From ef0a008aebdeb4c203f2bbba4fc7903d106bb711 Mon Sep 17 00:00:00 2001 From: David Hammer <dhammer@mailbox.org> Date: Mon, 15 Mar 2021 15:45:04 +0100 Subject: [PATCH] Flake8 and related fixes - trailing whitespace - unused variables - unused imports - misc formatting --- .../AGIPD/AGIPD_Correct_and_Verify.ipynb | 197 ++++++------------ ...IPD_Retrieve_Constants_Precorrection.ipynb | 6 +- 2 files changed, 68 insertions(+), 135 deletions(-) diff --git a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb index 82f22b590..f13e87851 100644 --- a/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb +++ b/notebooks/AGIPD/AGIPD_Correct_and_Verify.ipynb @@ -14,12 +14,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-02-21T11:30:06.730220Z", - "start_time": "2019-02-21T11:30:06.658286Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "in_folder = \"/gpfs/exfel/exp/HED/202031/p900174/raw\" # the folder to read data from, required\n", @@ -51,7 +46,7 @@ "gain_setting = 0.1 # the gain setting, use 0.1 to try to auto-determine\n", "photon_energy = 9.2 # photon energy in keV\n", "overwrite = True # set to True if existing data should be overwritten\n", - "max_pulses = [0, 500, 1] # range list [st, end, step] of maximum pulse indices within a train. 3 allowed maximum list input elements. \n", + "max_pulses = [0, 500, 1] # range list [st, end, step] of maximum pulse indices within a train. 3 allowed maximum list input elements.\n", "mem_cells_db = 0 # set to a value different than 0 to use this value for DB queries\n", "cell_id_preview = 1 # cell Id used for preview in single-shot plots\n", "\n", @@ -71,7 +66,7 @@ "xray_gain = False # do relative gain correction based on xray data\n", "blc_noise = False # if set, baseline correction via noise peak location is attempted\n", "blc_stripes = False # if set, baseline corrected via stripes\n", - "blc_hmatch = False # if set, base line correction via histogram matching is attempted \n", + "blc_hmatch = False # if set, base line correction via histogram matching is attempted\n", "match_asics = False # if set, inner ASIC borders are matched to the same signal level\n", "adjust_mg_baseline = False # adjust medium gain baseline to match highest high gain value\n", "zero_nans = False # set NaN values in corrected data to 0\n", @@ -104,8 +99,6 @@ "metadata": {}, "outputs": [], "source": [ - "import copy\n", - "import gc\n", "import itertools\n", "import math\n", "import re\n", @@ -114,11 +107,11 @@ "from datetime import timedelta\n", "from multiprocessing import Pool\n", "from pathlib import Path\n", - "from time import perf_counter, sleep, time\n", + "from time import perf_counter\n", "\n", "import tabulate\n", "from dateutil import parser\n", - "from IPython.display import HTML, Latex, Markdown, display\n", + "from IPython.display import Latex, Markdown, display\n", "\n", "warnings.filterwarnings('ignore')\n", "import matplotlib\n", @@ -126,11 +119,8 @@ "import yaml\n", "from extra_data import RunDirectory, stack_detector_data\n", "from extra_geom import AGIPD_1MGeometry, AGIPD_500K2GGeometry\n", - "from iCalibrationDB import Detectors\n", "from matplotlib import cm as colormap\n", "from matplotlib.colors import LogNorm\n", - "from matplotlib.ticker import FormatStrFormatter, LinearLocator\n", - "from mpl_toolkits.mplot3d import Axes3D\n", "\n", "matplotlib.use(\"agg\")\n", "%matplotlib inline\n", @@ -148,8 +138,7 @@ "from cal_tools.cython import agipdalgs as calgs\n", "from cal_tools.enums import AgipdGainMode, BadPixels\n", "from cal_tools.step_timing import StepTimer\n", - "from cal_tools.tools import (CalibrationMetadata, get_dir_creation_date,\n", - " map_modules_from_folder, module_index_to_qm)\n", + "from cal_tools.tools import (get_dir_creation_date, map_modules_from_folder, module_index_to_qm)\n", "\n", "sns.set()\n", "sns.set_context(\"paper\", font_scale=1.4)\n", @@ -255,7 +244,7 @@ " karabo_da = [\"AGIPD{:02d}\".format(i) for i in modules]\n", "else:\n", " modules = [int(x[-2:]) for x in karabo_da]\n", - " \n", + "\n", "print(\"Process modules: \", ', '.join(\n", " [module_index_to_qm(x) for x in modules]))\n", "print(f\"Detector in use is {karabo_id}\")\n", @@ -270,17 +259,17 @@ "outputs": [], "source": [ "# Display Information about the selected pulses indices for correction.\n", - "pulses_lst = list(range(*max_pulses)) if not (len(max_pulses)==1 and max_pulses[0]==0) else max_pulses \n", + "pulses_lst = list(range(*max_pulses)) if not (len(max_pulses)==1 and max_pulses[0]==0) else max_pulses\n", "\n", "try:\n", - " if len(pulses_lst) > 1: \n", + " if len(pulses_lst) > 1:\n", " print(\"A range of {} pulse indices is selected: from {} to {} with a step of {}\"\n", " .format(len(pulses_lst), pulses_lst[0] , pulses_lst[-1] + (pulses_lst[1] - pulses_lst[0]),\n", " pulses_lst[1] - pulses_lst[0]))\n", " else:\n", - " print(\"one pulse is selected: a pulse of idx {}\".format(pulses_lst[0]))\n", + " print(f\"one pulse is selected: a pulse of idx {pulses_lst[0]}\")\n", "except Exception as e:\n", - " raise ValueError('max_pulses input Error: {}'.format(e))" + " raise ValueError(f\"max_pulses input Error: {e}\")" ] }, { @@ -352,7 +341,7 @@ " delta = timedelta(hours=offset.hour,\n", " minutes=offset.minute, seconds=offset.second)\n", " creation_time += delta\n", - " \n", + "\n", "# Evaluate gain setting\n", "if gain_setting == 0.1:\n", " if creation_time.replace(tzinfo=None) < parser.parse('2020-01-31'):\n", @@ -434,11 +423,10 @@ "def retrieve_constants(mod):\n", " \"\"\"\n", " Retrieve calibration constants and load them to shared memory\n", - " \n", + "\n", " Metadata for constants is taken from yml file or retrieved from the DB\n", " \"\"\"\n", - " err = ''\n", - " # TODO: parallelize over modules\n", + " err = \"\"\n", " k_da = karabo_da[mod]\n", " try:\n", " # check if there is a yaml file in out_folder that has the device constants.\n", @@ -446,8 +434,19 @@ " when = agipd_corr.initialize_from_yaml(k_da, const_yaml, mod)\n", " else:\n", " # TODO: should we save what is found here in metadata?\n", - " when = agipd_corr.initialize_from_db(karabo_id, k_da, cal_db_interface, creation_time, mem_cells_db, bias_voltage,\n", - " photon_energy, gain_setting, acq_rate, mod, False)\n", + " when = agipd_corr.initialize_from_db(\n", + " karabo_id,\n", + " k_da,\n", + " cal_db_interface,\n", + " creation_time,\n", + " mem_cells_db,\n", + " bias_voltage,\n", + " photon_energy,\n", + " gain_setting,\n", + " acq_rate,\n", + " mod,\n", + " False,\n", + " )\n", " except Exception as e:\n", " err = f\"Error: {e}\\nError traceback: {traceback.format_exc()}\"\n", " when = None\n", @@ -494,7 +493,7 @@ "source": [ "def imagewise_chunks(img_counts):\n", " \"\"\"Break up the loaded data into chunks of up to chunk_size\n", - " \n", + "\n", " Yields (file data slot, start index, stop index)\n", " \"\"\"\n", " for i_proc, n_img in enumerate(img_counts):\n", @@ -515,9 +514,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [], "source": [ "with Pool() as pool:\n", @@ -546,7 +543,7 @@ " # Perform image-wise correction\n", " pool.starmap(agipd_corr.baseline_correction, imagewise_chunks(img_counts))\n", " step_timer.done_step(\"Base-line shift correction\")\n", - " \n", + "\n", " if common_mode:\n", " # Perform cross-file correction parallel over asics\n", " pool.starmap(agipd_corr.cm_correction, itertools.product(\n", @@ -584,9 +581,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [], "source": [ "# if the yml file contains \"retrieved-constants\", that means a leading\n", @@ -604,7 +599,7 @@ " if fst_print:\n", " print(\"Constants are retrieved with creation time: \")\n", " fst_print = False\n", - " \n", + "\n", " module_timestamps = {}\n", "\n", " # If correction is crashed\n", @@ -652,8 +647,7 @@ " Z = data.T\n", "\n", " # Plot the surface.\n", - " surf = ax.plot_surface(X, Y, Z, cmap=colormap.coolwarm,\n", - " linewidth=0, antialiased=False)\n", + " ax.plot_surface(X, Y, Z, cmap=colormap.coolwarm, linewidth=0, antialiased=False)\n", " ax.set_xlabel(x_axis)\n", " ax.set_ylabel(y_axis)\n", " ax.set_zlabel(\"Counts\")\n", @@ -680,7 +674,7 @@ "source": [ "def get_trains_data(run_folder, source, include, detector_id, tid=None, modules=16, fillvalue=np.nan):\n", " \"\"\"Load single train for all module\n", - " \n", + "\n", " :param run_folder: Path to folder with data\n", " :param source: Data source to be loaded\n", " :param include: Inset of file name to be considered\n", @@ -693,7 +687,7 @@ " tid, data = run_data.select(f'{detector_id}/DET/*', source).train_from_id(tid)\n", " else:\n", " tid, data = next(iter(run_data.select(f'{detector_id}/DET/*', source).trains(require_all=True)))\n", - " \n", + "\n", " return tid, stack_detector_data(train=data, data=source, fillvalue=fillvalue, modules=modules)" ] }, @@ -791,7 +785,7 @@ "print(f\"Gain statistics in %\")\n", "table = [[f'{gains[gains==0].size/gains.size*100:.02f}',\n", " f'{gains[gains==1].size/gains.size*100:.03f}',\n", - " f'{gains[gains==2].size/gains.size*100:.03f}']] \n", + " f'{gains[gains==2].size/gains.size*100:.03f}']]\n", "md = display(Latex(tabulate.tabulate(table, tablefmt='latex',\n", " headers=[\"High\", \"Medium\", \"Low\"])))" ] @@ -806,9 +800,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [], "source": [ "pulse_range = [np.min(pulseId[pulseId>=0]), np.max(pulseId[pulseId>=0])]\n", @@ -882,12 +874,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-02-18T17:29:33.226396Z", - "start_time": "2019-02-18T17:29:27.027758Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 10))\n", @@ -923,12 +910,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-02-18T17:29:33.761015Z", - "start_time": "2019-02-18T17:29:33.227922Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 10))\n", @@ -941,24 +923,19 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-02-18T17:29:35.903487Z", - "start_time": "2019-02-18T17:29:33.762568Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", "vmin, vmax = get_range(corrected[cell_id_preview], 5, -50)\n", "nbins = np.int((vmax + 50) / 2)\n", - "h = ax.hist(corrected[cell_id_preview].flatten(), \n", - " bins=nbins, range=(-50, vmax), \n", + "h = ax.hist(corrected[cell_id_preview].flatten(),\n", + " bins=nbins, range=(-50, vmax),\n", " histtype='stepfilled', log=True)\n", - "_ = plt.xlabel('[ADU]')\n", - "_ = plt.ylabel('Counts')\n", - "_ = ax.grid()" + "plt.xlabel('[ADU]')\n", + "plt.ylabel('Counts')\n", + "ax.grid()" ] }, { @@ -968,18 +945,13 @@ "outputs": [], "source": [ "display(Markdown('### Mean CORRECTED Preview ###\\n'))\n", - "display(Markdown(f'A mean across one train \\n'))" + "display(Markdown(f'A mean across one train\\n'))" ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-02-18T17:29:39.369686Z", - "start_time": "2019-02-18T17:29:35.905152Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 10))\n", @@ -992,12 +964,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-02-18T17:29:49.217848Z", - "start_time": "2019-02-18T17:29:39.371232Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 10))\n", @@ -1009,16 +976,16 @@ "nbins = np.int((vmax + 100) / 5)\n", "h = ax.hist(corrected.flatten(), bins=nbins,\n", " range=(-100, vmax), histtype='step', log=True, label = 'All')\n", - "_ = ax.hist(corrected[gains == 0].flatten(), bins=nbins, range=(-100, vmax),\n", - " alpha=0.5, log=True, label='High gain', color='green')\n", - "_ = ax.hist(corrected[gains == 1].flatten(), bins=nbins, range=(-100, vmax),\n", - " alpha=0.5, log=True, label='Medium gain', color='red')\n", - "_ = ax.hist(corrected[gains == 2].flatten(), bins=nbins,\n", - " range=(-100, vmax), alpha=0.5, log=True, label='Low gain', color='yellow')\n", - "_ = ax.legend()\n", - "_ = ax.grid()\n", - "_ = plt.xlabel('[ADU]')\n", - "_ = plt.ylabel('Counts')" + "ax.hist(corrected[gains == 0].flatten(), bins=nbins, range=(-100, vmax),\n", + " alpha=0.5, log=True, label='High gain', color='green')\n", + "ax.hist(corrected[gains == 1].flatten(), bins=nbins, range=(-100, vmax),\n", + " alpha=0.5, log=True, label='Medium gain', color='red')\n", + "ax.hist(corrected[gains == 2].flatten(), bins=nbins, range=(-100, vmax),\n", + " alpha=0.5, log=True, label='Low gain', color='yellow')\n", + "ax.legend()\n", + "ax.grid()\n", + "plt.xlabel('[ADU]')\n", + "plt.ylabel('Counts')" ] }, { @@ -1034,12 +1001,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-02-18T17:29:49.641675Z", - "start_time": "2019-02-18T17:29:49.224167Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 10))\n", @@ -1050,9 +1012,7 @@ }, { "cell_type": "markdown", - "metadata": { - "collapsed": true - }, + "metadata": {}, "source": [ "## Bad Pixels ##\n", "The mask contains dedicated entries for all pixels and memory cells as well as all three gains stages. Each mask entry is encoded in 32 bits as:" @@ -1061,12 +1021,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-02-18T17:29:49.651913Z", - "start_time": "2019-02-18T17:29:49.643556Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "table = []\n", @@ -1089,24 +1044,17 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-02-18T17:29:50.086169Z", - "start_time": "2019-02-18T17:29:49.653391Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", - "ax = geom.plot_data_fast(np.log2(mask[cell_id_preview]), ax=ax, vmin=0, vmax=32, cmap=\"jet\")" + "geom.plot_data_fast(np.log2(mask[cell_id_preview]), ax=ax, vmin=0, vmax=32, cmap=\"jet\")" ] }, { "cell_type": "markdown", - "metadata": { - "collapsed": true - }, + "metadata": {}, "source": [ "### Percentage of Bad Pixels across one train ###" ] @@ -1114,18 +1062,12 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-02-18T17:29:51.686562Z", - "start_time": "2019-02-18T17:29:50.088883Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 10))\n", "ax = fig.add_subplot(111)\n", - "ax = geom.plot_data_fast(np.mean(mask>0, axis=0),\n", - " vmin=0, ax=ax, vmax=1, cmap=\"jet\")" + "geom.plot_data_fast(np.mean(mask>0, axis=0), vmin=0, ax=ax, vmax=1, cmap=\"jet\")" ] }, { @@ -1138,12 +1080,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2019-02-18T17:29:55.483270Z", - "start_time": "2019-02-18T17:29:53.664226Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "fig = plt.figure(figsize=(20, 10))\n", diff --git a/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb b/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb index 73e3ed6d4..f6b40e513 100644 --- a/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb +++ b/notebooks/AGIPD/AGIPD_Retrieve_Constants_Precorrection.ipynb @@ -133,10 +133,6 @@ "print(f\"Outputting to {out_folder}\")\n", "out_folder.mkdir(parents=True, exist_ok=True)\n", "\n", - "import warnings\n", - "\n", - "warnings.filterwarnings('ignore')\n", - "\n", "melt_snow = False if corr_bools[\"only_offset\"] else agipdlib.SnowResolution.NONE" ] }, @@ -380,7 +376,7 @@ " ', '.join([tools.module_index_to_qm(x) for x in modules]))\n", " print(f\"Operating conditions are:\")\n", " print(f\"• Bias voltage: {bias_voltage}\")\n", - " print(f\"• Memory cells: {max_cells}\\n\")\n", + " print(f\"• Memory cells: {max_cells}\")\n", " print(f\"• Acquisition rate: {acq_rate}\")\n", " print(f\"• Gain mode: {gain_mode.name}\")\n", " print(f\"• Gain setting: {gain_setting}\")\n", -- GitLab