diff --git a/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb
index eacdcffe2503561803508141281afbeefa4b9514..5e64c6ae03dce1fb33e93e75bae681ee2b2fb6a2 100644
--- a/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb
+++ b/notebooks/Jungfrau/Jungfrau_Gain_Correct_and_Verify_NBC.ipynb
@@ -29,6 +29,7 @@
     "receiver_template = \"JNGFR{:02d}\"  # Detector receiver template for accessing raw data files. e.g. \"JNGFR{:02d}\"\n",
     "path_template = 'RAW-R{:04d}-{}-S{:05d}.h5'  # template to use for file name\n",
     "instrument_source_template = '{}/DET/{}:daqOutput'  # template for source name (filled with karabo_id & receiver_id). e.g. 'SPB_IRDA_JF4M/DET/JNGFR01:daqOutput'\n",
+    "ctrl_source_template = '{}/DET/CONTROL'  # template for control source name (filled with karabo_id).\n",
     "karabo_id_control = \"\"  # if control is on a different ID, set to empty string if it is the same a karabo-id\n",
     "karabo_da_control = \"JNGFRCTRL00\"  # file inset for control data\n",
     "\n",
@@ -81,7 +82,8 @@
     "from extra_data import H5File, RunDirectory\n",
     "from matplotlib.colors import LogNorm\n",
     "\n",
-    "from cal_tools import h5_copy_except, jungfraulib\n",
+    "from cal_tools import h5_copy_except\n",
+    "from cal_tools.jungfraulib import JungfrauCtrl\n",
     "from cal_tools.enums import BadPixels\n",
     "from cal_tools.step_timing import StepTimer\n",
     "from cal_tools.tools import (\n",
@@ -170,16 +172,11 @@
    "metadata": {},
    "outputs": [],
    "source": [
-    "# TODO: do we still need to avoid raising error and exiting here?\n",
+    "ctrl_src = ctrl_source_template.format(karabo_id_control)\n",
+    "ctrl_data = JungfrauCtrl(run_dc, ctrl_src)\n",
     "try:\n",
-    "    ctrl_data = jungfraulib.JFCtrl(run_dc, karabo_id_control)\n",
     "    this_run_mcells, sc_start = ctrl_data.get_memory_cells()\n",
     "\n",
-    "    if not manual_slow_data:\n",
-    "        integration_time = ctrl_data.get_integration_time()\n",
-    "        bias_voltage = ctrl_data.get_bias_voltage()\n",
-    "        gain_str, gain_setting = ctrl_data.get_gain_setting()\n",
-    "\n",
     "    if this_run_mcells == 1:\n",
     "        memory_cells = 1\n",
     "        print(\"Run is in single cell mode.\\n\"\n",
@@ -188,20 +185,19 @@
     "        memory_cells = 16\n",
     "        print(f\"Run is in burst mode.\\n\"\n",
     "              f\"Storage cell start: {sc_start:02d}\")\n",
-    "\n",
-    "except Exception as e:\n",
-    "    if \"Unable to open object\" in str(e):\n",
-    "        if mem_cells == 0:\n",
-    "            memory_cells = 1\n",
-    "        else:\n",
-    "            memory_cells = mem_cells\n",
-    "        print(f\"Set memory cells to {memory_cells}, as \"\n",
-    "              \"it is not saved in control information.\")\n",
+    "except KeyError as e:\n",
+    "    print(\"WARNING: KeyError while reading number of memory cells.\")\n",
+    "    if mem_cells == 0:\n",
+    "        memory_cells = 1\n",
     "    else:\n",
-    "        display(Markdown(\n",
-    "            \"### <span style='color: #ff0000'>ERROR: </span> \"\n",
-    "            \"Accessing control information \"\n",
-    "            f\": {e}\"))\n",
+    "        memory_cells = mem_cells\n",
+    "    print(f\"WARNING: Set memory cells to {memory_cells}, as \"\n",
+    "          \"it is not saved in control information.\")\n",
+    "\n",
+    "if not manual_slow_data:\n",
+    "    integration_time = ctrl_data.get_integration_time()\n",
+    "    bias_voltage = ctrl_data.get_bias_voltage()\n",
+    "    gain_str, gain_setting = ctrl_data.get_gain_setting()\n",
     "\n",
     "print(f\"Integration time is {integration_time} us\")\n",
     "print(f\"Gain setting is {gain_setting} ({gain_str})\")\n",
@@ -314,7 +310,7 @@
    "source": [
     "# Correct a chunk of images for offset and gain\n",
     "def correct_train(wid, index, d):\n",
-    "    d = d.astype(np.float32)\n",
+    "    d = d.astype(np.float32)  # [2, x, y]\n",
     "    g = gain[index]\n",
     "    m = memcells[index]\n",
     "\n",
@@ -329,7 +325,9 @@
     "    # As this result in copying data to a new array on every train,\n",
     "    # even when there's the same pattern of memory cells on every train.\n",
     "    if memory_cells > 1:\n",
-    "        m[m>16] = 0\n",
+    "        m[m>16] = 0  # TODO: this is wrong and needs to be updated with burst mode.\n",
+    "        # For an invalid image a memory cell of 255 is set.\n",
+    "        # These images doesn't need to be processed.\n",
     "        offset_map_cell = offset_map[m, ...]\n",
     "        mask_cell = mask[m, ...]\n",
     "    else:\n",
@@ -407,14 +405,15 @@
     "\n",
     "        # Save corrected data in an output file with name\n",
     "        # of corresponding raw sequence file.\n",
-    "        out_file = out_folder / sequence_file.name.replace(\"RAW\", \"CORR\")\n",
+    "        ofile_name = sequence_file.name.replace(\"RAW\", \"CORR\")\n",
+    "        out_file = out_folder / ofile_name\n",
     "\n",
     "        # load shape of data for memory cells, and detector size (imgs, cells, x, y)\n",
     "        # dshape[0] = number of available images to correct.\n",
     "        dshape = seq_dc[instrument_src_kda, \"data.adc\"].shape\n",
     "\n",
     "        if dshape[0] == 0:\n",
-    "            print(f\"\\t- WARNING: No image data for {out_file}: data shape is {dshape}\")\n",
+    "            print(f\"\\t- WARNING: No image data for {ofile_name}: data shape is {dshape}\")\n",
     "            continue\n",
     "\n",
     "        sensor_size = dshape[1:]\n",
@@ -427,9 +426,9 @@
     "        if limit_images > 0:\n",
     "            n_imgs = min(n_imgs, limit_images)\n",
     "\n",
-    "        print(f\"\\nNumber of images to correct: {n_imgs} for {out_file}\")\n",
+    "        print(f\"\\nNumber of images to correct: {n_imgs} for {ofile_name}\")\n",
     "        if n_trains - dshape[0] != 0:\n",
-    "            print(f\"\\t- WARNING: {sequence_file} has {n_trains - dshape[0]} \"\n",
+    "            print(f\"\\t- WARNING: {sequence_file.name} has {n_trains - dshape[0]} \"\n",
     "                  \"trains with empty data.\")\n",
     "\n",
     "        # Just in case if n_imgs is less than the chosen plt_images.\n",
diff --git a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb
index 06ff820f0633bdf0b8d0848314e670c7fb42fec3..e24b0cd43edbfd6f85d67691fe780861aabeebb0 100644
--- a/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb
+++ b/notebooks/Jungfrau/Jungfrau_dark_analysis_all_gains_burst_mode_NBC.ipynb
@@ -25,13 +25,14 @@
     "\n",
     "# Parameters used to access raw data.\n",
     "karabo_da = ['JNGFR01', 'JNGFR02','JNGFR03','JNGFR04', 'JNGFR05', 'JNGFR06','JNGFR07','JNGFR08'] # list of data aggregators, which corresponds to different JF modules\n",
-    "karabo_id = \"SPB_IRDA_JF4M\"  # karabo_id (detector identifier) prefix of Jungfrau detector to process.\n",
-    "karabo_id_control = \"\"  # if control is on a different ID, set to empty string if it is the same a karabo-id\n",
+    "karabo_id = 'SPB_IRDA_JF4M'  # karabo_id (detector identifier) prefix of Jungfrau detector to process.\n",
+    "karabo_id_control = ''  # if control is on a different ID, set to empty string if it is the same a karabo-id\n",
     "receiver_template = 'JNGFR{:02}' # inset for receiver devices\n",
     "receiver_control_id = \"CONTROL\" # inset for control devices\n",
     "path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5'  # template to use for file name, double escape sequence number\n",
-    "instrument_source_template = '{}/DET/{}:daqOutput'  # template for source name (filled with karabo_id & receiver_id). e.g. 'SPB_IRDA_JF4M/DET/JNGFR01:daqOutput'\n",
-    "karabo_da_control = \"JNGFRCTRL00\" # file inset for control data\n",
+    "instrument_source_template = '{}/DET/{}:daqOutput'  # template for instrument source name (filled with karabo_id & receiver_id). e.g. 'SPB_IRDA_JF4M/DET/JNGFR01:daqOutput'\n",
+    "ctrl_source_template = '{}/DET/CONTROL'  # template for control source name (filled with karabo_id).\n",
+    "karabo_da_control = 'JNGFRCTRL00'  # file inset for control data\n",
     "\n",
     "# Parameters for calibration database and storing constants.\n",
     "use_dir_creation_date = True  # use dir creation date\n",
@@ -73,6 +74,7 @@
     "import glob\n",
     "import os\n",
     "import warnings\n",
+    "from pathlib import Path\n",
     "\n",
     "warnings.filterwarnings('ignore')\n",
     "\n",
@@ -84,13 +86,9 @@
     "matplotlib.use('agg')\n",
     "%matplotlib inline\n",
     "\n",
-    "from XFELDetAna.detectors.jungfrau.util import (\n",
-    "    rollout_data,\n",
-    "    sanitize_data_cellid,\n",
-    ")\n",
     "from XFELDetAna.plotting.heatmap import heatmapPlot\n",
     "from XFELDetAna.plotting.histogram import histPlot\n",
-    "from cal_tools import jungfraulib\n",
+    "from cal_tools import jungfraulib, step_timing\n",
     "from cal_tools.ana_tools import save_dict_to_hdf5\n",
     "from cal_tools.enums import BadPixels\n",
     "from cal_tools.tools import (\n",
@@ -139,7 +137,9 @@
     "proposal = list(filter(None, in_folder.strip('/').split('/')))[-2]\n",
     "file_loc = f\"proposal:{proposal} runs:{run_high} {run_med} {run_low}\"\n",
     "\n",
-    "report = get_report(out_folder)"
+    "report = get_report(out_folder)\n",
+    "\n",
+    "step_timer = step_timing.StepTimer()"
    ]
   },
   {
@@ -155,19 +155,20 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "step_timer.start()\n",
     "gain_runs = dict()\n",
     "noise_map = dict()\n",
     "offset_map = dict()\n",
     "gain_str = None\n",
+    "ctrl_src = ctrl_source_template.format(karabo_id_control)\n",
     "\n",
     "for gain, run_n in enumerate(run_nums):\n",
     "    run_dc = RunDirectory(f\"{in_folder}/r{run_n:04d}/\")\n",
     "    gain_runs[run_n] = [gain, run_dc]\n",
     "\n",
-    "    # Read control data for the first gain only.\n",
+    "    # Read control data for the high gain run only.\n",
     "    if run_n == run_high:\n",
-    "\n",
-    "        ctrl_data = jungfraulib.JFCtrl(run_dc, karabo_id_control)\n",
+    "        ctrl_data = jungfraulib.JungfrauCtrl(run_dc, ctrl_src)\n",
     "        run_mcells, sc_start = ctrl_data.get_memory_cells()\n",
     "\n",
     "        if not manual_slow_data:\n",
@@ -187,7 +188,7 @@
     "            memory_cells = 16\n",
     "            print('Dark runs in burst mode, '\n",
     "                  f'storage cell start: {sc_start:02d}')\n",
-    "\n",
+    "step_timer.done_step(f'Reading control data.')\n",
     "# Initialize noise_map and offset_map module arrays.\n",
     "for mod in karabo_da:\n",
     "    noise_map[mod] = np.zeros(sensor_size+(memory_cells, 3))\n",
@@ -203,7 +204,7 @@
    "outputs": [],
    "source": [
     "for mod in karabo_da:\n",
-    "\n",
+    "    step_timer.start()\n",
     "    instrument_src = instrument_source_template.format(\n",
     "        karabo_id, receiver_template.format(int(mod[-2:])))\n",
     "\n",
@@ -215,52 +216,41 @@
     "\n",
     "        # load shape of data for memory cells, and detector size (imgs, cells, x, y)\n",
     "        n_imgs = run_dc[instrument_src, \"data.adc\"].shape[0]\n",
-    "        \n",
-    "        if max_trains > 0:\n",
-    "            n_imgs = min(n_imgs, max_trains)\n",
     "        # load number of data available, including trains with empty data.\n",
     "        n_trains = run_dc.get_data_counts(instrument_src, \"data.adc\").shape[0]\n",
-    "\n",
-    "        instr_dc = run_dc.select(instrument_src, require_all=True).select_trains(np.s_[:n_imgs])\n",
-    "\n",
+    "        instr_dc = run_dc.select(instrument_src, require_all=True)\n",
     "        if n_trains-n_imgs != 0:\n",
-    "            print(f\"\\tWARNING: {instr_dc.files[0].filename} has {n_trains-n_imgs} \"\n",
-    "                  f\"trains with empty data out of {n_trains} trains.\")\n",
+    "            print(\n",
+    "                f\"\\tWARNING: {Path(run_dc.files[0].filename).name} has {n_trains-n_imgs} \"  # noqa\n",
+    "                f\"trains with empty data out of {n_trains} trains.\")\n",
+    "\n",
+    "        if max_trains > 0:\n",
+    "            n_imgs = min(n_imgs, max_trains)\n",
+    "            print(f\"Processing {n_imgs} images based on the given max_trains: {max_trains}.\")  # noqa\n",
+    "        # Select only requested number of images to process darks.\n",
+    "        instr_dc = instr_dc.select_trains(np.s_[:n_imgs])\n",
     "\n",
     "        if n_imgs < min_trains:\n",
     "            raise ValueError(\n",
     "                f\"Less than {min_trains} trains are available in RAW data.\"\n",
-    "                 \" Not enough data to process darks.\")\n",
+    "                \" Not enough data to process darks.\")\n",
     "\n",
     "        images = np.transpose(\n",
     "            instr_dc[instrument_src, \"data.adc\"].ndarray(), (3, 2, 1, 0))\n",
-    "\n",
-    "        roi=np.s_[:1]\n",
-    "        if gain > 0 and memory_cells == 16:\n",
-    "            roi=np.s_[:]\n",
-    "\n",
-    "        acelltable = np.transpose(\n",
-    "            instr_dc[instrument_src, \"data.memoryCell\"].ndarray(roi=roi), (1, 0))\n",
+    "        acelltable = np.transpose(instr_dc[instrument_src, \"data.memoryCell\"].ndarray())\n",
     "\n",
     "        if memory_cells == 1:\n",
     "            acelltable -= sc_start\n",
-    "        # throwing away all the SC entries except\n",
-    "        # the first for lower gains.\n",
-    "        if gain > 0 and memory_cells == 16: \n",
-    "            acelltable[1:] = 255\n",
-    "        # makes 4-dim vecs into 3-dim\n",
-    "        # makes 2-dim into 1-dim\n",
-    "        # leaves 1-dim and 3-dim vecs\n",
-    "\n",
-    "        images, acelltable = rollout_data([images, acelltable])\n",
-    "\n",
-    "        # removes entries with cellID 255\n",
-    "        images, acelltable = sanitize_data_cellid([images], acelltable)\n",
+    "        if gain > 0  and memory_cells == 16:\n",
+    "            # 255 is used as the detector sets 255 as well for\n",
+    "            # cell images identified as bad.\n",
+    "            acelltable[1:] = 255  \n",
     "\n",
     "        for cell in range(memory_cells):\n",
     "            thiscell = images[..., acelltable == cell]\n",
     "            noise_map[mod][..., cell, gain] = np.std(thiscell, axis=2)\n",
-    "            offset_map[mod][..., cell, gain] = np.mean(thiscell, axis=2)"
+    "            offset_map[mod][..., cell, gain] = np.mean(thiscell, axis=2)\n",
+    "    step_timer.done_step(f'Creating Offset and noise constants for a module.')"
    ]
   },
   {
@@ -294,6 +284,7 @@
    "outputs": [],
    "source": [
     "# TODO: Fix plots arrangment and speed for Jungfrau burst mode.\n",
+    "step_timer.start()\n",
     "for mod in karabo_da:\n",
     "    for g_idx in gains:\n",
     "        for cell in range(0, memory_cells):\n",
@@ -350,7 +341,8 @@
     "                fontsize=15)\n",
     "            ax_n0.set_xlabel(\n",
     "                f'RMS noise {g_name[g_idx]} ' + unit, fontsize=15)\n",
-    "            plt.show()"
+    "            plt.show()\n",
+    "step_timer.done_step(f'Plotting offset and noise maps.')"
    ]
   },
   {
@@ -397,13 +389,15 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "tags": []
+   },
    "outputs": [],
    "source": [
+    "step_timer.start()\n",
     "bad_pixels_map = dict()\n",
     "\n",
     "for mod in karabo_da:\n",
-    "\n",
     "    bad_pixels_map[mod] = np.zeros(noise_map[mod].shape, np.uint32)\n",
     "    offset_abs_threshold = np.array(offset_abs_threshold)\n",
     "\n",
@@ -417,16 +411,17 @@
     "\n",
     "    bad_pixels_map[mod][(offset_map[mod] < offset_abs_threshold[0][None, None, None, :]) | (offset_map[mod] > offset_abs_threshold[1][None, None, None, :])] |= BadPixels.OFFSET_OUT_OF_THRESHOLD.value  # noqa\n",
     "\n",
-    "for g_idx in gains:\n",
-    "    for cell in range(memory_cells):\n",
-    "        bad_pixels = bad_pixels_map[mod][:, :, cell, g_idx]\n",
-    "        fn_0 = heatmapPlot(\n",
-    "            np.swapaxes(bad_pixels, 0, 1),\n",
-    "            y_label=\"Row\",\n",
-    "            x_label=\"Column\",\n",
-    "            lut_label=f\"Badpixels {g_name[g_idx]} [ADCu]\",\n",
-    "            aspect=1.,\n",
-    "            vmin=0, title=f'G{g_idx} Bad pixel map - Cell {cell:02d} - Module {mod}')"
+    "    for g_idx in gains:\n",
+    "        for cell in range(memory_cells):\n",
+    "            bad_pixels = bad_pixels_map[mod][:, :, cell, g_idx]\n",
+    "            fn_0 = heatmapPlot(\n",
+    "                np.swapaxes(bad_pixels, 0, 1),\n",
+    "                y_label=\"Row\",\n",
+    "                x_label=\"Column\",\n",
+    "                lut_label=f\"Badpixels {g_name[g_idx]} [ADCu]\",\n",
+    "                aspect=1.,\n",
+    "                vmin=0, title=f'G{g_idx} Bad pixel map - Cell {cell:02d} - Module {mod}')\n",
+    "step_timer.done_step(f'Creating bad pixels constant and plotting it for a module.')"
    ]
   },
   {
@@ -464,6 +459,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "step_timer.start()\n",
     "for mod, db_mod in zip(karabo_da, db_modules):\n",
     "    constants = {\n",
     "        'Offset': np.moveaxis(offset_map[mod], 0, 1),\n",
diff --git a/src/cal_tools/jungfraulib.py b/src/cal_tools/jungfraulib.py
index 4be66f301644fa3c740fe67006a24e9eaafb1db9..ec04f2414b8fad34482e05b78e7ff2e0b2e9b96e 100644
--- a/src/cal_tools/jungfraulib.py
+++ b/src/cal_tools/jungfraulib.py
@@ -1,18 +1,16 @@
-from typing import Tuple
-
-
-class JFCtrl():
+class JungfrauCtrl():
     def __init__(
         self,
-        run_dc: "extra_data.DataCollection",
-        karabo_id_control: str):
+        run_dc: "extra_data.DataCollection",  # noqa
+        ctrl_src: str,
+    ):
 
         """Read slow data from RUN source.
         :param run_dir: EXtra-data RunDirectory DataCollection object.
         :param karabo_id_control: Karabo ID for control h5file with slow data.
         """
         self.run_dc = run_dc
-        self.ctrl_src = f"{karabo_id_control}/DET/CONTROL"
+        self.ctrl_src = ctrl_src
 
     def get_memory_cells(self):
         n_storage_cells = int(self.run_dc.get_run_value(