From fb2a10d75c9ece33b62b0b85bb4e61531bc7a46b Mon Sep 17 00:00:00 2001 From: Karim Ahmed <karim.ahmed@xfel.eu> Date: Wed, 22 Jul 2020 20:47:57 +0200 Subject: [PATCH] change in correction notebook --- .../pnCCD/Characterize_pnCCD_Dark_NBC.ipynb | 35 ++-- notebooks/pnCCD/Correct_pnCCD_NBC.ipynb | 174 +++++++++++------- 2 files changed, 123 insertions(+), 86 deletions(-) diff --git a/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb b/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb index d06759a56..a0063669d 100644 --- a/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb +++ b/notebooks/pnCCD/Characterize_pnCCD_Dark_NBC.ipynb @@ -55,9 +55,9 @@ "\n", "number_dark_frames = 0 # number of images to be used, if set to 0 all available images are used\n", "chunkSize = 100 # number of images to read per chunk\n", - "fix_temperature = 233. # fix temperature in K, set to 0. to use value from slow data\n", - "gain = 1 # the detector's gain setting, only 1 and 64 is available.\n", - "bias_voltage = 300 # detector's bias voltage\n", + "fix_temperature = 0. # fix temperature in K, set to 0. to use value from slow data\n", + "gain = 1 # the detector's gain setting, It is later read from file and this value is overwritten\n", + "bias_voltage = 0. # the detector's bias voltage. set to 0. to use value from slow data.\n", "integration_time = 70 # detector's integration time\n", "commonModeAxis = 0 # axis along which common mode will be calculated (0: along rows, 1: along columns)\n", "commonModeBlockSize = [512, 512] # size of the detector in pixels for common mode calculations\n", @@ -200,15 +200,15 @@ "source": [ "# extract slow data\n", "if karabo_da_control:\n", - "\n", " ctrl_fname = os.path.join(ped_dir, path_template.format(run, karabo_da_control)).format(sequence)\n", " ctrl_path = h5path_ctrl.format(karabo_id)\n", - " mdl_ctrl_path = \"/CONTROL/{}/MDL/\".format(karabo_id)\n", - "\n", + " mdl_ctrl_path = f\"/CONTROL/{karabo_id}/MDL/\"\n", " with h5py.File(ctrl_fname, \"r\") as f:\n", - " bias_voltage = abs(f[os.path.join(mdl_ctrl_path, \"DAQ_MPOD/u0voltage/value\")][0])\n", + " if bias_voltage == 0.:\n", + " bias_voltage = abs(f[os.path.join(mdl_ctrl_path, \"DAQ_MPOD/u0voltage/value\")][0])\n", " gain = f[os.path.join(mdl_ctrl_path, \"DAQ_GAIN/spNCCDGain/value\")][0]\n", - " fix_temperature = f[os.path.join(ctrl_path, \"inputA/krdg/value\")][0]" + " if fix_temperature == 0.:\n", + " fix_temperature = f[os.path.join(ctrl_path, \"inputA/krdg/value\")][0]" ] }, { @@ -223,7 +223,6 @@ "outputs": [], "source": [ "# Reading Parameters such as Detector Bias, Gain, etc. from the Data:\n", - "\n", "memoryCells = 1 # pnCCD has 1 memory cell\n", "sensorSize = [pixels_x, pixels_y]\n", "blockSize = [sensorSize[0]//2, sensorSize[1]//2]# sensor area will be analysed according to blocksize\n", @@ -240,21 +239,11 @@ "outputs": [], "source": [ "# Printing the Parameters Read from the Data File:\n", - "\n", "display(Markdown('### Detector Parameters'))\n", - "print(\"Bias voltage is {} V.\".format(bias_voltage))\n", - "print(\"Detector gain is set to {}.\".format(gain))\n", - "print(\"Detector integration time is set to {} ms\".format(integration_time)) \n", - "\n", - "if fix_temperature != 0.:\n", - " print(f\"Using a fixed temperature of {fix_temperature} K\")\n", - " temperature_k = fix_temperature\n", - "else:\n", - " print(\"Temperature is not fixed.\")\n", - " #TODO: remove this line after properly saving the temperature in control data.\n", - " temperature_k = 233.\n", - " print(f\"Using a fixed temperature of {fix_temperature} K\")\n", - " \n", + "print(f\"Bias voltage is {bias_voltage} V.\")\n", + "print(f\"Detector gain is set to {gain}.\")\n", + "print(f\"Detector integration time is set to {integration_time} ms\") \n", + "print(f\"Using a fixed temperature of {fix_temperature} K\")\n", "print(\"Number of dark images to analyze:\", nImages) " ] }, diff --git a/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb b/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb index a41a37a6a..e592a7cf0 100644 --- a/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb +++ b/notebooks/pnCCD/Correct_pnCCD_NBC.ipynb @@ -27,12 +27,15 @@ "run = 365 # which run to read data from\n", "sequences = [-1] # sequences to correct, set to -1 for all, range allowed\n", "\n", + "db_module = \"PnCCD1\"\n", "karabo_da = 'PNCCD01' # data aggregators\n", + "karabo_da_control = \"PNCCD02\" # file inset for control data\n", "karabo_id = \"SQS_NQS_PNCCD1MP\" # karabo prefix of PNCCD devices\n", "receiver_id = \"PNCCD_FMT-0\" # inset for receiver devices\n", "path_template = 'RAW-R{:04d}-PNCCD01-S{{:05d}}.h5' # the template to use to access data\n", "path_template_seqs = \"{}/r{:04d}/*PNCCD01-S*.h5\"\n", "h5path = '/INSTRUMENT/{}/CAL/{}:output/data/' # path to data in the HDF5 file \n", + "h5path_ctrl = '/CONTROL/{}/CTRL/TCTRL'\n", "\n", "overwrite = True # keep this as True to not overwrite the output \n", "use_dir_creation_date = True # required to obtain creation time of the run\n", @@ -51,9 +54,9 @@ "seq_num = 0 # sequence number for which the last plot at the end of the notebook is plotted\n", "\n", "# pnCCD parameters:\n", - "fix_temperature = 233.\n", - "gain = 1\n", - "bias_voltage = 300\n", + "fix_temperature = 0. # fix temperature in K, set to 0. to use value from slow data.\n", + "gain = 1 # the detector's gain setting, It is later read from file and this value is overwritten\n", + "bias_voltage = 0. # the detector's bias voltage. set to 0. to use value from slow data.\n", "integration_time = 70\n", "photon_energy = 1.6 # Al fluorescence in keV\n", "\n", @@ -134,56 +137,6 @@ " sequences = None" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Each xcal.HistogramCalculator requires a total number of bins and a binning range. We define these using a \n", - "# dictionary:\n", - "\n", - "# For all xcal histograms:\n", - "if gain == 1:\n", - " Hist_Bin_Dict = {\n", - " \"bins\": 70000, # number of bins \n", - " \"bin_range\": [0, 70000]\n", - " }\n", - "\n", - " # For the numpy histograms on the last cell of the notebook:\n", - " Event_Bin_Dict = {\n", - " \"event_bins\": 1000, # number of bins \n", - " \"b_range\": [0, 50000] # bin range \n", - " }\n", - " \n", - "elif gain == 64:\n", - " # For all xcal histograms:\n", - " Hist_Bin_Dict = {\n", - " \"bins\": 25000, # number of bins \n", - " \"bin_range\": [0, 25000] \n", - " }\n", - " # For the numpy histograms on the last cell of the notebook:\n", - " Event_Bin_Dict = {\n", - " \"event_bins\": 1000, # number of bins \n", - " \"b_range\": [0, 3000] # bin range \n", - " }\n", - " \n", - "bins = Hist_Bin_Dict[\"bins\"]\n", - "bin_range = Hist_Bin_Dict[\"bin_range\"]\n", - "event_bins = Event_Bin_Dict[\"event_bins\"]\n", - "b_range = Event_Bin_Dict[\"b_range\"]\n", - "\n", - "# On the singles spectrum (uploaded in the middle of this notebook), the ADU values correspoding to the boundaries\n", - "# of the first peak region are used as cti_limit_low and cti_limit_high:\n", - "\n", - "if gain == 1:\n", - " cti_limit_low = 3000 # lower limit of cti\n", - " cti_limit_high = 10000 # higher limit of cti\n", - "elif gain == 64:\n", - " cti_limit_low = 50\n", - " cti_limit_high = 170" - ] - }, { "cell_type": "code", "execution_count": null, @@ -224,9 +177,15 @@ " creation_time = get_dir_creation_date(in_folder, run)\n", "\n", "\n", - "print(f\"Creation time: {creation_time}\")\n", - " \n", - "\n", + "print(f\"Creation time: {creation_time}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "# Reading all sequences of the run:\n", "file_list = []\n", "total_sequences = 0\n", @@ -249,6 +208,42 @@ "print(f\"This run has a total number of {total_sequences} sequences.\\n\")" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# extract slow data\n", + "if karabo_da_control:\n", + "\n", + " ctrl_fname = os.path.join(ped_dir, path_template.format(run, karabo_da_control)).format(sequence)\n", + " ctrl_path = h5path_ctrl.format(karabo_id)\n", + " mdl_ctrl_path = \"/CONTROL/{}/MDL/\".format(karabo_id)\n", + "\n", + " with h5py.File(ctrl_fname, \"r\") as f:\n", + " if bias_voltage == 0 :\n", + " bias_voltage = abs(f[os.path.join(mdl_ctrl_path, \"DAQ_MPOD/u0voltage/value\")][0])\n", + " gain = f[os.path.join(mdl_ctrl_path, \"DAQ_GAIN/spNCCDGain/value\")][0]\n", + " if fix_temperature == 0.:\n", + " fix_temperature = f[os.path.join(ctrl_path, \"inputA/krdg/value\")][0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Printing the Parameters Read from the Data File:\n", + "\n", + "display(Markdown('### Detector Parameters'))\n", + "print(\"Bias voltage is {} V.\".format(bias_voltage))\n", + "print(\"Detector gain is set to {}.\".format(gain))\n", + "print(\"Detector integration time is set to {} ms\".format(integration_time))\n", + "print(f\"Using a fixed temperature of {temperature_k} K\")" + ] + }, { "cell_type": "code", "execution_count": null, @@ -297,6 +292,58 @@ " raise AttributeError(\"Output path exists! Exiting\") " ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Each xcal.HistogramCalculator requires a total number of bins and a binning range. We define these using a \n", + "# dictionary:\n", + "\n", + "# For all xcal histograms:\n", + "if gain == 1:\n", + " Hist_Bin_Dict = {\n", + " \"bins\": 70000, # number of bins \n", + " \"bin_range\": [0, 70000]\n", + " }\n", + "\n", + " # For the numpy histograms on the last cell of the notebook:\n", + " Event_Bin_Dict = {\n", + " \"event_bins\": 1000, # number of bins \n", + " \"b_range\": [0, 50000] # bin range \n", + " }\n", + " \n", + "#TODO: make it more adaptive for more than only 2 gains [below was for gain==64 only]\n", + "else:\n", + " # For all xcal histograms:\n", + " Hist_Bin_Dict = {\n", + " \"bins\": 25000, # number of bins \n", + " \"bin_range\": [0, 25000] \n", + " }\n", + " # For the numpy histograms on the last cell of the notebook:\n", + " Event_Bin_Dict = {\n", + " \"event_bins\": 1000, # number of bins \n", + " \"b_range\": [0, 3000] # bin range \n", + " }\n", + " \n", + "bins = Hist_Bin_Dict[\"bins\"]\n", + "bin_range = Hist_Bin_Dict[\"bin_range\"]\n", + "event_bins = Event_Bin_Dict[\"event_bins\"]\n", + "b_range = Event_Bin_Dict[\"b_range\"]\n", + "\n", + "# On the singles spectrum (uploaded in the middle of this notebook), the ADU values correspoding to the boundaries\n", + "# of the first peak region are used as cti_limit_low and cti_limit_high:\n", + "\n", + "if gain == 1:\n", + " cti_limit_low = 3000 # lower limit of cti\n", + " cti_limit_high = 10000 # higher limit of cti\n", + "#TODO: make it more adaptive for more than only 2 gains [below was for gain==64 only\n", + "else:\n", + " cti_limit_low = 50\n", + " cti_limit_high = 170" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -310,7 +357,7 @@ "metadata": {}, "outputs": [], "source": [ - "def get_dark(db_parms, bias_voltage, integration_time, gain, fix_temperature, creation_time, run):\n", + "def get_dark(db_parms, bias_voltage, integration_time, gain, temperature_k, creation_time, run):\n", "# This function is to retrieve the dark constants associated with the run of interest:\n", "\n", " cal_db_interface, cal_db_timeout = db_parms\n", @@ -331,13 +378,13 @@ " condition = Conditions.Dark.CCD(bias_voltage=bias_voltage,\n", " integration_time=integration_time,\n", " gain_setting=gain,\n", - " temperature=fix_temperature,\n", + " temperature=temperature_k,\n", " pixels_x=pixels_x,\n", " pixels_y=pixels_y)\n", " \n", " for const in constants.keys():\n", " constants[const], when[const] = \\\n", - " get_constant_from_db_and_time(Detectors.PnCCD1,\n", + " get_constant_from_db_and_time(getattr(Detectors, db_module),\n", " getattr(Constants.CCD(DetectorTypes.pnCCD), const)(),\n", " condition,\n", " np.zeros((pixels_x, pixels_y, 1)),\n", @@ -367,7 +414,7 @@ "\n", "db_parms = cal_db_interface, cal_db_timeout\n", "\n", - "constants = get_dark(db_parms, bias_voltage, integration_time, gain, fix_temperature, creation_time, run)\n", + "constants = get_dark(db_parms, bias_voltage, integration_time, gain, temperature_k, creation_time, run)\n", "\n", "fig = xana.heatmapPlot(constants[\"Offset\"][:,:,0], x_label='Columns', y_label='Rows', lut_label='Pedestal (ADU)', aspect=1, \n", " x_range=(0, pixels_y), y_range=(0, pixels_x), vmax=16000, \n", @@ -402,13 +449,13 @@ " condition = Conditions.Illuminated.CCD(bias_voltage=bias_voltage,\n", " integration_time=integration_time,\n", " gain_setting=gain,\n", - " temperature=fix_temperature,\n", + " temperature=temperature_k,\n", " pixels_x=pixels_x,\n", " pixels_y=pixels_y, \n", " photon_energy=photon_energy)\n", "\n", " constants[\"RelativeGain\"], relgain_time = \\\n", - " get_constant_from_db_and_time(Detectors.PnCCD1,\n", + " get_constant_from_db_and_time(getattr(Detectors, db_module),\n", " Constants.CCD(DetectorTypes.pnCCD).RelativeGain(),\n", " condition,\n", " np.zeros((pixels_x, pixels_y)),\n", @@ -806,7 +853,8 @@ "\n", "if gain == 1:\n", " x_range = (0, 30000)\n", - "elif gain == 64:\n", + "#TODO: make it more adaptive for more than only 2 gains [below was for gain==64 only\n", + "else:\n", " x_range = (0, 1000)" ] }, -- GitLab