[0;31m version_info=version_info)\n\u001b[0m\u001b[1;32m 515\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mversion_info\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 516\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/.local/lib/python3.6/site-packages/iCalibrationDB/meta_data.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self, receiver, when, silent, timeout, meta_only, version_info)\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[0msock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconnect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreceiver\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 286\u001b[0m \u001b[0msock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msend_pyobj\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 287\u001b[0;31m \u001b[0mresp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msock\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrecv_pyobj\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 288\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 289\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0msock\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/software/anaconda3/5.2/lib/python3.6/site-packages/zmq/sugar/socket.py\u001b[0m in \u001b[0;36mrecv_pyobj\u001b[0;34m(self, flags)\u001b[0m\n\u001b[1;32m 620\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0many\u001b[0m \u001b[0mof\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mreasons\u001b[0m \u001b[0;34m:\u001b[0m\u001b[0mfunc\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m~\u001b[0m\u001b[0mSocket\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrecv\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mmight\u001b[0m \u001b[0mfail\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 621\u001b[0m \"\"\"\n\u001b[0;32m--> 622\u001b[0;31m \u001b[0mmsg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrecv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mflags\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 623\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_deserialize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloads\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 624\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mzmq/backend/cython/socket.pyx\u001b[0m in \u001b[0;36mzmq.backend.cython.socket.Socket.recv\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mzmq/backend/cython/socket.pyx\u001b[0m in \u001b[0;36mzmq.backend.cython.socket.Socket.recv\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mzmq/backend/cython/socket.pyx\u001b[0m in \u001b[0;36mzmq.backend.cython.socket._recv_copy\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32m/software/anaconda3/5.2/lib/python3.6/site-packages/zmq/backend/cython/checkrc.pxd\u001b[0m in \u001b[0;36mzmq.backend.cython.checkrc._check_rc\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], + "outputs": [], "source": [ "# Retrieve list of meta-data\n", "constant_versions = []\n", @@ -274,11 +175,14 @@ " copy.deepcopy(mcond), None,\n", " cal_db_interface,\n", " creation_time=start,\n", - " verbosity=0,\n", + " verbosity=2,\n", " timeout=cal_db_timeout,\n", " meta_only=True,\n", " version_info=True)\n", "\n", + " if not isinstance(data, list):\n", + " continue\n", + " \n", " # Request BP constant versions\n", " print('constantDark:', constantsDark[const], ) \n", " dataBP = get_from_db(getattr(det, pars['module']),\n", @@ -287,17 +191,13 @@ " copy.deepcopy(mcond), None,\n", " cal_db_interface,\n", " creation_time=start,\n", - " verbosity=0,\n", + " verbosity=2,\n", " timeout=cal_db_timeout,\n", " meta_only=True,\n", " version_info=True)\n", " \n", - " if not isinstance(data, list) or not isinstance(dataBP, list):\n", - " continue\n", - " \n", - " found_BPmatch = False\n", " for d in data:\n", - " print('Item: ', d)\n", + " # print('Item: ', d)\n", " # Match proper BP constant version\n", " # and get constant version within\n", " # requested time range\n", @@ -313,6 +213,10 @@ " \n", " closest_BP = None\n", " closest_BPtime = None\n", + " found_BPmatch = False\n", + " \n", + " if not isinstance(dataBP, list):\n", + " dataBP = []\n", " \n", " for dBP in dataBP:\n", " if dBP is None:\n", @@ -349,10 +253,15 @@ " constantBP_versions.append(dBP)\n", " constant_versions.append(d)\n", " constant_parameters.append(copy.deepcopy(pars))\n", - " found_BPmatch = False\n", " break\n", " \n", - "print('Number of retrieved constants with a bad pixel match is {}'.format(len(constant_versions)))" + " if not found_BPmatch:\n", + " print('Bad pixels are not matched')\n", + " constantBP_versions.append(None)\n", + " constant_versions.append(d)\n", + " constant_parameters.append(copy.deepcopy(pars))\n", + " \n", + "print('Number of retrieved constants {}'.format(len(constant_versions)))" ] }, { @@ -382,6 +291,9 @@ " data = data[:, :, :, 0][..., None]\n", " else:\n", " data = data[..., None]\n", + " \n", + " if data.shape[2]<3:\n", + " data = data[:,:,0,None]\n", "\n", " if not isBP:\n", " if data.shape[0] != 128:\n", @@ -405,7 +317,7 @@ "\n", "\n", "ret_constants = {}\n", - "constand_data = ConstantMetaData()\n", + "constant_data = ConstantMetaData()\n", "constant_BP = ConstantMetaData()\n", "# sort over begin_at\n", "idxs, _ = zip(*sorted(enumerate(constant_versions), \n", @@ -423,41 +335,46 @@ " if nconstants>0 and len(ret_constants[const][qm])>=nconstants:\n", " continue\n", " \n", - " constand_data.retrieve_from_version_info(constant_versions[i])\n", - " constant_BP.retrieve_from_version_info(constantBP_versions[i])\n", - " \n", - " cdata = constand_data.calibration_constant.data\n", - " cdataBP = constant_BP.calibration_constant.data\n", - " ctime = constand_data.calibration_constant_version.begin_at \n", - " \n", - " print(\"constant: {}, module {}, begin_at {}\".format(const, qm, ctime))\n", "\n", + " constant_data.retrieve_from_version_info(constant_versions[i])\n", + " cdata = constant_data.calibration_constant.data\n", + " ctime = constant_data.calibration_constant_version.begin_at \n", " cdata = modify_const(const, cdata)\n", - " cdataBP = modify_const(const, cdataBP, True)\n", + " print(\"constant: {}, module {}, begin_at {}\".format(const, qm, ctime))\n", "\n", - " if cdataBP.shape != cdata.shape:\n", - " print('Wrong bad pixel shape! {}, expected {}'.format(cdataBP.shape, cdata.shape))\n", - " continue\n", + " if constantBP_versions[i]:\n", + " constant_BP.retrieve_from_version_info(constantBP_versions[i])\n", + " cdataBP = constant_BP.calibration_constant.data\n", + " cdataBP = modify_const(const, cdataBP, True)\n", "\n", - " # Apply bad pixel mask\n", - " cdataABP = np.copy(cdata)\n", - " cdataABP[cdataBP > 0] = np.nan\n", + " if cdataBP.shape != cdata.shape:\n", + " print('Wrong bad pixel shape! {}, expected {}'.format(cdataBP.shape, cdata.shape))\n", + " cdataBP = np.full_like(cdata, -1)\n", "\n", - " # Create superpixels for constants with BP applied\n", - " cdataABP = get_rebined(cdataABP, spShape)\n", - " toStoreBP = prepare_to_store(np.nanmean(cdataABP, axis=(1, 3)), nMem)\n", - " toStoreBPStd = prepare_to_store(np.nanstd(cdataABP, axis=(1, 3)), nMem)\n", + " # Apply bad pixel mask\n", + " cdataABP = np.copy(cdata)\n", + " cdataABP[cdataBP > 0] = np.nan\n", "\n", - " # Prepare number of bad pixels per superpixels\n", - " cdataBP = get_rebined(cdataBP, spShape)\n", - " cdataNBP = prepare_to_store(np.nansum(cdataBP > 0, axis=(1, 3)), nMem)\n", + " # Create superpixels for constants with BP applied\n", + " cdataABP = get_rebined(cdataABP, spShape)\n", + " toStoreBP = prepare_to_store(np.nanmean(cdataABP, axis=(1, 3)), nMem)\n", + " toStoreBPStd = prepare_to_store(np.nanstd(cdataABP, axis=(1, 3)), nMem)\n", + "\n", + " # Prepare number of bad pixels per superpixels\n", + " cdataBP = get_rebined(cdataBP, spShape)\n", + " cdataNBP = prepare_to_store(np.nansum(cdataBP > 0, axis=(1, 3)), nMem)\n", "\n", " # Create superpixels for constants without BP applied\n", " cdata = get_rebined(cdata, spShape)\n", " toStoreStd = prepare_to_store(np.nanstd(cdata, axis=(1, 3)), nMem)\n", " toStore = prepare_to_store(np.nanmean(cdata, axis=(1, 3)), nMem)\n", " \n", - " dpar = {p.name: p.value for p in constand_data.detector_condition.parameters}\n", + " if not constantBP_versions[i]:\n", + " toStoreBP = np.full_like(toStore, np.nan)\n", + " toStoreBPStd = np.full_like(toStore, np.nan)\n", + " cdataNBP = np.full_like(toStore, np.nan)\n", + " \n", + " dpar = {p.name: p.value for p in constant_data.detector_condition.parameters}\n", "\n", " print(\"Store values in dict\", const, qm, ctime)\n", " ret_constants[const][qm].append({'ctime': ctime,\n", @@ -633,7 +550,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [], "source": [ @@ -664,7 +581,7 @@ " cmdata = np.array(data[\"mdata\"])\n", " for i, tick in enumerate(ctimes_ticks):\n", " ctimes_ticks[i] = ctimes_ticks[i] + \\\n", - " ', V={:1.0f}'.format(cmdata[i]['Sensor Bias Voltage']) + \\\n", + " ', A={}'.format(cmdata[i].get('Acquisition rate', None)) + \\\n", " ', M={:1.0f}'.format(\n", " cmdata[i]['Memory cells'])\n", "\n", @@ -700,12 +617,16 @@ " # Reshape: ASICs over cells for plotting\n", " pdata = {}\n", " for key in rdata:\n", + " if len(rdata[key].shape)<3:\n", + " continue\n", " pdata[key] = rdata[key][:, :, :, :nMemToShow].reshape(\n", " nTimes, nBins).swapaxes(0, 1)\n", "\n", " # Summary over ASICs\n", " adata = {}\n", " for key in rdata:\n", + " if len(rdata[key].shape)<3:\n", + " continue\n", " adata[key] = np.nanmean(rdata[key], axis=(1, 2)).swapaxes(0, 1)\n", "\n", " # Plotting\n", diff --git a/notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb b/notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb index e2b9a436f95556ec01a9ce894a54300cbc0bca6b..908d75feac24609e6aa28157f92efa219b076dba 100644 --- a/notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb +++ b/notebooks/FastCCD/PlotFromCalDB_FastCCD_NBC.ipynb @@ -29,11 +29,13 @@ "bias_voltage = [79] # Bias voltage\n", "temperature = [235, 216, 245] # Operation temperature\n", "integration_time = [1, 50] # Integration time\n", - "pixels_x=[1934]\n", - "pixels_y=[960]\n", - "max_time = 15\n", + "pixels_x=[1934] # number of pixels along X axis\n", + "pixels_y=[960] # number of pixels along Y axis\n", + "max_time = 15 # max time margin in minutes to match bad pixels\n", "parameter_names = ['bias_voltage', 'integration_time', 'temperature', \n", " 'gain_setting', 'pixels_x', 'pixels_y'] # names of parameters\n", + "\n", + "separate_plot = ['integration_time', 'gain_setting', 'temperature'] # Plot on separate plots\n", "photon_energy = 9.2 # Photon energy of the beam\n", "out_folder = \"/gpfs/exfel/data/scratch/karnem/test_FCCD/\" # output folder\n", "use_existing = \"\" # If not empty, constants stored in given folder will be used\n", @@ -281,16 +283,10 @@ " qm = db_module\n", " \n", " print(\"constant: {}, module {}\".format(const,qm))\n", - " \n", " constant_data.retrieve_from_version_info(constant_version)\n", " \n", - " # Convert parameters to dict\n", - " dpar = {p.name: p.value for p in constant_data.detector_condition.parameters}\n", - " \n", - " const = \"{}_{}_{}_{}\".format(const, \n", - " constant_parameters[i]['gain_setting'],\n", - " constant_parameters[i]['temperature'],\n", - " constant_parameters[i]['integration_time'])\n", + " for key in separate_plot:\n", + " const = '{}_{}'.format(const, constant_parameters[i][key])\n", " \n", " if not const in ret_constants:\n", " ret_constants[const] = {}\n", @@ -405,7 +401,7 @@ "# loop over constat type\n", "for const, modules in ret_constants.items():\n", "\n", - " const, gain, temp, int_time = const.split(\"_\")\n", + " const = const.split(\"_\")\n", " print('Const: {}'.format(const))\n", "\n", " # Loop over modules\n", @@ -437,7 +433,7 @@ " nBins = nPixels\n", "\n", " # Avoid too low values\n", - " if const in [\"Noise\", \"Offset\", \"Noise-e\"]:\n", + " if const[0] in [\"Noise\", \"Offset\"]:\n", " rdata['Mean'][rdata['Mean'] < 0.1] = np.nan\n", " if 'MeanBP' in rdata:\n", " rdata['MeanBP'][rdata['MeanBP'] < 0.1] = np.nan\n", @@ -463,13 +459,16 @@ " unit = '[%]'\n", " else:\n", " unit = '[ADU]'\n", - " if const == 'Noise-e':\n", - " unit = '[$e^-$]'\n", "\n", - " title = '{}, module {}, gain {} {}'.format(\n", - " const, mod, gain, keys[key][1])\n", - " cb_label = '{}, {} {}'.format(const, keys[key][2], unit)\n", + " title = '{}, module {}, {}'.format(\n", + " const[0], mod, keys[key][1])\n", + " cb_label = '{}, {} {}'.format(const[0], keys[key][2], unit)\n", "\n", + " fname = '{}/{}_{}'.format(out_folder, const[0], mod.replace('_', ''))\n", + " for item in const[1:]:\n", + " fname = '{}_{}'.format(fname, item)\n", + " fname = '{}_ASIC_{}.png'.format(fname, key)\n", + " \n", " vmin,vmax = get_range(pdata[key][::-1].flatten(), plot_range)\n", " hm_combine(pdata[key][::-1], htype=HMType.mro,\n", " x_label='Creation Time', y_label='ASIC ID',\n", @@ -477,8 +476,7 @@ " x_ticks=np.arange(len(ctimes_ticks))+0.3,\n", " title=title, cb_label=cb_label,\n", " vmin=vmin, vmax=vmax,\n", - " fname='{}/{}_{}_g{}_t{}_t{}_ASIC_{}.png'.format(\n", - " out_folder, const, mod.replace('_', ''), gain, temp, int_time, key),\n", + " fname=fname,\n", " pad=[0.125, 0.125, 0.12, 0.185])\n" ] } diff --git a/notebooks/Jungfrau/PlotFromCalDB_Jungfrau_NBC.ipynb b/notebooks/Jungfrau/PlotFromCalDB_Jungfrau_NBC.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..1b428701c5d70bdf46a1e64b2a90444e0352fba2 --- /dev/null +++ b/notebooks/Jungfrau/PlotFromCalDB_Jungfrau_NBC.ipynb @@ -0,0 +1,574 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Statistical analysis of calibration factors#\n", + "\n", + "Author: Mikhail Karnevskiy, Steffen Hauf, Version 0.1\n", + "\n", + "Calibration constants for JungFrau detector from the data base with injection time between start_date and end_date are considered.\n", + "\n", + "To be visualized, calibration constants are averaged per group of pixels. Plots shows calibration constant over time for each constant.\n", + "\n", + "Values shown in plots are saved in h5 files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "cluster_profile = \"noDB\" # The ipcluster profile to use\n", + "start_date = \"2019-06-30\" # date to start investigation interval from\n", + "end_date = \"2019-09-01\" # date to end investigation interval at, can be \"now\"\n", + "dclass=\"jungfrau\" # Detector class\n", + "modules = [\"Jungfrau_M125\", \"Jungfrau_M260\"] # detector entry in the DB to investigate\n", + "constants = [\"Noise\", \"Offset\"] # constants to plot\n", + "nconstants = 10 # Number of time stamps to plot. If not 0, overcome start_date.\n", + "bias_voltage = [90, 180] # bias voltage\n", + "memory_cells = [1] # number of memory cells\n", + "pixels_x = [1024] # number of pixels along X axis\n", + "pixels_y = [512, 1024] # number of pixels along Y axis\n", + "temperature = [291] # operational temperature\n", + "integration_time = [50, 250] # integration time\n", + "gain_setting = [0] # gain stage\n", + "\n", + "parameter_names = ['bias_voltage', 'integration_time', 'pixels_x', 'pixels_y', 'gain_setting',\n", + " 'temperature', 'memory_cells'] # names of parameters\n", + "\n", + "separate_plot = ['integration_time'] # Plot on separate plots\n", + "max_time = 15 # max time margin in minutes to match bad pixels\n", + "photon_energy = 9.2 # Photon energy of the beam\n", + "out_folder = \"/gpfs/exfel/data/scratch/karnem/test_JF/\" # output folder\n", + "use_existing = \"\" # If not empty, constants stored in given folder will be used\n", + "cal_db_interface = \"tcp://max-exfl016:8016\" # the database interface to use\n", + "cal_db_timeout = 180000 # timeout on caldb requests\",\n", + "plot_range = 3 # range for plotting in units of median absolute deviations\n", + "spShape = [256, 64] # Shape of superpixel" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "import copy\n", + "import datetime\n", + "import dateutil.parser\n", + "import numpy as np\n", + "import os\n", + "import sys\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "from iCalibrationDB import Constants, Conditions, Detectors, ConstantMetaData\n", + "from cal_tools.tools import get_from_db, get_random_db_interface\n", + "from cal_tools.ana_tools import (save_dict_to_hdf5, load_data_from_hdf5, \n", + " HMType, hm_combine,\n", + " combine_lists, get_range)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Prepare variables\n", + "parameters = [globals()[x] for x in parameter_names]\n", + "\n", + "constantsDark = {'Noise': 'BadPixelsDark',\n", + " 'Offset': 'BadPixelsDark'}\n", + "print('Bad pixels data: ', constantsDark)\n", + "\n", + "# Define parameters in order to perform loop over time stamps\n", + "start = datetime.datetime.now() if start_date.upper() == \"NOW\" else dateutil.parser.parse(\n", + " start_date)\n", + "end = datetime.datetime.now() if end_date.upper() == \"NOW\" else dateutil.parser.parse(\n", + " end_date)\n", + "\n", + "# Create output folder\n", + "os.makedirs(out_folder, exist_ok=True)\n", + "\n", + "# Get getector conditions\n", + "dconstants = getattr(Constants, dclass)\n", + "\n", + "print('CalDB Interface: {}'.format(cal_db_interface))\n", + "print('Start time at: ', start)\n", + "print('End time at: ', end)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "parameter_list = combine_lists(*parameters, names = parameter_names)\n", + "print(parameter_list)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# Retrieve list of meta-data\n", + "constant_versions = []\n", + "constant_parameters = []\n", + "constantBP_versions = []\n", + "\n", + "# Loop over constants\n", + "for c, const in enumerate(constants):\n", + " \n", + " for db_module in modules:\n", + " det = getattr(Detectors, db_module)\n", + " \n", + " if use_existing != \"\":\n", + " break\n", + "\n", + " # Loop over parameters\n", + " for pars in parameter_list:\n", + "\n", + " if (const in [\"Offset\", \"Noise\", \"SlopesPC\"] or \"DARK\" in const.upper()):\n", + " dcond = Conditions.Dark\n", + " mcond = getattr(dcond, dclass)(**pars)\n", + " else:\n", + " dcond = Conditions.Illuminated\n", + " mcond = getattr(dcond, dclass)(**pars,\n", + " photon_energy=photon_energy)\n", + "\n", + "\n", + "\n", + " print('Request: ', const, 'with paramters:', pars)\n", + " # Request Constant versions for given parameters and module\n", + " data = get_from_db(det,\n", + " getattr(dconstants,\n", + " const)(),\n", + " copy.deepcopy(mcond), None,\n", + " cal_db_interface,\n", + " creation_time=start,\n", + " verbosity=0,\n", + " timeout=cal_db_timeout,\n", + " meta_only=True,\n", + " version_info=True)\n", + "\n", + " if not isinstance(data, list):\n", + " continue\n", + "\n", + " if const in constantsDark:\n", + " # Request BP constant versions\n", + " print('constantDark:', constantsDark[const], ) \n", + " dataBP = get_from_db(det,\n", + " getattr(dconstants, \n", + " constantsDark[const])(),\n", + " copy.deepcopy(mcond), None,\n", + " cal_db_interface,\n", + " creation_time=start,\n", + " verbosity=0,\n", + " timeout=cal_db_timeout,\n", + " meta_only=True,\n", + " version_info=True)\n", + "\n", + " if not isinstance(data, list) or not isinstance(dataBP, list):\n", + " continue\n", + "\n", + " found_BPmatch = False\n", + " for d in data:\n", + " # Match proper BP constant version\n", + " # and get constant version within\n", + " # requested time range\n", + " if d is None:\n", + " print('Time or data is not found!')\n", + " continue\n", + "\n", + " dt = dateutil.parser.parse(d['begin_at'])\n", + "\n", + " if dt.replace(tzinfo=None) > end or dt.replace(tzinfo=None) < start:\n", + " continue\n", + "\n", + " closest_BP = None\n", + " closest_BPtime = None\n", + "\n", + " for dBP in dataBP:\n", + " if dBP is None:\n", + " print(\"Bad pixels are not found!\")\n", + " continue\n", + "\n", + " dt = dateutil.parser.parse(d['begin_at'])\n", + " dBPt = dateutil.parser.parse(dBP['begin_at'])\n", + "\n", + " if dt == dBPt:\n", + " found_BPmatch = True\n", + " else:\n", + "\n", + " if np.abs(dBPt-dt).seconds < (max_time*60):\n", + " if closest_BP is None:\n", + " closest_BP = dBP\n", + " closest_BPtime = dBPt\n", + " else:\n", + " if np.abs(dBPt-dt) < np.abs(closest_BPtime-dt):\n", + " closest_BP = dBP\n", + " closest_BPtime = dBPt\n", + "\n", + " if dataBP.index(dBP) == len(dataBP)-1:\n", + " if closest_BP:\n", + " dBP = closest_BP\n", + " dBPt = closest_BPtime\n", + " found_BPmatch = True\n", + " else:\n", + " print('Bad pixels are not found!')\n", + "\n", + " if found_BPmatch:\n", + " print(\"Found constant {}: begin at {}\".format(const, dt))\n", + " print(\"Found bad pixels at {}\".format(dBPt))\n", + " constantBP_versions.append(dBP)\n", + " constant_versions.append(d)\n", + " constant_parameters.append(copy.deepcopy(pars))\n", + " found_BPmatch = False\n", + " break\n", + " else:\n", + " constant_versions += data\n", + " constant_parameters += [copy.deepcopy(pars)]*len(data)\n", + "\n", + "# Remove dublications\n", + "constant_versions_tmp = []\n", + "constant_parameters_tmp = []\n", + "for i, x in enumerate(constant_versions):\n", + " if x not in constant_versions_tmp:\n", + " constant_versions_tmp.append(x)\n", + " constant_parameters_tmp.append(constant_parameters[i])\n", + " \n", + "constant_versions=constant_versions_tmp\n", + "constant_parameters=constant_parameters_tmp\n", + "\n", + "print('Number of stored constant versions is {}'.format(len(constant_versions)))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_rebined(a, rebin):\n", + " return a.reshape(\n", + " int(a.shape[0] / rebin[0]),\n", + " rebin[0],\n", + " int(a.shape[1] / rebin[1]),\n", + " rebin[1],\n", + " a.shape[2],\n", + " a.shape[3])\n", + "\n", + "def modify_const(const, data, isBP = False):\n", + " return data\n", + "\n", + "ret_constants = {}\n", + "constant_data = ConstantMetaData()\n", + "constant_BP = ConstantMetaData()\n", + "\n", + "# sort over begin_at\n", + "idxs, _ = zip(*sorted(enumerate(constant_versions), \n", + " key=lambda x: x[1]['begin_at'], reverse=True))\n", + "\n", + "for i in idxs:\n", + " const = constant_versions[i]['data_set_name'].split('/')[-2]\n", + " qm = constant_versions[i]['physical_device']['name']\n", + " \n", + " for key in separate_plot:\n", + " const = '{}_{}'.format(const, constant_parameters[i][key])\n", + " \n", + " if not const in ret_constants:\n", + " ret_constants[const] = {}\n", + " if not qm in ret_constants[const]:\n", + " ret_constants[const][qm] = []\n", + " \n", + " if nconstants>0 and len(ret_constants[const][qm])>=nconstants:\n", + " continue\n", + " \n", + " print(\"constant: {}, module {}\".format(const,qm))\n", + " constant_data.retrieve_from_version_info(constant_versions[i])\n", + " \n", + " cdata = constant_data.calibration_constant.data\n", + " ctime = constant_data.calibration_constant_version.begin_at\n", + " cdata = modify_const(const, cdata)\n", + " \n", + " if len(constantBP_versions)>0:\n", + " constant_BP.retrieve_from_version_info(constantBP_versions[i])\n", + " cdataBP = constant_BP.calibration_constant.data\n", + " cdataBP = modify_const(const, cdataBP, True)\n", + " \n", + " if cdataBP.shape != cdata.shape:\n", + " print('Wrong bad pixel shape! {}, expected {}'.format(cdataBP.shape, cdata.shape))\n", + " continue\n", + " \n", + " # Apply bad pixel mask\n", + " cdataABP = np.copy(cdata)\n", + " cdataABP[cdataBP > 0] = np.nan\n", + " \n", + " # Create superpixels for constants with BP applied\n", + " cdataABP = get_rebined(cdataABP, spShape)\n", + " toStoreBP = np.nanmean(cdataABP, axis=(1, 3))\n", + " toStoreBPStd = np.nanstd(cdataABP, axis=(1, 3))\n", + "\n", + " # Prepare number of bad pixels per superpixels\n", + " cdataBP = get_rebined(cdataBP, spShape)\n", + " cdataNBP = np.nansum(cdataBP > 0, axis=(1, 3))\n", + " else:\n", + " toStoreBP = 0\n", + " toStoreBPStd = 0\n", + " cdataNBP = 0\n", + "\n", + " # Create superpixels for constants without BP applied\n", + " cdata = get_rebined(cdata, spShape)\n", + " toStoreStd = np.nanstd(cdata, axis=(1, 3))\n", + " toStore = np.nanmean(cdata, axis=(1, 3))\n", + " \n", + " # Convert parameters to dict\n", + " dpar = {p.name: p.value for p in constant_data.detector_condition.parameters}\n", + " \n", + " print(\"Store values in dict\", const, qm, ctime)\n", + " ret_constants[const][qm].append({'ctime': ctime,\n", + " 'nBP': cdataNBP,\n", + " 'dataBP': toStoreBP,\n", + " 'dataBPStd': toStoreBPStd,\n", + " 'data': toStore,\n", + " 'dataStd': toStoreStd,\n", + " 'mdata': dpar}) \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "if use_existing == \"\":\n", + " print('Save data to /CalDBAna_{}_{}.h5'.format(dclass, db_module))\n", + " save_dict_to_hdf5(ret_constants,\n", + " '{}/CalDBAna_{}_{}.h5'.format(out_folder, dclass, db_module))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "if use_existing == \"\":\n", + " fpath = '{}/CalDBAna_{}_*.h5'.format(out_folder, dclass)\n", + "else:\n", + " fpath = '{}/CalDBAna_{}_*.h5'.format(use_existing, dclass)\n", + "\n", + "print('Load data from {}'.format(fpath))\n", + "ret_constants = load_data_from_hdf5(fpath)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Parameters for plotting\n", + "\n", + "keys = {\n", + " 'Mean': ['data', '', 'Mean over pixels'],\n", + " 'std': ['dataStd', '', '$\\sigma$ over pixels'],\n", + " 'MeanBP': ['dataBP', 'Good pixels only', 'Mean over pixels'],\n", + " 'NBP': ['nBP', 'Fraction of BP', 'Number of BP'],\n", + " 'stdBP': ['dataBPStd', 'Good pixels only', '$\\sigma$ over pixels'],\n", + "}\n", + "\n", + "gain_name = ['High', 'Medium', 'Low']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "print('Plot calibration constants')\n", + "\n", + "# loop over constat type\n", + "for const, modules in ret_constants.items():\n", + " \n", + " const = const.split(\"_\")\n", + " for gain in range(3):\n", + "\n", + " print('Const: {}'.format(const))\n", + "\n", + " # summary over modules\n", + " mod_data = {}\n", + " mod_names = []\n", + " mod_times = []\n", + " \n", + " # Loop over modules\n", + " for mod, data in modules.items():\n", + " print(mod)\n", + "\n", + " ctimes = np.array(data[\"ctime\"])\n", + " ctimes_ticks = [x.strftime('%y-%m-%d') for x in ctimes]\n", + "\n", + " if (\"mdata\" in data):\n", + " cmdata = np.array(data[\"mdata\"])\n", + " for i, tick in enumerate(ctimes_ticks):\n", + " ctimes_ticks[i] = ctimes_ticks[i] + \\\n", + " ', V={:1.0f}'.format(cmdata[i]['Sensor Temperature']) + \\\n", + " ', T={:1.0f}'.format(\n", + " cmdata[i]['Integration Time'])\n", + "\n", + " sort_ind = np.argsort(ctimes_ticks)\n", + " ctimes_ticks = list(np.array(ctimes_ticks)[sort_ind])\n", + "\n", + " # Create sorted by data dataset\n", + " rdata = {}\n", + " for key, item in keys.items():\n", + " if item[0] in data:\n", + " rdata[key] = np.array(data[item[0]])[sort_ind]\n", + "\n", + " nTimes = rdata['Mean'].shape[0]\n", + " nPixels = rdata['Mean'].shape[1] * rdata['Mean'].shape[2]\n", + " nBins = nPixels\n", + " \n", + " # Select gain\n", + " if const[0] not in [\"Gain\", \"Noise-e\"]:\n", + " for key in rdata:\n", + " if len(rdata[key].shape)<5:\n", + " continue\n", + " rdata[key] = rdata[key][..., 0, gain]\n", + "\n", + " # Avoid to low values\n", + " if const[0] in [\"Noise10Hz\", \"Offset10Hz\"]:\n", + " rdata['Mean'][rdata['Mean'] < 0.1] = np.nan\n", + " if 'MeanBP' in rdata:\n", + " rdata['MeanBP'][rdata['MeanBP'] < 0.1] = np.nan\n", + " if 'NBP' in rdata:\n", + " rdata['NBP'] = rdata['NBP'].astype(float)\n", + " rdata['NBP'][rdata['NBP'] == spShape[0]*spShape[1]] = np.nan\n", + "\n", + " # Reshape: ASICs over cells for plotting\n", + " pdata = {}\n", + " for key in rdata:\n", + " if len(rdata[key].shape)<3:\n", + " continue\n", + " pdata[key] = rdata[key].reshape(nTimes, nBins).swapaxes(0, 1)\n", + "\n", + " # Summary over ASICs\n", + " adata = {}\n", + " for key in rdata:\n", + " if len(rdata[key].shape)<3:\n", + " continue\n", + " adata[key] = np.nansum(rdata[key], axis=(1, 2))\n", + "\n", + " # Summary information over modules\n", + " for key in pdata:\n", + " if key not in mod_data:\n", + " mod_data[key] = []\n", + " if key == 'NBP':\n", + " mod_data[key].append(np.nansum(pdata[key], axis=0))\n", + " else:\n", + " mod_data[key].append(np.nanmean(pdata[key], axis=0))\n", + "\n", + " mod_names.append(mod)\n", + " mod_times.append(ctimes[sort_ind])\n", + " \n", + " # Plotting\n", + " for key in pdata:\n", + " \n", + " if len(pdata[key].shape)<2:\n", + " continue\n", + " \n", + " vmin,vmax = get_range(pdata[key][::-1].flatten(), plot_range)\n", + " if key == 'NBP':\n", + " unit = '[%]'\n", + " else:\n", + " unit = '[ADU]'\n", + "\n", + " title = '{}, module {}, {}'.format(\n", + " const[0], mod, keys[key][1])\n", + " cb_label = '{}, {} {}'.format(const[0], keys[key][2], unit)\n", + "\n", + " fname = '{}/{}_{}'.format(out_folder, const[0], mod.replace('_', ''))\n", + " for item in const[1:]:\n", + " fname = '{}_{}'.format(fname, item)\n", + " fname = '{}_ASIC_{}.png'.format(fname, key)\n", + " \n", + " hm_combine(pdata[key][::-1], htype=HMType.mro,\n", + " x_label='Creation Time', y_label='ASIC ID',\n", + " x_ticklabels=ctimes_ticks,\n", + " x_ticks=np.arange(len(ctimes_ticks))+0.3,\n", + " title=title, cb_label=cb_label,\n", + " vmin=vmin, vmax=vmax,\n", + " fname=fname,\n", + " pad=[0.125, 0.125, 0.12, 0.185])\n", + "\n", + " \n", + " # Summary over modules\n", + " for key in mod_data:\n", + " \n", + " if key == 'NBP':\n", + " unit = ''\n", + " else:\n", + " unit = '[ADU]'\n", + "\n", + " title = '{}, All modules, {} gain, {}'.format(\n", + " const[0], gain_name[gain], keys[key][1])\n", + " \n", + " fname = '{}/{}_{}'.format(out_folder, const[0], 'All')\n", + " for item in const[1:]:\n", + " fname = '{}_{}'.format(fname, item)\n", + " fname = '{}_ASIC_{}.png'.format(fname, key)\n", + " \n", + " fig = plt.figure(figsize=(12,12) )\n", + " for i in range(len(mod_data[key])):\n", + " plt.scatter(mod_times[i], mod_data[key][i], label=mod_names[i])\n", + " plt.grid()\n", + " plt.xlabel('Creation Time')\n", + " plt.ylabel('{}, {} {}'.format(const[0], keys[key][2], unit)) \n", + " plt.legend(loc='best guess')\n", + " plt.title(title)\n", + " fig.savefig(fname)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/LPD/PlotFromCalDB_LPD_NBC.ipynb b/notebooks/LPD/PlotFromCalDB_LPD_NBC.ipynb index d6eba94618588f1bc95f0dbdd81a35145501844d..00c1b59cda883ddd574b7d8484473580a275bc7d 100644 --- a/notebooks/LPD/PlotFromCalDB_LPD_NBC.ipynb +++ b/notebooks/LPD/PlotFromCalDB_LPD_NBC.ipynb @@ -26,13 +26,13 @@ "outputs": [], "source": [ "cluster_profile = \"noDB\" # The ipcluster profile to use\n", - "start_date = \"2018-01-30\" # Date to start investigation interval from\n", - "end_date = \"2018-12-12\" # Date to end investigation interval at, can be \"now\"\n", + "start_date = \"2019-01-30\" # Date to start investigation interval from\n", + "end_date = \"2019-12-12\" # Date to end investigation interval at, can be \"now\"\n", "nconstants = 10 # Number of time stamps to plot. If not 0, overcome start_date.\n", - "constants = [\"Offset\", \"Noise\", \"SlopesFF\", \"SlopesCI\"] # constants to plot\n", + "constants = [\"Noise\", \"Offset\", \"SlopesFF\", \"SlopesCI\"] # constants to plot\n", "modules = [2] # Modules, set to -1 for all, range allowed\n", - "bias_voltages = [250, 500] # Bias voltage\n", - "mem_cells = [128, 256, 512] # Number of used memory cells.\n", + "bias_voltages = [250] # Bias voltage\n", + "mem_cells = [512] # Number of used memory cells.\n", "photon_energy = 9.2 # Photon energy of the beam\n", "out_folder = \"/gpfs/exfel/data/scratch/karnem/test_LPD/\" # Output folder, required\n", "use_existing = \"\" # If not empty, constants stored in given folder will be used\n", @@ -49,7 +49,8 @@ "range_noise_e = [100., 600., 100., 600.] # plotting range for noise in [e-]: high gain l, r, medium gain l, r \n", "range_slopesCI = [0.95, 1.05, 0.0, 0.5] # plotting range for slope CI: high gain l, r, medium gain l, r \n", "range_slopesFF = [0.8, 1.2, 0.8, 1.2] # plotting range for slope FF: high gain l, r, medium gain l, r \n", - "plot_range = 3 # range for plotting in units of median absolute deviations" + "plot_range = 3 # range for plotting in units of median absolute deviations\n", + "x_labels = ['Sensor Bias Voltage', 'Memory cells'] # parameters to be shown on X axis" ] }, { @@ -92,7 +93,7 @@ "modules = [\"Q{}M{}\".format(x // 4 + 1, x % 4 + 1) for x in modules]\n", "\n", "constantsDark = {\"SlopesFF\": 'BadPixelsFF',\n", - " 'SlopesPC': 'BadPixelsPC',\n", + " 'SlopesCI': 'BadPixelsCI',\n", " 'Noise': 'BadPixelsDark',\n", " 'Offset': 'BadPixelsDark'}\n", "print('Bad pixels data: ', constantsDark)\n", @@ -146,7 +147,7 @@ " # Loop over parameters\n", " for pars in parameter_list:\n", " \n", - " if (const in [\"Offset\", \"Noise\", \"SlopesPC\"] or \"DARK\" in const.upper()):\n", + " if (const in [\"Offset\", \"Noise\", \"SlopesCI\"] or \"DARK\" in const.upper()):\n", " dcond = Conditions.Dark\n", " mcond = getattr(dcond, dclass)(\n", " memory_cells=pars['mem_cells'],\n", @@ -171,6 +172,9 @@ " meta_only=True,\n", " version_info=True)\n", "\n", + " if not isinstance(data, list):\n", + " continue\n", + " \n", " # Request BP constant versions\n", " print('constantDark:', constantsDark[const], ) \n", " dataBP = get_from_db(getattr(det, pars['module']),\n", @@ -184,11 +188,9 @@ " meta_only=True,\n", " version_info=True)\n", " \n", - " if not isinstance(data, list) or not isinstance(dataBP, list):\n", - " continue\n", " \n", - " found_BPmatch = False\n", " for d in data:\n", + " # print('Item: ', d)\n", " # Match proper BP constant version\n", " # and get constant version within\n", " # requested time range\n", @@ -204,6 +206,10 @@ " \n", " closest_BP = None\n", " closest_BPtime = None\n", + " found_BPmatch = False\n", + " \n", + " if not isinstance(dataBP, list):\n", + " dataBP = []\n", " \n", " for dBP in dataBP:\n", " if dBP is None:\n", @@ -240,10 +246,15 @@ " constantBP_versions.append(dBP)\n", " constant_versions.append(d)\n", " constant_parameters.append(copy.deepcopy(pars))\n", - " found_BPmatch = False\n", " break\n", " \n", - "print('Number of retrieved constants with a bad pixel match is {}'.format(len(constant_versions)))" + " if not found_BPmatch:\n", + " print('Bad pixels are not matched')\n", + " constantBP_versions.append(None)\n", + " constant_versions.append(d)\n", + " constant_parameters.append(copy.deepcopy(pars))\n", + " \n", + "print('Number of retrieved constants {}'.format(len(constant_versions)))" ] }, { @@ -287,7 +298,7 @@ "\n", "\n", "ret_constants = {}\n", - "constand_data = ConstantMetaData()\n", + "constant_data = ConstantMetaData()\n", "constant_BP = ConstantMetaData()\n", "\n", "# sort over begin_at\n", @@ -306,41 +317,45 @@ " if nconstants>0 and len(ret_constants[const][qm])>=nconstants:\n", " continue\n", " \n", - " constand_data.retrieve_from_version_info(constant_versions[i])\n", - " constant_BP.retrieve_from_version_info(constantBP_versions[i])\n", - " \n", - " cdata = constand_data.calibration_constant.data\n", - " cdataBP = constant_BP.calibration_constant.data\n", - " ctime = constand_data.calibration_constant_version.begin_at \n", - " \n", + " constant_data.retrieve_from_version_info(constant_versions[i])\n", + " cdata = constant_data.calibration_constant.data\n", + " ctime = constant_data.calibration_constant_version.begin_at \n", + " cdata = modify_const(const, cdata)\n", " print(\"constant: {}, module {}, begin_at {}\".format(const, qm, ctime))\n", "\n", - " cdata = modify_const(const, cdata)\n", - " cdataBP = modify_const(const, cdataBP)\n", + " if constantBP_versions[i]:\n", + " constant_BP.retrieve_from_version_info(constantBP_versions[i])\n", + " cdataBP = constant_BP.calibration_constant.data\n", + " cdataBP = modify_const(const, cdataBP)\n", "\n", - " if cdataBP.shape != cdata.shape:\n", - " print('Wrong bad pixel shape! {}, expected {}'.format(cdataBP.shape, cdata.shape))\n", - " continue\n", + " if cdataBP.shape != cdata.shape:\n", + " print('Wrong bad pixel shape! {}, expected {}'.format(cdataBP.shape, cdata.shape))\n", + " cdataBP = np.full_like(cdata, -1)\n", "\n", - " # Apply bad pixel mask\n", - " cdataABP = np.copy(cdata)\n", - " cdataABP[cdataBP > 0] = np.nan\n", + " # Apply bad pixel mask\n", + " cdataABP = np.copy(cdata)\n", + " cdataABP[cdataBP > 0] = np.nan\n", "\n", - " # Create superpixels for constants with BP applied\n", - " cdataABP = get_rebined(cdataABP, spShape)\n", - " toStoreBP = prepare_to_store(np.nanmean(cdataABP, axis=(1, 3)), nMem)\n", - " toStoreBPStd = prepare_to_store(np.nanstd(cdataABP, axis=(1, 3)), nMem)\n", + " # Create superpixels for constants with BP applied\n", + " cdataABP = get_rebined(cdataABP, spShape)\n", + " toStoreBP = prepare_to_store(np.nanmean(cdataABP, axis=(1, 3)), nMem)\n", + " toStoreBPStd = prepare_to_store(np.nanstd(cdataABP, axis=(1, 3)), nMem)\n", "\n", - " # Prepare number of bad pixels per superpixels\n", - " cdataBP = get_rebined(cdataBP, spShape)\n", - " cdataNBP = prepare_to_store(np.nansum(cdataBP > 0, axis=(1, 3)), nMem)\n", + " # Prepare number of bad pixels per superpixels\n", + " cdataBP = get_rebined(cdataBP, spShape)\n", + " cdataNBP = prepare_to_store(np.nansum(cdataBP > 0, axis=(1, 3)), nMem)\n", "\n", " # Create superpixels for constants without BP applied\n", " cdata = get_rebined(cdata, spShape)\n", " toStoreStd = prepare_to_store(np.nanstd(cdata, axis=(1, 3)), nMem)\n", " toStore = prepare_to_store(np.nanmean(cdata, axis=(1, 3)), nMem)\n", " \n", - " dpar = {p.name: p.value for p in constand_data.detector_condition.parameters}\n", + " if not constantBP_versions[i]:\n", + " toStoreBP = np.full_like(toStore, np.nan)\n", + " toStoreBPStd = np.full_like(toStore, np.nan)\n", + " cdataNBP = np.full_like(toStore, np.nan)\n", + " \n", + " dpar = {p.name: p.value for p in constant_data.detector_condition.parameters}\n", "\n", " print(\"Store values in dict\", const, qm, ctime)\n", " ret_constants[const][qm].append({'ctime': ctime,\n", diff --git a/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb b/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb index 618f01887c9f66bc67e908131e615cde8b299c03..e1a45eb7228dd58394bcd425e0cc316b0b78129e 100644 --- a/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb +++ b/notebooks/generic/PlotFromCalDB_Summary_NBC.ipynb @@ -14,14 +14,12 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "cluster_profile = \"noDB\" # The ipcluster profile to use\n", - "out_folder = \"/gpfs/exfel/data/scratch/karnem/testLPD_11/\" # Output folder, required\n", - "use_existing = \"/gpfs/exfel/data/scratch/karnem/testLPD_10/\" # Input folder\n", + "out_folder = \"/gpfs/exfel/data/scratch/karnem/test_LPD/\" # Output folder, required\n", + "use_existing = \"/gpfs/exfel/data/scratch/karnem/test_LPD/\" # Input folder\n", "dclass = \"LPD\" # Detector class\n", "nMemToShow = 32 # Number of memory cells to be shown in plots over ASICs\n", "range_offset = [4000., 5500, 6500, 8500] # plotting range for offset: high gain l, r, medium gain l, r \n", @@ -30,7 +28,9 @@ "range_noise_e = [85., 500., 85., 500.] # plotting range for noise in [e-]: high gain l, r, medium gain l, r \n", "range_slopesPC = [22.0, 27.0, -0.5, 1.5] # plotting range for slope PC: high gain l, r, medium gain l, r \n", "range_slopesCI = [22.0, 27.0, -0.5, 1.5] # plotting range for slope CI: high gain l, r, medium gain l, r \n", - "range_slopesFF = [0.8, 1.2, 0.6, 1.2] # plotting range for slope FF: high gain l, r, medium gain l, r " + "range_slopesFF = [0.8, 1.2, 0.6, 1.2] # plotting range for slope FF: high gain l, r, medium gain l, r \n", + "plot_range = 3 # range for plotting in units of median absolute deviations\n", + "x_labels = ['Acquisition rate', 'Memory cells'] # parameters to be shown on X axis" ] }, { @@ -48,7 +48,7 @@ "\n", "from cal_tools.ana_tools import (load_data_from_hdf5, \n", " HMType, multi_union,\n", - " hm_combine)" + " hm_combine, get_range)" ] }, { @@ -81,9 +81,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# Parameters for plotting\n", @@ -116,7 +114,7 @@ "cell_type": "code", "execution_count": null, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [], "source": [ @@ -147,10 +145,9 @@ " if (\"mdata\" in data):\n", " cmdata = np.array(data[\"mdata\"])\n", " for i, tick in enumerate(ctimes_ticks):\n", - " ctimes_ticks[i] = ctimes_ticks[i] + \\\n", - " ', V={:1.0f}'.format(cmdata[i]['Sensor Bias Voltage']) + \\\n", - " ', M={:1.0f}'.format(\n", - " cmdata[i]['Memory cells'])\n", + " for entr in x_labels:\n", + " ctimes_ticks[i] += ', {}={}'.format(entr[0].upper(), \n", + " cmdata[i].get(entr, None))\n", "\n", " sort_ind = np.argsort(ctimes_ticks)\n", " ctimes_ticks = list(np.array(ctimes_ticks)[sort_ind])\n", @@ -217,15 +214,10 @@ " nModules = len(mod_names)\n", " mod_idx = np.argsort(mod_names)\n", " for key in mod_data:\n", - " vmin = None\n", - " vmax = None\n", + " vmin,vmax = get_range(np.array(mod_data[key])[mod_idx][::-1].flatten(), plot_range)\n", " if const in rangevals and key in ['Mean', 'MeanBP']:\n", " vmin = rangevals[const][gain][0]\n", " vmax = rangevals[const][gain][1]\n", - " else:\n", - " vmin = np.nanmin(np.array(mod_data[key]))\n", - " vmax = np.nanmean(\n", - " np.array(mod_data[key])) + 2*np.nanstd(np.array(mod_data[key]))\n", "\n", " htype = None\n", " if const in ['SlopesFF', 'SlopesPC', 'SlopesCI']:\n", diff --git a/xfel_calibrate/notebooks.py b/xfel_calibrate/notebooks.py index fe9df1c8a4354f8fa39da5d8d60385a94ec02c71..a004bdb0e2bc30d95687a032f0e8f6d1c9ca6c02 100644 --- a/xfel_calibrate/notebooks.py +++ b/xfel_calibrate/notebooks.py @@ -150,6 +150,13 @@ notebooks = { "use function": "balance_sequences", "cluster cores": 4}, }, + + "STATS_FROM_DB": { + "notebook": "notebooks/Jungfrau/PlotFromCalDB_Jungfrau_NBC.ipynb", + "concurrency": {"parameter": None, + "default concurrency": None, + "cluster cores": 1}, + }, }, "EPIX": { "DARK": {