{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# LPD Offline Correction #\n", "\n", "Author: European XFEL Data Analysis Group" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2018-12-03T15:19:56.056417Z", "start_time": "2018-12-03T15:19:56.003012Z" } }, "outputs": [], "source": [ "# Input parameters\n", "in_folder = \"/gpfs/exfel/exp/FXE/202201/p003073/raw/\" # the folder to read data from, required\n", "out_folder = \"/gpfs/exfel/data/scratch/schmidtp/random/LPD_test\" # the folder to output to, required\n", "metadata_folder = '' # Directory containing calibration_metadata.yml when run by xfel-calibrate.\n", "sequences = [-1] # Sequences to correct, use [-1] for all\n", "modules = [-1] # Modules indices to correct, use [-1] for all, only used when karabo_da is empty\n", "karabo_da = [''] # Data aggregators names to correct, use [''] for all\n", "run = 10 # run to process, required\n", "\n", "# Source parameters\n", "karabo_id = 'FXE_DET_LPD1M-1' # Karabo domain for detector.\n", "input_source = '{karabo_id}/DET/{module_index}CH0:xtdf' # Input fast data source.\n", "output_source = '' # Output fast data source, empty to use same as input.\n", "xgm_source = 'SA1_XTD2_XGM/DOOCS/MAIN'\n", "xgm_pulse_count_key = 'pulseEnergy.numberOfSa1BunchesActual'\n", "\n", "# CalCat parameters\n", "creation_time = \"\" # The timestamp to use with Calibration DB. Required Format: \"YYYY-MM-DD hh:mm:ss\" e.g. 2019-07-04 11:02:41\n", "cal_db_interface = '' # Not needed, compatibility with current webservice.\n", "cal_db_timeout = 0 # Not needed, compatbility with current webservice.\n", "cal_db_root = '/gpfs/exfel/d/cal/caldb_store' # The calibration database root path to access constant files. For example accessing constants from the test database.\n", "\n", "# Operating conditions\n", "mem_cells = 512 # Memory cells, LPD constants are always taken with 512 cells.\n", "bias_voltage = 250.0 # Detector bias voltage.\n", "capacitor = '5pF' # Capacitor setting: 5pF or 50pF\n", "photon_energy = 9.2 # Photon energy in keV.\n", "category = 0 # Whom to blame.\n", "use_cell_order = 'auto' # Whether to use memory cell order as a detector condition; auto/always/never\n", "\n", "# Correction parameters\n", "offset_corr = True # Offset correction.\n", "rel_gain = True # Gain correction based on RelativeGain constant.\n", "ff_map = True # Gain correction based on FFMap constant.\n", "gain_amp_map = True # Gain correction based on GainAmpMap constant.\n", "\n", "# Output options\n", "ignore_no_frames_no_pulses = False # Whether to run without SA1 pulses AND frames.\n", "overwrite = True # set to True if existing data should be overwritten\n", "chunks_data = 1 # HDF chunk size for pixel data in number of frames.\n", "chunks_ids = 32 # HDF chunk size for cellId and pulseId datasets.\n", "create_virtual_cxi_in = '' # Folder to create virtual CXI files in (for each sequence).\n", "\n", "# Parallelization options\n", "sequences_per_node = 1 # Sequence files to process per node\n", "max_nodes = 8 # Maximum number of SLURM jobs to split correction work into\n", "num_workers = 8 # Worker processes per node, 8 is safe on 768G nodes but won't work on 512G.\n", "num_threads_per_worker = 32 # Number of threads per worker.\n", "\n", "def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da, max_nodes):\n", " from xfel_calibrate.calibrate import balance_sequences as bs\n", " return bs(in_folder, run, sequences, sequences_per_node, karabo_da, max_nodes=max_nodes)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2018-12-03T15:19:56.990566Z", "start_time": "2018-12-03T15:19:56.058378Z" } }, "outputs": [], "source": [ "from logging import warning\n", "from pathlib import Path\n", "from time import perf_counter\n", "import gc\n", "import re\n", "\n", "import numpy as np\n", "import h5py\n", "\n", "import matplotlib\n", "matplotlib.use('agg')\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "import extra_data as xd\n", "import extra_geom as xg\n", "import pasha as psh\n", "from extra_data.components import LPD1M\n", "\n", "import cal_tools.restful_config as rest_cfg\n", "from cal_tools.calcat_interface import CalCatError, LPD_CalibrationData\n", "from cal_tools.lpdalgs import correct_lpd_frames\n", "from cal_tools.lpdlib import get_mem_cell_pattern, make_cell_order_condition\n", "from cal_tools.tools import (\n", " CalibrationMetadata,\n", " calcat_creation_time,\n", " write_constants_fragment,\n", ")\n", "from cal_tools.files import DataFile" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Prepare environment" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "file_re = re.compile(r'^RAW-R(\\d{4})-(\\w+\\d+)-S(\\d{5})$') # This should probably move to cal_tools\n", "\n", "run_folder = Path(in_folder) / f'r{run:04d}'\n", "out_folder = Path(out_folder)\n", "out_folder.mkdir(exist_ok=True)\n", "\n", "output_source = output_source or input_source\n", "\n", "creation_time = calcat_creation_time(in_folder, run, creation_time)\n", "print(f'Using {creation_time.isoformat()} as creation time')\n", "\n", "# Pick all modules/aggregators or those selected.\n", "if karabo_da == ['']:\n", " if modules == [-1]:\n", " modules = list(range(16))\n", " karabo_da = [f'LPD{i:02d}' for i in modules]\n", "else:\n", " modules = [int(x[-2:]) for x in karabo_da]\n", " \n", "# Pick all sequences or those selected.\n", "if not sequences or sequences == [-1]:\n", " do_sequence = lambda seq: True\n", "else:\n", " do_sequence = [int(x) for x in sequences].__contains__ \n", " \n", "# List of detector sources.\n", "det_inp_sources = [input_source.format(karabo_id=karabo_id, module_index=int(da[-2:])) for da in karabo_da]\n", "\n", "if use_cell_order not in {'auto', 'always', 'never'}:\n", " raise ValueError(\"use_cell_order must be auto/always/never\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Select data to process" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_to_process = []\n", "\n", "for inp_path in run_folder.glob('RAW-*.h5'):\n", " match = file_re.match(inp_path.stem)\n", " \n", " if match[2] not in karabo_da or not do_sequence(int(match[3])):\n", " continue\n", " \n", " outp_path = out_folder / 'CORR-R{run:04d}-{aggregator}-S{seq:05d}.h5'.format(\n", " run=int(match[1]), aggregator=match[2], seq=int(match[3]))\n", "\n", " data_to_process.append((match[2], inp_path, outp_path))\n", "\n", "print('Files to process:')\n", "for data_descr in sorted(data_to_process, key=lambda x: f'{x[0]}{x[1]}'):\n", " print(f'{data_descr[0]}\\t{data_descr[1]}')\n", " \n", "# Collect the train ID contained in the input LPD files.\n", "inp_lpd_dc = xd.DataCollection.from_paths([x[1] for x in data_to_process])\n", "\n", "frame_count = sum([\n", " int(inp_lpd_dc[source, 'image.data'].data_counts(labelled=False).sum())\n", " for source in inp_lpd_dc.all_sources], 0)\n", "\n", "if frame_count == 0:\n", " inp_dc = xd.RunDirectory(run_folder) \\\n", " .select_trains(xd.by_id[inp_lpd_dc.train_ids])\n", " \n", " try:\n", " pulse_count = int(inp_dc[xgm_source, xgm_pulse_count_key].ndarray().sum())\n", " except xd.SourceNameError:\n", " warning(f'Missing XGM source `{xgm_source}`')\n", " pulse_count = None\n", " except xd.PropertyNameError:\n", " warning(f'Missing XGM pulse count key `{xgm_pulse_count_key}`')\n", " pulse_count = None\n", " \n", " if pulse_count == 0 and not ignore_no_frames_no_pulses:\n", " warning(f'Affected files contain neither LPD frames nor SA1 pulses '\n", " f'according to {xgm_source}, processing is skipped. If this '\n", " f'incorrect, please contact da-support@xfel.eu')\n", " from sys import exit\n", " exit(0)\n", " elif pulse_count is None:\n", " raise ValueError('Affected files contain no LPD frames and SA1 pulses '\n", " 'could not be inferred from XGM data')\n", " else:\n", " raise ValueError('Affected files contain no LPD frames but SA1 pulses')\n", " \n", "else:\n", " print(f'Total number of LPD pulses across all modules: {frame_count}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Obtain and prepare calibration constants" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [] }, "outputs": [], "source": [ "start = perf_counter()\n", "\n", "cell_ids_pattern_s = None\n", "if use_cell_order != 'never':\n", " # Read the order of memory cells used\n", " raw_data = xd.DataCollection.from_paths([e[1] for e in data_to_process])\n", " cell_ids_pattern_s = make_cell_order_condition(\n", " use_cell_order, get_mem_cell_pattern(raw_data, det_inp_sources)\n", " )\n", "print(\"Memory cells order:\", cell_ids_pattern_s)\n", "\n", "lpd_cal = LPD_CalibrationData(\n", " detector_name=karabo_id,\n", " modules=karabo_da,\n", " sensor_bias_voltage=bias_voltage,\n", " memory_cells=mem_cells,\n", " feedback_capacitor=capacitor,\n", " source_energy=photon_energy,\n", " memory_cell_order=cell_ids_pattern_s,\n", " category=category,\n", " event_at=creation_time,\n", " client=rest_cfg.calibration_client(),\n", " caldb_root=Path(cal_db_root),\n", ")\n", "\n", "lpd_metadata = lpd_cal.metadata([\"Offset\", \"BadPixelsDark\"])\n", "try:\n", " illum_metadata = lpd_cal.metadata(lpd_cal.illuminated_calibrations)\n", " for key, value in illum_metadata.items():\n", " lpd_metadata.setdefault(key, {}).update(value)\n", "except CalCatError as e: # TODO: replace when API errors are improved.\n", " warning(f\"CalCatError: {e}\")\n", "\n", "total_time = perf_counter() - start\n", "print(f'Looking up constants {total_time:.1f}s')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Validate the constants availability and raise/warn accordingly.\n", "for mod, calibrations in lpd_metadata.items():\n", " missing_offset = {\"Offset\"} - set(calibrations)\n", " warn_missing_constants = {\n", " \"BadPixelsDark\", \"BadPixelsFF\", \"GainAmpMap\",\n", " \"FFMap\", \"RelativeGain\"} - set(calibrations)\n", " if missing_offset:\n", " warning(f\"Offset constant is not available to correct {mod}.\")\n", " karabo_da.remove(mod)\n", " if warn_missing_constants:\n", " warning(f\"Constants {warn_missing_constants} were not retrieved for {mod}.\")\n", "if not karabo_da: # Offsets are missing for all modules.\n", " raise Exception(\"Could not find offset constants for any modules, will not correct data.\")\n", "\n", "# Remove skipped correction modules from data_to_process\n", "data_to_process = [(mod, in_f, out_f) for mod, in_f, out_f in data_to_process if mod in karabo_da]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# write constants metadata to fragment YAML\n", "write_constants_fragment(\n", " out_folder=(metadata_folder or out_folder),\n", " det_metadata=lpd_metadata,\n", " caldb_root=lpd_cal.caldb_root,\n", ")\n", "\n", "# Load constants data for all constants\n", "const_data = lpd_cal.ndarray_map(metadata=lpd_metadata)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# These are intended in order cell, X, Y, gain\n", "ccv_offsets = {}\n", "ccv_gains = {}\n", "ccv_masks = {}\n", "\n", "ccv_shape = (mem_cells, 256, 256, 3)\n", "\n", "constant_order = {\n", " 'Offset': (2, 1, 0, 3),\n", " 'BadPixelsDark': (2, 1, 0, 3),\n", " 'RelativeGain': (2, 0, 1, 3),\n", " 'FFMap': (2, 0, 1, 3),\n", " 'BadPixelsFF': (2, 0, 1, 3),\n", " 'GainAmpMap': (2, 0, 1, 3),\n", "}\n", "\n", "def prepare_constants(wid, index, aggregator):\n", " consts = const_data.get(aggregator, {})\n", " def _prepare_data(calibration_name, dtype):\n", " # Some old BadPixels constants have <f8 dtype.\n", " # Convert nan to float 0 to avoid having 2147483648 after\n", " # converting float64 to uint32.\n", " if \"BadPixels\" in calibration_name and consts[calibration_name].dtype != np.uint32:\n", " consts[calibration_name] = np.nan_to_num(\n", " consts[calibration_name], nan=0.0)\n", " return consts[calibration_name] \\\n", " .transpose(constant_order[calibration_name]) \\\n", " .astype(dtype, copy=True) # Make sure array is contiguous.\n", " \n", " if offset_corr and 'Offset' in consts:\n", " ccv_offsets[aggregator] = _prepare_data('Offset', np.float32)\n", " else:\n", " ccv_offsets[aggregator] = np.zeros(ccv_shape, dtype=np.float32)\n", " \n", " ccv_gains[aggregator] = np.ones(ccv_shape, dtype=np.float32)\n", " \n", " if 'BadPixelsDark' in consts:\n", " ccv_masks[aggregator] = _prepare_data('BadPixelsDark', np.uint32)\n", " else:\n", " ccv_masks[aggregator] = np.zeros(ccv_shape, dtype=np.uint32)\n", " \n", " if rel_gain and 'RelativeGain' in consts:\n", " ccv_gains[aggregator] *= _prepare_data('RelativeGain', np.float32)\n", " \n", " if ff_map and 'FFMap' in consts:\n", " ccv_gains[aggregator] *= _prepare_data('FFMap', np.float32)\n", " \n", " if 'BadPixelsFF' in consts:\n", " np.bitwise_or(ccv_masks[aggregator], _prepare_data('BadPixelsFF', np.uint32),\n", " out=ccv_masks[aggregator])\n", " \n", " if gain_amp_map and 'GainAmpMap' in consts:\n", " ccv_gains[aggregator] *= _prepare_data('GainAmpMap', np.float32)\n", " \n", " print('.', end='', flush=True)\n", " \n", "\n", "print('Preparing constants', end='', flush=True)\n", "start = perf_counter()\n", "psh.ThreadContext(num_workers=len(karabo_da)).map(prepare_constants, karabo_da)\n", "total_time = perf_counter() - start\n", "print(f'{total_time:.1f}s')\n", "\n", "const_data.clear() # Clear raw constants data now to save memory.\n", "gc.collect();" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def correct_file(wid, index, work):\n", " aggregator, inp_path, outp_path = work\n", " module_index = int(aggregator[-2:])\n", " \n", " start = perf_counter()\n", " dc = xd.H5File(inp_path, inc_suspect_trains=False).select('*', 'image.*', require_all=True)\n", " inp_source = dc[input_source.format(karabo_id=karabo_id, module_index=module_index)]\n", " open_time = perf_counter() - start\n", " \n", " # Load raw data for this file.\n", " # Reshaping gets rid of the extra 1-len dimensions without\n", " # mangling the frame axis for an actual frame count of 1.\n", " start = perf_counter()\n", " in_raw = inp_source['image.data'].ndarray().reshape(-1, 256, 256)\n", " in_cell = inp_source['image.cellId'].ndarray().reshape(-1)\n", " in_pulse = inp_source['image.pulseId'].ndarray().reshape(-1)\n", " read_time = perf_counter() - start\n", " \n", " # Allocate output arrays.\n", " out_data = np.zeros((in_raw.shape[0], 256, 256), dtype=np.float32)\n", " out_gain = np.zeros((in_raw.shape[0], 256, 256), dtype=np.uint8)\n", " out_mask = np.zeros((in_raw.shape[0], 256, 256), dtype=np.uint32)\n", " \n", " start = perf_counter()\n", " correct_lpd_frames(in_raw, in_cell,\n", " out_data, out_gain, out_mask,\n", " ccv_offsets[aggregator], ccv_gains[aggregator], ccv_masks[aggregator],\n", " num_threads=num_threads_per_worker)\n", " correct_time = perf_counter() - start\n", " \n", " image_counts = inp_source['image.data'].data_counts(labelled=False)\n", " \n", " start = perf_counter()\n", " if (not outp_path.exists() or overwrite) and image_counts.sum() > 0:\n", " outp_source_name = output_source.format(karabo_id=karabo_id, module_index=module_index)\n", "\n", " with DataFile(outp_path, 'w') as outp_file: \n", " outp_file.create_index(dc.train_ids, from_file=dc.files[0])\n", " outp_file.create_metadata(like=dc, instrument_channels=(f'{outp_source_name}/image',))\n", " \n", " outp_source = outp_file.create_instrument_source(outp_source_name)\n", " \n", " outp_source.create_index(image=image_counts)\n", " outp_source.create_key('image.cellId', data=in_cell,\n", " chunks=(min(chunks_ids, in_cell.shape[0]),))\n", " outp_source.create_key('image.pulseId', data=in_pulse,\n", " chunks=(min(chunks_ids, in_pulse.shape[0]),))\n", " outp_source.create_key('image.data', data=out_data,\n", " chunks=(min(chunks_data, out_data.shape[0]), 256, 256))\n", " outp_source.create_compressed_key('image.gain', data=out_gain)\n", " outp_source.create_compressed_key('image.mask', data=out_mask)\n", " write_time = perf_counter() - start\n", " \n", " total_time = open_time + read_time + correct_time + write_time\n", " frame_rate = in_raw.shape[0] / total_time\n", " \n", " print('{}\\t{}\\t{:.3f}\\t{:.3f}\\t{:.3f}\\t{:.3f}\\t{:.3f}\\t{}\\t{:.1f}'.format(\n", " wid, aggregator, open_time, read_time, correct_time, write_time, total_time,\n", " in_raw.shape[0], frame_rate))\n", " \n", " in_raw = None\n", " in_cell = None\n", " in_pulse = None\n", " out_data = None\n", " out_gain = None\n", " out_mask = None\n", " gc.collect()\n", "\n", "print('worker\\tDA\\topen\\tread\\tcorrect\\twrite\\ttotal\\tframes\\trate')\n", "start = perf_counter()\n", "psh.ProcessContext(num_workers=num_workers).map(correct_file, data_to_process)\n", "total_time = perf_counter() - start\n", "print(f'Total time: {total_time:.1f}s')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Data preview for first train" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "geom = xg.LPD_1MGeometry.from_quad_positions(\n", " [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)])\n", "\n", "output_paths = [outp_path for _, _, outp_path in data_to_process if outp_path.exists()]\n", "\n", "if not output_paths:\n", " warning('Data preview is skipped as there are no existing output paths')\n", " from sys import exit\n", " exit(0)\n", "\n", "dc = xd.DataCollection.from_paths(output_paths).select_trains(np.s_[0])\n", "\n", "det = LPD1M(dc, detector_name=karabo_id)\n", "data = det.get_array('image.data')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Intensity histogram across all cells" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "left_edge_ratio = 0.01\n", "right_edge_ratio = 0.99\n", "\n", "fig, ax = plt.subplots(num=1, clear=True, figsize=(15, 6))\n", "values, bins, _ = ax.hist(np.ravel(data.data), bins=2000, range=(-1500, 2000))\n", "\n", "def find_nearest_index(array, value):\n", " return (np.abs(array - value)).argmin()\n", "\n", "cum_values = np.cumsum(values)\n", "vmin = bins[find_nearest_index(cum_values, cum_values[-1]*left_edge_ratio)]\n", "vmax = bins[find_nearest_index(cum_values, cum_values[-1]*right_edge_ratio)]\n", "\n", "max_value = values.max()\n", "ax.vlines([vmin, vmax], 0, max_value, color='red', linewidth=5, alpha=0.2)\n", "ax.text(vmin, max_value, f'{left_edge_ratio*100:.0f}%',\n", " color='red', ha='center', va='bottom', size='large')\n", "ax.text(vmax, max_value, f'{right_edge_ratio*100:.0f}%',\n", " color='red', ha='center', va='bottom', size='large')\n", "ax.text(vmax+(vmax-vmin)*0.01, max_value/2, 'Colormap interval',\n", " color='red', rotation=90, ha='left', va='center', size='x-large')\n", "\n", "ax.set_xlim(vmin-(vmax-vmin)*0.1, vmax+(vmax-vmin)*0.1)\n", "ax.set_ylim(0, max_value*1.1)\n", "pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### First memory cell" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax = plt.subplots(num=2, figsize=(15, 15), clear=True, nrows=1, ncols=1)\n", "geom.plot_data_fast(data[:, 0, 0], ax=ax, vmin=vmin, vmax=vmax)\n", "pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Train average" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2018-11-13T18:24:57.547563Z", "start_time": "2018-11-13T18:24:56.995005Z" }, "scrolled": false }, "outputs": [], "source": [ "fig, ax = plt.subplots(num=3, figsize=(15, 15), clear=True, nrows=1, ncols=1)\n", "geom.plot_data_fast(data[:, 0].mean(axis=1), ax=ax, vmin=vmin, vmax=vmax)\n", "pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lowest gain stage per pixel" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "highest_gain_stage = det.get_array('image.gain', pulses=np.s_[:]).max(axis=(1, 2))\n", "\n", "fig, ax = plt.subplots(num=4, figsize=(15, 15), clear=True, nrows=1, ncols=1)\n", "p = geom.plot_data_fast(highest_gain_stage, ax=ax, vmin=0, vmax=2);\n", "\n", "cb = ax.images[0].colorbar\n", "cb.set_ticks([0, 1, 2])\n", "cb.set_ticklabels(['High gain', 'Medium gain', 'Low gain'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create virtual CXI file" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "if create_virtual_cxi_in:\n", " vcxi_folder = Path(create_virtual_cxi_in.format(\n", " run=run, proposal_folder=str(Path(in_folder).parent)))\n", " vcxi_folder.mkdir(parents=True, exist_ok=True)\n", " \n", " def sort_files_by_seq(by_seq, outp_path):\n", " by_seq.setdefault(int(outp_path.stem[-5:]), []).append(outp_path)\n", " return by_seq\n", " \n", " from functools import reduce\n", " reduce(sort_files_by_seq, output_paths, output_by_seq := {})\n", " \n", " for seq_number, seq_output_paths in output_by_seq.items():\n", " # Create data collection and detector components only for this sequence.\n", " try:\n", " det = LPD1M(xd.DataCollection.from_paths(seq_output_paths), detector_name=karabo_id, min_modules=4)\n", " except ValueError: # Couldn't find enough data for min_modules\n", " continue\n", " det.write_virtual_cxi(vcxi_folder / f'VCXI-LPD-R{run:04d}-S{seq_number:05d}.cxi')" ] } ], "metadata": { "kernelspec": { "display_name": "pycal", "language": "python", "name": "pycal" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.11" } }, "nbformat": 4, "nbformat_minor": 2 }