from pathlib import Path from typing import Any, Dict, Optional import matplotlib.pyplot as plt import numpy as np from extra_geom import ( AGIPD_1MGeometry, AGIPD_500K2GGeometry, DSSC_1MGeometry, LPD_1MGeometry, ) from extra_geom import tests as eg_tests from matplotlib import colors from matplotlib.patches import Patch from mpl_toolkits.axes_grid1 import AxesGrid def show_overview( d, cell_to_preview, gain_to_preview, out_folder=None, infix=None ): """ Show an overview :param d: A dict with the number of modules and a dict for the constant names and their data. :param cell_to_preview: Integer number of memory cells to preview. :param gain_to_preview: Integer number for the gain stages to preview. :param out_folder: Output folder for saving the plotted.png image. :param infix: infix to include in the png file name. :return: """ for module, data in d.items(): # Adapt number of columns to number of constants in d. ncols = (len(d[module]) + (2 - 1)) // 2 fig = plt.figure(figsize=(20, 20)) grid = AxesGrid(fig, 111, nrows_ncols=(2, ncols), axes_pad=(0.9, 0.15), label_mode="1", share_all=True, cbar_location="right", cbar_mode="each", cbar_size="7%", cbar_pad="2%", ) items = list(data.items()) for ax, cbar_ax, (key, item) in zip(grid, grid.cbar_axes, items): cf = 0 if "ThresholdsDark" in key: cf = -1 if len(item.shape) == 4: med = np.nanmedian(item[..., cell_to_preview, gain_to_preview + cf]) else: med = np.nanmedian(item[..., cell_to_preview]) medscale = med if med == 0: medscale = 0.1 bound = 0.2 while (np.count_nonzero((item[..., cell_to_preview, gain_to_preview + cf] < med - np.abs(bound * medscale)) | # noqa (item[..., cell_to_preview, gain_to_preview + cf] > med + np.abs(bound * medscale))) / # noqa item[..., cell_to_preview, gain_to_preview + cf].size > 0.01): # noqa bound *= 2 is_badpixels = "BadPixels" in key if is_badpixels: im = ax.imshow( item[..., cell_to_preview, gain_to_preview + cf] != 0, cmap=plt.cm.colors.ListedColormap(["w", "k"]), aspect="auto", ) else: if len(item.shape) == 4: im_prev = item[..., cell_to_preview, gain_to_preview + cf] vmax = np.abs(med + bound * med) else: im_prev = item[..., cell_to_preview] # move the axis of the image to show horizontally # on the output report. if im_prev.shape[0] > im_prev.shape[1]: im_prev = np.moveaxis(item[..., cell_to_preview], 0, 1) vmax = med + np.abs(bound * medscale) im = ax.imshow(im_prev, interpolation="nearest", vmin=med - np.abs(bound * medscale), vmax=vmax, aspect='auto') cb = cbar_ax.colorbar(im) if is_badpixels: cb.set_ticks([0.25, 0.75]) cb.set_ticklabels(["good", "bad"]) else: cb.set_label("ADU") ax.text( 5, 20, key, color="k" if is_badpixels else "w", fontsize=20 ) grid[0].text(5, 50, module, color="k" if "BadPixels" in items[0][0] else "r", fontsize=20) # noqa if out_folder and infix: fig.savefig(f"{out_folder}/" f"dark_analysis_{infix}_module_{module}.png") def rebin(a, *args): '''rebin ndarray data into a smaller ndarray of the same rank whose dimensions are factors of the original dimensions. eg. An array with 6 columns and 4 rows can be reduced to have 6,3,2 or 1 columns and 4,2 or 1 rows. example usages: https://scipy-cookbook.readthedocs.io/items/Rebinning.html >>> a=rand(6,4); b=rebin(a,3,2) >>> a=rand(6); b=rebin(a,2) ''' shape = a.shape lenShape = len(shape) factor = np.asarray(shape) // np.asarray(args) evList = ['a.reshape('] + \ ['args[%d],factor[%d],' % (i, i) for i in range(lenShape)] + \ [')'] + ['.sum(%d)' % (i + 1) for i in range(lenShape)] + \ ['/factor[%d]' % i for i in range(lenShape - 1)] ta = eval(''.join(evList)) return ta.astype(np.uint32), np.indices([s + 1 for s in ta.shape]) def plot_badpix_3d(data, definitions, title=None, rebin_fac=2, azim=22.5): od = data d, dims = rebin( od.astype(np.uint32), od.shape[0] // rebin_fac, od.shape[1] // rebin_fac, od.shape[2], ) xx, yy, zz = dims voxels = d.astype(np.bool) colors = np.full(voxels.shape, '#FFFFFF') cols = definitions for k, c in cols.items(): colors[d == k] = c[1] fig = plt.figure(figsize=(15, 10)) ax = fig.gca(projection="3d") ax.voxels(xx*rebin_fac, yy*rebin_fac, zz, voxels, facecolors=colors) ax.view_init(elev=25., azim=azim) ax.set_xlabel("pixels") ax.set_ylabel("pixels") ax.set_zlabel("memory cell") ax.set_xlim(0, np.max(xx) * rebin_fac) ax.set_ylim(0, np.max(yy) * rebin_fac) ax.set_zlim(0, np.max(zz)) for k, c in cols.items(): ax.plot([-1, ], [-1, ], color=c[1], label=c[0]) ax.legend() if title: ax.set_title(title) def create_constant_overview(constant, name, cells, vmin=None, vmax=None, entries=3, badpixels=None, gmap=None, marker=None): """ Create a step plot for constant data across memory cells for requested gain entries :param constant: dict with constants for each module. :param name: Name to be used for the x-axis :param cells: Number of memory cells :param vmin: plot minumim value boundaries :param vmax: plot maximum value boundaries :param entries: (int)number of gain entries. A tuple specifying the range can also be used. TODO: remove unused inputs from notebooks. :param out_folder: out_folder for showing .md table statistics :param infix: infix for the output png image :param badpixels: A list of 2 elements. badpixels[0] has the dict with badpixels constant for each module and badpixels[1] has the value to apply for bad pixels. :param gmap: A list with len equal to number of gain entires. if not supported, a default would be used for 3 entries. ['High gain', 'Medium gain', 'Low gain'] :param marker: A list of line markers for each gain entry. default: ['']*entries :return: """ if gmap is None: gmap = ['High gain', 'Medium gain', 'Low gain'] if marker is None: marker = [''] * entries fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(111) for g in range(entries): table = [] dbp = None for qm in constant.keys(): if len(constant[qm].shape) == 4: d = constant[qm][..., g] if badpixels is not None and isinstance(badpixels, list): dbp = np.copy(d) dbp[badpixels[0][qm][..., g] > 0] = badpixels[1] else: # e.g. DSSC d = constant[qm] if badpixels is not None and isinstance(badpixels, list): dbp = np.copy(d) dbp[badpixels[0][qm] > 0] = badpixels[1] # TODO: check if not used to remove. table.append([name, qm, gmap[g], np.nanmean(d), np.nanmedian(d), np.nanstd(d)]) ax.step(np.arange(cells), np.nanmean(d, axis=(0, 1)), label=gmap[g], color=f'C{g}', marker=marker[g]) # Plotting good pixels only if bad-pixels were given if dbp is not None: ax.step(np.arange(cells), np.nanmean(dbp, axis=(0, 1)), label=f'Good pixels {gmap[g]}', color=f'C{g}', linestyle='--') ax.set_xlabel("Memory cell") ax.set_ylabel(name) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) ax.set_title(f"{name} Median per Cell") if vmin and vmax: ax.set_ylim(vmin, vmax) def show_processed_modules(dinstance: str, constants: Optional[Dict[str, Any]], mnames: str, mode: str): """ Show the status of the processed modules. Green: Processed. Gray: Not Processed. Red: No data available. :param dinstance: The detector instance (e.g. AGIPD1M1 or LPD1M1) :param constants: A dict of the plotted constants data. {"const_name":constant_data}. Can be None in case of position mode. :param mnames: A list of available module names. :param mode: String selecting on of the two modes of operation. "position": To just show the position of the processed modules. "processed": To show the modules successfully processed. :return """ # Create the geometry figure for each detector if dinstance in ('AGIPD1M1', 'AGIPD1M2'): quadrants = 4 modules = 4 tiles = 8 quad_pos = [(-525, 625), (-550, -10), (520, -160), (542.5, 475)] geom = AGIPD_1MGeometry.from_quad_positions(quad_pos) elif dinstance == 'AGIPD500K': quadrants = 2 modules = 4 tiles = 8 geom = AGIPD_500K2GGeometry.from_origin() elif 'LPD' in dinstance: quadrants = 4 modules = 4 tiles = 16 quad_pos = [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)] geom = LPD_1MGeometry.from_quad_positions(quad_pos) elif 'DSSC' in dinstance: quadrants = 4 modules = 4 tiles = 2 quad_pos = [(-130, 5), (-130, -125), (5, -125), (5, 5)] geom = DSSC_1MGeometry.from_h5_file_and_quad_positions( Path(eg_tests.__file__).parent / 'dssc_geo_june19.h5', quad_pos) else: raise ValueError(f'{dinstance} is not a real detector') # Create a dict that contains the range of tiles, in the figure, # that belong to a module. ranges = {} tile_count = 0 for quadrant in range(1, quadrants+1): for module in range(1, modules+1): ranges[f'Q{quadrant}M{module}'] = [tile_count, tile_count + tiles] tile_count += tiles # Create the figure ax = geom.inspect() ax.set_title('') # Cannot remove title ax.set_axis_off() ax.get_legend().set_visible(False) # Remove non-tiles markings from figure tiles, = ax.collections = ax.collections[:1] # Set each tile colour individually, extra_geom provides a single color # for all tiles. facecolors = np.repeat(tiles.get_facecolor(), tile_count, axis=0) # Set module name fonts for text in ax.texts: text.set_fontweight('regular') texts = [t for t in ax.texts if t.get_text() in mnames] for text in texts: text.set_fontweight('extra bold') text.set_fontsize(14) if mode == 'position': # Highlight selected modules for module in mnames: start, stop = ranges[module] facecolors[start:stop] = colors.to_rgba('pink') else: # mode == 'processed': Highlight processed modules counter = 0 # Used as index within the `Noise` matrix for module, (start, stop) in ranges.items(): color = 'grey' # Unprocessed modules are grey if module in mnames: color = 'green' if ('Noise' not in constants.keys() or np.nanmean(constants['Noise'][counter, ..., 0]) == 0): # noqa color = 'red' counter += 1 for idx in range(start, stop): # Set the colours facecolors[idx] = colors.to_rgba(color) tiles.set_facecolors(facecolors) # Update colours in figure if mode == "processed": _ = ax.legend(handles=[Patch(facecolor='red', label='No data'), Patch(facecolor='gray', label='Not processed'), Patch(facecolor='green', label='Processed')], loc='best', ncol=3, bbox_to_anchor=(0.1, 0.25, 0.7, 0.8)) plt.show()