diff --git a/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb b/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb index aea44da2de8ec67d734d8fd772118cd4c596bd20..b4242d6e9b0b9f873eae29d368cca18ecae94860 100644 --- a/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb +++ b/notebooks/AGIPD/Characterize_AGIPD_Gain_Darks_NBC.ipynb @@ -29,9 +29,9 @@ "out_folder = \"/gpfs/exfel/data/scratch/ahmedk/test/AGIPDbad_sep64\" # path to output to, required\n", "sequences = [0] # sequence files to evaluate.\n", "modules = [-1] # list of modules to evaluate, RANGE ALLOWED\n", - "run_high = 199 # run number in which high gain data was recorded, required\n", - "run_med = 200 # run number in which medium gain data was recorded, required\n", - "run_low = 201 # run number in which low gain data was recorded, required\n", + "run_high = 167 # run number in which high gain data was recorded, required\n", + "run_med = 168 # run number in which medium gain data was recorded, required\n", + "run_low = 169 # run number in which low gain data was recorded, required\n", "\n", "karabo_id = \"SPB_DET_AGIPD1M-1\" # karabo karabo_id\n", "karabo_da = [-1] # data aggregators\n", @@ -56,19 +56,19 @@ "interlaced = False # assume interlaced data format, for data prior to Dec. 2017\n", "rawversion = 2 # RAW file format version\n", "\n", - "thresholds_offset_sigma = 3. # thresholds in terms of n sigma noise for offset deduced bad pixels\n", - "thresholds_offset_hard = [0, 0] # This offset threshold is left for back compatability or for defining threshold for the 3 gains\n", - "thresholds_offset_hard_hg = [4000, 8500] # High-gain thresholds in absolute ADU terms for offset deduced bad pixels\n", - "thresholds_offset_hard_mg = [4000, 8500] # Medium-gain thresholds in absolute ADU terms for offset deduced bad pixels\n", - "thresholds_offset_hard_lg = [4000, 8500] # Low-gain thresholds in absolute ADU terms for offset deduced bad pixels\n", + "thresholds_offset_sigma = 3. # offset sigma thresholds for offset deduced bad pixels\n", + "thresholds_offset_hard = [0, 0] # For setting the same threshold offset for the 3 gains. Left for backcompatability. Default [0, 0] to take the following parameters.\n", + "thresholds_offset_hard_hg = [3000, 7000] # High-gain thresholds in absolute ADU terms for offset deduced bad pixels\n", + "thresholds_offset_hard_mg = [6000, 10000] # Medium-gain thresholds in absolute ADU terms for offset deduced bad pixels\n", + "thresholds_offset_hard_lg = [6000, 10000] # Low-gain thresholds in absolute ADU terms for offset deduced bad pixels\n", "\n", - "thresholds_noise_sigma = 5. # thresholds in terms of n sigma noise for offset deduced bad pixels\n", - "thresholds_noise_hard = [0, 0] # This noise threshold is left for back compatability or for defining threshold for the 3 gains\n", + "thresholds_noise_sigma = 5. # noise sigma thresholds for offset deduced bad pixels\n", + "thresholds_noise_hard = [0, 0] # For setting the same threshold noise for the 3 gains. Left for backcompatability. Default [0, 0] to take the following parameters.\n", "thresholds_noise_hard_hg = [4, 20] # High-gain thresholds in absolute ADU terms for offset deduced bad pixels\n", "thresholds_noise_hard_mg = [4, 20] # Medium-gain thresholds in absolute ADU terms for offset deduced bad pixels\n", "thresholds_noise_hard_lg = [4, 20] # Low-gain thresholds in absolute ADU terms for offset deduced bad pixels\n", "\n", - "gain_sep_sigma = 5. # gain separation sigma\n", + "thresholds_gain_sigma = 5. # Gain separation sigma threshold\n", "\n", "high_res_badpix_3d = False # set this to True if you need high-resolution 3d bad pixel plots. Runtime: ~ 1h" ] @@ -260,16 +260,15 @@ "source": [ "import copy\n", "from functools import partial\n", - "import iCalibrationDB\n", "def characterize_module(il_mode, cells, bp_thresh, rawversion, loc, acq_rate,\n", - " prev_gains, prev_noise, h5path, h5path_idx, inp):\n", + " h5path, h5path_idx, inp):\n", " import numpy as np\n", " import copy\n", " import h5py\n", " from cal_tools.enums import BadPixels\n", " from cal_tools.agipdlib import get_num_cells, get_acq_rate\n", "\n", - " filename, filename_out, channel = inp\n", + " filename, channel, gg = inp\n", " \n", " if cells == 0:\n", " cells = get_num_cells(filename, loc, channel)\n", @@ -279,8 +278,9 @@ " if acq_rate == 0.:\n", " acq_rate = get_acq_rate(filename, loc, channel)\n", "\n", - " thresholds_offset_hard, thresholds_offset_sigma, thresholds_noise_hard, thresholds_noise_sigma = bp_thresh \n", - "\n", + " thresholds_offset, thresholds_offset_sigma, thresholds_noise, thresholds_noise_sigma = bp_thresh \n", + " thresholds_offset_hard = thresholds_offset[gg]\n", + " thresholds_noise_hard = thresholds_noise[gg]\n", " infile = h5py.File(filename, \"r\", driver=\"core\")\n", " \n", " h5path = h5path.format(channel)\n", @@ -322,12 +322,14 @@ " offset = np.zeros((im.shape[0], im.shape[1], mcells))\n", " gains = np.zeros((im.shape[0], im.shape[1], mcells))\n", " noise = np.zeros((im.shape[0], im.shape[1], mcells))\n", - "\n", + " gains_std = np.zeros((im.shape[0], im.shape[1], mcells))\n", + " \n", " for cc in np.unique(cellIds[cellIds < mcells]):\n", " cellidx = cellIds == cc\n", " offset[...,cc] = np.median(im[..., cellidx], axis=2)\n", " noise[...,cc] = np.std(im[..., cellidx], axis=2)\n", " gains[...,cc] = np.median(ga[..., cellidx], axis=2)\n", + " gains_std[...,cc] = np.std(ga[..., cellidx], axis=2)\n", "\n", " # bad pixels\n", " bp = np.zeros(offset.shape, np.uint32)\n", @@ -335,12 +337,6 @@ " offset_mn = np.nanmedian(offset, axis=(0,1))\n", " offset_std = np.nanstd(offset, axis=(0,1))\n", "\n", - " # Bad pixels during bad gain separation.\n", - " # Fraction of pixels in the module with separation lower than \"gain_sep_sigma\".\n", - " if prev_gains is not None:\n", - " bad_sep = (gains-prev_gains) / np.sqrt(noise**2 + prev_noise**2)\n", - " bp[(bad_sep)<gain_sep_sigma]|= BadPixels.GAIN_THRESHOLDING_ERROR.value\n", - "\n", " bp[(offset < offset_mn-thresholds_offset_sigma*offset_std) |\n", " (offset > offset_mn+thresholds_offset_sigma*offset_std)] |= BadPixels.OFFSET_OUT_OF_THRESHOLD.value\n", " bp[(offset < thresholds_offset_hard[0]) | (\n", @@ -355,74 +351,71 @@ " bp[(noise < thresholds_noise_hard[0]) | (noise > thresholds_noise_hard[1])] |= BadPixels.NOISE_OUT_OF_THRESHOLD.value\n", " bp[~np.isfinite(noise)] |= BadPixels.OFFSET_NOISE_EVAL_ERROR.value\n", "\n", - " return offset, noise, gains, bp, cells, acq_rate\n", + " return offset, noise, gains, gains_std, gg, bp, cells, acq_rate\n", "\n", "offset_g = OrderedDict()\n", "noise_g = OrderedDict()\n", "gain_g = OrderedDict()\n", + "gainstd_g = OrderedDict()\n", "badpix_g = OrderedDict()\n", "gg = 0\n", "\n", "start = datetime.now()\n", "all_cells = []\n", "all_acq_rate = []\n", - "gains = None\n", - "noise = None\n", - "\n", - "prev_gains = None\n", - "prev_noise = None\n", "\n", "if thresholds_offset_hard == [0, 0]:\n", " thresholds_offset_hard = [thresholds_offset_hard_hg, thresholds_offset_hard_mg, thresholds_offset_hard_lg]\n", "else:\n", - " thresholds_offset_hard = [thresholds_offset_hard]*3\n", + " thresholds_offset_hard = [thresholds_offset_hard] * 3\n", "\n", "if thresholds_noise_hard == [0, 0]:\n", " thresholds_noise_hard = [thresholds_noise_hard_hg, thresholds_noise_hard_mg, thresholds_noise_hard_lg]\n", "else:\n", - " thresholds_noise_hard = [thresholds_noise_hard]*3\n", + " thresholds_noise_hard = [thresholds_noise_hard] * 3\n", "\n", + " \n", + "inp = []\n", "for gain, mapped_files in gain_mapped_files.items():\n", - " inp = []\n", " dones = []\n", " for i in modules:\n", - " qm = \"Q{}M{}\".format(i//4 +1, i % 4 + 1)\n", + " qm = f\"Q{i//4+1}M{i%4+1}\"\n", " if qm in mapped_files and not mapped_files[qm].empty():\n", " fname_in = mapped_files[qm].get()\n", " dones.append(mapped_files[qm].empty())\n", " else:\n", " continue\n", - " fout = os.path.abspath(\"{}/{}\".format(out_folder, (os.path.split(fname_in)[-1]).replace(\"RAW\", \"CORR\")))\n", - " inp.append((fname_in, fout, i))\n", - " first = False\n", - " prev_gains = gains\n", - " prev_noise = noise\n", - " p = partial(characterize_module, IL_MODE, max_cells,\n", - " (thresholds_offset_hard[gg], thresholds_offset_sigma,\n", - " thresholds_noise_hard[gg], thresholds_noise_sigma),\n", - " rawversion, karabo_id, acq_rate, prev_gains, prev_noise, h5path, h5path_idx)\n", - "\n", - " # Don't remove. Used for Debugging.\n", - " #results = list(map(p, inp))\n", - " results = view.map_sync(p, inp)\n", - "\n", - " for ii, r in enumerate(results):\n", - " i = modules[ii]\n", - " offset, noise, gains, bp, thiscell, thisacq = r\n", - " all_cells.append(thiscell)\n", - " all_acq_rate.append(thisacq)\n", - " qm = \"Q{}M{}\".format(i//4 +1, i % 4 + 1)\n", - " if qm not in offset_g:\n", - " offset_g[qm] = np.zeros((offset.shape[0], offset.shape[1], offset.shape[2], 3))\n", - " noise_g[qm] = np.zeros_like(offset_g[qm])\n", - " gain_g[qm] = np.zeros_like(offset_g[qm])\n", - " badpix_g[qm] = np.zeros_like(offset_g[qm], np.uint32)\n", - "\n", - " offset_g[qm][...,gg] = offset\n", - " noise_g[qm][...,gg] = noise\n", - " gain_g[qm][...,gg] = gains\n", - " badpix_g[qm][...,gg] = bp\n", - " gg +=1\n", + " inp.append((fname_in, i, gg))\n", + " \n", + " gg += 1\n", + "\n", + "p = partial(characterize_module, IL_MODE, max_cells,\n", + " (thresholds_offset_hard, thresholds_offset_sigma,\n", + " thresholds_noise_hard, thresholds_noise_sigma),\n", + " rawversion, karabo_id, acq_rate, h5path, h5path_idx)\n", + "\n", + "# Don't remove. Used for Debugging.\n", + "#results = list(map(p, inp))\n", + "results = view.map_sync(p, inp)\n", + "\n", + "for ii, r in enumerate(results):\n", + " offset, noise, gains, gains_std, gg, bp, thiscell, thisacq = r\n", + " all_cells.append(thiscell)\n", + " all_acq_rate.append(thisacq)\n", + " qm = \"Q{}M{}\".format(i//4 + 1, i % 4 + 1)\n", + " if qm not in offset_g:\n", + " offset_g[qm] = np.zeros((offset.shape[0], offset.shape[1], offset.shape[2], 3))\n", + " noise_g[qm] = np.zeros_like(offset_g[qm])\n", + " gain_g[qm] = np.zeros_like(offset_g[qm])\n", + " gainstd_g[qm] = np.zeros_like(offset_g[qm])\n", + " badpix_g[qm] = np.zeros_like(offset_g[qm], np.uint32)\n", + "\n", + " offset_g[qm][...,gg] = offset\n", + " noise_g[qm][...,gg] = noise\n", + " gain_g[qm][...,gg] = gains\n", + " gainstd_g[qm][..., gg] = gains_std\n", + " badpix_g[qm][...,gg] = bp\n", + " \n", "\n", "duration = (datetime.now()-start).total_seconds()\n", "logger.runtime_summary_entry(success=True, runtime=duration,\n", @@ -435,6 +428,20 @@ "print(f\"Using {acq_rate} MHz acquisition rate\")" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Add a badpixel due to bad gain separation\n", + "for g in range(2):\n", + " # Bad pixels during bad gain separation.\n", + " # Fraction of pixels in the module with separation lower than \"thresholds_gain_sigma\".\n", + " bad_sep = (gain_g[qm][..., g+1] - gain_g[qm][..., g]) / np.sqrt(gainstd_g[qm][..., g+1]**2 + gainstd_g[qm][..., g]**2)\n", + " badpix_g[qm][...,g+1][(bad_sep)<thresholds_gain_sigma]|= BadPixels.GAIN_THRESHOLDING_ERROR.value" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -564,8 +571,8 @@ "\n", " print(f\"Injecting constants {const} with conditions:\\n\")\n", " print(\"1. memory_cells: {}\\n2. bias_voltage: {}\\n\"\n", - " \"3. acquisition_rate: {}\\n4. gain_setting: {}\\n\"\n", - " \"5. creation_time: {}\\n\".format(max_cells, bias_voltage,\n", + " \"3. acquisition_rate: {}\\n4. gain_setting: {}\\n\"\n", + " \"5. creation_time: {}\\n\".format(max_cells, bias_voltage,\n", " acq_rate, gain_setting,\n", " creation_time))\n", " for const in res[qm]:\n", @@ -754,8 +761,8 @@ "source": [ "cols = {BadPixels.NOISE_OUT_OF_THRESHOLD.value: (BadPixels.NOISE_OUT_OF_THRESHOLD.name, '#FF000080'),\n", " BadPixels.OFFSET_NOISE_EVAL_ERROR.value: (BadPixels.OFFSET_NOISE_EVAL_ERROR.name, '#0000FF80'),\n", - " BadPixels.OFFSET_OUT_OF_THRESHOLD.value: (BadPixels.OFFSET_OUT_OF_THRESHOLD.name, '#00BF2080'),\n", - " BadPixels.GAIN_THRESHOLDING_ERROR.value: (BadPixels.GAIN_THRESHOLDING_ERROR.name, '#FFDF0080'),\n", + " BadPixels.OFFSET_OUT_OF_THRESHOLD.value: (BadPixels.OFFSET_OUT_OF_THRESHOLD.name, '#FFDF0080'),\n", + " BadPixels.GAIN_THRESHOLDING_ERROR.value: (BadPixels.GAIN_THRESHOLDING_ERROR.name, '#00BF2080'),\n", " BadPixels.OFFSET_OUT_OF_THRESHOLD.value | BadPixels.NOISE_OUT_OF_THRESHOLD.value: ('MIXED', '#DD00DD80')}\n", "\n", "rebin = 8 if not high_res_badpix_3d else 2\n", @@ -994,6 +1001,13 @@ " md = display(Latex(tabulate.tabulate(table, tablefmt='latex', headers=header))) " ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, diff --git a/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb b/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb index 17c3a3902ed0e69a6110beb3295e2e2af8b00731..6371a0d78f2477e8a08fc5888f81150e3817c776 100644 --- a/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb +++ b/notebooks/generic/overallmodules_Darks_Summary_NBC.ipynb @@ -45,9 +45,10 @@ "\n", "**\"GAIN_THRESHOLDING_ERROR\":**\n", "\n", - "Bad gain separated values with distance less than gain_separation_sigma \n", + "Bad gain separated pixels with sigma separation less than gain_separation_sigma_threshold\n", "\n", - "$$\\frac{\\mathrm{gain\\_offset\\_median} - \\mathrm{prev\\_gain\\_offset\\_median}}{\\sqrt{\\mathrm{noise\\_std}^\\mathrm{2} - \\mathrm{prev\\_noise\\_std}^\\mathrm{2}}} < \\mathrm{gain\\_separation\\_sigma} $$" + "$$ sigma\\_separation = \\frac{\\mathrm{gain\\_offset} - \\mathrm{previous\\_gain\\_offset}}{\\sqrt{\\mathrm{gain\\_offset_{std}}^\\mathrm{2} + \\mathrm{previuos\\_gain\\_offset_{std}}^\\mathrm{2}}}$$ \n", + "$$ Bad\\_separation = sigma\\_separation < \\mathrm{gain\\_separation\\_sigma\\_threshold} $$" ] }, {