From 1069aa420b424c58ab8b18911f9759ed2c089b2f Mon Sep 17 00:00:00 2001 From: Danilo Ferreira de Lima <danilo.enoque.ferreira.de.lima@xfel.de> Date: Fri, 17 Dec 2021 16:13:42 +0100 Subject: [PATCH] Updated all notebooks with the correct emails, some clean up and lots of details in the README about the Anaconda setup. --- Gaussian Processes.ipynb | 3188 +++++++++++++++++++-- Mixture Models.ipynb | 4174 ++++++++++++++++++++++++++-- README.md | 130 +- Representation Learning.ipynb | 3021 +++++++++++++++++++- Supervised classification.ipynb | 3302 ++++++++++++++++++++-- Supervised regression.ipynb | 1520 +++++----- Support Vector Machines.ipynb | 3378 ++++++++++++++++++++-- user_meeting_ml_intro_jan_2022.pdf | Bin 2747288 -> 2748868 bytes 8 files changed, 16950 insertions(+), 1763 deletions(-) diff --git a/Gaussian Processes.ipynb b/Gaussian Processes.ipynb index 014f5c5..cfcf974 100644 --- a/Gaussian Processes.ipynb +++ b/Gaussian Processes.ipynb @@ -24,18 +24,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2021-12-01 15:22:49-- https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_weekly_mlo.txt\n", + "--2021-12-17 16:04:48-- https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_weekly_mlo.txt\n", "Resolving gml.noaa.gov (gml.noaa.gov)... 140.172.200.41, 2610:20:8800:6101::29\n", "Connecting to gml.noaa.gov (gml.noaa.gov)|140.172.200.41|:443... connected.\n", - "WARNING: cannot verify gml.noaa.gov's certificate, issued by ‘/C=US/O=Let's Encrypt/CN=R3’:\n", - " Issued certificate has expired.\n", "HTTP request sent, awaiting response... 200 OK\n", - "Length: 190941 (186K) [text/plain]\n", - "Saving to: ‘co2_weekly_mlo.txt.1’\n", + "Length: 191093 (187K) [text/plain]\n", + "Saving to: ‘co2_weekly_mlo.txt.4’\n", "\n", - "100%[======================================>] 190,941 432KB/s in 0.4s \n", + "co2_weekly_mlo.txt. 100%[===================>] 186,61K 67,4KB/s in 2,8s \n", "\n", - "2021-12-01 15:22:51 (432 KB/s) - ‘co2_weekly_mlo.txt.1’ saved [190941/190941]\n", + "2021-12-17 16:04:52 (67,4 KB/s) - ‘co2_weekly_mlo.txt.4’ saved [191093/191093]\n", "\n" ] } @@ -83,7 +81,7 @@ "# \n", "# Contact: Pieter Tans (303 497 6678; pieter.tans@noaa.gov)\n", "# \n", - "# File Creation: Tue Nov 30 05:00:14 2021\n", + "# File Creation: Fri Dec 17 05:00:13 2021\n", "# \n", "# RECIPROCITY\n", "# \n", @@ -152,20 +150,20 @@ "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: numpy in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.19.2)\n", - "Requirement already satisfied: scikit-learn in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (0.24.2)\n", - "Requirement already satisfied: pandas in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.3.0)\n", - "Requirement already satisfied: matplotlib in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (3.4.2)\n", - "Requirement already satisfied: joblib>=0.11 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (1.0.1)\n", - "Requirement already satisfied: scipy>=0.19.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (1.6.2)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (2.2.0)\n", - "Requirement already satisfied: python-dateutil>=2.7.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2.8.2)\n", - "Requirement already satisfied: pytz>=2017.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2021.1)\n", - "Requirement already satisfied: six>=1.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (1.3.1)\n", - "Requirement already satisfied: pillow>=6.2.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (8.3.1)\n", - "Requirement already satisfied: pyparsing>=2.2.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (2.4.7)\n", - "Requirement already satisfied: cycler>=0.10 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (0.10.0)\n" + "Requirement already satisfied: numpy in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.19.2)\n", + "Requirement already satisfied: scikit-learn in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (0.24.2)\n", + "Requirement already satisfied: pandas in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.1.5)\n", + "Requirement already satisfied: matplotlib in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (3.3.4)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (2.2.0)\n", + "Requirement already satisfied: joblib>=0.11 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (1.0.1)\n", + "Requirement already satisfied: scipy>=0.19.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (1.5.2)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.2 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2021.3)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (8.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (0.11.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (1.3.1)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (3.0.4)\n", + "Requirement already satisfied: six>=1.5 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n" ] } ], @@ -180,13 +178,14 @@ "metadata": {}, "outputs": [], "source": [ + "%matplotlib notebook\n", + "\n", "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", "\n", "import pandas as pd\n", "import numpy as np\n", "from sklearn.gaussian_process import GaussianProcessRegressor\n", - "from sklearn.gaussian_process.kernels import RBF, ExpSineSquared, WhiteKernel" + "from sklearn.gaussian_process.kernels import RBF, ExpSineSquared, WhiteKernel, RationalQuadratic" ] }, { @@ -337,30 +336,6 @@ " <td>...</td>\n", " </tr>\n", " <tr>\n", - " <th>2475</th>\n", - " <td>2021</td>\n", - " <td>10</td>\n", - " <td>24</td>\n", - " <td>2021.8123</td>\n", - " <td>413.90</td>\n", - " <td>6</td>\n", - " <td>411.63</td>\n", - " <td>389.48</td>\n", - " <td>136.92</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2476</th>\n", - " <td>2021</td>\n", - " <td>10</td>\n", - " <td>31</td>\n", - " <td>2021.8315</td>\n", - " <td>414.17</td>\n", - " <td>6</td>\n", - " <td>411.93</td>\n", - " <td>389.80</td>\n", - " <td>136.85</td>\n", - " </tr>\n", - " <tr>\n", " <th>2477</th>\n", " <td>2021</td>\n", " <td>11</td>\n", @@ -370,7 +345,7 @@ " <td>7</td>\n", " <td>412.97</td>\n", " <td>390.09</td>\n", - " <td>137.29</td>\n", + " <td>137.30</td>\n", " </tr>\n", " <tr>\n", " <th>2478</th>\n", @@ -382,7 +357,7 @@ " <td>7</td>\n", " <td>412.80</td>\n", " <td>390.71</td>\n", - " <td>136.84</td>\n", + " <td>136.86</td>\n", " </tr>\n", " <tr>\n", " <th>2479</th>\n", @@ -394,11 +369,35 @@ " <td>7</td>\n", " <td>413.55</td>\n", " <td>390.78</td>\n", - " <td>136.96</td>\n", + " <td>136.99</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2480</th>\n", + " <td>2021</td>\n", + " <td>11</td>\n", + " <td>28</td>\n", + " <td>2021.9082</td>\n", + " <td>416.16</td>\n", + " <td>7</td>\n", + " <td>414.36</td>\n", + " <td>391.33</td>\n", + " <td>137.45</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2481</th>\n", + " <td>2021</td>\n", + " <td>12</td>\n", + " <td>5</td>\n", + " <td>2021.9274</td>\n", + " <td>415.86</td>\n", + " <td>5</td>\n", + " <td>413.50</td>\n", + " <td>391.72</td>\n", + " <td>136.84</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", - "<p>2480 rows × 9 columns</p>\n", + "<p>2482 rows × 9 columns</p>\n", "</div>" ], "text/plain": [ @@ -409,11 +408,11 @@ "3 1974 6 9 1974.4370 332.20 7 -999.99 -999.99 \n", "4 1974 6 16 1974.4562 332.37 7 -999.99 -999.99 \n", "... ... ... ... ... ... ... ... ... \n", - "2475 2021 10 24 2021.8123 413.90 6 411.63 389.48 \n", - "2476 2021 10 31 2021.8315 414.17 6 411.93 389.80 \n", "2477 2021 11 7 2021.8507 414.97 7 412.97 390.09 \n", "2478 2021 11 14 2021.8699 414.88 7 412.80 390.71 \n", "2479 2021 11 21 2021.8890 415.36 7 413.55 390.78 \n", + "2480 2021 11 28 2021.9082 416.16 7 414.36 391.33 \n", + "2481 2021 12 5 2021.9274 415.86 5 413.50 391.72 \n", "\n", " increase \n", "0 50.40 \n", @@ -422,13 +421,13 @@ "3 49.65 \n", "4 50.06 \n", "... ... \n", - "2475 136.92 \n", - "2476 136.85 \n", - "2477 137.29 \n", - "2478 136.84 \n", - "2479 136.96 \n", + "2477 137.30 \n", + "2478 136.86 \n", + "2479 136.99 \n", + "2480 137.45 \n", + "2481 136.84 \n", "\n", - "[2480 rows x 9 columns]" + "[2482 rows x 9 columns]" ] }, "execution_count": 6, @@ -456,14 +455,972 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAHyCAYAAAB/Fm0MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA95UlEQVR4nO3dd5zdVZ3/8dcnvTdSSE8ISSChEyKg0qsFEBcFVsGyiyKyuooKsrq6K8oilh+guKgIWCgCCqsiUoICBkIiJbRASG8kEEiB9Dm/P+43k/udTCaTycwtk9fz8biP3Dnfcs89k7nf9/ec8/3eSCkhSZK0WZtyV0CSJFUWw4EkScoxHEiSpBzDgSRJyjEcSJKkHMOBJEnKMRxIkqQcw4EkScoxHEjbEBFzIuK4ZtzfcxFxVHPtTy2jpX5P/v5VTQwHKqmIeCgi3oiIjnXKm/VAXIlSSuNTSg81ZduIODsipkbE6ohYHBH3RMS7ipZ/LCKmR8TbEbEkIq6NiF7NVfdK1Rz/b+ruY2d+Tw3Zyd//nIhYHxF965Q/FREpIkY0Rx2by67w99zaGQ5UMtkH2LuBBJxS3tqUTkS028ntvwD8EPg2MAAYBvwYODVb/kXgf4AvAT2BQ4HhwH0R0WFnXrua7Wy7V6DZwFmbf4iIfYHO5auOWrWUkg8fJXkAXwceBb4P/KGo/JdADbAGWA18GZhD4WD3DPAW8HMKB8Z7gFXA/UDvon3sDTwEvAk8B5xStOwrwMJsuxnAsUXL5gCXAM8DbwC/ADoVLbsoq8MK4NbNy7Llg4A7gGUUPrj/rc5+v5Jtuw5ol5UdV7TOUODObPvXgWvqabOeWZucsY027ZEt/1Cd8m7AUuATO/g72madttPG22urhva7vXasd78N/L+p2+4XA69kv//ngQ804v/ecc3xvuu0bd397ui2/wE8UVR2JXAphbA9Iivb5nvNlidgz6KfbwC+1cjfYYP7bui91lnWUHs2+jV8tOyj7BXwses8gJnAZ4CDgQ3AgKJl9X1wPkYhEAymcKD7B3Ag0BF4EPjPbN322b6/CnQAjsk+XMZmj/nAoGzdEcCoOq/zLIWDVx8K4aX4w3IKhYNXH+AF4NPZsjbANAqBpwOwBzALOLFo26ey/Xau+x6BtsDTwA+ArkAn4F31tNlJwEag3TbadJvLgRuBm3fg97PNOjXUxo1oq4b225h2rHe/Dfy/qdvuZ2TbtwE+TCFsDtzOPo7b2fddT/vW9zo7tC2FcLt31qbzKfQQFYeD7b3X7YWDhtq6wX039F6LyrfXno1+DR8t+3BYQSWRjY8PB25LKU2jcHZw9nY2uzql9GpKaSHwMPB4SunJlNI64HcUggIUutG7AZenlNanlB4E/kChC3YThTAxLiLap5TmpJReqfM616SU5qeUlgOXUdR1C1yVUlqULfs/4ICs/BCgX0rpv7LXnAX8FDizzrbzU0pr6nlvEyl8CH4ppfRWSmltSumRetbbDXgtpbRxG23Ut4Hli7PlRMRhETE5Iv4aETdHRPsdrFNDbVz8futrq4b229h2rG+/25Jr95TSb7Pta1JKtwIvZ3VqjJ15342xo9v+EjgHOB54kUKPWK2dfK8N1qcZ9g3bac9meg01A8OBSuVc4C8ppdeyn3+TlTXk1aLna+r5uVv2fBAwP6VUU7R8LjA4pTQT+DzwDWBpRNwSEYPqvM78OtsVL19S9PztotccDgyKiDc3PyicDQ3Yxn7rGgrMbeCgv9nrQN8Gxs9fa2D5wGw5FN7XMSmlIymcmZ+6g3XaZhsX/byttmpov41px23td1ty7R4R52QT9zbvfx+y0NQIO/O+G2NHt/0lhVD9MeCmugt38r02WJ9m2Ddspz2b6TXUDAwHanER0Rn4EHBkNpN+CfDvwP4RsX+2WtqJl1gEDI2I4v/Pw8jOqlJKv0kpbe65SBQm7xUbWme7RY14zfnA7JRSr6JH95TSe4rWaeg9zQeGNWLS3GRgLXBaA8vXAacXF0ZEV+Bk4AGA7Gxscw/GRgrj7DtSpwbbeDsa2m9j2rEh9bVxbVlEDKfQE/FZYLeUUi8Kw0ixnX1stjPvu9mllOZSmJfxHgpzOGo18r2+DXQp+nn3xrxuI/fdGNtsz2Z8DTUDw4FK4TQK3fvjKHRTHkBh3PRhCl2kUOgV2KOJ+3+cwtjklyOifXYt+fuBWyJibEQck106uZZCj8OmOttfEBFDIqIPhbPWWxvxmlOAlRHxlYjoHBFtI2KfiDikkXWeQqHb//KI6BoRnSLinXVXSimtoDAe/6OIOC0iumTv8eSIuCJb/k3g6og4KVs2AvgtsIDCmWatiBhJITT8YQfrtM023sn3urPtuL3/N10pHPyXAUTExymcjTZ2HzvzvlvKJyn0Ar1Vp7wx7/Up4OysnU8CjmzkazZm33W1z37Xmx/taLg9m/IaaiGGA5XCucAvUkrzUkpLNj+Aa4B/zj40vgP8R9adeNGO7DyltJ7CpZEnU+hG/zFwTkrpRQrzDS7PypcA/SkEgGK/Af5Cobt9FvCtRrzmJgofagdQOJN7DfgZhasLGlPnzdvvCcyjcCD/8DbW/T7wBQqz1ZdRONv+LPD7bPkV2Xu6ElhJ4QN4PoWrMtZt3k9E9KAwSfGjWZs1uk7baeMmv9edbUe28/8mpfQ88D0KPSyvAvtSmHTaqH3szPtuKSmlV1JKU+spb8x7/RyF9n4T+Gey/0ONeM3G7LuuP1EI45sf32ioPZv4GmohkdLO9OZK1S0i5gD/klK6v9x1aUlZALsL+F42CUyStsmeA2nXcBbwDuDrUbhLZb29FJIEhRuESGrlUkq/pM78A0naFocVJElSjsMKkiQpx3AgSZJynHOQ6du3bxoxYkS5qyFJUklMmzbttZRSv/qWGQ4yI0aMYOrUrS4dliSpVYqIudta5rCCJEnKMRxIkqQcw4EkScoxHEiSpBzDgSRJyjEcSJKkHMOBJEnKMRxIkqQcw4EkScoxHEiSpBzDgSRJyjEcSJKkHMOBJEnKMRxIkqQcw4EkScoxHEiSpBzDgSRJFSalVNbXb1fWV5ckaReSUuL5xStZ8MYajhzTj07t2+aW/fThWXz7Ty8CMGK3Llx11oHsN6QXADU1iTZtoiT1NBxIktRMnlnwJlf8eQYTR/bhvCP2qD34r1izgR9Nmsljs17nmQUrANizfzdu+sREBvXqzG8en8etU+fz9Pw3a/c15/W3OeWaR/nIocN4deU61qzfxC8+fgjt27Z8p3+Uu+uiUkyYMCFNnTq13NWQJJXJvNff5o/TF/PBgwfTv3un3LINm2q4Y9oCLr5zOn26duCbp4zn/fsPAmDV2g3s+42/bLW/Lh3aMumio3h24Qou/d2zLFm5FoCDhvXiXXv25WePzGZTTWJony7MXLqadm2C4/YewL8eMZKDh/dh/vK3efcVk2r3d8xe/bnm7APp0qF5zusjYlpKaUK9y6olHEREW2AqsDCl9L6I6APcCowA5gAfSim9ka17CfBJYBPwbymle7e3f8OBJLVeNzw6m2/83/O0bxvc87kj2LN/N6DQlf/iklWc8ZPJrF63sXb9Kz64Hx86ZChLV63lur/O4mePzN5qn184fgy9u3bga79/trZscK/O3PqpQ/n5I7P5xaNzast7dm7PeUfswccOH0HXjoWD++zX3uLKe2fw8tJV9O/eiZ+eM4HOHdrmXmPF2xt4fvFKRvbtyu4984FlZ7WWcPAFYALQIwsHVwDLU0qXR8TFQO+U0lciYhxwMzARGATcD4xJKW1qaP+GA0mqXDU1iZqUaFdPl/q6jZv4t5ufZNXajZy870A+eujw2mV/f+U1Pn/LUyxdtS63zW2fOoyendtz4g//lis/eZ/defDFpazbWMPEkX2Y9/rbLFm5lg5t2zCkT2c+PGEopxwwiK/eOZ1JM5bVbve1943jE+8cQURhTkBKiafmv8mtT8xnz/7d+Mihw3PzCypB1YeDiBgC3AhcBnwhCwczgKNSSosjYiDwUEppbNZrQErpO9m29wLfSClNbug1DAeSVB7PLVrBQzOWceSYfuwzuGdteU1NYuGba2q71rt0aMv5R47iwmNHAzB1znLu+MdCbp4yL7e/fQf35BcfP4SrHniZmybPrS2/8zOHE8AHfvx3ANq3DTZsSuw/pCefOXpPDhu1Gz06tWfDphq+9YfnuXHyXEb27crX3z+Oo8f2z71GSom/PP9qIZDss3ttb0A1aQ3h4HbgO0B34KIsHLyZUupVtM4bKaXeEXEN8FhK6VdZ+c+Be1JKt9ez3/OA8wCGDRt28Ny5c+uuIknajiUr1m6zy/tP0xfzi0dn07Nze37w4QPo3qk9UDjbv/qBmVwzaWZu/fOPGsWXTxzLjx96hR9Nmsnb6wudvu/ddyDLVq9jyuzljOrXlTYRvLx0de12R4zpx9VnHciHfjKZGa+uqi0/YGgvvnP6vuw9sEdt2YtLVnL1gzPp2qEtXzh+7Dbr/urKtfTt1pG2JbpCoNSqOhxExPuA96SUPhMRR7H9cPAjYHKdcPCnlNIdDb2OPQeStMWGTTX87OHZ/O/fXuHEcbvz7dP3rT1I1tQk/vL8Eia/8jo3Zmfmvbu0538/OoGJI/vwxlvr+fafXuC30xbk9tm3WwfOP2pP9ujXlc/++h+8lR34jxrbj0+8cyTfvXcG0xeuYGifzsxfvgaA9+8/iHMOG84hI/qwdsMmzrl+ClNmLwdgj35dueFjExm2W5fa11i7YRPXPvQKj89+nVMPGMxZE4e1eFtVq2oPB98BPgpsBDoBPYA7gUNwWEGS6jXntbeYMns5g3t35p179s0tW71uI+fdNJW/v/I6AJ87djQXHL0nHdq1YeOmGn5w/0v8aNIruW36de/Irecdyhtvr+eD12774/SsiUO5/4WlLFu1jk7t23D4qL788MwDeGb+Cr5yxzMsfLNw0N+9RycuOHoUHzl0eO04fU1N4qoHX+bBF5fStUM7rjn7QHbr1nGr15g2dzl9unZkZN+uO9VGu7qqDgfF6vQcfBd4vWhCYp+U0pcjYjzwG7ZMSHwAGO2EREnVYubS1by4ZCUTR/Shf498l/f85W/zo0kzueWJ+Qzp3ZmzJg7j00eOom2bYO2GTfzzzx7n1ZVrWfDGmtx2L/zXSbz+1jp+9vBsbvj7nK1e8+DhvTnzkKH8duoCpsxZXlv+4BeP5P4XXq29MU+xm//1UA4btRsA//f0Ii793XRWrt3IuIE9uPjkvThiTL/c+oveXMP1j8xmeN+unHbAoNohBpVHaw0HuwG3AcOAecAZKaXl2XqXAp+g0Nvw+ZTSPdvbt+FAUnNYumots5a9xYThvbeaWb9q7QYuvPlJ1qzfRJsILjxmTw7Pzuo31ST+8twSfnD/S7z06pax9PfuN5CrzzyQVes28vOHZ3HVg1vG6Af17MSiFWt59+i+HDmmH9/64wu519tvSM/aG+5s1rZNcNSYfhy9V3/OmDCEdm3acPu0+Xz9rudYt7GGnp3b808HD+FLJ47Nza5/fNbrfP2u5zjtwMF85NBh9R7YU0qs31RDx3aVNStf9Ws14aAlGQ4kbc+c197i4jufoUuHdpx7+AiOLDoz/se8N/iv/3uep4rucHffvx/B6AHdWbV2A3c9tYj/KLoefrP37juQDx8ylIvveIZFKwo3yRk7oDsXnTiWn/5tFlPmLKdD2zZ079SO199aT7/uHTl81G58+wP70rVjOy6/50V+8tfCEEC7NsFRY/vzk48cRLu2bZi5dDXHff+vQGFcv00EF5+8F2MGdN+qHktXreXhl17j2L3706tLh+ZsNlUow0EjGA6k1m3N+k08Of8NBvToxKh+3XLLUko8Of9NfjV5Lnc+uZBj9urPd07flwE9OrGpJnHzlHl87y8zeOPtDbntrjxjf0b378a3/vg8T8x5o7Z8r9278+KSwoz54bt1Yfnq9awqusHO4189lh6d2vPtP73ALx/bcpXUpe/Zm3MPH0GHdm1q63X1gzP5/n0vcfTYfnz2mNEcPLz3Vu9t9mtvsXbDJvbavXvt+D2QCwdzLn9vU5tOrZThoBEMB1L5rN9Yw4o1G+jXfevJZ5tqEjdNnsPt0xZw/lGjthqHn7/8baYvXMHnbnmSDZsSFxw9iguPGU2n9m2pqUn8Y94b/O/fZvHXGctYv6kGKNyG9gcfPoCO7dpw/aOzuf6R2by2ev1Wr725236zAT06cvVZB9Gna3uO+/6Wm+d079iOs94xjOPHDWDC8N5EBDOWrKq9wU6vLu0585BhXHTCmK2GGq68dwbXTJrJ0D6defjLx+xcQ9ZhOFBDDAeNYDiQWsaKtzcwbd5y9h3ca6uD/6aaxHf+9ELtrWn36NeVy07bl8NG7caiN9fw+Vufqr1sbbPundpx1wXvpEfn9nz3zzO4der8rV5zdP9ufPSw4Vz/yGzmvP42AO8Y2Yf37TeQZxeurN2mW8d2rF63kXeP7ssHDhzMkWP6sVu3jjyz4E1OuebR2v1d9oF9OHvisNxZ+dvrN/K7JxfSNoKj9+rPgB5bXyu/au0G5i1/m1H9um3z7niPz3qdD1/3GKP6deWBLx7ViBZtPMOBGtJQOKi+WzpJKomUEtc/Ood7n1vCJ945ghPH7547OM557S2ue3gWL7+6ildXruOosf249L17105Gmzb3DT547d9r1+/VpT1fPGEsZ08cxoo1G/juvTO49Yl51BSdn8xa9hbnXP84h+6xG4/OfK122ekHDeb8I0fxj3lv8NXfPcsx3/srHdu1YVNNYuyA7hwxpi8XHjuabh3acd8Lr3LxHc/w9bueo3/3jnzpxLGcNXEYfbpuGUc/YfwAvv2nFxjUqzMXHL0nh+6xW+697zekF9O/cQKPznyd/Yb0ZFCvzlu1T5cO7fjndwzfqrxY907tGT+oZ4PrSJXIcCBVoFVrN/DSq6s5YGiveu/Otmb9Jn79+Fw21iQ+dviIes9Kn57/Jn+cvpgTxg1gwog+uWUr1mzgqgde5s/PLqFzh7Z8+shRfPCgwUQEK9Zs4Kd/m8Vvp83n1ZWF+9FPmb2c48cN4OqzDmTRm2v437/O4vZ/LGBTTWJQz05EBDdNnsvkV17nffsN4sEZS2u/erZtm+Cr79mbe59bwtd+/yxf+/2zDOrZicUr13Lc3gMY3qcLF2Uz41es2cD5v5rG5Fde58Txu/Plk/bKXcs+ekB39h7Yg6/+bjr7Du7Jv7x7j63mD5w4fneOHNOPmUtXM6pft62+yAbg2L0HcOzeAxr8HXTv1J6T9tm9wXWk1sphhYzDCmouT857g1dXruPIMf22OjBt2FTD47OWc9dTC2nXtg2fOmIPRhQd/Fas2cBZ1z3G84tXAoWJbdd+5ODaA+S0uW/wy8lz+P1Ti2q3GdqnM3ecfzj9u3fi9dXruPrBmVtdx/7Zo/fk348fw5KVa7n4jmd4+OXXAOjcvi29urRn8Yq1TBjem3fu2Zf/98DLtduN6teVr75nb15csorv3jujtrxDuzacPXEY5x4+orZuf3xmMV+6/WneXr+Jnp3bc+Exe3LGhKH07Fy45C2lxBdue5rfPbmQkX27cvnp+/KOOmfsm9fbWJNK8p31lcBhBZWLwwpSI63fWMOy1etqz4aLvfTqKm6eMo/pC1Ywd/nbfO1943j/fgOJCFau3cAP7nuJZxeuqJ213r1TOy45eW/OfscwXl25lh/e/zJ/eGYRq9ZumbV+85R5XHP2gezZvxtX3vsS97/wau2yY/bqz0MzlnL0lQ/x36ftw+OzXucPzyyuXT5mQDf2G9KL26ctYOJlDwCFg/b6jYVJd327deCqsw7kricXcc2kmfxp+mIWrVjD2g017D+0FwcO7cV/vn8cm2oSv5kyj6/f9RxT5xbqfuExe3LhMaNrZ80fu/cAhu/WhSv+PINT9h/EuYeP2Gr+wHv3G8j4QT2Y/fpbvGNkn62+cz4i+MGHD+Abp4ynS4e22zz4RwTt27bOe9lL1cKeg4w9B9Vtw6YaHnn5NVav28gRo/vRs0v+Bi0bN9VwzaSZTJv7Bv26d+SiE8bWjiNv3FTDgy8u5Z5nl3D304vYlA10X3TCGD57zGgWvrmGqx94mVue2Hri2+GjdmPcwB787smFvP5WYbb7CeMGcNio3bj76UU8Oe/Nrdb/4EFDOGzUbjwxZzlf+/2zrMzCQq8u7Tl2rwEM7NmJLxw/hjZtgkkvLuXjNzwBFM7yT953d84/chSj+nWjTTbc8KvH5tZePz+4V2eu/9ghjN09fx37bVPn86vH5jK0TxcuPmkvhvbpQl1TZi9n2ap1nDB+wC5z1l4JWrLn4JVlqzn2e/YcqH5erdAIhoOWs3bDJhavWMvwPl1qD2jFFr25hr++tIzVazdywvgBDN8tf7/0V5at5qd/m8UtT8xnzIBuXPKevWu/PvXp+W/y8MvL+MlfZ7E6u458QI+OfPOU8Zw4fncem7Wcm6fM4+6nC93w3Tu2q73e/LQDBrFn/278dtoC5mYz2vfs341T9h/E9+97qfb1O7Zrw4ZNNUQEnz92NOcduQdtI/j3257m/7L9Hj22Hx9750jeMbJP7fj/uo2bOOKKSby6ch0HDevFt07bl3GDtnwzHMDKtRv4z7ueo1eX9px/1Cj6d996xvuKNRt4dOZrTBjee6tb6W62bNU62raJ3KQ7VQfDgcrFcNAIhoP6rV63kRcXr2RAj05bnW2u31jDbx6fy4tLVtG1Yzs+fMjQ3J3X3nx7PTdNnlt7oB3cqzP/fdp4jtmrMBHs1ZVr+dnDs/jpw7Nz+/2ng4fwrdP24dePz+Onf5vFkpVrqWtQz07sPbAHD7y4FCiMjZ9+0BD26NuVy//8InNff5sendrVnpXvN6Qne+/eg8s+sA/PLFzBp345jWWrCpPthvTuzCn7D+KE8buz/5CeRAQvv7qK43/wt9r6fOaoUexRz41zpi9cQfdO7bf5BTApJWoSrfYrX7XzDAcqF+cc7KKeX7SSl5eu4qBhvbc6sG/YVMNVD7zM755cyOBenfnku0ZywvgtM7P//OxifjTpFaYvLNyXvV2b4IwJQ/na+/YG4K6nFnHJndNr12/fNvj143P5z/eP5+ix/bni3hf5/ZMLc5epde3Ylk/cMJWDh/emc/u2PDLztdplHzt8BJ9810jefcUkbp+2gNuzr3rda/fuHDeuP796bB4Aj11yLF+6/Wkefvk1Fq1YywcOHMwn3zWS8YN61M4ROGh4by68+UmeW7iCLx4/hn959x65iYEHDevNo185hmsfeoXeXdtz9sRhW92YZvSA7sy5/L1sqknbPLBHBPsN6dXg7yAicPhcDak7t0WqBIaDFrJy7QZ6NPCNY0tWrKV7p3Z07bj1r2D1uo1c/eDLtGsTnHv4iK26ml9bvY4r753BLU/MZ2DPTnzpxLGcftAQoHCJ248fmsn9LyzlhWzGO8DFJ+/Fp47Yg9dWr+fnj8yuvRc7wII31vD47OWM7t+NTx85ilunzq+98UzhcrGR/OLROdw8ZR43T5lXu13Pzu05Zq/+/M8H96u9BG1zYGgTcMr+g3Kz6u/+7Lv45I1P8OjMwtfEDuvThc8esycfPGjIVgfg0w8czPsPGMTRY/vzxJzlteGgQ7s2XHXmgVwzaSan7D+I/Yf22qr9BvToxG2fOoyamlTvMMbm/XzuuNH1LivmGb+kXZHhoAX88ZnFXHzHM3z8XSP5zFGjasegl6xYy02T5/CTv75Se0Z9wdGj+LdjR9OxXVtWvL2Bn/ztFa59aMuB+0eTXuGLx4/hwmNH8+zCFXzsF1Nqb/PapUNbVq/byBdue5ov3PY0Hz10eO4+7eccNpyDh/fm1ifmc/k9L3L5PVu+cnVUv66cesBgPnzIUGpS4qQfPszLS1fzxd8+TZ+uHfiXd43k1AMGs++Qwg1cDh/Vl9OvfZT5y9dw8j67c85hI3jHyD61B99+3Ttywycm8q0/PM+qdRv5wvFjGNWvG/c8u4R12ez5Tu3b8qtPvoO7n17EgUN7M2y3rSfFbXb5B/ernSlfV++uHfja+8Zt9/ewrWAgSWqY4aAFjBnQjeF9u3DVAy9z11ML+fSRo3h24Qpun7ag9kDZt1tH9ujblR9NeoUfTXplq30Uj5d/776X+F7RBLnj9u7PaQcO5n37DWLjphred/UjvLhkFb98bC4DenTk4pP34uixW75Z7ZT9B3HlX2bwo0mvcNzeA7joxDGMHZD/gpYnLj2OL9z2FIN7d+bfjhm9VY9Gv+4dt3vf924d23H5B/drcJ2I4NQDBje4jiSpvAwHLWD0gO784cJ3c8/0xXzljmdqu9pPO2AQZ00cxoQRfWjbJkgp8eOHXsndXAbgxf8+iU7t2/Khn0xmypzlHDy8N9PmvsHYAd35xccPyd3KtV3bNvz580fw7MIVdGrflj375yfNQeGA/KUT9+JLJ+61zTp3aNeGa84+qJlaQJJUzQwHLejkfQey75CeTF+wggkj+mx105iI4IKj99wqHNR14TF7MrGem8oU22ew92+XJDUPw0ELG9K7C0N6b3tsvbEaCgaSJDUnb4MmSa2UU3LVVIYDVRU/7CSp5RkOJKmMvAeSKpHhQC2qqR98xdv52SlJpWU4kCRJOYaDKuC91yVJpWQ4kCRJOYYDSZKUYziQJEk5hgNJaqWcr6SmMhyoRaXUvPvzs06SWp7hQC3Kg7kkVR/DgVpUNPEWRsVbGTDUmvnfW5XIcCBJknIMB1XAMwtJUikZDiqQ3eiSpHIyHEiSpBzDgSRJyjEcSFIr5QilmspwoKrS1EsjJUmNZziQJEk5hgO1qKZeeZG/J7y9BWq9vDpJlchwIEmScgwHVcAzC0lSKRkOKpCT7iRJ5WQ4kCRJOYYDSZKUYziQpFbK+UpqKsOBqosfdpLU4qoiHETE0IiYFBEvRMRzEfG5rLxPRNwXES9n//Yu2uaSiJgZETMi4sTy1V5NkbvLgYFAkkqqKsIBsBH4Ykppb+BQ4IKIGAdcDDyQUhoNPJD9TLbsTGA8cBLw44hoW5aa7+I8rkvb41+JKk9VhIOU0uKU0j+y56uAF4DBwKnAjdlqNwKnZc9PBW5JKa1LKc0GZgITS1ppSZKqVFWEg2IRMQI4EHgcGJBSWgyFAAH0z1YbDMwv2mxBVlaVvO+BJKmUqiocREQ34A7g8ymllQ2tWk9Zqmd/50XE1IiYumzZsuaq5k5zjF2SVE5VEw4ioj2FYPDrlNKdWfGrETEwWz4QWJqVLwCGFm0+BFhUd58ppetSShNSShP69evXcpWXJKmKVEU4iMJX9P0ceCGl9P2iRXcD52bPzwXuKio/MyI6RsRIYDQwpVT1lSSpmrUrdwUa6Z3AR4HpEfFUVvZV4HLgtoj4JDAPOAMgpfRcRNwGPE/hSocLUkqbSl5rSSoj5yupqaoiHKSUHmHb1/scu41tLgMua7FKqSycjyFJLa8qhhW06ykOAeYBSSotw4FaVHiqLzXIPxFVIsNBJfNDQ5JUBoaDClSbCba6M4MkSS3PcFAF7HaUJJWS4UCSJOUYDiRJUo7hQJIk5RgOVFWcfiE1nvOV1FSGA1Wk4vsjeK8ESSotw4FalId1qWH+jagSGQ4qmZ8akqQyMBxUoNpudG+CJEkqA8NBFbADQZJUSoYDSZKUYziQJEk5hgNJkpRjOFBV8Z4HktTyDAeqeMYBSSotw4Falkd2qUH2hqkSGQ4qmZ8ZkqQyMBxUoNpM4E2QJEllYDioBvYgSJJKyHAgSZJyDAeSJCnHcCBJknIMB6oqTr+QGs+rJNVUhgNVPD/gJKm0DAeSVEZmX1Uiw0ElawWfGq3gLUjSLsdwUIFqu9G9CZIkqQwMB1UgPP+WJJWQ4UCSJOUYDiRJUo7hQJIk5RgOVFW854HUeOEfjJrIcKCK54RMSSotw4EklZEn96pEhoNK1go+NOzWlKTqYzioQLUHVG+CJEkqA8NBFfDkW5JUSoYDSZKUYziQJEk5hgNJkpRjOFBV8Z4HUuP516KmMhyo4jkhU5JKy3AgSZJyWm04iIiTImJGRMyMiIvLXZ8maQVnzJ71Sw1zqEyVqFWGg4hoC/wIOBkYB5wVEePKW6sm8CZIkqQyaJXhAJgIzEwpzUoprQduAU4tc52azPMKSVIptdZwMBiYX/TzgqxMkiRtR2sNB/WdbG/VSR8R50XE1IiYumzZshJUS5Kkytdaw8ECYGjRz0OARXVXSildl1KakFKa0K9fv5JVTpKkStZaw8ETwOiIGBkRHYAzgbvLXCc1A69+kKSW167cFWgJKaWNEfFZ4F6gLXB9Sum5MlerybxoQVJTGKbVVK0yHACklP4E/Knc9dgp/mFLksqgtQ4rqEKYb6SGeXavSmQ4qGSOJ0iSysBwUAU8sZAklZLhQJIk5RgOJElSjuFALcppE5JUfQwHkiQpx3BQBar57Ls5JlN6qZfUNOF0ZjWR4aCS+XctSSoDw4FaVHjaL0lVx3BQyap5PEGSVLUMB1XAc29JUikZDiRJUo7hQJIk5RgOVFWc3yhJLc9wIEmScgwHVWBXv2jBG7lITWNPm5rKcFDJ/MOWJJWB4UAtynwjNcyze1Uiw0El29XHEyRJZWE4qAKeWEiSSslwIEmScgwHkiQpx3CgquJljZLU8gwHqnjO5pak0jIcVAEvWpDUFOZqNZXhoJL5ly1JKgPDgVqUQwJSw5xHo0pkOKhkjidIksrAcFAFPK+QJJWS4UCSJOUYDiRJUo7hQFXFCY6S1PIMB6p4BgJJKi3DQRXwogVJTWKwVhMZDiqZf9iSpDIwHKiFmXCkhjhspkpkOKhkjidIksrAcFAFPLGQJJWS4UCSJOUYDiRJUo7hQFXFIRZJanmGA1U8v9JWkkrLcFAFvGhBklRKhoNK5gmzpJ1gr5uaynCgFuUNXqSG+TeiSmQ4qGSOJ0iSyqDiw0FEfDciXoyIZyLidxHRq2jZJRExMyJmRMSJReUHR8T0bNlVEdWdzau68pKkqlPx4QC4D9gnpbQf8BJwCUBEjAPOBMYDJwE/joi22TbXAucBo7PHSaWutCRJ1ariw0FK6S8ppY3Zj48BQ7LnpwK3pJTWpZRmAzOBiRExEOiRUpqcUkrATcBppa63JEnVqt32VoiIPo3YT01K6c2dr852fQK4NXs+mEJY2GxBVrYhe163fCsRcR6FHgaGDRvW3HVVC6jyESJJqgrbDQfAouzR0KdyW6DJR9eIuB/YvZ5Fl6aU7srWuRTYCPx682b1rJ8aKN+6MKXrgOsAJkyYULHT/yq2YiViHpCk0mpMOHghpXRgQytExJM7U4mU0nHb2f+5wPuAY7OhAij0CAwtWm0IhRCzgC1DD8Xl1ceDoiSpDBoz5+CwZlqnSSLiJOArwCkppbeLFt0NnBkRHSNiJIWJh1NSSouBVRFxaHaVwjnAXS1VP0mqVPa6qam223OQUlrbHOvshGuAjsB92XjzYymlT6eUnouI24DnKQw3XJBS2pRtcz5wA9AZuCd7SFLF8S6GqkSNGVYAICImAJcCw7PtAkjZJYYtJqW0ZwPLLgMuq6d8KrBPS9arJFrBZAM/9iSp+jQ6HFCYCPglYDpQ0zLVUX08wEqSSmlHwsGylNLdLVYTSZJUEXYkHPxnRPwMeABYt7kwpXRns9dKkiSVzY6Eg48DewHt2TKskADDgUrGIRZJank7Eg72Tynt22I10Ta1gnmJO8VAIEmltSPfrfBY9mVHKhWPipKkMtiRnoN3AR+LiFkU5hyU5FJGSVLTeH6hptqRcODXHkuStAvYkXDwKvAZCj0ICXgEuLYlKqVMK5hs4O1bpYb5N6JKtCPh4CZgFXB19vNZwC+BM5q7Usrzs0OSVEo7Eg7GppT2L/p5UkQ83dwVkiRJ5bUjVys8GRGHbv4hIt4BPNr8VZIkSeW0Iz0H7wDOiYh52c/DgBciYjpetaAScXxWklqeVytUgVYwL3GnGAgkqbQaHQ5SSnNbsiKqhwdFSVIZNDocREQn6rmUMaW0toXqJknaCWG3m5rISxklSVKOlzJWslYw2SAcG5Ea5F+IKpGXMlYBPzwkSaXkpYySJCnHSxklSVKOlzKqqjj7WpJa3nbnHETEP5pjHTVdK5iXuJMMBJJUSo3pOdg7Ip5pYHkAPZupPirmMVGSVAaNCQd7NWKdTTtbEUlS8/L8Qk213XDgXANJknYtO3KfA5VaK5hs4PxBqWH+jagSGQ6qgJ8dkqRSMhxIkqScHQ4HEXF8RPw0Ig7Ifj6v2WslSZLKZkfukLjZZ4CPA/8REX2AA5q1RpIkqayaMqywLKX0ZkrpIuAE4JBmrpPqaAXzEneKE7YkqbSaEg7+uPlJSuli4Kbmq45yPChKksqg0eEgIjpFxD7AzIjotLk8pXR1i9RMkiSVRWO+W6FdRFwBLABuBH4FzI+IKyKifUtXUJLUNA7Jqaka03PwXaAPMDKldHBK6UBgFNALuLIF66ZWMNnAzyZJqj6NCQfvA/41pbRqc0FKaSVwPvCelqqYtvAAK0kqpcaEg5RS2uocNqW0iVZxbitJkoo1Jhw8HxHn1C2MiI8CLzZ/lSRJUjk15iZIFwB3RsQngGkUegsOAToDH2jBukmSpDJoTDjoDHwR6ACMpzAEfg+wAejUwHZqJrv62I1zLiSptBoTDn4IfDWl9Azw4ObCiJiQLXt/i9RMHhUlSWXRmDkHI7JgkJNSmgqMaPYaSZKksmpMOGho6KBzc1VEktS8wu5HNVFjwsETEfGvdQsj4pMUJiiqpbSCyQbhLdokqeo0Zs7B54HfRcQ/syUMTKAwQdGrFUrAw6skqZS223OQUno1pXQ48E1gTvb4ZkrpsJTSkpat3hYRcVFEpIjoW1R2SUTMjIgZEXFiUfnBETE9W3ZVePoqSVKjNabnAICU0iRgUgvWZZsiYihwPDCvqGwccCaFyysHAfdHxJjszo3XAucBjwF/Ak6icPmlJEnajkZ/ZXOZ/QD4MvlR+FOBW1JK61JKs4GZwMSIGAj0SClNzm77fBNwWqkrrOZjx48klVbFh4OIOAVYmFJ6us6iwcD8op8XZGWDs+d1y6tWK5iXKEmqIo0eVmhJEXE/sHs9iy4FvgqcUN9m9ZSlBsrre93zKAw/MGzYsEbVtaQ8YZYklUFFhIOU0nH1lUfEvsBI4Omsa3kI8I+ImEihR2Bo0epDgEVZ+ZB6yut73euA6wAmTJjgCbokSVT4sEJKaXpKqX9KaURKaQSFA/9B2VUSdwNnRkTHiBgJjAampJQWA6si4tDsKoVzgLvK9R4kqWzsfVQTVUTPQVOklJ6LiNuA54GNwAXZlQoA5wM3ULiD4z14pYIkSY1WVeEg6z0o/vky4LJ61psK7FOiarUcBzokSWVQ0cMKKrBnUJJUSoYDSZKUYzioArv66II9J5JUWoaDSuZRUZJUBoYDSZKUYziQJEk5hgNJaqX8zjI1leFALcoPJ0mqPoaDSrarX6YgSSoLw0EV8ORbklRKhgNJkpRjOKgCu/rogvMWJKm0DAeVzIOiJKkMDAeSJCnHcCBJknIMB5LUSjkyqaYyHEiSpBzDQSVrBZcpeKWBJFUfw0EV8PgqSSolw4EkScoxHFSBVjC6sFPCvhNJKinDQSXzmChJKgPDgSRJyjEcSJKkHMOBJEnKMRxIUisV3mhETWQ4qGSt4DIFrzSQpOpjOKgCHl4lSaVkOJAkSTmGgyrQCkYXdorDppJUWoaDSuZBUZJUBoYDSZKUYziQJEk5hgNJkpRjOJCkVsppS2oqw0El29UvU5AklYXhoAqY/iVJpWQ4kCRJOYaDKuDogiSplAwHlczxBElSGRgOJElSjuFAkiTlGA4kSVKO4UCSWim/0VRNZTioZF6mIEkqA8NBFTD8S5JKyXAgSZJyqiIcRMSFETEjIp6LiCuKyi+JiJnZshOLyg+OiOnZsqsiqnvkbVcfXaju354kVZ925a7A9kTE0cCpwH4ppXUR0T8rHwecCYwHBgH3R8SYlNIm4FrgPOAx4E/AScA95aj/TvGgKEkqg2roOTgfuDyltA4gpbQ0Kz8VuCWltC6lNBuYCUyMiIFAj5TS5JRSAm4CTitDvSVJqkrVEA7GAO+OiMcj4q8RcUhWPhiYX7TegqxscPa8brkkSWqEihhWiIj7gd3rWXQphTr2Bg4FDgFui4g9qL/TPTVQXt/rnkdh+IFhw4bteMUlSWqFKiIcpJSO29ayiDgfuDMbIpgSETVAXwo9AkOLVh0CLMrKh9RTXt/rXgdcBzBhwoRdfd6fpFYmnLikJqqGYYXfA8cARMQYoAPwGnA3cGZEdIyIkcBoYEpKaTGwKiIOza5SOAe4qyw131nGFUlSGVREz8F2XA9cHxHPAuuBc7NehOci4jbgeWAjcEF2pQIUJjHeAHSmcJVC9V2pUMTsL0kqpYoPByml9cBHtrHsMuCyesqnAvu0cNVKxg4ESVIpVcOwwq7LLgMAqvweVpJUdQwHkiQpx3AgSZJyDAeSJCnHcCBJknIMB5LUSjmXV01lOKhkXsMoSSoDw0EVMPxLkkrJcFAF7ECQJJWS4aCS2WUA2AySVGqGA0mSlGM4kCRJOYYDSZKUYziQJEk5hgNJkpRjOKhkXsMoSSoDw0EV8FI+SVIpGQ6qgB0IkqRSMhxUMrsMAL88RpJKzXAgSZJyDAeSJCnHcCBJknIMB5IkKcdwIEmScgwHlcxrGCXtBK/0UVMZDqqAf9+SpFIyHFSBXb0DIYxHklRShoNK5jFRklQGhgNJkpRjOJAkSTmGA0mSlGM4kCRJOYYDSSqjtKtfjqSKZDioZH5oSNoJXgaspjIcVAH/vKXWy7sYqhIZDqrArt6B4IenJJWW4aCSeVCUJJWB4UCSJOUYDiRJUo7hQJIk5RgOJElSjuFAkiTlGA4q2a5+DaOkneJlwGoqw0EV8O9bklRKhoMqsKt3IBiOJKm0DAeVzKOiJKkMDAeSJCmn4sNBRBwQEY9FxFMRMTUiJhYtuyQiZkbEjIg4saj84IiYni27KsJpOZIkNVbFhwPgCuCbKaUDgK9nPxMR44AzgfHAScCPI6Jtts21wHnA6OxxUonrLElS1aqGcJCAHtnznsCi7PmpwC0ppXUppdnATGBiRAwEeqSUJqeUEnATcFqJ6yxJUtVqV+4KNMLngXsj4koKYebwrHww8FjReguysg3Z87rlW4mI8yj0MDBs2LBmrbQkSdWqIsJBRNwP7F7PokuBY4F/TyndEREfAn4OHEf9c/lTA+VbF6Z0HXAdwIQJEyrvisHKq5GkKuJkKzVVRYSDlNJx21oWETcBn8t+/C3ws+z5AmBo0apDKAw5LMie1y2XJEmNUA1zDhYBR2bPjwFezp7fDZwZER0jYiSFiYdTUkqLgVURcWh2lcI5wF2lrnSzMPYX2A6SVFIV0XOwHf8K/L+IaAesJZsjkFJ6LiJuA54HNgIXpJQ2ZducD9wAdAbuyR6SJKkRKj4cpJQeAQ7exrLLgMvqKZ8K7NPCVZMkqVWqhmEFSZJUQoYDSZKUYziQJEk5hgNJkpRjOKhk3gRJklQGhgNJaqX8Qlo1leGgkvl3DUDYEJJUUoYDSZKUYziQJEk5hgNJkpRjOJAkSTmGA0mSlGM4kCRJOYaDSuZNkCRJZWA4kKRWyjuEqKkMB5XMv2wAvMmbJJWW4UCSJOUYDiRJUo7hQJIk5RgOJElSjuFAkiTlGA4kSVKO4aCSeRMkSVIZGA4kqZXyHiFqKsNBJfMPG7AZJKnUDAeSJCnHcCBJknIMB5IkKcdwIEmScgwHkiQpx3AgSZJyDAeVzJsgSZLKwHAgSa1UeBckNZHhoJL5dw34ASdJpWY4kCRJOYYDSZKUYziQJEk5hgNJkpRjOJAkSTmGA0mSlGM4qGTeBEmSVAaGA0mSlGM4qGTe+wewGSSp1AwHkiQpx3AgSZJyDAeSJCmnIsJBRJwREc9FRE1ETKiz7JKImBkRMyLixKLygyNierbsqsi+nSciOkbErVn54xExosRvR5KkqlYR4QB4Fjgd+FtxYUSMA84ExgMnAT+OiLbZ4muB84DR2eOkrPyTwBsppT2BHwD/0+K1lySpFamIcJBSeiGlNKOeRacCt6SU1qWUZgMzgYkRMRDokVKanFJKwE3AaUXb3Jg9vx04NvzOX0mSGq0iwkEDBgPzi35ekJUNzp7XLc9tk1LaCKwAdmvxmkqS1Eq0K9ULRcT9wO71LLo0pXTXtjarpyw1UN7QNvXV6TwKQxMMGzZsG1VoeT87ZwKPzXqducvfZnT/brXll5++L9+77yUOGta7bHXbWdd+5CDee9Uj/Pdp+zRq/WvOPpCZS1fnynp0bs979t2dgT07t0QVpbIa2bcbpx0wiE8dOapF9v+hCUMY3KtLi+xbrVcUeuUrQ0Q8BFyUUpqa/XwJQErpO9nP9wLfAOYAk1JKe2XlZwFHpZQ+tXmdlNLkiGgHLAH6pe280QkTJqSpU6e2yPuSJKnSRMS0lNKE+pZV+rDC3cCZ2RUIIylMPJySUloMrIqIQ7P5BOcAdxVtc272/J+AB7cXDCRJ0hYlG1ZoSER8ALga6Af8MSKeSimdmFJ6LiJuA54HNgIXpJQ2ZZudD9wAdAbuyR4APwd+GREzgeUUrnaQJEmNVFHDCuXksIIkaVdSzcMKkiSpxAwHkiQpx3AgSZJyDAeSJCnHcCBJknIMB5IkKcdwIEmScgwHkiQpx3AgSZJyDAeSJCnHcCBJknIMB5IkKcdwIEmScgwHkiQpx3AgSZJyIqVU7jpUhIhYBswtdz0qSF/gtXJXohWyXZufbdoybNfmV2ltOjyl1K++BYYD1SsipqaUJpS7Hq2N7dr8bNOWYbs2v2pqU4cVJElSjuFAkiTlGA60LdeVuwKtlO3a/GzTlmG7Nr+qaVPnHEiSpBx7DiRJUo7hYBcSEddHxNKIeLaobP+ImBwR0yPi/yKiR1bePiJuzMpfiIhLirY5OCufGRFXRUSU4/1Ugh1s0w4R8Yus/OmIOKpoG9s0ExFDI2JS9v/uuYj4XFbeJyLui4iXs397F21zSdZ2MyLixKJy2zWzo+0aEbtl66+OiGvq7Mt2pUltenxETMvablpEHFO0r8pq05SSj13kARwBHAQ8W1T2BHBk9vwTwH9nz88GbsmedwHmACOyn6cAhwEB3AOcXO73ViVtegHwi+x5f2Aa0MY23apNBwIHZc+7Ay8B44ArgIuz8ouB/8mejwOeBjoCI4FXgLa26063a1fgXcCngWvq7Mt2bVqbHggMyp7vAyys1Da152AXklL6G7C8TvFY4G/Z8/uAD25eHegaEe2AzsB6YGVEDAR6pJQmp8L/6JuA01q67pVqB9t0HPBAtt1S4E1ggm2al1JanFL6R/Z8FfACMBg4FbgxW+1GtrTRqRSC7LqU0mxgJjDRds3b0XZNKb2VUnoEWFu8H9t1iya06ZMppUVZ+XNAp4joWIltajjQs8Ap2fMzgKHZ89uBt4DFwDzgypTScgr/8RcUbb8gK9MW22rTp4FTI6JdRIwEDs6W2abbEBEjKJxtPQ4MSCkthsKHMoXeFyi01fyizTa3n+26DY1s122xXevRhDb9IPBkSmkdFdimhgN9ArggIqZR6BZbn5VPBDYBgyh01X4xIvag0OVVl5e85G2rTa+n8Ec/Ffgh8HdgI7ZpvSKiG3AH8PmU0sqGVq2nLDVQvkvbgXbd5i7qKdul23VH2zQixgP/A3xqc1E9q5W1TduV88VVfimlF4ETACJiDPDebNHZwJ9TShuApRHxKDABeBgYUrSLIcAiVGtbbZpS2gj8++b1IuLvwMvAG9imORHRnsKH7a9TSndmxa9GxMCU0uKsG3ZpVr6ALb0zsKX9FmC75uxgu26L7VpkR9s0IoYAvwPOSSm9khVXXJvac7CLi4j+2b9tgP8AfpItmgccEwVdgUOBF7MuslURcWg2m/Yc4K4yVL1ibatNI6JL1pZExPHAxpTS87ZpXtYGPwdeSCl9v2jR3cC52fNz2dJGdwNnZmO3I4HRwBTbNa8J7Vov23WLHW3TiOgF/BG4JKX06OaVK7JNyzkb0kdpH8DNFOYQbKCQVD8JfI7CDNuXgMvZcmOsbsBvKUyaeR74UtF+JlAYV38FuGbzNrviYwfbdAQwg8KkpfspfCOabbp1m76LQpfqM8BT2eM9wG4UJnS+nP3bp2ibS7O2m0HRLG/bdafbdQ6FCbers//f42zXprcphZOFt4rWfQroX4lt6h0SJUlSjsMKkiQpx3AgSZJyDAeSJCnHcCBJknIMB5IkKcdwIGnzN/A9lT2WRMTC7PnqiPhxC7zeDRExOyI+3dz7bsRrd87e2/qI6Fvq15eqgXdIlERK6XXgAICI+AawOqV0ZQu/7JdSSre31M4jol0q3JUyJ6W0BjggIua01GtL1c6eA0nbFBFHRcQfsuffiIgbI+IvETEnIk6PiCuy76D/c3Yb2c3fS//X7Pvq781uH9vQa3TPehE2b98j23/7iBiV7XtaRDwcEXtl67w/Ih6PiCcj4v6IGFBUx+si4i/ATRExPiKmZD0Fz0TE6BZtMKmVMBxI2hGjKHxXxKnAr4BJKaV9gTXAe7MD/NXAP6WUDqbwZVOXNbTDVPiq24fY8r0eZwJ3pML3elwHXJjt6yJg8xDHI8ChKaUDgVuALxft8mDg1JTS2cCngf+XUjqAwh3oir/5TtI2OKwgaUfck1LaEBHTgbbAn7Py6RRuDz0W2Ae4r3CLeNpSuL309vyMwgH+98DHgX/NvunucOC32b4AOmb/DgFuzXolOgCzi/Z1dzZ0ADAZuDT7sps7U0ov79C7lXZRhgNJO2IdQEqpJiI2pC33X6+h8HkSwHMppcN2ZKcppUcjYkREHAm0TSk9GxE9gDezs/66rga+n1K6OyKOAr5RtOytov3+JiIep9ArcW9E/EtK6cEdqZu0K3JYQVJzmgH0i4jDoPB1ttl31zfGTRS+yOoXACmllcDsiDgj21dExP7Zuj2Bhdnzc+vuaLOI2AOYlVK6isI35e23g+9H2iUZDiQ1m5TSeuCfgP+JiKcpfOvc4Y3c/NdAbwoBYbN/Bj6Z7es5CnMdoNBT8NuIeBh4rYF9fhh4NiKeAvaiEEAkbYffyiip5CLiBuAPxZcyRsQ/UZhI+NES1WEOMCGl1FC4kHZJzjmQVA4rgP+OiL4ppZ9ExNXAycB7WvqFI6IzhYmK7SnMlZBUhz0HkiQpxzkHkiQpx3AgSZJyDAeSJCnHcCBJknIMB5IkKcdwIEmScv4/4jfPtF5yY1AAAAAASUVORK5CYII=\n", + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], "text/plain": [ - "<Figure size 576x576 with 1 Axes>" + "<IPython.core.display.Javascript object>" ] }, - "metadata": { - "needs_background": "light" + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -500,73 +1457,1044 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHyCAYAAAAHs9wZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAB230lEQVR4nO3dd5hcZ3n38e8zfXuTVr1atiy5yL1iDMbGDTAJJcb0GgIhQEIzkFASEgKE0MkLScCUYDqYYnCnuRt32bJ61+5q++7s9Of945Q5U3a1knZXW36f69pLZ845M3PmSNp7nnbfxlqLiIiIzC6hY30BIiIiMvEU4EVERGYhBXgREZFZSAFeRERkFlKAFxERmYUU4EVERGYhBXgREZFZSAFeRERkFlKAl1nNGLPDGHPpBL7ek8aY50zU68nkmKy/J/39y0yiAC+HzRhzlzGm1xgTL9s/ocF0OrLWnmStvetInmuMuc4Y86AxZsgYs98Yc7Mx5lmB468zxjxujEkaYw4YY75qjGmeqGufribi3035axzN39NYjvLvf4cxJmOMmVe2/xFjjDXGrJyIa5woc+H/82ynAC+Hxf0ldBFggRcd26uZOsaYyFE+/++BzwH/CiwAlgNfAa5xj/8D8O/Ae4Em4DxgBXCrMSZ2NO89kx3tfZ+GtgOv8B4YY04Bao7d5cisZq3Vj37G/QP8E/An4LPALwP7vw0UgBFgCHgfsAMnYD0GDAP/gxPcbgYGgduAlsBrrAPuAvqAJ4EXBY69H9jrPm8T8LzAsR3A9cBGoBf4BpAIHHuPew39wPe9Y+7xxcCPgS6cX75/V/a673efmwYi7r5LA+csA37iPr8b+FKVe9bk3pOXjXJPG93jLy/bXw90Am84zL+jUa/pEPf4UPdqrNc91H2s+rpj/Lspv+8fALa6f/8bgb8Yx7+9Syfic5fd2/LXPdznfhh4ILDvM8CHcL4wr3T3jfpZ3eMWWBN4/E3gX8b5dzjma4/1WcuOjXU/x/0e+pncn2N+AfqZWT/AFuBtwJlAFlgQOFbtl9+9OEF9CU6w+jNwOhAH7gA+4p4bdV/7g0AMuMT9BbHW/dkNLHbPXQkcV/Y+T+AEoFacLyDBX3j34wSgVuAp4K3usRDwEM6XlhiwGtgGXB547iPu69aUf0YgDDwK/CdQBySAZ1W5Z1cAOSAyyj0d9ThwA/C9w/j7GfWaxrrH47hXY73ueO5j1dcd499N+X1/mfv8EPBXOF8YFx3iNS492s9d5f5We5/Dei7OF9R17j3djdNTEwzwh/qshwrwY93rMV97rM8a2H+o+znu99DP5P6oi17GzR0vXgH8wFr7EM639OsO8bQvWms7rLV7gT8A91lrH7bWpoGf4gR7cLqk64FPWmsz1to7gF/idGfmcb4QrDfGRK21O6y1W8ve50vW2t3W2h7gEwS6QYEvWGv3ucd+AZzm7j8bmG+t/bj7ntuArwPXlj13t7V2pMpnOwfnF9l7rbXD1tqUtfaPVc5rAw5aa3Oj3KN5Yxzf7x7HGHO+MeYeY8zvjDHfM8ZED/OaxrrHwc9b7V6N9brjvY/VXnc0JffdWvtD9/kFa+33gc3uNY3H0Xzu8Tjc534beA1wGfA0Ts+U7yg/65jXMwGvDYe4nxP0HjIBFODlcLwWuMVae9B9/H/uvrF0BLZHqjyud7cXA7uttYXA8Z3AEmvtFuBdwEeBTmPMjcaYxWXvs7vsecHjBwLbycB7rgAWG2P6vB+cVsmCUV633DJg5xiB29MNzBtjPPngGMcXucfB+VyXWGsvxmkhX3OY1zTqPQ48Hu1ejfW647mPo73uaEruuzHmNe5kNO/1T8b94jMOR/O5x+Nwn/ttnC/GrwO+VX7wKD/rmNczAa8Nh7ifE/QeMgEU4GVcjDE1wMuBi90Z3geAdwMbjDEb3NPsUbzFPmCZMSb4b3I5buvGWvt/1lqvB8HiTEgLWlb2vH3jeM/dwHZrbXPgp8Fae1XgnLE+025g+Tgmgt0DpIAXj3E8DfxlcKcxpg64ErgdwG0VeT0JOZxx58O5pjHv8SGM9brjuY9jqXaP/X3GmBU4PQJ/C7RZa5txhmTMIV7DczSfe8JZa3fizFO4CmdOg2+cnzUJ1AYeLxzP+47ztcdj1Ps5ge8hE0ABXsbrxThd5etxuvxOwxlH/ANOdyM4rfPVR/j69+GM1b3PGBN11xq/ELjRGLPWGHOJuywvhdPyz5c9/+3GmKXGmFac1uP3x/Ge9wMDxpj3G2NqjDFhY8zJxpizx3nN9+N0oX/SGFNnjEkYYy4sP8la248zPv1lY8yLjTG17me80hjzKff4x4AvGmOucI+tBH4I7MFp8fmMMatwAv8vD/OaRr3HR/lZj/Y+HurfTR1OAO8CMMa8HqdVON7XOJrPPVneiNMbM1y2fzyf9RHgOvc+XwFcPM73HM9rl4u6f9feT4Sx7+eRvIdMEgV4Ga/XAt+w1u6y1h7wfoAvAa90/+P/G/Bht2vuPYfz4tbaDM6yuytxuqS/ArzGWvs0zvj7J939B4B2nCAe9H/ALThd19uAfxnHe+ZxfjGdhtOiOgj8N86s9/Fcs/f8NcAunGD8V6Oc+1ng73FmUXfhtHr/FviZe/xT7mf6DDCA80t0N85qgbT3OsaYRpyJd69279m4r+kQ9/iIP+vR3kcO8e/GWrsR+A+cno4O4BSciZTjeo2j+dyTxVq71Vr7YJX94/ms78S5333AK3H/DY3jPcfz2uV+jfOF2vv56Fj38wjfQyaJsfZoelVFjj1jzA7gTdba2471tUwm90vUz4H/cCc2iYiMSi14kZnjFcC5wD8ZJ5tg1d4CERFwEkiIyAxgrf02ZePxIiKjURe9iIjILKQuehERkVlIAV5ERGQWmlVj8PPmzbMrV6481pchIiIyZR566KGD1tr55ftnVYBfuXIlDz5YsbRURERk1jLG7Ky2X130IiIis5ACvIiIyCykAC8iIjILKcCLiIjMQgrwIiIis5ACvIiIyCykAC8iIjILKcCLiIjMQgrwIiIis5ACvIiIyCykAC8iIjILKcCLiIjMQgrwIiIis5ACvIiIyCw05QHeGBM2xjxsjPml+/jTxpinjTGPGWN+aoxpDpx7vTFmizFmkzHm8qm+VhERkZnqWLTg3wk8FXh8K3CytfZU4BngegBjzHrgWuAk4ArgK8aY8BRfq4iIyIw0pQHeGLMUuBr4b2+ftfYWa23OfXgvsNTdvga40VqbttZuB7YA50zl9YqIiMxUU92C/xzwPqAwyvE3ADe720uA3YFje9x9IiIi09pT+wdY+YFfcf/2nmN2DVMW4I0xLwA6rbUPjXL8Q0AO+K63q8pptsrz3mKMedAY82BXV9eEXa+IiMiRemCHE9h/9NDuQ5w5eaayBX8h8CJjzA7gRuASY8x3AIwxrwVeALzSWusF8T3AssDzlwL7yl/UWvs1a+1Z1tqz5s+fP5nXLyIiMi718QgAP3hwDzu7h4/JNUxZgLfWXm+tXWqtXYkzee4Oa+2rjDFXAO8HXmStTQaechNwrTEmboxZBRwP3D9V1ysiInKkPvyzJ/ztx/b0H5NriByTdy31JSAO3GqMAbjXWvtWa+2TxpgfABtxuu7fbq3NH8PrFBERGZdkphiuBlLZY3INxyTAW2vvAu5yt9eMcd4ngE9MzVWJiIhMvN7hzDF5X2WyExERmUQ9w8emBa8ALyIiMol6k2rBi4iIzHjdQ2l/e2lLDd3HqIt+OkyyExERmXGG0zlqY2HcCeK+q7/wR+fPUxYxmM7RP6IuehERkRmhP5nlpI/8lq/ctbXi2IGBFADxaIhcvsCju/um+OocCvAiIiKHqXPQCeL/+8fto57zl6cvZTjtlFo5FjPpFeBFREQO0y8edRKrxiOlYXQwsOY9FIJXnLMcODZr4RXgRUREDtPvnnFqn6yaX1ey/56t3f52U02U5toYAEPpHFNNAV5EROQw7O8f4VE3/WwkVBpG6xPFuesnLW7yc9IPp6c+EasCvIiIyGG4d1uxlb6rJ1lyLJ0trYbuBfyhtLroRUREprVEJOxvbz84TF8gkU0qW9pSr4875w6pBS8iIjK9Daac8fQGt3Xelyy2zlM5J5Df9vcXA1DndtEPpTQGLyIicszdv72HvX0jVY/t7BkmEjJ86iWnApQkshkYcQJ5c20UIDAGrwAvIiJyzL38/93Dcz99V9VjQ6kc9YkIy1prAdjTW/wi8MctBwFnBj1AXcwbg8+xr2+Enz28t6RLfzIpwIuIiFSRyReq7k/nCsQjIZa21ADQ4WauA7h1YwcA0bATXkMhQ20szFA6xyO7+3jX9x/xM91NNuWiFxERCbDWjnncCfBhv/vdG5Mf7XnJTJ4/bO5iZ7cz477VXRs/2RTgRUREAtK56i13cGbJbzs4TDwSIhIOURsL+9nrhjPOBLtXnLOs4nnPdAzxTMcQAC11UxPg1UUvIiIScDBQ7rW8EtybbniQR3f3+V3wDYmI34I/OOg876wVrVVf9/zVbaxsq/WfO9kU4EVERAI2uy1tgN1liWy8SXSRsFMitj4eYdBNYtM97AT4tvrSFvoZy5sBuGdbNzu6S19vMinAi4iIBPQGZrmPtlTOmyXfkIj6Lfh33vgIAPPq4yXnXrp+wSRc5aEpwIuIiATs7ikG9Z3dw1XPedV5KwCni37ADfDecrnyAO8tlQMIh8yEXutYFOBFREQC9veP+EH6O/fu8vc/vKsXgFedt5zLT1oIQGMiWlIiFqC1bBJdbayY2vbuD1wyKddcjQK8iIhIwFA6R0MiQiwS8pfCAXzsFxsBJ/+8p70xzp7eET8H/dKWGmJlNeKDq+cWNCYm8cpLKcCLiIgEDKdz1MXDnLe6jWggWHsz6ptrii309YsayeQKfrKb553YXvF6jTXHZkW6AryIiEjAcDpPXSxCPBIiE1gTf9z8egBefnZxnXu72yK/4+lOAG64Z2fF611x8iL+4vQlfPdN507mZVdQohsRERGgULCs+6ffkM4VeN6J7cQiIdK5YpnXppooi5sSXHzCfH9fe4MzVr/XnWC3oq226mv/51+dNnkXPgq14EVERICOwZSfxS4RC7Oze5htXcMUCs4gem8yU5GFzg/w7nK6f3nxyVN4xWNTgBcRkTllKJ3jnq3dFfu/8acd/nb3UJpU1gn2fe7Ye28yQ0tZHvmW2hiRkPHzzNfGpk/HuAK8iIjMKSd/5Le84uv3sr+/NInN136/zd8eyeR507NWAfgz5PuSWb/OuycUMsxviPvr5WuiYaYLBXgREZmT9vZWz1IHMJLNk3CD9Ygb4HuTmYo17gD7+1N+oZlFTVO3DO5QFOBFRGROusWt3V7N+kWNfoBPZfNkcgX6R7IVXfTlpqpS3HgowIuIyJyRLxSzzgS75Mv921+eSiLqhMhUNs+e3iTWwvLWylnyn3nZBgBOW9Y8sRd7lBTgRURkzvDG06tZPb8OgM/91WnUxML+eHoqW6DTLQVbrQv+eSe28/KzlvL5a0+b+As+CtNnup+IiMgEGEhlqYmGq9ZdLw/w+YL1C8Bs63Imyr349CUAJV303oz6trJCMuB0y3/qpRsm7gNMELXgRURkVjn1o7fwtu/+ueqxdCAzHVBRKCaoxi0S8/FfbvQLzZTXep/OFOBFRGTWGHFns986ygS6x/f2lzwuD/gnL2mseM7O7iSbOgYBDjnJbjpRgBcRkVnjb7770KjHCgXLX3+79Hiwyz4SMjz7+GIa2uPbndzzCxsTpLJ5NixrntJ67kdLAV5ERGaNuzZ1+dtea96zLVDm1eO14HP5ArmC9cfdAYwxvHDDYuLREH3JLIun0Rr38VCAFxGRWWlHd2lAt4HC7M9aMw8ofgn43v27gMpMdKvm1bGrJ8me3pFptcZ9PBTgRURkVhoYKZ1AlwusgfdKvnpFYj5y05POc8om3S1vrcVaJ5td6wwafwcFeBERmUW8ljlAsmxJ3Ejg8QXHtQFwcMhZ337pugUAvP7CVSXPmd9QXBanFryIiMgkeHhXLys/8Cs2HRgc9ZxMvkCbG4iT6dIA358sts6bapyiMX3JLDsODvtpa8tzzc8PrHufN4OWyIECvIiIzBA3P3EAgC/cvrnq8ULBcv/2HpLuuPpwJldyfEvnEAD/9+ZziYZD1MXC9I9k/VZ8NUtaavzt6ZaK9lAU4EVEZEYIGWeJ2q8e389dmzorjntr1b2u+B2BWfO7e5J84tdPAXDuKqd7vrk2Rl8yi3Ff9+IT5lPOa+kDLGqqqTg+nSnAi4jIjBDMPLu9ypK3SNka9a/ctdXf/rsbHw68jnNeY02U/pEsubyzVO6vn716zPePRWZWyFQuehERmRHCoWKADVaF81TuKVq7oIGHd/VxwoJ6f19zTZT+kQzZvPPMSJXc9QC3/f3FdI/RjT9dzayvIyIiMmdl88W0stUC/Ov+936gOBluXmCCXHujk6TmN+98tr+vqSZKXzJLtuC8bjRcPUvdmvZ6zl3ddpRXP/UU4EVEZEZY3FwcA793W3fF8X39KQDedNFqLl23oGSJW38yQ0MiQijQjb+wKcHevhHS7ph9tepzM9ns+jQiIjJrhU0xON8ZSElbzgC1sTDD6eIs+l09SZa31pact35xI8lM3p9drwAvIiJyDOQKhUOfhLOWfWVbLXt6k4xk8qSyee7c1FUyIx5g/SKnctyDO51SsLWxcMVrzWSaZCciIjOCNxmutS5WMh4PcF+gy/4lZyzltqc6KFjYuH+AfW462ru3lnbrt7td+F6Bmuba0i8AM51a8CIiMiOkc85Y+WXrFlA+He6vvnavvx0KGY5f0ACUroX/yivPKHlOfaK0jVsfn11t3tn1aUREZNZKZ51W+4LGOAOpHPmCHbU+u9cdP5jK+svfzlrRUnJOTTRMOGTIFyyXrmv3E97MFmrBi4jIjJDK5YlFQn7RF69a3FBgMt1fneVUiWtwW+cDqZx/vLzFboyh1i0P2zzDKsWNh1rwIiIyI/y/320DimPlfSNZWupi/mz5d116PO+45HjAmRFfEw0zmMoSjzgt9fJa7wCD6VzFvtlCAV5ERGaU+nix+x0g5a5jX9ZSW9Jl31gTYWAkRyJaoD4eGbML/tlV8tDPdArwIiIyI7TWxVjSXEMi6owup9wx+XTO+TMeLR11bkxEGUhlyRbCo06g+9Fbz2dnd5IXbVg8iVd+bCjAi4jIjBANG05a3Oh3tXstd68+fCJS2gXfXBulN5khX4j6Y/LlzlrZylkrWyfxqo8dTbITEZFpb+O+AToG0tTGIiTKAvw7vudUikuUjbG3uOVgB1O5UQP8bKYALyIi095VX/gDAIloqNhFnytNdlM+S761LkbPcIahdG7WrXEfDwV4ERGZFjoHU/z7b572E9pUs7MnSTxSbMFbW6wqd+qSppJzW+pi9CYzdA+laUjMrix14zH3vtKIiMi0dM4nbgegazDNZ162oeo5K1pr/a747QeHS5a5hcqS3rTWxsjmLfv6U5xZluRmLlALXkREphWvupsn2Ep/47NWUeMWhfnqXVvpHc4AEI9UhrNgbvnnrJ19y+AORS14ERGZVoIBHYpFZgDa6uPkAoVmut0A/1+vPrPidda51eIAFjQmJvoypz214EVEZFp5dE9/SZDPuAH9g1edCODnlgf8FnxrlVSzK9qK9d/LZ9jPBQrwIiIy7SQzxYl2SXecPZhq9jXnr6CpJuq34FvrKgP8XJw5H6QALyIi006PG7gBtnQ5Y/ILm2r8fc21MfpHshwcSgPVA/xsqw53uBTgRUTkmCsfd//YL570t6/7+n0ALGoqjqPXuhPt9veliEVC/uNyH3nhev7rVZXj83PB3O6/EBGRacHLJ18TDTOSzTOQcrrlvWx1AEuaiy14r7t+X98IbXWxUVvrr79w1WRd8rSnFryIiBxzd23qBODdlznlXr2kNcFa78Flb16A39s3QsssrOU+ERTgRURkStz+VAdv+daD7O5JVhx763f+DEBtLMKy1hp/bH3EnWx36br2klb6gFsq9ukDg7TVK8BXowAvIiKTrnsozRtveJBbNnb4rfVqlrXW0lYX5+CQM8nOS1t7zWlLSs47b3Wbv91WZYKdKMCLiMgUuHdbj7+9p3dk1PMWNSWYVx+nczAFwEimODYf1N4Y97dPWlyag14cCvAiIjLp3v5/Thd8YyLCzu7KLnpPIhLm+AX1bOkcIl+wDLpd8eWV4mpjxcdNNXOvkMx4KMCLiMiU2bCsmd29owf4UAiaa6IUrDOD3ktkU94NH2zRJ0ZZIjfXKcCLiMikyheKa9znN8TpS2ZLjhcCx1vrYn4xmZFs3k94U57IJhwyvOq85QAcN79uUq57ppvyAG+MCRtjHjbG/NJ93GqMudUYs9n9syVw7vXGmC3GmE3GmMun+lpFROToZXLF4jCNiag/A94/7uaaf+/la6mNRUgE6r3v7klijJO5rtw/X3Myv3vvczQGP4pj0YJ/J/BU4PEHgNuttccDt7uPMcasB64FTgKuAL5ijFE/jIjIDOPNhAdoSEQYSudKMted+I+/AYpfBOJRJzSlsnmePjDIyrY6wqHKRDbGGFa0qfU+mikN8MaYpcDVwH8Hdl8D3OBu3wC8OLD/Rmtt2lq7HdgCnDNFlyoiIochX7Bc8bnf840/ba84FmzBNyQiWAvD7vr2YOlXryXv1XbP5Cz9I9mSqnAyflPdgv8c8D6gENi3wFq7H8D9s93dvwTYHThvj7uvhDHmLcaYB40xD3Z1dU3KRYuIyNie6Rjk6QODfOwXGyuOeWloP/3SU6mPOzPevdnxj+7p88970YbFAETdcrDZfIHBVJbGhGbJH4kpC/DGmBcAndbah8b7lCr7bMUOa79mrT3LWnvW/Pnzj+oaRUTkyPz04b1A9SVrXoCPRUI0uMvdhtxc88EJd+sWNQLFeu+5QoGBVI7GGpVNORJTedcuBF5kjLkKSACNxpjvAB3GmEXW2v3GmEWAl+JoD7As8PylwL4pvF4RERknb7b7wsZExTF/bD0SIuEub/OKydz0qPNr/TMv2+CfHw077bsn9g4wMKIW/JGasha8tfZ6a+1Sa+1KnMlzd1hrXwXcBLzWPe21wM/d7ZuAa40xcWPMKuB44P6pul4RERm/gRGnJd4/kq045o2tOy14J1hv6RwE4OePOAH+rBUtFc/7yE1PkitYGpXI5ohMh36PTwI/MMa8EdgFvAzAWvukMeYHwEYgB7zdWpsf/WVERORY8brhDwykKBQsocCs97Rb8jUWDrO81Zkwt7VruOT58xqKqWeDk/IAteCP0DFJdGOtvcta+wJ3u9ta+zxr7fHunz2B8z5hrT3OWrvWWnvzsbhWERE5tGBQ/urvtpYeyxeXv81viBMJGSLuF4CGRITXXbCS+nixvZnNl063akhMh7bozKNMdiIictSCa93v3dbtb2/tGuInf3Ym4Hkt8XgkRDpXIJ3LM5jKVWSpK5+op2VyR0Zfi0RE5Kjs7x/hz7v6/MfxSDEn2fP+43f+tpdSNhYJkckV6B12xuvLA/w5q1q5+IT5/O4ZZ+nzKUuUqe5IqAUvIiJH5Q/PHCx5vLi5ciY9FJe/9SazfPvenXQPp4Hq9dyvOc1ZE99SG8WYaqum5VAU4EVE5Ki878ePAfCpl57K6vl1HBxKV5zz5evOqNh33dfvAypb8FDszq+WolbGRwFeREQmxOXrFzKvLk73kLMmPlhU5upTF/nb3hi7t6Surb4ywNe5k+4Ouq8lh08BXkREDunDP3uc/yqbHQ+ws7u43K2xJkJrXcyv4e6tjV9ZNknurRcfV/K4rS5OuWWtNQD+bHs5fJpkJyIiYyoULN+5dxdQGZz/vKvX3zbG0FYf4/4dToD3ls69+7ITSp7TWlc6S75aetulLbXc98HnVT0m46MALyIiY/r95tELeeXcNeunLWsGYHlrLT3DGbqH0n7yG686nKelrLZ7aJRW+oIqaW9l/NRFLyIiY3rdNx7wtwuF0iQ0Xk75b77+bMBpeYMzdj6cdo7FygN8YFLdlScvnPgLFkABXkREDsPrv/lAyePdPUkAP8d8XdxZAz+UzvHZW58BKvPTr3erxkGxNKxMPN1ZEREZk1enHfCTz3i+efcOoLiczUs5O5wuZqh7zgntJc+pi0f8yXORsCbRTRYFeBERGVP9KLngy7vrobi8LZnJYYxhXn28pEve4+Wu0Tj75FGAFxGRMaWzBZY0O8vWLjiuzd8/nHHG2N/+3OLM+rqYE+CH0nl+8ei+qklvoFhQ5uTFSkM7WRTgRUSErV1DjGSqV+ROZnIkoiEuPmE+Q+7EOcDf9ibWQXEM/rE9feN63wvXtB36JDkiCvAiInPcYCrL8/7jd3z4Z09UPb6rJ8my1loWNSXY1zfi7/cy1gVLvTa669a3Hyyt917OGIiGDc21ld33MjG0Dl5EZI7b3eME7Qd39lQ9vrM7ydkrW2msiXJwKEO+YAmHDH/3vYcByBWKteCj4RAnL2k8ZIGYP77/EtV5n2RqwYuIzHHZvBOgvaQ1QdsPDjOUzjG/Ie4nrPFa8dtGaaU3xKN0DqQA+MCVJ1Y9Z0lzjV9QRiaHAryIyByXdMfevcxzQc/9zF2A0w0/6Ca1+fkjewFY565nf+Gpi0ue01gTYYebo75aKViZGgrwIiJzWOdgild8/V4A0rnqk+wAQgbefNEqABJRZyJdJpfnqlMW+nXePQ2JKKms82VhRVvdZFy2jIMCvIjIHPbxX2z0twdTOayt7KYHp5BMS20MY5wqcdZatnYNM5Su/FIQ7HpfUVZJTqaOAryIyCx3cCjN/v6RqsfKu+X/tKXb3w4G+5AxhEKG+niEgVSOff3OGPtwYNmcJxrITtfeUFkKVqaGAryIyCy2pXOQs/7lNs7/tzv88q1B+bJsdN+6Z4e//cr/vs/ffuGGRQA010bpGc7w+J5+AF5/4cqK18wGJusdaja9TB6tURARmcW+/8Buf/uBHT1cuGZeyfHyoF8XWNN+91anNf/Bq070i8msmlfPju5hfvrwHoCqM+Hfd8VadnQP81dnL5uYDyFHRC14EZFZLJjrvby1DlSsRfeWzAVdd+6K4vnxCMPpHKcscVLMnre6MhNdIhrmf193NpefpFKwx5ICvIjILFYIjKOnspUT4mpiYRriET72opM4YUF9yVr449vrOXNFS0mmukQ0TCpbIJnJEwmZilrvMn3ob0ZEZBbzlqsBjFQJ8MPpHEtaanjtBSuJhkN+Vrqe4QybO4d4aGdvyfm1sTDJTI6RbJ4ad7mcTE8K8CIis1iw1Z4sKyazs3uY3z7Z4e8Ph4z/JSCYcz6oJhYmmckzmMqVjNfL9KO/HRGRWcwrCAOVAf7iT98FOMVkAB5zZ8YD9Cad533xFaeXPCcRCZHOFXhkdx+tylI3rakFLyIyi33/QWcWfSIaYn+gVR5c437NaaWpZnP5Aj3DToD30tF6Ht/rfAnY0jlEW70C/HSmAC8iMkv1JYut90VNNXQMpv3HP/nzXn/7Pc9fW/K8oXSOvmQWgJba0mVwwXF8teCnNwV4EZFZ6st3bvG3G2ui9I9k/ceP7O7zt5e21JQ8b2AkR89wBmOgqaY0wL/tOWv8bQX46U0BXkRklgoue29MRBgIBHhvvfv8hrifbe4L7nj7QCpLbzJDYyJaUUjm2SfM97errauX6UMBXkRkFsrkCvzPH7f7j5tqoiUBPhxygvqS5mLrfZ47pj6YytGbzB6yhX7mipaJvGSZYJpFLyIyg73+G/dz56YuHvzwpcyrLxZ2uW97sWhMNGxorIkykCoG+JPdTHSfeump/j4v7exgKsvuniTNtZVpaAF+866L2HRgkGtOWzKhn0UmllrwIiIz2J2bugB48Zf/VLK/IZAj/rj59aSzBQ4OZdjtLonrHHAm3AVb6V7a2oFUjs0dg6xd0FD1PU9c2KjgPgMowIuIzAJ7eksT0wSXwX3rjedw+9MdAHz1d1sB+M/bngEgGhhj974U9CUzDGfyJXnsZeZRgBcRmYWCJVvbGxJc7E6Oi4RKy7fWxorpZr0W/AG31nt5IRqZWRTgRURmqGArvS5Wmhe+vCrcv7z4ZAAWNiX8AA6lLXhv+7/dyXntasHPaArwIiIz1Md+sdHfLl/OlnED/PVXnghAfTyCMZDK5Dk4lGY8jm+vn6ArlWNBAV5EZBobSucYSucq9hcKlm/evcN/nMyUnpPNOQH+wjXzADDGUBt1CsV4CW/+703njvneq+bVHc2lyzGmAC8iMo099zN38aYbHqjYP1gW9LN5SyZX7JZPu9vxQL32mliEjsG0X0hmXkOccu+69Hh/O6FysDOaAryIyDSVL1i6BtPcu62nImvccCDAX3S800r/+SNOfnlrLe+88WGgdLncSYsbeebAoJ9nvrmmcp37a85f6Z8rM5sCvIjINBXsmt/fPzLqsWvPXg7Ao3v6AOgaSvtpausDM+GXt9bSMZjyi9A0VUlk01oX47tvOpcfvvX8CfkMcuwowIuITFNf+/1WfzuVLZ0VP5gqBvirT13E8tZahtNOpbdgStrg7Pr6RIThdI6nDwxSGwsTj1Tvgr9wzTxqY1oiN9MpwIuITFNfvrMY4O/a1FlyzGvBf+k6p0BMS13Mr+GeyTnN97+7ZI1fSAagNhomm7ds3D/gp6WV2UsBXkRkBviXXz1V8nhzxyAAx7c76WRba6PFAO8ukTt9eWkxmBq3Nb+ta5grT1k4qdcrx54CvIjIMbJx3wCpbH5c564uW7LmBXxvjD3YgveS3ETL1sYvagpWjqucQS+ziwK8iMgxMJTOcdUX/sC7bnyk6vFgljqADcua/e1CYEZ9vTtWPr8hTtdgmkLBsq/PmZAXi5QF+OZiZrpDlYKVmU8BXkTkGEi7LfffPHmAO9xCMB5rLVu7hv3HG5Y1s7lz0H8czERXF3e63Rc1JsjkC/QkM7zT/dJQ/iUhFmjR18c1iW62U4AXETkGgsVg3lnWiv/Gn3Zw6Wd/5z8+bWkTWzqH/Jb7HreFfu6qVj9Fba0bsEcyebx5dSvLuvWDSW/aqyS5kdlFX+FERI6BYDGY4JI3gPu2d5c8Xr+4kVS2wO7eJCva6tjrlob9+DUn++d4WedS2TxnLm8hHDIV5V6DY/Lnrm6bmA8i05Za8CIix0AmEODPXNEy6nlXnLSQZa21AH5g3+u24Je0FCfN1fgBvsCmA4NVK8EV3C77lW21R3n1MhMowIuIHAP9gWQ0w1WKyXiuOnWRn5Am7X4p2NObpKkmWjKOnog6v84HU1kG0znWLqisBNdc60ysu/KURUf/AWTaUxe9iMgx8NlbnvG3g5nnAGKBDHO10bA/du5ViNvbO8KS5pqS57TVOWPqW7uGgNIc9J7WuhgPffhSP9DL7KYWvIjIMeAF7atOWci+/lTJsZFMcW38BWva/OVuXrf+3r6Rku55gJXzaomFQ9z2lJPxrrlKnnmAtvo44ZCpekxmFwV4EZFJ8r4fPepXeCvXWBNleWstO7uTAPzysX3+seD4fG0s4i9ve2hnL9baqi342liEJS01/HlXL0DFcZl7FOBFRCZBLl/gBw/uqVgC5xlK56iLR/zW+r3bijPnMzln3y/f8SwAv8X9jT/tYCidYziTZ1FT5SS6trqYPyN/sQL8nKcALyIyCf7x50+Meuz3z3Rx68YOaqIh/uvVZwKwrKU4s/3ebT3EIiFOXtIElCal6Rp0kty0N1auY/eW3oVDRuvcRZPsREQmw/fu3w1AY6Ly16wX/LuHM36O+bQ7gc4L0plcsZu+pS5GfTzCc09sp9MN8PPrK1vwXtKbfMH62zJ36V+AiMgkOH15MwADqVxJ7vigXN4JxNGw8YvO/PTh6mP2S5pryOYKbHNT2C5tqeyC/4fLTpiAK5fZQgFeRGQSpLPFFvgtG0tzzXsz6PNu4E9EwyTdsfhfPOpMtlu7oKH0OdEQ6Vyemx51vgCsqJKsplq3vcxdCvAiIpMglcv7reyhskQ2XlrZvJtZbl593B9bX+hmoHveuvbS50ScLwH3busBwJjKpW5eCdjaWLjimMw9GoMXEZkE6WyB05Y1s6d3hI6B0nXuj+3pB4plXxc2JjjgnhN1W/fvvPT4kufMb4zzq8f2j/mezbUx3nv5Ws5d1Tohn0FmNgV4EZFJkM7laaqN0lQT5UAgkU1w8lydOzu+IRHx18N3DqQ5YUG9n57W84dnuvztD121btT3fftz10zI9cvMpy56EZEjVF5vPSidLRCPhEpa5wAj2WKWuhvecA7gpJUdTDnpam97qsOfUR90xckL/e0adcHLOCjAi4gcgUd397Hq+l/zyO6+imNbu4YYdMfdFzYlSrroN3cMAvD25x7HKneJXEMiwmAq539h8FrzQf/w/LX+dlNN9TS0IkEK8CIiR+C3Tx4A4Kd/3lNx7MVf/hMAD+zoob0hTudA2j/2kZueBGDjvgF/X2MiwlAmR8qdeX9ClUpwCxoT/uz7s1aOXl5WxKMxeBGRI/CVu7YCxdrsnv5k1k8XO5zOUxePkMxUloMNh4rtq4ZEFGuLWequO2d51fe8673PoXsow6ImpaGVQ1MLXkTkMH3/gV3+dvdwpuRY30jx8cevOYlENMxAqhjgvTH4D19dnCjXWOO0tbZ3O0lsamPV216Lmmr89LUih6IALyJymG56tFj5rbyWe08g4F90/Hxucbvy/7j5IICfiS6YqKbD7cJ/0w0PAEpYIxNDAV5E5DCdu6rN3y5vwXcPOY/PW+2sRfe68De5k+s8wUQ1zz5hPgDZvDPJbllrZZY6kcOlAC8icphS2TyRkOHdl55AXzLrF4gB+LE76e5zf3U6AN943dkAtNZF6U86rf3rrzyx5PVOW9ZcUv1NtdxlIijAi4gcho37BvjKXVvJFSxt9TGg2C1vreXmJw5gjLM8DuDERY2AM/numU6nFX98lVnyq+c7S+YWNib8VLYiR0MBXkSkiq/9fivfvmdHxf47N3X6217ud28Z3LBbMMbbD8Vysf0jOfa7Ge2Ctd893sS6Za1qvcvEUIAXESmztWuIf/310/zjz5+sOBas8eKtV39in5NbfthNbvOuQB75SDhEfTxC/0iWpHvcS1EbdJf7xeGM5VrjLhNDAV5EpMzz/uN3ox4zFCP8qnl11MbCPONOoPOqxtWXBfCmmqgT4N0WfrVqb17J+CtPWXRU1y7imbJEN8aYBPB7IO6+74+stR8xxpwG/BeQAHLA26y197vPuR54I5AH/s5a+9upul4RkWryheKEOmMMzTVRBkacwO6NxZenkm30A7xzXrVc8k987HK6BtN++lqRozWVmezSwCXW2iFjTBT4ozHmZuDjwMestTcbY64CPgU8xxizHrgWOAlYDNxmjDnBWpsf7Q1ERCZa50CKdrdGO0AmX1pgprEmyoBbKObPO3sBOGFBQ8k5TTURBkaydA9nqI9HKirFgdPqL2/5ixyNKeuit44h92HU/bHuT6O7vwnwMkhcA9xorU1ba7cDW4Bzpup6RWRustaWBNpH3drtnvu3dwPw5otWAW6Ad5Pd7O0boakmyuKyZW5eF/3uniSLmhKITIUpHYM3xoSNMY8AncCt1tr7gHcBnzbG7AY+A1zvnr4E2B14+h53X/lrvsUY86Ax5sGurq7ywyIih2UwnWMonePEhU4r3JQd97rf33+Fs5a9MRH1U9H2JbM011ZWemuti9M5mOLhXX2curR50q5dJGhKA7y1Nm+tPQ1YCpxjjDkZ+Bvg3dbaZcC7gf9xTy//fwVOa7/8Nb9mrT3LWnvW/PnzJ+nKRWQ2uWtTJ5d99ndkqtRdT6adUcCLjp8HwHBZoZjfPtkBOLPjwckj77Xg+0eyNFcp5bq8tZbepNNFf9ry5gn7HCJjOSaz6K21fcBdwBXAa4GfuId+SLEbfg+wLPC0pRS770VEjtg//vwJNncOsa+sEhzALx9zfs14LfVgLfdqGhNRBt0x+L6RLI1VAnwsUvxVu1hd9DJFDhngjTGt4/hpHsfrzPfOM8bUAJcCT+ME7Yvd0y4BNrvbNwHXGmPixphVwPHA/Yf7AUVEytW5SWW8ZW1B//KrpwBI5wo0xCPs66sM8GcEWuGNNVEG0zly+QKP7u6rugQuWPu9Whe+yGQYz5TNfe5PtS5zTxioXsC4aBFwgzEmjPPF4gfW2l8aY/qAzxtjIkAKeAuAtfZJY8wPgI04y+ferhn0IjIRnj7grFsvrwQXFA2HaEhESr4EeDnnn7O23d+3sq0Wa+Ebf9oBFLvwg2pixbbU+kUq9ypTYzwB/ilr7eljnWCMefhQL2KtfQyoeB1r7R+BM0d5zieAT4zjGkVExiVfKE7l+ebdO7hgzTz/cXBMPhoOUZ+I+N3vgJ/QJthK93LO9yRLq8oFXXPaEr5z7y4+fPW6qmvgRSbDeAL8+RN0jojIMdc1mPa3b9lY2tr+3v27/O3XX7iS257qKGnB33D3DgDmByq/ed39I26Wuk+99NSK9zx7ZSs7Pnn10V+8yGE45Bi8tXbsGSbjPEdEZDroH6Nb/v4dPf52IhqmPh5hMFUM8PVxZ/z8RRsW+/vq4k6LfFdPEoD1ixoRmQ7GnTbJGHMW8CFghfs8g5O/pvLrqojINDWQGj3A//rx/SWPGxIRdruBG+DJff2csKAeE6g4s7y1jpCB+7Y5CXBa6mITfMUiR+Zwlsl9F/gG8BLghcAL3D9FRGaM/qQT4J+z1smbUQiMyT83MHkOnADvJbHpH8ly3/YemmtKA3gsEqK9IcFwJk88EmJRo5bByfRwOImPu6y1N03alYiITAGvBb/QDcQHh9J+rvm4u179O288F4CGRJShtHP+be54fbAb39NUE+XAQIpV8+oIhcZacCQydQ6nBf8RY8x/G2NeYYz5S+9n0q5MRGQS/PbJA4CTNx7gvT96zD+WzOQ5ZUkTz3Kz2NXHI6SyBbL5Ag0Jpz308rOWVrxmwp0Zr0pwMp0cTgv+9cCJOEVivLUklmIWOhGRac9bp+5lqtvZPewf29I5xJkrWvzHXlDvGc7w80ecDHdvvmh1xWtG3Va7ArxMJ4cT4DdYa0+ZtCsREZkCxoC1UBN1Wt2pbHHte18yU7IEbkunUwDzIz9/kt+4Lf8lLaWV4gA6Bp2FRArwMp0cThf9vW6NdhGRaa1zIEXPcGXimU/8aiPWOuPv//D8tQBcut6ZWHfH0x0MZ/J+qx2grd4J9vsHUpy/uo11ixqpjVW2i3b3ON39Z61snfDPInKkDifAPwt41BizyRjzmDHmcWPMY4d8lojIFOocTHHOv97OGf98a8Wxr/9hOwAHBlIsbErQUhvFuFm43/DNBwGYV19swb/jkjUAbOsaIlcoVK0UB3DuKiewr2yrnbgPInKUDqeL/opJuwoRkQny199+6JDneBXd6uIRht1MdReuaeNPW7p5xTnFshpRtyTsYCpHJlegtrb6r8wb3nAO6VyhZH28yLF2OC34Dpw18P8JfBb4S3efiMi0Ua0ErOfqUxYRCRl+8+5nA84seS8VbcgYNixrJjzKMrd0ruAvoyuXiIb9SXsi08XhBPhvAScBXwS+BKwDvj0ZFyUicqRMoPBlMLc8wH3bu1neVktjwgnGdfEIwxknwPcMZ2itUsr1L05fQmtdjJFsvqSuu8h0dzj/Wtdaa99orb3T/XkLcMJkXZiIyJE4MFAsjXGTu7QNnAB+cCjDtq7isri6eIShVI50Ls+mA4Msaq6cIV8bC5PO5tnZneS4+fWTe/EiE+hwAvzDxpjzvAfGmHOBP038JYmIHLlgKddzVxdntX/+tmcAp1veUx8PM5TO0TmQJlewbFhaWas9Gg4x7FaKW1pliZzIdHU4Af5c4G5jzA5jzA7gHuBizaYXkemieyhNMpPnipMW0pCI0JcsFpb53gO7AbjFHX8HWNRUw96+ETrdErLBNfCeSGBM3qv9LjITaBa9iMwa77zxEX+7pTZGX7K4Fj6TcxLaLA50wy9qSpDKFtjTm/SfUy5YXnahCsnIDDLuAG+t3TmZFyIicrS2H3TG11e01bK/f4TeQAs+Fglx5vKWkvO9pDY7DjoBvrVKqdcfPrTH317aonXuMnOMu4veGJMwxvy9MeYnxpgfG2PebYzR11kRmVI/fHA3//zLjVWPbVjmjKG/+dmraSprwYeN4eQljSXne7Ppd7k13w9Vy70mML4vMt1pmZyIzBgHh9K890eP8T9/3M6mA4MVxzcdGOTSdQuYVx+npTbqt+ALBctINk9NWZrZBj/ADxMJGRrilZ2av3nXRQB88KoTJ/rjiEyqwxmDX2ut3RB4fKcx5tGJviARkdF8+57iSOG+vhHWLmwoOb63b4RLTnRyyzfVRP3x821u1315DpvGGudX4AM7egGqZqI7cWEjOz559cR8AJEppGVyIjIj7e9PlTzO5guksgW/2725Nkb/SJb+kaw/ie6UJaXL4KpNqhOZLbRMTkRmjFQu729/8KePlxzb3+cEfG/i3PHtTlKabV1Dfkt+RVtpOdfgjPpEVFnqZHbRMjkRmTHS2QINiQiDqVzFsX+66QkALl7rdNF7a9YHUzl/lvyCxtJ17sG889GQArzMLuP+F22t3TnWz2RepIiItZZv3r2DwVSO11+4smJC3F2bugBYNc9ppXst+cFUjkf39LGgMe5Pqgu68z3PobUuxpdeecYkfwKRqXXIAG+M+fNEnCMicig33r+LXz++v+qxnd1Jf7sxEWUwnaNQsADk8k4Sm2AqWS+YD6ayDKayrJ5XPY/8qnl1/PkfL+PiE+ZPyGcQmS7G00W/7hBj7AaoTOAsInKYPvATZ1z91nc/m+MXlM6Q33ZwCIAPX72OnBvY07kCNbEwj+7pB+BV563wzw+24Hf3jLBuUenricx24wnw41n8mT/0KSIyl6VzebJ5W1LsZTSX/efvK5amveGbDwLwnLXz+cPmgwCksnlqYmE63Apy569u88+vj0UwBrqHMxwYSJVUmROZCw75P03j6yIyEV713/fxwI5envr4FePKCLdx3wDrFzdW7G9vTJCIOs/3ZtV3DzsZ64LFYEIhg7XwX7/bCsCz1QUvc4ymjYrIlPCSybzhmw9UPZ51x9E9A6liHvlUtthJ2JiIEo84v7qG3Nn0PUNOgB9rXfsLTll0BFctMnMpwIvIlLpnW3fV/fv6RkoeB0u9drnlXN/2nOOA4vr1TR1OutqN+/tpq4sRi4z+K0155GWuUYAXkWnhjqc7Sx6PZHOBbacF73XZr3Un4N3yZAcAu3tGOGXp2HN9w+V5akVmucMO8MaYy4wxXzfGnOY+fsuEX5WIzGr9gda5Z2DECegnuvnlRzLFLvsn9jqz5BMRpxXeVOMsget1q8V1DaVpbyhNYlNOLXiZa46kBf824L3Aq4wxlwCnTegVicisY60teXzbUx0V53QOpmipjfL9vz4fKLbaAf7jlmeA4jh9KGTYsKwZYwzJTI6uwTTLW8eu1X7RmnlH9RlEZpojCfBd1to+a+17gOcDZ0/wNYnILNNX1mL/2u+3lTxOZfPcs62b2liEGneG/GBgkt2zT3CC8+UnLfT31cXCJNPOGneA5WV55gHmB1r1kbBGJGVuOZJ/8b/yNqy1H8CpEy8iwp1Pd3JwKF2x3+tKv2z9AsCZHLeze9g/fuI//oZtXcN0DKSIhg0r22p5zE1eA7C1a5gzV7QQCoyj18bCJDN5fwLegipd9D992wUT88FEZqBxB3hjTMIYczKwxRjjLza11n5xUq5MRGaULZ2DvP6bD/DGKsvgvO72l5yx1N/nVXgLyhUsxhhOWtzEDreG+0Aqy/3be/yxeU9tLEIyk6NvxF0iV1e5RG5pSy3rFzX6k/JE5pJDJroxxkSAfwXeAOzE+VKw1BjzDeBD1trK/6UiMudc+tnfA/D43v6KY6msM3aeiIZ4+3OP48t3bmUoXVkRbvV8p5u9tS7mt/p/9vBeANYtKk16UxcPM5zJ+93/zTWVhWQAfvjW84mqe17moPH8q/800Aqsstaeaa09HTgOaAY+M4nXJiIzUKF0Ph2ZXIH3/9gpZ5GIhv1x9GTaadUHE9ycu6oVgJbaKP0jWQoFSzLjnPcXpy8ped3NHUN0DaZ53O3KbxwlwNfFI2OujxeZrcbzr/4FwJuttYPeDmvtAPA3wFWTdWEiMjs8tLOXLZ1OoZhENExtzOk4HM44Lfh0rhjgP/LCkwBoro1RsE73/Igb4L3Jd5417U51uO8/uBtj8NPXiohjPAHe2vI1Ls7OPFCxX0Tmnh43F7wn+CsjOBs+EQ1RF3cCsdcy9zLY/fM1J/lButUdT+8ZzpDK5olHQiUT7ADe/tw1/vbKKjPoRea68QT4jcaY15TvNMa8Gnh64i9JRGaaT/92U8nj4AS6TKALPhEJtODdMfjfbeoC4JSlzf55LYEA//9+v62kle8JJq45bVlzxXGRuW485WLfDvzEGPMG4CGcVvvZQA3wF5N4bSIyQ6RzpRWjP/SzJ/jydWc4x7KBAB8NUxcra8H3j5CIhtgQSDXb5gb47rKegaBgl3xEaWhFKownwNcA/wDEgJMAA9wMZIHEGM8TkTniuPn1JY9/9dh+vnyds/3zR/f5+2OREJFwiHgk5I/B7+sbYXlrLcYUg3RbvRPgO90a7n93SbE73lMXaME/uW9gYj6IyCwyni76zwED1to7rLVftNZ+wVp7O5B0j4nIHOcVcnnyY5dXHPv9M13+tjf+XheP+LPo9/Wl/OpwHm8M/om9TuBeVHYcKPlC8IVXnHYUVy8yO40nwK+01j5WvtNa+yCwcsKvSERmnNFmugc98y9XEneLxdTGwv46+H19IxUB3jvvR3/eA8DqedUn0X38mpNY0lxT0YMgIuProh+rG77ya7WIzDnBme7nrGplo9tlnskVCIcMb3vOcSVr0efVx+kaTJPK5ukezrCkSgsdIO8uqp8/SqW415y/ktecv3JiP4zILDGeFvwDxpg3l+80xrwRZ9KdiMxxv3umy5/pvnZBA9Gw032+qydJvmBZVdYCb29wAry3RG5xc2U74kUbFvvb8w5RClZEKo2nBf8u4KfGmFdSDOhn4Uy60yx6kTniuq/fy8GhNLe8++KS/dZanj7g58GitS5G/0iWVDbPti4nwc3qsi70+niEoXSO/f3OJLrFTZUt+GWtxX0N8fH8qhKRoEP+r7HWdgAXGGOeC5zs7v6VtfaOSb0yEZk2dvckuXtrd9VjwbrtAKvm1VGwsLdvhG1uwRgvx7ynLh5hOJNjh1tRrnwMHuBZa+bz5Tu3AqUT6kRkfMb9tdhaeydw5yRei4hMU1++c8uox4ZSpUVjmmudnPB9yQy7e5K01EZpTJTmia+LRxhO53hq/wCNiQhLWyoD/IZlTSxprqnIQS8i46N+LxE5pLGKtQy6s+E/f+1pALTUOkvceoezDKZyNFUpAtOQiJDNW3qGMzTXxqq20GtjEf70gUsm4OpF5iYFeBE5pN5kMfVs50CK9sbipLj7t/cAzrg6BAJ8MsNNgSQ3QV6Smv39KRoS+jUkMhlUQ1FEDql7KO1vb+0aLjl2/U8eB4oBvrnO66LPMpo699wdB4f9pDYiMrEU4EWE4XSOnz+ylyqFIwGn6MuJCxsA2NUzXPUcb616QzxCJGTocNPMvjCw3M3jfRnoTWZVCU5kkijAiwhfunML77zxEd76neqpLbqHM5y8pIlIyLCzO+nv398/4m97S+GMMTTXxvwZ9Oetbq14vbrAsjdVghOZHArwIsKfd/YC8NsnOyqOFQrOZLj2hjjHza/n8b39/rE7nu6s+nrNtVF2uAHeG5MPCgb4Za21R3XtIlKdAryIcJ87UQ6cgB70/Qd3ky9YWutinLSkka2dQ/6xDjdRzS/+9lklz2mqifot+Gpj7MGJdacsaao4LiJHTwFeZI7b2zdS8thb9ubxJtG11cdY2lzDgYEU2byTlnZXT5IlzTWcsrQ0SDcHlsadsKCh4j2DLfia2OgFakTkyCnAi8wBZ/zzrfzDDx6teuyify9NSrm5Y7Dqee0NCRY111Cw0DnozKrf15eqWijGW/u+sDFRtQWfGGNdvYhMDP0vE5kDeoYz/NgtvVrO65H/2qvPBEpb9PlAd/2Cxrg/+z3plXrtH2FRlUIxTW42u3WLKlvv4HTbv+6ClfzyHc+qelxEjp4CvMgs1+kuV6umZzjjb5+90pnt3j1U3DecKXbXz29IUOt2pyczebqH0uzpHalai90bxz91aXPV9zXG8NEXncTJGn8XmTQK8CKz3Dn/eru/va9svD3YHd9UEyUcMnQPF5Pa9AeS1TQmIv54eddg2v9yUF4KFiDvrqf38tKLyNRTgBeZQ/pHSrPLHXBb9599+QZCIUNrXYyDg8UW/Lu+/wgAV52yEGOMP2Humc5BfzJefZVSruesagNgWYuWwIkcK0oCLTKHDJfNkN/X5wT455+0EID2hjhdgbS0D7nr41/kZqObVx+nJhqmZyjjv1Z9lVzyL9qwmHULG1jTXtl9LyJTQy14kVmsPPVsx0C65PG+vhGaaqJ+K7y1LkZ3YFzemyF/6boF/r7Wuhg9wxm/TGy1FjzA8QsaVMdd5BhSgBeZxdK5Qsnj7QeHSh7v6xthcWCZW20sTDqb9x9n8wUuXNNGJFz8VeF9CRiri15Ejj0FeJFZLJlxgvXrLlhJfTxS0joHZ0ncksAyt0Q0zIgb4Dd3DNI5mGZ5WSrZ5tooAymn1jugcq8i05QCvMgslnSXua1f1MiqeXU8uW/APzaYyvL0gUG/ChxATTTMiPul4Hv37wYgVNbNHguHyOQKdA2miYYNjQnNlBeZjhTgRWa4nz+yl+8/sKvqMS9Y18TCnLq0iU0Hisvi/u3mpwF4YEevv6+pJkpvMkMyk6O90Qn877/yxJLXjLoBfuP+AZa11hIKaZxdZDpSgBeZ4d554yO8/8ePV63l7rXCa2NhWutiDKSyfhKaiBuY33DhKv/8M1e0kM1bnukYomswTW0sXNFCj0VCZPJOC371PM2SF5muFOBFZon7AxXhPP/7p+0ARMIhGhIRrC1mp6uLRzAGXnHOMv/89kZnPL5nOM3mzqGqpV6f2NvPzu4k+/pGqI+rUIzIdKUALzKDeVXdADbuHxj1vELB0uC2xL3Jcf0jWVprYyVL2byAPZTO8/tnuioqzQF+Gdj+kWxJVTgRmV4U4EVmsJufOOBvH+gvzTkf7LJvSET82e5D7vK2gZGsX/XN4wXsHjfZTbVKcWsD5V/bGyoLzYjI9KAALzLNPdMxyDOjlHB9aEexW/4bd+8oOTacKa5nP2tla6AF76SrHUjlaCgL8C21MWKREA+6Gezeccmaivf83LWn+dvL2yq/AIjI9DBlAd4YkzDG3G+MedQY86Qx5mOBY+8wxmxy938qsP96Y8wW99jlU3WtIlOpL5mpOkHO8/z//D3P/8/fVz3WNZRmaUsNz107v+JYt9sK/8zLNgDFhDQDbhd9R3+qogWfiIaZXx/3v1C01ccpFw/UcleueZHpaypb8GngEmvtBuA04ApjzHnGmOcC1wCnWmtPAj4DYIxZD1wLnARcAXzFGKMZPTKrPNMxyGkfv5WfP7LviJ6/cd8Apy5t4tSlzWRyBX+GPMDXfr8NgLY6Z6Jco9dFn8qRzRd4pnOQU5Y0VrxmXTzM7h5n7L21rnKSXSwQ4Bc2qYteZLqasgBvHV6ezKj7Y4G/AT5prU2753W651wD3GitTVtrtwNbgHOm6npFpsLO7iTgrGWvJjiJrpqhdJ6mmih17uS4ZCDN7Hfvc9bGt9U7QTo4ya5zMI21sLRKC7w2FvGz2bVVCfDhwLp3jcGLTF9TOgZvjAkbYx4BOoFbrbX3AScAFxlj7jPG/M4Yc7Z7+hJgd+Dpe9x9IrNONl+9i768vGu5dC5PPBJmgbu8rdpYvVfRzZtkN5jKsr3LmQlfrQW+tKU4ru59OQgKBvVga15EppcpXeNirc0DpxljmoGfGmNOdq+hBTgPOBv4gTFmNVAtPVbFb0FjzFuAtwAsX758kq5c5Mh86Y7NnLGihQuOm1dxLF+wvPlbDwJOoK7mIz9/0t/urzLrPZ0tkIiGOWmx09W+uyfJGctbSsb0a2MR988wIeO04B/d0wfgPy/I+7IA1QvJhEOGb7zubHKF0ecNiMixd0y+fltr+4C7cMbW9wA/cbvw7wcKwDx3/7LA05YCFQOV1tqvWWvPstaeNX9+5UQjkWPFWstnbnmG675+X9Xje3uLa8xT2epd8b96fL+/vcNdf+7Z1zdCJl8gEjJ+gpqOAWepXDDnvMcYQ308wlA6x96+EVrrYlW72Gui4ZLnVPPcE9u5bP2CqsdEZHqYyln0892WO8aYGuBS4GngZ8Al7v4TgBhwELgJuNYYEzfGrAKOB+6fqusVOVqf/u2mMY9v7ix2p6eylS34fFkLeUd3aYB/748eBeDPu3ppiEeojYU50O/MnH/BF/8IwIevXlfynIaEUwmuoz/Fwsbq4+fedb3n+SeMef0iMr1NZRf9IuAGdyZ8CPiBtfaXxpgY8L/GmCeADPBa6/QvPmmM+QGwEcgBb3e7+EVmhK/ctXXM4/sCiWmqNZR7ykq7eq1zz5+2dANeylnDwsZExTnlmeYaEhG6hzJ0DaZZ0Fi5BA7wA/8LNywe8/pFZHqbsgBvrX0MOL3K/gzwqlGe8wngE5N8aSKTork2Sl9y9Ely//izJ/ztZzqGyOQKJZPW9vQm/e1YOFRRy93zlmevBqC9MV4R4E9c2FDyuLEmyu+e6QLg5CVLq77e9Vet46VnLmNFW92o1y4i05+mwIpMktZAoZaxEtnUxZwx775kaQD/i6/cDcBrzl9BY02EITdBTfnrnb2yFXBa3gfcAH/punYaExFOX95S8prBZW/zqiSxASfZzSlLm0b/YCIyIyjAi0yC/mTWL8oCsL8sT3zQx685GcBfe16uIREhEQ2XHL9rU1fFeW31cXrdVv5tT3Vy/IKGinO6h4pfIkYL8CIyOyjAi0yCoUyu5HEwsJardVvwyUz1AJ8rWGqiYUYCxx9wc9D/h5uGFqAxEWU4k+fxPf0APOTmkw96wYZF/vaSFuWRF5nNFOBFJoGXB97TNTR6C77mEAF+YWOCmli4pN57MpMnGja85MziOHqrm5RmV0+y4jU8rz5vhb993Pz6MT6BiMx0CvAiR+i6r9/L679RfeXmX7rj5//0gvUAdA2WBvycm4L27y87wV93Xr5UrjERYVFTgtecv5JMrkAmV1wr/827d1Rkv1s9z5kUt9udnBdcz+4Jrmtf2aZCMSKz2ZRmshOZTe7e6ixTG8nk/Va4x8vytrjZWXJWHuDv3ea0xmuiYT/TXLAF/4fNXQykclx37grCIcOl6xbw1d9txVo7avIZLxWtt7zuq686o+p5j/7T88FAJKzv9yKzmf6Hixyl+wM12csdv6CBhkSkIsD/3Y0PA06512IXfXHc/tX/4/QMbOl06jM11kTIFyxDaeec9oY4154dTPRYTCt70B0eqJZmFqCpNlqR8lZEZh8FeJEjEFym1jOcrjj+HLc++3Hz62mpjVUUjfFa2bm8LVaCqzIG/5rznTFzLyB7tdyr9Rp4AX1fn5MCtz6hDjqRuUwBXuQIHAgklBkYyVUcT2bynL68GXAS3vQGEt4EU9DGIiFa3PXy3sQ8ryV/6tImnn2C80XBC/D9ySzZfIHhTK5ijN3LWud1/y9v1Ri7yFymr/giVezuSdI5mOLMFa1Vjwdb5F63uWc4nSuZ8d5UE6UvcP6Lv/wnf/tvL1lDIhqmIR7hoLuUzltS96rAjHevbvszHYNYLAULJ5Stc68NtOjbG+L+2L6IzE1qwYtUcdGn7uQlX72HHzywu+rx//7Ddn/707/dVNZlX7rmvbk2VpKl7vG9zjr1xkTE71ZvSET8Lwpeutn5DcVENKvcGfIdAyn/+PKyWfDByXcrNENeZM5TgBcZw/t+/FjV/T96aE/J42CLfrgsyU19PMJwunJ8/d9fcqq/3ZCI+qlo97hlZJcFEtHUxsJEw4a+kSxP7Xeqva1pr1zH7nXLK4+8iKgPT+QweevVGxIRBt2gHFyj3l9WYKY2FmYkEPRPXtJIe0OCK08pZpU7OJRmU8cg1lq/hb6wqRjgjTE01Tg9ASOZPI2JCI2JypnwXpKbRU3VS8GKyNyhFrzIIRTK6rL/eZeTAnYwleMNF64CSvPI//0PnDrt33jd2YAzq304k/eXyiXTlTPgvUpxe/tG6BxMUxsLVyxza3Gr0/UMZ2gNFI2pJh7Rf22RuU6/BUSqiEVCRMPOmHZf2RK3675+HwAfeeF6zlnlVGsLLnHb6y5TW+Qmubn5iQMA3LqxA2st+/tTfs31cl2DaToH07Q3VBaCcWbjZ+hNZmgZJcB75WZfeuayqsdFZO5QgBcpk87lyeQKrHTHsasVbQF44YbFJNylatUqwa11Z7l/+Op1ACxojHNwKMNINs/SskIvZ65ocd+7QMdAivaGyi8AzbUxeoYzdA9l/KV15R768KXcc/0lLFQXvcicpwAvc9KmA4P8+2+erlqn3ZvE5gXd7QeHSo6vW9TImStamFcfL+aRd1vw27qK53qz2i84bh4A2XzBT0KzpLk0wH/wKudLQCqbZ8fBYT/FbVB7Q5wtnUPs7B4eNYA3JKIsalKVOBFRgJc5yFrL5Z/7PV+9a2tFhjmA/W4QvnDNPBoSEX9Wu6drMMUJC5wZ7OV55G+4ewdQmiY2WA620x2Hby/rovfGzPtHsnQOplm7sLHiuk5Z0kTBwnAmz2K10EXkEBTgZc7x1qGDU5WtnBf0z1jRwpLmGr/VDU4rvHs443ehJ6LOf6GfPrwXgBvu2QnAj//mAv85CxoThAzs7E76E+3Kx9i91/nlY/sBZ7y93Lz64nPa6ivH6EVEghTgZc4xFBPClK9nh2KAb66JVuSRP9Cfwlpob3QC7GK3q31z52DJa6xdWMwyV+POiO8fyfpL4OaVBeh4xGnl37qxA4BQlYJxwYl1z1oz7xCfUkTmOq2DlzknWyiuWfeKwnistfzbzU8DTtd6U02UbYExeK/Fn3ADcl08wrpFjSxxx8yPm19XkUIWIB4Nk87l+fztOzCmONvdP172+FnHl14XULI0zvuCISIyGgV4mXNGAkvaypa40zVUrAznJJdx1p57/uePToraK05e6O9riDtpZnP5Art7R3jeugUV75mIhvxsdq1VZsB7LXhP+SQ8cNLVfvuN53Dc/PqK80VEyinAy5yzs9vJ9lYTDbPpQGnX+jmfuB2Av33uGsCpnX5wqLIcbF1gEp1XD377wWEyuQLHV0khG4+E6XXz0f/Nc46rPB4d32jZRVVa9iIi1WgMXuaUrV1DfPCnj9OQiHDhmnk8tLPXTzMbTDF7ybp2ABY2JihY2NI56KeoPW919Qpzj+zuA2BZlTKtuXyBP2w+CJR+OfAo85yITDT9VpE55W//72EAouEQT7iz6X/9uDNzvWuoWOPdy/N+ojtZ7uBQhjue7gSK9dY9rznfKev65L4BgKpZ6oJBvVqAD1aC+8zLNhzORxIRqUoBXuakWDjEp17qVHPL5J0WfG+gBX/cfCeLXYMb6AdTOT9//H+UBeDL1jtj7ju6hwFnWVy5116w0t9e1jJ2IprTljWN+3OIiIxGAV5mpULBVs1S581ez+YLrFvkJJNJu13vXh33H//N+X6LuiHhtLYHU1mG3XrtpywtDcBeNrvdPUnq45GKQjJASeW3pS3Va7V7vQXlS+hERI6EArzMOo/s7mP1B3/NR296suKYN9Y9ki1WdEtl3Ra8G+CDZVoba5zAPDCS9b8ANNWUJqHxXmdv38ioVd6Cz2kb5Zz/ed3ZfOolp9I8Sp55EZHDoQAvs8637tkBFLPKBXkBPpnJkwgEeyh20QeXsRVb8Dk2HRikIRGpyELn56PPFkat8hYM8KFqWWxwlsa9/GxVgRORiaEAL7OOV7/dG0f3jGTy/kz2M1e0EAk7JWGLAT5DPBIq6WKPBs7ZdGCQdQsbSybEQTEfPUBrlRSzACvnVe+WFxGZLFoHL7POvn5nNrxX2MVzYKA4S/5/X3c2AIlo2F/+trd3xE89GxSPhEnnCuzuTfLsKuvQvRY8wIq2uorj4HwJeP8VJzKvXt3vIjI1FOBlVskXLPdvd5axDaZy7O8f8cunBifdeV3mwQC/s2eY5VXWsMciITK5AgMjuapFYIIt/peeuXTUa6uW4EZEZLKoi15mFW/83bOvr9hq90q6nhgsBBMNk8zksday82CSFW2VAb5nOMO3793JSDZfMhveEw0Xu+xPXqIlbiIyPSjAy4ySL1j+5jsPcffWg1WPbz84XPL4xvt3+dveWPsHr1rn71vYmGBzxxC9ySyD6dyoXeye2kMkqRERmS4U4GVGeXBHDzc/cYDrvn5f1eOr5jkB+uuvOQuAHwbKwe5wg/+SQKKZFW219Axn2OkmqVlRpYs+yEtHW+4nb7uAW9/97PF9CBGRKaAALzNKMHXN0wcGKo4PppxkNF4Z2GA52E0HBklEQ6wMtNJjkRAHBlJ+FrpqXfQfvrrY4v+bi6uPo5+xvIXjq5SJFRE5VhTgZUYZGCmmk7358QMVx/tHstTFwkTDzj/tuzZ1+cd29iRZ0VpHOLAO3Ssde9vGToypXigmEjh//eLGo/8QIiJTQAFeZpT9/cVJc97s96CBkayffa7cnt4Rlpblgb/m9CUA3P50B2sXNJCIVqaZzeYrU96KiEx3CvAyrfQMZ7hna/eox29wZ8nPb4gzkMqWHMsXLD98aA99ydL9Xl76PT3Jiha6l6kulS2wpkodd3B6BQCuOW3xYX0WEZFjSQFeppX3/egxXvH1e9nXN1L1+LYuZ6y8qSbqB17PU/udMXlvtvx7L18LQK5g6RpMM5jOVQT4xkRxVrxXfKZcxF0G9/z1Cw/344iIHDMK8DKtbO0aAuAbf9pecSyYqKYxEWFgJFdy3AvwHm/sPJsvsLnTed11i0onwjVUWdde7i3PXs1/vGwDV52iAC8iM4cCvEwr3iz4r/+hMsB7dduhsgV/cCjNe3/0GACfceu1e5PpepMZbt3YAVSWYm0ItOC9anHlamMRXnLmUq13F5EZRQFepo18wXJwKD3q8UzOCfDXX3kijTXRkjF474sBwCluNrm73bH8j960kY1u6758kl0wj/w/PP+Eo/wEIiLTh3LRy7Rx+1Md/nY4ZCgUbElpVW82ezwSqmjBD6eLAd5rlYfcFvee3iQAz1+/oKTyGzhZ6HZ88uoJ/iQiIseeWvAybXz1d1v97XzB0lc2ic5rwcciYRoTUQZGsv64vNeab6uL+fXavSIwg6kcB4cytJV1z4uIzGYK8DKlzvqXW3ndN+6veuzhXX0A/mS28u76dM6ZHR+LhEhEQxRsMff8wSFn/Px7bzmPiJvkpj7uBPhUNk/PcFqlWkVkTlGAlynTl8xwcChTkl0u6Pj2ek5YUM+rz1sJVAb4V3ztXgDqYmEe39sPwAd+/DgAXW7td6/1DnC9W1TmuPZ6CtZp3YuIzBUK8DJlbn+q09/+4+bKanD9I1nOWN7it7S9Vrlnn5vFri4e4QNXOsH7RHfZ233bugmHjF/nHaAxEeWUJU3+mvpWddGLyByiAC9TJrjM7f/u31lyrFCw9AxnaKuP+UvZugMt+EKhuAa+Lh5m1bw6mmudYD6UznHLxg7yBVuxlK0mFmZPrxPg56kFLyJziAK8TJmhwFK2NfNL08IOpLLkCpa2ujhNNVEiIVPSRf+Th/cGnuu02utiEYbSOX82/V8/e/WY79+qMXgRmUO0TE6mzIGBFDXRMHXxCB0DpePre91u9PbGOKGQobUuxsHBYhf9e374KAD/+IL1NLkt97p4mOF0jqS7RO6UpU0V73n/9h5/+7j51XPNi4jMRmrBy4Sx1rK7Jznq8Y6BFAubEixsinNgIFVybFe387xV85xa7fPq43QPO18C8oHu+QvXtPnbdfEIyUyeYbfka12s8vuqV989GjZ+CVkRkblAv/Fkwnz73p1c9Kk7uW1jR9XjHQMp2hviLG2u9Ze3eQbdVnijmxu+rT5GlzvJbsg99sZnreLEhcWCMPVxp4veqz7njckHffSFJwGjF5IREZmtFOBlwty3zekOf9O3Hqx6/IDbgl+7sIFdPUlygUl373PzyNfHnVb4/Pq4P8nOKyJz+vLmktdrSER4eFcf//6bp4Fi6z/Iqyy3sDFxpB9LRGRGUoCXCfOrx/ePemwwlWVv7wgLmxLMc9eq9ySdFvo2t4IcFNPMttXHODiUxlrLI7v7ALjguHklr9lcW5w0t6AxXvLYE484/8SrBX8RkdlMk+xkQgRLuS5rrak4vnHfAAUL56xs9VPOdg9laG9I8JKv3g3ARcfP87PQzauPk8oWSGbyfP+B3QC0lHXBBx+vaKsewC85sZ1Pv/RUXnTa4qP4dCIiM48CvEwIbww9ZKBjwGl5B9ek7+h2xtyPb2/wJ9h1u2PsvUlnmVsh8CWhxV2z3jOc8cfry9e4L2oqfpFYNUqAN8bwsrOWHfkHExGZodRFL+NycCjNZ2/ZVDKjPeht3/kzAGva68nkCjzsdqt7PnrTRgAWNydoc9eje7Pk1y5w1rW/4cJV/vleGddUNs+KtlquPnVRxXs+f/0CfztY111ERBTgZZyu/8njfOGOLRz3wV9XPf7HLU7q2fNWO8vYvPSw3rY32S0SDjGvzhmD9/LHj2TzXHPaYp63rhiwE26A//ztm+lLZqvmkW8PTJyrjSvAi4gEKcDLuOzsHj70ScBz1s4HIJcvtvS3dDqT6BrcINxYE6EuFvaT2/QmM7SUTZCLhp3u+F8+tp+BVLbqBLqgcFn3vYjIXKcAL+PSXVb4ZTReoE65LXaA/f1OIP/p2y8EnHHxZa217HaXyg2mchVr2PsDteCtheaayjXuAM87sR2AtQuVpU5EJEgBXsZlw7Jmf7t3ePRg7wX4D/zkcX/f+92SrivdrHIACxoTdA6m6XMDeXkL/qTFpWlnW+qqB/hPvuRUPnDliVy2fuE4PoWIyNyhAC/j4k16A/jlY/tGPa+9sbQka3BSXiSQKrYmGiaVzdPnroUvb8Gvaa/nxYGlbc011bvo5zfEeevFxxEOqYteRCRIM5NkXPpGMrTVxegezlBTJee7pyYa5sI1baSyzlr33mT11n4iGiKVLbC7x+m+L2/BQ2kim9MCPQgiInJoasHLuPSPZFnW6nSxDwTGxz0r2mq55rTFGGNoqY3R43bjd7pV477yyjNKzk+4LfinDjhpaNcvrswVv7TFWedeFwv76+JFRGR8FOBlXPpHsqxsq6UxEWFLILWsJ5MrEHO74FvrAgF+0Elq095Q2nXvBfieoQyJaIh59aXHoXqrXkRExkcBXsgXLCs/8CtWfuBXfkAu15d0lqqtml9fURK2L5lhf3+KeLQY4PtHsuTyBTrdte7tDaXFXuLREKlcgZ5khra6yuAOUBNzxv0bR5lBLyIio1OAF3728F5/+3//uKPi+BN7+xlM5WiqiTK/PlaxZO7zt28GYMdBJ/C3ut3pvcks+/vcFnzZ5LtEJEwmV6B7KOOfXy7hfmFY0lyZ215ERMamAC/c9lSxfvuunsqENi/44h8BeN66dhoSUQbTpWPwXrU3b0JdMcBn2N2bZGFjws9M5/Ee7+8fGXV8PRIKlZwrIiLjpwAv3PzEAQAiIcPBMRLanLS4iYZEhL5ktqR6nDe+/p7L1wLQ6o6ddw9l2NWTrFpdzmudP9MxVDUNLTglXhsTEV557vIj+FQiInOblsmJ77L1C9jcWTmBbsPSJpprY4RDhtXz6hhM5egYSLOwKUHnYIrfPtnB+kWNPHetk1VukdulvrdvhN09Sc4/rq3iNeORYqu8v8qsfIBlrbU89tHLJ+KjiYjMOWrBzxH7+kbI5QtVj524sIHL1i+grT5G91C65FgmV+DRPf3Uu9XaVsxzyrLu6XXG2z/9m00AbNw/4D9ngTvevrd3hAMDKZa31lLOa8EDvO6ClUf4qUREZDQK8HNAfzLLBZ+8gzUfuplkJldxfCidoyEeoa0uTp87+93zn7c9A0BHvzNZbr67nK3bXQaXyjnntgQy0dVEw4QMbO4cxFpY2lItwBdb8IubExXHRUTk6CjAzwFeMhmAh3f1lRzrHEixp3eEaDhEW30Ma53Z756hlPOF4PqrTgSgyV2y5nWre0vmlrfV+c8xxlAXi7C5w+nurzYLPphZdklz5RcAERE5Ogrwc8DdW7v97e6yQjE33LMDgF8/vt9fj94TOCccMjQmIpy5ohUorkn3stmNZJyqcf/0gnUlr1sbD7O5cxAoZqQLGnS/OJy4sMFf7y4iIhNHAX6WyxcsX7h9s1+LvbwSXK2bV/649np/eVtwHH44naMuXpyL2RCPYEyxBZ/M5viL05f4XwA8dfEIXp2ZBY2VXfDnrW4jZOAzL9twlJ9QRESqmbIAb4xJGGPuN8Y8aox50hjzsbLj7zHGWGPMvMC+640xW4wxm4wxmk59BH73TCcAg2mnxdxTFuA//VtnktyXrjudefVOgH/vjx7zjz+5b6AkjWwoZGiqifrL6fqSWb/bPqguUJAmFqn8Z7astZZt/3Y1Jy9pqjgmIiJHbypb8GngEmvtBuA04ApjzHkAxphlwGXALu9kY8x64FrgJOAK4CvGGPXlHqaEuxztnc87nqaa6KjV3ebVx/10snv7nApv+YJlS9cQ560ubZ2f0N7A5o5BsvkCg6lc1ZzxXW6K2g2qAicickxMWYC3Dm+RddT98bKl/CfwvsBjgGuAG621aWvtdmALcM5UXe9skXX7yZ99wjyaaqKjrjmPR0I01UZZ3JTgWWucTpQ9vUkyuQLHtzeUnNtcG2UonePBHb0AtNRVtuCvPnWR8xpleetFRGRqTOkYvDEmbIx5BOgEbrXW3meMeRGw11r7aNnpS4Ddgcd73H1yGPrcFns8Eh4zwBvjTGs/fkEDAynnnC1u0pvj2utLzq2LR0hm8rzi6/cCkMrmK17vvZevZXFTgn/7y1Mm5oOIiMhhmdIAb63NW2tPA5YC5xhjTgU+BPxTldNNlX224iRj3mKMedAY82BXV9eEXu9M0Z/M8pKv3s3923sqjr3zxkcAMMZpeZcH+Hn1MV5+1lL/cWNN1J8hf8M9OwFYM780wNfGwgyni+vpvTKxQYlomLuvfx7PP2nhkX0oERE5KsdkFr21tg+4C6cbfhXwqDFmB07g/7MxZiFOi31Z4GlLgX1VXutr1tqzrLVnzZ8/f5KvfHra8PFbeGhnL9+9b2fFMW8N+vLWWhrLWvBdg2kODmVYu7DR39dUE2HAXcL25N5+Z19taRd8fTzCcCbHVac4wfslZy5FRESml6mcRT/fGNPsbtcAlwIPW2vbrbUrrbUrcYL6GdbaA8BNwLXGmLgxZhVwPHD/VF3vTBEM2B0DlbXc1y9u5MSFDTQkojQFWudQTC+7blFxjL0x4ZxjrSUUMlx79rKK16yNRUhlC/z6cadITUNC9dpFRKabqSw2swi4wZ0JHwJ+YK395WgnW2ufNMb8ANgI5IC3W2srB3vnuF89tt/fvndbZRd973Cx3npTTdSvBGeM4ZFdfRgDpwSWqjXWRMkVLMlMnsFU1k9sE1Qt3a2IiEwvUxbgrbWPAacf4pyVZY8/AXxiEi9rxvvgTx8f9Vj/SJZnOga56ITi0EWuYNnaNcSa9ga6hlI010RLWuDemvaDQ2lS2YKfICcoWmXMXUREphf9pp4BtnQOcu+27kOeFzJQKBTnIZ75z7cykMr5hWAWNznr3DsHnDXq37l3V0neeSgG+D29zlr4ai34Nz97tb/99decdTgfRUREpogC/DS3uyfJpZ/9Pdd+7d4xz/uL05dQsDAc6D7PucH+8T3OZLl1i5zJdNf9930Mpat3sze6rfmn3PH5tvrKJDY1gUpwdXHlHhIRmY4U4Ke5iz51p789mCptbadzxSkJ565yss1VW+f+wg2LAYgEutYPuOVfP3x1aZGYmphzjjcB78TADHtPNFxcwVgtz7yIiBx7CvAzyP7+0lnyXiIagLRbl/2rd22teN7rLlgJQCRQo9UL8OW54ONuattd3U4GukVNlQHcS4oDsKJVpV5FRKYjBfhpzNrSvD5ejniPV6v9A1eeSLM7zr7ZDfreWHxNNOy33IOT4+7ZdhCAxU2lpVzjbmGYB3f20pCIlFSSqyaiCXciItOSfjtPY14FuNXz6oBiq9sz4qaIPXtlK5e7GeOeu7YdgId2OXniA412grH4y3c6Lf3FzaUt9OCXgIXqfhcRmbEU4I+xHzy4m8/esqnqsSfcyXFve+4aoNhi99znpqatiYb9dLHeuPw+t7X/lVed6Z9fqEj0W9kCjwZKuy5urik/3ffey9fy3TedO+pxERE5thTgj7H3/egxvnDHFr/AS9A+t8V+mlty1Zv4Bk6lN2+8PRENEXKb6r9+3El8s/3gMMYUJ9+BU/41yKv4FrSkucav/+7Nuq/m7c9dw4Vu1TkREZl+FOCPoWBGuL29IxXHN3cOEguHWNHmTGT76cN7/WPPdAz624sC4+jPdDhj8Lu6kyxqTJAILGlrb4iXvP5ZK1qqXpeXnlbD6yIiM5d+hR9DXsIZgNuf6qg47qWZ9cbFg1XbeoaLLf6amBPEg+PtHYMpFpbNgG+rj3P9lSf6j1e5Y/ujiYW1xl1EZKZSgD+GgsVhPnPLMxXHB1M56hPOLPZXnLO8JKucV4P91393kb/vHZccjzGQyRXoGkz7Xe1BO3uS/vaSUcbYM3lnyV0son8eIiIzlX6DH0Nv/c5DYx7f2zfiF4qZVx+jZzjtL3/z1r0Hg3RLbRRrYSido2swzfyGygDfHPiSMNokutdesJJTljTxkjOXHN4HEhGRaUMB/hjy8sB7Y+xBt27s4LE9/ax3J7q11sUoWOhzM9V5s+Xj0eJfYdwdb9/ZPUxvMsvKtsou+L+9ZI2/Pdoa9yXNNfziHc+ivUHL5EREZioF+ElWnqwm6KLj57GyrZZrTluCMZBzu8YB3vytBwGn5Q7O+DlAz7Azbp/KOufGA93o3hj9Lrcbfk17fcV71sYiXH3KIl593ooj/kwiIjL9TWU9+DlnOJ3jwn+/g7+5+Dj++uLjSo4VCpY/bHayyS1trsFa2N07UjHxzWtFexXhet167l+4fTNQmjbWGzP3Utp63fvlvvzKM472o4mIyDSnFvwk6UtmOOkjv6UvmeXzbjAOOjhcnEHvjYV3DqQqzpvX4ARprzt9KJ2jZzhT9T29WO+Vlh0twIuIyOynAD9JtnYVC8FU66UfyThj6J99+QYa3Jnyg26mumC3vlf8pd4N8Fs7h+hwl9eVV4LbcXAYgLs2dQH4+elFRGTuUYCfJAMjxSQ2hSoRfjjtBPjaWNgP8F6N9kfdFLUAZ610ktF4SWru3dbjL687fXlpopprz1le8rj+EIViRERk9lKAPwq3buzgD5u7qh7bE6j85i1pC7pzUycAIWP8te5evXcv5/znrz3Nb8E318aYVx+nJhbmgBvgyxPZlAf04Pi8iIjMLQrwR+HN33qQV//P/f7a9KCBkdLc8uXj695z1i9upDHhdKUPuIH9j1ucyXfls+BXtNXSPZTm4V29REKmIvVsTLllRUTEpYgwAR7d01exr7zV/tDO3pLH4bDTup5XHyceCRENG7+L/s/uueWZ5trqYvQMZ9jXl2LdosaS0q6AX3AG4H9ee9aRfRgREZkVFOCPkJdoBuCxwJi5586nO/3taNiUjKsDpAPr2I0x1Mcjfhf9irZaFjTGaa4tnQXfXBulL5llZ89wReu93BnLqxeSERGRuUEBfhQ7Dg5z7r/exs1u+dVy3713l7/9kZueLDnWOZDi8b3FgH7c/Ho2B6q/QbEanDdO3pCI+rPo9/aN0FJbucStJhqmZzjD7p4RTlrSVPW6fvb2C7n+yhNp0RI5EZE5TdOsR9FYE6VjIO0njSn38V9uHPW5Xle7pyERIZkptvgLBcvNTxyoOGcolSOZyXH31m7OCdRx9yRiYb8QzMoq6W3BqR3v1Y8XEZG5SwF+FC21UaJhQ+dgeszzlrbUVAT0XGDS3eUnLSCZyZecc+92JxGNl2ceoGswzZP7Bvjtk07gv397T8V71UaLf10LGpUnXkRERqcu+lEYY2hvSNA5WL0F73nBqYtJpvMlyWmCwfyrrzyTeCTsJ7YB2O4mpPnqq4opY70vEiOZyiV1nppY8a9rWUv1FryIiAgowI9pYCTLT/68t+qxFW21vHDDYubVx8jkCwwGgvo9W7v97VDIUBMLM+LWb09mcnzop08A1YO0N9Hum68/u+JYcNb8stbqpV5FRERAAX5MXtAeLuuCt9aysztJMp3z8713DxXzw+/sdlroN7/zIgCWtdSwp3eEbL7Azx7e558XXNb21xevBuBLd2wB4MwVlbPgg2lrlMRGRETGogA/huvOdVK/erPbPZ+5ZRMAtz/d6Zdx7R4qjtX3j2RZu6CBde4Y+8KmBPmCpS+ZJRKqHpi3djpfCgbTOWLhkNLMiojIUVGAH8OFx80DYE9vsmT/l+/cCsBz1s6nzWvBDwdb8EkWBNLINtU4mer6RzKlzfCA56yd728vaIpXbaF7qWnrYuHD/SgiIjLHKMCP4YwVzQA8srvP3+d1vwP861+cQlt9aRd9KpvnmY7BkqVqXjGZ4XSeBrdl/uXrSmuy/+UZS/zt3T0jVHP5SQv58nVncP+HLj2yDyQiInOG+oHHsKiphppo2K/eBqVV4hY31/gZ7Q66XfS7e5IULBw3v84/LxF1Wtwj2by/jn3dooaS90pEDt0qN8Zw9amLjvDTiIjIXKIW/CE0JCIlQd0L5F43eTwSZmFjgh1uy363252/rLU4Q74mEOD7kln3dUtrtQcn3H31laWtexERkcOlAH8ILbUxP2gDfmv+F+94lr9vQVOCg24Xvde9vrSluIytNuZ0lIxk8uzrGyEWDvlj90H/cNkJLG5KcN7qton/ICIiMqeoi/4QTljYwKOBMfj7tvfQWhdjZVuxC74+HvaX0u3uSZKIhphfXywG01zrtNbveLqTXz++n1gkVNJi97zjecfzjucdP0mfRERE5hIF+EOojxeT1ADct62bC45rKwnQdbEI3UNOK/+HD+1hcXNNySx4r/Lbjx7aM0VXLSIic50C/CHURCN+mtlCwdIxmGZFWaGX+niEoXSOP24+SP9Ilv6RbMlxJaUREZGppjH4Qzg4lGYonaNnOMP+gRT5gmVhU2ma2Lp4hOF0jp5kZpRXgdddsNLf/udrTpqsyxUREQHUgj8kr7W+q8dJTQuwZn59yTl18Qi9ySyJiPN96bL1CypepzaQnKZ8Br2IiMhEUwv+EJ61xslmN5QqttC95DblPvmbpwH4+8tOqDjmrYV3tnXbRURkcqkFfwiNbprZrqGUn5O+pbY0wHtr47d1OWvhq+WRD2a2CwZ7ERGRyaAAfwhr2uuJhAzPdAwRd7vgvWVvnnzBljxe0lxZyrUm0EVfsLbiuIiIyERSX/EhRMMhWupi9CUzfO62zf6+oDOWN/vbrzhnWdU17jWBVvtZK1sn52JFRERcCvDj0FobY19fatTjrzpvhb/tlYgtF2zBN2qSnYiITDIF+HForo36VeSCy908wXXuowZ4jbuLiMgUUoAfh9a6GLt6nEx1pwe646tZu7Ch6v5a1XAXEZEppEl249BSF8ObR9dUU717/auvPINMvjBq97s3c15J7UREZCoowI9DS2DW/PrF1bvgrzxl7Drt8UiIy9Yv4Lpzl0/otYmIiFSjAD8O4VBxJKO9IXFEr2GM4euvOWuiLklERGRMGoMfh97h0XPMi4iITEcK8OMwkHKqw31cRWJERGSGUBf9OLzn+WsBePlZy47xlYiIiIyPAvw4LGut5fPXnn6sL0NERGTc1EUvIiIyCynAi4iIzEIK8CIiIrOQAryIiMgspAAvIiIyCynAi4iIzEIK8CIiIrOQAryIiMgspAAvIiIyCynAi4iIzEIK8CIiIrOQAryIiMgspAAvIiIyCynAi4iIzEIK8CIiIrOQAryIiMgspAAvIiIyCynAi4iIzELGWnusr2HCGGO6gJ3H+jqmmXnAwWN9EbOM7unE0z2dHLqvE2863tMV1tr55TtnVYCXSsaYB621Zx3r65hNdE8nnu7p5NB9nXgz6Z6qi15ERGQWUoAXERGZhRTgZ7+vHesLmIV0Tyee7unk0H2deDPmnmoMXkREZBZSC15ERGQWUoCfYYwx/2uM6TTGPBHYt8EYc48x5nFjzC+MMY3u/qgx5gZ3/1PGmOsDzznT3b/FGPMFY4w5Fp9nOjjMexozxnzD3f+oMeY5gefonrqMMcuMMXe6/+6eNMa8093faoy51Riz2f2zJfCc6917t8kYc3lgv+6r63DvqzGmzT1/yBjzpbLX0n3liO7pZcaYh9x795Ax5pLAa02ve2qt1c8M+gGeDZwBPBHY9wBwsbv9BuCf3e3rgBvd7VpgB7DSfXw/cD5ggJuBK4/1Z5sh9/TtwDfc7XbgISCke1pxTxcBZ7jbDcAzwHrgU8AH3P0fAP7d3V4PPArEgVXAViCs+3rU97UOeBbwVuBLZa+l+3pk9/R0YLG7fTKwd7reU7XgZxhr7e+BnrLda4Hfu9u3Ai/xTgfqjDERoAbIAAPGmEVAo7X2Huv8q/wW8OLJvvbp6jDv6Xrgdvd5nUAfcJbuaSlr7X5r7Z/d7UHgKWAJcA1wg3vaDRTv0TU4X0bT1trtwBbgHN3XUod7X621w9baPwKp4OvovhYdwT192Fq7z93/JJAwxsSn4z1VgJ8dngBe5G6/DFjmbv8IGAb2A7uAz1hre3D+8e4JPH+Pu0+KRrunjwLXGGMixphVwJnuMd3TURhjVuK0eu4DFlhr94PzixWnFwSce7U78DTv/um+jmKc93U0uq9VHME9fQnwsLU2zTS8pwrws8MbgLcbYx7C6WLKuPvPAfLAYpxuz38wxqzG6T4qp+UUpUa7p/+L8x/3QeBzwN1ADt3Tqowx9cCPgXdZawfGOrXKPjvG/jntMO7rqC9RZd+cvq+He0+NMScB/w78tberymnH9J5GjuWby8Sw1j4NPB/AGHMCcLV76DrgN9baLNBpjPkTcBbwB2Bp4CWWAvsQ32j31FqbA97tnWeMuRvYDPSie1rCGBPF+YX5XWvtT9zdHcaYRdba/W6XZqe7fw/FXhIo3r896L6WOMz7Ohrd14DDvafGmKXAT4HXWGu3urun3T1VC34WMMa0u3+GgA8D/+Ue2gVcYhx1wHnA025306Ax5jx3ludrgJ8fg0uftka7p8aYWvdeYoy5DMhZazfqnpZy78H/AE9Zaz8bOHQT8Fp3+7UU79FNwLXuWOYq4Hjgft3XUkdwX6vSfS063HtqjGkGfgVcb639k3fytLynx3KGn34O/wf4Hs6YehbnG+MbgXfizPx8BvgkxQRG9cAPcSaCbATeG3ids3DGmbcCX/KeMxd/DvOergQ24UzEuQ2nipPuaeU9fRZO9+RjwCPuz1VAG84kxc3un62B53zIvXebCMw+1n096vu6A2cS6ZD773u97uuR31OcL/zDgXMfAdqn4z1VJjsREZFZSF30IiIis5ACvIiIyCykAC8iIjILKcCLiIjMQgrwIiIis5ACvMgs4VYOe8T9OWCM2etuDxljvjIJ7/dNY8x2Y8xbJ/q1x/HeNe5nyxhj5k31+4vMBMpkJzJLWGu7gdMAjDEfBYastZ+Z5Ld9r7X2R5P14saYiHWyB5aw1o4ApxljdkzWe4vMdGrBi8xyxpjnGGN+6W5/1BhzgzHmFmPMDmPMXxpjPuXWsP6Nm7LTq2v9O7fe9W/dVJ1jvUeD25r3nt/ovn7UGHOc+9oPGWP+YIw50T3nhcaY+4wxDxtjbjPGLAhc49eMMbcA3zLGnGSMud9tsT9mjDl+Um+YyCyhAC8y9xyHk1v/GuA7wJ3W2lOAEeBqN0h/EXiptfZMnAI7nxjrBa1TZvMuinUQrgV+bJ06CF8D3uG+1nsAb7jgj8B51trTgRuB9wVe8kzgGmvtdTi1zD9vrT0NJ1NYsGKXiIxCXfQic8/N1tqsMeZxIAz8xt3/OE4q3rXAycCtTkptwjipfA/lv3GC9M+A1wNvdit0XQD80H0tgLj751Lg+27vQAzYHnitm9xueIB7gA+5BT5+Yq3dfFifVmSOUoAXmXvSANbagjEma4v5qgs4vxMM8KS19vzDeVFr7Z+MMSuNMRcDYWvtE8aYRqDPbX2X+yLwWWvtTcaY5wAfDRwbDrzu/xlj7sPpHfitMeZN1to7DufaROYiddGLSLlNwHxjzPnglNJ0a1+Px7dwivd8A8A6dbW3G2Ne5r6WMcZscM9tAva6268tfyGPMWY1sM1a+wWcCl+nHubnEZmTFOBFpIS1NgO8FPh3Y8yjONWyLhjn078LtOAEec8rgTe6r/Ukztg/OC32Hxpj/gAcHOM1/wp4whjzCHAizpcIETkEVZMTkSNijPkm8MvgMjljzEtxJse9eoquYQdwlrV2rC8IInOSxuBF5Ej1A/9sjJlnrf0vY8wXgStxamlPKmNMDc7kuyjO3AERKaMWvIiIyCykMXgREZFZSAFeRERkFlKAFxERmYUU4EVERGYhBXgREZFZSAFeRERkFvr/DrAYLc0KHkAAAAAASUVORK5CYII=\n", - "text/plain": [ - "<Figure size 576x576 with 1 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(8, 8))\n", - "data.plot(x=\"decimal\", y=\"co2\", legend=False, ax=ax)\n", - "ax.set(xlabel=\"Time [years]\", ylabel=r\"CO$_2$ [ppm]\", title=\"Atmospheric CO$_2$ concentration in Mauna Loa\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "c62fd7f3", - "metadata": {}, - "source": [ - "That's better.\n", - "\n", - "We can now try to model this behaviour with Gaussian Processes. The key parameter we must choose is the covariance matrix analytic form, which establishes how correlated two points in the time axis are.\n", - "\n", - "One simple assumption would be that two values of the CO2 concentration are highly correlated they happened at close by times. We use a Gaussian-based model (named here \"Radial Basis Function\", as this does not refer to a probability distribution) to establish that if two points are one year apart they are likely to be highly correlated. \n", - "\n", - "We also assume the data within an year from each other is highly correlated and should show a periodicity of 1 year." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "a31d7eca", - "metadata": {}, - "outputs": [], - "source": [ - "# Kernel with parameters given in GPML book\n", - "\n", - "# these hyper parameters are optimised in the GP fit\n", - "# we provide here only a starting value\n", - "\n", - "# long term smooth rising trend\n", - "k1 = 66.0**2 * RBF(length_scale=67.0)\n", - "\n", - "# seasonal component\n", - "k2 = (2.4**2 * RBF(length_scale=90.0) * ExpSineSquared(length_scale=1.3, periodicity=1.0))\n", - "\n", - "# add some white noise\n", - "kn = WhiteKernel(noise_level=0.19**2)\n", - "\n", - "kernel = k1 + k2 + kn" - ] - }, - { - "cell_type": "markdown", - "id": "0ad8ddf0", - "metadata": {}, - "source": [ - "The kernel hyper-parameters are:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(8, 8))\n", + "data.plot(x=\"decimal\", y=\"co2\", legend=False, ax=ax)\n", + "ax.set(xlabel=\"Time [years]\", ylabel=r\"CO$_2$ [ppm]\", title=\"Atmospheric CO$_2$ concentration in Mauna Loa\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "c62fd7f3", + "metadata": {}, + "source": [ + "That's better.\n", + "\n", + "We can now try to model this behaviour with Gaussian Processes. The key parameter we must choose is the covariance matrix analytic form, which establishes how correlated two points in the time axis are.\n", + "\n", + "One simple assumption would be that two values of the CO2 concentration are highly correlated they happened at close by times. We use a Gaussian-based model (named here \"Radial Basis Function\", as this does not refer to a probability distribution) to establish that if two points are one year apart they are likely to be highly correlated.\n", + "\n", + "Additionally, we assume that there is a correlation between points within certain period, since we know that data from the same season in an year is expected to be correlated to data if that same season in the year (ie: CO$_2$ emissions have a rough periodicity of one year due to the season changes).\n", + "\n", + "Another term of the covariance matrix must be related to the random noise appearing in the data.\n", + "\n", + "All those assumptions can be motivated by an analysis of the covariance matrix of the data. That is, we can take the covariance matrix of all the data points and analyse it to establish whether our assumptions here are valid or not. A very long and detailed explanation on this point can be found in Bishop (2006), which has a very pedagogical chapter on Gaussian Processes. Online resources can be found on: http://www.gaussianprocess.org/\n", + "\n", + "Note that all of those are very strong assumptions, but they are made directly on the covariance matrix of the fit function. The actual numbers used below are taken from an example, but they will be optimized in the fit below (unless explicitly asked not to).\n", + "\n", + "Note: this notebook is a simplified example with extra explanations, with lots of material taken from https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_co2.html -- take a look at the original example for more details.\n", + "\n", + "We also assume the data within an year from each other is highly correlated and should show a periodicity of 1 year." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a31d7eca", + "metadata": {}, + "outputs": [], + "source": [ + "# Kernel with parameters given in GPML book\n", + "\n", + "# these hyper parameters are optimised in the GP fit\n", + "# we provide here only a starting value\n", + "\n", + "# Kernel with optimized parameters\n", + "k1 = 50.0 ** 2 * RBF(length_scale=50.0) # long term smooth rising trend\n", + "k2 = (\n", + " 2.0 ** 2\n", + " * RBF(length_scale=100.0)\n", + " * ExpSineSquared(length_scale=1.0, periodicity=1.0, periodicity_bounds=\"fixed\")\n", + ") # seasonal component\n", + "# medium term irregularities\n", + "k3 = 0.5 ** 2 * RationalQuadratic(length_scale=1.0, alpha=1.0)\n", + "k4 = 0.1 ** 2 * RBF(length_scale=0.1) + WhiteKernel(\n", + " noise_level=0.1 ** 2, noise_level_bounds=(1e-5, np.inf)\n", + ") # noise terms\n", + "kernel = k1 + k2 + k3 + k4" + ] + }, + { + "cell_type": "markdown", + "id": "0ad8ddf0", + "metadata": {}, + "source": [ + "The kernel hyper-parameters are:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, "id": "032ada0d", "metadata": {}, "outputs": [ @@ -574,7 +2502,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "66**2 * RBF(length_scale=67) + 2.4**2 * RBF(length_scale=90) * ExpSineSquared(length_scale=1.3, periodicity=1) + WhiteKernel(noise_level=0.0361)\n" + "50**2 * RBF(length_scale=50) + 2**2 * RBF(length_scale=100) * ExpSineSquared(length_scale=1, periodicity=1) + 0.5**2 * RationalQuadratic(alpha=1, length_scale=1) + 0.1**2 * RBF(length_scale=0.1) + WhiteKernel(noise_level=0.01)\n" ] } ], @@ -584,21 +2512,12 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "id": "4412a9a7", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages/sklearn/gaussian_process/kernels.py:418: ConvergenceWarning: The optimal value found for dimension 0 of parameter k1__k1__k1__constant_value is close to the specified upper bound 100000.0. Increasing the bound and calling fit again may find a better value.\n", - " ConvergenceWarning)\n" - ] - } - ], + "outputs": [], "source": [ - "gp = GaussianProcessRegressor(kernel=kernel)\n", + "gp = GaussianProcessRegressor(kernel=kernel, normalize_y=True)\n", "time = data.decimal.to_numpy()[:, np.newaxis]\n", "co2 = data.co2.to_numpy()[:, np.newaxis]\n", "gp = gp.fit(time, co2)" @@ -614,7 +2533,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "id": "667db862", "metadata": {}, "outputs": [ @@ -622,8 +2541,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "GPML kernel: 316**2 * RBF(length_scale=81.2) + 2.36**2 * RBF(length_scale=49.3) * ExpSineSquared(length_scale=0.0522, periodicity=23) + WhiteKernel(noise_level=0.14)\n", - "Log-marginal-likelihood: -1677.717\n" + "GPML kernel: 3.02**2 * RBF(length_scale=41.1) + 0.114**2 * RBF(length_scale=174) * ExpSineSquared(length_scale=1.31, periodicity=1) + 0.283**2 * RationalQuadratic(alpha=0.000977, length_scale=6.57) + 0.0101**2 * RBF(length_scale=0.019) + WhiteKernel(noise_level=0.000142)\n", + "Log-marginal-likelihood: 6639.404\n" ] } ], @@ -642,7 +2561,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "id": "ef6b7762", "metadata": {}, "outputs": [], @@ -653,20 +2572,978 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "id": "5b263358", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHyCAYAAAAHs9wZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACNG0lEQVR4nOzdeZxc1Xng/d+ptfd9X9StXUgISextG1teMYkXYt5JiPHISUiEtxk7E1sC553JZPLagOwkdrwrJrFlILYTbGKTIcbGFmDcQgYkISShvdVr9V69V1dX3fP+8dyq6tZGC9TV2/P9fPpTqlO3bt1bCD19znnOc4y1FqWUUkotLJ7ZvgCllFJKXX4a4JVSSqkFSAO8UkoptQBpgFdKKaUWIA3wSiml1AKkAV4ppZRagDTAK6WUUguQBnillFJqAdIArxY0Y0yTMeYdl/F8h4wxmy/X+dTMmKn/TvrfX80nGuDVJTPG7DbG9Btjgme1X9ZgOhdZa9dZa3e/lvcaYz5ojHneGDNsjOkwxjxujHnTpNf/yBhz0BgzaowJGWO+YYwpuFzXPlddjr83Z5/j9fx3upjX+d+/yRgTNcaUnNW+3xhjjTH1l+MaL5fF8P/zQqcBXl0S9x+hmwALvG92ryZ9jDG+1/n+/wF8Cfg8UA4sAb4OvN99/S+A+4HPAPnAjUAd8HNjTOD1fPZ89nq/9znoNPCHiSfGmPVA5uxdjlrQrLX6oz/T/gH+F/As8HfAY5Pavwc4wBgwDGwDmpCA9RIwAjyABLfHgSHgF0DhpHNcAewGwsAh4H2TXtsOtLnvOwq8fdJrTcA9wGGgH/hnIGPSa592r2EA+EHiNff1KuARoBv5x/e/n3Xe7e57xwGf2/aOScfUAj9y398LfPU831m++538lwt8p3nu679/VnsO0AX8ySX+N7rgNb3Kd/xq39XFzvtq3+N5z3uRvzdnf+93Ayfd//6Hgd+bxt+9d1yO+z7ruz37vJf63v8X+O2kti8Cf4n8wlzvtl3wXt3XLbBi0vPvAP/fNP8bXvTcF7vXs1672Pc57c/Qn5n9mfUL0J/59QOcAD4GXANMAOWTXjvfP357kKBejQSrF4FNQBD4JfBX7rF+99yfBQLA29x/IFa7Py1AlXtsPbD8rM95GQlARcgvIJP/wduLBKAi4AjwEfc1D/AC8ktLAFgGnAJunvTe/e55M8++R8ALHAD+HsgGMoA3nec7ezcQA3wX+E4v+DrwXeBfLuG/zwWv6WLf8TS+q4uddzrf43nPe5G/N2d/7//Ffb8H+APkF8bKVznHO17vfZ/n+z3f51zSe5FfUK9wv9MWZKRmcoB/tXt9tQB/se/6oue+2L1Oan+173Pan6E/M/ujQ/Rq2tz54jrgh9baF5Df0j/4Km/7irW201rbBjwDPGet3WetHQd+jAR7kCHpHOA+a23UWvtL4DFkODOO/EKw1hjjt9Y2WWtPnvU5X7XWtlhr+4DPMWkYFPgHa227+9pPgY1u+3VAqbX2/7ifeQr4R+D2s97bYq0dO8+9XY/8Q/YZa+2ItTZirf31eY4rBnqstbELfEclF3m9w30dY0yDMabRGPOUMeZfjDH+S7ymi33Hk+/3fN/Vxc473e/xfOe9kCnfu7X2X933O9baHwDH3Wuajtdz39Nxqe/9HrAFeCfwCjIylfQ67/Wi13MZzg2v8n1eps9Ql4EGeHUpPgw8Ya3tcZ8/7LZdTOekP4+d53mO++cqoMVa60x6/QxQba09AXwK+N9AlzHm+8aYqrM+p+Ws901+PTTpz6OTPrMOqDLGhBM/SK+k/ALnPVstcOYigTuhFyi5yHxyz0Ver3RfB7mvt1lr34L0kN9/idd0we940vMLfVcXO+90vscLnfdCpnzvxpgtbjJa4vxX4v7iMw2v576n41Lf+z3kF+M/Anad/eLrvNeLXs9lODe8yvd5mT5DXQYa4NW0GGMygd8H3uJmeIeAPwc2GGM2uIfZ1/ER7UCtMWby38kluL0ba+3D1trECIJFEtImqz3rfe3T+MwW4LS1tmDST6619ncmHXOxe2oBlkwjEawRiAC3XuT1ceADkxuNMdnALcCTAG6vKDGSEEPmnS/lmi76Hb+Ki513Ot/jxZzvO062GWPqkBGBTwDF1toCZErGvMo5El7PfV921tozSJ7C7yA5DUnTvNdRIGvS84rpfO40zz0dF/w+L+NnqMtAA7yarluRofK1yJDfRmQe8RlkuBGkd77sNZ7/OWSubpsxxu+uNX4v8H1jzGpjzNvcZXkRpOcfP+v9HzfG1BhjipDe4w+m8Zl7gUFjzHZjTKYxxmuMudIYc900r3kvMoR+nzEm2xiTYYx549kHWWsHkPnprxljbjXGZLn3eIsxZof7+l8DXzHGvNt9rR74V6AV6fElGWOWIoH/sUu8pgt+x6/zXl/v9/hqf2+ykQDeDWCM+WOkVzjdc7ye+54pdyKjMSNntU/nXvcDH3S/53cDb5nmZ07n3Gfzu/+tEz8+Lv59vpbPUDNEA7yarg8D/2ytbbbWhhI/wFeBO9z/8e8F/l93aO7Tl3Jya20UWXZ3CzIk/XVgi7X2FWT+/T63PQSUIUF8soeBJ5Ch61PA/zeNz4wj/zBtRHpUPcC3kaz36Vxz4v0rgGYkGP/BBY79O+B/IFnU3Uiv9xPAo+7rO9x7+iIwiPwj2oKsFhhPnMcYk4ck3v1X9zub9jW9ynf8mu/19X6PvMrfG2vtYeBvkZGOTmA9kkg5rXO8nvueKdbak9ba58/TPp17/STyfYeBO3D/Dk3jM6dz7rP9X+QX6sTP/77Y9/kaP0PNEGPt6xlVVWr2GWOagD+11v5itq9lJrm/RP078LduYpNSSl2Q9uCVmj/+ELgB+F9Gqgmed7RAKaVACkgopeYBa+33OGs+XimlLkSH6JVSSqkFSIfolVJKqQVIA7xSSim1AC2oOfiSkhJbX18/25ehlFJKpc0LL7zQY60tPbt9QQX4+vp6nn/+nKWlSiml1IJljDlzvnYdoldKKaUWIA3wSiml1AKkAV4ppZRagDTAK6WUUguQBnillFJqAdIAr5RSSi1AGuCVUkqpBUgDvFJKKbUAaYBXSimlFiAN8EoppdQCpAFeKaWUWoA0wCullFILkAZ4pZRSagHSAK+UUkotQBrglVJKqQVIA7xSSim1AGmAV0oppRYgDfBKKaXUDAqHwdr0f64GeKWUUmqGhMPwta9BW1v6P1sDvFJKKTVDOjqgqQmam9P/2RrglVJKqRnS1gaBgAT6dNMAr5RSSs2Q1lYoLobOzvR/tgZ4pZRSaoZ0dEBREfT2pv+zNcArpZRSM2B0FIaHISsLIhEYH0/v52uAV0oppWZAZycYI3/2eCTYHzuWvvl4DfBKKaXU63DsGLz88tS20VH4xS8kwS5heBieeAKeey491+VLz8copZRSC9N//AcMDMC6dake+7PPwqlTUF8vzx0HhoZgbAwKCtJzXdqDV0oppV6jWEwS6CYmJIAnHDkCZWWpgO/zQSgkAT4vLz3XpgFeKaWUeo3CYQniHg/09UnbxAR0dUFmZuq4rCw4fFh+CZg8bD+TNMArpZRSr1Gizry1MscOEsQTQT8hN1eS6wYH03dtGuCVUkqp12hgQIK7xwP9/dI2OYjHYnDokDxmZaVveB40wCullFKvWUcHZGRAMCjD8iA9+cTucf39UFkpw/fl5ekbngcN8EoppdRrFgqlAnyiWl1iXh5kuVxVlczLp5sGeKWUUuo1SiTTZWSkhuh7eiTggwT65cunzseniwZ4pZRSahocZ+rzSARGRmTY3e+X5Lp4XIbjEwEeYMmS1JB9OmmAV0oppV7Fj34EP/7x1LZwONUzTwzJj4xITz4YlMQ6v1/m4OHcXxBmmgZ4pZRS6iIcB/btg5demtoT7++X1wYGJHPeGAn6/f3Sqx8agqVLpchNXh5Eo+m9bg3wSiml1EX09Eggj8dTa91B5t+9Xmhvh7Y2aUtsJBOLyfvWrZPnRUUS4BM9/XTQAK+UUkpdRHe3PBojvfWE5mZJrsvJgcJCyZQ/eVKOC4Xg3e+GTZvk2JISmbOHqRXuZpIGeKWUUuoimptlyN3aqUVs2ttlDr68HOrq5M/Nzalh/KuvTs3Rl5VJgDcG8vPTc90a4JVSSqmLOHYsVYEuEeCjUflzLAbV1akiNn19cmwgMHXXuOLiVElbDfBKKaXULBseliH6rKypxWwGBqR3HolIlnxJiQT7FSskqa60dOp8e0GBnKuyUjLr00H3g1dKKaUuIDHkboz0yicH+MRQfGHh1GA+NiZD9pOVlsow/apV6blu0ACvlFJKXdDRo5JIB9KDT2wJO3mTmfx8ybJPBPnxcQnmk3k8cNddU4ftZ5oO0SullFIXcPx4as48GJR17iDD9sGgBPaCAsjOTvXo4/HzB/KSEhm+T5e0B3hjjNcYs88Y89hZ7Z82xlhjTMmktnuMMSeMMUeNMTen+1qVUkotXtGo9NSDQTh9GlpaZCnc+Dh0dsoa+Oxs6eFPDvAejzyfbbPRg/8kcGRygzGmFngn0DypbS1wO7AOeDfwdWOMN43XqZRSahE5cwYefTRVUnZwUIJ1Ivs9GpXnw8NS5MZxUmVofT4J6olqdTk5s3ILU6Q1wBtjaoDfBb591kt/D2wDJpfjfz/wfWvtuLX2NHACuD4tF6qUUmrR+dnP4Fe/kgp0kFoSNzwsSXOJanT9/dKzj8Wgtjb1/uJiyaq3dhEGeOBLSCBPltw3xrwPaLPWHjjr2GqgZdLzVrdNKaWUuqyiURmCz86WKnQge7lbKwF+xQpZ6z4yIscZIwG+oiJ1jtJSeY/fL8vqZlvaArwx5j1Al7X2hUltWcBfAv/rfG85T9s5G+4ZY7YaY543xjzfnagnqJRSSl2CRK89EEgF+KGhVCCvqZFg7jhw6FAqg76oKHWOsjLp3ZeUnHv+2ZDOHvwbgfcZY5qA7wNvA74HLAUOuO01wIvGmAqkxz5p8IMaoP3sk1prd1prr7XWXltaWjqzd6CUUmpB6uuToJ2ZmQrwvb0S8CFVzCYzUzaU8Xol2E8O8OXl0tuf3KufTWkL8Nbae6y1NdbaeiR57pfW2tustWXW2nq3vRW42lobAn4C3G6MCRpjlgIrgb3pul6llFKLRyIrPjNTEuhAlsTF47JMrqAAcnPl9awsmW/PyUmtkQfpwZeXw+rVs3EH55qzhW6stYeMMT8EDgMx4OPW2vgsX5ZSSqkFqL1dAncgIGvcrZVEuqEhuOkmOSYnR4bsS0vltfLyqefIz5diNmcXuZktsxLgrbW7gd3naa8/6/nngM+l5aKUUkotWp2d0jtPLIsbHZUg7vXC8uVyzOS17WNjqSVyk03Oqp9tWslOKaXUohaLyXB8MCjPjZElcomM+ERPfXIxm/OVo51r5uwQvVJKKZUOg4MS1IeHU2vfu7tl6VxBgfTsQebbvV6Zl0/nvu6vlfbglVJKLRodHTKvPtnAgDz29EhFuuFhOW5s7Nx59oICCfzGpPaIn6s0wCullFo0vvMdePjhqW39/TJMHwjAxo0yNH/mjFSlO3v1daJaneNogFdKKaXmhOFhCeZn10Rrb5dNZJYskZK0Pp/MyUejU9e5g/Toh4ZSm8zMZRrglVJKLQr9/ZJIF4lIsE9oa5Pkubo66ZXn58OpU7Lu/ex59rIyCf5zpZjNxWiAV0optSj09cnQujGpeXhrpXKd3y9BOy9PEunWroXCwnNrypeUyHsSS+fmMg3wSimlFoWODplnt1Y2jQEJ9BMTEuALCqSYjePI8Lsx5wb4ykrZeGauVKu7GF0mp5RSalFIVKsLh1ND9OGwBHJrJcAHAhLcJyYk0J8d4H0++PM/T/OFv0bag1dKKbUoJAK8zyfz8SABPhaTtkSlusS+79bOjW1fXysN8EoppRa8wUFZ126tBPO+Pmnv7JQAX1oqPXmQuffRUenN+/2zd82vlwZ4pZRSC15XlwTww4dljXuiBx8KSdCfXFe+tFR+ISgomJVLvWw0wCullFpQWlvhe9+b2nb6tMypl5TI0rdE9bquLgnw1dWpY0tKJMCfXeRmvtEAr5RSakF54QU4eFCG2RMOH5bh9qVLJVO+v19qyic2mSkuTh2bmyuvaYBXSiml5pAzZyQLvqdHno+MpKrXLVkiw/Hj49J7B9kidvJwfFmZ9OLPtx3sfKIBXiml1IIRi0ngzspKLYXr7ZX591hMitkUFUmAb29PFb4pLEydIy8P3vSm+VHM5mI0wCullFowBgYkYE+uVtfXJ/PsiZ56cbEE+NZWGcYvLZXqdZP9zu+ktomdrzTAK6WUWjDCYXkMBlND9F1dsjTOcaSnntgR7vRp6dVPTrBbSDTAK6WUWjB6e6W3HgiklsIllsjl58vQfVaWJNqdOiXHVVXN7jXPFA3wSimlFoyWFum9j42llsL19EjS3bJl8jwrS+bhV6+WYfjJGfQLidaiV0optWCcOpXqufv90ptPLIlbs0baE+VnE1Xq8vLSf53poAFeKaXUghAOy092tvTMh4cliS4elyS6xFx7VpbMx4P8ArBQA7wO0SullFoQTp6Ux8R+7dGozL+Pj0vxmsRSuIwM6b1HozIHP583lLkYDfBKKaUWhP37Zf49P18S58bHZTOZoSEpcDNZUZH09ud7tbqL0QCvlFJq3puYkGVvfr9UoCsokKH59nZZEnehAF9ePhtXmx4a4JVSSs07L70Ejz6aet7XJ0vhIhGZa0/s7d7eLvPvZ2fKV1TIexbqGnjQAK+UUmoeeuYZ2LNHhuEhVa0uFpMefFaWBPZQSBLucnOnvr+mRpLrKirSf+3pogFeKaXUvBKNQkeHBPDeXmlLVLAzRobfMzOlFz8xIcP1Zwf42lp4z3u0B6+UUkrNGT09qXrzicDe3S0BPxiUneASPfhEcZvEkH1Cdja84x2ptfALkQZ4pZRS80pPT2ode6JaXVeXrHtfv142lfH7ZQnc2Jj03s/eTGYx0ACvlFJqXjlzRtayT95QJlG97qqrUscVFsLgoAzZL0Ya4JVSSs0rJ0/KEHsgkOrNh8MS9GtqUsclAvxCrTX/arRUrVJKqXljbEzm2x1Hhud9PmkbH5f59kAgdWxJiRxTWTl71zubtAevlFJq3mhvl+Q6jwfKymRofnhYMutra6ceW1oqxy3WHrwGeKWUUvPGiRNSoS4vD1aulMDe3S09+LN76pWVUsGurGx2rnW2aYBXSik1bxw6JMPy9fVSpGZsDNra5LWzd4WrrIQPf1jWwS9GGuCVUkrNOdbCf/yHVKJLGBmRinWOA0uXytB7NCpJd37/ucVsPJ6pSXeLjQZ4pZRSc05HB/znf8Kzz6baurvl0RgZds/Jked9fbJk7uxiNoudBnillFJzTlOTLHs7dSrVFg5Lzx5kF7icHBmWb2mRYzXAT6UBXiml1Jxz4oQscwuHZYc4kF59LCbZ8ZmZEuCDQalet1ir1V2MBnillFJziuNIDz43V+bRBwelvbNTgv2VV8rzrCx5jESkqI2aSgO8UkqpOaW/X5LnfD4Zkk8E+N5eaVu+XJ57PDJEPzQkvX01lQZ4pZRSc0pnpwT21lZZBjc0JL36vj6Za6+qSh1bVCTD+OXls3a5c5YGeKWUUnPKqVPSgw8EJHj39soSufFx2b99cjna6mr5BWCxrnW/GA3wSiml5pRXXpEe+8aNMgTf0yPlaCMRWf8+WWWlBPfS0tm40rlNA7xSSqlZc+JEao4dJJD390uW/Pr1kikfCkl7LHZuOdqVK+U4DfDn0gCvlFJqVvT0wDe/CT/9aaqtu1sK2YDMqxcXyxD90JAk1eXnTz1Hdjb88R/La2oq/UqUUkrNipdekvn0Y8dkAxmQAD8yIj3yREJdJCLlaAOBc+vNqwvTAK+UUirtHAf27pVeejwuw/IgVeliMRl6B3l9dFQCfDB4br15dWEa4JVSSs2YiQm4/344cGBq+6lTMveemSnPw2F5bG+XinTLlsnzwkJZKtfXJ8dOzqBXF6cBXiml1IxpboYzZ6S3nmAt/PznU+fTE7vE9fRIIE8k0+XkpErTLtZ93V8rDfBKKaVmTFub9MJbWyWAg8yzt7ZKgD99WjLkE5nyw8Oy7C0R/HNypNceDErCnZo+DfBKKaVmzJkzkhgXj6eWw7W1yWNvrwRtx5HqdYODMhyfGJ4HmXO3Vorc6FK4S6MBXiml1Ixpb5dNYYxJBfjWVsmQHx2F975XeuttbTAwIBXs6utT78/MlN77+LjWm79UGuCVUkrNiGhUgnZXlyTRjYxIeygkiXTBoPTW6+ok2J8+LZvJnB3IS0vldd0x7tJogFdKKTUjBgclMOfkSLCfvO3r4CDcdBP4/VJPfmQEDh+WHvvZdeXr66XHrwH+0qQ9wBtjvMaYfcaYx9znXzDGvGKMeckY82NjTMGkY+8xxpwwxhw1xtyc7mtVSin12g0NydD6DTfIMHxfnwT64WHpvV9/vRxXWSkBvr1dAvzZxWyuugre+lb5RUFN32z04D8JHJn0/OfAldbaq4BjwD0Axpi1wO3AOuDdwNeNMd40X6tSSqlX09gI994rj5MMDclQfH29zMO3taV2hbviCikzCxLQq6tlGVxpqbxnsqoquOWW9NzKQpLWAG+MqQF+F/h2os1a+4S1NuY+3QPUuH9+P/B9a+24tfY0cAK4Pp3Xq5RS6lU0NsLb3w7/83/K46Qg390tQ+vFxRLEOztTm8asWZM6RV6e1JL3eHRf98sp3T34LwHbAOcCr/8J8Lj752qgZdJrrW7bFMaYrcaY540xz3d3d1/GS1VKKfWqdu+WYvHxuKxx27Ur+VJHhwy55+RAbW1qeN7rnTqfnpcnS+XGxs7dLU69dmkL8MaY9wBd1toXLvD6XwIx4KFE03kOs+c0WLvTWnuttfbaUl0kqZRS6XXoEFjLz3gXw2TDP/5jshd/5owEeGMkcEejsvbd651axS4QkIA/PKw9+MspnT34NwLvM8Y0Ad8H3maMeRDAGPNh4D3AHdbaRBBvBWonvb8GaE/f5SqllLqoxkZ4+GG6KOU/uZmXWC89ebcXPz6eKlpTUCAvnTolCXZnJ9LV1Ejd+qKi9N7CQpa2AG+tvcdaW2OtrUeS535prf2QMebdwHbgfdba0Ulv+QlwuzEmaIxZCqwE9p5zYqWUUrNj926wlk7K6aeQ9kmzqJGIBPhat5uWnS0BvqND5uXP3r993To5VuvNXz6+2b4A4KtAEPi5MQZgj7X2I9baQ8aYHwKHkaH7j1tr47N4nUoppSbbvBmM4ZRdSh6DHGWVtG/ZwtCQlJhN1I/PzpZ59nAYliw591Tr18sWsWcHfvXazUqAt9buBna7f15xkeM+B3wuPVellFLqkjQ0QFUVR9quYCmnGSE7+dLwsMy9J+bas7Jk7r2vD6677vyny8hIwzUvIvq7klJKqVd3vrXuO3dCWxvjBKmlBR9xovhh1y6Gh6U3PjnAZ2TIELwOw6fHXBiiV0opNZc1NsJb3iJZcH4/PPWU9N6//GXGyMBgWcsRTrOMMTIJhEL09MihWVlyCo9HEuu6us4tRatmhvbglVJKXdyOHTAxwQHWE5nwyHOAvj7CFACGSjoAmxymP306FdwTysok+U5LzqaHBnillFIX9/TTDJLLD/l9jrEKnnlGhudDIXqRLLp8BgDoowgqKujpObenXl4uS+R0KVx6aIBXSil1YY2N0NdHF2V0U8oZlki1mgceAOA4K/ESx4PFYCXAb9pENJpaA5+wYoXUnD97DbyaGRrglVJKXdju3QD0UIzBcpi10t7fD8BxVpDn9t49WPpMCfT2JqvXTbZyJXziE+m6cKUBXiml1IW5C9n3s4llnCaWyM0Oh7HACNlcycsAeInT7a0g+sa3Ysz5h+IDgTRdt9IseqWUUq7GRumxb94sWfIA+/YBEKaAXIYYIA8Hg6e6mqHuCA5eamkFj4e8DSsYzCxn9MVX8Dw1Rs512VCtm4DOFg3wSimlUtu+RqPSzX7yyVSQB2J4Wclx9rGJMTLJHhmhhxIAiumFa6+ldP9u+qP1jPzm+8B/Jfvpr8Evn5hyHpU+OkSvlFJKeu7j41Iwfnw8OffOli2M+SUrbjkn8RBnjExoaaGLUjw4kkH/yisURjtxkEx6g8UXHU2dR6WdBnillFIy1+44nGA5o04wVUT+4EH66zbi5ORTQg8AA+RDJMJh1pHFKB4s5OVRSB9g6MItVZcoPq9mhQ7RK6WUgm98gwhBvseHeC+Pce3f/I2033UX3VxFnFFyGQKgl2KWc4puSqmiTYrOuwHeAq1U42NC3r9//6zcjtIevFJKKYDjx+mlmB5KaKUaWlvhr/4KgBe4mgAT7lp3t5gNEMPHCk7CBz8Iq1aRzQgAfRQnfxngtttm424UGuCVUko1NsLoKH0UEcfLUdZIu7sUrpklLOEMIEvhuigljgeDIyVqjx+HW24hkzHieBkjg6WchooK2Lp19u5rkdMAr5RSi52bCHeUVdTQShyvtGdk0E8hw+RyBUcAyGKUfgoZIRsPVhLsMjKgtxc/MSbwE8dHFR26/+ss0wCvlFKLXXExWMtplpLNSGr+PByml2I8xKmhDYAyOonhYxjZMSabEVi7NplM58HSTQmF9Ou2cbNMA7xSSi12bjGbCJnU0uL+OQhAO5VkEKGUblixgmL6sHjcTWYsASZg06ZkMt0qjpLBOAWEZbmdmjUa4JVSajFrbIRvf5sxMojjYQ1HMX4/kbf+Dni9HGQ9uQzh9QB+PyX0YDF0Uo5JnGPfvmQyXSUdFNFHFmOwevVs3ZVCA7xSSi0ujY1w773yCDL/HovRQwkOHsrpxEyMM/Kr58BahsmhnjPg98Pq1RTSj4PhFEvxJ4byQZLptm3jen7LJ/ky+Hywbdus3KISug5eKaUWi8ZGuOkmqVbn9cq+7m5BmxZqiOOlgDAeLP0UUu20A4Y6zsAtt8Att5D96JOAYYB8yuiWwL9li5z//vsJ3HrrufXs1azQAK+UUovF3XdDPM4IWWTHR+FjH4MbbwRgL9eTxSh+YoBsLuNgMFgqCEHFNfDQQ2QxShwPE/iop0mC+ORAfvZzNWt0iF4ppRaLV15hlEz+gf9GM7Vw4ACEQsTw0kMp6zgkx+XkEF55vdScBylak5cHp07hI84EfobJoYp2OHZsFm9IXYwGeKWUWgwaG6G7m3aqaKKeEOVgLfT10UcRUQKsRoK1d3iAnuN9jJKFwZGlcPv3S8U6oJAwo2RJpnwkMnv3pC5KA7xSSi00ZyfSgcyLW0sHFUTI5BTLpL25mX4K8TEhVemADCIMkkeYAgzIUriNG+H++6GmhuWcIJsRKXJz1VXpvjs1TToHr5RSC0ljI7zlLTAxIQlwTz0lc+KbN4PHw0HnKlZwgiaWyvGRCGdYSZBxChgAoIwuTrM0ud87kBqK/+EPWf2mPyLm+Al4HbjvvvTen5o27cErpdRCcvfdMDFBD8US5HfskPaDB8Fx6KeQYnqwieMzMniFNcmNYigoSC6F66YEEke2t8tjQwMrfv0d3v/5GyULXxPq5iwN8EoptVA0NsLTT9NJGTv5M/ooTFap45FHiOMhhpc6mvERB48HWloYJYtlnJIef329lJkFWqlJrXW/887U5zQ0wD33aHCf4zTAK6XUQuFuGtNBJadZSoiKVLnY0lIGyAdgKacxWKKOF+JxHIwUs2logPp6iunF4mGUbFnrfscduivcPKQBXiml5pvzJdGBzLMDzdQSJSCZ8hkZcty//EuyWl0imW6ULGJ4MVjK6ILubqioIJsR4niJ4ZWlcOvWpfkG1eWgSXZKKTWfNDbC298uPXOPB772tXN610e4guWc5BDreNsSR3r2jsNxVmCwsrwN6y6DsxisrHUPlEBenruvuwcHL9W0JXeKU/OL9uCVUmo+2b1bgrvjQCwGn/hEqie/axcAE/gpo5tRsuQ1d+h+H5vIZzC5SUxiX3eDJYdhCeS7d5PBOFECDJJLHoPw2GPpvkt1GWiAV0qp+cRd7hbDK0PwsVgygAPE8eDBUkQfFiOZ9E8/TQ/F9FLM1bwAgHHrzSeWwnlxIDsbqqoAZNMZ3Cp2IyNpvkl1OWiAV0qp+aShAd72Npqo5wHuZMRmpobQN21ihBwMDis4gQdH2icm3Hn5ILW0AmCQevPdlKbO/clPJneAKyBMPmHZ9nXTpvTdn7psdA5eKaXmk8ZGeOIJermOEBWEKSD7pz+FW2+Fj3+cASqweKimDQ+WKH4C8QlOsIIC+qlxA7yXOF2U4b9yDb5oPvzFt1Jz+d/6Fu/9yGfotsWydE63fZ2XNMArpdR84g7HH2Q9E/gYIhf6+5P7undRhsVIGVksY2QSYILjrGQJzVJ2FshmmCFycV5uJ+ddy2HrbanP2LqV3PXrydVtX+c1HaJXSqn5xF0K10sJVbTTRJ20u/u6n6YeL3GCyPr3UbKwQAwf1/NbqKkBY6igkyh+JvBT88Q/nbvkTovZzHsa4JVSar4xsrgth2HaqIauLnj8cQBOukPxkzPlI2TgIy5r3XNz4aab3GI2hnhirXuipK1aMDTAK6XUfLJ7NxaDwSHIOIPkybave/YwToAB8pL7uicy5YfJwUtcStAGg3DHHZTSjcXg4KGEnlStebVgaIBXSqn5ZPNmIv5cDJZ8BrF4JMCHQjSzhFGyqaATkEz5fgrdErWWTMYgEIDeXvIZIEqAOD5ZA+8O/auFQwO8UkrNMyPxDCxGqsxNcpJleIlR7gZ4Lw49FNNNqVuxDtk0JhwmmxFGySZCUIrZ7NmT/htRM0oDvFJKzSe7djEYlxKzEsiTG7/yIldTRB95DMGKFWQywgD5dFKGJzsLvuUuhdu9m0zG8DFBLkNS5Obkydm7JzUjNMArpdR8Egolq89JTXkgGMS+811EvDm8IWO/rFt/xzsoo5sYPjqoIjAahvXr5fiqKgxQSJgKQtJ2xx1pvhE10zTAK6XUfNHYCD/9KR1UYIBsRqCsgthNb2Xk58/ii4+zPPKyHLtpE8X04uBhjExKbHeqpO22beD380d8h9/nXyW433//bN2VmiEa4JVSai5qbIS3vAVqa2H7dmnbtQvicc5Qh5+orHXv6iTyi2eSmfJF9MHDD0Nvb7Ie/QR+WQrnrpWnoQGeeoqiz3+G7N/8Ah58cPbuU80YrWSnlFJzTWMjvOlNRB0vJ1nOFYk16iEZTh8ji2WcIsg4BkuEDMIU4CEuvfqSlVBcLMEesBhZA//QQ6lytA0NWsRmgdMevFJKzTW7doHjcJgr+AG/zzgBCc59ErCj+KmnKVnMZpA8QlTgSWTK19fD44+TzQgOXixIsNdEukVFA7xSSs1RzdTRRRldlMHy5RCJMEgucXzSI3cNkkc7lXiJSUNFBbS3k8UoY2QwSraudV+EdIheKaXmmrw8AA6zFoBhcmQuvrqa7r09xPDJ2nVkkZxs+1pGFqPg9cKWLZCXh2/vXgyyR3w2I7Bu3SzdkJoN2oNXSqm5Zv9+ACbwU007Z1gC//Iv8LOf0UINBsfdLQ7A0E8BUQKSSHf77TK3XlAAQCF9ZDOCB5vaN14tChrglVJqrrntNqL48eCQxQinWAaOAwcOsJ+N5CQC9oYNeInRTRkOskMc3d1yjs2bwePhOn7LG3lW2txfHNTioAFeKaVmUfwzdxNednVqKRzA1q0MLd2AwZLBOKNkJV8aIpfVvCJPGhooYIARsjFY2TRm48bka3z607yBPWzmaWm7bdKe72rB0zl4pZSaLTfcwIt74/wnv8Nf7vi89Ljuvx+2b2fodDcGhxWcYD8bAJlLtxhWcwyMgbw8yjlNF6U4eKWynTs0T+Jcy5fDI49IcE8skVOLgvbglVJqNmzfDnv3copl9FJMP4Xwj/8or33nO4SoAKCMLoxbb36EbLw4FNMLn/kM7N9PJR3E8RHHI0l2Z8+zb90KP/uZBvdFSAO8UkrNhocfBuAYq5kgIAF+YgJ27oSuLpqow4Mje7i7RsjGQ5w8zwjceits3Egh/YySSQyfbAer8+zKpQFeKaVmQ0kJDsZNjnM3kBkbgwceAKCNanIYJpchACbw0UcRHiwZzqgUw9mzhxyGGSKPXIakyE1iDl4temkP8MYYrzFmnzHmMfd5kTHm58aY4+5j4aRj7zHGnDDGHDXG3Jzua1VKqRlTX88oWfiIkcEYp1kK8ThUVQHSW1/DK2QQwWAZI1MK3kzaHpYjRyhA9navol3aJs/Bq0VtNnrwnwSOTHp+N/CktXYl8KT7HGPMWuB2YB3wbuDrxhhvmq9VKaVev5074eab5TGhosLdIMYhkwidlEn76CiD5BIlQC2tZBABYIxMQpTjJS7HbdoEV1yBB8sqjrGBA+DxaLU6lZTWAG+MqQF+F/j2pOb3A991//xd4NZJ7d+31o5ba08DJ4Dr03SpSil1eWzfDnfdBU88IY+JIJ+XJ/PuQB1NTOCX9ieeoJklRMgkn4Fkvfl+CumiTObZAXp74b77wOdjC9/jCs9x+MY3dAMZlZTuHvyXgG2AM6mt3FrbAeA+ur/GUg20TDqu1W1TSqn5obERduwgjod+CqTty1+Wx/37k5nyxe6ubwkvcRVBIpItbwwWQ5gCJghQSYeUo928WYL500/D5z8Pv/61ZsqrKdIW4I0x7wG6rLUvTPct52mz5xxkzFZjzPPGmOe7ExWclFJqLti1C4AjXMFX+G+MkQHW/WfstttophYfExTTm1wKZ4GjrKKadnzE4YMfhKXL6KdQtn01vfD1r6d66g0NcM892nNX50hnD/6NwPuMMU3A94G3GWMeBDqNMZUA7mNii6RWoHbS+2sgkUWSYq3daa291lp7bWlp6Uxev1JKvSZHWUUn5ZIp/973SuPWrfT+Px+hYG01hW/ZgCkuwa65glGyiBLkRhrluJERvKePE6IcgFLTA+vXz9KdqPkkbQHeWnuPtbbGWluPJM/90lr7IeAnwIfdwz4M/Lv7558AtxtjgsaYpcBKYG+6rlcppV63LVvA4+Ew64gSoJdiGJRd4GhsZGwgyrL1OWQ+9Tj0djP+yikGyCdAlFpaJWlu/37yGSRMIQ4eCpxe2L17Vm9LzQ9zYR38fcA7jTHHgXe6z7HWHgJ+CBwG/hP4uLU2PmtXqZRSl6qhgYnKJYwToI4m2RXu8GHYuZP4G99M/OdPUvWDv09mykfIoI+i5LA9V10FZ85QSTtRAjgYqVZ36NAs35iaD2alFr21djew2/1zL/D2Cxz3OeBzabswpZS6nD70IcJtw3iJk8uQrHV/+h/gmWfotmXE8ZFPGD8xQDaSaaMKr1t1nvp6OHCAKjrYx9VYkH3dn3pqVm9LzQ9zoQevlFILT2MjPPQQ/RRigCraU0vhrKWVaqL4p5SiDVPAGeqTPXoAvF6K6aWPIuJ4JfAvW5bee1HzkgZ4pZS6HBob4d575RGS8+RN1OMhTi2t2EmLg57nWoKMk8F4sq2fQgbJpTyRa1xRAX/6p+QwTBwPS2iRXeTuuy9dd6XmMd0uVimlXq+dO+FjHwPHAb9fgntxMQAvsZ4sxiiib8pSuDZquJKXp5wmTAFxfFJ21hhJ0vva18hjkALClBOCd75Tl8SpadEAr5RSr0djI3zkI0Stj0EKKIn2yvr3w4cBqSl/Hb+lkH4MFgfDMDnE8LGOQ5CdDSMj+Igly9WW0wkbNkgg37IFD5bf5T9Yxmk4VTybd6vmER2iV0qp12PHDrCWn/NOvs2fptpfeYVhsokSYClNZDGKwRIhg34KCTBOjacD/u7vwOulkDBD5GKBIvrgxhvlPB/4AADX8iJF9CefK/VqtAevlFKvx9GjADRRRzclDJBHfl4eVFXR3RXGYiimd8qmMbIULk6+45aovf12Kh/qoINKwJBtxmR4HuD+++XxRz+S4J54rtSr0ACvlFKvx+rVOEdeoYMqJvAzSB75P/0pHD9OO9fhwVJEH16vgTgMkscZluAnKil3jzwCQBldOBjieMm2Q1M/4/77NbCrS/aqQ/Tufu2v9lOQhmtVSqm5Z9s2BsnDQ5wi+qRaXTgMsRj72UgOw1JT3q1B308hZ6gjM7EU7rbbYONGSuhxq9W5S+F27Ji9e1ILwnTm4NuB54EXLvLz0kxdoFJKzRnn29cd6ZX7iJPBOE3Uw7gsfeunkBUcl4McB4uhn0KiBKmmFd78ZtkBbnCQXIaI4aOKNjm+/ZytN5S6JNMZoj9ird10sQOMMfsu0/UopdTctHOn7OcOsrc7SHDetYsuyvAQJ4MxmqmF/v7kcPtqjsmSN2vxYOmlCAcPVZ4uuM/tpR8+TDYjZDNMdSLA33ln+u9RLSjT6cFPZ8GlLspUSi1s7lz5Oc/37OEEy/ERo4Y2ogTBWobJwUucUrrhppvAGHxM0OXuCldmO1PnikTw4vAeHmMjB6CuTvd2V6/bqwZ4a23kchyjlFLzWmkpY2RwhDXy/LbbpFe/fz8t1FJImApCOG61uiFyMVgKCMsOcn4/5XQxTgCAfNuf3C8+0Vu/nuepJASf/Wy6704tQNNeB2+MudYY82NjzIvGmJeMMQeNMTr3rpRa+HbuhIceYg838BB3MGqyZU/2Bx4AYIwsVnGUEnqSxWj7KMKDI6Voe3rgK1+hkg4m8ONgZNMYtxgOW7fCt74F73qXPGrvXV0Gl7JM7iHgM8BBwJmZy1FKqVnU2JjqVW/ZkioJ6w7Hv8IVDJBHjy1iyY4dEI0yQB5R/NTSSi6yvC2OhxAVkg0P8Ja3wL59lNFFHC8OHjIZg+7u1Gdv3aqBXV1WlxLgu621P5mxK1FKqdnU2ChZ7THZupUHHpBtWRsaYONGJp74Jc3U4uBhkDx49FEAOljNBH4KCBNkHLCMkUkrNfiJyrnWrYN//mcKGKSPIgoYkJ5+aeks3KhaLC6lVO1fGWO+bYz5Q2PMBxI/M3ZlSimVTrt2QSzGi2zkRTbCxESqN3/sGL0UYzFU08YxVibfdpi1+IlRQJgsRgEYJYt+CigkDD4fbN4MnZ3kMYgXh+WckDevXZvWW1SLy6X04P8YWAP4SQ3RW+BHl/uilFIq7dz58P/k3QBczf7UHPkzz9BFFR4s2YzSzJLU27iCYnqkmI0rTAET+GXJ29VXyyjAe99L1kMPkcug7Bbn8aTK0So1Ay4lwG+w1q6fsStRSqnZ1N3NBL5k9ruDwROJyNB9by8HuIVMxlhCMydYAcYQtT5GyeLtPDnlVD2UAMgSuTs/Ko0PPgjAx//9ewTrK2Hnr3XbVzWjLiXA7zHGrLXWHp6xq1FKqdmyejUDR7pw8OAjxjA55N15p+ztDpxmKUtopoIQJwqug9IVDB7vw0+MJbRAZSV0doIDIXete4k3LNn2CQ8+SFH670wtUpcyB/8m4IAx5qguk1NKLTjbthH2FJPNKFmMMuQpkOD8ve/RTwFD5HAVByihFwbCcPIkg+ThJUYJPbByJXg8+JmglRosHnLiA8lfEJRKt0vpwb97xq5CKaVm26OPEnJKMTh4cehz8qm++244coQ21hHHSwWd+IiBdYhZQweV+IgTJCoJc5EIFXtDtLjZ9tkMQ3HxbN+ZWqQupQffCdwG/D3wd8AH3DallJrfdu6EHTs4zgoyiGBw6KIMDh4EJJEuizHK6CKLUQwQIYMWavEzIefYtAk2b2Y5pxgjizgeAkzAPt2qQ82OSwnwu4B1wFeArwJXAN+biYtSSqkZ09gI994rjwluRboeSiilGz8TMo+ekQHAUdZQTRs+4lKgBlkK10ElWYzIOXp7Yc8eiumlk3Lp6QOEQmm7NaUmu5Qh+tXW2g2Tnv/KGHPgcl+QUkrNmMZGePvbYWxMdnj74Aclu90N5OMEWcFJDpIpmfCdnUQIMkYG17EXAK+7SjhMAVH8rOQYBIOy1n3HDvLx4CfKFRyRz6yomI07VeqSevD7jDE3Jp4YY24Anr38l6SUUjNk924Yky1dT9sl8NBDsH07ABP4sHiopINyOpnAD47DAPn4iFFFB1x/ffJUfRQBhgo64ZOflCVvBQUU0k8ZXdTQKgfqWnc1Sy4lwN8A/MYY02SMaQIagbdoNr1Sat5wE96+y4d5lFul7Uc/gkiEMAVYIJ8BiulLvqWfQnzEJVO+oCDZ3kUZFnet+/790njPPXiw/An/zCb2w7ZtutZdzRrNoldKLR6PP84guYySyRgZxPDiu+EGqK6md+8ADh7yGaCQ/uRb2qjCQ1wS5g4fBo8HrxOjmSVYjGwwk6gp724WU/HII7KdrG4eo2bRtAO8tfbMTF6IUkrNqMZGePRReljKGJlkEGGIXApzc2FwkCbq8GDxE6OIPoy7E9xJlpNBRM5RUgKhEMVOL12UY/HItq+6K5yag6Yd4I0xGcDHkII3Fvg18A1rbWSGrk0ppV6b82376j7vpoRchvETZZA8CkMh+L//l5f5hGwW4/WSEx/GYojiZ4B8qR0PcOONEAqxNNTEGeoAI2vgdVc4NQfpMjml1MLS2Cj7r3/zm/Jz003S5i5X289GchjGR5xOyuH0aYhGGSWLtRyCN74x2WMfI5MYPilF6/fLLwuDsllMiAp8iTXwk3vwSs0RukxOKbWw7NoFExN0UEE3JVwVfxl27EguV+ulhGWc4gx1dFABB35KDC8WwzJOw752goxjMQyRCyCZ8l/9qowEBALkjg7hxWEVx+Qzb7tttu5WqQvSZXJKqYXF7an/O+/j3xOZ8u3tkJdHHA/jBFjDK2Qwltz2dYhcPDgU0QejUqnOYmilBoB8wvD443KurVspoo9SuqjnDLzrXTrnruakS+nB3wBsMcY0u8+XAEeMMQcBa6296rJfnVJKXSq3p95NKQPkMUw2OZs3w+7d9FGEg4cSeqgkRDO1AAyShwdHsueXLYNTpyAOTdQDSKb80aNy/vvvxwd8+AdPU37bzfC3n0//PSo1DbpMTik1PzU2SuGazZunrjXfsoWhbz7EMDl4iTNMDjnHjsHzz9PNaiweiuijjC5JlPN46LblGAt+jwOf/jR84hN443F6KcLBSyaRqYl099/PkvvTfcNKXRpdJqeUmn8aGyWwR6NScvYzn4H775f2HTvop4Ag4wTdTPmK/fvBcTjMFfiYIIsxKVwD4Di0ZS3Hm1MMf/MNqSkfi1FML+1UpT5z7drZuFOlXrNXnYM3xrx4OY5RSqnLZtcuiEZ5jN/liF0tSXTbt0ud+UcfpYcSPFi8xKcE6aOspowuAJlvx+JgaB4tIaOrGT7xCal2ZwyrOMYpllFMD3g8WnJWzTvT6cFf8SqlaA2Qf5muRymlXt3hw8TwsocbCVHOFbwCDz8M4+MAHORKgkTwEZNM+SWWWFMLY2TxNn4JQA7DgGz7GiFIHWdgYkJ68Hl5lIW78eBwJYcgP19Lzqp5ZzoBfs00jom/3gtRSqlpa26mn0IGyaWNamkrKZFseaCVGmppYZA82df92X+jn0IMlmq3aE2mJwqObPvq4KWSEHi9MvT/rW9REpZEvHI6IS9vlm5UqdfuVYforbVnpvHTmo6LVUopGhvhzBn6KCJAlBh+JvBJEHYc+ikgTAFrOUw1bbIrXDzOAPl4icvmMBUV+E0MiyFMAYAE8muukZ76H/wBBQzwx/wzyzkJf/AHs3vPSr0Gl7IOXiml0quxEe69Vx4Tdu8Ga2mmljyGyGBMCtL0SNLcS6wnQgbldLm7whkA2qnES1wy4qNRiMexeJJr3QsIS+8dZNc4Y6jnDB7DlF3klJovLmWZnFJKpU+i5OzEhJSJfeop6V1v3gweD0ecK8hihAn8jJBNUUkJAM9xIzmMUEo3A5PSg46xigzG5IlP/ukzOBxnJRZk05jBQXl982bIyJBfBAKBVOBXah7RHrxSam7asQMmJniBTbRPlMDdd095eZgclnEKL3F6kOA+VLacLspYz0tkME4RfVhkd6x+iiinSzLi/+iPAAgSZYQs4njJZCxZBY+GBnjySfibv5FHTbBT89AlB3hjzDuNMf9ojNnoPtcajUqpy+/pp4ni59/4L+xjEzz9dHKdu3Uc4vhYzikMlm5Kobub/u4YXuLcyHOA2ytHNo2ZwMdSTsP73idr5leuZDWvMEA+Dl487vawSQ0NcM89GtzVvPVaevAfAz4DfMgY8zZg42W9IqWUAohE6KWYYXI4xTJp270bjh5lmBwsUEwvXuJ0UgYTE/TZAjIYo5YWWLmSTL8s8BkhG4BKOmDVKjlXOEwNbbSwhBLc3eDcMrdKLQSvJcB3W2vD1tpPA+8CrrvM16SUUvCmN9FHEX6i9FAsbeEwBAL0U4jFkM8AmYzRRxGcOMFxVpBJBD8x8PsJ/PnHweOjg0oA8hmAxx6Tc1VVUUQfGYyldoXTYjZqAXktAf4/En+w1t6N7BOvlFKX1+bNNFFHIWH8TDBOAH76Uzh4kA4qsHjIYZhyOom5+cKt1JLFqLw/EIAdO3AcyzFWYTFS3GZEhu1ZupRSuqmmjTqa4c1v1uF4taBMO8AbYzKMMVcCJ4wxGYl2a+1XZuTKlFKL2+bNHGUNOQzjJybD7OEwOA4HWU+QCAYopg/rLoWL4mcpp6Q+fSDgnsjSRSkWI0vkNm2S5ooK/MT4OF9nBSe11rxacKZTi95njNkBtALfBR4EWowxO4wx/pm+QKXUAtfYCB/9qPxMXu/+6KOMeXNY6Q6fD5ELVhLhQlSwhBYACs3ApJMZquiAD34wubQtizH6KcKDI4ds2yaPW7ZAMEieGYZgUIfn1YIznR78F4AiYKm19hpr7SZgOVAAfHEGr00ptdA1NsJNN9H3zR8w8c1vy7r3xkbYvh1nxxdw4palNGFw6EU2gYniJ0IG6zgExlBk+gFw3F58Kd2Qm5ssTnM1L3CCFZJ4FwikhuEbGuBXv4LPfU4edXheLTDTKXTzHmCVtTa5hsRaO2iM+SjwCvDJmbo4pdQCd/fdxOOWr/ExruO3vHviCdkp7gc/YJA8LIZC+vFgZa17oI8wBRisBPLycnJCAzCp5GwuQ3JutwdfQi8+YlJyNjt76uc3NGhgVwvWdHrwdnJwn9QYh7MXjiql1DQ1NsLTT9NJOT2Ucgx3+drhw9DfTzelxPFSQBgvcbpMORQU0E8hHpzkfu4ZRLAga+Fx175v2iSB+447KKeTeppkSP/P/myWblap9JtOgD9sjDlncsoY81+RHrxSSl263bsB6KWYMTIIUUEcT7Km/EmWAZYsxshgjD5bCAcO0EINPuIEicLEBEHGsRhaqAUsASbg8cflMx58kIJtd/Gn9U9S/Zk7pMCNUovEdIboPw78yBjzJ8ALSK/9OiAT+L0ZvDal1EJWLGvbj7GSKtqxGEbIJm9iAoAXuCY53F5GF03UA3CclWQmlsLF4+7MO5xiGTbRZ3G3jQXg/vsp17iuFqHpBPhM4C+AALAO2ZrpcWACyLjI+5RSSjQ2So998+bUnLfbyz7JcgoIM0o2Q+SS19FBhCBD5PJGngVkKdxplgIwSB71nJFzXHUVPP00Fg9jZOIlJu133pnGm1NqbprOEP2XgEFr7S+ttV+x1v6DtfZJYNR9TSmlLszNlOezn5XHxFI4t5c9TgYb2Y8HRxLpHHl08Mi8eW4uRfQlTxfHSx1noK4O7rsPgCAR2qmijG6oroatukWGUtMJ8PXW2pfObrTWPg/umNk0uIVy9hpjDhhjDhlj/tpt32iM2WOM2W+Med4Yc/2k99xjjDlhjDlqjLl5up+llJpDPvpRYnH4Pn9Abzxf1rsD3HknE/gwOCyhBYMjiXKjo/RTSIAoVbTDRz9KkUcy5ePuP1nldMovDA0NkJnJlbxMiArW8xIMDFz4WpRaRKYzRH+xYfjMS/isceBt1tpht0DOr40xjwP/B/hra+3jxpjfAXYAm40xa4HbkWmBKuAXxphVbva+Umq+OHqUEBX8hjewguMUHz4o7Vu3MvjzF+HHPvLjA/iZoAPZ7OUUS8kkQoYvDseOkeNI0O6nEIMlzzMC69fLeQIBasbakPz6MHi9s3CTSs090+nB/9YYc87aEmPMnUjS3bRYMew+9bs/ia2a89z2fCCRHfN+4PvW2nFr7WngBHA9Sqn5o7ERIhFClDNAPidYARMTsHMn7NzJwL89AfEYeQySy7BsGgOcYrkk2DkOtLeTyRgWQ4gKDJDrhGW9PMBdd1FBiGWcpoIQ3HXXrN2uUnPJdHrwnwJ+bIy5g1RAvxZJurukLHpjjNc9xwrga9ba54wxnwJ+Zoz5IvILxxvcw6uBPZPe3uq2KaXmovMl0rlB+AhrKaUrmSjHAw9AVxft7v/SfmKU0clxVgIwToAreVmO3byZ4N69OHg4wQocjCyFO3xYXr//fgqAT/7oR/CB/65L4ZRyvWqAt9Z2Am8wxrwVuNJt/g9r7S8v9cPc4fWNxpgC5JeGK4GtwJ9bax8xxvw+8ADwDkiufplyirMbjDFb3XOwZMmSS70kpdTl0NgIb387RKNSDvbJJ6dUiGulmlpaGCZHGqJRaGriFd5GgCgARfRPOWUlIXjTm2BwEJBStCEm7dceiaT+fP/9GtiVOsu0d5Oz1v7KzaL/ymsJ7medKwzsBt4NfBj4kfvSv5Iahm8Faie9rYbU8P3kc+201l5rrb22tLT09VyWUuq12r0bxschHpdHt4hNYue2CfwspQkvDjG8sisc0EMplXQAUGSkzQIeHMrogjvuSH6EB4d+CshgXBp0KZxSF/Va9oN/TYwxpW7PHWNMJtJLfwUJ2m9xD3sbcNz980+A240xQWPMUmAlsDdd16uUugTFxeA47GMDXU4xHDok7Y8/zghZACzjFAbLKFmQlYWDIUIGazgKK1dSaHsBGCNT5tkZgn37kru8LaGZ46zkal6E0lJdCqfUq5jOHPzlUgl8152H9wA/tNY+ZowJA182xviACO5wu7X2kDHmh8BhIAZ8XDPolZqj9u0jhpcf8QGu5kV+76GHZD36T37CAOUAVNOGhzhjvjzyNm1i8HAbFiM99QmP1JBHMuUBshiFUCj5EfU0YbBy/Oho+u9RqXkmbQHeXUu/6TztvwauucB7Pgd8boYvTSn1eoVC9FHEAPm0UyVt//zPyaI1YMhnAIOln0LKf/lL+ijCAoX0QySbTMYA6KQcC5JIV1GRHO6voY06miVTfuXK2bhLpeaVtA3RK6UWsKYm+ijCg6WbMmmLy4DbK6zGRwyPmyPbH8uBjg5ClOPBylB8NEqACSzGrSnv5tjm5UlWfiBANW18kIdlrv7rX0//PSo1z2iAV0q9fj09nKGOIvoIECWKX4IzcJpl5BNOHppY6/4yV5LJqIRynwwmOnjopQiTWDCzf79k4+/ejecjd7HiI++EZ5/VPdyVmoZ0zsErpRaqqioOt15BFiPE8DNCNoElS3CazjBCFm/k1wD4iLlD9hLoa2mR97/znfDQQ1g38S6xdI7bbpPHhgYN6kpdIu3BK6Ven+3bYe9exshiBScxOJIpjwTxGD6q3KVwmUXZDBRJsZsYPlZyAm69FdatA2TevYsylnJalshpprxSr5kGeKXU9DU2wr33pnaEA3j4YRwMMbys4AReHHophuZmeQSKkSVwZX1HiPUNMoEPD1YS5rKzZZ7d6+UqXqKdKupohtzcWbhBpRYOHaJXSk1PYyO85S1SS97vh6eekva2NgbIx2Ioog+DI/PsTQc5zbsIMEEeUo2ukH5OsdStaGel/bnn4MEHYelSSk90k8OIbA+7Z8+Fr0Up9ao0wCulpmfHDpiYoI9CsiZGydixA66/Hqyll2IcPO5SOOhz17K/zJXkMJysO13gJtsNkYvBksMwfMDdHGZsjCrCLOEMpXRDt5P2W1RqIdEheqXU9Bw9ShQ//8B/50U2SQ9782YAjrMCA2Qzio9YcqlchAzW4m4KU1NDEX1YPHRTisHge9fbUzXk77iDUnr4M75NJpEpZWqVUpdOA7xSanoCAdqpopMyjrFKqsw9+igA+9lIlluJroB+RsnEwWAxLOMUbNwI73kPOQxjMZymHoMDTzwhW8eCBPpt2yhYUQrbtunmMUq9ThrglVLTEw7TQQUT+DlDnbR9/etECDJAPtfxW6ipodTTj4OHEbLxYKVSXX09bNlCpj+OBdqoIZDYNOaRR1Kfcf/9cPy4BnelLgMN8Eqp6YlG2ccmltKEAeJ4YHSULsqI4aOWVujtpdDpwWLceXaHfAbk/Q0NZHzqI1g8jJFBDa3SnljrrpS6rDTAK6Ve3c6d0NFBD6VU00aAKCNkg+PQSRl+YlTRDvG49NiRNfAGm9retbER87dfZAIfo2SxlCYZute17krNCA3wSqmptm+XzVy2b0+13Xsvo2QSxc/VvIjBSoAHjnAFOQyRxRisXetmyhuaqU29P7FpjOMQJEovJbIr3KTd4pRSl5cGeKVUys03M7zja/zTiZsY3vG1VJDv6UmWmK0ghMGRbV09Hjqoopp28Hrhox8ly0SI4+EEKwkSlTXzW7bInvHAOg4RJCJr4COR2bpTpRY8DfBKKbFzJzzxBMdZwR5uoIl6+MpX5LXiYtqpBHCL2VgJ+I7DBD7W8Ar8xV/Avn1k2FEsHiIEKScEv/u7Uke+V6rZVdJBFR0yN3/VVbN0s0otfFroRikl3Gz2o6xmnAxaqOXKsUNSwa68nBfOXEMWY/iI48Ghh2LieFIlZ/fvh0gEPzHibiLdao5Bk2wbm9j2dUP0ACs4gfF64b77Zu12lVrotAevlBJuNvsxVlNFGwe5Utp///exe/fSRRlrOALIrnBdlLlL4dxM+Y0bk0PuiR5+CT3Q1CTnmbTta+5HPgTPPKM7xCk1g7QHr9Ri09goCW+bN58TYMfIYJwAdZyh151zT9Saj5DBKo4DUlO+lxKGycFgyWUIjh2DO++EvXtZyXG6KZXAn5GR+gDd9lWptNEevFKLSWMjvPWt8NnP4rzhjXDDDanX/uqv6KMID5YNvITBwcGAtXRRhkkMxQcClNFDHK9sKgP4iEN7uyx527CBWloop0sy6m+8cXbuValFTgO8UgvR+bZ1Bdi1C8bH6aKUHXyGvr3HYe1aOS4UoptSwLKU03hxiBjZ172dKgJEZZe3G2+k2NOPBTopT53brUvPN77Btb6X+BP+CeP3S9lZpVTaaYBXaqFpbJRg+9nPwk03pWq9T3KU1RxjNS3UwpEjcPfdALzEejKIUEQfnoCP0bfcAsB+NpDDMB6PkQDvdAHQSjU+JuSkBQXy2NCA7+lfUvb5P5ctZXVIXqlZoQFeqYVm1y6IRgGw8Th89KOpnvyWLQAcYQ1R/JxkubS/9BIALdRSRTsBJiA6zuDuFwAYIYfVHIX3vQ92707u795Hsfw5GEz14EGC+j33aHBXahZpgFdqgTrOcr7Ipxl3fBL0AQ4exAKt1LCWIxxjpbRnZjJOgBGyuYqXkufooQQLOBiWc0oaMzLIYpQ4XsbIkJKzn/ykBnOl5hgN8EotNJs2AbCHBo6zQgrW7Nkjr335ywyQTxwvVbQRxwfGwMqVdFGGxUMZ3QAYpJ78GJl4cWTJG0BRERlEiOEjjk9q0O/enfbbVEpdnAZ4pRaaffuI4+Eoq4njJUS5FKFpbIS+PnoowWC5mn0YHGLuatkuN8Gu1A3wXmJ0Us4QuYBNDstTUYEHi4OHPgrPXQqnlJoTNMArNZ/t3Ak33zw1ke7wYfooIkIG9ZzhRa6W9o99DEIhTlOPF4caWvFgGbUZ8MwzHGADOYzI7m/GkM0oYQoYIB+DJZMxOY87QrCUJvzEZPe4tWvTfONKqVejAV6p+WrnTrjrLuwTT8Bdd6WCfCRCL8UEiFLPaUaRpW4cPgzAC1xDFiPkMoTBkdetpYNKammWY2+6iQpPFxP4CFGBQYbsgWRN+QpC5DMgu8jl5aXttpVS06MBXqn56t57iRDky/x3wuTLunfXaeoJMM4m9mOw0uj1Mkom/RRxLc/jJ4YHSx9FOBgm8LOel+XYtWspdrqxGNqowktM2isqJFve4+GNPMvH+Lq079+ftttWSk2PBnil5queHs5QxxGu4DRLIRyGD30I9u7lZa4kh2FK6caLQxQ/FBXRzBLGyKAu0VNHMuWHycGDI3u0l5TA0BCldOPgIUQl2YzIdrBbtki2/Kc/TRZjFBKWk7h17JVSc4cGeKXmo8ZGGB4mRDkjZNNOFZSWwuOPA7JufRP7JTBjGTU5MDDASZaTwbiUnEU2hemilEHyMFgpLfsnfwLPPSfJcxgiBKmnCa65JrUU7v774Vvfgne9Sx63bp2Nb0EpdREa4JWaj9x17fvYRB1neJl1cOIErFjBILnE8VJLC1mMSiKdyYbhYQ6yniJ6yWEEgABR2qmil2I8WLIZlfPfcAPZjBDHQxwvNbRNLWQDEtR/9jMN7krNURrglZqP3IS5IXKpoVWWulkLw8NucRpDCT14PAaDpc8pwCK7xb2B38g5jKGCEFECNFOLF3ff9h/9CHJzyWKUcYKMkkUxvbJbnFJq3tAAr9R8FIkQxwMY6mhOBeemJtqoSg23Ow4Ghz4KGSULL47Mv69cCe9/P+V04uDhJMsJMi7n+MAHIBTCg8VLnChBGa4/enS27lYp9RpogFdqPtq8mSFy8eCwnJN4iRMhCKOjHGAD2QzjcbPnDRCmgBGy8RKTHeEKC2HVKjfAe4mQSR1NUFcn8+sVFQDU0Uw2IzKXX1o6e/erlLpkGuCVmuvOt/Xr4CCD5GGBSjoAGCMTgH4KWcnx5KFSka6MMAV4cchhWObT9++ngDBxvEzgl5ryf/AH8qYtW8DjYQMHuJbnZQ28FrNRal7xzfYFKKUuYvt2+OIXiTvgDfrhV7+S9gceIMRGAHIZAmQ+Po9B4nhZgzuc7vWSFx9igDxCVABWgvXgIJSWks0I4wRw8EqJ2kG3HG1DA3zjG2z82MfY6LwE/kByJzql1PygAV6puWrnTtixg2Os5Ke8h0+NfxlvYle4iQlOsgwfsWSVuX4KyWMQL44kxb35zXDjjZTuOEQfhXRQkZqrBzh+nByGsXgYI1NqzSc2pQHJjl+/XjaS2bxZd4tTap7RAK/UXPXAAwCcYAXNLKGPIkpDoeT8eDNLKKHXPdjSSzGF9OPBkfrwRUVQUEAh/VgMISqlnrwx0hsPhTBAAf14iMtIQHf31GtoaNDArtQ8pXPwSs1VVVUAHGYtY2QSpgD6+mDLFqzxMEoWazkEgAdLD8X0UAJYgkTlF4HiYkmqA6IEqKEVPvhBCdrbtoExXMdvuYIjMnR/xx2zcqtKqctPA7xSc8H5EulWrcICQ+RQThetVCd72H0UMYGfcrpgwwZ8TNBFOS3UpIbhN22C3l4KCWMxOHiooBPWrZPXGxrg2Wd585s93F7zGwn499+f3vtWSs0YHaJXarY1NjLxprfS5NSy0vs/4ZlnJPju3+8ubYuTwzCnWcZbY+3w4Q8TsmU4eGSufdRLOV20UU0T9WQQkfP29sLmzWRxL3F8OHgop1Nq1ic0NMBTT83KbSulZpb24JWabR/7GMec5XybOwnFS+Duu6W9NFEjHrIYpZ8COH4cjh/nJMsIEpUCNC0tlNJNDC8RMqilRTaG2bwZHn2UTMaI4yWOV5bIPfbYLN6sUipdNMArNZsaG2H/fl7iKsIU0EsxvPiitP/gB/IcyxqO4uBNvu0waymmR+bNs7MpRbZ2jeOjlla4/Xbpnf/oR/iJMYGfYXIkU97a2bpbpVQaaYBXKl3ON8++ZQsOhiOsAaCJehgels1kYjFOsRRvYhvXSSJksIl98uSmm2SoHoODkWOPu4VuPvABAIrpJZNRSb5773tn+EaVUnOBBnil0qGxEd76VvjLv5THRJA/fZpuShkhh1Uc4yirpd3dTOYYq8hh2M2Et1ggih8vcempv/nNcMst5DBMhCBRAtJLz8iQ89x6KxjDCk6wjNPSVlCQxhtXSs0WTbJTKh3uvpvu8Vz2s4F3jj8pPfSDByEep4UawFJML53IGneam3EwDJPD1TxDDsMYLOMEk4l3EvTroLfX3flNgnoeg6nP3b0bjOEW+5/y3O8/d9tXpdSCpD14pWbazp3w9NP8lmv5Be+QTWH27EkWsnmRq8llmKs4iMGR9/T10UUZY2RSQ6sUqEHqzcsmM1YS5iIRCIfxESeTUTIZw0dc2kGCeTAIHg/4fPDVr2rhGqUWCe3BKzXTHnkEgNMsZYhcuimltqcHrr0WB0MLtazjsNSCByxgRkdpYSVxvJTQQ4AJAIbJoYsyDFZ2i3M3jQFYxqnUErk775THhgZ48kktN6vUIqQBXqmZtnEjzhM/J0QlWYwyRC6srYVVqwhTQJQgV/LylGH4jNg4+9lIDiNSdtbVRxGdlOEhLiVnCwrgttvgiSf4A36IB0eq0W3dmvp8LTer1KKkAV6pmbZnjzusHqeIfs6whLUtzYAEbB8TVNFONiMYZBg+g3HaqGYVx6Sn7vVCXDaU6aASP3FJpJvUK/c98ogE+8nBXSm1aGmAV+pyaWw8/1D4qVMMkI+XOFmM0MRSOPIzyM2lnUr8xCikH+PxYByHIXLJIEIcnyyFW7kS3v52zDel3vwwObLJzJe+lPqcrVs1sCulptAkO6Uuh8QyuM9+Fm66SRLrEtaupZNyDFBGFyNkSfvevRziymTPHcfBYghTwCB5+JiQ0rI+H2zZgp84XZQTx0clHfD447Nwo0qp+UIDvFKXw65dMD7OM7yRf43/Htx1lwT9nTvhiSc4wQr8RCmnCyvhHIAB8qmlecqp+ihK9vjzGYDSUmhooCQ/SoQgFiihB9rb03yTSqn5RIfolbqMnuMGBijgNh7Bc/fdyYIzrdRQSJgSejCkSsXG8bKCk8nnxt32FcCDI0ve1q6FnTupGDhKK9cAboDf/ME03plSar7RHrxSl+p8JWeHhojhpZdiRshikDw4dSr58iiZrOVQcm92kIp0YGUYfuNG8HrxE6OLcpqoTy6NY9MmeOAByukkjhcHL7kMweCkgjZKKXWWtAV4Y0yGMWavMeaAMeaQMeavJ73234wxR932HZPa7zHGnHBfuzld16oUO3fCzTdPnUuHC5ec/fnP6acQMGQwLn+uqoLDhxkihzheKgkll8JN4GPI3SkuzwzD178O730vJXQTIYMeiimkT5bC9fZCVRUFhInjZQI/WYxCKJTub0UpNY+kc4h+HHibtXbYGOMHfm2MeRzIBN4PXGWtHTfGlAEYY9YCtwPrgCrgF8aYVdbaeBqvWS1GO3fKHDrAE0/IYyJDfccOGB+XYjTj4zL3DtDVRZgVBIngxaGbUpb29UFJCZ2tQWL4KKSfTMawGMbIZJBcwJJjB6VsbUUFZRynjWom8FPPGUmw27wZNm8m99GbGSCfLEZTvXullLqAtPXgrRh2n/rdHwt8FLjPWjvuHpfYNuv9wPettePW2tPACeD6dF2vWsTcynPnPG9shJ/+lOe4ju/y4dTru3cD0EYVXhwCRKW+/LJl8PLLnGEJHhwK6SfIOACjZNFJOQBeHClbu2kTFYSI4wUMVbTDn/+5LIU7eJAchgkSpRo3ua6iYga/BKXUfJfWOXhjjNcYsx/oAn5urX0OWAXcZIx5zhjzlDHmOvfwaqBl0ttb3TalLo/zzaUDlJZyiCt4iSvl+W23yePu3RCP81uu4yTLcDAyP755MwQCHGUNmYyRzTCt1MIvfgGxGM9zHTkM45mUP99PIc3U4iMmDVVVsG8fhfQTw5fs8XPsmLz+pS/hwVJAP6WJrWO3bJnBL0cpNd+lNcBba+PW2o1ADXC9MeZKZJqgELgR+AzwQ2OMgUlriSad4uwGY8xWY8zzxpjnu7u7Z+7i1cLyoQ/BG98oc+lvf3sqyO/cCQ89xP/ld/h3bpUKcuvXy2uHDmGBTsoZJVtKzj7+uPSwP/Up+oOV1NBCDa1ECbjr2mGYbK7hhUkfbuijiDZqZC4dYNs2ALIZYYRsImRIIp1bZx4j/zt8gq/xbn4G9fVaflYpdVGzkkVvrQ0Du4F3Iz3zH7lD+HsBByhx22snva0GOGfhr7V2p7X2WmvttaWlpTN96Woh2L4dHnqIF+0GmuwS2XnNHWbn3nuJ4aWfQkbIIhr3pF576ikGySOOl2yGGSEbjh6FnTuxO3YwPu6wkhPuWncxTA4AS2mSBr/MTPVRxDhBlnJa9nRvaIC8PPIYdIf5xyX4Z2bK+z75SQAyGCeTCNxzTxq+KKXUfJbOLPpSY0yB++dM4B3AK8CjwNvc9lVAAOgBfgLcbowJGmOWAiuBvem6XrWAPfwwFvgJ7+dpbgJrU3ukh8MMkofF4CUuy93C4eRbwxQQYIIsxuilGFavhi9/mQHycfBQQo+71l0MkI+PmOwUV1cHX/0q/qCPFmqI46WWVrjxRjl49248WLIZppRuOcenPiWvbd0K3/oWvOtd8qhlaZVSryKdWfSVwHeNMV7kF4sfWmsfM8YEgH8yxrwMRIEPW2stcMgY80PgMBADPq4Z9OqyKClhuDXMMDm0UXPOa+FwnCBR/EQZIZuSn/4Uli+H1la6uQYPDgZLiArW33IL7NlDN6XE8VJIP1ECGGxyXbyXOHkMwuob4WMfozz+/9BCLQ4eiulNDcNXVQHwx3wHB4+sjZ8cyLXevFLqEqQtwFtrXwI2nac9CnzoAu/5HPC5Gb40tdjU1xPe34OHOKNk4mDw7Ngh8+CnTxPierzE8DNBF2XUmVHJcgdeYTUBoviZIEQF7NsHoRCneQceHHIZYpQsLJIp30o1XuLSGz91CuJxamjlJMuJJQrWbNwo17VtGzz2GBUxt/781x+5wA0opdSr00p2avHp66OXYnIZJoNIai7dzZI/ymqCjGOwdFMK73lPsnfdSi1ldJLNMH0USaY8sI+r3SI2kMkYIAH+NMvIICKf+4EPAFBFO92U4OCZWpGuoQGefho+/3l51CQ6pdTroAFeLVznWwbX2Ai//rW7RG0CL44kwpWWQrHUgO+ilDK68REjRDl85SuwahUxvIyQzToOUUmIGF44cSLZW9/EPgDZvx3ZNGaMDFnPXlcH998PGzeSxyAWQzXt0rOfXJGuoUES6DS4K6VeJ91sRi1MjY2SOBeNyhKzz3xGAuyuXeA4nGYpmYwxTpAB8qlcu1ZKwgLjZLCaoxxirSTZRaPw2GO0U8U4AcrpIkowuap9hGwsbqZ8Xl6yR95LMXG8Uphmkzs7FQiQzwD5DFDPaWnTgjVKqRmgPXi1MO3aBdEov2QzL9iNUmJ25044fBiAcYLU0IrHLSvLpk1w6BCD5BLDSwUhyunGwSvnO3yYUyxNJsYV0p/8KMmUj0umfLXUYjLISADIHvDccoscfOed+Imxhe/xBhplnb0WrFFKzQDtwauF6fBhYnh5krdTTifXsC+ZKAfg4KWGNpqpo4cSSZb7+c8JUUEMP/kMyGYvAHFZvLGXG8hnkFyGpwT4fgoxOJIp/6kvwMmT+HeM0eYWXiwgLOeHZBb8igcegKr1klinw/FKqRmgPXg1v+3cCTfcAL/3e1Pn2iMRuigjQgYhKqSsbFUVbN6Mg8HBUE4nPmLSg//Hf4SuLg6xFi9xCgiTz0DydHE8DJDHNTwPSMU5gHECyZKzydKLg4PU0EqEDMCQw/DUefatW+G55+DHP9bgrpSaMRrg1fzl7vrWtLeTvkefkopwk4J8Ym26ByuJdNnZUFCQrC6XyxB5DDBKZrKXfpD1FNPj1n0PJ88VpgCANRyFvLxkpvwYmTSxlAx3ExkeeQRCIWpoI0qACfzJY5VSKp00wKv5yx1y38UWfsJ7IRaTuffGRti7l0OspYg+MhmTuvHPPQfhMP0UJpeoldKTnGcfJpthcriO3wKQY6ROfAwfg+ThZ4JyOmHZMoJEAUmwGyGbSjrkmm67DSoqKKVbKt1N2mBGKaXSSQO8mr+iUcLurHiISmkLheDuuwE4zVJqacFDXNasL1sGf/u3tFOJg5cg0XN66T7i1NEMdXVk2FEsECFIJ+X4iJHNqGTVA4lNY+J4qaE1VXkuL889r2EFJ+VQzZRXSqWZBng1f0Wj9FNIHB+D5BIhKO1HjhDFzxhZXMVLeLB0USavxeO8yNX43R64BGJZt95DCX6iVBCCgQG32I2scT/JMgLuewgEAOmbd7uZ8hWEUjXlH3uMPAbJZZBamqVNM+WVUmmmWfRq7mtslCpzmzdPTUorKaGbMXIZxEeMEbLJ6OuDYJAuyojjoZwu/ERppxLoJo6HEJVc7W7fmuhpA5xkGUHG8RGHWAwPFossg+ukQrLkIRngDZbTLMWCJOQl1rpbi484f8a35T11dZpMp5RKO+3Bq7mtsVGS5z77WXjTmySxLtH+m9/wMuvIZpQAEzLP3t0N4+N0IEPiJfSQw4gM0f/613RSzjA5LOcUANlGEuBieGmmLpkdz9VXJy+hn0KiBGRrV48H7rwTPB4yGWWIHBy8kimfWArn7gBXSyv5DMq1K6VUmmmAV3Pb3XdDLMYveDu/dm6Ej3wk1aOPx+mijEo6MFg6KYdgEHp72c8mshglg3HK6GQCP4yO0k0pXuJSPjYriwwriXRjZBIlwHJOSvGZO+4Avx+Lx02Wg0pC8kvG1q3wh3/ISo4zTA5xvLJHu1tER7d2VUrNBRrg1dx25AgOhqe5iWd4s+zdvmsXFBdjrWWcIGt4BYNDNyWSAOc4tFHFao5BMEgJvSSG4U+wnFwGZZtWYwgynqwln6gPz1/8hZStjcfxEqeJehwMJfSkruvQIWpoo51qfMSkLRJJvb51K/zsZxrclVKzRgO8mtuuuII+ihgknwHyiOKXTPkvfMFNsPNSTicBooRMNUxMMEIWUQKs5TDk5FCUqEgHnGAF5XRKuL/1VgySLJdY0lZKN+zZI/P9xpDHAGNkYhMFaxJB/Phx8hjEYFnLIWm78870fjdKKXURGuDV3FZbSy/F+JjAR0w2f2lqghMnCFHBBH4KCFNIP0M2C44fp48ivDiyZt3vd8vKSsJclADrOCSJbw8+KEPxGFqoBZAgfvKkJMW9973U0UyEIA5emZ9PBPGVKymji1K6ZIlcTY321pVSc4oGeDV3NTbCww9zmnpyGCFz8t7twPNcg48YuQxRRjdxt2CNBPh4sucuiXOGEbLx4MgwfF2dJOw99BBgOUMd4Ab4O+6Qz7/lFmppSS6F8+Kkru3rXyfgibOF77HRHIQf/jAtX4lSSk2XBng1d+3aBdbyMuvJYRgfMUmkGxsjhpdjrKKeJjzYc4bhA4xLQDaGDGRYvZtSTKIE7dq1UlYW8BFze+keWSK3fLmc6KGHyGHYzaCXrPvEe2hogF//mmWf/zN8zz6ly+CUUnOOBng1N3zoQ7KX+saNqXry7gYtI2Sxnpfw4NDpFqzpoYQRcriKlyAra8rubk3UpdasFxQQYALn7GH4TZukrCxSpGaIvNS1JIL4kSMU00sBYWpplTb3PYAE9Xvu0eCulJqTNMCr2fehD8FDD/FvQ+/i4IG4LEVzg/womcTxspQmt2BNFSDD8AHGWcZpKCtLlpx1MIwTlOVuIGvSt23DBjN5hTVYDAEmZM361q1QX88yTtNMrWTWQyqIX3EFGYzzVn4lv0isXKnz7EqpeUMDvJp9P/0pUfy8wDW8xFXgODI839REDyVYPBTRRxH9jJINxnCKpWQzSjF9sGQJWYwChjEyASkyQ10drF8PX/kKjEeYwIdn8jw6QEEBZXRhsBLEJyfL3XcfeL28g19S6B2C7343vd+LUkq9DlqqVs2+vDz6BjMZJpuTuPPfoRAcOEAnUlGugDAVhKSmvLUcY7UMtQMUFZFhomCl6pzBSm+8bpUUxBkbI5dhWqihlhZ5T6Ks7Pg4BYQpp5NSeiA3N3VdDQ3wzDPnL5OrlFJznPbg1exqbISODvopJAtJnovjkaVw1nKAjWQyho84RSacfFuEIKs4Jk8qKvBl+LBAC7VYDLkMQVGRBGbgSg7SRo300kEK2QCsXk0BA/wZ36aeJli9eur16Ty7Umqe0gCv0mf7dpnH3r491eaWnG1mCTkME2ScYXKgR6rGhSinjjMAFNmeKaer4wz4/bJT2wc+gIOX46wEjAzZV1RIYC4qooRechlyq9qRDPxs2wZ+PzW04fN75LlSSi0AGuBVemzfDjt28P0TV9OxYxfcfLO0F0ud91dYTTYjeHAkwOfmMoGPcTK4kpfdqnKDWGCIHHkrvRLADx6Ehx7C4DBCNhbwGFJbtF55JbW0sJwTMkS/cWOqR97QAE89BZ//vDxqT10ptUDoHLxKj4cfZoQsXuAaiuml8oknpNCMuwPbKFlcwSscZTV9FFF9+gT9FOLBkfKxOTlkDY1iMbIWHmQYvrs7uawtkzG6KZGNXyZbu5bcp5/mo3xTXkvs257Q0KCBXSm14GgPXqVNN6UMkUsLS6ThgQcgFMICMXxu0RpHEukiEcIUYHCkp+71JgvWJJbKZTMiu8e5y9o2sY9TLGM1R2VTmt275XO2bIFgkEwzLscnevZKKbWAaYBXl9f55tkbG6G1lTAF5DJEK9XSXlUFFRXusLrs1uYlnixm00INXuIEiUJ9PR4sFg+vsAYweLAQCMiytuJiiukjQJQlNIMxqXn2hgb41a/gc5+TR+2tK6UWAQ3w6vLZvh1nxxf4lxPX0LfjH1Pz7Lt2AXCclRTRhwdHMuVvuQWGhuihBAcPeQy6w+xS+/0EK1PD7XlSac5iGCYbHxPSntj8Zd06KghRT5Ps9b5hw9RArtnwSqlFRgO8uny+8x1CVPAcN3KC5ZCYZ3dLzrZQSzaj+IhLQZrHH4eHHuIMS3DwkMsQ5YSYwA9AmHyqEyVi3W1aMxijmTopZDO5stzatRQS5o/4rszZnz3PrpRSi4wGeHX5jI3RQwlh8jlDvbQ98ogsV0PWri/nBB7isivcnj0ANNJABhEMUEoPVnZrJ46PpTSBx5PsqW9iH/0UsIYjqbXsIPPqgQBVJoQJBHSeXSm16GmAV5fHzp0wNMQxVlJIWHrwIEvStmyR9eoY6mgGpOIcIyOMkUE/RVzNiwDJevBxPICVPd0rK6WnnpFBBZ0U0yvr2cfHU5/f0CBJdZ/7nDzqULxSapHTAK8u3c6dMr++c2eq7ctfBuAkK6ijCSfxV6ugAIBRKzXii+nFAD2mDPx+OqhknCD1nJmyK9wQUjI2j8FUstxtt1FDK7/Lf1BJB9x669Tr0nl2pZRK0gCvLs3OnXDXXTz/RA/hu7alsuVHRgAYJ0gV7RgsUfxSyGbXLvpjOcTxkssQBku3LYK+PkKUEyQiBWgyM8lm5Ny17uvWyWc8+CDZd/weby86gO+O2+HBB2fjG1BKqXlBA7y6NF/6EiNk8Qi38QJXwxe+IMvg6uoYIwOwrOEoXhxJpNu3D/bsoYsy4njJZgQ/UUJUAvAyV5LPANmMgsdDJmM4eNxNZ9ytXcPh1Oc/+KDMvWtwV0qpi9IAry5Nfz/dlNJPIc3UpQrKrF1LP4VYDNW0TU2k27+f3/AG/EQxQAk97i8DUvxmFcdk3fof/zF+YlgMZ6jDJLZ23b9/tu5WKaXmLQ3w6tIUFdFFKR4cWqiRtuJiyMtL7t1eQBhwE+lOnmSYbJpZIhXmgDK6iePFAg5eVnJCzuHOqVsMg+Sl1sC7leqUUkpNnwZ4dX7nS6QD+OQnOch6amjFSxwHI+vZ/+7vOMh6/ETxuj3vXophdJRmlhCmgOWcBFJL4cbITNWav/nmZEGcQvo5zgo28aIk6SXWuiullJo2DfDqXDt3ErvrY3zriTo67/qfU4P8+vV0Zi4lhxG8OIySJUPosRhN1FNBJwAGSy9FEI/TRD05DMmadp+PYjfAhykALPkMJJP0gOQ+7xV0Qmlp2m5bKaUWEg3w6lz/+3/TSzGHWcsplsJnPyvtjY04b95MdCzGtTyPSSTSDQ4ySiZD5LCel8AY/EwkM+Ff4irK6aSAAVi3jhyGAWilhuTe7e3tyeI0S2ihinbK6AKfbniolFKvhQZ4da7eXnooYYg8TrNUstYbG2HHDgZjmViMO0TvMEA+9PXRSTkOHioJQXY2RfQxRhYA4wS4geegqAiuvJJsRnDw8DJXQqJu3ebNsn79zW+mnib+kO9TSBhWr56970EppeYxDfCL2YXm2YNBWqihjE4J8CDz43v2JDeGkUQ6Sx9FAHRSho+49LqjUUrpIY6HCEE8OFLI5sor4amnCDBBDB9h8pNbwCYK4nDfffh9cAWvSO9927Z0fBNKKbXg6PjnYuUWrAFkUxiQZDa35OwRrqCMrmQvnCefhFCI47wbg5UCNLiZ8sABNpDLoGztmlVAUbQPMAyRiwdHfiEokl8GaG3Fg0MzdfwO/wFe79StXZ9+WpbeJXr1SimlLpn24BerL38ZB8NvuYYY3mSpWR54AJCKdDkM4yPGBD5oaQHgRTaRxxAG8OLQQzEgGfN1nJFzXH89xfQml7sZ3Ip0FRVw330ArOEog+RRTTssW6Zbuyql1GWmAX6xGh3lBCv4PrfTQi309Ul7VRUgM+NrOIpJZMpnZzNILv0Ucg3PAxBgXJbCAXG8Mqz+5jdDSwt5DGKBM9QBFg8WNm2SoF1QQC3N5BOWIf2BgVn4ApRSamHTAL9YFRTQQg19FNNGNXR2SiLdtm3EPAEMJHvkI2SDMYSoII5PdoQLBimjixg+xsjAgyPB+o47wEhmvMVwhDX4icmWr4ntXa+6iit4hTfxa0rogTVrZu97UEqpBUoD/GIVCHCADWQyxnFWpkrOAiMe2cktnwEMVubZe3pooYYMxqimDQoLKaIfMIyQjcHKzm/79sF73pOsKT9KFoX0SYBPzLPfdx+53jFu48cYrzc5bK+UUury0QC/WG3ezCB5rOEIIXe9emLnt6GY1InPYdgtWCPD8AfYQAFhSaS78UYKtrwf/AEGycODJZsRCIWgoAAPlhh+hshlBSegsDA1p97QAM88A5//vDzqXLtSSl12GuAXssZGeqvW82+e/0L8+oYp7ZEvfROAKjqwib8G+/bB4cN0UYaDBx/xVEU6ZKh+PQdlY5hbbqHwB9/ETkTdgjbuPDske+rZDBOiQhLpqqunXpsm0iml1IzSAL9QNTbCG97AgY4SnrJvJvTbZrjhBnlt1y7CUakDv5qjeIkTxyM7vz39NGdYktzJzUfcLWJjAFjBSfjMZ6C3l7xoDw4eTlOPJ7HzW0VFsmDNlbxMFmMU0g/19bPwJSil1OKlAX6huvtuAI6ymhGyZZj9t7+V1/bsSa5fr6UFD3EpOdveDsBJlpPFGACFJswYWQyTk1rPPjgImzeTaSJYDJ2Uk8mYrGd3y80C1NBGNW0S4BNZ+koppdJCA/xCdeQIDoZ2qimil2OJRLqdO6GtjTMswYNDrrumfZQsyM/HAkPkylA8UGa7iONlmBwMVgJ8KARAph3F4mGcDJbQDLffnhpyj0S4giP8OX8vu8tFIrPyNSil1GKlAX4h2L6dyPJ1sH17qu2KKxgiF7DU0EoT9dL+wAPQ3c1h1pHJWHJr1wHyobeXXoqJkEEV0puXnd+ghxIMlgATcp7du/HYODG8jJEhO8U9+2zq8++8E4MM8SeeK6WUSh8N8PPd9u107NjFV07dwsiOr6aCfG0tYQrwEqeWFuKJqsSnTwMwTDarOeqexF0K19dHG9XE8cr69JwcipG1661Uu7PwLjeRzotDH0UU0QfhcOr1rVvhW9+Cd71LHnVPd6WUSiutRT/f/f3fc5LrOcFKOqhkxVe/CsuXw0MP0cW1biLdMU6wQo4Phxkmm3GCLEOCvZm0acxRVpHJmATsFRvIO9CGYz2cYCUBxuUcFRXJj1/JMXookTXw9cunXtvWrRrYlVJqlmgPfj7buRMmJjjGSsbIkOVskQg88ggAx1hJgChF9GGwkglfX+9WpPNK79zjwTOppvxxVlFDmyx5q68ny44Qx8sYmbLczRhJpNu1C4A6miknRB5DcOONs/ZVKKWUmiptAd4Yk2GM2WuMOWCMOWSM+euzXv+0McYaY0omtd1jjDlhjDlqjLk5Xdc6b9x7LwCt1LKMU+zjakmkKy0FoJ1qiulLFqyJkAGFhTRTiwdHeumOQ4AofRThYIji51p+KxnxFRVkMkocH2NkspLjsGHDlLXrm9jHn/KAVKqblEGvlFJqdqWzBz8OvM1auwHYCLzbGHMjgDGmFngn0Jw42BizFrgdWAe8G/i6Mcabxuud+4aHieLHwVBKNwPkSYA/fhyACBms5hWyGMVgZSnc3r38luvIY0hqxEOypvwwOXiJU0EnvPe9MDTkzrtbuimRXwjy8uSzt2yBQAAvDoXeIfjGN7RojVJKzSFpC/BWDLtP/e6PW/qMvwe2TXoO8H7g+9bacWvtaeAEcH26rnfO2bkTbr5ZHhP+5E/cMrEOtbRiE2lwGRlECOJgqKY9mck+iATnMbK4igNy7IYNFNGPg4chcvEmevYAzz0HwApOkMG4rGfv7pbXGhqkdn2i3KzOtSul1JyS1jl4Y4zXGLMf6AJ+bq19zhjzPqDNWnvgrMOrgZZJz1vdtrPPudUY87wx5vnuRPBZaLZvh7vuYuKJX8Jdd00J8mEKMMAaXkkueWNggH4KsXjIJ7UVaz+FjCF15ldyQobyv/ENinxDgHFrzlsycdesf+ADANTQSind5DMIq1enrkvLzSql1JyV1gBvrY1bazcCNcD1xpirgL8E/td5DjfnabPnNFi701p7rbX22lJ37nlBaWyEL3yBdir5Ep+SAP3lL0v7F79IM7WApYg+LDBOEJqb6aEEC1KYxtVPodtLj8syuEAAIPneVqpTvyQA3H8/3HEHb+Q33MW3wO+HbdvSePNKKaVeq1nJorfWhoHdyDD8UuCAMaYJCfwvGmMqkB577aS31YBbfWUx2b0brOUl1nOUVZyhTirJ7d4NjsNR1pBBhGxGMCC/APT3c5RV+JmQ4Xlj8LibxsiQflyWtW3eDLt2kRuTIfkTrCR49lK4Bx/E85tnKfz8NnjqKe2tK6XUPJHOLPpSY0yB++dM4B3APmttmbW23lpbjwT1q621IeAnwO3GmKAxZimwEtibruudFeebZz90CICXWc84QVnO1t+fLCrTTyFLaCaDCGAZIRuAk6ygMNF7txY/Ubopo50qPDjSU1+3Dg4fTu7dPkYmNbSmlsIl6FC8UkrNO+nswVcCvzLGvAT8FpmDf+xCB1trDwE/BA4D/wl83FobT8uVzobt27F33cXoE89MnWd/6ikiBOmlmJUcZz8bJVP+sceYwMcYGazhKAaZ0+ijCAuMkSmJdB4PeDwU00eUAK3U4CMGwaD04CMRMogQw884AZZyGm66SYO5UkrNc+nMon/JWrvJWnuVtfZKa+3/Oc8x9dbanknPP2etXW6tXW2tfTxd15p2jY2wYwdHuIK/5X8wSqbUjAfIzEwmv5XS49aXB0IheihJFaxx9VHECNlYkMI0q1fD+95HMb3E8dBJObkMydaxDQ3JmvEOHgbIl7n5O+5I9zeglFLqMtNKdnPBjh0AvMR62qghRIVsr9rYCCdP0k0pXhw2cCCVeRiJEKIci5EAHwhgcOimhH4KMUjyHMEgbNtGMb1YDOMEqONMane3rVthwwbqacJiJCnv8YX7u5RSSi0WGuDngqOy6csrrCFCkG5KZL25m2B3iHVkMMYSmvESl6UEo6McZD1ZjMmytqIi/MRop8rd+c2RRLpxSZoroRcHL2CkkI27WQwAAwNU0EEOw/Keo0dRSik1v2mAT6fGRvi935Ph8cmJdMEgo2QyTpCVHOc4q2BoCIqLwePhDHVUugGYRMlZoJkl1CaK/61aRQUdRAkmM+g9WBmi37WLHIZwMMTxUko3DA6mrqm5mavZx538U+o9Siml5jUN8OnS2Ag33UTXo8/y5N6cqYl04+P0UYSPGAUM0EEFOA584xvE4pIwt4EDZDEKwChZxPAyTpBN7E9+RAWdxPHSzJJUNbpt2+DwYXIYZpwg4wRkDj4Uktd37wagmD7+//buPDiqKl/g+PfX3VkJIQlJWARDwoAKImF5MEGBjL6B8fnUEaRmlBIXEDOi4zx1LHVeWUNNzRMtnzqDI5gRHXF5Woqio7ggGkHZBAm7gEDYIQkhZGlIOt3n/XFuJw0mIWEgS+f3qUp1c5fT9/6M+fVZ7jlp7LWD8vRZd6WUavc0wbeU+fPB72c1I1jMv9uBdM8+a/elpFBMMi4CDGRz3drt+fkcpSsBhFSKiMSHAOV0rp2wJoUi6NcPvvmG7hzGjwsvsQxgC4wZYwfSFRURTRUBXNQQQScq664rO9v207tc4PHonPJKKRUmdD34luLUmAtIo5x4jpFI7IkTtbu/52KiqKY7h5GQCfuKsLPzJRN8uMA4o+rBjd8OsItIhECALhynmkh8RNgR9EmX2VMuugi2bnWela+yk98EJ7LJyoIlS2xNPjtbk7tSSoUJrcG3oADCEboTxUlKSbA15txcWLqUPaTRlWKSKMGFnxrswnnfcxFRVBNL3ZeBYyRyhG64MERRDf37g8tFHBV46YSXWLswTNBDD4HLRTZ5XMYGu23IkLr9OpGNUkqFHU3wLaiCODz4SKaYH/gJ7NwJf/kLBvASw0A2O1POOgPpxo3jB/rZ2rvbDS4XLgIUk8we0vDgswVffTVcfrmT2r3EUWEfdytx+uGzsmD6dEaxkv/kI9scf/RoQ5eplFIqDGiCP9dyc2HAADsNbOhI+ZISKojDRYAYTtpFYoyBw4cpJQE/bnpyiBinpu4lFvPZYk4QzWA2wPPPw5w5ROKjkBQOcAFxwb70o0ftZwIZ7OIittvR8MFn3cFOPRsTY78oBGexU0opFba0D/5cys21o+ODgu8HDYKvv6aYgbgI0It9FNDH7jt5kkJ6EcDlNM/b/vdSEmpr8xewH15/HWbNogefspt0avDQn202YQeT9d//zs3+N3AFV4SbOrXuWrSvXSmlOhRN8OeSM73s14yikG5M4D1YsMDWsI2pXY61J4fqErzXyy4y8FDzo7Xb46jATcA+8rbVC/Pnk0ohP/AT/LjozX544IG6ZL1sGZ4nn4SDB21ynz791OvLytLErpRSHYQm+LO1YsWPa8PR0QQQlnAV5XTm5yymc2amPcblYqe/L5FUOXPH1y13v57BxFNmt4iAgaN0dWrwAfvc+gV94fBhUinEAAaxiX/79rprysqC995roQAopZRqyzTBn43cXPjNb+xkNB4PLF1am+SLSaaURAIIRaTQeeVK6NsX/H68dCKDXc4Id4MfF4KhkliuYokt2xjc+Clyppt1EbCJv08fABI5RhVRBHDbaWXz81shAEoppdo6HWTXXCtWQE4OGwOX8Aa/hpqa2sVi2LuXQlIxCFHY2en47jvbTA/48NCHAqdmbmeoKyMeEC5kH4wYAW43nfBSSgI76es8u07tc+udqKSSOPzYx+KIiWn5GCillGrzNME3ZsUKePxx+xo0fz4YwwpGkc8QKom1tejcXCgo4Af6ksAxulLCRgZBRQWkpFBJLAHcdOMIMa5qwHCCWI7TBTd++yhcQgJcey3dOIyPSCqJoxcH7EC6KVOgpIRYvERzggRK7YC83/2udWKjlFKqTdMm+oasWGH7zn0+iIiw/e1ZWbByJTW4KSANLzEUkUKnqqraWvo2LiaZo8TirZ1xjiVLOEpX/LjpTDlu/AAcJ55SEnDht/3sKSkwYwapC+/ney6hxqnx07+//eyTJxEghWLSKIC0tB8PpFNKKaXQGnzD5s+ntDqGnSYdqqttzR2gqIhjJFJDBJ0ptzPSRUZCZmbthDVD+I4+FOB3ZqPj8GH2OY/CxVNm++4RSkhiO/2Iotr2sxcVAZBCEcaZsDaVwrrV3ZzH3u7k71zDInj00ZaLh1JKqXZFE3wjtnERC5gQMjM8kJ3NUboSSRXxlLGTDFuT3r6dMuIxCD05RDeO4PK4YfBgANYyjBi8uJ1n1A12QN5BetY9HjdxIsyf78wpH0E1kXZf//52//Tp8MILRI8bi/uFOVp7V0op1SBtom9IeTkJlFJKAhXE0bm83G6vrGQX6UTgI54y9pIGqxZBYiLFJGOcCWuiOQk1PgLrNyDYx94Gs762eA9+DtHDWfJ1XV1z+w03EEcFlXTCHWy6Dx0pP326JnallFJnpDX4hqxahYsAVURxjERYtcoOpFu4kM0MpBOV9GYf1UTYfvqKCvbRGxcB4ilzlmS1c8pXEIePCC5mm50m1u0mgVKOOyPoL+AgXHGF/dzu3YnhJFFUkUCpXfktM7MVA6GUUqo90gTfkIwM0thDZyooJhmSkuDxxwkgVNCZYXxHNwptT3kgABUVrGUosXgRcF4NJ4jhOF2IoIZuHIGxY+GBB5wvB1H4cdnn4p3+d+LjAejOYS5kr92WkNAqIVBKKdV+aRN9IyLxEcVJ9nIhQ9f8E6KjKSaZKiK5gAN4qKldu90AZcQzktUAeCSAGEMZXSijMx5qbCLPzoa9e+nFfpYzCn9w4F2Q0xw/lZfsv10uXRhGKaVUs2kNviETJwK2Jl5Amq2le73s4UJq8JBMce3guGoiqCCOGjxksMv2p0dEAMIxSaKAPnjw2efWu3aFLVvoTDlFJAMQw0nYteuUz42i2q71/uCDOn+8UkqpZtME35Dp02HcONLYQzWRtZvXMJxYvCRyrHZp1xPEcIxEXBg7Yc2vfmWXgsVQauLZQ5oddCdiF57Zu9c5/yTp7LYFT5hQ97kvvADjxtnXJ55o4RtXSqn2x+12k5mZycCBAxk8eDBPP/00gUCg0XMKCgp44403WugKW54m+DPozhGMszBMAOEAvRjAFgRqp5GtpBPFvYfi6tmdpDn/A2Vl4PMhQDFdOUmU7U8Xsc3tMTHEcoJkikinwPbvhyby6dPh0091tLxSSjVRTEwM+fn5bN68mcWLF7No0SJmzpzZ6Dma4DuyiRNJpri2n/0YifiIYBCbIDYWl7MgXAlJ7NgXSdSRvbgGD6o93YOPI3TD4LIj5Xv3ts3tzvSydzOHMSy10+EqpZQ6J1JTU8nNzeW5557DGENBQQGjR49m6NChDB06lOXLlwPw8MMPs2zZMjIzM3nmmWcaPK690kF2Z5BAKYLBh4djJBJJNb3ZB5deagfEVdtn3PdxIQn+Yjvj3ZQpkJtLSqCIQ/TEIHZGuiFDbKFOzTxuwQLb5641daVUR1PfktvnUEZGBoFAgMLCQlJTU1m8eDHR0dHs2LGDm266iTVr1jBr1iyeeuopPvzwQwC8Xm+9x7VXmuAbs2ABsXgB8BJLIanOBDflUF4Oxk4oW0gKVUQxlLXAxfaX9aab6Pb6QfbTmwBiR8pffXVd2TphjVKqo1qxAq66yk4DHhkJS5aclyRvjG199fl83HPPPeTn5+N2u9m+fXu9xzf1uPZCm+gbk5l5Sj/7Ni4ixkn4iEBNDZH4OMgFBHDZld+CtfSiIlIpxI8LELu067p1rXMfSinVluTl2eTu99vXvLxz/hG7du3C7XaTmprKM888Q7du3Vi/fj1r1qyhurq63nOaelx7oQm+MWVl9tE2Z2GYYrqSSpFdvvW++8Dl4kL2cIJoDLY5n9dft+dOnEgSJXiJpQYP0VTB4cOteDNKKdVGZGfbmrvbbV/P8VwfRUVF5OTkcM899yAiHD9+nB49euByuXj11Vfx++2Knp07d6Y8OA05NHhce6VN9E1ggCJS8BFhl28dNMg2r+/cSa8nl7CRy6jBY5+L37q19rxYvFQQxwUcaLVrV0qpNicryzbLn8M++BMnTpCZmYnP58Pj8XDLLbdw//33A3D33XczceJE3n77bX72s5/RqVMnAC677DI8Hg+DBw/mtttua/C49koTfGOmTIF583D5AhymGwA9OARFTjN9WRmpFFJICl05aiemueQSu2/BAmdOem9dgu/evRVuQiml2qCsrHPa795Ybbtfv35s2LCh9t+PO08uRUREsGTJklOOre+49kqb6BuTlQXXXEM0JzlCNwRjm+EnT7b7V6wgnjIi8NmaPcCsWfZ14kRcGFI5wqVstk1RU6a0xl0opZTqgLQG3wTp7GYDl+HHbZdv7dvX7iguJp4yunLUTlGbnFz3jXTQIIiIYIbveVwugefn6JSzSimlWozW4M+kpITe7KeKKGrw2Hnj582z+yZPxoUhhxcYwbdwxx115+XlQSBgB+kFp6hVSimlWojW4M9k714SqaGQVC5kn93Ws6d9daaX7fruuzBh2qnTzQZHiQaf89QV4ZRSSrUgTfBNkMgxYvEygC12w0MP1e184on6F4Q5D6NElVJKqabSBH8mmZnEFSykO0dsP/uYMU1P1ud4lKhSSinVVNoHfyYPPQQeDw/yv1zq2VY3Sl4ppVSbEVwu9tJLL2XSpEl4vd6zLuu2227jnXfeAWDatGls2bKlwWPz8vJOWZRm7ty5zJ8//6w/+1zSGvyZZGXB0qXa1K6UUk30t7/BwYPnrryePWHGjMaPCS4XCzB58mTmzp1bO9EN2Ofk3W53sz/7xRdfbHR/Xl4ecXFxjBo1CoCcnJxmf8b5ogm+KbSpXSmlmuzgQUhLO3fl7dnTvONHjx7Nhg0byMvLY+bMmfTo0YP8/Hw2btzIww8/TF5eHlVVVcyYMYO77roLYwz33nsvX3zxBenp6bWL1ABkZ2fz1FNPMXz4cD755BMeffRR/H4/ycnJzJs3j7lz5+J2u3nttdeYPXs2S5YsIS4ujgcffJD8/HxycnLwer307duXl156icTERLKzsxk5ciRffvklpaWlzJs3j9GjR7N582Zuv/12qqurCQQCLFiwgH79+p113DTBK6WUChs1NTV8/PHH/OIXvwBg9erVbNq0ifT0dHJzc+nSpQvffvstVVVVXH755YwbN45169axbds2Nm7cyJEjRxgwYAB3hD72jJ3f/s4772Tp0qWkp6dTUlJCUlISOTk5tQkdOGVmvClTpjB79mzGjh3LY489xsyZM3n22Wdrr3P16tUsWrSImTNn8vnnnzN37lzuu+8+Jk+eTHV19b88F74meKWUUu1ecC56sDX4qVOnsnz5ckaMGEF6ejoAn332GRs2bKjtXz9+/Dg7duxg6dKl3HTTTbjdbnr27MmVV175o/JXrlzJmDFjastKSkpq9HqOHz9OaWkpY8eOBeDWW29l0qRJtfsnTJgAwLBhwygoKAAgKyuLP//5z+zfv58JEyb8S7V30ASvlFIqDIT2wYcKXTDGGMPs2bMZP378KccsWrQIEWm0fGPMGY9pjqioKMAODqypqQHg5ptvZuTIkXz00UeMHz+eF198sd4vG02lo+iVUkp1COPHj2fOnDn4fD4Atm/fTmVlJWPGjOHNN9/E7/dz6NAhvvzyyx+dm5WVxVdffcXu3bsBKCkpAX685GxQly5dSExMZNmyZQC8+uqrtbX5huzatYuMjAx++9vfct11152y8M3Z0Bq8UkqpDmHatGkUFBQwdOhQjDGkpKSwcOFCbrjhBr744gsGDRpE//79603EKSkp5ObmMmHCBAKBAKmpqSxevJhrr72WG2+8kffff5/Zs2efcs4rr7xSO8guIyODl19+udHre+utt3jttdeIiIige/fuPPbYY//S/UroaMH2bvjw4WbNmjWtfRlKKdWhtcZjch2ZiKw1xgw/fbvW4JVSSp1TmozbBu2DV0oppcKQJnillFIqDGmCV0oppcKQJnillFIqDGmCV0oppcKQJnillFIqDGmCV0oppcKQJnillFIqDGmCV0oppcJQWE1VKyJFwJ7Wvo4WlAwUt/ZFtFEam/ppXBqmsWmYxqZ+bSUuacaYlNM3hlWC72hEZE198w8rjU1DNC4N09g0TGNTv7YeF22iV0oppcKQJnillFIqDGmCb99yW/sC2jCNTf00Lg3T2DRMY1O/Nh0X7YNXSimlwpDW4JVSSqkwpAm+jRGRl0SkUEQ2hWwbLCIrRGSjiPxTROKd7REi8oqzfauIPBJyzjBn+w8i8lcRkda4n3OlmXGJFJGXne3rRSQ75Jxwi0tvEfnS+e+/WUTuc7YnichiEdnhvCaGnPOIc//bRGR8yPYOHRsR6eocXyEiz51WVkePzc9FZK0Tg7UicmVIWWETm7OIywgRyXd+1ovIDSFltX5cjDH604Z+gDHAUGBTyLZvgbHO+zuAPznvbwbedN7HAgVAH+ffq4EsQICPgatb+95aMC4zgJed96nAWsAVpnHpAQx13ncGtgMDgCeBh53tDwNPOO8HAOuBKCAd2Am4NTYGoBNwBZADPHdaWR09NkOAns77S4ED4Ribs4hLLOAJObcw5N+tHhetwbcxxpilQMlpmy8CljrvFwMTg4cDnUTEA8QA1UCZiPQA4o0xK4z9TZsP/PJ8X/v51My4DACWOOcVAqXA8DCNyyFjzHfO+3JgK3ABcD3winPYK9Td5/XYL4VVxpjdwA/ACI0NGGMqjTFfAydDy9HYgDFmnTHmoLN9MxAtIlHhFpuziIvXGFPjbI/G/k1uM78zmuDbh03Adc77SUBv5/07QCVwCNgLPGWMKcH+Qu4POX+/sy3cNBSX9cD1IuIRkXRgmLMvrOMiIn2wNa1VQDdjzCGwf7SwLRlg73dfyGnBGGhsGqaxOdVEYJ0xpoowjk1T4yIiI0VkM7ARyHESfpuIiyb49uEOYIaIrMU2G1U720cAfqAntrn1ARHJwDYJnS4cH5doKC4vYf+HWgM8CywHagjjuIhIHLAA+J0xpqyxQ+vZZhrZ3u41IzYNFlHPtg4ZGxEZCDwB3BXcVM9h7T42zYmLMWaVMWYg8G/AIyISTRuJi6elP1A1nzHme2AcgIj0B65xdt0MfGKM8QGFIvINMBxYBvQKKaIXcJAw01BcnG/Q/xU8TkSWAzuAY4RhXEQkAvvH6HVjzLvO5iMi0sMYc8hpLix0tu+nrqUD6mKwH41NQzQ29vhewHvAFGPMTmdz2MXmbH9njDFbRaQSO0ahTcRFa/DtgIikOq8u4L+Buc6uvcCVYnUCfgp87zQhlYvIT52Rm1OA91vh0s+rhuIiIrFOPBCRnwM1xpgt4RgX5z7mAVuNMU+H7PoAuNV5fyt19/kB8Gun/zQd6Aes1tg0TGMDIpIAfAQ8Yoz5JnhwuMXmLOKS7oyBQkTSsOOCCtpMXFp6VJ/+nHEU5/9h+9R92G+BU4H7sKM5twOzqJugKA54GzvoZQvw+5ByhmP7qHcCzwXPaa8/zYxLH2AbdoDM59iVlsI1Lldgm/42APnOz38AXbEDDXc4r0kh5/zBuf9thIzs1dgYsE+ilAAVzu/ZAI2NAfsFujLk2HwgNdxicxZxuQX79zcf+A74ZUhZrR4XnclOKaWUCkPaRK+UUkqFIU3wSimlVBjSBK+UUkqFIU3wSimlVBjSBK+UUkqFIU3wSoUJsauhBVe2OiwiB5z3FSLy/Hn4vH+IyG4RyTnXZTfhs2Oce6sWkeSW/nyl2gOdyU6pMGGMOQpkAojIH4EKY8xT5/ljf2+Meed8FS4iHlO3mEctY8wJIFNECs7XZyvV3mkNXqkwJyLZIvKh8/6PIvKKiHwmIgUiMkFEnnTWrf7EmaYzuJb1V2LX/v7UmZ6zsc/o7NTmg+fHO+VHiEhfp+y1IrJMRC52jrlWRFaJyDoR+VxEuoVcY66IfAbMF5GBIrLaqbFvEJF+5zVgSoUJTfBKdTx9sfP2Xw+8BnxpjBkEnACucZL0bOBGY8ww7OI9f26sQGOX1syjbp2EXwMLjF0nIRe41ynrQSDYXfA18FNjzBDgTeChkCKHAdcbY27Grs/+F2NMJnZ2sNBVupRSDdAmeqU6no+NMT4R2Qi4gU+c7Rux0/xehF0wY7GdRhs3dprgM3kRm6QXArcDdzqrco0C3nbKAohyXnsBbzmtA5HA7pCyPnCa4QFWAH9wFjt51xizo1l3q1QHpQleqY6nCsAYExARn6mbrzqA/ZsgwGZjTFZzCjXGfCMifURkLOA2xmwSkXig1Kl9n2428LQx5gMRyQb+GLKvMqTcN0RkFbZ14FMRmWaM+aI516ZUR6RN9Eqp020DUkQkC+zymWLXAW+K+diFgV4GMHYt7d0iMskpS0RksHNsF+CA8/7W0wsKEpEMYJcx5q/YVb0ua+b9KNUhaYJXSp3CGFMN3Ag8ISLrsStljWri6a8DidgkHzQZmOqUtRnb9w+2xv62iCwDihsp81fAJhHJBy7GfolQSp2BrianlDorIvIP4MPQx+RE5Ebs4LhbWugaCoDhxpjGviAo1SFpH7xS6mwdB/4kIsnGmLkiMhu4Grt+9nklIjHYwXcR2LEDSqnTaA1eKaWUCkPaB6+UUkqFIU3wSimlVBjSBK+UUkqFIU3wSimlVBjSBK+UUkqFIU3wSimlVBj6fwIE6QMrPGLOAAAAAElFTkSuQmCC\n", + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], "text/plain": [ - "<Figure size 576x576 with 1 Axes>" + "<IPython.core.display.Javascript object>" ] }, - "metadata": { - "needs_background": "light" + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -707,8 +3584,7 @@ "source": [ "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", "\n", - "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", - "#### Arman Davtyan: arman.davtyan@xfel.eu" + "#### Data Analysis group: da@xfel.eu" ] }, { @@ -736,7 +3612,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.6.13" } }, "nbformat": 4, diff --git a/Mixture Models.ipynb b/Mixture Models.ipynb index 75ef86e..6af39c1 100644 --- a/Mixture Models.ipynb +++ b/Mixture Models.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "id": "44ca341e", "metadata": {}, "outputs": [ @@ -30,20 +30,20 @@ "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: numpy in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.19.2)\n", - "Requirement already satisfied: scikit-learn in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (0.24.2)\n", - "Requirement already satisfied: pandas in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.3.0)\n", - "Requirement already satisfied: matplotlib in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (3.4.2)\n", - "Requirement already satisfied: joblib>=0.11 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (1.0.1)\n", - "Requirement already satisfied: scipy>=0.19.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (1.6.2)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (2.2.0)\n", - "Requirement already satisfied: python-dateutil>=2.7.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2.8.2)\n", - "Requirement already satisfied: pytz>=2017.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2021.1)\n", - "Requirement already satisfied: six>=1.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (1.3.1)\n", - "Requirement already satisfied: pillow>=6.2.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (8.3.1)\n", - "Requirement already satisfied: pyparsing>=2.2.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (2.4.7)\n", - "Requirement already satisfied: cycler>=0.10 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (0.10.0)\n" + "Requirement already satisfied: numpy in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.19.2)\n", + "Requirement already satisfied: scikit-learn in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (0.24.2)\n", + "Requirement already satisfied: pandas in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.1.5)\n", + "Requirement already satisfied: matplotlib in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (3.3.4)\n", + "Requirement already satisfied: scipy>=0.19.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (1.5.2)\n", + "Requirement already satisfied: joblib>=0.11 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (1.0.1)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (2.2.0)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.2 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2021.3)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (3.0.4)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (0.11.0)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (8.3.1)\n", + "Requirement already satisfied: six>=1.5 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n" ] } ], @@ -53,13 +53,14 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 2, "id": "300cf8d3", "metadata": {}, "outputs": [], "source": [ + "%matplotlib notebook\n", + "\n", "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", "\n", "import pandas as pd\n", "import numpy as np\n", @@ -77,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "4959a292", "metadata": {}, "outputs": [], @@ -94,7 +95,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "82929490", "metadata": {}, "outputs": [ @@ -102,7 +103,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages/ipykernel_launcher.py:6: RuntimeWarning: covariance is not positive-semidefinite.\n", + "/home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages/ipykernel_launcher.py:6: RuntimeWarning: covariance is not positive-semidefinite.\n", " \n" ] } @@ -131,7 +132,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "024fb65a", "metadata": {}, "outputs": [ @@ -164,32 +165,32 @@ " <tbody>\n", " <tr>\n", " <th>0</th>\n", - " <td>4.703667</td>\n", - " <td>-2.520675</td>\n", + " <td>5.653241</td>\n", + " <td>-1.382435</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", - " <td>5.725668</td>\n", - " <td>-1.535801</td>\n", + " <td>4.623728</td>\n", + " <td>-2.254146</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", - " <td>4.529343</td>\n", - " <td>-2.351627</td>\n", + " <td>5.313702</td>\n", + " <td>-1.596076</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", - " <td>5.457254</td>\n", - " <td>-1.345677</td>\n", + " <td>4.830723</td>\n", + " <td>-1.521429</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", - " <td>6.294784</td>\n", - " <td>-1.201564</td>\n", + " <td>4.716383</td>\n", + " <td>-1.686052</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", @@ -200,32 +201,32 @@ " </tr>\n", " <tr>\n", " <th>2995</th>\n", - " <td>-5.394441</td>\n", - " <td>-6.048515</td>\n", + " <td>-5.327421</td>\n", + " <td>-0.196162</td>\n", " <td>2.0</td>\n", " </tr>\n", " <tr>\n", " <th>2996</th>\n", - " <td>-5.993827</td>\n", - " <td>-2.207523</td>\n", + " <td>-6.919531</td>\n", + " <td>-1.834852</td>\n", " <td>2.0</td>\n", " </tr>\n", " <tr>\n", " <th>2997</th>\n", - " <td>-4.935977</td>\n", - " <td>-3.538230</td>\n", + " <td>-6.075992</td>\n", + " <td>-0.312784</td>\n", " <td>2.0</td>\n", " </tr>\n", " <tr>\n", " <th>2998</th>\n", - " <td>-3.583106</td>\n", - " <td>2.184044</td>\n", + " <td>-3.835365</td>\n", + " <td>5.404520</td>\n", " <td>2.0</td>\n", " </tr>\n", " <tr>\n", " <th>2999</th>\n", - " <td>-3.930869</td>\n", - " <td>-2.551996</td>\n", + " <td>-3.402078</td>\n", + " <td>-3.187637</td>\n", " <td>2.0</td>\n", " </tr>\n", " </tbody>\n", @@ -235,22 +236,22 @@ ], "text/plain": [ " x y source\n", - "0 4.703667 -2.520675 0.0\n", - "1 5.725668 -1.535801 0.0\n", - "2 4.529343 -2.351627 0.0\n", - "3 5.457254 -1.345677 0.0\n", - "4 6.294784 -1.201564 0.0\n", + "0 5.653241 -1.382435 0.0\n", + "1 4.623728 -2.254146 0.0\n", + "2 5.313702 -1.596076 0.0\n", + "3 4.830723 -1.521429 0.0\n", + "4 4.716383 -1.686052 0.0\n", "... ... ... ...\n", - "2995 -5.394441 -6.048515 2.0\n", - "2996 -5.993827 -2.207523 2.0\n", - "2997 -4.935977 -3.538230 2.0\n", - "2998 -3.583106 2.184044 2.0\n", - "2999 -3.930869 -2.551996 2.0\n", + "2995 -5.327421 -0.196162 2.0\n", + "2996 -6.919531 -1.834852 2.0\n", + "2997 -6.075992 -0.312784 2.0\n", + "2998 -3.835365 5.404520 2.0\n", + "2999 -3.402078 -3.187637 2.0\n", "\n", "[3000 rows x 3 columns]" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -269,20 +270,978 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "e63b38c5", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHkCAYAAADSPD2fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAD4N0lEQVR4nOyddZwd5fW4nzPX1y2uJIQIwUIIwQk0EByKW4uVFtpSKrTU4EfdW6xfrFjRBncI7g4JISHutu7X5/z+mLty9967ezfZzWY378PnfsjOvPPOmVk57znvEVFVDAaDwWAwDCysvhbAYDAYDAZDz2MUvMFgMBgMAxCj4A0Gg8FgGIAYBW8wGAwGwwDEKHiDwWAwGAYgRsEbDAaDwTAAMQreYDAYDIZuICKjROQ1EVksIl+KyA/SjBERuUFElovIAhGZ1u7cHBFZkjh3dW/JaRS8wWAwGAzdIwb8WFUnAzOB74rIlA5jjgEmJD6XAv8HICIu4ObE+SnA2Wmu7RGMgjcYDAaDoRuo6iZV/TTx7wZgMTCiw7CTgHvV4X2gSESGATOA5aq6UlUjwEOJsT2OUfAGg8FgMGwlIjIW2Af4oMOpEcC6dl+vTxzLdLzHcffGpH1NWVmZjh07tq/FMBgMBgPwySefVKrqoJ6e9+hZuVpVHe/paflkQfhLINTu0G2qelvHcSKSBzwKXKmq9R1Pp5laOzne4wxIBT927Fg+/vjjvhbDYDAYDICIrOmNeauq43z44ugen9c1bFlIVad3NkZEPDjK/X5VfSzNkPXAqHZfjwQ2At4Mx3sc46I3GAwGQ79EAbsX/usKERHgP8BiVf1HhmFPAd9IRNPPBOpUdRPwETBBRHYRES9wVmJsjzMgLXiDwWAw7Awoce1aIfcCBwHnA1+IyOeJY78ARgOo6i3Ac8CxwHKgGbgwcS4mIt8DXgRcwJ2q+mVvCGkUvMFgMBgM3UBV3yb9Xnr7MQp8N8O553AWAL2KUfAGg8Fg6Jc4LvpeiU8bEJg9eIPBYDAYBiDGgjcYDAZDvyWboLidFaPgDQaDwdAvUZS4Ghd9JoyL3mAwGAyGAYix4A0Gg8HQbzFBdpkxFrzBYDAYDAMQY8EbDAaDoV+iQNxY8BkxFrzBYDAYDAMQY8EbDAaDod9i9uAzYxS8wWAwGPolCiZNrhOMi95gMOwQxG2buG2KlhgMPYWx4A0GQ58St21+/drLzF20EICTJ03mj0cejdsy9oeha8ySMDPmN8hgMPQpt3/6MU8uWUxcnapkzy5byr8/er+vxdpmqoPNvLpqJR9uWG88E4Y+wVjwBoOhT3ljzSqCsVjr16FYjDfWrOaK/Q/sQ6m2jcWVFZz9yMPYKLYqewwewr0nn4bH5epr0QYUipo0uU4wFrzBYOhThucX4JK21touEYbn5/ehRNvOj196nvpImMZIhOZolAVbNrduQRh6EIV4L3wGCkbBGwyGPuWqAw+myB8gx+Mhx+OhwOfn6oMOy/r61bU1zN+ymeZotBel7B4bG+qTvg7GYqyrq+sjaQw7K8ZFbzAY+pShefnMO/8CXl+9ClU4fOwuFAcCXV6nqlz9yos8vXQJbsvCa7l48NQzmVBauh2k7pypg4bw4YZ1xBIpXAG3mz2HDu1jqQYeigmy6wxjwRsMhj6nyB/g5ElTOGXylKyUO8CLK5bz7LKlhGIxGiMRakJBvvf8070saXb88+hj2aW4BJ/LhduyOGePvZgzfkJfi2XYyTAWvMFg6JesqKkm1C44T4G1dbV9Jk97BuXm8sK536SiuYmA20O+z9fXIg1QhDjS9bCdFKPgDQZDvyIaj/Pa6pVUNDXidblalbwAY4uK+1a4dogIg3Pz+lqMAY0C9gAKiutpjII3GAz9hkg8zlmPPMzS6kpUlWg8jsey8Lnc+Nxubjrm+L4W0WDYYTAK3mAw9Bue+GoRS6oqkvLmSwI5/OfEU9i1pAS/29OH0vUcqsqGhnqaolHGFRWb/PlOMC76zBgFbzAY+g0Vzc2E4/GkYw2RMFMHD+kjiXoeW5UfvPAsL69cgcsSSgIBHj71LIb189oAhu2PiaI3GAz9hv2Gj8Dbzpp1WxbThg7vQ4l6nrmLFvLqqhWE4zGao1E2NTTwk3nP97VYOySKY8H39GegYBS8wWDoN8wYMZJfHHwYXpcLS4Spg4dw/Zzj+lqsHmVRRXnSFkRclaVVVX0o0Y6NrdLjn4GCcdEbDIZ+xXl77s25e+xF1LaTrPmBwsTSMgJud6uSt0QYV7zjZAcY+g/GgjcYDP0OERmQyh3gjN33YObIUQTcbvK8Xspycvjb7GP6WqwdEuOi7xxjwRsMBsMOhNuyuOOEU1haXUUwGnUses/AyA4wbF+MgjcYDIYdDBFhYmlZX4uxw6MIceOIzoh5MwaDwWAwDECMBW8wGAyGfstAinrvaYyCNxgMBkO/pCXIzpAeo+ANBsNOwfLqKt5cs5pcr5fjJ0wk1+vta5EMhl6lzxS8iEwEHm53aBxwjar+q92Yw4EngVWJQ4+p6m+2k4gGg2GA8O66tXzr6ceJq+IS4f8+/oCnzzrftHHt9whxNaFkmegzBa+qS4C9AUTEBWwAHk8z9C1VNS2iDIadgAVbNrO4soKxhUXsP3JUj837q9fmJVWH29zYyENfLuBb0/brsXsYDDsaO4qL/khghaqu6WtBDAZD33DbJx9x/QfvJr4STpuyO9cdfmS35miKRPjru2/xRfkWJpUN4mcHHUqBz0ddKJQ0LhKPU9nc3EOSG/oKBWyTDJaRHeXNnAU8mOHcASIyX0SeF5Hdt6dQBoNh+1AXCvH3994hGIslPlHmLlrI0qrKrOewVTn38bk89OUXfLZ5E48u/pKzHnmImG1z6Oix+NpVvvO73RwyemwvPIlhe2Mq2WWmzxW8iHiBE4G5aU5/CoxR1b2AG4EnOpnnUhH5WEQ+rqio6BVZDQZD71AdCuJxJf858lgWFc1NWc+xsqaaZVWVRBLtZCPxOGvr61hSWcHvjzyKw8bsgseyyPd6+fUhh3Pw6DE9+gwGw47GjuCiPwb4VFW3dDyhqvXt/v2ciPxbRMpUNWVZr6q3AbcBTJ8+XXtTYIPB0LOMyC/A73bTHI22HourMrF0UNZzdGZ35Xg83HL8SdsgoWFHRNUE2XXGjvBmziaDe15EhoqIJP49A0de0zfRYBhgeF0u/nvK6QzLy8MSodDn444TTqEsJ6fT66qDzby9dg2LK8rZpbiEiaWDWl3xPpeLsYVFTCzLfpFgMAwk+tSCF5EcYDbw7XbHvgOgqrcApwGXiUgMCAJnqaqxzg2GAcjkskG8c9G3CcdieF0uEmv7JJqjUf7+3tt8WVFOaSDAG6tX47KEmG1zzK678d9TTuMf77/DwvItTC4bxE8OPAS3lb0dE47FWFixBbflYuqgwbi6ca2hb7AH0J55T9OnCl5Vm4HSDsduaffvm4CbtrdcBoNh+6CqPLBwAS+vXM7g3Dyu3P9AhuXnpx1rq3LeY3NZXFlOOLHP3p6nln7F88uXEvB4uHL/Azlvz727JUtFUxOnzn2A2mAIG2VCSSkPnnoGfrfp5Laj4lSyM4uwTOwIe/AGg2EAs7aulge+WEA0HuekSZPZc8jQ1nN/ffdt7pn/KcFYDJcIL69cwUvnXUBpB9d83LZZVVvDkqqKtModIGbbxGybYCzGH95+g2F5+Rw5bnzWcl7z+stsbmgglnASflVZwf99/CE/nHnQVjy1wdD3GAVvMBh6jVW1NZz04H00RyPYwINfLuA/J5zCAaNGA3D3/E8JJQrQxFUJxqK8uGIZ5+yxFwDzN2/i288+SUVTE2U5udhZbtCFYjFeWL60Wwp+eXV1q3IHCMfjfFWZfZqeoS8wQXadYd6MwWDoNW775COaEsodHMX7l3ffaj1vdwipUXUUPUB9OMw3nniE8qYmFKhobiJmx/Em9sU9lpVx99UlQnEg0C1Zpw4ajKfdnrvf7Wbvdt4Gg6G/YRS8wWDoNZoiEToa3cF2qXCnTd6dgNtxJArgcVl8bRfH6l5enZow43e7mT1uV/YZOozTpkylME0teQEK/X5OmTSFV1at4PPNm+gqNtdWZe+hw8j1ePFYFl7Lxf4jRnHJtOndel7D9qWlkl1Pf7pCRO4UkXIRWZjh/FUi8nnis1BE4iJSkji3WkS+SJz7uGffSDLGRW8wGHqNUyZP4eVVK1rd8AG3m1MmT2k9//8OP5JBObm8vGoFZTm5/PKQw1qD7LwuV8p+e9S2+dWhsxiSl4eqMm/F8pR7Ds/L55rDj+D0Rx7CEiFuK7PG7sKNxxyfNjIf4IcvPsfLK5cTjMXwuVzsNWQY/znhZCwTRW9Iz904AeD3pjupqn8F/gogIicAP1TV6nZDZqWr59LTGAVvMBh6jVljx/H7I2Zz/QfvEo3bnD11Ty5t1+DFbVn8YOaB/GDmgUnXPb3kK3768otoYtPdY7lwW8JF++zLkLw8bFWueOEZqoKp9eRzvV5+/erLSUVzXl+zils/+Yg31qyiMRLhlElTuHDvaYgIGxvqeWnFstbFRDge54vyLSypqmTyoMG98VoMPUhct3+anKq+KSJjsxyesdZLb2MUvMFg6FVOmTSFUyZNSTpW2dzMdW+8yvLqKqYOHsKvD51FQcLdXt7UyM9eeZFwPNbuCuXmY0/i8LG7APD4V4t4bdXKFPe/JcKYoiKWr1qZdDwSj/PP998hajvRACtrqgnGonx3v5kEo1En372dt8BlCc2xKIYdG0V6K02urIP7/LZEtdRukaj1Mgf4XrvDCrwkIgrcujXzZotR8AaDYbsSjsU4be4DbGxoIGbbrKypYcGWzQzJy2NtbS2jCgtxd3Cle11uwvEYp/3vAdbX1xNNpMN1JMfjYVxxCV9VVLCuobXSNXHbTloMBGMx7lswn+/uN5MxRcWU5eSwob6euCqWCAG3h8llbdb7oopybv/kI8LxOGdP3ZNDxozt6ddi2LGoVNWeCMA4AXing3v+IFXdKCKDgXki8pWqvtkD90rBKHiDoQ9wgr7CiPj7WpQuids2N3/0Ps8vX0aR38+Ju01CRNittIxpw4ZnPY+qsrGxga8qKqhqDhJLWNNRO86y6ipW1FRjq7KhoT4luj4aj/OzeS/SEAmnWO0tWCKEo1Fu/eSjrORxJRYRbsvi4VPP4qqXX+CrygrGFZXw19lzyPE4BW4WV5Rz+twHWxcUr69Zxb+OPpajxk/I+tkNvYe9Y6fJpXRKVdWNif+Xi8jjwAzAKHiDYSCgkU/QmstB61CrBCm+FfHs0ddiZeQPb7/BQwsXtCq4Dzasx+9yIwKXTd+f782Y2eUcTZEI33jiERZXVhC37dZUuPa0KPWWcx4R/B4vUTvOeXvsxUMLv8io3FuutzOcS+fKv3TftliAIXl53HvyaYRjMT7YsJ6l1ZUU+v0U+Hzc9fmnSd6CUCzGjR++bxS8oVNEpBA4DDiv3bFcwFLVhsS/jwJ+01syGAVvMGxH1K5Day4BTbRBtSvR6gth8FuIdC9ve3sxd9HCFHd4KLE/fuOH73H21D1TKs+1UBsK8sRXi3lyyWIWVZS37oELjgUdV8VjWa3H23P6lD04cdJkxhYVsaSqkgcXLuixZ7IQGiJhYrbNV5UVWCIMz8vn9EceYnNjAyKCz+XmiTPPTStbeVMTS6oqmVha1mMyGbpPX5WqFZEHgcNx9urXA9cCHkgqt34K8JKqtu95PAR4PJHN4QYeUNUXektOo+ANhu1JbAWp5SdsiK0Bz6S+kKhLXJL5D2jUtnlp5XLOnrpnyrmq5mbm3H83deFwqzu+BcVJZ9u1tJSpgwZzyycfpSjSTU2NbGxowBJh5ohRjC0qZnl1VcZStd0hpjZfbNnC8Q/+l/X1dQAE3B7qw6FWOYIS5drXX+HSfffjxRXLWlP9AKqbmznl4fv585FH43W7yPF4OGDk6G41tjFsO4r0VRT92VmMuRsnna79sZXAXr0jVSpGwRsM2xOrDDSSfEwjYJWmH78DcNn0GVz/wbtpg9oAbvnog7QK/o9vv0FVMJj2Gq/l4qhdJ/DLQw4HYE1dHc8sW9LqpneL8NaaVXy4YR22wulTdufmY0/gns8/pT4SwSXCippq1tfXUdXcnFRitiMBl4tgmkXBpoYGVtXUELWdc+3T6sDZKlhTV8uMESO55biT+NVr89hQX5+wGpV4LMaVLz5LrseLoowvKeXhU8/E5zZ/Vg07BuYn0WDYjoh7NJrzDQje17YxnPdtxLXj9iy/dN/9GJKXx3PLlrK0qpI1dbVJ5+si4bTXPb98adrjuR4PIwsK+cH+bbnvvztiNuXNTXy4fh0KrQo7llC6/13wOfcu+ByPWIgAIlgiCJDn9dEUjRCzbUQkKUBvfHEJvzn8SC595gma2ilwS4RIPNaq3DOxx+AhABw6ZiynTd6d6z94L+m8Ao1RZ8G2tLKSBxYu4MK9p3U6p6Fnyaby3M6KUfAGw3bGKrgK9R8BsVXgnoB4t5vHbqs5aeJkTpo4mffWreXipx9vdVd7XS4OGT0m7TWhWKrynFhaxm9nfY29hgzF43K1Hs/xePju9P35dOMGImn2vFtUdlTtlIg5EeHGOcfzh7ffYG3C3d5CVbCZQr8/JSrfLRZTBg9mVW0tkQxKXoCAx8Nlzz7JbqVlzBgxAp/bneSqT3reeIx1HRY/LcRsm+eXL6WiqYl9hw1nr6HD0o4zGHoSo+ANhj5AvPuCd9++FqPbHDBqNNceegR/ePsNQrEoh4wey5+OPDrt2AmlJSyrqmrVxy4RfnXo4UwfPiJp3N2ff8of334jbTBbNqgqzy9fyroOyh1gStlgNtTXMTy/gHX1dUTjcfxuD2fsPpUfH3Awy6qrWVFdjaKEY7GktYMgPLb4S8LxOK+vXsXba9dw3eFH8vu3XicYjVLg81EfDrfKHXC7U54NnDTD8x+fyxflW4jFbSxL+H+HHcEZu++4mRP9Bac5kbHgM2EUvMFg6BZnTt2DM6d2rZxuO/5kznnsf1QHg8Rtmx/OPIiDRiVb+++tW8tf331rq5U7OEVrnl76VdpUuLFFRVz54vMEY1G8louxRcXM2XUCRT4/n2/exBNnnsvKmmoEWFFTzZUvPoeVcPPHbTupfO2Sqkomlw3i8287RclqgkEuePJRvqqsQIHz9tybY3bdLUW+11ev4ovyLW17/DZc+/ornD5lasba+IZsEeyMPQUNRsEbDIat5s01q7n29VdoCIeZtcs4fjvrSPxup0DM6MIi3vjmJZQ3NVHg85Hr9fL++nXcu+AzXCJcvM90Xko0eNkWrA777i3sOXgIcxctbF08ROw4a+tqufOzT4jbiqIMzcvn5EmT+d5+MxlfUsrH37qcLU2NhKJRTpv7YNLCQxCi7YL1igMBnjjzXOrCIfxud+tzd6Q6lBpoGLVtIvG4Ccgz9Crmp8tgGCDEbZumaJR8r3e7WIaLK8r5zrNPtu5JP7P0K2LxOP+ccxzr6+v45avzWFNby15Dh/LbWV/jrbWr+fYzbeNfWL6s08I12ZLpSa868BAuefrxJCUdVyXeTklvaKjnjk8/Zv7mzdxz8qnkeDzsUlRM3LYZXVjEyppqoraNW4TigJ8pHZrPiAhF/s7rF+w7bHjSAsQlwqSyQUa59wCKcdF3hvkJMxgGAE8tWczPXn6RuCpD8/K45+TT2KWouFfv+dLK5UkBZ+F4nHmrVtAYiXDq/x6kOthMXJXNjY2srq3F3yFALV01u+7iEsFtWUlKG2DakGEE3G7KcnLZ2FDf6b3C8TgfbVzPpsYGhucXOPNaFg+deibXvP4KX5ZvYUJpKb85/GtbpZTHFZdw87EncNW8F6gLhdhjyFBuOe7Ebs9jMHQXo+ANhn7Osqoqrn7lpdb94g319Vz4xKO8fsElvXrfZ5cuSTnmsSw+37yJYCzaqlQjdpylVZWMLy7p0ftbIuR5vRT6/WxqaCBqO7uxCiypruTcx+dy2pSpfFG+haWVlQzJy2NTY0PaKPhIPM7NH37A5TP2Z0RCyRf6/Vw/57gekXXW2HF8/K3Le2QuQzJ9Ucmuv2DejGG7ofHNaPh9NLaur0UZUHxRvhmrnUtecVzPHQu3pENVWV9fx5KqyqT95fbYqmnnWllTnXJsxvCRvLtubcpctmq33PHZVIQbV1TMlfsfyBNnnMsZu+/B9GHDW7cmmqJRgrEYcxct5B9HHcPCy6/glW9cxJSy9PUGFHjwywXM/u9drK6tAZzCNwvLt7ChXVc6g6E/YSx4w3bBDj4HdVeDeEAjaP6PsXIv6GuxBgRD8vJSjnlcLgJduJNtVX7wwjO8vHIlLksoCQR4+NSzGJaf3zrmia8WcfUrLxGNxykN5HDXSV9n90TxFxFx8pTa8dqaVby9bg2RdgreEmH6sBHM37Ip62eK2TYHjxzNJ5s3Eo7FUprItES9//Xdt/ls8yb+NnsOr6xawYIXn0u6t8ey2NLYyNjEdkVXi4xQLMYNH7zHt6ZN59zH5hJTm2g8znl77t1adc+w46AIdh+Uqu0vGAve0Ouo3Qh1PwNCoA1AGBr+jsbW9rVoA4IDR47miLHjyPF4yPV48Lvd/GP2MV0G2s1dtJBXV60kHI/RHI2yqaGBn8x7vvX84soKrn7lJSLxOApUBps5+eH7qWxuBsBKU6M+lujT3l6R2qp8tmUTbsuVMr4zKoNOS9mWuVoa1ICjqBVojkV5cfkyjrj3Tr7//DNJyh0cKzzP5+XJrxax/x23sKiivMukqupgkG8/+yS14RCNkQjheJwHv1jA22vXdEt+w/YhjtXjn4GCseANvY9dDuJKNp/EA/F14B7dZ2INFESE6+ccxwcb1rOlqZE9Bg9hXBb73YsqyjukqMUptT5Bgzngnc6CzeUprva4Krd98iG/OORwynJy2NTYkJWMoViMkrwA9RnK2qbjq6qKpK8VJ1Wtox0etuOsz+BGj6tyxtyHiNl2cic7gEQ3u/YIcOLESVw174UO89gsr67i4AxV+wyGHZGBs1Qx7Li40pTl1Bi4x29/WQYoIsLMkaM4aeLkrJQ7OGVj/Qk3vseK8+Csp/jjfs+idb9GK+cwPj+9h6U66Fjwf5l9NAG3m4DbTY7HQ4HPh7sT+3hjJ4uBbJ2sMe1+QZxgLJaUKqeAWBbLvv8jfn/E7Nb4BQv41r7TOWXSlNZo+hYssXo8SNCw7Shgq9Xjn4GCseANvY5IAIpuRmu/C4ij3At+h7iG9rVoOzXThg4nnlB8J49ZxqSiKgKuGBABhWk5/2JkwVlJJWA9lsXR451qbdOHjeDmY09kZXUVwwoK2H/4SC55+nE+37K5W3JMHzacIn+Al1et6LFn64qYbfNVRTlnT92TUyfvTn04TGkg0Lqt8X/Hncj5j88lrko0HufM3adyyJix200+g6EnMAresF0Q30Ew6F2wN4I1BLHyu77I0GO8vXYN765bS1lODmdN3ZMcj4crXnym1bIdGmjE7+qQPmZX8tJ5F3DpM0/w/vp1eF0ufnzAwcwevytfbNnMWY8+TCQex1Zlctkgxsyew19nz+GEh+7L2JAlHXXhMHv3QfOVU/73ADceczwzR45mZU01L62o4qYP36c2HGKvIUN54qzzqA2FKPEHGFVYuN3lM2SDEDelajNiFLyh11C7FmIrwRqEuEchVg5Yu/a1WDsd9y34nD++/QbBWAyfy8UDC+fzzNnns66uzTL/rGoIobibHLejmKO2YLt3J+B2c8/JpyXNp6qc/shDSQFtiyorOP7B/zJr7C7sNWQoH2/ckHUhm+XVVfxo5oHc8dknPfC0jqs9nSO/4/FwPM4PX3wOn9tNOBZLaif7yaaNXPH8Mzx51nk9IpOhd2hx0RvSY96MoVfQyEdoxSy05lto5bHYDf/sa5F2Wv70zputwXTheJzNDY28sHwZYwqLWm2ft7eM4qYvpxG1hagtLK0rJZr3l7TzfVlRnhKt3sIbq1dRHQxS4PVlLZ8l0un+fHfxulLtFjcwbdiI1ij8FpqiUWqCwSTlDo4L/8uKckKxrmsJGAw7KkbBG3ocVUVrLgNtakuLa7objczva9F2OlSdNqjtidlxFldWcOHe0yj0+fAkisrctmQf9nj0Yg56+hIe3fI7CnJSW58CxDIod3As5NW1NdSEQ1nLGFflt2++nvX4rki3+IgB39tv/6Qe9JYILpGMufEukbSLBcOORTzhpu/Jz0DBKHhDz6NNoM3Jx0Qgvqpv5NkB0egS7KozsMsPx669GrWbu75oKxARDh49Bm+7HPSYKv9d8Dm/f/sNgtFYIvWsBQ8HjJ7EtYfNyjjnpEGDKPb7M57fltavPYGdQWX/8tV5lPgDuFty6dUpCGR1sOoF8Lvd/Pzgw1LOGQz9CbM8NfQ8kguSD1rTdkxtcJv9dwCNb0GrzwZtdA6EnkXtSqTkjl65343HnMBP573Ae+vX4bYsGiPhjEFwMbVZVVvbGk0et20WVpQTiceYOmgIAY8Hv9vDE2eexzefeITVdbW9InNvsCGxDSCJj6KEYjEECLjdxFXZc8hQDhs9lunDR7D/yFF9Ka4hC1TF7MF3glHwhh5HRKD4NrTmIsAGjULedxHP1L4Wbccg8h4dwr0g8jaqEUS8PX67PK+Xfye6l93wwXtc/8G7GccKUBpw2p+GYzHOfex/fFVViQD5Xh+PnXkOQ/PyGVVYyOSyQf1KwbfQ0b7P8Xj41SGzmLXLLgzOTS37a9ixMe1iM2MUvKFXEO9eMOhNiK8FqwxxpW/ysVMi6QLQLBL11XoNVeWTTRuSCwri7EW7LSvhsrb4+cGHAXD7px+xsHwLkYTLvSka5eSH76cxEiEaj1Pgy+ym7wkmlZaxrLqqR9rKdoatyq6lJUa5GwYcRsEbeg2xcsGa3Ndi7Hj4DgdrEMQ3AlEgADnfQKR3Ffy/PniXtzrUUxfgsTPP4ZONG/l000Y2Nzbyj/fe4eDRY3h33bpW5d5CeVNT679rQsFelXdZVSWPn3EuJ/3v/m51ousKlzhRB7HEwiEUi/HMkiUs2LKFmSNGMnnQ4B68m6E3UcAeQEFxPY1R8AbDdkYkAKWPoU13gr0R8R4E/hN6/b6PLV6UcswGxhWV8MH69byyakVrOt3Lq1Z02bLV7mXLOo7TnW5iaRlfVVX2yJwWgs/lJtgu/U2BexZ8htdyYVnCP48+lqPHT+iR+xkMfYnZvDAY+gCx8rHyf4BV+GckcGKXnd96glyPJ1UOwOd2c9unH3VoPOPkgndFsd+P19V7nodgLMqFe0/rsflslOZYNK1HIGLHCcVi/PKVeT12P0NvI8TV6vHPQGHgPInBYOiU62YdidXBnfmtfaa37r93BwFy3B7+77iT2Hfo8J4TsgOvrV7Jr157udfmT0ddN3L4DYYdGaPgDYZ+jqqiWWjo/UeM4m+zj261uHM9Xmbv6qQufmPPvQm4s9uxc4vFuXvsxbPnnM9NH77P+xvWbb3wXbCkqmq759XndaMKn6FvcUrVSo9/BgpmD95g6KeoKv98/11u//RjbLU5ceIk/nDEUUnV2toTjEa57s3XWyu9NUUjXPDEY7x94bf43oyZ5Pt8PLb4S1bUVKe469tT5Pfxi4MP42evvMTb69ZkHNdf2XuI6XLYn4gbOzUj5s0YDP2URxZ/yX8++5hw3Ol3/uyypfzj/Xcyjl9TV5uyr26rzbvr1/LBhvV8sGEdIwsL8XVhyTdGIvzp3bd4acWyHnmO3sTrcnHYmLFZx1kH3G6unHlgr8pkMGwvjAVvMPRTXl65IsnSDsVivLpqJSdPmsJji75EBE6fMpXxJaUAlAZyiNrJddqDsRhXvvAsqtqaNtYVoXichxcuINxJTfodBb/LzW8OO5IzH32YzU2NnY4t8vn57ymnsfvgIdtJOsO2ogwsl3pPYyx4g6GfMiQ3N6k7WksN9a8/fD+3f/Yxt3/6MSc9fD+LKysAGJSby+XT98ffwYUfte2slXsL/UG5A9RHwlzyzBPcc/JpDMnNxetypXSUa6E5FjXK3TCgMAreYOinfH/GART7AwTcbvxuNzkeLx7L1WrVK9AcjXLjB++1u2YmVx90GL5eTG3bVjxd5N93l2XVVYwpKuLdi77Nk2eem3H+4Xn5PXpfw/bBxurxz0DBuOgNhn7KoNxcXjr/Al5cvoyobXPELuO44oVnU8Y1RiIAVDY3c/7jc1lZU93tyHSP5STYdaxs1xv0dNS8kJBfhC1NTXhcLkIdPBB5Xi83HnN8j97X0PuoQty46DNiFLzB0I8p8gc4c+qerV+fNnl3FleUt1rxAbebU6fsDsCPXnqO5VtZ2z1m24wpLOqXzWXclsVxD9zLAaNGc8qkKWm3F+488RSmDBrMhxvWs6WpkamDh7BLUXEfSGsw9BxGwRsMA4gzd9+D5miUOz//BEH49r77cdJEpx/AF1u2bHXjFgVGFhT0SwUftW2+qqpkdV0t6+rqKPT5qWhuq6kvwONfLeb+L+Yzb+UKBIir8vfZczhmwsQ+k9uQHSbILjNGwRsMAwgR4aJ99uWiffZNOTckLy+lSptbBBHJyi3+yaaNPSZnTzJ73HjeX7+OhsRWRCZCsRivrV5JaSAn6bgCq2trmL95M83tatT/eN4LHL3rbljboYywwdAbDJxoAoPBwMqaak773wPMvOMWLn36CaqDza3nDho5OmW8x+Xi/x12JP52ue+ZFFpnxW/6CrcIV+5/IKEsZbNVqWr3TsDJPJhcNoiOjx2N2zRHoxh2XJw0OavHPwMFY8EbDDsY1cFmPtywAb/bzYGjRmfdzKU+HOK0uQ9SFwqhwBtrVnHG3IfI9XhZV19HQyScNF6A6cNHcNT48YwpKuK6N16lIRxmn2HD+HD9eqp6uR1sTxBX5a7PP806ME8T17QgwOmTp3LW1D15YOGCpOND8/LI83p7VmBDjxM37WIz0qcKXkRWAw04nSFjqjq9w3kBrgeOBZqBC1T10+0t50BH45vRumsgvgLcU5DC6xCrpK/FyhqnDnsUkf7/x3h5dRWnz32QuK0oyqiCQh454xxy0nSC68hnmzYRs+3WTmlR22ZlbU3G8Qp8snEDB911O1fMOIAXz7uAiuYmjrjnTpqinbu7dxRyPB7eWLMq67GhaBS7w7HpI0awa0kpfzryKH728ovEVRmcm8s9J5/aO0IbDNuJHcGCn6WqmZo9HwNMSHz2B/4v8X9DD6EaQqvOBLsciEN8M1q9EkqfQmTHzZVuQcOvo7U/Bm1EXWOQ4tsR95i+Fmur+fkrL1EfDrcq6VW1Ndz12Sd8d8bMLq8NeDxZNZ1pT3PCtf23997m7vmfcsz4CSmu6h2ZcCxGU5Zu9CtmHMDra1bx6caNRGzH7rNEmDliFAAnTpzMcRMm0hSNkO/1bZcWvoZto6XZjCE9O/pmw0nAverwPlAkIsP6WqgBRXQRaD2OEwUgCrH1EF/bl1JlhcbWozVXgDYACvE1aPUF3VZyOwqqyrLqqqRe5eF4nLX1dVldv++w4exWWtZaxMYS6dYveGVzM/d9Mb81b74/0J0KfK+uWsFtx5/MMRMmMDQvj72HDuPh085iUG5u6xiXZVHg8xvlbhgQ9LUFr8BLIqLArap6W4fzI4D2vSjXJ45t2k7yDXzEC3T8I2knju/gxL4AcbUTX8GuAK0B6T9bDC38++MPaOqgXP0uN/uPGJnV9S7L4r5TTueY++9hQ319616zhWCnfI/T0z+XRtlh4xS0+efRx/W1KIYeQwZUUFxP09dv5iBVnYbjiv+uiBza4Xy6ZXTav0EicqmIfCwiH1dUVPS0nAMX92RwTwL8iQN+8B0M1vBev7XGK7Ab/o5ddw0afrv7E1hlpP44KEj/LDn6n88+SclTnzJoEKdMmpL1HMuqq6gMNhNv/14ETp44mULfztvn3O92c0ma1EGDYSDTpwpeVTcm/l8OPA7M6DBkPTCq3dcjgbTJuKp6m6pOV9XpgwYN6g1xByQiLqTkHsi7DPzHQt6VSNGNve6i1HgVWnkCNP0Hgg+hNZdjNz/WvUk808F7GEgOEAD8UHANIl0HpO2I2B2Uu0uEI3cZ363vRSgWS0lz87lc/GD/A7lhzvH43W7cO5H72RJhyqBB/OvoYzlq/IS+FsfQC9hIj38GCn2m4EUkV8QxtUQkFzgKWNhh2FPAN8RhJlCnqsY938OI+LDyLsMq+hdW3kWIbIedm9ATib3zlvzlEDT+vVtTiAhS9C+k6Aak4BdI6UNYOWf2tKTbhTs/+yTVPe92c9xu3auktvugwQTcnlYl77YshucXMLKggEPGjOWZs8/nvD337imxd3h8Lhe/mzXbKPcBSkst+p7+dIWI3Cki5SLSUWe1nD9cROpE5PPE55p25+aIyBIRWS4iV/fg60ihLy34IcDbIjIf+BB4VlVfEJHviMh3EmOeA1YCy4Hbgcv7RlRDT6N2M22BfS0Hux/cJSKI71Ak50zEk70re0diWVUVf3vv7ST3vEuEh087i9GFRd2aK9fr5ZHTz2a/4SMYnJvLIaPH8MCpZ+BKdFAbV1yCx8rcMrUjE0vLyO/HueDBWIzzHp/LpoaGrZ5jY0M9K2uqiW2HRjuGfsPdwJwuxrylqnsnPr8BECc16WacbekpwNki0mt/uPosyE5VVwJ7pTl+S7t/K/Dd7SmXYfsg/q+hTbcDLaVT/eDfOYOfVtRU4+7QwtRtWZTl5GS4Ij1Lqip5YflSfC431885jsG5eUnn19bV8pd33uL55UuzCqazgKPHT+CE3SZx3AP3bJdOcr3FBxvWcXI3YhkA4rbND154lldWrcBlWQzNzeOh087q9vfF0Lv0RZCdqr4pImO34tIZwPKE/kNEHsLJFlvUg+K10tdBdoadFPFMRopvAfduYA2DnLORgl/2tVh9wi7FxSnWoduyKAlkr0g+2rierz98Pzd+8D7/eP8d5tx3T5LVWtHcxEkP3ccLK5ZlHSlvAx+sW8vR993Vr5U7kFWhoI48tHABr61eSTgepzkaZW19HT9/5cVekM4wQDlAROaLyPMisnviWKbMsF6hr9PkDDsx4jsQ8T3T12JkhaqCNoHk9ngA4sTSMq6YMZPrP3gPr8tFXJV/H3diilXfGb9/643WWvG2rdSGQxz53zvZfdBg/jp7Du+sW0s4Fk8J5OuKDzZt6Nb4HQ2fy8XogkIOG7NLVuPDsRhuy8JlWSwo35xUfz9m23xZUd5bohq2AqcWfa8ExZWJyMftvr4tTRp3Z3wKjFHVRhE5FngCp2Bb1plhPYFR8IYdFo2tgfh6cI9HXEP7To7IR2jN5aCNIAVQfCvi3btH7/Gd6ftz4sTJbG5sZFxxMUX+QLeubwiHU46FYjE+27yJ0+Y+yOXTd74CkLkeD5dOm86Fe++Lz935n7qGcJhLn3mSjzauxxLh8un7s1vpIPwuN6G4o+RdIowr6n/1FQY6vRT1XtmxdHp3UNX6dv9+TkT+LSJldCMzrCcwLnrDDondeDtaeTxaewVacRR28Lk+kUPterTmUtA6IA5ag9ZcjNpNXV7bXYbnFzBt2PBuK3eAYyfsRiCNErNVicbjDMvLx+ve8UsP9yRN0Sj//OA99rntZv75/judjv35qy/x2eaN2KrEbJvbP/2IIblOtbuA20Oe10tZTi5//trR20l6Q39GRIYmeqkgIjNwdG0V8BEwQUR2Ead5xlk42WK9grHgDTscGlsNjTcAYdCEZVr3M9R3GGLldnZpzxNbSapXzYb4GrB2nKj9K/c/kGA0yiOLv6S+gzUfV2V4fj5PnHEuR/73ziR/oM/l4pDRY3lt9cqUIjsDhbgqd3z6MZPKBnHMrrslnYvZNjXBIB9uWE8k3pbVEYzF+Gjjeu77+uksrignFI8xpWwwga3Yyzf0Hn1Vi15EHgQOx3HlrweuBTzQGih+GnCZiMSAIHBWImg8JiLfA14EXMCdqvplb8lpFLyhlZYa7n1ehzu+3imVq+0VVRhtugfJ386ZklYZaIdmJhpNVNHbPgSjUW748D0WVZQzddAQvr//TPzuZEXjsix+degsfnXoLK6a9zzPLVtKMBbD73az5+Ch7DFkKG+tWZ2y2ReOx3m9Hyl3S6TbcQTgKOz31q1LUvDvrFvDd555ipgdJxpPTtn0ulwMz8/HEmH3wUO2WW7DwEJVz+7i/E3ATRnOPYeTAt7rGAVvQNVGG/4MzfcDigZOQQqu67tucu5xqUoVoOkW1DsF8R2+3UQR90g092JougtEQG3IuwxxDd4u94/bNuc+NpfFleWE43E+3LCeDzeu5+HTzkqpWNfCn782h/1HjGLBli3sWlLC2VP3xBLh3vmfpR3fnYYtfYkAc8bvynPLl3X7Wl9CYbdQFwrx7WeepLlDJ7ocjwfB2S45f899tlFiw/bA1KLPjFHwBrT5v9D8EJAoNBN8CnUNRfK+t23zxpZD5EMnMM1/VNb92sU1HC38PdT9uMOZEBp6ebsqeAAr/0rUNwviK8G9K+LZY7vd++NNG1qVOzgW96KKclbVVDO+pDS9vCKcNmUqp02ZmnR8RW11r8vbmyhQ3tSE0HXYsduysG3F53YhIozIL+Abe7Up7FW1NSkLpByPh0un7cfEsjIOH7NLl4F5hh0A7bUo+gGB+Qk2QPg1nG2iFkIQeg22QcFr+E20puV6C5puh9K5WSt5K3ACdtOtEFva7qgbrKKtlmlbEO9epKnL1Ku8sHwpP3zxuVbl3iqLSLdc6qrKfxd8zuZtqOa2o/Dxpq4DjgU4e+qeXDZ9Bu+vX0fA40lR2EPz8lLc8nHb5qype6QUCDIY+ivGt2EAawjJPwoWuLatYY/W/QKnSl0IaIbYagg+2a05pOAanC53LsALViGSc8E2ydVfqA+H+NFLz6cod7dYjC4oZHxxarpWXSjE4opy6sOhpON/e+9t/vzOm/2+WE1ntFjjAgQ8Hr651z4Mzcvn5ElTOHr8hBRrfGhePlfOPBC/202e14vf7ebHBxxslHs/QzHNZjrDWPAGJP9KNPw6aAin3aoHyd/GHgh2fYcDEbCruieXdwaUzoXwqyB+CJyEWDtHHvKG+nrckrz+tkQ4ePRo/jXnuNba8i08u2wJV817AbdYxNXmn+26p90z/7Okgi0DkdEFhew5ZAhr6uoAuPHD9/nJgQczIr8g4zXf3ncGh48dx8qaasYVlzCxdPsFThoM2wOj4A2IaxgMeh5CrwA2+GZtexCZdzpEPgBagpg84O3YDTgL2TwTwZO+o5pqCMJvOdH23pmIa+D8gR6eX0BMky1ur+XiT187mgKfP+l4ZXMzV817gVA7Jf7DF5/jnYsupcgf2Kqo877EwimTmy0Bt5tz99ybdXV1zFu5gmAsxhflW3hzzWrmnX9BpyV/J5aWGcXezzF78JkxLnoDAGKVIDmnO13ZeiBCXIr+AZ59AMvp115wLeKdtu2CJlC7Ea08Ca29Cq37NVp5tBPUN0Ao9Pv52+w5rS5kn8vFb2YdmdaFvK6uFk8Hi95lWayvr+fTTRtT9pp3dLqj3MsCOVw2fQYX7rUPDy6c31auV5VQLMrLK1d0+/6ramv4ZNOGlHoCBkN/w1jwhl5BrCKk9D5UbUR6fh2pTXdCfAOtkf8qaN2vkNKHevxefcWxEyay/4hRrKuvY0RBAYNy0hf5GVlQSDSerBZjcZvh+fmc9/gj/SbHfWv44JLvICKoakpkfVyVV1etJMfj4dgJEzOmFbagqvz6tZd57KtFeCwLQbjv66cz1eTB77D0VaGb/oKx4A29Sm8odyBZuQOgEN/SO/fqQ0pzcth76LCMyh1gUG4u1806Er/LTZ7Hg8eyOHuPPfG53FQHm7ejtNuXIp+/tSiTiHD6lKmt5XoFiMTjzFu5nKtffonvPfc0i8rLeWTRQt5fv661qFN73lyzmieWLCYUi9EQiVAfCXPZs71WRdTQQ9iJVLme/AwUjAVv6J94Z0LoBdrS+7xbtcc/UDh9ylQmlQ7im08+gg3878uFvLB8GTOGj+SlFcsGZAT9xdP2Tfr6N4cfyfD8fOatWM4X5c5iT4HmhKv+tdUrneBEhRMmTuKPRx6VdP3K2pqUtr2bGhtQ1b6v7mgwbAXGgjf0SyRwMuSchZNC5wLv9ERa3c7LbZ9+REM4THM0SlM0wubGBjY2NHDELuO6dE/vKOR5vWmTlLyu5KqKPpeLr0/aPemYy7K4fPr+jCsuTnHXx9Ru7eveHIvy1JLFrYuAFiaUlOLq8J5GFRQa5b4D09Iu1ljw6TEK3tAvERGsgp8jQxYgQz7DKrl7+zei2QGoDjbz7NIlXPnCs7y8cnnSfrsCn2/eSDAaY2xhEZNLy/B2o8d8OvxuNz+YccA2Sp2ZpkiEEfkFeK02hR5we7hy/wMp8PkQwCUW/+/wI1heU8Xf3n2be+d/RjgRXPf4V4t4IYtStm7LoryxMenYwaPHcP6e++B1ucj1eCn2B7jl+JN69PkMhu2JcdEb+jUiHhJNnHY6lldXcfrcB2mORolmcMHbwBtrV7d+LcDpk6bw1LIlKUV0skGAZ5Z9tVXyZoMC6xvqnb30xCPNHDGCF5YvaY1qj6vNta+9gogQjsexgJs+ep9Xzr+QjzZuIJTFc8VsmymDUrNFrj74UC7cexo1oSBji4pSmvoYdjwGUmGansZY8Ia0aOhl7C0zsDdPxq46C413r0hNX6Dh97DLD8bePAW78jQ0vrmvRepVfvHqPOrD4YzKPR0KzP1qEYLgd3W/mVAwFmNFTU23r9ua+7Tw5to1LCgvTzofse3WBYqNUwvgkLtuZ3h+Pr4univH7eHfx57IsHbNZ9ozJC+PSWWDjHLvD6gJsusMo+ANKWh0KVr7I9BaIA7RBWjtZX0tVqdofANa8x2wy4EYxBaiNRf1tVi9yqaG+i6brmQiFI9lZeluDV0p2O6SbZpffSRCzI6zW2kZuR5Pa0R9e/wuF0+ceQ6Hjd2lR2U0GHZEjIvekEr04w4HYo6SzzKnXePlEPkIFT9El0H4eaeOfP5VvdeJLfIZyetVG2KrUbsRNAjxdeAaud3avG4Ppg8fyealX6UowDyPhz2GDCUYjbK5sZHNTY0ZZugdbFWmDxtOdTDI2vq6lMj0Fiwcj0JPZumvravnkdPP5qONG2iKRrjhg/dYXl1FOB7H53Kx++AhjMvQhc/Q/zB58J1jFLwhFasYxEr+yyuB7JR7dBFafR6goBEgRstEWn0elD6GuMf3kszaQVsIGpoH9deCuEGjaMH/w8o5tefv3wd8d7/9eXLJ4qRjFvDv40/i4FFjAAjFopwx92EWVmy/GgFxVUYVFjJ/y+Yk5W4BE0pLWVLlbPfYODkQPelHeGbpVwzPy+eqgw4B4KBRY7j+/XdZVFnOHoOHcsX+M/tNRoHBsK0YBW9Ixfc1cN8N0SU4CtqC/OuyulTrfgGawWLUMBp8Hsnftj7zafEeAJ69IPI5jswup91t/TVAuE3x1/8/1HcokqFbnmoQmueidjninYn4Du55WXsAW5XLn0stwpLr9bYWcWkIh3l++VIOGj2adfW1NEWjGa3pnkRVeeKrxSmWuQ0sq07uSZ9JuQfcbs7bc2/u+vzTbskcV+Xu+Z8xfcQIZo0dR47Hw88POaxb8hv6F8aCz4xR8IYURDxQch+EXnQ6wHmnI57du74QwO7MUrRAenZ/tgURC4rvhNDzjgyevUBy0KZbnGY0rbghvj5tO1zVMFp1GsTWAmG06b9o/o+wcr/ZKzJvLRsa6llcXs76ROe09kTicSaWllEbCnLcA/+lNhTc7p3kOnO5Z9P4xmNZ3P/1M9h76DAWV1bw9to1Gcf6XG5AkzICwrEYX5aXM2vsuG5IbeiPtOTBG9JjFLwhLSIeCBzf/Qs90yD8Om1d5FqwHDd/oPfyikVcSTKrXQfaUbk1ofFNCPukThCalyiB27IgCELD39Ccb2zXYieqigYfd9rkWkOQvMsQVxmqyjWvv8IjixZiiZU2SO7qgw9jcG4ef3/vbSqbm7oVYZ8tLpFtqm/fWbc4r8vFpdP2Y++hwwC4/ujjuOipx5i/JTkjQnAWEuOLi2mMRFhb37bY8bndjCos3Gr5DIaBgomiN/QoUvhH8OxBa4U535HgneX0ci99HHEN336yWIWQn6a6Xf0vnOC7jmgjaEfVE6V7/c2yY2NDPafNfZA9b7mRY+6/hyVVle3EuBHqr4PwSxB8EK06EbXreGXVCh7/ahHheJxgzFlAtSw7PCLkuj389o1XmXjTP3lt1coeUe5uEU7cbRKXT9+fmSNGMrG0jMv3258xXSjQzpZDJ+42ifFFxWnPFfv9zBw5qu3rQIBHTj+b8cXFSVXmWpYXy2uqKcvJJd/rJd/rJeD2cOCoUZyw26RsH9HQz1GVHv8MFIwFb+hRxCpASh9C7SYQDyLevpXHMwaVvA5xAQLxjWDtljzYeyDJqsnrbE/08LZCzLY569GH2dTQQFyVpVWVnPXIw7xxwcXke33QdDttXoQY2E0QeomlVaNbK7a1exIOHjWG1XU1rKuvB8C2bRZVVmCJbFMv+IDbzbWHHcEZu+9BfTjE9R/EmLdyGU98tZgtjQ2dXjt50CAqGpuoSNPs5ohx49lz6DB+/9brKZ6ALU1NXPL04zx6xjlMLnO2Uf727lsZc+8j8ThflG/m/Yu/wxflWyj0+dhzyFBTXtZgwCh4Qy+xw5SNdQ0H7bBdoDHUKoHQK6B14NkPcY9C3KOh5A4nUNCuAe/+SOGfelykDfX1VDUHW5Wbk+pjs7C8nANGjiLVY2ADUcYVl+Bzu2mORpPOvLdhHfE01npnKk6AgMdD3LZRHEWZMkaEg0aPoSEcZs5993Qr3W5RRUVK/XgAC+GRRV/y3vq1Gd38kXicV1auYHLZINbV1XHX/M86vVeux0txIMChY8ZmLZ9h4GAq2WXGKHjDgEZcI9D8q6DhryBeR9kXXAO130Fjy51BqlB8G+LbH/Huhwya16sy5Xq9xDtsBcRsJd/nc3qb+493ggUJAeKk+PkO5+jxw3h11W48s2wJMdtujS7PFGXe2Z89BZqjUUYXFGKrsr6hPul8oc/HXSd+nZeWL+PWTz+ivKmp28+ZftEAb7YrnZsOC8GfKFKzoaEen8uVdi6XCB6Xi2sPP6LbshkMOwNGwRv6JWrXoPW/g9gScE9GCn7l7Lmnwcr9Buo73Cl2494Fwu+g0WW0tZoFrfsZMvj17SJ7WU4OZ+2+B48s/pLmaJSA280BI0cxNVEbXQp/63gYwq+DqwzJ/1Vr7MJfZs/hsv325/S5D1IdDHZyF4hl4Z5vH5zWnmnDRvD6mlXc+OH721SIJtfjYUxhEZsaG6gNhbILzhM4ZdIUAMYVF6fEErgti6sOPIRIPM6BI0exz7DtF9dh2LFQNWlynWEUvKFfoPFKtPmuRNrekdD4NyfdjSjEVqGxxVD6BCLpf6TFPRrco5257Ara9rgT2L1fX7091x52BPuPHMXiinLGFBVz8sTJrfvGIl6k4GfAz9Jeu0tRMSPyC7pU8C1YOK1UbdWso9/X1tby7ro121xlzlb43RGz+e2br/HZ5k1ZXbPP0GGU5uQAMDg3j7/NnsNP5r2AJYIAtx5/MgeOGo2qcsdnH/ODF5/FY7m4YsZMTkosDAw7DwMpKK6nMQre0GuoXQeRjxzXuHfmVgfcqV2NVp0Adh0Qg+AziTPRtv/H10NsFXgmdD2hZxrgxXGBA7jBu/dWyba1iAjH7Lobx+y6W9eD0/D7I2Zz9qMPOxYMSjgWy6iMbeDaQw7HsoRfv/ZKVvNvbKzfqm5z4LSUFZxnPGr8ruw1ZGhKn/XOrv3RzIOSjh07YSKHjdmF8uYmhuXltTaBuWf+Z/zr/Xdb8/x//uo88nw+jtylFyolGgz9EKPgDb2CxtagVWfgKGF1gt1K/rd1wXfBZ8BuxKlQBxBJc0M76yI64puJ5v8EGv4MxME9BSn6Z/fl6kOmDh7CS+ddyLvr1+J3uSnw+fjre2/TEA5R3tSUUtzmH++/y50nnpL1/FsTfe9zuZg9fle+NW0/FpVvYXhBAQePGoOIcNl++/Pd554mlKbojkss5uw6Abdlcf6eezMtjcs91+tlF2/yAvF/ixYmPWcoFuPRRV8aBb9TYQrddIZR8IZeQeuvcSLUWyLCY2vQptuR/Cu3YrIwqUVNLZw+8GHA5+Teu7LvEGblfgPNOQ+IIuLrvkw7AMPy8zl1cluFwUMSUeR3f/4pv3vr9SQlXRcOcdajD6edJ13TFxGhwOOlPpq6mPK6XNi2nbLHf9T4Cfx19hy8Lhd7DB6SdG7W2HHcevxJ3PDB+3y+eWPSVoHP7eL6Oce11ohfXFHOz1+Zx5amRmaMGMHvZs0m35f6PcrxJLdzFZw9f4PB4GAK3Rh6h/h6ktO9IhBfg6qN3XgjdsXXsCtPRMNvdz2XfxaOMm/BBb6jIPdC8B4GuZcgJXd2O/dZxOq3yr0zpg0bnrZla6bCNzbJyt1rWVx32BH84+hjUyLxRxYU8JevHZ12OyAci6VNjWvhkNFjmXv6WZy7x14E3O5EYRo31885jsZIhMZIhIqmJs589GEWlG9mS1MjLy5fzreffTLtfD854ODWaHvBUfjfnj4j4/0NAxNT6CYzxoI39A6e6RDfQps7PQCe/dDG66HpLlr2v7Xmcij5L+LdK+NU4t4VzfsBNP4ZRxXFIfIOkv9TJH8kdvBZtPI4VCMQOBXJ+35Wne8GKnsOGcrkskF8mmVQW3sE+Obe0zhtylREhP+dfjZ/fvsNqoJBDh+7C1cdeDA+l5trXnuF+khyoOKq2uwCFf/f4Udyxu57sLmxkXFFxVz35mtc9qzTOGePwUOScvojdpyPNqwnFIu27r23MHPkKB489UweW/wlHsvinD32YlxxSbef2dB/Me1iO8co+J0EO/gMhJ4DqyRR23xEt67X6CK09sdgb3bS0or+ibiGZBwvBb9G4+sgOh9Q8B0O7glQdzNtwW0AIbTul1Bya5JMqjEIvZCImt8XQo+TZGdqE9p8N/hmQd3P2+ZsuhMVN5L33W4930BiWVUViyortupaBf674HNK/AG+PX0G+w4bzv9OPztpzIcb1tPUQbkLMCFDn/WYbROJx5Nc6lMGDWbKoMH87s3XeH/9utZc/i/Ly7HT+AfcVnrPwF5DhrLXkKHdeEKDYefBKPh+hMbLHSVNHHyzndSvLLCb7oSG63Hyvi009AKUPdupgk66r12NVp8PmihPGv0Mrf4GlD2f0VIWKw8pfQA7XusUmQk9DZG3QNMUTIkvRStPgrJnENdQVGPO/NFFtLarlZyOT+Uo+dDTJC8YghB8HAa4gg9Go/zurdf5cMN6RhYUcN3hRzK6sAiAzY0NeCwr6a204BYLn9tFMBbLGEgXisV4cOECZo/fleeXLcVlWZw4cRJ14TCLKsp5Z+2atG1e0xWcueXjD/nH+++gquw+eAh3nngKJYG27+UHG9YTjrcFykXsOAG3G0uESNz59zf3mobb2nk9MoZOUCcX3pAeo+D7CRrfgFaeDBoEbGi8EUoeQDxZ5P023kJbURfbmSP0DORenN3NowtI3qWNO7Xc7XJwJVtPqraTU24VIuJGYl+ioWeAUOd9RLUZgk9B3qUQfg1ii4B2dcw1BvhpU+Z+xH8CGnqVlP5kKYuBgce3n3mSjzauJxyPs6q2hhMfvI9rDzuCSYMGMbGsLKW6nc/lItfrJRKPM33YCD7dvJH6cDjD7E4U/YkP3kc4HkNEuOGD97BR3JZFJE0kvOKUjG3PG6tXceOH77XKsnDLZs55bC7PnfON1oC6MYVFfFVZ0Rp057EsTpw4mVEFhWxoqOOAkaM5bsLEbXlVBsNOi1Hw/QRtvClhQSf+cGsMbfgzUnJPFld3tLfsNG1UO0HySK2PHk8cbydjZD5a8y1HWeNCi/4KjbfSvmJcGx6SW8raqEacoC67Os2y3IacCx1Xvfgg74eI70BwjUZDjyc8AzbgR/Kvyv7Z+iGNkQjvb2hza9uq1EfC/PI1p8Tud/adwb+PPZHvPv800XicfK8XSyxqQk79+7fXraHI58fncqXNdbdw8tGbEx3rUCWW+P6nKxlLYvyG+nomlLa56T/ZtDEpjc0GllZV8sMXnuXwseNoiIQ5f6+9+XjjBppjUVSVkkAOPz3wEIoDgR54U4adAVOLPjNGwfcX7GpSlKxdm921gdOg+SFaFa14wX9U9vf2TAPP3hD5LDFHAHLOQ6w2Ba8aQWsuBm1X07z2yvTzuUaB72hovo82i9yHBOY4//TuS7K57wL3FKyCH0LBD5OmEvdIKHsKbX4INIz4j+s0YC8bVG20+T6IvAPWSCT/u4i14wRvuUTQNH7JlhzzWz7+kOfP/SYLvvN9GsJhVtZU880nH221kmO2TXMsypX7H8jf338nxdq3gRU11d2SSVUZktdW42DeiuXMXbSwtW97e55ZtoR5q1agqlgiXH/0cYgIliXMHDGKgEl1M2SJYirZdYZR8P0F3xwIv0+bNezPWklL/k9Rq8AJWpNCpOBniDv7nHERC4rvgOATaHw94pmK+L+WPCi+ibZCNC3YpFr+bqTo3+CegFq5EHwWrAIk/2rEvatzP/euUPQvtO5qx2vh2QMpujmzfK4RSP6Ps36eTGi8CuzNaNN/E81egoAHDb/ixCzsAB3yQrEoy2uqOXr8BF5bvTKloA2Ax2WxqbGBMUVFFPr9+N1u4naymo3bSty2cYmkfNfA+cOZTbvZloYvv5v1NQp8fgDeWbeGH7z4bNqiNi1ztz/327de540LLun0PgaDofsYBd9PkMDJqL0Fmu4A4hA4Dcn9TnbXisuJKt+GwDMRN+ScltkZZpVmcPu3t+Fc4D8W8Th7qp3JJP4jEP+HqOp26e1tNz0IDX8A8XToHR8FrXUCBP1zel2OzlhTW8uZjzxEczRK1I6za0kpw/LyeWPNqqQc95htM75dutjEskHsM3QYn27aSCgeI+B2s/fQYfz74w86LUeb5/E6lrUIp03enfu++DxlQVHsD/D4mecyoqCg9dgjXy7MqNzTURvKrqZ+d6kONvOrV1/my4pyxhUX84cjjmJYfn6v3MvQV5hKdp1hQlP7CSKClfcdrCEfYw35DKvgl0iWpVm3B2LlOW1Y8Sf25v0QOAukCMhxAt+sYiT/p92btxPlrnYtdv2fsGu+h930gBPgtxVobC00/BEId1DuLQPoXsxCL3Hli89SGWymMRohHI+zsqaGY3bdjfu/fgYFXh8+l4uA28ONx5zAoNw2b4Mlwp0nfZ0fHXAQp06awk8POpQtjY00d6GE831epgwaxPl77s1PDjyYnx10KP52hWw8lsX04SOSlDuAJ02xGwEKfX4mlpbhd7XZFV7L4oCR2WWDdIe4bXPOo//jlVUrWFdfx9tr13Dq3AcIRqNdX2wwDBCMBW/oMaycM1DvvhBbBq5RiGd37JxzoO4qiJeDZy/HQu4BVINo1dcTxXSiEH4LjS1BCq/r/mTx1QnLPV1imeXELPgO3EaJt51VtTVJLvNgLMrS6kpOmTyFjy+9nKrmZkoCgbQK1utyccm06czfspmPNqzP2CYWEnv8wJamJjY0NPDZ5k18VVnBzceewEcbNzBv5XIsEcYWFvH7I2anXH/o2F14ZPGXScc8lsWjZ5zNuOISHvxiPn94+w1CsRgzR47mr7N73jOytr6OdfV1rZ6NuCqNkQhfVpQzfXj3akAYdmxMmlxmjILvZ6hd6xSPkRzwTNuhrHgAcY8Ht9PsQzUENZeAXQHEIfwmWnUuWvgvJxpeI0jgxK0Ligu/lWjx2mKRBSH4P7Tgl93vWucaC9rRsnM7x61BYJWhdb9AvYchOWdlvWXgBMJpj1XV26WomC/Kt7Qq+YDbw8TSMkday2JIXl5nl/P4V4v45avzWvff03HQqNHMGD6S2z79iKaEtRuKxXht9UoaImFuPOZ4KpqaCMdjDM8vaE13a8+YwiL8bneSm96yrNaxZ++xF2fvsVevbr/4XK6U+AFbtdNSugbDQMMo+H6E3fwA1P8Bx+FpgWcKWnw3NN0KzXcBNgROR/J/3meKX2Mr0OhSiC50ctntatrS9KIQXw7Vx7eND86F4luclLdu3SjRpS6FROpY093Oe1Ebcs5G8q7IXJTHPRrNvwoa/pLwMMSh8F+Id1+08hiIfgTEIPweGl+b6NXeOXbj/0HjzUAc9c1Civ6OSHapX02RCNe8/gofbFjH0Nw8fnfEbCaVDeL6OcdxxiMP0RSJEleb2ePGc+LEyVnNqar8+rWXO90b97lcfH/GAQSj0bSKt0VfNkTC/PujD9jU2MBR43blG3vtkzR+ctkgxheXsKy6ikg8js/lwu92c+rDDzA4L48/f+1o9hwytFdjK4bl5XPY2F14c81qQrEYfrebyWWD2H3Q4F67p6FvMFH0mTEKvo/R8Adow2/Brgf/bCT/Z2ktULvx39B4PUlKLboQ6q+G0Ku0Rtc3/w+1SpC8y7eL/EkyNj2Y2MuOkRpRn4kQ2viP7it43wE4ufQtRW584DsAET9281PQ8E/a3sldqOQjeZkL+1i556P+o5xsAPcYxCpGg493aFMbhOY7sXPOxXKPzDiXhl5IFBdK1OEPv4XW/xYp/ENWj/adZ5/ko40biMTjbGpo4MxHHuLl8y9idGERb3zzElbUVJPr8TK6sLBTJVkbCvLcsqWE43EOGzM2Rbl7LYsDRo1iQ30DuV4vP5x5EDNGjKQ5GiXf6yMUjRJTxedyMWPESIoDAdbU1nLiQ/fRnLDu31u/jgcXLuDps89v3RpwWxYPnXom/3z/Hb6qqmRFVRVVwWZiqtSEQ5z72P94+fyLuvQ4bAsiwk3HnMB/53/G/C2bmVhWxkV774vLVMQbUKgaBd8ZRsH3IRpd6hSGackFb56Laggp/H3yOI1C402kWqzhdrnpLYQgNA+2s4JXuw4afk/aXu1dYTd3PaYDYpVA6SNo/XWOUvbujxRc7ZwMPUPSO9GgUyq3EwUPOKV725fvTRtYp1B1Elr2LNKhil/riPCbyfcnDOF3snksQrEo761f1+pedpppKO+uX8tJEyfjc7uZkoUVWtnczHEP3EtDJIytyt/fe5sJJSWsqKlpzXu3LItfHDwrqTgNOF3ZnjjzXH7/1uusrqtlv2Ej+MmBBwPw0JcLWpV7C0urq3jgi/l8c+9prcdyvV5+degsmqNR9rrlxqT2sAAfbFiXtfdha3FbFhfus2+v3sNg2JExCr4vCb9KcjW3kJN/3UHBO/3Q07mjPeAa7jSAac03F+iBoiwaW4fWXgGxFeAa5jSX6awsrl2RCFRLp+A9IIHkIjitBMB/HHbN9yH6ObhGIIW/d/byu0DcY5CSO1NPWEWklK+1ClLHdYXvMJA/pb56bUBrf+iUCk5nQVtDSanUZ6VvxNIRt+VKm4rY0hY1W2775ENqQsFWZR6Jx/G63OwzdBifbd5Egc/Hn488OkW5tzAoN5d/zTku5Xg0Q1rd0uqqtMc9luW8o3YKXlXJ9XYzTsJgyIBJk8tMn/mrRGSUiLwmIotF5EsR+UGaMYeLSJ2IfJ74XNMXsvYaEgA67pWn/uETKw/cU0hZj/lPhMK/gOQDPudayUHyr94msZxmL+dBbDEQgvgqtPp8x0rPhGskpFVNlqNwS+4BKQByErK6QYZC7nechU74VbC3OI1sqs5yggk7yhXfiIZeQ6OLO5Vf8r6bqEfvdu4vga0qXyuuwUjp/0i7Do7Oh9Cz6a/LvSDhCcjBSRvMQQp/k9U93ZbFxftMJ5BQ6F7LxeDcPA4bMzbjNZF4nJ+/8hL73HozB/znVp5e8hUVzc0pFerqw2EePu0sln7vh3z8rcs5clzXi6iOnDRpSkpgnVuEqYPTNy7yuFxcvu+MpD804Xg8Y+c5g6E/ICJ3iki5iCzMcP5cEVmQ+LwrInu1O7daRL5I6LSPe1POvrTgY8CPVfVTEckHPhGReaq6qMO4t1T1+DTX938CJzqBYHYtzuvwQ/4P0w6VktvR2qsg+hlIIRT8Dst/EABa9lyi8prt7ON3sxVsC6qa6Nd+L5AmHzy6KLH3nUY+8UPxHWjNpYl0szhYxU5r2cLfIq7h6KCXIPyeY+n7DkEk4HSqa7qZNmu3pd/7p+Bv605mB+dB3Y9B3E4d/pyzsAp+kV4W9xi06DanIQ825H4L8eyxVe9E3OPRnG9C8386nImhoXlgVzoLGP+xrbETYhVA6dMQftl5F76Du/U9+dlBhzCpbBDvrlvDyIJCLtpn35Re6O35zRuv8uRXiwnFY9SF4WevvMi3p+1HwO1uLUzjd7s5cpdxRONx1tXXUejzU5rT/aY8ewwewr+OPpafzHuBaDyOJcLs8bty5u6Z3++wgoKkeoZxVc585CHeuzi7Qk0GQ2f0UZrc3cBNwL0Zzq8CDlPVGhE5BrgN2L/d+VmqWtm7IvahglfVTcCmxL8bRGQxMALoqOAHLGIVQ9kzaNO9YFcj/q8hvkMzjPaC1jn7wloJzXeivv0Q8SKuQZD7jW2WR5vvhaa7SN8cJtalm1u802DwB04Pd6sY6ZDzLlYJBDq6fb2klrO1QfxtcmnMUe7tO9I1P4wGjkc8e6Lhd9HGG5ztgZxzEO/eUPutxEJDoe4L1PUg4tm6PV/J/wkafBq0vN1RN4TnOWVsxeW8t9K57ZR8LgRO2rr7iXDypMmcPCk7eV9asZxQu5aroViMxmiEK2YcwM0ffUDUtjluwm6cufueHHr37TREIkTjNhftM42fHZTp5y2VpVWVXPzU42xsqKfA5+d3s77GASNHpxS66chzy5akHNvSlKZtsMGwFfRFkJ2qvikiYzs5/267L98HMkfl9iI7xB584kXtA3yQ5vQBIjIf2Aj8RFW/TDOm3yJWCZJ/ZZfjtOGPEP2K1iC2yEdo461I/vfbxqg6iwDxOxZ1dwk9R1rlLjngPTixTdA5Ii5wZZ+KJFYeGjgTgo8l7u0D1y7g3a9tkNaTsggQFxpdh4behaZ/0qr563+N4k1+Dm1GG/6BlNyetVwpz1RyJ1p9diI9z8bxuLR09sMplhN6BgJf36p7bAu5Xi+VwbZARY9lUejz8+3pM/j29Bmtx4+5/x7Km5pa10j3zv+cA0aO5tBO3P8tRONxznt8LpXNzn3qwiH+3xuv8to3um45XBpI9RSYXVPDTsTFwPPtvlbgJRFR4FZVva23btznCl5E8oBHgStVU6KwPgXGqGqjiBwLPAFMyDDPpcClAKNH93zpyz4n+gXJEeohJygtgdrVaPVFThU5FM29BCv/R927hxRBx/5f1nCnBnvu5b2WtywF14B3TzTyKbhGI7nnJ1v/UuSUv9V2Hc40Ck23QLyjdRgn7SJFO4kfyAb3rs4CJ/oZidj2DvPHsu/u18P8+tBZfO/5pwnHYo5y9wc4Z489U8atrKlOiheMxmMsrixvVfC2Kvd8/invrFvLyIICrtj/AEoSynlzYyNNkeToeZcIiysrksripuOnBx3C00u/SoqkP3Xy1K17WIOhHYr0lgVf1mF//LatUcQiMgtHwR/c7vBBqrpRRAYD80TkK1V9cxvlTUufKnhx/oo/Ctyvqo91PN9e4avqcyLybxEpS7d3kXj5twFMnz594BUvdI+H2HLacrK94G5b62jtTyG2tO180z2oZw/En1pKNBOS/2O0+sNE1D5A3KkWF3wYQk+hpY9lTA3bFkQEAqcggVMynLeg5D/OAkaDgA3eQyEyL8s7BMB/wrYJGXkLYh0XWe1xgXdGhnO9yxG7jOOhU8/k1VUryPP6OHXy7mn7qQ/Lz2dtXdtCx+t2M6awuPXrX706jyeXLCaYWCi8vGoFL557AbleL0V+f0r1u5htMyiLffyhefm8+s2L+fWr86gKNnP8hElcuu9+XV5nMPQhlao6fVsmEJE9gTuAY1S1Nc1EVTcm/l8uIo8DM4CBpeDFMQf/AyxW1X9kGDMU2KKqKiIzcKL+0+fjDHAk/1dodH6iPKs6lm5em3ue6HySi8sE0cin3VPwnt2g9CkIPY+GXobYQiCYaLYSQut/jxTfiMbL0ca/Q2wj+A5Cci9xus11gsYrwd7o1Ki3ijsdm1623WHwO046nlWE1mbpnZBcyL0EyTmv2/dMws70Y+dyvAsF1yGevrNK9xwylD2HdL74uumYEzjvsbkoSsy2OXKX8Rw93mnRG4nHmbtoYauVHbVt6kIh3ly7mmN23Y18n4+fHHgw/3zfyecXhBMnTmJylpXhRhUUcvfJp23DExoM6dkRrTkRGQ08BpyvqkvbHc8FrETcWS5wFJBdis1W0JcW/EHA+cAXIvJ54tgvgNEAqnoLcBpwmYjEcPyuZ6nunK0FxFUKZc8nXPUu8ExNdmO7hkKsvRvav1XR9OIeBXmXopH3SF4wxCG+DrUb0KpTEguNGETno9HP0NhqiG8E965I0Q3OPAns5keg/rpEnnwMLfw7ViD7hUerbOIG1zAA1L0bhF8jNUCvBQskHyl7wXl37dDYerTpFsel7j8WK3Bs1zf37O2UvW0/v2sc1qDnuv0cfcXUwUN444JLWFxZQaHfz6TSstZtl0y/Vu2t9kumTWe/ESNZXFHO6MIiDhg5Ku01BsN2o48q2YnIg8DhOK789cC1OMUvWnTXNUAp8O/E71gs4REYAjyeOOYGHlDVF3pLzr6Mon+bLmJtVPUmnFQEAyDiA296r5EU/gmtPp+EuQ2uCah7AoTfB8+eiJXZlarxKifdyz26rV66dyZEPqG1yh4+xwUdfgu0iTblH0oo2gSxxWj1uTDoFUQ8aHwz1P8GpxVrwvVf9xPU946T37+17yLvO2joLYgvprXWvXtP8B0FkTfBNRjJ/3Gqco9vRqtOTrSFtSH8Jnb4ZXANR9yTwH9c2lgDcY+Don+idT91rnXvhhTfutXy9xWFfj8z0yhmn9vNEbuM4621awjFYlgieF0uDho1JmncXkOGslcXngKDYaCjqmd3cf4S4JI0x1cCW9Fda+vo8yA7Q88gnt2h7CWIfuJEkTfeCLXfRrGcKPjS/yGu4SnX2Y23OmPFA7ig5C7EsweSezEaW5LIrxfwzkTyfwyhl+l8XWY7AW3xjeAeA/G1qa1YxXLKy1pp4yUBULseYqvAVZbWEyESgLK5EPsSNA6eKc4CCEjEWqYn+BRoM22WfyhR2haUAETezVgzXvxHIv5PUI3vcF38eoIb5hzPX999i3fXrWV4fgHXHDYr7V6+wbBDsVP6dLPDKPgBhLjKwHU02nBjIpo+YTFrEK27Bim5I2m8RhckOp5FWkvMas2lMOhdRNxI0T9Q+7eAtlrb6jsYpxJdItgNL06Rmna/ZRpEsZxlgGt0aitWtVtd7enQyCdozSWAOHv/7t2RnFOcTnnttiVEXOBJjRbvDG1Nc0tHEIJPoXlXdBpMOBCVOzhW/K8OndXXYhgMhh7CtFYaiMRX0KrcnQNOnnZHYssda7o9dm0iUt1BrNwkV7pYhUjZ407qnGcvyLmY1B8jFxJ5zxnvGgoF1wA+JxgNPxT+LWlO1SBqNyT+rWjNZc42gCY6ucXmo/V/QKsvQjWTcs4OCcxxZMk4wJ24ryEdqsr9X8znmPvv4cSH7uPVVSv7WiTDTo6q9PhnoGAs+IGIZ59EC9kWt7gnvaXr2oUU/5bkJWrkZ0Zcw5Cif7V+bTffQVvPdwBXwg3uYOWchvpmgb0hKYpe1Ubr/x8E5wKCevaFon+CNqS5a8RJU4vOB+8+aeVSuw6tu9opcyte8H0NyTk9qUmOuMdDyb1ow5+dxUx8A857ankPXnCNSTO7AeCBhQv4w1uvt5bA/d7zT3PHCadw4KgBWHvC0C/YOcOus8NY8AMQyTkPfLNw3Od+cE9ACq5NHefdBwLn4VjX+SC5SPG/u1/QxncEyVaxBb6Dk4aIqxTx7JmUIqfN/4PgkziLg5hTRKbhb06t/bRYSQuHjmj1JRB+A7TGaVwTvB+tOhMNv54si3cvrNIHnAj4jo15NIgG+09k/PbmvgWftyp3cMriPvzlF30okcFgyISx4PsxGi93gtdcI5L2hUVcSPH1aLwCiII11CkWkwar4CrswOlO5zj3rognc+BbJqToL2jt1Yn2t4BvtrP3nklutZ3a8U23k9wuNwLhV6Dgt1B3RZorXZChaYzajU7AXVJqH0AYrf8NMujwdmNr0NofJLIEINmLEYbgA5CzdXXkBypr62p5cOECKpuTa8gL4HMNzJgEw46P0jdpcv0Fo+D7Iaq2k64VegFwOQFrJfenpISJa1DXc9n1UHclxFYCNrbvUCePvYvCNSlE59NqiYfnobWNGdPItPkuaL6LZOXecrIemh8kpWQufqT0QadTWzrES8p2Qwt28p661nw/UXI2zf0T4zX6FeKZlP58N1FVZytABKzhbbnndhPEV4IUI+4+6UWRFatrazjxwftojkaSwhMF8Ls9XLj3NO749GMeXLgAr8vFj2YexOxEAR2DwdB3GAXfHwnOhdA8WsumxteidT9HSlJLJWu8EqILnE5wnmkplrzWX5cogZuYK/w22nQ3kpeSwpmZyIeJWu/tc+PfRu1axCpKI/+zSYF8HSR2lF5HZe0airgzKw0RL5pzCTTfTXKAoRe8B6BN/3GK7PhmQ/QTkmMGOhBfh1adgeZdjpW3bS1NVYNo9cWJAkUK1nDUPRTUBbH5iUFRNOcMrIJfb9O9usPGhnqqg0HGFZeQ48ncihbg9k8/pikaSfqOFPp8zB63Kxftsy9vr13DP99/p9V1/4MXnzX78obtgwLGgs+IUfD9EI1+QXJDlRjEUrvsamQ+WnMBjq1lg2c/KL4lOc0rbROb+b0hdjvBOvYU6oB7V4jUkVRkBwu7+lIk9xtIh/39FiT/R+DdHW2aC7FPnegb3wEQeQcNvwzY0PTvxHwd9/LbewwS9228GQ2cnJIyp3YdWn8tROaDexRS8DvEnV6ZacO/Eu84seiwV0NkderA4COo73DEd0imt9Jj/PGtN7h3wWd4XC5cYvHA10/vtORsYySS4hsZlJvLX2bPAeD7zz+Tsi//6OIvjYI3GPoYE2TXH3HvCrRvB2uBawx286PYtVdi1//Z2Weu+2Fbupk2O5Z2qEMAmaRzeXu7J493RqITXct60Q++g9Na73ZkgVMEJ/NkSOHvoOB3YI0EKQZijlUfeR2tuRwNvZb2ShFB/HOwSv+DNeQzrKGfg1WWSHuLAnHHc+AaRmqxHiXl10E8EN+SPErVaXoTmudkBUQ+dKx9O13kP4mOf+H055ImdnoH9DbvrFvDfV/MJxyP0xiJUBcO8e1nn+z0mlMmTcHvbrMFAm43X5+0e+vXHffgHde9sR0M2wfVnv8MFIyC74dIzjlO2pvkOGltVgm4xjslYUPPQfM9aOXJEC/vcGUkkRbWfrI0OeFakZUcGvkIu+5qtP5PUPR3CJwInn0h55tI0Y2p4+1qqLmU1EC4FnKg9EnENQIr50Sswa8mOrS1d6eH0KZudG20q0nXSx5PNt3MbHDv0uFQBcSW0LZ/bwORxJ5+GtwTSJSo7prgw9uc598Vy6ursDvcY0N9fcZa9ACHj92FPx55FGMKixiel89l02ckdYP70QEHtyp0AXI8Hi7ae1qvyG8wpKC98BkgmGV2P0TECyX3Jsq0hlDXJKjYnzbFGXP2xF1DIb6eNgXnTY1Cl3TKp+t1n4ZfR2uuwHFnC4SeREof6XSfXOv/Sea+7G7I+z6WZ3yH4+n2yjvZP++I/1gIv03blkYA/HMQ32Fo1Xntjvsh/2fQ+A/QMIgXKfp3alCf+EithKdkKp4j+VehkY+dtD2N4HyPOgkGtMud71svMa64BJdYtH+Hw/Lzu0yNPGniZE6aODntuSN2GcfdJ53KI4sW4ne7uWDvaYwrLulJsQ0Gw1ZgFHw/RcRqU9YaQ1OUhkLgbAg+BPHNQBzyvoX4DkqeJ/fihGu4Zb/bj+Re3OX9teH6dteo42Juuttxr6cbH98AocdIr5wtkAKnHG3H58w5Dw2/nSQfORd2KV/rzIHjsO0t0HiLc+/AqUjuZU4cQulDaPODgCI5ZyKeqWjO2aC1IIVpS9KKVYgGToTg8ziLAx+4xoI3vcUqViGUPQXRLxzXX3QBhBPNo6Jfkhz/EEtU++s9Dhk9ljN2n8qDC7/A47KwRLjluG1PCZwxYiQzRuy4mQCGgcrAqjzX0xgFPwAQcaO+I50iL4RxHKUuJHA85F7odIqTvLQd5cR3CBTf7ESZA5J7UZeBXhr5DGJLOx4lqaFMx7N1vyY1Lc1ylKPvCCT3QsRyrD7VCNp0l7N/Hd8C1iggCK5BkHMhVmBOp/J1xMq9CHIvSjkunslIYXIrZhELpHPrUwr+gLr3dqLx3bs47yytJ6RlTi9493V2/X37Qt6Fzl5+7Xcg8n7CY+CDnAu3qcNetlxz2BFcuPe+VAebGV9SSp63mzEXBoOhX2AU/ABBiv7u7IVH3gZrMFJwLeIa4px0ZY6QBkfJZxu9rbG1aPU3SVXWXiTw9cwXxlalHrMGIWVPtusCl1DulcenqZ3vBd/Mbiv3bUVVU9zXIhaSexZw1lbPKyJQ9G+nW198HXimbpcI+hZGFRYyqjBTxUCDoR8xgPbMexqj4AcIIj6kMLUcbY8TeZe0QXLWYMR3YObrPFMhXE7bwsAPud9OUu6A01s+XWMcIhB8BNt7JFbgyKQzatejtVdC5AOQXCi4FitwnHMuthJtvBnsevCfgJVzYlaPqdGFaM13wd6MWiOcEr49VPimBREXBI5PvXfoNTT4GEgOkvetTuMaDIadGjWV7DrDKPidDNUgWndtwtIvBt/REHzUcRMHTkDyf9Z5FTvxk3bJnLZBDNjND0PD3xNu6ACo5VzvOwLJOTt1GjtTEF6Cuu+ivo+Tu9HV/thR7kSd/fO6n6PuUSDFaNWpTqogQOQN7OADSMm9jts8A2o3Ol6Klmey1ztfD34DEX/G63oCO/gM1P2CluBFDb8IpY8h7nG9el+DwTDwMAp+J0NrfwLhN4GwszcfW9Z2svlhFAt1DYHwe07nt/zvJzWIwXcUyJ9Bq9rNKuBJjbDW8FtQ/3taA+TUBv9RSP7VmcvottaHz4SN1v8JjX3hxBXk/9TZx07aMohB+H1UI6kV86KfovXXIIV/ynyL2DJSFzERiK2GHrbiU2i8iZTgxeYHkYJf9u59DYb+inHRZ8Qo+J0IVXVc4Bnz0ENO1L2CEyHuRsMvofm/Qrx7IK4RiJWDlr0ENRc57VtxgWskUvi31PsltawFCEPkw7TKXTWC1v8GQp0XXXHEfJKW4jFa/Q1Si9a4wSqC+CbS/vaHXoTOFLxVAtohxkCjjsej1+kY26CpshgMBkMWGAW/EyEiqHhBMyl4Oli8MScvu+6nTv2Hwr9hBY7CcuVD2VzUrnHGZ+pWZ5XgFHlpp6AkP/WWqs5+d+RdUnPMO+IiuTJchpr2gROR+PpEUZzUgMBMqF0DkfecFMSW+vG4IOe8tqDF3iTnHGi4gfb5+RJITR80GAwtmD34TBgFv7OR90NnT5wQzrffxilsE8cp1hIhVckmrPC6n6D+TyC2Cm2+D4gigTMQ13BUo05ufOStRBT/L5Hc89Dgw2DXJeZ3IwXXpMpkl6dxs7fHckrW5pwPzfdnUWkv5uyVu3dFC34H9b+gLf/eD/k/TnuVxivQqhPBbkqMFwicj/gPQ3wz047HrgH3GOfr2FpniyG+BnGPdXLuu9mVT3IuQvFA8JFEkN2ViHevbs1hMOxUGBd9RoyC38mwcr+Jusc4xWOsQc6eevhF0GbEPxttvAnC75K+fro6Vdlqv5PIeVc0+CwU3+JEfYdewlkMLEGrTkPKXoTSp6D2Coh+Cgga+RC8+3dIPevKardB65Dcc1CrABr+SkbLHQCX4xWov84JIBQ/aDwR2HdqxnQ0bbo1sRhp5+EI/hdyz0mVqOHv0HRXohKgK/FHprn1WsXvpMAV35neu5EBEUFyvwG538j6GoPBYEiHUfD9BNWIExynIfDOQLrIbe8M8R2O+A5vO+Bp1xK16Aa04W/OveJrSFK+kgPNczu48UNoww2J1qctVrINRCHyhlNFL/oFjuKLQdN/UMkD/2xwDXdSxayh4JmSprJb0hsAFCv3PGyrBELPOG1u06XUuXeDyJsQfBwIOxH8ALGFiO9fmV+MXUlqfEIErZyN5lyC5P8IEQsNvwdN9zqyaiZ5Q06hnugC8O6d+Z4Gg2HbMBZ8RkyzmX6AahCt+jpa9xO07ldo5dFoNLU9bPpr42jzQ9h116DN96Od7b/j5NNbBb/EGvQiFPwRZ7/aD1KElPyH5KC5lpu0VM9rf8yppuf0rW+/IAhC45/RquMdxRnf5FitxXdC4OvgmpheMPdUxCpGNYx4pyNFNznX0LE6nwfJ/wHEVpKirDs22umI90jSN4axofletOkO58vYMrKrh2+1pegZDAbDdsZY8P0AbbofYmtodZsraN0vkbLHO79OFa39AYTfAoJo0A+h16D4difgTkNoZGGiuMwW8ExAci9oLT5j5ZyCBo5xOrJZg5395JwzOtSGD0DuWY7Sa55LS/Q9Vi74ZkHzI+kkc7wA8U1o7ZVI6cOIldtaNtZuvAMab2h7XmskFN+D3fQANPwesMAqRkruRga94HgQIh+CqxTJ+x7iOwRFHDna7+u7UmulazTRvtY9CQkcj0Zeh9DTaWQOOZ368i4F91icYL+ucCc190lXFc9gMGwDSsKYMKTDKPj+QHwDKXvidjmqUccNrDHw7o1IoMN169rVpwcIQeQjiC1HrUK06gwnwK3F0g170fDLUPJga3CYiB9cw7Gb/4c2/tNxSXv2TVwXh5zzkcAZjmfANda5n2sokvcDxCpAfQdD9INMDwbRJdh1v3Rq23v2QvJ+hJV3Cerd02nQIsUQfBoq9iHJF2dvQWsuxRr0MlL0h9SpvQdDzunQ/HBin9yNFN2U/ArrfgPBB2m1xr2zoegGZxsk/CopVrqVKO3qPQQCJ0HwCWdubSK1Je1QpPRO5x3ElqM1l0F8LWoNRYpuMIFzBoOh1zEKvh8gvv3R0GPt9r694N4Lrfq6o8SxnC5kpXOTU7k06PQ+b79HJS4g6LRutbeQrMQijiUenQ/efdumCb+eKFiTuH/0E8g5F6vgZ2j0K7TiCLA3glWGFN3sKLzQc6h7V8Q1CsVH+qA9nOPBx4EYRL9Co19AyUOIdwZ4Z6A134foh6RutCnE16EaSVuVTkSQgl+huRei0a+cHu6Rd1CrEKwhaNPNELw/ed7IPAg+ihTdhIZegLofk+Tmt0a3zV34GzT3ArCrnRQ/rUkWwH8E4t7Vye+vPj/Rl17B3oRWn4Pm/wTJOb/bUfYGgyEZNXvwGTF/XfoDvqMhZzE03eZ87d7D6awWeYNWF7QG0frrkOJ/t13nHufkosfDOIrc5SwE3LtBbAUZW7dqsjLW0Esk76OHoPkB7OADrdH0ANgVaPW5zn1QEAv8pzuWr12e4eHayxCG6GJn0eJ2lCmRt8mYPid5Kcrd6UR3h7NIcU8A39ccRa1hx23feLNj3YdfIXXRAIRfQnLPAN/MhJu//WM/gca+hSRkc8rHjkPduzqLnlYr3t9Wtz6+NrEwa3+vKDT83dnqKL7DuO0Nhm3BKPiMmCC7foCIYOX/EBnyBeRd4USsBx8iWfHFUzq2iXiQkgfBO9NJifPuh5Q+5LjdPVNJG1AmfvDsmXzMKiZ1zzmURnGRkCmEE70edFzg+dd22YK1gxAAjttfmzOOkaJ/tX6lqthND6Llh0PjjU5cQdPdUH1hYo44EHPqy4dfIGO0fst+XrwCOnoGxJvwenQ4XPQXsAYnern7wXcgBE5vOZmhsFAEoh9DbHGG5zMYDIZtw1jw/YnIx9B4C+lLzXrTpmOJawhSclfq8YJr0Ngyp746EcADnr2Rwj+m9CSXnG+izY8mmq/EcSzVbJfNMaj7EZnT39rjc4LSWoLhtB5nYZHmed37OF3kKo5xzltliTS79lH+kQz37Uz2RNS7exSp698YuMenXCGuETBonhNHIAFwjW+1ysVVhuZe5OTMp2xTuEyUvcGwrZggu4wYC74fodGPSZumhg88k5H8toYkGt+EXftD7KozsRtvTkmPE6sQKX0CCn4D1nAgAK5h4CpNmV1cg5GyZ5H8H0Hu9x1rNQUX4Ce1bKTiKLbOlKq0VqqTkv+0uaylqC2wLYUg1P0c4iucfP3oJ6R/N90kkUEgEkCKbwcpALxOVbmim8FuxK48EXvz7tjls9DI/MR4H+LZA3HvmuJyt/J/BEW3OM/Y+itnOfO6U5v0GAwGQ09gLPh+gmokkYbWQVFaQ5DSuc7/E4pF7Vq08hSndSo2RBejsbVI0Z+Tr42vhPpraFWMoedRDSLFN6bcX1ylkHsxAqhnipN+116hevaF3O9A4z8gtrB7D2ftAqUPYrmSm7mIWFB8J1p9QWoQW2wJXVfA6y5+JPdbbff3ToPBHzrlaK0iQNGKIxNuehvsDWjNhTDoZcTqfAvC8h+Eep5E666C6FJwj0YK/5LiLTEYDN1DzB58RowF318IvwZ2berxwn8grqHJVmNLxbtWBRiC0FOtVrzatdjVF6GVJ5HS7S38etrbq8bQ0CtOSVr3rk6Oe/t9+egXYG8G3yE4lnwL6QrHCEhZ4noBexPU/gDVNEF/rlHg3j39HFkd6zhkKJBP24++F1zjwTcLKb4N8R2YPFwsZ3GDog03J4IFOywssiw6JK6hWCX/xRryAVbpXMS9S1bXGQyGDGgvfQYIxoLvL2gTiHT44ZMM+dSZFZ3atWjVmU50d7oo+oSLOumallSv2BJQG7ATruv21wch8jZS+BeneEzkI0cOzx6Op8Cubj8jTj95bbs2tsBpOOM7KHHPGFr7Iwi/RHpLXXAWEi0LFB94D4D4KqdjXSYvgtZCwbVOYRy7GvxzkMDXO41kdwoGfR/C75D6zuJgFaHxKrT5ftB6xDcb8e2fcT6DwWDYHhgF31/wdlQYiaC4NDng+A4FKwB2S3qcHwLHgV2FVpwI1KReA4CAazwar0ju2R58BmJfJdeg18rUyyPzQUNOCdmWaHNrCFp3NYSepS3gzUWqorQSQXWgajuNYsIvZJATCJyL5J7pVPkjhgROa13s2NXfynwdIWj4HTL40+zT0+LrEsq94x6/HzwHoqGPofn6hNckjjb/Dy38A1bg+OzmNxgMW4mYILtOMC76foK4RiDFdzvuZCkE32FI8f+lH2sVIqWPg/9Y8EyHvMuQgt85neKoS3dF4qMQ+wKtOgW1G9tO2+UpufFpscvR2h85hWBcQ1u3DqTgGvBOp82ln84it1Epw276L1p+IAQf7uxtAFHEvStW4bVYhb9N9mQkNcNJg4Za0+80XoHdeAt2wz/QaKbYgYiT05+EF3IvdLYmmv6SiIZvWbSEoOEvnctgMBgMWSAO54nINYmvR4vIjGyuNRZ8P0K8eyODns9urGsoUvT3pGMa30yqck0o9lZijrKKvA3+Oc4h7zScH5WOKWeJgjatc0YhklqWVqxcpORu7PCHUHMpTlvVdlhDwH881FxM1xH3OOeDc7HzroDQU04lPMlB8n+ExmtAGzu/3CpFrFw0vgWtPCExPo423Y0WXQ+hF5xudFKIFFznVPWzBkN8vfN+cIFVmlgoVJM2jU97IKLfYDB0zQDaM8/Av3H+yB4B/AZoAB4F9uvqQqPgdyZ8s5y959aqdG6nCE7kXToqfo2tQKsvdKxh75FgDQN7TccJE9e1U2ZWfvI8aqONtyT20n2k/jb6nRSy6jPJLlc+gbih6Q5ovr/1ebT6ApwFS1fzeFC7GW2+t11uP85z1P4w8Tw2UIXWXAQlDyAlD6D1v4LoV+DeFSn8Hdrwd9LXJPA73pMeQOMVTltc1zDEPbZH5jQYBhQDX8Hvr6rTROQzAFWtkbR7s6kYBb8TITlno/H10HwvYEPgJKTgt2jtj50ofUI4VrknUVAn4ZaPfkpy4J7TzY3AN6DpX+2Oe5CC37R+pRpHqy+G6LsZJEp0WxNvomlLZ4rZTZIylSInNiCphG6GkrYdsbegtVcmXPkdYwE6Vs6LQvV5aP5VSP4vWsvUAqjvcEgq45sI/Ms5Dcm/OuPtVeNO3r7d5DQJsorTjwu/jtb8wFnMaATN/RZW/hXZPaPBYBgoREWkxV2KiAwiyxxho+B3Ipz98J+i+Ve1fg1A0d+c/fnIu+AagdPHvWPL1PbLZAtKnobKIzocF9QahNb9DOLVTmU3e1MnEsXAPdEJYutsFe450inr2j5+wK5k65fuMYi8jtPr3qLr35UwNPwBbfgbWvhHrMBxAFiB47Dja6Dx/4A4+I9GCv+cPvCxRex4JVSf77j7xePcv+QBxLNb0jjVaKLWQLDtMZvuQP2zEY8pjmMwtDLwLfgbgMeBwSLye+A04FfZXGgU/E5Ix+hxEQ+S/0PghwDYddd0NQPYGxKWZfvjbkd5daeiXPA+CD4KnolO69t0uAZBtKN1nqW13ikRnCp1+Ykguc7kTmxF1F3tKNmEErfyLkdzLwNS32tHNLYGKk+k1eLXMCBo3c+Qssc73K42kZLYDnE76Y1GwRsMOw2qer+IfAIcieMmPFlVs2piYaLod0CcxikPYdd8H7v+j6idKa2td5Ccs4EOveVbflQk4JSUdY0E7ahkw2xdudhgZuUOEHqIVNd5ZwTAMwPI7Xqo+JxmMbnfIbWhTjqiaO1PsOt+hUaXOlOIZJVyp/W/JnlLAUAhvjF1sFWSWpNAY06RIYPB4KA4aXI9/dmBEJGZwAZVvVlVbwLWi0hWhTaMgt8B0YY/QOMfIfwiNN+HVp6C2tuvKYl4JiOl9zmtVr0HQ/5vIHAqeA+FvKuQ/J851d0Kfgv427qouQ/ZbjJ2kBgkx1l8SC5S+hBW6X1OGlvKQiUNnqlIztdBcum6Gp7t5OcH56LVp6PRJSkj1G5Gw++hkY+cEsMtxDekl92zR+pRcSHFtzneBckBvJD/cyRNsxuDwTCg+T+gfWpQU+JYlxgX/Q6Gagya76Mt+CvqVF8LvwGBnonMzgbx7AFF10NsGeCCnDOc2vDtsHJOxnYNdaxv1y4Q+SR9UHmPYYFvNoTfwrGE1TkmfifKP3AqEjgecQ11hud+z6m4F7wvkeLWweXtGosU/astyK3sSbTxDtAGxH8cGnwEwvMyyKKgIbTpzqQa/xrfglad7kTnqw1WKVpyF5Z7DHimQXwzSdsL1mDHg5AGpxb+O47s1iAkY+Mdg2HnZSeoRS+q2vqUqmqLSFa62yj4HY40rVgVellzpuCUtD0H7I2OAO6JUHKv00s+gd14KzTejKOw0pS97XFsp7RswS/Qhpsg9AxO3/lmp0Rt812Qc44zMvgi1F/tRMpLCanBdF6sQS8lzS6uEUjhtW0HrGI0/DqZ9/uVli0JVRsRC63/LdgVtL4Pez1UHoMW344UXOtkMUQXJJ7leCj4E2Jl3hoQ8Ru3vMHQGQNfwa8UkStos9ovB1Zmc6Fx0e9giHjBdwROzjg47mc3eA/KeE27xV2PofW/d9qwarOjJKNfog03tJ2Pb4TGm3AU3PZQ7glCLyKuYUjexQlveovSth05Y1+hseVQ95NE4JydqHvfXkavU863C8S7NxT8rpMRfvDMdNrGbpmEvWW/RA3+ju8j5tSyl1ys0geRwe8igz/BKvorVifK3WAwGIDvAAcCG4D1wP7ApdlcaBT8DogU/RMCp4FrHHgPQEr/l+holozGq7CrzkS3TMbesi92MLsqd1kRW0Ky5RqF5rux665DIx86ruasai10psDcOD+CLfveLQ1kOkES3ekkACnd5+IgfqfrG+1L6yYWQNZwZ0/bdwRS+NcsZAcr5xSn3G+yEGCVQeEfofFfTkYBgNaR0ta2VYRQYsGRKCVs5WR1f4PBsOMhIneKSLmIpK1vnSgve4OILBeRBSIyrd25OSKyJHEuc8EMZ6wL+IeqnqWqg1V1iKqeo6rl2chpFPwOiIjPqbE+6AWskrsR97i047T2u04tdGxnz7fuZ2g0q+yJtjkiH6GNt6LNj6Hto+Ldk0kNOItB8H60+hI0upzOLfeW+vYWTr55OmKO7ORB4a3I4PeQkrsSQWXpgt0sJPciZ3bXMPDPpi2Izg/uvdDY5kTVvI54kUGvYQ35BKv4BsTKIsKeREyEa1Q7eVzgPRwZ9Abi3pWsq+9ZhYkgPoPBMAC4G5jTyfljgAmJz6Uk3OsJhX1z4vwU4GwRmZJpEnV6aA/KtnJdR7pU8CLyPRFJX2rL0GeoaiK1rP3evELk46znsJvuR6svRhv/hTZch1af19ozXgp+QeaI8hA03YQU3ZxQxh1pUdCakK8rJdgAzbdBbJ2TGlb6QmKB0R4B39Ggzdjlh2Nv3sPxIuRdAYGzIOdciC2Guu+Rfs/cRiuPww6/1/qM2aCNN0Doedo2+jzgPwoRj5PKlpIq2IILcCei+wuR4juy715nMBiyRrTnP12hqm8C1Z0MOQm4Vx3eB4pEZBgwA1iuqivVSbF5KDG2M1YD74jIr0XkRy2fLF5NVkF2Q4GPRORT4E7gRe2NTV9DtxARVHITtdRbcDk5881zwb1ba4c1Db3mtF/VBqcLXeHvAR80/IFWZahBxy0ffgP8R6KhNzoXQIOI7yAY/DEa2+BUrSMOkYUQvK39wOweKPoJWv1NZ13g2gUKfwfV38RpfiNg5UHut9Gas2ntFhf9HLQRKX0CLT/AcZFnvgHEl0PNN1FrPJQ9kLZErGoQYqvAKna8BOFXSc7tD0H4Zcg5FXENQnMvhqY7Sd4SELAGQenTiFaDa0Ta6nZqN6CNN0N8NXj2Q3IvwFngGwyGrOmdvPUyEWlvLd2mqrdlHJ3KCGBdu6/XJ46lO95VTvvGxMcC8rsYm0SXCl5VfyUivwaOAi4EbhKR/wH/UdUV3bmZITNqNzklW12DEauk87Hh99Hg4+DeM1HCFcDluICb/pNQqYrmfRfxHZIoeZpQUqF5qMYTqVlpXOx2QkmGn6fTEq7agF13LVJwjVOf3VWI2vVOcNtW05ww+hdBzQ8hcI6THuYqdAIPw2+iSU6nOMRWoLG1rfvbyXTslJfAXo3W/xYp+kfyI0WXotXn46QmRtGcs5yucUnzuBzl3XKHwIlofC1EVziR/ETBNRIpvt2Rm/SpbaoRJ50uvh6IQPhdNLYopQOgwWDoEypVtWPwTXdIt+rQTo5nRFWv21ohskqTU1UVkc3AZhyfazHwiIjMU9Wfbu3NRWQOcD2OP/MOVf1Th/OSOH8sTimzC1T10629346KRj5CaxJBkRpF83+GlXt++rGhV9DWjmcC+CD3IpBCaPwHSZZk442oNpPssg5D5HVEfKh7d8et3eLmV0U90yD8Jtj1pCrI9g1fbAg+hIZecubXIM4CM50F2jFFzUPnpWbV6VzXfLvTVKbsacTKR61C0v4uuAanP57x9yYOkS/R2CqwhrQGvGntd5OD5Jr/B/lXO2ltGsN5HwGQAuzan4I1AoJ3OgF0KOCH4vuwfFn8XYh8BPYW2rYvQhB6HrWvRayCrq83GAyJSnZ9LURa1gOj2n09EscK92Y4nhEReY00T6mqR3QlRJcKPpF/902gErgDuEpVo+JUPVkGbJWCbxdsMBvnZXwkIk+p6qJ2w9oHKuyPE6iQVYm+3kJjy52KZO4JiGv4ts+nMbTmO8kWaMNfUd8BiSCuDuMb/0mbyziRhx2vRHIORMWLU988QWstBDdJ1npi31yKb0NrroDYfGc/ueCP0PA7NPoxaMtvTkJhixfcU5wuaG3SJFLQOkNILTCzi9OEJml7IR02aDVadTaa/2Onbzxe2sq9+iD/B1hWLnbON6D5zg7X+0nfX17AXoNWneKcK7oB8R3meFCSCDpFb8qegdCrKALBR6D5nsS8HRcuIWi6GXx3dfFc4CxwOi7mhe2acmgwGHqLp4DvichDODqrTlU3iUgFMEFEdsFJezsLOKeLudq7Rf3AqWRZGCUbC74M+LqqJjUDT1TTOT6bm2SgNdgAIPEiTgLaK/jWQAXgfREpEpFhqtpZi7Jew274l7PfKh7H0i78C1ags0DKbCatIaVNqrghtiJ9gZP2CryF8Ito/hWkKAeNQtMztEWyR3GU4i+d06EnIfa5c51ruFOgJfqxk/veigtyv4cEjkab7kgE9nWmhPxALFFH3QZ1kVxlEad4juRnoeBbxq+Fuh91uK8bPLtj5V4MgORfhUYXJLIKYomxocRz27T9PrS8B7v1ObXmMtRzAGlNgehiJO9SyD0fIh+hjatp85Kk2cJIu1WQBs90pwJfa8taH3j2djwWBoMhe/rAgheRB4HDcfbq1wPX4rgmUdVbgOdwPM/LcbzPFybOxUTke8CLONbTnar6ZWf3UtVPOhx6R0S6CJJyyGYPPmNrsWw72mQgm2CDTIEKKQpeRC4lkfw/evTojqe3GY0uTQRThRIuWaDup6h/FtKxKUh3sIpAXMk/pBoD19j0431zoPnWDsKFkPgmKL4drfkeaC3OhFHaXl8e5HwT8R+BePdFw29Dw79odZVHv0h0MOvoOo84ii33vITbvisLMwSegyDv+4hnN7TisNRfQKsMyf8JWvsTsm9Ok1o8hujn2E33Q9OtzvfEPQ1yLoDmO5Llxw8ljzuBidEvoOH3oI0d5nor/W3toFNv3ipMLMQ6SzwJgP/rWT2NWHlQ+qgT/BhbB95pSP7PTaS9wdBN+qJUraqe3cV5Bb6b4dxzOAuArBCR9kFZFrAvTvB7l/Rlqdpsgg2yDkhIRDjeBjB9+vSe/5bH15PaHhWwqxzrdysR8UDRjWhNy89CzOnW5pmY/oLAaQkF1t7l7saxJj1OP/dYOkUcRHwzEe++/P/2zjrMkurow2/19XFbA3aR4BLcIUBwlwQN7gQJSdCPhJAQXEJwDxII7hIIIRAguLvbsrAyMzt6vev74/TM9Zk7Oz573ue5z8ztPt19+lqdU6fqVwCaeI1c45qEdAn1w+Rr0LwvpD8p76aSr0LnedBwBwQ38PTce2a7DlQdZTTlQ1tD/MHyzlmUNHRkxZ8kn4ZkkeUq8SPEkMCq4NSg7eWWmvVB6iW0ZS8z8In83HgmtJve11saM69/5QFIxZ5l915805D6q8tub7FYFkpeJxOglwK+BA4p58DRNPClghAG2mZk8C/tBVplIcGciOoFJrAa+JogPQ8IQPQfaGRnJLBsQVPxT0cDq0DyQ4yrOADOZFSqoOXnmRSyAlyyx0vim4QSprwZdBTSH/TfrJcEJN8DnY/UnoW2zs2Ug40cCIF10K5bTFW2IafI2E670eTnSHBVxDcVrT4FOs7DvB6lXi+AtPd6eueM3g81v4fYQ5D6GgI/RmrPRJy6Ib8Li8VSJmMzyG7IUNUlF/TY0VSyexUv2MBT6dkLE5iQzUPA/p7s33p4gQoj3VHApILV/BkIGZlUqTGpUD3SqYNAu26E9GyMsY2Cdnm1w4v0Qxyk/m9mNulfBSI7IY13IonnCwcgOQQhmBXdHfk5+JfyhFj6k01dELexAkHEqcFpvAOZ/DpUnQDRm2HeltB5Lrm54yWu61sRs1QVWsB+ALjQ8X+4P6yEO2dD42qv2BvCu4Azlb7Hudm/HklE5+M03IIz+Vmc+suscbdYLMOKiARE5DgRucd7HCNlGp5Rm8GXCjYQkSO9/SUDFUYLp2InNLwFuPPAN7WoeMkCkZ5FbtqYQrq01LA4lblVzwCVEOZlLOZ+Fqj/W28lOI39B+3+u4lKD2+H+JrQ9gtKRMQHMLP/gUR3iyndmiUHq6mPofMCBjzcFoX6mxH/UmjznuDmR7qXi2se7lzoPMf0Ec8DE9zEpAu6P9Bn7r8ETH0Ai8UydpjgM3hM9lgAuNJ7vp+37dD+DhxVLXpVfUxVl1XVH6nqWd62qz3jjifzd7S3fxVVLV+HdZgQpwLxzxg64w5mnbpXUx0gBKH1BnaO8HbgVJMZszkY9/1UpP6G3txsjT1hhG8Sz0HiP6YinO9HXgW7IviXprSWfF/92Sn3efRhBv5NVGN4Ww+F9HeeAl+EvgvY9NDfbF+BOLjzkPAmyKSnc98HiZh7kFqQKiAM4e0htNkA78FisVgGxdqqeoCqPu09DgLWLudAWw9+DCCRndDUJ6aeOS4E10Wqi7voS57DqYOmh427352LhDZHwlsVtNPOq8mXXtXuW5Dw1mjsYQrW5FN9JUpUgDMd3I/zr4IkX4VQ1mcwq478wImhbaciTQ8jTQ+gbX+E5P+KN3WWMLN+3wxIvEL/ywApcNsRcaD+Wog+gKa/RgIrQ2grk/aW+hSc2pJFf4phgmgTg8uwsFgsfVKudvw4Jy0iP+pRjhWRpSjTpWoN/BhARJCaE9Fqk+u9oN4BcRqQ6v6kYksEoUUfN6lgbjFhmGJEoPoEJLwFOndTcl3bISOck9N8H+i+icLPZb5YDBSVmE1/gXZchFNzEtSciDbvRVHj7ZuG03izua3E22jsMUh9BYn/edd2867nh9CG5qrih4qfg6bR7ttM7r1/aaTykN7ljXJwu++F9jOAJOpfxpOtLSurxWKxDJTh0aIfS5wA/EdEetKclqDM5WpbLnYMIeIbWtd/MSoOJrfmugOJl0xEuzsbs9RT6mPhg8Ca3vFpo7jXfSfUXuIdFzCubf8SENkl50gnMB1puKX4OQtc7krh2NM1KnKABFZC6q+nqBs+PRs39Q2aeAskiFSfjNNwDdJwC1J1PFQcBr5VzD04k5G6i5HASrlXbzsBOi6E2KPQeTXa/IveCnSanoPbchDunPVxm/dCU1/nHpt8F9r/iBl8uJD6GJ27OW7LfgVtLZah5sv3vuHFh1/j+y9mj3ZXLENHI7AycBzwb+BDoK/KWr3YGfw4Rt35pmSqbzEjnFIGTsVOuO486Dyf3tlsjvpaj6petu48GGMayJOqBbquRSY/D00PQuJlkBqvnKpxTWt6DqQ+A98iSHBtqLsCnf9b75QOSJNRqssnuAkk/p27TbI+rr4pmIFInkfA/RrmbYH2RN0HV4f665Hg6riJ/3kys96AomJ/44HQtFHpi//bKMklXiATrBiH9OeQfAcN/Bht2deTtE2D22py5JueygQUJt6k0AOShMQraPMeMOlfVmveMizcdPod3HPRw/gCftLJFMdfewRb/OIno92t4Wfiu+h/r6p3i0gNRtr9IsqUbbcGfpzidj8A7b/HGN4kGtocqT7JpPP1R+pD+v5WOFD1fxC7x5SQlZDnBitS110C4LYZ3fw8aV03+oSpLicB0BRaeRhO9bFGwS3xsifV6kDHKYXnTRRZY3e7cVuPRWr/6GUehIF8adgeg++57xOvoB2Xoem5EL+fHPd852VoZBe08yqI3ofJiS9Wgc4xqXXpmV46Y881XHA70OadUd8MpOb/TOGbfGVCoFdZMPkGhDYtvDeLZRB8/cG33HPRw8SjCYia7+lfDruaDXdZh0jlYOJfLGOAnh+c7YGrVfVBETmjnAOtgR+HaPp7aD+dnDXo+JNo4gVofLB/I69dlDbwYYhsi0S2RRPPALNMKplTUzh7B5NDX0TJz018AG3Hetfz+tl1HRreCk1+5AnN9GjGF6OYAE230d2f+5JZ0y8w7sVIQ/e1FE1/k4DxMETvJjN46RGM6imS4zPLDoFVPHnb/P4mIP0NpL815V8bH4HAqpB4q8g9uJh8/pFDNYl2/c1UxPMvh1QdNqB4Asv4YPbX8/AH/cbAezg+h/lz2ogsObHf74UgyO47EbkG2AI4T4x7tKzldWvgxyOpr7xZcV7Eu3ajXTchtSXLBwAgkZ+h8efIDBDC4F/GzNRDG0PFoWjLLpD6EkhBug3SAUy6XNYsXiqRhr8XjxuY/8siV04brXz3GwblV9O2Qj3+Pukjt923eJGNISOA434HqCmMk3gBCW+FhreD2BMUGm8FTSGJZ6H+Rkg8h3Ze6xW/iZtz+hbPFRsaZlTVlMCNvwTEIP4smvgvNNyBKeZomSgssdJipJK5Qlf+gJ+mRRtKHDGBmPgGfg9gG+BCVZ0vItOAE8s50Br48YhvemEFOsB80ruLbM/Dv6Tndk+YY4IbQu35JprfqULTs9HUN2TW4BWjc99gtPcRkDqk8R7E11jYC3VNxbgCkmaNfEjow2iXRQSpvxbxVeNW7APdd2KMtmMe7nf0rsOnv0DnH4viM96MigPBbYPYneTO6AVwjPEMbQrBn6DddxnPh38JpPLgIVE+zEfjL6BdNwBqIv5DG5kd7iyIv0hmIBc3KX+pD4xHwjJhmDxjEifedAwXHHA5CASCAc569FQCwaH/vFlGFlXtBu7Lev49RQquFcMa+HGI+BdDq082VdFyDEwYCe/c57HqdqLzdiVnBpr4D8xdB0XQ0BZQ8wcKDKgo1JzlBc+lIbBKyRxvEQd1JhnVuFEnP1jQwzcd8WbTUn0K6psGsafBN8mU6i3I/1dzHvd7iN4EzmKF55QQZGkPiDhI5V4YFebhQeMvoK1H0aNfoInXof4KJLSxVxkw35MnRSoGWiYCm/x8fdbfYU3mz22nYWod/sBC8PO+cOTBLzA2TW6Mo+nvcOf/Frd5P9yuv5nZMeBU7gtN/4bI7uBMA99SSN0FSGj9vs/X9luKrw2ngRTEn4HoPyCyJxl1vTD4VwT/CmjXTWjr0ei8nb2KdCXwFall3ycOwzPeLKXPb15HdVvQtlOM0p7/RxDYoB9xH7yAuy8oWI/33htNvofGnjaxEsOMmbnnCRd13WD+9c0A/+J4ZaoBv8kSyEsLtEwcguEgk6c3FRj3rvZu/nLENRyy0vEct8H/8c8bny5w6VsmHgvBEG/4UbcFEMSpH9x5VNHoXRB9wMijVhwEbb8C7QBck6qV/t5EawOOfxGoPWtgF4mXUIDrJQbxl03OenANNPkW4lsCKvYwM8XEy5jAsla05RBoetikr6W+At8M411wOyH5ygDvPl+AZiD05O67FNfiL0J6Fm7z/pD+2tQWIAmpT4Dby+xrsWlDCm39lQloEx9oGuouQcLDKW9bevoi4kDDrWj7n0x1P/+PkJozrLreBOSNf7/Lm/9+l/optWx76OYEgn7ctEswHMR1XY5a/US+/zJT3+Kjlz/l4auf4JLn/zz+3fh2Bl8Sa+AHgWocbf2lEYoBNLQxUnfpAovVaPeN0HlppuRr4n9korkBotB9O1p9KiJG5EXdbog9YiK8gxuWriPfg1RkotpL4TSZ80d2QCI7ePfqevnh2UZY0c4rIPa4F/SXQKtPQSI7seCV3xYACUP1qYj40Oij3vtRLEYhm25IvpS3rdQxfjIDiIApE6ztFP6yuCYNjmTvLm37NYTe7H2/ejAqe/8EiSAVeyyw0p1UHmzc8r2z+DBSeXBmv1OL1F20QOe2jF1Utfcz9dBVT3DtibcQ704QCAW49U93091ufkNW33wVtj5osxzjbo6Hr97/lqdvf56tDxzn9RWsgS+JNfCDQDv+4umde7PG+P/QziuR6uMX7IRdN+XVc09SXOXN+8/tQpt3ycrNvgTqL0dCfYhbVP8O2k/DBF75QSpB5+e2iT+G2zYJqTkha7DiCd3kyMMKxB4GUpmI/o5zIby5CdxLvEj/hnYI0CQSWAUJLIeGtoY5Gwz9dX2LQWRnxDcd9a8ALft4aXM9HgPHeDI0z4ugMZOWKBkhIo0/h7YejTHKPrT7Fmh6GPFNG3C3JLQx1F+RF2S3EIibLGQk4klefvQN5n3XzFO3/pfP3vySiuoIx199ONeddCvxbvN5T8aTJOOZz987z37A/Dnzi58zmuTp259ji31/gs9vsyomItbAD4bE6+QavBj0tS7dL/mzXsEYeMXMHiMQ2TUzG4zea5TsevuQRNtORyY/U/IKTsWOqH9RNP4/xKlD0996RW6yUYjejCZeQetvQtwvwGmC6t9Cx18wa/ie3rw7n3zFO523A2i3UalzasBXDxqG5LMlehWCwOqQfI3Sa+Z9EPhxr+dCtB0dUGnbckiZanZSiUR2MFI4k55CE29A/D+Q/Az80yC0C7QdknesDyWc885qx3lkZtxp0E606xak5uQF6p2ENjaG3jIhiUfjHLfBaXz/+Wxi3XHUNYP8zvldXHDQFSTipZelkvEk875rQRzpPS6b957/iAsPuZKTbz522Po/3Nggu9LYILvB4F+c3DFSwOiwLyiVB5MJbBMjsFJ3DYS2gMBqUHUUUpOpMqduKwUzVe3o9zISXAOn+hikcl/EN53i7nSF9Acwb3209VB03vaQ+g6pvxQqDjZeioY7QPLXzWOe+zoFOg+cSqTymCLu8GyqoPZsCG/Tb9+LknzbCNaAV7Uuv08+CO9qAuhkEgv2sY+j6UyKnzjVOOFNcGrPwGn6O07dBUhgepFz+5B0XrU9Nz+V0S3rfbMsnDx+w9N8+/Esop2xAiPtuspiy04jECo+VxOBxZZdhBU3WA7HX/i5T8SSPH378zbgboJiDfwgkOpTTF60VJqHbypS/dsFP1/FAVBzOgTWg9AWSMMdSGgdpOoIExxVeViOQImENiBXGS1oXOMDoWJ3M9MuSdpzRcchegvqxnBqTkEqD8HxT0HqLjUDEanADHayA3ZSxvhGH6Lvsq3zoe1kk2bWL5WFmyTg6cN7ZXMju5AZKIVMSl/tWTiNNxnd/Mie9F9TPv+rEUECa/RzTIrc+wdQNP4imh33ENmR3PctjIS36+fcloWVWZ//QDJWfJbu8zv8/Lc7se72a1JVX8nUpSbTtFgDkaowwUgAVXj/hY+Z/fUcDj3nF2xz8E8JRYa5oJVlzGBd9INAfE3Q9Lgn4SoQXGtQMqAiglT8DCp+BphiMjpvR3B/MA18S0HD3xGnwrQPro3W/BE6zjZr96GfILXnlHUtVUW77zABaeEdTHBY6u3+joL2P6Dhn/YKtkhoE5j0Irjfo4l3vEpqWT9GEvLWn4tpvPeQhuTHXvpWnlpeTjnZAEWFfDSRo0gnNX+GwJpo8g2TPli5rykFi3mNqToWjT1SZNbsg8i+Zi3dqYfoI146nAsVe0F4O9TtMkGF2gWhDRH/0mjyXVNAJ+29Tzm59wnouhyN3geNd5uiNJG9oPsfmWDH0KbeYM1iKSSdLL7kJI7QMK2eaUtOZv8/7M7v7/oND135BB+8+DFt8zp441/v9Lad920Lt/7pbm784K+89MjrJBMp3LRLqCLIJrtvUDJnvvn7VmZ/NYdpP5pK/eTaYbk/y/AhqhNvAWOttdbS114bzFr42MCdf7KJkO81mCGo2BdngGu1mnzPpID5FkeCa6KaQNvOhtj9mPX0IPimQe2V0LIbfc+2gcBaSMOtBXKnqkm0eR8vjzwF+KD6TCS8Ljp3W3LztfMRL+AvihkI+EzufegnpgKctlO8djxQeQxO9XHlvhymr8lP0fm/gfQn5lo4xqi7c4AAVP8GqTgItBUII06FEQlq3gXSczFBjQ7UXgDtp3peDsy5JASaInegEoSqX+JU/RK3eR9IvklvHr1EkLrLbHCcJQfXdfndjufy6uNv9tkuXBlCVfH5fb3R86U44cajaJhWz+1n3Ue0I8ZPdl+P3X69A7edeQ9v/vs9mhat56e/+AnTlpzMJ699zpW/volA0E8qkeKkW47hJz/rW2ejFCLyuqoOuU5zeNHpuvgRvxnq0/LJH34zLP0daewMfiyT+pjcvO44pD4a0Cnczuuh8zKzGKcuKhGj5Z5jKBPgzkPcr6HpfrTlYC83vMS6XOoDSL5ulO/a/mCKrZAE6rxZeJreXPHonWhkB2h6COb9HGjPO1nPbFezjCQQWBciu0JoG+i6oudu8o51QBqRqsMKuqjqmjxwQN0OU33ON623VKsElkEmPYy6bZD6BO24ysvdV/N6dFwC/qWQ7Mpv0Tu9WXqW4W4/jdxyu2kTSS+1oNlKfoneZQRS75MjkqMxNPG2NfCWHC46+Kp+jTtArKufAXkWFx58FQD+gA/H72Put81ccMAVvPzo68SjCT5+FV548FWCoQDJRAp1lYRXwOb8/S9nzS1+TGVtkWWy0cIq2fWJNfBjmcCKppZ6r0EJQWBlNPUN2vZ/xmAEVkFq/2zWnvNQtxU6LzHH93wJ8gvU5JA0ZV8nPYu2HgGJ5ylu5B00/iZ0XU7ubL8Vks9n9wBSb0Lzz6D2z+BfClJv5Z5KIhQYd4Dki+ZBT936fKrAtyjUnAaEcDuvNgJB+IEopGeiUgnO8pB+g55AQq0+A6dyz8zlnVoIro2mjiF3xh1DOy5F3Sjinw4SQVNzKQxqzB+wAKQguCbEn85qH0GC65l/nclGYKeXMOJbNPe0mob4f81gLLCm6YNloeH5+1/myVueGbbzp5JpSKZ58pZnSMZTucF7aoLv8nH8DnO+bWbJsWTgLX1iDfwYRqpPRZMfeFXdFAIrQ8UBXhrafMCF+Dy05QBofKBATAW3xcvN7i8n3JOJDa5rriti1q9LzeC1E7oupmyFifSn0LJ7qZv0CtiUYl6J7Z3gzoTWw1D/8pB6j0Lp2E5I5y3VdPweN7guTmCJvLZF7iX1HrT9CiUA+CCwAiY4rmdQU2zJQKDyMKTyMKP8l/SuX7EXhHcyLWovRFsPpFfEyP9jiOyU1ZWkeU9TH2T6Vn+VXaef4Kgqj177L+6/9DG+/ei7EblmIlp+XQI3rUye0VdA7ihhZ/AlsQZ+DCNONTTeC+kvAR/4loDECygJMoYlCanP0eafoalPwWk0mvTBtY04S0FUdz4BzwtwDuJklZZ06iFdbHbaw0C+VaUkaMMQ2hqitwzgXNld8Fzj/QYH5hF7CAKZNXtNfUXfVfiS5pH8yPQ38bQJkHOmmUFG9v05U3Cqfw2ANN5qgvIkkKNuKMFVoelJsw4vNRBcp3c5wfTvUUi+T3bNAG07GZn83MDu0zKmeeXxN7n4sKvobO1i5Y2WZ+3t1uBvp/2DeHf5LvehQBwxTrS8Qa4/6EMVQpEg6ZTL/93+KyprKka0b5bBYQ38GEfEB/5M4RaVEIUGM+HN9kyZVm09DJr+aeRPG24yz91WTIR6it41bzD/Jz9Bu242UeHhLc11a88ys8ghF43pwW/6Hb2J/gcLvqHth5MXDezOzSqf2xdRcKpxprwBmEJAOndHIDt2YMWc9X9xirszxTcJfFsV3WeC+PJmVm5rP32zjCe+/nAmf/r5hcS99e3X//UOr2dFvY8kxQRwANbYYlVOuPEo5s1sYeqSk6muryrabtSxM/iS2Dz48UZgdfAvQyaPOkyuXj3mecIYITSFVJ0A9TciU96CuivIHdcp0AnR29H5J+B2XmnOEFwH6i6jfw9AD9kfpXJ06FOULtqSR2Ad+s9bL5cIEtkRTX+P27wX7uzV0bbfU3YJ1eyZuG9RT5wo6/WMv4h2XT+4LgZXyz0nflu/fYLx9n/eR0fJMkn+r76A48vdGK4Ks9fJu1A/uY5l1lhqzBp3wQTZDfVjomANvIeq4nbdhtu8N27rkWjy4/4PGgVE/EjD36HqWIjsBtWnUPg2Kji1uJ1Xoi37oR1/gtYj0Y6LkMCyRdr3EIXOyzMlacNbII13g9T13SnfKhDZz8jZSi1DWmhGGpD6v0BlKSnNvq7Vc59BE9gW3ABpehikFm3ZF5JvGzd/+gvvV6+MwUzs+VxXZvJVcmMVohB7BO3XG1AaCa4N1Sd5/fGBfxkjKGSZMFTVV+I4o/Pzq/kOQIWGRRp69egdn0NFdZil11hy5DtnGVKsi95Du66Czmsw656CJl6CxgcR/+L9HTriiISQqsN7n7saha5LPRdzEPyroL6lofUIciLou29GI3tAaFMToV1QFx4ghc7ZHKUNUPCvUliMBgdjWD23efpjSLjgtlF2udZy0TY0+TVE7yHjqveZtev6v0HyLeg4o8TB3i+ZBJBJz2Uq8KVmQnoeuW5/B8I/g9i9fd+D+yUavc8IEgE4jRQE26U+QeduakSJ/EsN8Ia901bui1bsDSQQifTb3jK+2Gi3dbnrggf5/O2vRt3F7PM7bLDTmsz+eh6fv/kliy07jd/e8EsilQsu2jWiTKAZ91BjZ/A9dN1CxuApaByNPjKaPeoXdeejbhtO1SFI3dVI1a+Q2j8iDX9DtNVIuOYQgI7fQeJVcKpNrnmxWat+ZyLQtQuSLxe5sicM00sC0u8z5MYdgDS07ukFs/UIw0yBSf/FCa6IhNbDLFP0gcZz0/CcSgoyBDQG7ncYidsAmep5+aS8Mr5eV6qO95T6stu64DajrceUc4MlEfFZ4z5BCYYCnHLrsYTCoy8bm065PHbdU2y6x/r849truODfZzB1icmj3S3LEGANfJ+MYE3zAaAax205GJ2zITpnfdzWXxqZ3KojkcguRpbVN4PCdetuUwFPW4xiW+pdqLsU/MubGXHRj0P+8DgIvukMzPkzxKUodRa07IOmvjUz5Jrfm35JxKjhkfej6dShbhvafR8ae8K0qfiFl4MPvd6IxHNAwugPVBwEoc0o1L4PeNkJ3pH+GUjTYxDahNzXT73sB4ulOH896ro+K8GNJKlEmmtOWMBsltFkGNbfJ9IavHXR91B5IHReRY+LHgkjkR1GtUsafxbtvheciCk040XTa8fFZhbeW4f+ebTraqQqs04tTgU03GgEa9z5QBVGRS73B0Xc+dBwMzp3BwpV5oqRNuv+HedCeibl1V0vFgXvQMWh0H09pdPo+iD1PtqyF0x6CqdidzS8rVHf8y2Cdt8NHeeY60oYqk6E5u1RTDoQ/unQcJfR8o89abTle+8jBsn3zGuWnkXm9fLO5UxCKnOV88Q3GSK7oYn/mTK5vbc4deD3ZZmwqCpP3vQMbz79LlOWmMTMT38oGcE+GvTUlB93jJ2XcMxhDbyHVB6BOvUQfRicOqT6eMQ/Y9T640YfhbZTMfrtYmaejfeZGWviNcqpQy+BHyOTX0TdbpQQzPkxBW50pwLtuDRPVrUv0tD5V6i/A+ZtSf8G3gfSZGbdmZ555VtXoKS+fL+4Rrc++QkEV0WcKnBMpK9U/gKN7GyEfnxT0Xk7exr3HqkvkOhdSOUBIAE0/u+8FDkxqXM5r1Xac/WrkeZ1VsztTmhzCG0JsSd6l0ak3gbGWTJcc8LNPHLNU8S74/gCPtz0gnzuB8+kGY00f9eac31/wM8GO689Kv2xDB/WRe8hIjgVe+I0/h2n/vLe2fJQoJoys/HoI2hvxbF+6LyMTHEWBY2i3bebp8Xq0GdVUzPXjOK2X4jbchDaeQUiCag6LsstHTRCLaHNPC35YpRIjUm9D/M2BtrKuBHNM+4B8K8AwfW9Acwg6lBrGpUIqkXOIZWQ+hDtvAbS+apgSTTmicYE1jB96v0qBMBZjOLLMylwv0ab98ZNz8/tSupDc2xoC6g+GZn0NGJT2yweqWSK+y99vFfEJp1Mj9rsfb/Td2erAzYlEPIjIoQrQ2y+78b85rojR6U/g0aH4TFBsDP4YUY1YVKyUp+Ailngqb8JCa7Wz5H5Rkt7c7Wl+lQ08ZoXOKbgNCCeepq5pou2HAjJD4A4JF5Dk68iDXeAf2k08SI405CKvREJo8H1IPECuTNpx5SRjd1Ron9lqG3JYqAzC++r8jho/z/6ri5X8qSYb2AY/DOgeVeUJEoFVOyHVB+HSABt/yNE7y99jZTRCRCnBm24A9pOMLr/Ug1SD+5XffQhato3mHx3t+MK6PprZnf8X+Bf1stnt1ggnUqP2ow9n2tPvJX7m2/it9cfNdpdsQwz1sAPN9H7jMRpj6FR0LaTkElP9n1cxT7Q8Vcykf1hJLIb4KmgNf0TTbxKbx14J0tCMvW5V3WuxwjHTWW61GdIeHMkvHnOpaTyYDT5DsSf8LY44FvBBJstiA0GwAdaTGNeoe04ylu778GbXcsUM0By202gX+ozMmv73dB9DZr6DK3+LUTvoG/Xv4vGnzd13HU+vWJBGoX0nP67lHgZTb5vPAVdl+XtjKMdlyCNNw3gHi0Tmc/f+mq0u9BLZ2sXR615Ev6gj8322pBdj9u+sI7FOGIiBcUNNdbADzPGJZ9nJd1SBVSyCP4E5Gpv7dgHVccZDfMeUh+ZWaR2g4Rxa85Cwj/1NM/TFLqYTaS4Jt9FY/9GpBIqfoY4DSYdq/4yXLcVku8hUm2q1jX/fBB3nqZ4nj30bdyDEFwHEi+ZPjv1IFPBiXjCNN5rmc427tmn/g80P0vfxt0B/zpo69HkpEYOBAmYdXr9lqLufCstu9CSTqe57qRbefLmZ/EH/ex/xh68+OCro92tHD5702R4fPHON3S0dnHAGXv2c4RlPGLX4IcZCa6Bya3uwQ+BVUs1B7xSoa0HmlKhAKSh6zI0Pdvsd7vQ1kO9/UnQDmg7Dp29Om73A0a73rcYmXSxIPgWQ9Pfo82/gK6r0M5L0Hnbo+nMLNtx6nFCGyPB1UyqXVE1NjHKdUSMO5uIJyU7VLiA3wjsBNYxs/X0O14+fvZAqZQ2vUv/6/rqeTgGsf6Pa2IJfItS9GuU/hZNfTuI81vGK7eccRePXPMvOlo6af1hPpcfewOvlFHXfTRIRBM8dMUT/Tccy9g1+JJYAz/MSOgnUHUUxlniB/9ySN1FfR/kzjGGLeeT5vPW1MmrJZ5NEtpPh/Q3SMPtENnBGKHIDkjDbSa1jZh33iS4bWj3bWbNPsuYu9334877uYkaz8kpD0L9TTiT7kUmPYXU/QVp/AdO49+h6lTK163vixQknjF15JMvMPA1gnKEYRT0B8oX5smboUslUncF4ptiAukqfkExzQFtO7XM81smEs/e9WJOylk6OVwFm4YI7+M9VnLyB8RwGPcJZOCti34EcKqORCsPAY2bdK7+kFoKa5unwefVYnYml5hdA+KD5IdIZHuk9tzcU/SUV+0lZdaSZ18DpNHAahDeHjouJOO69oOzKDi1RikvtL53mUngm5Q5VcUB0Hlh//c2nEgNhHaE2G15O/yYb22pH1pvEONM8lLcPDW74OpQeQB0XgLxZ436X/VpSOinOWuWTs3/4aZnQTw7rsKF9FdDc1+WcUVl7fgpqer4HTbbeyP2nn4EzbNaqW6s4o/3ncjKG60w2l2zDAHWwI8QIoEi0rGlGvshvDPEHsQ4WRwIbw3+lc1uXxNadTx0XkrBDFddz21chPA20H131jEBs67dM5NNvgvJj8ldO0+ZaH3/mhD4ce6l1EW7b4X406A+hkeqdgD4pkGySM308F4Qf9SLZ8j3CISgcl8ktE1ujEM2df0PXCS0MRp/jpyBkX/5AXTeMlE48qIDOGWbP5OIjn3hGDfl8vCVT/RG+LfP6+D/tj+Hv39xBTWN1aPcu/KwQXalsS76MYZqHG3eA+KPYdy+LlT/Gqk9L3fWWHUo0ngHRA7AyLRWARGI7FIyBU+qTzYV6KTOqKyFNiPXKCcpGhinbRB7DG3ZHdWMgdSO86DjYki8CMnny7i7EMP3kXMgPRvS+eveYlL9NAGkQRrIjGv94JuMVP26tHEvl8juEN4cc48R8E0v9KAk3kS770DjL+ZWpLNMKFbZeAWOvewQfP7x8fOan77nOMJX79v4kYmAncGPNaL3QOoLcmaa3f9AKg8saCqBFZHaFdHK/U3QmG9qn+IqIkGk9gyoPQPAMzb/zb2WUw9uF4Uz3ZSJDE+8CaH1jYHqvo3+093EuM6lCnyLQPL1ftovKC6FVe/AuOZT9AbUaadRnUt9Ysqw1pzhZR4MDhEHqbvYZE1oDHUmQ9aAzO282pNCVlOaNrwzUvvHQV/XMjZZa5vVGKu1LPojmUjRMLVutLtRPnasXBJr4McYC5JWJ/7pRl99oER2g+47M0VRVE3dcY2iXTd5VdNyR/eKQOyfaOI9Sq9p9+DNYJwaqDrBzLCTI5Uu1FPS1kfOIET8SPWvB1TGVVNfGS+FVEF4S8wsPVl8YOBMQTvOge5bTbxOcF2oOQs6L8/0Q4Ho/WjlfkOqmGgZOzQt0sBWB27K49f/e7S7UjahihAisO2hm7PYsouMdnfKZjRc9CKyDfBXzA/M9ap6bt7+E4FfeE/9wArAJFVtEZGvgA7MD2hKVdcarn5aAz/GkODaaE7pWgBF07MR35ShvZYEofFOiD8DbicE1zaDBYDgxmjr4ZDoSU8LmOC+2D/R6P1e/3rKxhbLOa8FuoCUcZu3/Yq+P27FCtKU7Ll33b7ah6HxfmjeOXezdpv897rzy5KS1fjL5nXomXl3nOcV70mh/hWQ+mtNwGFP++j9ZtDU07fEa9B+tomryA6MlACk55qURsu454MXP+bak/5O1/wuNt1rQ/Y+dVdWXH/ZMWvgK2sjpFIumlbEgX3+72fUTa5l0WWmsuomK41298Y0IuIDrgC2BGYCr4rIQ6r6QU8bVb0AuMBrvyPwa1VtyTrNZqpahiDK4LAGfowhoZ+gFXtD942ZjdqNth6GND009NeTIIS3KrJdoP4KtPNKSLwB/h+ZinvztiOzbp8G/MYFX+AeL6ZTXyLv3LcEpJsxg9psembh+YZcIbgBJN/J0grIvwEHJ7Akbu2FRhCIOL2+vPTnaMv+0PTPooMmTb5nqvhJwBSP6RlsKeRUi0u9770vD2S2JV4kd3CWgMR/KUwhdCGwXPG+W8YVX773DSdteWavzvw/zrmfWFeMaUtOQUTGZLxFMpHm+KsPJ9oRY+WNlmepHy/e/0FjlZF/edcBPlPVLwBE5A5gZ+CDEu33Bv4xQn3LYXxEgSxkiH8ZIJy1xYXUJzm56iPSDwniVB+P03gLTu0fEBwzE81pFO5XuCfvgLznIaTmTKTpXgisRe+YUxox6WtpzOw+O888jFTub9LWiuI3GQOAE9kKJj1D0Y96kQp8mngVbd4HordB983gft/37aQ+QNNZlfh8i1JQj544kPQC/ASkAam/DnEa+j63ZVzw7N3/IxHLfDfj3XEev/5p1tlu9TFp3MEM4JdZY0l2+uXW49u4jw6LAtlRiDO9bQWISAWwDXBv1mYFnhSR10Xk8GHrJdbAj02cBuMOziHA0AjJDBxNvIHbfjY6/2RvtNxjpMU8QltRKPRS8mxZ//uMjn5oXbM+H1wTqT4B6u8BzQ70c4EK4ylwmqDm90hoEy8LoJgTKoTUnGGupjEvaLGIF0AK85W146/kVPHrvc8+iD/d+69UHuoZ+fzXI26C+qa8hzPlJSTY/7KbamzMGghLhkAwgOPkfkbSaZf7/vrYmI2zi3fHOXKNk3jwisdHuyuDY/iEbppE5LWsR7YhLvaulvqi7gi8kOee31BV1wC2BY4WkZ8M8K7LxrroxyKhn5hZcfJtI3CDQM0fR6UghNt5A3ReQOE6u7f2rt3QcTq5BrSn4lt/pCH+DO7cbT11vhTam/KXfa8KdCOTXs8pqiPVJ6PxZ4qkxilE78F149B5EYWR/j5wFkfjT6FdV4J/JaT6BCNClO2C771QvbcUEKAwuyCY01dxqqDpQbR5b1NWNwfX6CH0g6a/R1sOgfQXQACt+TNOxc79HmcZHbbcfxPuvvAhoh1RXFfx+X3EumLcfeHQL6kNJelkmutO/js/WnWJcSts400xhoN5fQS/zQSyo5oXA2aVaLsXee55VVM/W1XniMj9GJf/fwfX3eJYAz8GEfFB/Y2m7Gh6LgRXRwIrj3g/3HQbdJ5XYm+PAS8W6Oajb+W4bJKQ/jzrecKkshWQRmNPof7ljNHWVgisCeliLvQ42n42pVP4BEhB9EHTJvkhGnsS9c3I2t9zfw7U/AkJb4GIg9t2JkTv9M4tpppceIvcs0sYqk9EW48kMyAIm9l9GWjr4Z5xd4E4tP8eDSyLBMbnj/BEZ/L0Jq5643zuPO8B5s9p58WHXyOdGOPytB7pZJoPX/p03Br4UeJVYBkRWRL4DmPE98lvJCK1wCbAvlnbKgFHVTu8/7cC/jRcHbUGfowi4utdR+4LTX2LdpwN6R8guKFXDz13DVg1BbGHTXlZ/EhoUwhtVtIjoO58dP6vvAj6klfuY1+K8l32Jc7tTPbWv7M8B+0n5DZLvl3i+DR9Dy4E3O/IDAASoPMgVSyo1YdoG+ItmUjNaah/OsT/A85kpPo3RdfSJbQB1F+Jdl0P6iKVByHhzfrok0E1bXL081/f5NtgDfyYZdqSUzj+6iNob+5gz0UPHzO13/vDH/TTuEj9aHdjcIzwKpaqpkTkGOAJzA/djar6vogc6e2/2mu6K/Ck5mqETwHu9357/cDtqvrP4eqrNfDjGHVb0OafgbZjAvE+R93vkLq/ZNqoayrPJV6hJ4pdo/ca6dvai4oaeWPcX6N0ydWeY/r6Zg1mBuN6Bng4CENoUy+yvRySaPI9hN0BT9Cm8kCTUdAPEtoICW00oN6J+FCpzPNiOEYn3zLmqW6oYvpyi/D1hzNxU2PLyIsIv/j9z7n7wod6YwaWW3tpNtljg1Hu2fhDVR8DHsvbdnXe85uAm/K2fQEMUjazfGyQ3Xgm/ryXW93zQxKD2KO4s9fD7X7QbEq+btTnclLUkhB7qsgasUfiVUrrygvIZLMuTWgIbiKfAIMbHGSPWXui7yOY2vKLQdVhUHuhSc0riHYvRhgJLDuI/gwcqT0fCJsgQKmA4NpeQKFlrCMinPvE71hloxVwfGPr51VVafm+levevYhfXXU4v7/rN5z75O/w+QfjbRt9RIf+MVEYlRm8iFyAiS5MAJ8DB6kW6oyOpOLP+MQpHs+mLWbd1j8N3A6KhqGIg3bdgjqNSPinSHDtrH1VeXntDki1N6tMg85m8MbdAWdxcL8mM0AJG0MWX5DIXgd8K0Nofei+CVCI7AKRPRF3LgSWQ7KK8GjD39HOSyD+KqRn0SvKg9/rTwTENev8kT0zx6magZE7D/wrIr7JC3LzfSLhLaDpAUi8Bb5GCG7cu0RgGfs0TK3nwqfPYPY389h3iaNGuzs5BMMBpi05hWlLDq1olmVsMlou+n8Bp3prGecBpwInl2g7Ioo/45LQJp4xTlAoIhNDY88glQcXP1a7IfaA9+/f0dpzcSLbm33Vp0P7iZhxlYBvBhCEdLaoTHyQnffc8KGtIektB/hXMIGFZVEJ4W2Nq93tBP+KRjgm+QqEt0CqT0Z8U0seLU4V6lsS0nfRO8CQGghtAdXHIekfQCLgX753GUNV0fZTIPpPEK8QUN3VSGi9wbwQxfvnXwoGIKdrGXt8/uaXo92FHILhAOvvPAHnSBNoxj3UjMq0QFWfVNUei/QSJs3AMkDEqUYaH4DIz8gVxgEIIE69EaZx6vo5U9xIsPaQfJ5MkJyaHPWyvkXl5Olnf+QSRps+sIYJqku8REm1uwKiJj2u4nAgDam3jDhN8k0jp9u8K+q297bW9Pdo7D9o8kPzXJPQcTYmyr1ngJRCIrvi+BZBgmuYqPXUh2j0ATTxBiSeN8adqPFmaLeJV7BY8rj7oof4894Xj3Y3ehFHEEc4fafzefWJt0a7O0PL8OTBTwjGQpDdwcCdJfb1KP4ocI2qXjty3RofiK8JqT0TDW+Jth6DWTv3G7Gcij3QjgvAndvfaTC10j2ij5GbYpaCwGpevnlP2le+Br3jSdY2l76Gf1VIvZO7zZ0H8ScZ+LfKNbP15KsUBgOmzf3En0fDW6Ox/0Dbb82sW1NoxZ5I1dGFp1Q1yxs9V+i6GTou8kSH1LwG+f3U+bjRJ6DjHCPOE94cqfkjIsMRn2AZD7TNa+dvv7uDZLzcweow4i3hqavEu813+rz9LuWeOTf2fZxlQjBsBl5EngKK+UhPU9UHvTanYaZOt5U4zYaqOktEJgP/EpGPVLVo+LOnNHQ4wIwZM4o1mdBI6CfQeAfE/4uShMQ7aMu+4LZQOmAui9AmqNuBONVGg12zBV0cJLgSRLZHo3dB8lNPmCZ7EOB6xr2PojGpjzBr9/mDhAUdMvc93NaOG6Dt+NzmAN13oeEdzCDInZ11RBRV7zfRbYOOCzApdN7uxEvkfmXEeB7aTszcU/RRc4663FrwloWH+XPaRj1Sa6UNlyPWGQOEbz6cSTKRGWy0t3Sa5SZVZn7yParK9OUWwXHGYZzHBAuKG2qGzcCr6hZ97ReRA4AdgM21hB7nQBR/vNn9tQBrrbXWQvmWS2BF1LcYzNva1G7HJVOwpa+XJGzc2rHH0MjOUPlL6LrUm9X7Qfxo6gvEvwxO3SW483ahtIiMC74VIP0xBTNr8UPViRC7H9Id4H41yDsuhWP6ru8W3y0Okp5phG1yDDwQvR8i23oDo/wfPPWCDTswXpIqs2YfvT2rTRziTw3drVjGHVOXnEwqPnpCN9se8lN+c50J7vvolU854adn9H5dHZ/DkqvMINYd56TN/8iX732LCMxYYTEufPoPRKoio9Zvy9AzKkM2r5buycBOqsW0QY3ij4hU9/yPUfx5b+R6OU5JvOTNvnuMa88MudhbLUA1xonirUNHHwOpNKla4e2BkAni674VbTnEpN/5ppY4H+ZaDbcCVUV2pUxgYHhHTMW1ocoT9gMV5q9vWa9QTR8DGk17ldyK3IM7F7fjYjT2FEWzD7QVJj2PTHoMmfQs4p9BQeyB2B/JhZlQJDQqKXI+v49Tb/tVr3EHWH6dZTjy4gPxB/34/D4WXWYqf3rgJP522j/44p2viXfHiXXF+fLdb7jh1Nv7OPsYxq7Bl2S01uAvx/hq/+VFKL+kqkeKyCLA9aq6HSOs+DNxKPaWOtD4uCmKEn8W3GbwLwrBjaDzRm9G2kMUkq8jlRdAeq5n6Hpc/DHoOAdpvAtNvO4J7BR+G8SphqY70OYDQeeY6xOAql9C4n9mXTunpOog8S2N1F8MzjTEqcT9oa867wI1pyP+pdGKfaHtbTJLBn6jIpd6HwgaQ635/QwgTh0iRv1LI7tB142exyQJhKD6tKG7N8uYI9Yd569HXssrj79JVX0lx11xKGtumdEu6WrrQnXkRW4WW3YaP927UFhph8O3ZNuDf0qsO05ljanl8OkbX5CIZZbukvEkn77xxYj1dSixLvrSjIqBV9WlS2yfBWzn/T+iij8ThtD6nhs5hlkLD0N4G5zAkhA4BKoOyWnuxv8FiR/IzKYdiD+H23IUBJalcD09Zmatk55Au/4GXdfk7papoB2If2lkyvNo8hOjNe9bAgmsgNu8J+Ub94jpD119N3NnQeprCC2Fpr8zZWTdUml8fsQrb+tEtsYlBV3XmV3pr8gUm0mAOkYcx52HMd4BqDktR/1PnFpoegSi96BuOxLaFAmuXub9WcYjFxx0BS8+/BrJWJL25g7+sMv5XPbyOSy58gy6OqL8Yolf4qZH3uqsuulKJff5/L5e4w7wo1WX4ONXP+sNBAyEAiy16hLD3UXLCDMWougtQ0niHXDne08cY+xq/lC0qaa+IVMNLYBx1bsmkjzxb0/O1UcmdU3Ab2bH4jQg1b/F9a0A7b+mdyavzWjrkUijcfdJYFlvoNBzisoSHQ+Cb3Fo+LuRyU29i/gWRbtuh/SHfd+ztqPzfw3SANpjjHvuqUisQOJ5CCxjXqHI9uDl/xfO/FNQsRfimwTpeRBcAwmuWXA6cWqh8pCxWhnUMsS89MjrJLNmv+l0mteeeJsZyy/KMeucQldb0VXHYUUc4bl7X2L3E3Zi6hL9iy8dfPY+vPfCR8z67AcUWGSpKRx67i+Gv6PDgZ3Bl8Qa+HGI2/2gyeHWKIQ2RerOQ7x1X20/jZySpm4HEr0fKvfNOYem56HNu3nqdD3BePnflCQ4M8D9lt7FqeRbaOItI8KSfBfSn2Fy8KOZY5Jv4iZeNUYx9anJTXeakOrjkapfoS2vUziLT4A7C0m9j0S2RN31jWpce7nR6DHQ/IqNKcwAJtvI+0sPMkKbQvwZMiI+fiT0EySwfJl9sCwMhCJBEtHMZ8rn9xGpCnPW3n9h5selqoYOL+oqbfM6+MvhV3Pek6f3276iOsIVr5zLl+99AwpLrjJj3EvWWgqxBn6coYlXof339Brx+H/QttOQOk9Uw23NOyKGuvMKZ5fxp8jVsS+RSuf+QK7hj6NdN0PiBSAFmixyrAsth2Dc+z37HDT+DNL0ONJ4B9r9D4hmqcgBqKJtf0Ld7zFGdrDVnl3wLeqVlI0DAfA1ecGDhUjteWj77yD+HDjVSM0Z1rhbCjj8gv24/NgbiHcnCIT81E+uY9m1l+KvR42sTIc4grqZ76abdpn5abHyycXx+X0svdqSw9G1EcWuwZfGGvhxhsafI2eGThziWZmDwbWNgeo1rGEkuE6RM5VjOAUTnZ7I3ZZ8GbSNjOEXzEcphYmdTOX1EYzrvwOdu4kpoFL5G/Av65VGdb1zdOelzg0kpLVUKqCD1F+LJp43ZV0jeyBO8Rm8OBWZgZLFUoJtDvopU5eYzGtPvEVtUw3bHbY5N/7uHyPeD3UVf8BHKmniZPxBP8utVTS8aeIywaLehxpr4McZ4tSj+W5np9pEtSdeM5Hxbqen7x6A6hNNbfJ8QluAXJg1i49AeAfjou6R/g96KW29bn8xxlmT5H6rFAKrQmBlIGwkY3PKnfbgmoe2QecZpn855wlTODAAs3zgp3TuPRhXvJ+CgLz0N2jyNZzqE9D0PEi+g/qmIP4f9XEui6VvVttsZVbbbOXe54loGWJSw4DruvgDPpMCt+w0jr/m8FHph2VsYg38eCOyO3Tfata3e6qfBX+KthwEJEGC4FsGJr+JSLhovXcA8TVC4/1o58WQngPhzZCKgwAxke/JV0y6W2hj1LnMCMA4lUjlwWj72ZB4kUzwXQSp2BuJ7ISmZqLdN5dxI0qhwS72I+mD8FYQf8EbjPRxvoo9IN0C8YfIDByS0HkpbtctXjpgBEihFb/AqSlV38hiKR9V5dtRWnsPhAIceOZebLzbekya3jg+1egGi53Bl8Qa+HGGOFXQ+BDEHga3Ew1uBC170jvz1SikP0MS/0XCW/d9MqcWfNOM4XQTaOx5iN4JCVPRTfGTqc+eNqVcfYuYteqW/SD9ndke2RnCO+J23QadF2IMteM9ytXjVswMPknG8Pu94LzT0cSO/XyRE9B9G/gWM0F0+R6E3vK33vbu29HwNkjQZmJaBsc3H87kszdHJ4fcTSvLrLEUUxafNCrXt4xtrIEfh4hTBRV7myeaRPNnwqpZqXLFUY2jzT+H9Ewg6RV8yS8gkyLHQMefQdv+iFN3LjQ9agLwJGKWDeL/9SrS9bjYQ8Zt31MKtl8iUHU8kIDUZ2bwEVgXCa2HOJVoxZHQeXbeufL7m4B0mT+04nh6+iNn4DX5Ltp2qvGYBNdAas9F+q30ZxnrxLriQxaB7viEYy47hFcff4vXnnyr34I1G+66NqtuUjr/faIj2CC7vrAGfpwjEkADq5qUtV5jrFA0sC6LxIvgziHXLd6fIU5B7BFUz0bEAd8ivXuKBv+l3qPvabcD+IxiXMX+SOX+pZcUKvdDJQTd15t+hvc2548/1s/5S9yTpk2Q3wih6dloy/6gXoxA/Dm09XCk8a4R64NleFhi5elEqsLEOmO4buHnXcSMucvB5/fz/H2vcO4Tv+PeSx7hpt/fSbzbpG36Az4QIRDwk0ql2WSP9Tn55mOH8lYsEwxr4CcAUn8VOv94SLwJTq2ZGfr7SX/RBQ0KSqBdN6Lih/j/wLcoUn0sOI0Yd37WeaXS+2UrplwXAd8kqL8Zx79ov1cVEaRyT6jcs3ebO2fDvg8Kbw3xlzxJ3R5FvqD5U30C+JdD489A6lsILI8E1+63HwtM4tW8sU4Sku+ibjfiVJQ6yjIOCEVCnPnQKZx/4OXM+66FqrpK5s1swR/yEwwH2POknbnxtH+QTvZfgCYZT/L+/z7m6w9m8rPjd6BrfjcPXfkEjiPsfuJOrLv9mnz17jdMXXIyy629kEXMl8LO4EtiDfwEQJwGpOGWgu2aeAvtOMu460NbItW/RsQrjBJcB2PsFqDoS+cFZFTi/Gj8aWi406zfp5u98/mg9gKjO5/+3MyYSUNkF6OGF73XaL7P2wLXvwwEN0ACK0N4+5KzeABNfoB2XmliDdy2vvvpJqHiQIg9ZKL/q36J+JcygxGpNu7y+D+9vgkaWAWj1vcjpPo3RqFuqJBK40vM+TESU5rXMq55578f8LsdzsHxOaQSKdbbYU32P2MP2uZ1MGXxJgLBAO3Nndx53gMFx/5o1cWZ+en3vbXaAVRdrj/170yeMYndfrU9B/xxz5xjFl9hseG+pXGFlOseWQiREpVaxzVrrbWWvvbaa6PdjVFFU1+i83YhM3sOQ2QXnNo/ZbX5Bm3/g0mvI0u7PbiRSaMLbgatB4L7Zd8Xkwqk9lxzXOxxo+ce2hjxL4Vq0ku964DA2oh/Om7HX6DrbxSmxEUgsj1O7dmZPsafRTtv8HZv6ynblall70wGt8NrHwTfdKTpQUSCaPJDtDkrODGHAPgWQ5oeRiRY3rX6QTWBNu8Bqc8xr3UEKg/BqT5uSM5vGT1+Nukg2pszQZ3hyhB/fuTUnLXxVDLFTjX75ayphyqCXPzsnzhr70uY/dVc0qk0jiO4agaCIkKkKsyVr5/HoktPG9F7GmpE5HVVXWuoz1s5abqusPOvh/q0vH7Db4elvyPNQphTsZAQ/ze56+sxE3mfhfhnIJHdKPgYpL/FqdwHJzANabwVqOv7WgpoCnGqkIrdkcoDzEwZEyMg4S2RyG6If7ppn3iF4oY1CtGH0PQP5rTxZ9HWYyH5knm0/4kBVaFz52S1T5igwMRL3r4WSnsukubY5Fu5t5maidv6K9zmvXA7r0a1/JrfIkGk8Q6k+kSoOAipu9Aa9wlAIp6ko7WwGNKsz37Iee4P+DnjvpMIV4aorK0gGAmyx4k7s+yaP+Iv//0Ta22zGpMXbyIYCWbKOqjS3Rnl6t/czOyv547E7Yw/hqNU7ASa81oX/YQlSOH4Lfft1vQPaOelFBjN9OzsJyDpIh/6ngA2x+TehzLr4aoJIFDa1e5b3DOeRQyk+HsD0bTrRnIHAuUb1KJoojf2QIvm4ee3d7P+bfG0+9sBF5IfoulZSJZHpD9EwlC5vy1KM4EIhgI0Tqtn3nctvdvU03bPZ51tV+eWzy7n6w9mMml6Y++svGFqPX9+6BQA9l/6GL7/Iuv7p/DqE29xyEq/5nd3/Jr1digsdmSxlMLO4CcqkR1Aqsi8xQGoPALVJJp8FzfxFjpvT0h/m3eg9EaXa/IDdN525NaL99oEVgf/chDcBGm8x6TKpWbizt0Wnf1jdM4aaOxfBd3S5CemmltRY+2A1IGv58exmCnM/siGyFTDy6e+yDYXgsbrJm4LJu++GH5wGiC77GvsaYxrvcfoR02J2FGo+20ZW/z5kVOpaawmUhUmEPKz3+k/Z/l1linatn5KHatttnJJl/u2h25OqCKUsy2dTBPvjnP2PpcwEZdUB4vo0D8mCnYGP0ERpwGtOAC6Ls1sjD6ARu8Gd7Y3O80uNtNzYDXUnglg1ue10P2IhJGqXyKhjXM2a+vBkP7GnFO70Pm/haYHeyP63XQbtOybJToD4ANnUdBW8C+D1F3cGwgolYeiiTfIzOLDUP0biD9r1vkje3gV4P4NHeeTqYwXBP8ikJpPjush8ONM4Jy/WARyCPzLQ2AppPpkRLJ/aO2821KcH626BP+YeQ0/fDmHukk11DRWL/C59jp5FxxHuO+SR2md05ZTTCYRSxDrihGpigxFtycOE8ggDzXWwE9QVBW6riQzU06aaHagT1e3JqDlILTpAU8ONx8HIvsjoY3R+EumWIx/cdS/pucNyBowiA+S74B/STTxNrQcSIFWPGlwv4eas0H8aPOeqMYgvDVSc7pJAey6ARCk8mAktCFUHph7ioo9cKmC9pMxs+yEKVNrOuE9wkjNHzNdC6yIVh0HnZd4kewOUn8DElzNmyXlue/Dm5lBRO8sPgyR3YwegGWhJxgKMGP5/tM9+0NE2POkXVhnuzU4dt1TiWeVpW2YWm+Nu2VAWAM/Ycku1dqDS+FwN78KW8yo43X8pUjd9CBU/x6nck/cjouh62ZzHfFDaHvAR+7gQcFpMv/NP5JC495DEtr/D+N+96L5o/eZHHX/MkAAUp+gnX8FpwEJrFB4ivij5GQC5BhoHxSp6+5UHYpGdgV3LvhmIE4FGv8fOv840E7UmYLUX4cEljWV6JruRzsuhPQPENoMqTykxP1YLINjyZVncPRlB3PZ0dcjIlTVV3HOP08b7W6NSSaSS32osQZ+nKBup6n17puayWUv2q4dkm8AYfCvDql3yK7Jbh49z0MQWANSH+a5zdOQfNMYsmwCqyMVe6DpZui6kV4jqgkToV91LHRegcnvFghuAMENzIy8oE59PvkDkpSJZE/MyWxyZ6Etv4CmxxHfFHPp1Odo9FFIzaR0ydgUxJ9C1S2YcYuvEXyN5lzpuej8o0yOPYD7Pdp6AEz6r8kG8C1iy8laRoxtD96czffZmI7WLuqn1C6chWQsg8Ia+HGA23UbdJxjXN6EoeGmorNYTX3l5XZ75Vx90yGwDqTeMsFrNadD518h9aXZH1gZabgG7boOOq8js9Yd8RTo8lLZNIqIoNrqRbtnzZIlgATXgMa7jFveN9kE4ImgGjLX1xaKI+aadNP/gpqLdt2Kxh4Et5nCYjaljHyPqx403Yx2XgSpbyC0LlJ5pBk0pT6k4Cuh3Wag05PiNwyoJoEUIhHvuQuk+xzIWRYOguEgjdOGRothwmJn8CWxBn6Mo8kPvCIuCe+DHEVbD0MmP1/Ytu000DZ618FTX0LVdjiNf8u0CW0C6S8BH/gWN6lslUeh6VkQfdA0ivwM3HaIZ6+pO0ZaFrwo9zDGIGf39QuIPWoK0FQf3ZsmJyJQfxXa6rm0NQHOJHBnYRQ9GrwAuXK+qQrdN1E6xa0RKraF7gcxSwJpIAIVe5jBhttt0t3cuUDK1IdPfoLUX4ZKU2b23nu5FDj1qMZBYyA1mIFP6VK85aKqZtmh61pA0cAaRmGw61ogjQY3QOouNcWFLBZLIRMs6n2osQZ+rJP62FQ+y/4Qu82o24U4eWvk6ZnkRsXHIf1VThMRB/w/ytvmR2rPQWvOQjUKbadA/Gl689wJmhl69cle+yA03IrO/6WJmnemmpKxHWfTk1OvzS9B4x29ngYJrg6TnoXUFyb3PvEKGUWPVkqLzmQT8PTtuylt4FuR6hPRiv3NfbjNENrCCMwAJF72ctl7Zv4x4753OyHxDIWDDB/acT5Es4vCKFCBhrc0JXN9iyLVJyC+yWXcQxbxJz1FP68vyTe85RUvjiHxCtp+ul0WsFgsC4Q18GMd33QKSlFJ2Gir5xNYFeLzyKxlR8wae5mIOOj8EyH+VNZW16Sv1V+VY8AksAwy6V+oKiKCO3drcgVzomj3nUjtGZljnGo08GNI/I/cYLz+jHsAIjuCMw0CK0DbSX1M9l2082pzD6lvgRR0/93ktIe3pLT7Hs/Y5mcYxCB6R5FjuiD2gPk3+SaaeAGa/ok45adIafxlcl+z/GsnMsp7FoulOHYGXxIbtTHGkeBaENkNiJgcdSJI3WVF3cNSe6YRnyEI+CGyAxL5+cAuGH+2cFvq/d5o+IJr9ummLvXNG+C40r8UTu25ONW/QkJbmIEMpdYlFeLPecY9ihnsxND2083u4DqeAFBPH8IQ2sRzgy/oL0XKeBUSLwzsMN+iGLGebPJezxKvu8VisfSHNfDjAKf2D0jjnUjdX5BJTyKhjYq2E6cWabwXmfQfZPJLOLVnlZ2nrbEncOdsQmFqHZQl0Fx5CCZQrocIUrFnQTMRgaqj89oWw+8Z4mrwzcCdvR7u3C0g8TxSfyNUHUPxj6+Y6nn5AYKuKQYiThXSeC+EtzUDhYr9kLq/mjYV+1B64FAOAxsgSOU+4F/CS0esBCrAWcR4ZyTiFfH58yD6Y7FMbASrZNcX1kU/TjA53Mv3304kEwxXJpp407jmixaAEXCWQFsPQf0rItXH9kZ7Z+NU7IFLCKJ3G8NUdTQSWLHo9ZyqI1H/kuj804D2wusFN4XKQxESRnkv9rTpW7oFbT0GabwDp+pI3NjTJkMg927AzZffDUBw3cwVfJORuotMa3Uh/qQJMgxuZKL9Oy+jdM5+Nj15/ya7QVPfoc37mFz96l8jebEO+YhEoPFe43HQKATXBqfW3K9GIbQ+4lukjH5YLAsxVr63JNbAW9D4fyg07uJFurvgfgeJLyHxOpp8FRruLOoZcCp2hoqdy7qmhLdGfRdCOs/Ah3fBqTsv07f5x+b1LYHGnkECKyKVe6NtH5IrcFNwJQiuWzRQTVVN3nviZa8IjR+qf4U03Ii27N/HeR2ovdwsXST+Z1ztTpM3MIgCgsafQxvvwgks1/frIEEIb567MbJdn8dYLBZLOVgX/ThHVU0K1yAw+ux5OdcyFQJrA/PIRKzHIfkRmvx4UNfrpWIf44ruJVzo1pf8gjCBTNpYeCcIbYCJT8heV8/CWQyn4UbEqcHtvhN3zma4czbB7bwBTbzqGfduzNJEFDouhMCKUHUEJb8evhk4kS1wqn+F03gnTt3FEL2PTMCcmv+bd8WNPjaQV8RisQwQ66IvjTXw4xiNv4DOWQudvSrunE3R5Kf9H1SMyM/AqSdTmS0MgeUgXlgNDuIw/4jemu2DQSoOhKrfgm9p8K+C1F9pxHKyqTqZzLq4GEMeMV4CER9SdzXSeCtSdxnUXkRBhTj3e9z2P+NGH4X2s4w3wv3eFOGJPUThV8AB7UICqxXZBxBAas8t8w5T0HaKUf4bIjQ9D3f+r3Hn7Yzbdgbqdvd/kMViWSixLvpxiqZnmzz0XlnVWVmyqoVvq2oK7TgPYo9gqrKdiOO5gsWpg6ZHIHqvyQcPbgLzj6Bkrrk7B53/W6TxtsHdhPsDdP8D0l8Dgqa+KgggFN8kr3Y7gJrqdumZZq0aL+Yg8GPzP+BqCtpPIBPwljJxAYl3yHH1axSS75GbmuaAbxradRt0XU+hSp4fKo8sHIQAVOwLXTdQ4NYXv9EK8ORwB4NqFG3+uZHwJWU0BVKfQMNtgxbdsVjGJWXE/y7M2Bn8eCX1EQXjM7fLlIItgnZcAN13GuEX9zszs0y82rtfnDqvsIsfOv6Up02fj+tdf3Bo6y89Vb0UkISO89HEm7ltOi8jN7I/hjbvhjt7XdzoPwvOKeGNKRy3OphfgfwUtDqk/jpwJgM+Uyq2/irouorc/HTvHFKDVP6i6L1I1a+8yP68a2jSS4cbAhJveUqFPQOPuJEFduf0cZDFYllYsQZ+vOJM8gLDskmZKPBiRO8jN1gthmYZSLfjEhPQ1nUppN6j72GxgLMIbtvpuHM2wp27nSkdO1BSH5IrcuNC8u3Ms67bIfl6kQPVqN+1nYQm38/rWm3v7D7TPA2VR3rr/T0GOIJUHY8E18GZ/DzO1A9xmh5ApAYTFZ+N3+jqNz1kqsoVQURwqo6AmvOBkKdZEIKaPwxc4a4Ukt+vHkptt1gmPuIO/WOiYF304xQJrIhGdjIud/X8VNUnFMrXAm73vZ48azYOeKpr6nZ6+uf5LukeQhBY3Rhf8WNmu9Mh+gBm0DAHbT0cGu9BAsuWfxNOvVcwpuem/NBTJS7xJnT0t9adNkpvgZUypxCB+uvRloO85QsXak7HiWyOBu5Du+8B0khk14LysaZPTeCb6sn+eu57CSG1ZyG+/kVnnIqd0dB6nlt+OuKbmrPfSOK+hInuX6/o+1WSwGpGFjj9LWb5JOyl0lkxHMtCjHXRl8Qa+HGM1JwJ4R2MMQqsgGQZuhy6bqTwW+BHKvYx/2on5qNQzMA7EFgFabjJzOzdLgishM79CbkegZRRwRuAgZfaC42bHseErgbWhNBWZmfybfqXsFXUjec7xU3+/eQXTEEZp643b1/8SyE1J/XdJ3Gg4RZTEz75EfgmI7UXD8iIim9K70Alp7fpOWjzz7zXGzPLb7yv7HOLBKHxLlOgJvU5BNdEKo8ou18Wi2Xhwhr4cYyIQGi9choWbgtvmXEdO5ONOE76O3KMqlSA1CJ1FxrD5wWzASghcqvJOajbCm6bl3ZXRrdCG0LTo5B8y8zmg+tDeiaaeAVNf0+h67kKsx7fE8iWgq6r0eAaSN7rIOIH37Q+r6+aQrtvNYMJ34+QqsMQCSO+aUjj3WXdw0DQjgtyS9xqHO28AKk9r8/jshGnGqn53ZD3zWIZr0yktLahxq7BLwxUHkVu+lgEqTy095mIgzTcCv6VgZApB1t3FdJwNzLpX8XV1Kp/k3fOBHRfj85ZB7fz8rK7Jv7FkMgOxtgnXkHn7Yi2n2kCAnEwOe6V5m/tmeBbLO8MMbT9DNy2M3Bnr2kkbbuKFYcpROf/Cjr+ArHHoOtatGVfVEstUwwB6W/I9ZKkPM18i8UynhCRbUTkYxH5TEROKbJ/UxFpE5G3vMfp5R47lNgZ/EKAE9kelRDafYdZT646osCdL75FkKZ7yj9nxZ6ob1F0/m+9cq89KHRejQbWRkLrljy+GNp2CrnR62Go2BMJ/Bj1LQXzD8tds+8h/UNuEGHH2ahvChLerPS10j94hXWyRHxSn5nUueBq5fc57c3Incn9p6oF14Xkh5l+Es6R0LVYLANEGXGpWhHxAVcAWwIzgVdF5CFV/SCv6XOqusMCHjskWAO/kCDhLZDwFkN7ztBGqBYTWkmbCPk8A6+pz9Ho/YCYIDf/UrmH5QwUABKIU4dEdoTofajbRWEsQY8ITl6GQPyJPg08mqCoyE3RYjtFDtek8QDE/wuIUb+rv7HPoDmpOgZNfQHxf5sNoU2Rql+Wd73UF2j0YcxrtzPiX7ys4yyWic4ouOjXAT5T1S8AROQOYGegHCM9mGMHjDXwlsHhm+oJ1eRsNG7+LDT5AdqyN6gxxNp9CzTcgQRWyDQKrGGkY3vd2AHUjUPiTZPqVozQtpD6GNLZefk+kPqizTXxFtp+GqSbQQKgKe96PqOSF1i5rNvWrhsg/jy9HoDk+2jH2UjtWSWPEQki9Zd7AxXKjqA3r90+Wa/djdBw18AyFiwWy1CxKJC9tjYTKOaKW19E3gZmASeo6vsDOHZIsGvwlkEhdZeYYLxeHAhtA6Hc2bN2/NVLW/NS+jTqidhkn+tiCKxizoEDuBC9FW09EE2+6+WB97jBQ6bkq3i6770BeX6gCpw6I+f6w49xf1gDt/1M3NTXRu0v9SloizGYUge+xSG4MdJ4V9FKeUVJvEF+ERwSb5V1qDiVA0qP045LPL181zw0inZeWvbxFsuERofhAU0i8lrW4/CsKxZbi8v3I7wBLK6qqwKXAQ8M4Nghw87gLYNCAivBpP+giZfMrDiwuqn0lr8e3ZMalo3bkXsupx5pvBM3PRfmbgYkMmI+0TvJfDcECEDiPSN3S5LMWDUNtEPnX8jJCOi+C5Kf53kCkqAtSFNxed8+8S9lKsn1ruH7wL/kwM5RLtqRvwHcfF0Di8UyhMxT1bVK7JsJTM96vhhmlt6LakZ4RFUfE5ErRaSpnGOHEmvgLYNGnHokvG3RfRp/Fm0/G9x5ZOqnA0Qgskthe9XCdD2zh9yBbhTcOJk1czerHRQOiuOQfLHIdocFUYKTqmPQxPNeXwGpRmp+P+DzlEV4R0h+QCYAMQKRnYbnWhbLOEIYlTX4V4FlRGRJ4DtgL2CfnH6JTAVmq6qKyDqYH5pmYH5/xw4l1sBbBoWm55m0tvTnRhCn+rTecq6afA9tza7n7gciRkq28mAIbYWmPgPfoohEULcdbT0Eku9TWlWvhxJr8n33tvi21IcmSG4AiFMFjfeZHHpNQWBVxKno/8AFQCr2RrUTum82GyoORiI/G5ZrWSzjCtURj6JX1ZSIHAM8gZkd3Kiq74vIkd7+q4GfA0eJSAozMt9LVRUoeuxw9dUa+AmMqgvxJ8ws078iEtpgiM8fR1v2MGlqpCD1lakV33gPIg4ae4rc6mopkEqcyf/F7X4Q5m6A9rjG6640aXzJD+jfuAOEQUJe8ZXB4JjAvgEaePCU5YJrD/L65VxHkKrDoerw/htbLJZhR1UfAx7L23Z11v+XA0UFQYodO1xYAz9BUVVTPCbxgpcSFkCrDsepOnroLpJ8D9xWMgY5YXLJ0zNRiXiBYT5yDLaEcTuvhc6LMQFjZgCgrT3FYPpKU/MC73AgsgdE+yhX6yzuLdkLBDcG7TKCNjmBcRj9e6eu/Hu2WCxjCqtkVxpr4Mch6rYZnXXfYoiEizdKvuOlcfWs26ag80q04oBeF/rg8VPo9la0+yYT1IYf40rvWXsPg38V6LyUwjX2aK+xz8WLnA+sCMH1oPIwRCpBO9DoPyio5+4sAqHNkYpdwb9Cb7CfagLVFog/5x0jGNW+JSC8/aBeBYvFYhmLWAM/znC7boWO80wONz6ovwEJrlrYUFtNWlmO/fV5EdlDZOADKxkDmfoc44oPm5ry3fdiosu9CHOpNEVxnLp+qtb1GH0xs3mnHioOQ0IbIf68vHrqwLeIV1mt57iAue/YfWj0LghvDrUXGRe3BJH6a1G3DU1+hKTeM7nykR2Mqx0TM0B6FviXL7he0d523QCdVwFpCO+M1Pxu4NH4FotlcNgZfEnsr9E4QpOfQMcFmPQxYzy19TCY/JIpBpONfxVyP/kOOI2msMwQIeKHhtvQrish+YmReJVK6Lgor+PtJqXMnUN56+sKNecj4c0QCZS4tkD939D5R5q8dqkz7nZ3bqZR7GkIPwnhrc1Z48+h7X8G7URDWyI1+/Uad7f9TOi+xxsUpdDa83AixTMDANzoo9BxKb0ekuh9qFODVP+mjPuzWCyW4ccK3YwnUp96Yi9ZaBfo/IKm4mtE6v9mXNb4wb8c0nALkn/8IBGnEqf6RJyG63Cqjkb8Sxf2kSozMy6QtRWM1GyRj2H7H/q/tn8xnKZHkCkf4Ux5Gdz5eS0SkPoG8NTgWo+G9JdmEBC9D23/k7fvHWPciXr5+jFoOwnVPuIBYk+Sq5sf87ZZLJaRRHToHxMFa+DHE/7FCyVbJQhSvDyrBFfDmfwMztQPcJoeRPzTi7YbUoIbQnhnTJR7lal5HtqYjCBMDz4IbgB1VxX3KmgLxJ4o65K9ojr+pcgRipIABJY3p4s9ndeHGMQeN/+mZxUZlPQjJuM0UpA/b4P1LJaRRQFXh/4xQbAGfhwhgZWh8kCM8awGiSB1lw35rHwwiAhO7R+RpgeR+uuQSf9BIjt5EfI9BCG0ObgtMP9oz3VfcCaz30NTX+O2HIA7dwvc+aegbqEyntRdbgYLUgEEILI/EtrY7HMqKFiR6glQ9C/vadJn76syMQCl7rPqcJAacy/4zXtR839o+gfc5r1xZ6+GO3cbs65vsVgso8CorMGLyBnAYUDPgun/ebmB+e22Af6KmSpdr6rnjlgnxyhO9W/QyG6Qng3+pRFfY9F2qimTV5762MjJRnYf0YGA+JcEPOnW8OZo6mgvej7llUh1TEpdybS4AASNUqS689HmPbycdxfSP6DpmUjj3/OuuThMetrk/Ts1iNPQu0/DO0Lndd5yhhfRX3Wid9wSaO1Z0PZ/3okqkYYbC+Masq/lmwpNj0HsUXMPoc3BNwOdt40X+JeG9Bdoy/4w6amcvlgsliFk4ky4h5zRDLL7i6peWGrnSNfNHU+IfwnwL1Fyv6qavPLEK0AMjUZMeljd5f3XLB8EqmlIvmuKygRWyUnHc6oORysPA9KI+HHnbkmfOe+Vv0R6xGcSr3pte6LlE5B8A3XbEafGXDv5Mdp1NbhdEPk5TmSrTL/iz8D8X3nLG34IbYVU7IWE1vf2v4CkZ6E1Z0JwXcQ3uazBkPgaoXL/zHXSsyH9PQUqe4m3oa/StRaLxTIMjOUo+hGtmzuhSH3mGcUeUZeoqVue/hbKSP9aEFQTZraa+ghwjPu74Y6cdDMzuPA+cr6lID2TkpKz7uzM/xKkMG/eNUFw8RdQdw60nYG5X4XES7ixrSD1tpGxdL8nZzCReB7qzjNn6bzczOxJmOsE14W6a8w9pWcbsaDke+DUIbXnI6GNSr8IUlnkflxwqksfY7FYBsVECoobakZzDf4YEXlHRG4UKVq8u1jd3EVHpmvjnSjku5fFT0898eFAu24xMrPabSLR3RZTd70EUvtHcCZ5RrFgr+lvD8H1QaaQW2nRhbmbovOPgbbTMBHtPd/0GMQfNnXq3W8o9BSkjdqe2wWdV3rHpo3nIfEKJN8w99R6mPFIkAJ3Htp6NOpF5Re9J6cKKg8FIl5fIxBY3dS5t1gsw0OPHv1QPiYIwzaDF5GngKlFdp0GXAWciflFPhO4CDg4/xRFji35ynv1eg8HmDFjeGap4wb/ciYIT2P0Ksk59f249eOQeM08Ca5Rfl30HtKfkysD60Lq65LNxTcVJj1h4gQ6LiA3Pz6MVOydaStBNLgyxL7KO0u8hPod9Lkwp1FUmhDtpEBKFwfcNlSjJi0xe0YuYox/H14Qp/o3aGB1NPke4l/UCOD0sZZvsVgsw8WwGXhV3aKcdiJyHfBIkV0DqpurqtcC1wKstdZaE2cItgCIhKDxDrTtVOOu9y+H1J7TK+qSjwli290r6YqJDm+8F/E1lX9R/2qY+gk9ueF+CKzcz0Eh6LiEXAPrg6ojIfEqmngFQj9FfFOM9G7Z0TTST1s1bvrwduCb4i0VZJWbDfzY9C2nvK13yjJS4SS8GWLX3C2WEcG66EszKlMLEZmW9XRXoFguUW/NXTGWaS/goZHo30RAfIvgNNyMM/kFnIYbjZEsgbb9AdLfeKI5XeDORTvOGdj1KnaH8FZAACNZuyRS++c+j9HOLCW4zJmg82q0/Wy0/Rx03nZo6kvw9eeV6XH4ON6jn7Fr4nVEHKThFvCvhNGlXwyp/xviazKz7urTzL0QACqM4Q9u3E8/LBaLZWwwWkF254vIapg50VfAEQAisggmHW67UjV3R6m/ExZNvGlKyubMeE3p14Eg4iB1F6Dpk4E4ONP6d01H7yyyMYWZNXv90TjacR5Scwba/DMvVa6nrxGvbU97pXcmLvVGolY7IVbEQZR4DXfeXpB616z3Vx6GVB2bk2XgVO6NBpaH5Jsmvz68zZjSHLBYFnp6vvaWooyKgVfV/UpsnwVsl/V8xOrmLqxoxwUURqg7EFxzgc43ILd+0Y9fNdCR9VwhPdeo8E16Ck28aFzq/h9DYDVEW9DuO6HrGnLuQztwao0UrdtWAdG7ci+T/jirbRK6bkB9iyEVu+XeT3B1CK4+gHuyWCwjhQAygYLihhob/bOwox2F26RuZIqmVB6FmYVDb/lW8vXqw6YqHCBODU54a5zKQ3BCa+M4AcQ3BQltQK5srGPU6Xqe1f4Z6m+H0FYY5bliRCH+1BDclMVisYwNrIFf2Anny8iGofqM0nXm81BVdAFH0E7lPlB7njG84V0xM/C8PPLgBkjlEX2eR4JrQfVvMGvlAfAtjtRfkXut0FpIaNMimvM9+EBjuG0n43ZchGbJ5FosljGMOwyPCcJYFrqxjABSeQiqXZ4L2weVv8Sp2Kbf41TVuPe7bwFcNLIzUnPmgOuhO5FtILIN6nagsfwYygoksn3BurdqAu24FJKvgX8JpPoknMoD0Yp9TB6+1BZX7AttAh3nkBtl72Bm9eKlCcYAPxq9H5oe61XKs1gslvGGNfALOSIOUn08VB8/oOO0+3aI3kZvhbboo6gzxZxrgTpSBb5pXspaj/F1IbBK4bXnHwvxF4EYJN9B4y/DpMdM7n6JVEAA8U2CxrvR9rNMgZvA6uBbCnHCJmugVwgoBW6HqTZXseeC3Y/FYhkR7Bp8aayL3rJgxP9jlN96iZltC4BqwuS5V58GzgyM1G0F1F5kdPez27rzIf48GVGdlCkgk3i1rGuJfymchhtwmh7Gqf0TTtWBSMVehdXkSPchomOxWCxjHzuDtwwYTX7gSbhmIwV13dVtAbcTfIuUdN1reg7ashe4raAuBFaCpvsQqRrWwjgFhLeB2JOAZ9TFB6FNR+76Fotl4Ng0uT6xM3jLgND0D2jLL0Bbs7Y6IFVIzammjSpu+5nonI3ReTui87ZC08VFCLX9dEj/YAR2iJrCLt1/L2ncxamD0IYYARowtdjrILj2oO5Las+ByM/BWQz8qyANt+YUyrFYLGORYdChn0AufzuDtwyM+AsUhpkqND6C+D2BwviTEL0HU+QlCelZ6PxfI41FhG1Sn5ErVRuD1MeF7bKQusvRjsu8ILvFkeqT+tTOV42iXf8wSwhOE1J1WKYUbc85JYjU/qHP61osFst4whp4y8CQMIV1gPw5Uria/DBvfd6F1CfFz+dfAdKzyBj5MPj71rAXCZqgwPh/wG0x7n2noWhbTX2NNu+Wk++v8X9D491IYLk+r2OxWMY+Vou+NNbAW/pFNQ3uDyC1EP4pdDZBuqfGegQqD8mRpRX/4igRMjrzAr7ilX6l9o9o82eZ2vD+JaGiqNBhVn9SXu35Dzx3mqLVv4fYfZD6EvxLI3UXIL5paNsJRcR8Ymj335HaMxfsBbFYLJZxgDXwlj7R1Ndoy37gzgfSUHU00ng/2nUzuN8jwQ2RyHa5B4V3gtg/If6SJyzjQ2ovLnp+cRrQ8G7QdSmgkPoc5m6EK40Q2QqpOq4wQC/2hKk9n6161/E7jGfBheTraPM+MOmJPjT186PmLRbLuGQCrZkPNdbAW/pEW38J7mx6Q1U7r4HAmjjVx5Q8RsQHdVdD6n2TTx5YqaRgjGocuv5CxuCmQROmqEzXTag7H/E05Xtx51FooLPDadMmdS71FfiXgeTrWfsAAkhkj37v3WKxjHEUZAIpzw01Nore0jfpL8g1jmnjGs9DNY3bcTHunJ/izt0Rjb+EBFZGQusXNe6a/AC3eXd0zlaU1oaMQfTBws3BNcj96DoUxAVoCqQCqbsQnGn0qtVJA9Rda4rIWCwWywTGzuAtfeNMMuvvvfjBN72gmXacD91ZynbzD8CtOR+nYpfCtulZXqpdV//XL5I/L4FV0JozoP0Mcz3f8uCrg8SbmHX/CIR/ivgXMwdMehJSX4NTgZSIBbBYLOMU66IviTXwlj6RukvQ1kMws+QUBDeF0OaFDbvvo9e499D+OzSyTWHhmvhzoHlFZQDzcUzTu5ZOBEoUmnEqdkMjuwJJRIImEDB6D5r8xKTARXbN3IMEIbBMeTdssVgsEwRr4C19IsE1oOkps57u1IN/5eIiNOIUUZRSr3b70nltQxSm2gWRKe+COxvtvMass4e2wqnYsXTfROgp/yrig4o9C85qsVgmOHYCXxJr4C39Ir5G8P2k70YVh0DXhYXbncbCbaEtwLkE3BS9qXZVhxqD7ZtqBWcsFkvZ2GIzpbEG3jIkONWH46beNyp2COCD6t8gTn1BW43/B3yLgATAtyQS2RmJbD/ifbZYLJaJjDXwliHDqf8rmngb0l+DfxkksEJBG7f7Tmg/m14RnPQPqNuFdt0E4S2QysNyRHMsFoulT+wMviTWwFuGFAmuCqxaukHX9WQU7gDikPJKvXZ+grrzkJrThrGHFovFsnBgp0qWEaav0XYUuosUpLFYLJZiKCbhZqgfEwRr4C0jS8Uh0EflN0ayBrzFYrFMYKyL3jIoVBXtuhy67wAcqDwSp/IXJds7lXvjSgSidxsRm8Q7GJe9l/ce2X/gfXA7QYIm391isSw0CGqj6PvAGnjLoNDuv0Fn1rp6x3m4Th1OH1HxTsUu4CncaepbtPOvXt77FkhF6cFBwbXddrT1cEi+AyhacRBSfWLxPH2LxTIxsQa+JNbAWwZH9CFyg+ZiEHsYykx7E/90oxe/AGjb7yD5Lr2FZ7pvg8CKENlhwc7nzofES4APQhshfS0lWCwWyxjHGnjL4JCqvA0OSPHKcUNO8nWMUE4PUTTxCtKPgdfEK5D6FgLLI4GVzLbUN2jz7vTK7Tr10Hgf4tQNR88tFstQYWfwJbFBdpZBIdUnAhF6xW0kglQdBZgKc+rOR4fwC6iqaLoZdVvBmUqu5G2oaCGcbNy2P6Cth6EdZ6LNe+N23WLO2/4nU6JWu8wjPRvtvGLI+m2xWCwjjZ3BWwaFBFeFxnvQ2COAD4nsivin40Yfg7ZTgDQ4DdDwNyRfk36AqEbRliMg+QagEFgTqPRsvAu+6UjlvqWPT34I0fuBWGZjx/loZDdIzyI3PyYJ6W8H1V+LxTLM9KTJWYpiDbxl0EhgGSTw697nmvrKM+6eIXVnoy0HwaT/DioATjsuhOSb9LrRk29BxS/MIEPCENyg70h6d56J3M92KIgP3FYIrQ/d3wJxb0cEgusvcF8tFsvIYKPoS2Nd9JYBofFncJv3wW3eC409WbxR8n1jOLNxW0DnD+7iidfJGGCAGKQ+RMLbIKFN+0+T8y+HKUebhVSYAjfVJxojj888IjsgFfsNrr8Wi8UyitgZvKVsNP4c2nocPTNznf8B1F2IhLfKbeibBprvN3NAqgfXAf8SkPqE3qh5guBbsuzDxTcZ6q5E5x9n1tmdyUj9dYgEgABSfy2qUcBBJDS4vloslpFhFGbwIrIN8FfMjOB6VT03b/8vgJO9p53AUar6trfvK6ADM9tIqepaw9VPa+AtZaNdt5Czfk0M7bqp0MAHVjdpctFHvTrxaag9B5HBfdyk+jQ08QZoh9ngTEaqf933QfnnCG0Ik18D4oiEC/fb1DiLxdIHIuIDrgC2BGYCr4rIQ6r6QVazL4FNVLVVRLYFrgXWzdq/marOG+6+WgNvKZ98tztgBrB5zUSg5iyI/AzSP0BgRcRf/ky79OUnQdM/vSA7B4JrLtBM28QBFBp3i8Uy3tDRmMGvA3ymql8AiMgdwM5Ar4FX1f9ltX8JWGxEe+hhDbylbKTyEDT+PzKz+DBSdXjxtiIQXHPo++BUQGijIT+vxWIZhyjDZeCbROS1rOfXquq13v+LAtkpNjPJnZ3ncwjweNZzBZ4UEQWuyTrvkGMNvKVsJLg2NNyAdv0NcJGK/ZHQBqPdrQmL0Q9wkaKeE4vFMozM62NtvFgqUNFRhohshjHw2bOSDVV1lohMBv4lIh+p6n8H193iWANvGRASXNsYesuw4nbdDh3nAgk0sBZSfwXi1I52tyyWscfI58HPBLIVtRYDZuU3EpEfA9cD26pqc892VZ3l/Z0jIvdjXP7DYuBtmpzFMsbQ+MuecY8BLiTfROefMNrdslgshleBZURkSTG5uXsBD2U3EJEZwH3Afqr6Sdb2ShGTTiQilcBWwHvD1VE7g7dYxhiaeIXcfP8kJF8r1dxiWagZaaEbVU2JyDHAE5go4xtV9X0ROdLbfzVwOtAIXOmJe/Wkw00B7ve2+YHbVfWfw9VXa+AtljGG+JpQQuSkJErdaHXHYrHkoaqPAY/lbbs66/9DgUOLHPcFsOqwd9DDuugtlrFGZDcj6kMFppBPBKk9e3T7ZLGMVVSH/jFBsDN4i2WMIRKCxnsg9pQR9Qmui/iXGO1uWSxjDwXciWOQhxpr4C2WMYhIECLbjXY3LBbLOMYaeIvFYrGMUyaWS32osWvwFovFYrFMQOwM3mKxWCzjFzuDL4k18BaLxWIZv1gDXxLrordYLBaLZQJiZ/AWi8ViGZ/YNLk+sTN4i8VisVgmIHYGb7FYLJZxioKOfDm58YI18BaLxWIZv9ggu5KMioEXkTuB5byndcB8VV2tSLuvgA4gTaYaj8VisVgsln4YFQOvqnv2/C8iFwFtfTTfTFXnDX+vLBaLxTKusEF2fTKqLnoxRXH3AH46mv2wWCwWi2WiMdpR9BsDs1X10xL7FXhSRF4XkcNHsF8Wi8ViGQ/YcrElGbYZvIg8BUwtsus0VX3Q+39v4B99nGZDVZ0lIpOBf4nIR6r63xLXOxw4HGDGjBmD6LnFYrFYLOOfYTPwqrpFX/tFxA/sBqzZxzlmeX/niMj9wDpAUQOvqtcC1wKstdZaE2cIZrFYLJbSTKAZ91Azmi76LYCPVHVmsZ0iUiki1T3/A1sB741g/ywWi8UyphkG9/wEGjCMpoHfizz3vIgsIiKPeU+nAM+LyNvAK8CjqvrPEe6jxWKxWCzjklGLolfVA4tsmwVs5/3/BbDqCHfLYrFYLOMFBVyrZFeK0Y6it1gsFovFMgxYqVqLxWKxjF8m0Jr5UGMNvMVisVjGL9bAl8S66C0Wi8VimYDYGbzFYrFYxilqtej7wBp4Sw6qcbTzcki+C/7lkKrjEKdytLtlsVgslgFiDbylF1VFWw6B5NtAHBKvoYmXofEejPCgxWKxjCEUVG2aXCnsr7YlQ/pbSL4DxL0NCUh/BakPIbDKKHbMYrFYSmBd9CWxQXaWLNJFtgnYEbLFYrGMO6yBt2TwLQ7+pYGgtyEAzmQIrDCavbJYLJbSWC36klgDb+lFxEEaboHILuBfEcLbI413IBLs91iLxWKxjC3sGrwlB3GqkNo/j3Y3LBaLpX9UrRZ9H9gZvMVisVgsExA7g7dYLBbL+GUCrZkPNdbAWywWi2XcotZFXxLrordYLBaLZQJiZ/AWi8ViGadMrLS2ocbO4C0Wi8VimYDYGbzFYrFYxieKlartA2vgLRaLxTJ+sVLaJbEueovFYrFYJiB2Bm+xWCyWcYkCal30JbEzeIvFYrFYJiB2Bm+xWCyW8YmqXYPvAzuDt1gsFsu4RV0d8kd/iMg2IvKxiHwmIqcU2S8icqm3/x0RWaPcY4cSa+AtFovFYikTEfEBVwDbAisCe4vIinnNtgWW8R6HA1cN4Nghw7roLRaLxTJ+GXkX/TrAZ6r6BYCI3AHsDHyQ1WZn4BZVVeAlEakTkWnAEmUcO2TYGbzFYrFYLOWzKPBt1vOZ3rZy2pRz7JAxIWfwr7/++jwR+XoBD28C5g1lf0aJiXAf9h7GBvYexgbj+R4WH46TdtD6xFN6T9MwnDosIq9lPb9WVa/1/pci7fMX7ku1KefYIWNCGnhVnbSgx4rIa6q61lD2ZzSYCPdh72FsYO9hbDAR7mGoUdVtRuGyM4HpWc8XA2aV2SZYxrFDhnXRWywWi8VSPq8Cy4jIkiISBPYCHspr8xCwvxdNvx7Qpqrfl3nskDEhZ/AWi8VisQwHqpoSkWOAJwAfcKOqvi8iR3r7rwYeA7YDPgO6gYP6Ona4+moNfCHX9t9kXDAR7sPew9jA3sPYYCLcw4RAVR/DGPHsbVdn/a/A0eUeO1yI6YfFYrFYLJaJhF2Dt1gsFotlArJQGngR2V1E3hcRV0TWytt3qich+LGIbF3i+AYR+ZeIfOr9rR+ZnhdHRO4Ukbe8x1ci8laJdl+JyLteu9eKtRlNROQMEfku6162K9FuxKQeB4qIXCAiH3nylPeLSF2JdmPqvRiM9OZYQUSmi8h/RORD7/v9qyJtNhWRtqzP2Omj0de+6O+zMR7eC8sYQVUXugewArAc8AywVtb2FYG3gRCwJPA54Cty/PnAKd7/pwDnjfY9ZfXtIuD0Evu+AppGu4999P0M4IR+2vi892UpTMrJ28CKo933rP5tBfi9/88r9dkYS+9FOa8pJmDocUwe73rAy6Pd7yL3MQ1Yw/u/GvikyH1sCjwy2n3t5z76/GyMh/fCPsbGY6Gcwavqh6r6cZFdOwN3qGpcVb/ERECuU6Ldzd7/NwO7DEtHB4iICLAH8I/R7ssw0isTqaoJoEfqcUygqk+qasp7+hImz3WsU85r2iu9qaovAT3Sm2MGVf1eVd/w/u8APmQYVcJGkTH/XljGBgulge+DcmUEp6jJacT7O3kE+lYOGwOzVfXTEvsVeFJEXheRw0ewXwPhGM/teGOJpY8RlXocJAdjZlrFGEvvxWCkN8ckIrIEsDrwcpHd64vI2yLyuIisNLI9K4v+Phvj6r2wjB4TNk1ORJ4CphbZdZqqPljqsCLbxkSaQZn3szd9z943VNVZIjIZ+JeIfKSq/x3qvvZFX/eBqbh0JuY1PxOz3HBw/imKHDui71E574WInAakgNtKnGbU34ssBiO9OeYQkSrgXuB4VW3P2/0GsLiqdnoxHg9gKn6NJfr7bIyb98IyukxYA6+qWyzAYeVIEALMFpFpqvq95xqbsyB9HAj93Y+I+IHdgDX7OMcs7+8cEbkf45odUaNS7vsiItcBjxTZVe57NGyU8V4cAOwAbK6qRX94x8J7kcVgpDfHFCISwBj321T1vvz92QZfVR8TkStFpElVx4zGexmfjXHxXlhGH+uiz+UhYC8RCYnIkpiR/Ssl2h3g/X8AUMojMJJsAXykqjOL7RSRShGp7vkfEwz23gj2r1/y1hF3pXj/RlTqcaCIyDbAycBOqtpdos1Yey8GI705ZvBiUG4APlTVi0u0meq1Q0TWwfwGNo9cL/umzM/GmH8vLGODCTuD7wsR2RW4DJgEPCoib6nq1mrkBu/C1OZNAUerato75nrgalV9DTgXuEtEDgG+AXYflRvJZS/y3PMisghwvapuB0wB7vd+2/zA7ar6zxHvZd+cLyKrYdyNXwFHQO596AhLPS4Al2OyMP7lvdYvqeqRY/m9KPWaShnSm2OMDYH9gHclkyr6f8AM6L2PnwNHiUgKiAJ7lfKyjBJFPxvj8L2wjAGskp3FYrFYLBMQ66K3WCwWi2UCYg28xWKxWCwTEGvgLRaLxWKZgFgDb7FYLBbLBMQaeIvFYrFYJiDWwFssFovFMgGxBt5isVgslgmINfAWyxhCRNb2iu2EPVWz90Vk5dHul8ViGX9YoRuLZYwhIn8GwkAEmKmq54xylywWyzjEGniLZYzh6cG/CsSADXrkki0Wi2UgWBe9xTL2aACqgGrMTN5isVgGjJ3BWyxjDBF5CLgDWBKYpqrHjHKXLBbLOGShrCZnsYxVRGR/IKWqt4uID/ifiPxUVZ8e7b5ZLJbxhZ3BWywWi8UyAbFr8BaLxWKxTECsgbdYLBaLZQJiDbzFYrFYLBMQa+AtFovFYpmAWANvsVgsFssExBp4i8VisVgmINbAWywWi8UyAbEG3mKxWCyWCcj/A5j1clWaJyz/AAAAAElFTkSuQmCC\n", + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], "text/plain": [ - "<Figure size 576x576 with 2 Axes>" + "<IPython.core.display.Javascript object>" ] }, - "metadata": { - "needs_background": "light" + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -331,7 +1290,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "0837b3ff", "metadata": {}, "outputs": [], @@ -341,7 +1300,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "8798f857", "metadata": {}, "outputs": [ @@ -351,7 +1310,7 @@ "GaussianMixture(max_iter=20, n_components=3)" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -370,19 +1329,19 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "fb5796e5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[ 4.99888254, -1.99794087],\n", - " [ 0.95551226, 4.96478507],\n", - " [-5.0404056 , -1.08228231]])" + "array([[-5.00533402, -1.00291721],\n", + " [ 4.98736078, -1.99324473],\n", + " [ 0.99263505, 4.95370197]])" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -393,24 +1352,24 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "182904d1", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[[ 0.20670445, 0.10147787],\n", - " [ 0.10147787, 0.20500901]],\n", + "array([[[ 1.97696177, -0.14298004],\n", + " [-0.14298004, 5.08432238]],\n", "\n", - " [[ 0.97604778, 0.48471245],\n", - " [ 0.48471245, 1.0206679 ]],\n", + " [[ 0.19127883, 0.09340703],\n", + " [ 0.09340703, 0.18650429]],\n", "\n", - " [[ 1.9641727 , -0.01924111],\n", - " [-0.01924111, 5.0262459 ]]])" + " [[ 1.00348273, 0.47652348],\n", + " [ 0.47652348, 0.98154818]]])" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -421,17 +1380,17 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "2faa1f72", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.33333333, 0.3341058 , 0.33256087])" + "array([0.33306256, 0.33333333, 0.33360411])" ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -450,7 +1409,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "id": "cc8fc1f1", "metadata": {}, "outputs": [], @@ -468,7 +1427,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 13, "id": "88982b21", "metadata": {}, "outputs": [], @@ -478,107 +1437,2023 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 14, "id": "333581b5", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9IAAAOjCAYAAABX7Ty6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXyd5f3/8dd1n3PiVknSVNPU3R0KdcUKLRQbbIyNKXP9bWMbky/zjY0Zw0qp0OJ1B0rd3dskjXty/L5+f5zTQ05yYm0aaT/PxyNrc59brhPWvM/lSmuNEEIIIYQQQggh6sdo7gIIIYQQQgghhBCtiVSkhRBCCCGEEEKIBpCKtBBCCCGEEEII0QBSkRZCCCGEEEIIIRpAKtJCCCGEEEIIIUQDSEVaCCGEEEIIIYRoAKlIC3EdKaVuV0qlN3c5hBBCCHFtlFIPKaXWXsP1q5RSn2nMMgkhmo9UpEWLp5R6QCm1QylVrpTK8f/9S0op1dxlE0IIIW4WSqmySl+mUspe6fuHmrt815vWepHWenp9zlVK/Uwp9VqV62dprV++PqUTQjQ1qUiLFk0p9S3gz8BzQAcgGfgiMAEIa8aitQrKR/6dCyGEuGZa65grX8BF4I5KxxZdOU8pZW2+UgohRNOQD9iixVJKxQM/B76ktV6utS7VPvu01g9prZ3+8zYrpZ6odN1jSqkPK33fVym1TilVoJQ6oZRaUOm12Uqpo0qpUqVUhlLq2/7j7ZVS7ymlivzXbbtSIVVKdVRKvamUylVKnVNKfa3S/SKVUi8ppQqVUkeBUbW8P6WU+qO/l71YKXVQKTXwyntXSr3if8YFpdSPKz0/qJVbKZWqlNJXPrj4fx7PKqU+AiqANKXUgEo/g2yl1A/95xpKqe8rpc4opfKVUkuVUm2v4T+bEEKIm8yVaUxKqe8ppbKA/1XNYv95WinV0//3cKXU75RSF/259IJSKrKG+/dQSm3051SeUmqRUiqh0uvf82d4qT/np/iPj1ZK7VZKlfif8YdK19yplDriz/nNSql+lV7ropRa4c/gfKXU3/zHq36++LNS6pL//nuUUrf6j88Efgjc7++tP+A/Hvi84s/fH/szPsef+fH+167k+mf8P588pdSPruW/kRCi8UlFWrRk44Bw4O2rvYFSKhpYB7wOJAELgb8rpQb4T/kv8AWtdSwwENjoP/4tIB1IxNcL/kNA+yuz7wIHgE7AFOBppdQM/3U/BXr4v2YAtc2Fmg5MBHoDCcD9QL7/tb8C8UAacBvwKPB4A976I8CTQCyQDawHVgMdgZ7ABv95XwPu9j+jI1AIPN+A5wghhBDgGzXWFuiGL3/q8lt8+TcUXy51An5Sw7kK+DW+nOoHdAF+BqCU6gN8BRjlz/IZwHn/dX8G/qy1jsOXy0v91/QGFgNP48v5D4B3lVJhSikL8B5wAUj1l+uNGsq1y1/+tvg+ZyxTSkVorVcDvwKW+Hvrh4S49jH/1yR8WR8D/K3KObcAffB91vhJ5cq+EKL5SUVatGTtgTyttefKAaXUx/7WY7tSamI97jEXOK+1/p/W2qO13gu8Cdznf90N9FdKxWmtC/2vXzmeAnTTWru11tu01hpfD3Oi1vrnWmuX1vos8G/gAf91C4BntdYFWutLwF9qKZsbX0W3L6C01se01pf9IX4/8AN/L/x54Pf4Ksf19ZLW+oj/ZzcXyNJa/15r7fDfc4f/vC8AP9Jap/t7+H8G3KdkWJ4QQoiGMYGfaq2dWmt7bScqpRTweeAb/rwsxVfxfCDU+Vrr01rrdf575wJ/wNcADODF1+jeXyll01qf11qf8b/mBnoqpdprrcu01p/4j98PvO+/pxv4HRAJjAdG46uwf0drXe7PzaCe9Urlek1rne//fPF7fzn61P2jAuAh4A9a67Na6zLgB8ADVfL3Ga21XWt9AF8DfqgKuRCimUhFWrRk+UD7yqGitR6vtU7wv1af//92A8b4K99FSqkifOHVwf/6vcBs4IJSaotSapz/+HPAaWCtUuqsUur7le7Xscr9foiv1xp84Xup0vMv1FQwrfVGfK3PzwPZSql/KaXi8DUghFW59gK+VvH6qlyGLsCZGs7rBqys9F6O4ftQklzD+UIIIUQouVprRz3PTQSigD2V8me1/3g1SqkkpdQb/uHbJcBr+LISrfVpfD3LPwNy/Od19F/6OXy93seVUruUUnP9xztSKWO11ia+3OyELzMvVG7Er4lS6ltKqWPKNz2rCN9Isvb1/BkElcH/dyvB+ZtV6e8V+HqthRAthFSkRUu2HXACd9VxXjm+QL6iQ6W/XwK2aK0TKn3FaK2fAtBa79Ja34Vv2Pdb+Id9+Xttv6W1TgPuAL7pn3N1CThX5X6xWuvZ/uddxhfCV3StreBa679orUcAA/CF/XeAPHyt6N2q3CejHu83cOsqP4MeNRThEjCryvuJ0Fpn1HC+EEIIEYqu8n1QVimlKmdVHmAHBlTKnnj/Imah/Np//8H+YdoP4xvu7Xuw1q9rrW/Bl5sa37BxtNantNYL8WX8b4Hl/ilfmVTKWH8PeRd8OXsJ6FrXyCz/fOjv4RuJ1sbfyF9cqVxVfx5VBZUBX8578E3HEkK0AlKRFi2W1roIeAbfnOb7lFIx/sU5hgLRlU7dD8xTSkX5FzH5XKXX3gN6K6UeUUrZ/F+jlFL9/HOhHlJKxfuHdpXg641FKTVXKdXTH65XjnuBnUCJf2GTSKWURSk1UCl1ZVGxpcAPlFJtlFKdga/W9P785RijlLLh+8DhALxaa6//Ps8qpWKVUt2Ab+Jrgb/yficqpbr6Fyb5QR0/yveADkqpp5VvcZdYpdQY/2sv+J/TzV+mRKVUXQ0XQgghRF0OAAOUUkOVUhH45zRDoAf438AflVJJAEqpTpXWG6kqFigDipRSnfA1OuO/ro9SarJSKhxfjtr5NMsfVkol+p9X5L/kSsbOUUpN8Wfwt/A13H+ML+cvA79RSkUrpSKUUhNqKJMHyAWsSqmfAHGVXs8GUlXNO2csBr6hlOqulIrh0znVdfaECyFaBqlIixZNa/1/+CqR3wVy8AXTP/G1An/sP+2PgMv/2svAokrXl+Jb1OsBfK2/WfhapcP9pzwCnPcPFfsivlZugF74Fugqw9cz/net9WZ/JfcOfIuLnMPXqv4ffMO5wFfxv+B/bS3wai1vLw7fB4lC/zX5+OZpga8CXg6cBT7Et4jJi/73tA5YAhwE9uCrKNfI/zOY5i93FnAK3+Im4FuI5R18Q9hLgU+AMaHuI4QQQtSX1vokvp031uPLnarzjL+HbwrVJ/4MXk/N84ufAYbj6/F9H1hR6bVw4Df48jgLX+/zD/2vzQSOKKXK8OXdA/45zyfw5f1f/dfdgW8rL1elnO+Jb4uvdHxzqqtaA6wCTuLLcAfB06qW+f/MV0rtpboX8X1G2IrvM4ODWhrfhRAtj/KtnySEEEIIIYQQQoj6kB5pIYQQQgghhBCiAaQiLYQQ4qallOqilNrkX3n3iFLq6yHOUUqpvyilTiulDiqlhld6baZS6oT/te9XvVYIIYQQDdNaslkq0kIIIW5mHuBbWut+wFjgy0qp/lXOmYVv3YRewJPAPwCUb8/35/2v9wcWhrhWCCGEEA3TKrJZKtJCCCFuWlrry1rrvf6/l+LbS73qnu13Aa9on0+ABKVUCjAaOK21Pqu1dgFvUPd2fUIIIYSoRWvJZqlICyGEEIBSKhUYBuyo8lInglfjTfcfq+m4EEIIIRpBS87mWjebb63at2+vU1NTm7sYQgjR7Pbs2ZOntU5szHvOmBSt8wu8jXnL62bPQecRfNvKXPEvrfW/qp7n38f1TeBprXVJ1ZdD3FrXclyEINkshBA+ks03RjbfkBXp1NRUdu/e3dzFEEKIZqeUutDY98wv8LJzTdfGvu11YUk55dBaj6ztHKWUDV9QL9JarwhxSjrQpdL3nfHtSx9Ww3ERgmSzEEL4SDbfGNksQ7uFEELctJRSCvgvcExr/YcaTnsHeNS/QuhYoFhrfRnYBfRSSnVXSoUBD/jPFUIIIcRVai3ZfEP2SAshhLh+NGBiNncxGssE4BHgkFJqv//YD4GuAFrrF4APgNnAaaACeNz/mkcp9RVgDWABXtRaH2nS0gshhBBINtMM2SwVaSGEEDctrfWHhJ5PVfkcDXy5htc+wBfmQgghhGgErSWbZWi3EEIIIYQQQgjRAFKRFkIIIYQQQgghGkCGdgshhGggjVffMPOwhBBCiBuAZHNTkx5pIYQQQgghhBCiAaQiLYQQQgghhBBCNIAM7RZCCNEgvi02dHMXQwghhBB+ks1NT3qkhRBCCCGEEEKIBpCKtBBCCCGEEEII0QBSkRZCCCGEEEIIIRpA5kgLIYRoMBPZYkMIIYRoSSSbm5b0SAshhBBCCCGEEA0gFWkhhBBCCCGEEKIBZGi3EEKIBtFovFq22BBCCCFaCsnmpic90kIIIYQQQgghRANIRVoIIYQQQgghhGgAGdothBCiwUxk+JgQQgjRkkg2Ny3pkRZCCCGEEEIIIRpAKtJCCCGEEEIIIUQDSEVaCCGEEEIIIYRoAJkjLYQQokE04JV5WEIIIUSLIdnc9KRHWgghhBBCCCGEaACpSAshhBBCCCGEEA0gQ7uFEEI0mGyxIYQQQrQsks1NS3qkhRBCCCGEEEKIBpCKtBBCCCGEEEII0QBSkRZCCCGEEEIIIRpA5kgLIYRoEA14tczDEkIIIVoKyeamJz3SQgghhBBCCCFEA0hFWgghhBBCCCGEaAAZ2i2EEKLBzOYugBBCCCGCSDY3LemRFkIIIYQQQgghGkAq0kKIBilxOkgvKcZrSrunEEII0RIUOySbhWhqMrRbCFFvf9j+Ef/csxOrYdAmIpLF995Pl/j45i6WaGIajRdZGVQIIVqC//toG//dtxurYdAuKorF8+6nU1xccxdLNDHJ5qYnPdJCiHrZdvE8/923G7dpYvd4yCov44vvv93cxRJCCCFuWpvOn+XlA/sC2ZxZWsqXP3inuYslxE1BKtJCiHo5kpOD2+sNfG9qzemC/GYskRBCCHFzO5qbg9PjCXxvas1JyWYhmoQM7RZC1EvX+HjCLFY8HnfgWIeY2GYsUcNdKCriue3byKuoYHpaTx4fOhylVHMXSwghhLgqXeLiibBZqXB/ms0prSybzxYW8PvtH5JvtzOrZy8eHTxMslm0ClKRFkLUy8yevXnv5Am2XDiP1VBo4C+z5jZ3seotu6yMu5a8RpnLhak1h7KzyCkv5/u3TGzuorU+GrwyDUsIIZrd3N59ee/kCT6+dBGL4at8/nnmnGYuVf1llpZw95JFVLjdgWzOK6/gW+Nvae6itT6SzU1OKtJCiHoxlOL52XdwKCebYoeDAUlJtI2Mau5i1duaM6dwejyY2pcydo+H1w7ul4q0EEKIVstQin/OvYuDOdmUOB0MTEymTWRkcxer3ladPoXT4w3K5pcP7pOKtGgVpCIthKg3pRSDkzs0dzGuig6xkmWoY0IIIURropRiSGvNZh0imyWaRSshi40JIW4KM3r0IsxixfDPu4q0Wnlo0JBmLlXrpAGzlXwJIYRouWb16k241cKVGdGRViuPDB7anEVqtSSbm570SAshbgodYmJ564GH+L+PtpJXUcGMHr347LARzV0sIYQQ4qbVKTaOlQse5P8+/pBCewUze/bm8aHDm7tYQtSLVKSFENdVod3OsqOHKXM5mdK9B0M6pDRbWbontOEfc+5qtucLIYQQLUF+RQXLjx2m3OVialrPZp221aNtO/45V7JZtD5SkRZCXDcF9gpmLXqFIocdj2nyn317+OvMuUxJ69HcRRNCCCFuSnkVFcxa9DIlTice08t/9u3h77Pv5PbU7s1dNCFaFalICyGumyWHD1HksOM2fTNiHB4PP9+6SSrSrZ7Ci+zxKYQQrdGiQ/spdjrwVMrmX2zdJBXpVk+yuanJYmNCiOum2OkMVKKvqHC7m6k0QgghhPD1RAdnc7nL1UylEaL1koq0EOK6mZrWgwjrpwNfIixWZvTo2YwlEkIIIW5u09N6Bmez1crMnr2asURCtE5SkRZCXDcjO3bid9NmkhITS0JEBHf37cdPbpvc3MUS10gDpm4dX0IIIYKN6dyF306ZQUpMDAkREdzbdwA/vPX25i6WuEaSzU1P5kgLIa6r2b36MLtXn+YuhhBCCCH87ujTlzv69G3uYgjRqkmPtBBCCCGEEEII0QDSIy2EaHRnCwv49tpVXCwppl/7RH4/fRZJ0THNXSzRiGRlUCGEaF3OFOTz7XWruVRSzIDEZH43fSaJUdHNXSzRiCSbm5b0SAshGlWp08mC5W9wIDuLArudT9IvsfDNpXirrBAqhBBCiKZR4nQwf/kbHPRn8/b0izy0YhmmvoEmrArRxKQiLYRoVEdyc3B5vVyJZq/WZJWVklFa0qzlEkIIIW5WB7Kz8JhmIJs9pkl6STFZZaXNWi4hWjOpSAshGlWkzVathdtraiJttmYqkRBCCHFziwqZzSZRks1CXDWZIy2EaFSDkpIZ1iGFPZczcXg8RFqt3NG7b6ueh1XucvHuyeOUupzc2jWVvu0Tm7tIzUoj87CEEKI1GZqcwqCkZA5kZwWy+Z6+/UmIiGzuol21MpeLd04co8LtZmK3VHq3a9/cRWpWks1NTyrSQohGZSjFi3fOY8mRQ5wpLGBwUgfu7tuvuYt11cpcLuYufoXc8nI8pskfP/mYf8y+k9tSuzd30YQQQoh6sRgGr9x9H4sPH+RcUSFDklO4qxVvf1XidDL39VfIs1fgNU3+8MlH/Gvu3dzStVtzF03cRKQiLYRodDaLhYcHD23uYjSKpUcOkV1WhtPrBcBtmvy/TevZ+vjnm7lkQgghRP3ZLBYeHTKsuYvRKN44fJCcinJcVbJ502c+18wlEzcTqUgLIUQtCh32QCX6ihKXs5lK03KYWoaPCSGEaB759opAJfqKEqejmUrTckg2Ny1ZbEwIIWpxa9dUIqyftjmGWSzc2jW1+QokhBBC3ORu69Y9KJvDLRaZciWanFSkhRCiFqM7deaXk6aSEB5BuMXC7d2689upM5q7WEIIIcRNa3yXrvx04mTiw8MJt1iZ3L0Hz06a1tzFEjcZGdothBB1mNdvAPP6DWjuYgghhBDC7/6Bg7h/4KDmLoa4iUlFWgghRIPIFhtCCCFEyyLZ3PRkaLcQQgghhBBCCNEAUpEWQgghhBBCCCEaQIZ2CyGEaBCNwivtsEIIIUSLIdnc9OSnLYQQQgghhBBCNIBUpIUQQgghhBBCiAaQod1CCCEazNSyMqgQQgjRkkg2Ny3pkRZCCCGEEEIIIRpAKtJCCCGEEEIIIUQDSEVaCCGEEEIIIYRoAJkjLYQQokE04EXmYQkhhBAthWRz05MeaSGEEEIIIYQQogGkIi2EEEIIIYQQQjSADO0WQgjRQAqvlnZYIYQQouWQbG5q8tMWQrQYWuvmLoIQQgghKpFsFiI06ZEWQjS7EqeTr656l48vXSTcauWHt9zGg4OGNHexhBBCiJtWidPBlz94l+3pl4i0WvnxrZO4f+Cg5i6WEC2G9EgLIZrdd9atZkdGOl6tqXC7eXbbZrZfutjcxRJCCCFuWt9Y8wE7MzIwtabc7eaZrRvZmZHe3MUSosWQHmkhRLP7JP0iLq838L3D42F7+iXGdenajKUSNdGAKe2wQghxQ9uRkY7b/DSbXR4vOzPSGd2pczOWStREsrnpNdtPWynVRym1v9JXiVLq6Srn3K6UKq50zk+aqbhCiOsoISIy6Ptwq5X2UVHNVBohbl6SzUKIK+LDI4K+D7daaBsZWcPZQtx8mq1HWmt9AhgKoJSyABnAyhCnbtNaz23CogkhalHidPC99WvYk5lJUkwMv50ynQFJydd0z19NmcaT776FqTUWw6BTbBzz+w9spBILIepLslmI1qnY4eC769ew93ImHWJi+L9pM+nXPvGa7vmbKdP5wvtvo7XGogy6xMczr1//RiqxEK1fSxnaPQU4o7W+0NwFEULU7ol3VnIgOxu36SXPXsHCFUtZ/8jjJEXH1Ov6zNISVhw7itvrZU7vPvRu154JXbrx7sJH+OjSRWLDwpnZsycRVtt1fifiWnhRzV0Ecf1JNgvRSjz+9pscyc3BbZrk2yt4YPkbrH/0syRGRdfr+oySElYcP4LXNJnbuy8927bj1m6pvPPAw2xPv0RceDgze/Qi3NpSqg4iFMnmptVS/jU8ACyu4bVxSqkDQCbwba31kVAnKaWeBJ4E6NpV5lUKcT1UuN3sy7qMt9JWGFprdmSkc0fvvnVef7G4iDsWv0aF24XWmv/s282r98xneEpH0tq0Ja1N2+tZfCFEw0g2C9EKlDidHM7NwWOagWMa2J2Zwayeveu8/lxRIXe98Rp2txutNf/eu4fX713AkOQO9Gzbjp5t213H0gvRejX7jHSlVBhwJ7AsxMt7gW5a6yHAX4G3arqP1vpfWuuRWuuRiYnXNpRFCBGazTBQIVo7o+rZe/yP3Tspdznxao0J2D0efvPR1kYupRDiWkk2C9F6hFssVN3qWWtd72x+fucnVLjdlbLZzW8lm4WoU7NXpIFZwF6tdXbVF7TWJVrrMv/fPwBsSqn2TV1AIYSPzWLhCyNHEekP53CLha7xCdzaLbVe1xc7HJhVjpU6nY1bSHHdaa3waqNVfImrJtksRCsRbrXyuWEjiPQPuw63WElNaMP4eu58UeRwYFapiUs2tz6SzU2vJQztXkgNQ8eUUh2AbK21VkqNxlfxz2/Kwgkhgn1z7AT6tU9iV2Y6nWLjeHjwEMIslnpde0fvPmy5cA67xwNApNVaryHhQogmJ9ksRCvyvQm3Migpmd2XM+gcF8/Dg4Zgq2c239WnH9vTL0o2C9FAzVqRVkpFAdOAL1Q69kUArfULwH3AU0opD2AHHtC66uAVIURTUkoxu1dvZveqe95VVbN69SHfbuevOz/Bq00W9B/EF0eOvg6lFEJcLclmIVofpRRzevdhTu8+Db72jj59ybdX8I/dO/BqzYMDh/DE8JHXoZRC3FiatSKtta4A2lU59kKlv/8N+FtTl0sIcf08PHgoDw8e2tzFEELUQLJZiJvPY0OH89jQ4c1dDCFalZYwtFsIIUQrY8oWG0IIIUSLItnctG6c2d5CCCGEEEIIIUQTkB5pIcR1o7Vm2dHDbD5/jg4xMXxp1FjaR0U1d7GEEEKIm5bWmiVHDrH1wnlSYmL58ugxtI2UbBaioaQiLYRodIdystl64Tw70i+xOzMdh9eL1TBYdfokax5+nLjw8OYuorgGGvDKgCYhhGhVDmRn8eHFC2y/dJG9lzNweL3YDIPVZ06x5uHHiAkLa+4iimsg2dz0pCIthGhU686c5utr3sft9eKttJCvxzQpcbpYf/Y08/oNaPB9zxYW8OrB/bi8Xu7tN4DhKR0bs9hCCCHEDWvVqRN8a93qatnsNk2KnQ42njvDnX36Nfi+Zwryee3QAdxeL/P7D2RIh5TGLLYQLZpUpIUQ9VLidLDmzGncXi+3p3anY2xcyPN+snkDDv9elFU5PG6+v34tf9m5nT/PnMuQ5A71evaZgnzuXrKICrcbDaw8fpR/zr2LW7umXuW7EUIIIVq/IoedtWdO4zFNJqWmkRIbG/K8n27ZWHM2uz18e+1q/vTJx/xl1lwGJiXX69kn8/OYt/R17P5sXnH8KP+94x7Gdel6tW9HiFZF+v+FEHXKq6hg+msv8bPNG/nlts3MeO1ljuXlhjy3zOWq8T4a8GiTi8XFPLJyGfkVFfV6/r/37g5UogEcHg9/2P5Rw96EEEIIcQPJLS9n+msv8cwWfzYveomT+Xkhzy2vJZtNNB5tcr64iIdWLKXQbq/X8/+5Z1egEg3+bP5EslncPKQiLYQI0FpzIj+PA9lZOCu1XP9j9w4K7HbsHjcOj4cKt4ufb9kY8h63dUsl3GIJfG9Rig7RMdU2ZFDAwZysepWrciX6CrvbXa9rxfWg8GqjVXwJIURrZ/qz+WCVbP7rzu0U2u3YPR4cHg/lLhe/2Lop5D1u7ZpKWLVsjg5ZETicm12vctlDZXMNvd6iKUg2N7Ub550IIa6J2+vlsbffZN6SRTyyYhlTXn2Ry6WlAGSXleExzcC5Gsit0ptc4nSSW17Ob6fOYEr3HkRZbbSPiuJPM+awfP5CDBVclfaaut6Ljt3XfyAR1k9nokRarcwfMOgq36kQQgjROri8Xh5duZx5Sxbx0IqlTHvtf+SUlwGQVV4WNN9Z4+ulrqzE6SC3opznps1kUmp3oqw2EqOi+dvsO1h630JUlWz2mJq48Ih6lS1UNt8/YOBVvlMhWh+ZIy2EAODVg/vZlZkRmENl97j5/oY1vHz3fUzqnsam82cDLc0RViu3d0sFfL3YP960jmVHj2AoRe927Xn17vuIj/AF8eGcbGa//goWw8Dr9fqut1gZ07kzwzvUb8Gwid1SeW7qTP6042PcXi8PDR7CZ4cOb+SfgBBCCNGyvLR/L3uzMgPZ7PB4+OGGdfznznuYnJrGRxcvBGdzahrg68X+/vo1vH3iGEop+rVP5OW77w1Ukg9kZzFn8StYlIFX+7I50mLllq7dGFzPOdKTu6fxmynT+cvO7XhMzaODh/LwoKGN/BMQouWSirQQAoDjeblBC5F4teZUQT4A8/r252JxEf/cswtTa6an9eS7EyYCsPzYEd46fizQY30iL5cfbFjL3+fcCcCXP3iXEpczcF+bYfDw4CF8b8LEai3htZnTuw9zeve55vcprp0GTBnQJIQQ193R3Jxq2XyywDcP+v4Bg7hUUsx/9+3B1JpZPXvzrXETAHjj8EHeP3UCtz+bj+bm8uON6/nLrLkAfOn9dyitNG/aZhh8Zuhwvj3+lgZl8519+l3Vat+i8Uk2Nz2pSAshABiQmMR7p04EAtuqFH3bJQKglOIbYyfw9Jjxge+v2J2ZETQnym2a7M++HPg+s7Qk6DlKKZKiY7AY8steCCGEqM3ApGTWnj39aTYbBv3af5rN3xl/K98ed0vg+yt2VctmbyCbtdZklZUGPcdQiuSY6GrTsIQQNZNPskIIAB4aPJQJXboSYbUSbbPRMS6O30ydHnSOUqpaS3X3hDZBi4sZStElLj7wfbeEhKDzDRR92rdv/DcghBBC3GA+M2QYYzt3IcJqJcpmo3NcHL+cPC3onFDZnFZLNiul6BIfH3wPoHdbyWYhGkJ6pIUQgK+V+19z7+ZCcREOj4cebdpiqxTCNXls6DBWnT7J2cIClFLYDINfT/m0Av7z26fyyMrlaP/antFhNkakdGpQ2RweN6cKCogJCyM1PqFBw87E9eHVN8Z/A6XUi8BcIEdrXW2VHKXUd4CH/N9agX5Aota6QCl1HigFvIBHaz2yaUothLhZ2CwW/nvHPVwoLsLp9ZKW0KZe2fzE8JGsOXuKC0VFKKUIs1j41eTgbH787TcDq27HhUcwLCWlQWWzu92cLiwgNiyM1IQ2DbpWXB+SzU2bzVKRFkIEKKUaHIYRVhtvLniQ3f6FyoanpASt+Pnivj0YCrz+tC5zuXhh905uT+3O33ftwOX18sjgoUzr0TPk/S8UFXH/8jeocLvxaJNpaT3544zZMvxMNJaXgL8Br4R6UWv9HPAcgFLqDuAbWuuCSqdM0lqH3rhVCCEawdVkc6TNxsoFD7E7MwOn18vwlI5BO2W8uG8PSim0f9XvYqeDf+/ZzbguXXlh905cppfPDBnGlO49Qt7/bGEBD7y5BIfHg8drMqtXb343baY0dIvG8hKtIJulIi2EuGZWw2Bs5y4hXztXVBi0PYfT62X35Qz+s293YM7X7ssZ/N/UGczt3bfa9V9f8z559gpM/z3Wnz3DOyeOcXff/tfhnYibjdZ6q1IqtZ6nLwQWX8fiCCFEo7FZLIzr0jXka+eKCgO5Cr5s3pWZzj/27Pw0mzMz+MP02czs2ava9V9b/T75FRWBHu01p08xKbV7yBwXoqFaSzbLHGkhxFVze728dfwY/9m7mwPZWdVeL3E6iQ6zBfUeR1itlDldQauQOjweXti9M+QzzhUWBIW93ePmZH5+I74LIeqmlIoCZgJvVjqsgbVKqT1KqSebp2RCCBHM5fXy1vGj/HffHg7lZFd7vcTpICYsLCibI61WCu2OENm8I+QzLhQVoit9b/e4OV0g2SyaVnNns/RICyGuitvr5YE3l3AiLw+3aWIxFL+cNJV5/QYAvkr0nNdfIae8LFARtiqDSandsRkWDucGh7vT6+Gnmzdgd7u5t98Axvh7uNPatOVQTnbgHpFWG73btWvCdyqq0ii8racdtr1Sanel7/+ltf7XVdznDuCjKkPHJmitM5VSScA6pdRxrfXWayqtEEJcA5fXy4Llb3A6Pz+Qzb+ZMj2wRVWJ08GsRa+QV1EelM1T0npgmiZH8nKC7ufwePjJpg04PG7u6z+Q0Z06A5Ca0IajuTmBynSk1UbPtpLNzUmyOaDJsrnV/LSFEC3LurNnOJGfR4XHjdv0BsL2ynyrlcePkFdREdjDEiAhIoLnZ9/Jo0OGEWH9tB0vzGIhvaSE1w7uZ/mxIzz+zgrWnz0NwJ9mzKF9ZBQxtjAiLFampfWQPStFQ+RprUdW+rqaoAZ4gCpDx7TWmf4/c4CVwOhrK6oQQlyb1adPcrogPyib/9+m9YHXlx45TL49OJvbRkbyl5lz+czQ4UHZHG6xcKG4iEWHfNn82Ntvsun8WQD+Mmsu7aKiiAkLI9xiZVbPXszp1afp3qho7W6IbJYeaSFErQ7nZPPqwf1orXlw0BCGdvCt6lnksAcNuQZweD2YWmNRilKnC7fXG/T6lT0th6d05H93zuP5XTtwej1EWq1su3gh0LLt8Hj4/faPmJrWk24JCWx+7HOcKSggOiyMbrJqt2hiSql44Dbg4UrHogFDa13q//t04OfNVEQhxE3mYHYWiw4dQGvNQ4OHMiS5AwBFDgfeSpVkgHK3G601SilKXc5q2ezw+rJ5VMfO/PeOe/j77h24TZMww+CjSxeDsvkP2z9iUmoa3RPasPWxJzhdUEBsWHi1rS6FuN5aQjZLRVoIUaMDWZd5cMXSQAX4/VMn+N9d9zK6U2dGdewcdK7VMBiUlIzF8A10mdgtlb/v3hGYbxVusTCle1rg/DGduwSGb39v/RqCq+S+od5XRFhtDEhKbuy3J66BqW+MAU1KqcXA7fiGmaUDPwVsAFrrF/yn3QOs1VqXV7o0GVjpb9SxAq9rrVc3VbmFEDevvZczeXjlskC+vnfqBK/ecx8jUjoxulPnoMZmm2EwtENK4Njt3brz7727K2WzlamVVuYe16VrYIGyb679oM5sHijZ3KJINjdtNktFWghRo7/v3hmoRIOvR/nba1eREhtL94Q2/GryNH65bTMlTidDO6Twl5lz+eMnH7Hm9CkshkGH6BgySkuwKMWMHr341ZTp2N1urIYRtA/mvL79effk8UCwR1qt3N9/UL3KeDwvlwNZl0mMjuH21O6yLZZoEK31wnqc8xK+rTgqHzsLDLk+pRJCiJr9becn1RYF++aaD+gQE0tam7b8ctJUnt22hVKXk+EpHfnzzDn87uNtrD97BqthkBwdQ6Y/m2f16s0vJ0/F7nZjs1iwGp9WxO7rN5DVp08FZfOCembzsdwcDmZnkRQTw+3dustIMtEgrSWbpSIthKiRw+OudiyjtIT00hL2Z13m40sX2fbY54m02QD46eb1LD96JKjyDWC1WhnesROPv7OCPZkZaK3pl5hIt7gEvFqzL/syUVYb8eERRNlsLOg/kCdHjKqzfO+cOMb3N6xF4dtnc2ynLvzrjrulMi2EEOKG5fB6qh1LLynhUokvm7enX+Sjz36eCKsvm3+0cS0rjx8LqnyDL5tHdezIoyuXsy/rsj+bk+gWn4DbNDmQdZlIq5WE8AgibTYWDhzM54aNqLN8K44d4ceb1geyeUKXbrww506pTIsbjlSkhbgBZZaW8MLunRTY7czu1ZvZV7kAyEODhrArMyMofK8M83KbJoUOBzsz0rkttTsAbx49Wq0SDb6e7N99vA2n1xvYU/pIbi5HcnODzou0WvnpxEnM7NW7zrJprfn+hrVBZfsk4xLbLpwPlEcIIYRoKTJKSvjH7p0UOezM7d2HmT3rzrpQHho4hP1Zl2vM5vwKO3suZzKhSzcAVhw7irPKvGjwZfOvP9yKw1M5m3M4khu8cneE1crPJ01halrPOsvmNU1+tHFd0PM+unSBj9MvBsojxI1CKtJCXAWtTfCmg7KCkdKiWllzy8uZ+/qrlLicmFqz+swpvrNuNV3i4/nt1JmBBUlqk1Fawo70S0TZwvjl7VP5977duL1eLhQXBcIWwGN6g+ZPWYyafw6lLledz7V7PPzukw8ZmpJCh5jYWs91ej24QnwwyK0oD3G2aEwaWtMWG0KIm0RLzuasslLmLn6FUqcLE182h1usdI2P57lpM+s11zijpIRPMi4RExbGM7dP4b97d+MxzdDZXCmcLYYBIfIS6pfNDo+H5z7+kMHJHUiKjqn1XLvHg8cMnlmtgNzyijqfI66NZHPTk5+2EA2kzVJ0/r3ovLno3Bnows+jdd1B1FTePnGMcrcrsKK2qTV2j4eT+fk8vGIpWWWltV6/P+syM157iZ9s3sC3163i3/t2s2LBg6x/9LMMSAwOeqfXy+XSksD3XxgxmkjrtbXPnS0sZNail7lcWns5I6w2uie0CRrGbWodWFVcCCHEzUObxej8e9B5d/iyuegptK4+Pam5rDx+lHK3G5PK2ezmRH4eD65YSm557Y3Aey5nMOO1l/jppg18a+0qXt6/l7cfeJh1jzxOn/aJQee6vF4yK2Xzk8NHXnM2ny7IZ+ail8kuK6v1vJiwMLrExwVls1drhnSouxFfiNZGKtJCNJAueRY8pwAH4ATXTnT5f5q7WAEur7fatlSV7cxIr/X6761fQ4XbHfg6X1TI4sMHAUiMjq52/htHDgX+/tTI0fxy8jSmp/VkelpPJnbthuUqegTKXC5ePrA36NixvFw++/YK5i19nf/u24PWmpfuupcebdpiKEWUzcYfps2iZ9t2DX6eEEKI1k2X/Bw8pwE74ATnx+jyl5q5VJ9ye82as1nDrsyMWq//7ro1VHjcvi+3m7NFhSw5cgilFO0iI6vejiWVsvmro8fx89unMu0aslkDpU4nrx7cH3T8aG4Oj7/9JvOWvs5L+/eiteblu+4LNHRH22z8ecYcuie0adDzhGgNZGi3EA3lPghU7oF2gPtAc5Wmmpk9e/H8rh3YQywUBhBtC6vxWo9pkldlaLTT6+Wyvxc7IkSLdlil1beVUtzTtz/39O0fODb0n3+jxOn89BzAUAqNr0U+NT6B3IoKyt2f/ky9Wgddc6GoiPnLFlPh9r2nE3m5FDscfHPcBNY8/BgurxebIe2CTUWj8OqWM2RSCCFwHwYq517LyuZZPXvzzz07Q64jotFE+xftDMVjmuRXBA+Ndng8ZPl7h6NCXBteKa+VUtzbfwD39h8QODboH38Nyl3Df96VbE5LaENWWRkVlT5LeLWm1PVpNp8tLGDB8jeCsrnU6eSrY8ax7pHHJZubmGRz05OKtBANZe0J3vPAlTAMB+vVLRhyPaS1acvr8+bz7LYtnCnMp8TpDMydMrWmb/v2Ia977eB+frF1Mx4zeB5VpNXK2E6+/Z6/MGIUG8+dCXwQiLBa+dqYcbWW57Ehw/j33t3YPR4Uvor88gULcXm9JEVHkxQdw+8+3saL+/cGFk6JsFqZ1bM3S48c4kR+HpdLS3FW2YbrtUP7+ea4CQBcLi3lyffe4nRBPu0io/jLrLmM9e9RLYQQ4iZg7QHei8CVDGtZ2dyrXTtevWc+v9q2hXNFBUHZrDX0bh96NNVL+/fy6w+34DbNoOORVitjOnUG4Isjx7D1wvmgbP7qqLG1lueRwUN5+cBe7B5PYFTXm/MfxOH10CE6hsToaH794RZeO7g/6L4z0nqy5PBBThbkk1FSErTgmd3j4eWD+/iq/3NBRmkJT777FmcLC2gfFc1fZ81ltL/MQtwIpCItRAOpuJ+gCw6DWQhosKShop9q7mIFGdIhhaXzH+B0QT5zXn8lENZOj4cvvv8O7y58JOj8vZcz/UEdXIm2GgZfHjWWKWk9ABiYlMyy+Qv53/49eEzNwoGD6wzFr48ZT9vIKD44fZI2ERF8e9wt9Kgy/HpWz968fuggDo8Hm2HwrbETWHToANsu+j4YWA2j2pC4K22uptY8tHIpl0tL0UCevYLPvbOSDY8+XueCZUIIIW4MKu6n6PyjoIsBDdaeqJgnm7tYQYandGT5goWcyM/jzsWvVspmN196/11W3v9Q0Pk7M9J57uNt1SrRNsPga2PGBXaoGJLcgTfue4BXDuzFY2oeHjyEESmdai3Ld8bfQlJ0NKtOn6RdZBTfHn8LaW3aBp0zp1cflhw5hN2fzd8bfysv7t/L9vSLvmxWBrpKNhv+dPaaJg+tWEp2WRka30Kgn31nBZse/VzIaWJCtEZSkRaigZSlPbRf5R9GZgXbAJRqmf+U9mRmYDWMQAib+OYau7zeoCHZ+7IuV1sB2wCOf/npansy909M4rlpswC4VFzMo28t52JREcNSOvLM7VOICw8POl8pxaNDhvHokGForVl+9DC//nAr7aOi+NqYccSEhfPwyuUUOx2Ab+jYC3t2UuZyBbbP8FT5EBFhtfLEsJGAb5Xy/IqKoNXDvdpk4ZtLSYyO5ukx4xnfpetV/fxEzUxZYkMI0YIoSzIkrgb3EXzZPBClLHVe1xx2Z2ZgqZTNXuBQTjZe0/StsO23Lyuz+t7PSnEsRDYPSkoOZPOFoiIeXrGM9JJiRnTsxDO3TyEmLHhal1KKx4YO57Ghw9Fas+TIIZ7dtpmk6Bi+PmYckVYbj65cTol/KLdXa57fvYMypxPHlWzW1bP58yN82ZxVXkaRwxGczabJ/cvfIDE6mm+OncAYGTnW6CSbm1bL/PQvRAunVDiEjWjuYtSpbWRUte0/wiyWanOWLhYFb50BEBcRUS2oKyt1Opm39HUKHXZMrckqL+NCURFvLlhY45Yjf9v5CS/454gZSrH27Gl+O2UGZqUwNrWm3O2udbuOcMPCw4OH+soZHl6tt9rl36rrQnERT7y7klfvua/O1nkhhBCtm1IRrSSbI6vla6TVFlSJBjhfVETV5cnqyuYSp4N5S1+n2OnwZXNZGZdKilly7/01ZvMfPvmIF/ftwe7xYFGKdWdP8+ykaehKTze1ptTpqjGbFb7h5g8OHAJAfHgE3iqN4E6vl/PFRZwvLuLxd1aweN4ChshOG6IVk2YLIW5gk7unMSgpmSibjXCLhQirlV9OmlotTLenX6x27dDk2sNtz+VMnF5PoBLr8no5nJvNH3d8zEv79/KVD95l8At/Zex/X2DVqRMA/Ms/Vxr8W3+43RzIzqrW42xqTaTVWuOHBbc22XLhHACRNhvfHX8rkVYr4RYLVa9weDy8cehgre9FCCGEaCrT0nrSPzEpKJt/NXlatfN2pF+qdmxESsda770rIwO3+enuHS7Ty/7Lmfx5x3ZePrCPp95/h0H/+Cvj/vtP1p45BRCoRIOv57nC7eZQTqhsNmvMZo3vc8C2ixcA3zZY3xw7odZsXnr0ULX7CNGaSI+0EDcwi2Hw6j3zWXvmFLkV5QxP6cSgpORq54XakCM5JqbG+2qtWXP6FOWu4P2zPabJ8zs/CbpnmcvFt9atJiU2Lqjn+co5bSMjmZrWkw3nzuDweIiwWFkwYCCPDx3BN9d+wNnCAgodjmplqBzwnxs+kqEpKRzJyeHfe3eTUWn/TACr0TKH9wkhhLj5WA2D1+ctYM3pU+TZyxmZ0okB9c3m6JrX/jC1Zs2ZENmsNX/ZuT1QmdVAudvF02s+4I177682Ik1rTVJ0DLenprHl/DkcXl82PzhoMA8NGso3137AuaJCikJkc+W1Vr4wcjQjOnbiSG42/9qzO7ADCPh6sC0tdOi9EPUlFWkhbnBWw2B2rz61nvPEsJE8s3Vj0KrZCwcOrvH8P3zyEW+dOBoy5EMdc3k8bLlwjsnd01hz5jQe00ThWzBleo+ePD50OKtOn+RcUSF92yUyuXsaSimWzV8IwBfff5utF87j8K/8bTUMbumaGvSMESmdGJHSiXaRUXxn/erAe4m0Wnl0yNBa379oGK3Bq2VAkxBCXC2rYTCnd+3Z/LlhI/j1h1sCvcWRVisPDBxU4/nPfbyNd08eD5nDUD2fr/QgT+rWnQ3nz1bKZgtT03rw8OChfHDqBBeKi+nX3pfNAG8ueBCAJ95ZyUeXLuD0ejGUwmpYmFBlTZKRHTsxsmMnEiIi+cGGtZU+Z9h4ePCQWt+/aBjJ5qYnFWkhBPcPHES41cLiwwd922aMHsfg5A4hz91y/hx/37WjxqAOxWaxkFNezvqzZ/BeCWqLhf/ddS+d4+IBaq3s/3nGHH7z0VY+vHiBDjEx/Oy2yZwpyOfDixcYlJQUtAr4nN59iLTZeOPIQcItVr44YhT9EpMaUFohhBCi+T08eCiRNhtLjhwiymrj62PG0b+GPNt49gz/2rOrQdkcZli4XFrK5gvnAtkcZrHw0t330jE2DoC5vfvWeP3fZs/l1x9u5eNLF+kYG8tPb5vMibw8cirKGZSUHLQK+F19+hFjC+ONI4eIsln54sgx9G4XejtOIVoLqUgLIQC4u29/7u7bv9ZzCuwVPPXBOw0KaoBwq5UPL14IrMINgNbsuZzByI51LwIWbrXy09sm+y/TfHPtKtadPY3CN5/rt1NncEelsJ/cPS3Qcl6TfZcz+eqq98guL6N7QhtemHtXta0/hBBCiOZ0b78B3NtvQK3n5FWU8+VV7zY4myNsVjadPxuUzRrfTh7D65iLDb5e5Wdun+K7Tmu+vvp9Np4/G8jm30+byaxKjeRT0noEttOsyZ7LGXx11XvklpeT1qYt/5x7F6kJbRr4zoRoGtL/L4Sol83nz3HL//5dbSsOoNoiItVe11BSZS6VyzQptDvQWlNot+MMcd9Qdmaks+7MaSrcbsrdbhweD99dt7ra6qC1KbBX8Jm33ySzrBSv1pwpLODBFUtx17BKuKhKYbaSLyGEuJFtOHuGW//3n+CGar96ZbMzOJvdXi9FDnsgm6tujVmTj9MvsvH82aBs/ta61dX2ma5NXkUFj731JlllZXi15nRBPg+tWNagfL+5NX/m3mzZLD3SQog6lTidfPmDd0NWoiH0vOjKyt0uqLLKp80wGJyUzPTXXuJicREA3x53C58fMarWe2WVl1VbddyrNeVuF3HhEXWUxOdobm7Qr3ENlDldZJaW0i0hoV73EEIIIZpTkcPO11a/h9N7ddlc5nZV2z7SahgMSExi6qv/I72kBNB8b8JEPjus9m3FssvKqh1ze73YPR6ibLY6SuJzOCc7aEVwDRQ67GSVldEpLq5e9xCiKUmPtBCiTuklxViMq29BDLdaq22jkRwTw7/37eZcUSFu08Rtmvxpx8fsSL9Uawv2oKRkvJVW/1ZAUnQ0sWHh9S5P28jIauVxm17iI+p/DyGEEKI5XSwurrb3dENEWCzVVuzuFBvH33bt4GJxEW7Ti9s0+f32D9mdmVFHNncIqpQr/73qW4kGaBMZiccMfobXNIkLl2wWLZNUpIUQdUqJib2mYc/uEMOyIqxWjubmBAWvy+vl8XdW0Ptvf2T+ssXkVVRUuy6tTVuemzqTCKsVq2GQEhvLK3ffV62Xujb92icyvUdPomw2wiwWIq02nho5hoSIyKt7g0IIIUQT6xgbd03Z7PCGzuYTeblBFWyX1+SRlcvo/bc/cv/yNyiwV8/mXu3a8Zsp0wm3WLAaBp3j4vnf3fc2qDyDk5KZ3L17pWy28rUx44iVirRooWRotxA3kZXHj/LnHR/j9po8OGgwXxo5psYK6NnCAnZmpBMfEcHU7j34xaSp/GTzBixKUe521/uZCvCECOv5/Qfy0v59QftKerXG6x8+vi/rMvOWLGLRvAV0iY8PunZO7z7M6tWbcpeLmLCwBlWiAZRS/GH6bDacO8OF4mL6t09kXJUtO0TNNLLFhhBCNJY3jx7hLzu349UmDw8ayhdGjKox104X5LMrM4M2EZFMTevBM7dP4WebN2IxGp7NlUd3XbFgwCD+sXsnuRXlgWNebXKlvr7ncibzlr7OonsWVBtufWeffszt3Zdyl+uqKr9KKf4ycy7rz57hYkkxAxKTGNu5S4Pvc7OSbG56UpEW4iax8dxZfrRxXWCe89937cBqGHxhxOhq524+f44vffAOCl+wdYiJoU1EJFrrwH6W9aUr/e8VFqV4YthIhiSn8PjbK7AohcvrxW16A2eaWpNeWsKs119m8b33MygpOegehlLX1EqtlGJqWs+rvl4IIYS4VuvOnOYnm9cHsvWvO7cTZrGEnJO84dwZvrrqvUA2p8TEkhARgYnG5b6KbK4yVNtmGHxmyDD6tGvPE+++VWM2XywuZuail1h63wPVtpdsjGye1kOyWbQO0mwhxE1i5fEjQYuF2T0eVh47iqk1/9y9k/uXv8HXV79HRkkJ31u/GofHg93jocLt5mxhIXsuZ+L0emno2plXhnlV/n5Gj14opRjdqTPrH3mc30ydwRdGjCLCWr1tr8Lt5pnNG6/2bQshhBAt1orjR4IaqO0eDyuOH8Vrmvx91w7uX/4GT69+n8zSEr67bk1QNp8pLGDP5UxcjZLNVmb36o1SinFdurLukcf4zdQZPDF8JBGW6tlc7nbz862brvZtC3FDkB5pIZqZy+vlZH4eYRYLPdu2C1qxsjHF2MJRBPcNR9ps/GzzBt485gtyA8W2ixcod7ka5ZlhFgtPjRzNqI6d+cnmDRQ7HNyW2p1fTJoSOCclNpaU2FimpfXgo0sXOJCdVW3xkwJH9flYonl5pR1WCHEDc3o8nCrIJ9xipWfbtg2eQlRf0bawatkcZbPx403reefEMV82K8WHly5Q7LA3yjPDLBa+MnosQ5JT+NnmDZQ4nUzqnsbPb/80mzvGxtExNo6paT348NIFDudkV1vhO9Q6JqJ5STY3LalIC9GMcivKmb9sMfkVFZhaM6xDR168ax5hFkujP+vefgNYduxwYNXNMIuF74y7hcfeWRFYwdpE4/R46RwXz6WS4morW1cW7l+kq6jKHpSVfWXUWL4yeiwA6x55vNby2SwWFt97Pz/fspHFRw4FAjvcsDA5Na1B71UIIYS4WtllZcxfvphCux1Ta0Z27MR/7rgH23XI5vv6DeStE8eCsvmbY8fzyMrlgUZlU2scHg9d4hPIKCnGU8vq2REWK+FWC8VOZ43nPD1mPF8c6ZvWtf7Rz9ZavjCLhaX3PcBPN61n2bEjn2azxcLUtB4Neq9C3Gik2UKIZvTjjevILC2l3O3G7vGwNyuTF/ftafTnaK354aa1QfOhFNC9TZtQZ/PwoCEMTExC4fslYa2yvUa4xcLLd9/Ht8ffEnI49hV2T/WFT7acP8c9SxYxe9HLvHZwf9B2GtnlZaw8cSyo1TspJobvTphY37cqhBBCXJMfbFjL5UrZvCszg5cP7Gv052it+dGmdUHZbChFanyobIbHhg6jfx3Z/Oq8+/jG2Am1ZnOofac3njvL3W+8xuzXX+GNwweDsjmrrJS3q2RzSkws3xw7oZ7vVIgbk/RIC9GMTuTnB/X6OjwejubmNPpzip0OLhQVBc2hslks7MvKYkH/gaw8fhS7x4NFKcItVvonJvH87h1YlEJrzfAOHTlfVAjAlLQePDZkOL3atWNohxTePHaEk/l51VYLtRoGiVHRQcd2ZqTz1AfvBOZq//rDLWg0jwweBsDn3llJRZX7ZJWVsj8rkxEpna5pv0zReDQKU1+fYY5CCNHcThXkBU0xcng8HM1r/GzOs1eQUVoSlM1Ww+BQTjb39hvAuyePB4Z2h1us9GmXyKWSYixKgYbhHVI4X1SEUjA1rSePDRlGj7btGJiYzIrjRzldkF8tU22GQbvIqKBj2y9d5Cur3g1k8y+2bkJrzcJBQwD47NsrcFTZZiujtIRDOVkMSU6RbG4hJJubnlSkhWhG/dq3J7O0JFCZjrBaGVBlderGEGm1UXUgmKk18RHhPHP7FDrFxrHx/Fk6xMTwnfG3cs+SRRQ6Ph2yvTMznUXz5jOuc/AWUWEWC0vue4CPLl7gxf172JWZgcPjQeEbXlZ15c0lRw5VW/DslQP7AxXpc/7KemVu02Thm0uJDQ9n0T3zr8vPRwghhLiiT7tEssvKAkOoI6xWBiY2fvbE2MKqzTv2ZXMEz06eRue4eLZcOEfH2Fi+Pe4W7nzjtaAh2zszM1hy7/2M6tQ56B7hVivL7nuADy9d4MV9e9iTmYnD68vmcKu12pDsxYcPVsvmVw/uD1Skz9eQzfOXvUFceASv37uAfu0Tr/XHIUSrI01IQjSjX0yaRue4OKJsNiKsVkamdOKzQ4c3+nPCrVYeGTQ06FhydAzjOnfFYhg8NWoMy+Yv5K+z7iDaFkaxo/q856+vep9lRw+z6tQJ7lz8KncsfpV1Z05jNQxuS+3Oi3fO40sjRzMwMYmJ3bqzbP4DRNtsuCu1YodZLFRtK608Hzw5OiZk+TVQ4nTyyMpl1T50CCGEEI3p11Om0zEujmh/No/p1IVHhwxr9OdE2mwsHDAo6Fin2FhGdvSNwPrK6LEsm7+QP8+cS5jFSqmz+kKgX131Hm8eO8J7p45zx+uvcufiV9l49gw2i4VJqWn87657+cKIUQxMTOL21O6smP8gEVZrUDaHW6vP/a48Hzyplmwudjp4ZMWyoKHgQtwspEdaXDPtOY8ufwVwoCLvQYWNau4itRrto6JY89BjnC4sIMwwSGtT98qgWmvWnDnN+aJC+rRvz6QqC3F5TJNzhYWEWy10iYsP3G/1mVNB52WUljDllRcpdjoY3qEjz02bSZvISOLCw6v1XoNvCNqPN67DXWko+hfff5u/zJzDnN59/aE/jq+MHsel4mIeeWsZl0tLAfjJbZN5aNAQHh86nHdPHMfucaPxtfJ/fcy4wP3+NmsuD65YhtPjDrmVR4nLRYHdzpGcbA5kZ9ExNpa7+/avNk9MCCFudtpzFl3+KuBCRc5DhVXfl1iElhgdzdqHH+dMQT7hVivdE9rUK5tXnznFhaIi+rVP5LbU7kGvu71ezhUVEmm10TkuDuWfOrXmzOmg8y4UFzPllf9S4nQyIqUTz02bSXxEBAkREegQ6ZxTUc4PN6wNyubPv/cWz8++k5k9e2E1DL4+djxfHzueC0VFPPrWcrLKSlFK8cxtU7h/4CA+O2wkH5w6FVjXJMJq5WuVs3n2HTyychlOjydkNhc5HZQ4nezNyuRQdjad4+K4q08/GfItbnhSkRbXRHvOo/PvAV0BaLT9PUj4MypiUnMXrdWwWSz1HhKltebb61az5vQpXF4PYRYrCwcO5kcTbwd8q4Dfv/wNcsrL8ZomE7ul8vfZd+LyeskuLwu6l8vr5UJxEQBbL5zj7iWL+MyQYYzt3IW7+vTjrRPHqj3fXWUVbw386sOtzOndN+j4599bSXpJSaD3+NltmxmYlMyQ5A58/5aJLDp0AJth8PTY8Uzu/ukQsyEdUtj62BMcysnmq6verTbv2kDx6oG9/GffHhweDxFWK28dP8Yr99x33bYNE6HJFhtCtFzacwadfy9oO75sfhfa/A0VLgs31leYxUK/xKR6nau15uur32fj+bO4PB5sFiuPDhnK9/wLZeaUl7Fg+RvkVVTgNU0mpabx11lzKXe7KaiypZUvm4sB2Hz+LPcsWcTDg4cyrnMXZvXszQenT1Z7fqhs/vWHW5jZs1fQ8c+9u4L0kuJAdfyZrRsZmJTEgKRkvjv+Vt44ctC/aviEoIaA4Skd2fLY5zmck82XP3gnaN9r8C2Q9u+9u/nf/k+z+e0Tx/jfXfdKNjcxyeamJT9tcU10+cuBSrSPA132h+Ys0g3tdEEBq06fpMLjxqM1FR43rx7aT255OQA/WL+WS8XFVLjdOL1e1p89wx8/+ZgIq5Uom63G+3q05lJJMb/9aCv3LVvMlO5p3NGrb7Vh2KG4vB52ZqTz1vGjnMrPx9Q68Gdl7544xgPLl/CLrZs4kZ/H6cIC/rxje9DwMoB2UVHcntqdr40Zh1UF/4r60a0T+ceeXdg9HjS+eVz7sy+zMyO9Xj8/IYS4Gejy/wUq0T4OdOkfm7NIN7TjeblsOHeGCrcvm+0eNy/u20uB3bfP8nfWrSG9pCSQzWvOnOL5XZ8QExZW63aXHq05X1zEbz/ayr3LFnNH777M7tm7Xtns9Hj4JP0Sb/kXHXN7vZwrLAzq01bA2yeOcf+yN/jVh5s5kZ/HqYJ8/rxze7XtL9v7s/nLo8b6Fjur5Me33s6/9wZn857Lmey9nFm/H6AQrZT0SItrVDmo/XTN+wqLa1PosGMzDCr/hG2GQZHDQWJ0NEdyc4JWGtXAi/v28I2x43l+1h188f23sRoGTq8Xr2kGnQu+Vm23afL/Nm9g75Nf5ldTpjH5lRfJt1fUODe5TXgkn3lrOcr/vGcnTyM+IoKiSvOsTa155eD+aiuUny7IZ+uF8zg8Hp7ZupEKt5vbu3Xn/6bN5IlhI2kXGcUbhw9iMQy+Nnocvdu159cfbQt6vqEUJbXsZS2EEDcdLdnclIocjmpTjGwWg2Knk7aRURzLzQnKUA38c88uvjJ6HH+dNZevfPBuIJtN06y2T/SVbP7xpvXs+vxTlDqdTHnlRQoc9hqzOTY8nMfffjOQzb+dOoOYsHBKXZ8uVubVmpcP7Avq0XZ4PJzMy+XDixcocTr45dbNVHjcTOmexm+mzOCpkaNJjIpi6dHDhBkWnh47nq7xCfz6wy1Bz/dlc817WQtxI5CKtLgmKuIetP0DCFTtIiFyQXMW6YbWt31i0DwtBUTZwugaHw9A+6jIakO43aaXnPJybu2WyoZHP8uxvFzaRkTyk80bOFWQH7RS5xXlLt+CJtFhYSyfv5BvrV3F2cICurdpQ4nDwanCAgBGdezE7syMoI9r3163mpSYWOwWNzaLBVNrnB5PtUo7+Fqtv7VuFU6PB6e/Z3rDuTN8b/0a/jprLvP6DWBevwGB87XWdI2P51xhYeB+WmuGdejY8B+muGoaMLUMaBKipVKR89COdQRlc9T9zVmkG1r/xCSo1E9sKEVsWDidY+MAaBsVRZ6/d/oKl9dLvr2CSalprH/ksxzP92Xzjzat42xhYchsLvNXgmPDw1k2fyHfWvsB54uK6NG2LQUVFZzxr649OqUTuy4HZ/PTaz6gY2wsLq8Hm2HBpOZsrvB4+Maa93FUyua1Z05jMQz+MH028wcMYn6lRdJMrekYG8eF4qKgiv3g5A4N+0GKayLZ3PTkpy2uiQofg0r4I1h7g6UbxHwZFf1EcxfrhhUXHs7r8xaQGp+AzTDo1a4di+9dQLjV1yb2jbG3VLtGoUiIiACgQ0wsk1LTGNIhhaX3PcD3J0xkVErHoGFiVsNgRMdOrDlzitte+g/3LnudQcnJbP/cF1g2fyFT0noSZrEQbbOxL+tyyIXJsspKCbNY+cnESQzv0DFkUF9R4nQGghrA6fWy5cK5kOcqpXj17vkM69CRSKuVbvEJvHrPfBKjo0OeL4QQNyMVPgGV8BxYevmyOfZrqKjPNHexbljxEREsmjefrvHx2AyD3m192Xxl5etvjBlf7RpDKeLCwgFIif00m5fPX8h3x9/K8A4p1bJ5dKfOfHDqBBNf+jfzly9meEpHPnniiyy57wEmd+/hz+Yw9maHzubLpaVEWK387LbJDE1OqTWbi0Nk88ZzZ0OeayjFonnzGdohhSirje4JbXjtnvm0j4oKeb4QNwrpkRbXTEVMQUVMae5i3DT6Jyax8TOfA+BgdhbfXbeGQoedaWk9+da4Cczr25/3T53w9VxrzQ9vvZ3IEPOjw61Wwi1WDufmBAWuxzTZl5nBnsyMwHCvxYcPAjC1ew9ePrAPl9eLq8rc5sr8fcWcKcjnw0sXGvwenSFa4q9Ijolh6fwHGnxPIYS4maiIGaiIGc1djJvGwKRkNn/G15GgXQfQpV/AzC2C8OlMS/s6d/buy5ozpwKrdf/0tsmBRvDKIqw2wiwWjuXlVsvmnRnpfJJ+KZDNrx06gKEMJnTpymuHDtQrm71acyI/l4/TLzb4PYbqJb+iQ0wsy+cvbPA9hWjNpCItRCt1vqiQB99cSoV/u4pXDu6jxOnguWkzmddvABmlJfRvn8iApOQa7/HCnp3VVt8EcFZZZMTh8fD+yRN0jY/H1KE2v6jO6fXyxpFDDXhHn/KaJna3O2QDgBBCCNFSac9ZdOGj/nnqQMUroMv444yf8nH6RTJKShiUlFzriuAv7K4hm6tUkh0eD++ePE77qKhqi4PVxOX18oa/cbyh3P6Kem0LpAlxM5GKtBCtTE55GW8ePcL29Eu4zE9D1eHx8PaJY/xqynTGd+lar3vpWoZ1VRVhtdI9oW2NC5tU5TXNGhcaMQCLYWBRBqY2MbUOWlzFMIzAkDjREim89Vo3Vgghbg7ZZWW8eewIA6PfZkJbV6XfkA5wvI2K/xkTunSr173qn8wQabXSvU2bkHtMh+I1TUpr6LW+ks2Gv9e8ajZbDKPaomqiJZFsbmpSkRaiFckqK2X2669Q5nKFbH1uaMB9dtgIfvvR1pAt31VFWK0MSUqutl9lTWqaexVjC+PxocMZnJzMjowMusTHs/jQAc4VFeL0eom0WnlyxCgJayGEEK1CRmkJc19/hXK3m0d6ZDAqXhMe1BbcsI/bjw8dzu+3f1ivbA63WhjRIaXePdI1ZnNYGJ8fNoK+7RPZlZlJ1/h4Xj24n4vFRYFs/tKoMbIvtBCVSEVaiFbkxX17KHU6awzCJ4ePqvHaIznZ7M26THJ0NFPTemIoxSODhxJhtbLo0H4O5eTU+uwLxcX8ddcn11T+52fdwaxevcmvqOC+ZYvJq6hAo+kWn8DXRo9jV2YGh3OyWXzoIBVuN98Zf6tUqIUQQrRo/9m7m1KXC1Nr3r7Yi6f67cNQTmyGxu6xEhb3VI2r+x7KyWZ/1mU6RMcwJa0HhlI8PnQ4kTYbiw8d4HBu7dl8rrCIv+/eeU3l/+fcu5iW1pPcinLuW7qYQrsdE01am7Z8bcw4dmakcyQnh1cP7qfc5eJb427BItkshFSkhWjJnB4PWWVltIuKIiYsjCKHo8ZKdLjFwoSuoYeNvXn0MD/etD4wLLtX2/YsX7CQCKuVBQMGcTI/r86KtNPr4Whu7lW/lyibjd7t2gHwi62byCwtCfRuny0s4GheLp9kXAosZvLawf0YSvG9CRM5U5DPF99/h/NFhaTExvL87DsZVMvcb3F9yRYbQoib2ZVsbh8VRbQ/m6/ka4Ezkrlr7+PzfffTNtzBlqxefG7cHAbFVb/PksOH+NmWDYFr+7ZPZOl9DxButbJw4GCO5+bUWZF2eD0cz8sL7BfdUFFWG73a+rL5mc0buVxWGujdPpWfR/eENuzMSA/0jr98YB9Ww8I3x03gZH4eT73/DheLi+gUG8fzs++odV0WcX1JNjc9qUgL0UIdyLrMY2+/idtr4tEmP799CrN79eG9UydCrpxpKEVUiMW5TK35wYa1QfOcjublMPO1l1jz8GMcyc3hlYP76yxPuMXCoORkDmRfrtdws8oUoDV8f8NaBiQmcSwvN2iIuNPrZe/lzKD3Zfd4WHn8KG6vl0WHDgQWWUkvKeGRFcvY+vgTxIVHNKgcQgghxLXYezmTz76zAo/XxKtNnp08jbm9+rDmzKlAhuU4onl2/wTANy3qayGy2Wua/GjjOsxK1d9DOdnMef0V3n/wUQ5kZ7G4Hgt2XsnmXZkZOL0Nz2YUfGfdagYldeBEfl7QEHGn18ueyxlBmW/3eFhx7AjlbieLDh0MrBJ+saSYh1YuY9tjnyc2PLxB5RCitZJmCyFaIK9p8vg7Kyh2OqnwuHF5vfxsy0a6xsfz89unkBwdjc2wYPHPVYq0WhnXuWugVbmyy6UlQZXoKy6WFPPTzRvYfP5cnXOrLErRLT6Br48Zz19mzcWiGvarI8xiwWua7LmcyZIjh8itKMdaaZ5VhMVKx9jYwPu5Ir+iglcO7K+2UqlGczwvr0FlEEIIIa6FxzT57DsrKPFns9Pr5ceb1tOzbTt+MnESSdHR2AwjKJsndk2le0Kbave6UFQUVIm+4mxRIb/ctplN587WK5vT2rTlq6PH8ueZs6tlaF1sFgtur5c9lzN5/fAB8u0VWCotVhVhtZISE1ttXnR2eRmvHNhfbastrTWnCvIbVAYhWjPpkRYNprUGx1to12GULQ0iF6CUbFPUmArsduxud9Axq2FwIj+P+/oP5L7+AzG15s1jRziam0Pvdu1Z0H+gb+/oKnLKyzGUCrna9orjR5mU2p1wi6VaZbUyr9ZcKikmq6yUKd178Ob8hTz81jLsbneNQ80rc3m9gY8LvucElycxOorfT5/F3W8sotTlmwNuNQwMVNDK5Fe4TZM2EZF1PldcP7IyqBAti9Ym2N9Cu4+gbD0hcj5Kyce8xpRbXl6t8mg1DE4V5PHAwME8MHAwXtNk+bEjHM/LpW+79txXQzbnOypqHI695MghJqV2J8wwcNVSmfZqzYWiQrLLypneoxdL71vIo/5srs/SY+5K2ezy+n6rV67cJ0fH8Ny0mdy9ZBHlLlcgmxUKdw3ZnBAhI8Wak2Rz05LfsKLBdMkPwfEBaDvaHgGOddDmRVQDeylFzRIiIqq1AHtMk65x8YHvDaWY339gnffqHBeP1TCqhf+Ve+7ISKd9VDQZpSW13sfu8fDqgX3EhodzqiCfx4cMY+nRw2SXl9dZhqofFKoOP8urqCCnvJxVD32GxYcPUuF2ofHNk64qymZjds/e9GpXvfddCCFuVrr4e+BYC1zJ5vXQ5j8hK3Hi6rSNrN6A6zFNOlfKZothcP+AQXXeq0tcPDaLpcZs3p2ZSduoKLLKymq9T4XHw2sH9xFhtXG6MJ/PDR3B60cOkldRUWcZqmdzcFlyyssotNtZ9eBnWHLEtwioqTWvhspmq427+vYjrU3bOp8rxI1CKtKiQbQ3F+zvAi7/EQe494PnCNjqDg5RPzaLhT/NmMPTa97Hahi4TZPHhw6vtoiH1rrOD0mJ0dE8O3kaP964Lqhn+Aq721Ot97smL1cKz3VnTterxbs+nF4vR3NzGNmxE0+PHQ/ApeJiFh8+CP5gtxkGvdu15+kx45ncPa2RniyEEK2f9maBYzXg9B9xgHs3eI6DrV9zFu2GEm618odps/jmulXY/Nn8+WEj6ds+Mei8+mRzh5hYnrltMj/bsjFkNpe7XZS66rd82H/37w38ff2Z09Q8vqxhXF4vR/NyGZbSkafH+uZ8ny8qZPHhQ4F1TsIsFvq0a8/Xx4xnUmr3RnqyEK2DVKRFw2g7YKly0ACz7pZP0TDTevRkw6Of5WR+Ph1jY+lZaf7zeyeP86ON6yl3uxjWIYV/zLmL9lFRNd7r3n4DuLVrN3akX+J769fgqFQ5DTU8qz6uthJt4BsKV3m4mqk1H1+6yKNDhgWOdYmPZ/G99/OzzRvIr6hgUvc0vj9hIuFW+bUlhBBBdAUoS5UuRovvuGhUM3v1ZkiHFE4V5NMpNpYelbL5nRPH+PGm9VS43YxI6cg/5txJ28ias/n+gYO5PTWN7emX+OGG4GwO1VNdH1dbiTbwjXSrvKaKV2s+Sb/IQ4OGBI6lJrTh9Xnz+dmWjRQ67Ezt3oPvTphImKXqZ0MhbnzyiVQ0jKUTWJLBewnfr2sDCAPbgGYu2I2pQ0wsHWJiAXj7xDHeP3kCpWDrhfOBIVgHsrN46v23WTZ/Ya33SoqO4Y4+/egSn8DPt2yi2Okgv6ICt8tZ63WNSeHrIe/Vth0fXroY9NrRvOpbfAxKSubNBQ82UelEfWmtZIsNIVoSS1cw2oHXSSCbVQRYpTf6ekiJjSUlNhatNSuOHWHV6VMoYNvFT7N5X9ZlvvzBuyy+9/5a75UcE8PdffvRJT6OX27dTInTSV5FOW6Xq9brGpMCkmJiSI1P4JOM9KDXjoTYfmtIhxRW3v9QE5VO1Jdkc9OTirRoEKUs0PY131wsz3GwdEHF/x/KiGnuojUpj2ny/M5P2Hj+LMnRMfzg1ttCrsrZWP6zdzd//OQj7B5PtcVJPKbJvqzLdQ4l85omz27bwtKjhzC1ZlaPXhzIyaKkhop0uMW3dqfjKlvFQ1FKMatnL5YdOVLttXKXi6988C6Dkjuw6NB+Cu12RnTsxJ9mzCZBFhYTQogaKWWFtot82ew+AdZUfzbX3Bt6I9LajS57HpxbwdIBFft9lLXrdXveP/fs4q87t9eYzXsvZ9Z5D49p8sutm1h29DAAc3r1YVdmOqU1VKTD/T2/tS0Q2lBKKWak9WTZ0erZXOJw+rM5mdcOHqDIYWd0p878Yfps4mVhMXGTk4q0aDBlSUK1/V9zF6NZ/XjjOt49eRy7x8MRlcPOzHTWPfw4idHR1+V5L+zeGdjHMdSMqdiwsDrnYz2/6xNeP3wgMFxs5YljtI+MrBb+NsPAZlhoGxlJbkXdC4kZ1H+Yt6k1Lx3YH/K1QoeDD06f5IPTJwPHtl+6yJPvvc3S+x6o5xOEEOLmpCwdUG1fbu5iNCtd/GNwrAIc4DmKdu2C9qtRluuzOOU/99SRzfXYT/nPOz7mjSOHAtm8/NgRkqKiaszmdlGR5NZjIbGGZvPLIRYQAyhw2Ktl84cXL/DUB+/w+rwF9XyCEDcmqUgL0UBaa1YcPxrY39HUGpfXy8ZzZ7h/4ODr8sxQW0zZDANDGSgFv5o8rc57rD59qtqcqzy7nUndUrlYUoLHNFH49pfG9JJexyreV8RHRFDsdIbcXutauf0t+m6vF5vMv2pRvDJ8TAjRgmjtBcc7fDpL2ATtAtcWiJx3XZ5ZNZsVvjVArmTzrydPr/Mea85Uz+bcigpuT+3OheJiTNNEo7lUUgKm1/dnPSRERlLkcFy3bN6ZkY7XNLEYkgUtiWRz05KKtBBXoWrfr4LrusXI/QMG8erBfYGW7wiLlW+Nn4DNsDCqU2f6+VcM1Vrz9oljbL14no4xsTw5YhRx4b6hV21CbNsBsOnCeSIsVkZ37swnly5hat2g4B3dsTO7LmdQYLdf47sMzWoYWCWohRBC1EoROp2vX34s6D+QxYcPfprNVivfHncLFsNgdKfOgdW8fXOpj/JR+gU6xcbx+eGjiPP3VrcJMXVJA5vOnyPSamVESkd2ZKQ3OJvHdurC9vSLFDoc1/5GQwizWKpt0ynEzUYq0kI0kFKKhwYNZckRX3halCLSZmNaWs/r9szvTriV+PBw3jt1goSICL5/y20MqrIVFsDvtn/IS/v3Yfe4sRkW3j15glUPfYYom40HBgxme/qlkPd3eD1svXC+weWKCw/nt1NnkFNRzt1LFlERYhutcMOCswErg19p0feYJhFWK9+dcKvsgyqEEKJWShnoyPvBvgLw7zBiREL4pOv2zB/cchsJERGsOn2KNhER/PDW2+mfmFTtvN98tJXXDu7H7vEQZhi8f/IE7z/4KJE2G/cPHMyuzIyQ97d7PNUW5qyPhPAIfj1lOpdLS5i3dDEVnurZHFZl94y6KHx7ZHtNk3CrlR/dertks7jpSUVaiKvw44m30zU+no3nzpIcE803x95SY49vYzCU4qlRY3hq1JgazzG15t97dweGnLtNL3kV5Ww4e5ppPXqyqtL8pmtlUYrZPXvzi8lTiQuPYHcNC6p8deQYKrxuXj6wP1CuUGyGgcUwSI1P4L7+Awi32sgrL2dUp86M73L9FooRQghx41Bx/w9t7eJfbCwFFfM0yoi/bs+zGAZfGT2Or4weV+M5HtPkxX17AsPAXaZJTnkZm86fZXL3NFY3ajYbzOnVm19MmkpseDjb04uqd9ID3xg9jkKng0WHDgT2gw6lcjYvGDAIm2GQV1HB2M5dGNO5S6OVW4jWSirSQlwFQykeGzqcx4YOv+7PKnM6mb/8DU7m56GUYkH/gTw7eVq1lmCvaWJWCUS7x8O3163Gu1YHVvpsDF6tee/UCQocFfxm6kwK7KEXPvnb7h1oQuZ4kNjwcJbdt5Duba7fyuei8WjArPO/qhBCNC2lDFT0ZyH6s9f9WSVOJ/OXLeZ0QT5KKRYOGMzPJ00Jnc1VhmRXeDw8veYDTN3Y2Wzy7snjFNrt/HrqdArsdnSI4eB/2rm9XtkcHxHB8vkL6Rqf0GhlFNePZHPTk4mHQrRwdy5ZxIn8PN8vSK1548gh/rbrk2rn2SwWBoYY7u32h7jDvz1HQ1nwDc+uSgMfXbrEjFf/R8+27ULO3dJV/qxJkd3Ot9atCnyfUVLC77d/yK+2beZQTvZVlFoIIYS4fu5Y/CqnCvID2bzo8AH+uWdXtfPCrdbAXOnKPNeYzQa+4dlVaWDbpQvMeO0l+rRrHzJ/65vNhRUVfHvt6sD3l4qL+f32D/n1ti0ckWwWQirSQrRk5S4X54sKqx1/+/gxAM4VFfLivj0sOnSAYoej1mHQvtZnRZe4OKJtYfV6flJ0ND3atKt1jnOFx8Pm8+f466y5GFfZEmoCh/2hfKm4mNmvv8I/du/kP/v2cP/yN/j4KuaICSGEENdDscNBeklxteNvnfBl89nCAv67bw+vHzpAibPubAboGhtHlNVWr+cnR8eQ1qZtrXOcy91utqdf4s8z5lx1H6UXOJiTBcD5okLmLPZl87/37Wb+8jfYUcO6K0LcLGRotxAtmNUwqu0lCb7hVvsuZ/LwyuV4vF5MNM9s2UjPNm1rXUAkzGph1YOfYcorL1LudtX5/NzycnLK695L+lxRIU+PHc+sXr1ZfeoE9V9a7FPRNhtaa/69dxflLmdg/0uHx8PDK5fRPiqKP0yfzS1du13F3UXjUrLFhhDiplXTdowJ4RHsykznsbfexO31ooGfbdlIjzqyOdJm470HH2XyKy+GXBisqpzyMrLrjmbOFRbwpVFjmN6jJ+vPnL6qbI71N7z/c88uyl2uwOcRh8fDwhVLSYyK5k8zZjNO1jNpASSbm5r8tIVowcKtVu7q0y/omAKenTyVn27egN3jxq1NvFrjMU1O5OeF3HMaINxi4f+mzmBv1mVKXXVXoqHuYV9XjO7YGYD5/QcQH2IrD/AtUFabUqeLwS/8lXdOHCPUR428igq+8N5bXCqu3gsghBBCNJUom43ZvXoHHTNQ/HzSFH6yaQN2jweP1oFsPllHNj83dQZ7LmeG3PkilPpm86hOvmxeMGAQsWHhIc+pa3vJQoedwf/4Cx+cOhHyubkV5Tzx7ltkltZvf2shbiTSIy1EC/f76bPo2z6R904eJyEikp9MnETPdu0oCrE3pMbfi+0P7ytshsHfZ9/JpO5pbL90EU8DtqOqjULRt317FgwYyNsnjvH99WtwekPfu6YPEVeYaMrr+BBhKMW+rEy6xF+/VViFEEKIuvx55lwGJO7k/VMnaRcZxU9um0Ram7YU15DNNsOCoc2gVbKthsE/59zNxNRUtl08X+vuFg1hoBiQlMS8fgN48+gRfrxpXY3ZXNczTaCsjmy2KMX+rCw6xsZdbZGFaJWkIi1EC6eU4skRo3hyxKig45O7p7HkyKFq4WgoRZuISAocdlxeL+EWC/3aJ3FbavfAOQ3ZO7I2Gk1OWRnFTic/27yxxqC+GqGGtGugTQ093qLp+BbXkZVBhRA3L0MpvjhyDF8cGbwt5aTuabx59HC1nDWUIj4iigK7Hbfpy+aBScnc2s03XUmhcDVSI7eJJqu0lBKng2e2Xv9sNtG0iYhotGeIqyPZ3PSkIi1EK/WDW26j1OXi7ePHMP2xZlGKCKuVH956G+vOniaztJSBScl8Z/ytGP6h1e+ePN6o5ch32PnhxrWUOKu3wl+LhIgItIaiSvcNt1iYIHOkhRBCtFA/mTiJcpeL906eCMrmSJuVH91yG2vPnuZyWSlDkjvwrXG3BLbLeuv40UYtR669gh9tWEdZPady1Vf7qChcHi/FLmfgWJTVJvtKi5uSVKSFaKXCrVZ+P30Wz02byf/272XT+bOEGRZ2Zqbzo43rcJsm9/UbwE8mTgoE9aXiYj44fbLRy7Lh7Jl6z9kK1ZodSlpCG47l5wUdK3U6KXLYaRsZ1dAiCiGEENdduNXKn2bO4Q8zZvPffbvZcuE8YYaFHRnp/GiTL5sXDhzMjydOClxzoaiIdWdPN3pZ1jbgnvXJZgV0jUvgWH5u0PFCh50yl4u48NDzsIW4UcliY0K0EgX2CtJLivGGGC72uWEjeO2e+RzJzaHC7abU5cLh8bDi2FE+8m8dpbXm0beWU+J0hrr9NalvJTrSamVYh5SgxU0MfIuVJYR/OizMqhSH/e+lMqXkV5YQQoiWI7/Cl81mlXVADKX4/PBRvHbPfA7mZGH3fJrNbxw+xCf+raO01jyyclm9FwFtiIZk89AOKUGLghrA+M5diK+UzRalOJybHSKb69tELsSNRXqkhWjhtNb8v03rWXb0MBbDICUmlsX3LiApOiboPK9pklcRvB9GhcfN+rOnuaVrN0pdzpD7XjalcZ27MLFrdy4WF2H3eACIsNqwGAp7pS0/PFrjqTKnK8JqZUynztIb3UJ4pR1WCHET01rzgw1rWXn8KBbDoHNsHIvuXUBiVHTQeS6vl0K7PeiYw+Nmw9kzjO3chUKHnazysqYsehAF3NKlG+O7dOVCURFOry+bo2xhuE0TRz2yeUKXrsSFyxzplkCyuWlJRVqIZlThdmMzjBr3pAR45+RxVh4/itv0rfZ5sbiIb65ZxWvz5gedl15SQtuISPIdwYG9+PBBpvXoiUWpOlfOvt42nj/HxvPnAEiMiuKro8cxpXsPJr70H7w69AJoVqUY3CGFkSmd+MbY8U1ZXCGEEDeh+mTzyuNHeffk8UA2ny8u4rvrVvO/u+4NOi+ztIT4sHCKKs0p1sArB/cxNa0HHtPbaKt1Xw0NrDt3hnXnzgCQFBXNV0eP4/bUVCa98mKNZbMaBoOTkhndqQtPSzaLm5RUpIVoBiVOB597ZyX7sy6jlOKpkaP5xtgJIc89lJ0d6L0F3zZSR/Nygs555cA+fvPR1mrDvgHcpsnzOz/hQHZ2476JKhS+vTXdXm+9VgXPrajgtYP7ua//AGoaEmY1DEZ17MSieQsat7BCCCFEFUUOO597ZyUHs7NQSvHV0WP56uhxIc89kJ0VlM0e0+RITnA2v7hvD7/b/mHIyqjbNHl+9yfsycxs3DdRRUOzOaeinMWHD3BX3341nmMzDMZ17spLd99b4zlC3Ayk/1+IZvC99Ws4mJ2F17/f83/27mb16VMhz+3epg0R1k/bvBTQJe7TfZRzysv49YdbcHg8QftTVlbcyCtqh6KBbvEJRNnCqO/mC6cK8rEog7v79iPS/x6v/FIy8LWM39G7H85KH1ZE89MoTN06voQQor6+s241h3KyA9n8wu5dbDh7JuS5Pdq0rZbNXeM/zebM0hKe+3gbDo+nxl7dggrHdZ9ZrIHuCW2ItNnqnc3H8nKJstmY3bN3pWxW/j8hOTqG2b16Sza3MJLNTU8q0kI0g92ZmUGVXrvHw86MSyHPXdB/ICNSOhJlsxEbFkZ8RAR/mD6LcpeLlceO8tKBfVBLPBrA9B69UNf595bVMDiRn0eRs/4fDKJsNqyGwW+mzOAbYycwKbU7jwwexj/n3km41Uqhw84vt23i7iWLguZpCSGEEI1tz+XMoEqv3eNmZ2Z6yHMfGDiYIckdAtmcEBHJc9NnUeZyseLYEV45sB9VRzZP7dEjsDXl9WI1DI7n5VHsdNY7m2PDwzGU4vfTZ/G1MeO5vVt3Hh0yjH/MvoMwq5V8ewU/37qJe5e+LpVpcVOTod1CNIOk6Gjy7RWB78MtFjrGxoU812ax8PLd93EwO4ujuTkczsnmxf172XjuDKVOF26vB3ctc59jw8P5+NJFtPYNx6qp1/pqWZQi3GIhwmqjsMr87NqEGQY/vOU2lFJYlOKJ4SN5YvhIACa/8t+gIXMXiotYcuQQnxkyvFHLLoQQQlyRGBVNkePTEVwRFisdY2NDnhtmsbBo3gIOZF3maF4OR3Jy+M/e3aw/e5oylxu314OnlmyOj4jg44sX0FpjNYxGnyddOZsLGpjNP7r1Nt89DIMvjBjFF0aMAuC2l/6Do1I2nysqZPmxIzw0aEijll2I1kIq0kI0g99OncHCN5dyZW5w1/gEHh48hIySEvLsFfRo05aYsLDA+YZSaK15dtvmoApmfRQ7nezKzAB8FelpaT1YV8NQtfpKiozi3QcfITosnL2XM7EoxaGcbP7wyUe4qqzoWRNDKZ7ZuonDudn8ctK0wF7XAAXVVjj1kF1WXvUWQgghRKP5v2kzeXjF0sD3qQlteGDAYNJLism320Nms0ebPLttS1AFsz4KHQ52X/bNj7YaBjPSerLmGveSTo6O5r2FjxJhtbIv6zJWw2Dv5Uz+vOPjejeiG0rx/zZt4FB2Ns/cPqXObM5txhXHhWhuUpEWohkMTEpm/SOPszMznSibjVu7pvKH7R/x8oG92CwWDBQv33MfQ5I7BK75046PG1yJrsptmpS5XFiVqrWlvC459greOn6MJ4aPpGfbtqDhcE42Ct9wtfrEtcNf4X77+HEmdElldq/egG9Lkf7tE9mdmYnHv5J3pNXK2M5drrq8ovGZMjNICHGDGZLcgXWPPM6uzAyibDYmdk3ltx9tY9Gh/b5sVorX7pnPwKTkwDV/+uTjBleiq/KYJhUe9zXvrpFdXs57J4/z6JBh9GzbFq1h3+VMDKUanM0rjh/llq7dmN6jF+DL5n6JiezPuhzoPY+wWhndSbK5JZFsblpSkRaimSTHxHBH774A7MxI59WD+3F6vTj9IfaF997ik899MXB+hbv+c4QtQFRYOBVuV7VQPpKbw6yevVl75hTOaxhK9vaJY2y+cI69lzNxe72gFKbWGEoRbbXicLupT990hcfNibxcZvfqjdc0+cJ7b7M/6zLa31tvMwy+Oe4WJnZLveqyCiGEEPXRISY2kM0fXbrA4sMHg7L5i++/zYePPxk4vyHZbAUia8jmQ9nZTE/ryYZzZ+q1unZNVh4/ygenT3IwOysomy1KEWO1Yq9nNjvcHk7m5zO9Ry88psnn332Lw9lZmP5yhxkWvjvhVsZ36XrVZRWitZOKtBAtwJnCgkDF8Yrc8nLcXm9gH8v7BwziaG5Orb3SNsPClO7d+dqY8RTa7eRXlPP0mg+CWqFLnE7ePXUC6zUucFJgr+BMYUHgwwX+cDW1xmtqDMOoth1XqDnaFqXo3qYNAMuPHWF7+sVAi7gC+rdP5HPDRlxTWYUQQoiGOlNQEKg4XnG5tDTQaAy+bD6Zn1dHNhvM6NGTp0aNpchuJ7u8nG+vDc7mIqeDVWdOXXM251aUU2C3V8tmr9a4G5DNSvlW+wZYcuQQOzIuBWXz4ORkWbdE3PSkIi1EC9CjTdtqq3smRccEKtEA9/YbgMPj4ZfbNtc4D3l+/wE8c/sULIZvaM9Dby6tcSjXtQztBt/sbmcN5XCZ3mofPoAa52hdWWjtVH5+0IcRDVwoKb6mcorGpzV4b6DtK4QQIpSebdthVPlV1zE2Lmil7fsHDMLh8fCbD7fiMkNn4gMDBvHT2yZj+LN5wbLF1y2bPaauMZs9pjfk0PGas9m30NrJ/Lyg4esaOF9UdE3lFI1PsrnpyUB6IVqA0Z0689jQYYRbLMSEhREXHs6/7rg78PqFoiI2XzjHqE6da13Z8/XDB+n/9z/z8y0bySgpZnsNW2o1huzymhf/ClWJrkmE1Uq2f7GSAYlJgT0rwddb3btt+6svpBBCCHGVxnfpysODhwayOT48ghfm3Bl4/XxRIZsvnGNspy54dc3Z/OqhA/T7+595dutmzhcVBhYZux5yK2rOZq/W9d5LOtJq43JZLdncTrJZCOmRFqKF+M74W3lo0BDy7XbSEtoQ7V8ZdPGhg/xi26Z6b13lNk1eOrCPS8WtoyfXqzUDEpMAuKtvPz68dIH3Tx7HMAzaRkbyhxmzmrmEQgghblY/uOU2Hh0yjIIq2fzqwf38+sMtvmz2mug6GpDdpsmL+/dwvriwKYpdo/o2c3u0Sf/ERADu6z+Qjy9dZPXpkxiGQfvIKH43feb1K6QQrYT0SAvRgnSMjWNQUnIgqAvtdn6+dSMOj4dSlwuHx4Ph3xuyLp9kXAoaftacLLWU4+ujx5HWpi3g23bjoUFDCLNaUUBeRQWbz59rolKKhjC1ahVfQghxrTpVyebcinJ+tW3zp9ns9aCUQUQd2ayBHemXWsyH79qy+dvjbiHVP0faUIqHBg/BZrGg8L3/rRfON00hRYM0d+bebNncUv4tCyFCyCovw2oEB7PHNJndqw9Wo/Z/vm6vlwhr8w86MYB3H3i4xtcvlRTztVXv8bed26lwufjcOysoc7mwezy4vF5+uW0zZwrym6y8QgghRG2yysqC1jABMHU9s9k0ibDZrmfx6sVA8f7CR2p8/VxRIV9b9R7P7/qEMqeTJ955i3K3G7vHg9Pr5WdbNnK+qHl714Vobs3/KVsIUaMucfHVVtcE2HjuDGEWS63zpTvFxfPXWXN54M0llLlc17OYtdJAlC2sxtffPHYEp9dL+FkLa8+crrYfp9Uw2J+VxV92fsLhnGx6tGnLLyZNJTkm5jqXXAghhKiuW3y8b2upSjSw6dxZbIZRazZ3i0/gd9NnsfDNJZQ3YOusxqbRtVbolx89jNPrZd3Z06w/ewZ3lYXUfNl8md9v/4ijuTn0bNuOX06aSmJ09PUuuhAthvRIC9GCxYSFsWDAwGrHi53OOhf0+vWU6fRPTKK/f/5xY2sfGVmv86JtNrrExzOsQ0rI16+sLur0ejlTWABVlkLxmiZ/372D1adPcq6okE3nz3Lv0tdxeJrvA4gQQoibV1x4BPP6Dah2vMjpqPPaX02ezsCkZPq0T7weRSOxntkcGxZO1/gEBiclV3tNEZzNJ/Pzqs0B95gmf/rkY9aeOeXL5nNnuHfZ6zhr2QZMiBuNVKSFaOGmpPUg0hI8eKRDdAxfGTWWMIuFGFsYsWFhjOzYkSibjaToaF68cx4jUjqy6NABwv1zmhpbfVvSXR4vSilen7eAiV1TsRoGVsNgevcehFUZtm5RBk+PHUek1UpsWBgRVivz+w/kcllpYKE1r9aUOJ0cyslu9Pck6kejMLXRKr6EEOJ6mJrWI2gla/Ctc/KFEaMD2RwXFs7IDr5sTo6O4eW77mVIhw68dnA/UVbbdcnmsnpns6/C+8Z99zOhS1esypfNM9J6EFZl2LqhDL4xdjwRlbL5gQGDyLNXBLLZozWFdgfH8nIb9w2JepNsbnoytFuIFu6WLt24b8BAlh09jM0/9+ofc+5kSIcU5g8YSF55Od0S2hDlH6J1PC+X/7dpPV9d9S4Oj6dB212EYlUq5L6W9nq2Oru1idvrJd9ewR19+rJgwECmdO/BuyePs+7cmcB5CogJD2NK9x7+Ie2aAUlJRFitLDlyKOieJrpaJVwIIYRoKrd3687dffuz8vhRbIaBQvH3OXcyKCmZhQMHk1dRTmpCGyL92Xw0N4efbFrPU++/g9Pb/Nns0iYe0yTfbufuvv15cNAQJqemsfL4UdaeDc7mhIgIJnfvQee4eEytGZCUjFUZLD4cnM0aHficIsTNQCrSQrRwLq+XWT17M6RDCh2ioxmYlExceAQAiVHRJEZ9Oh9p5bGjfGvdqmr3qP+uztWN79KVbRcvXPU9rIbBW8eP8szWTb6CKEiOjiGjpDjonkopZqT15I7FrxFm8W319eykadzdtx+3dk3lw0sXcHg8hFss9G7bnoEhhqMJIYQQTcHl9XJH776MSOlISmwsAxKTiQsPByAxOjporvCyo4f43vq11e5xLdk8sWt3Nl44e9XXG0rx1olj/GzzhkA2p8TEcrG4qFo2T0lN4843Xgtsw/nbqTOY26sPYzt3YUfGJX82W+nXPpG+12nIuhAtkVSkhWgBvKbJn3dsZ9Xpk8SHR/DjibcztEMKxQ4H85a+Tk55ua9VODKClQseCnmPrLJSvr9hTa3Pqe9e1JVtu3iBnm3acbYwH28N54RZLLi8oV+1GRb+sXsnFZWGm50LsdJnpNXK64cP4jZNnP5b/XDjWqakpfH3OXfy4r497M++TJ+27fnCyFFYpNW7WXmvy6BEIYRoOXzzgD9izZnTJERE8P8mTmJwcgcK7XbmLX2dvIoKANpHRbFiwYMh75FRWsKPN66v9TlWZeDRDcvmzRfO0rNNW84WFlDTlWGGBZcZOpvDDIO/7tgelM2+dUqCRVqtLD7iy+YrM8C/t24Nt3frzr/m3sV/9+3hYE4Wfdsl8oURks3NTbK5aUlFWogW4NltW1hy5GBgSNZDK5bxzgMP8dKBfaSXFAcqvw6vh199uIXfT59V7R7H8nLrXPSgoZVo8DVUnyrMp0tcPFqbpJeWVjunpko0QLuoKMrcda8a7jZNwiyWoDJaDQuXy8ro0649T44Y1eCyCyGEEFfr51s2svzYkcBuEg++uZR3H3yEf+3eRWZpSSCvXKUefvPRVn47dUa1exzLzamzatPQSjSACZwuLKBbfAIe00tGqGyuoRKtgKToGIqdzjqfEyqbDUORU15Gj7bt+OLI0Q0uuxA3Cmk2EqIFePPY4aB5TS6vhyffe4s3jx0JCi+PaYZsMf7g1Am+sfoDnFdRUa6vSyXFvDDn7mqLq9Sla3w8Yzt1qXFOs6EUEVYrz9w2GW+V+V5aazrFxl11mYUQQoirtfL40aAtGV2mlyfeWcFbJ44GZbO7hmx+98RxvrV2Fa7rmM0Xiov419x7iGhANmsgNaENYzp1rraw2BWGUkRarfz89inVshkgRbJZCOmRFqIxOT0envv4Qz6+dIGU2Fh+MnEy3RIS6rzOWqWS6dWa80VF1eZPhVssxIeF8/qhA0zslkrnuHgOZGfx7XWrq+2/fD20jYpkeo+evHPieL3ndm1Pv8TOJ54it6KcHRnp1V6/vVt3np99B+FWKzHh4Xxn7WoshkJr+PucO4kJq3kPatE8NGBqGT4mhGgdnB4Pv/1oG9vTL9IpNo6f3jaZLvHxdV5nrTJM2WOaNWZzbFgYiw8fZGLXVDrFxbHvcibf27CmSbK5fXQUk1O788HpU/W+ZtvF8+x84im+8P7b7M7MqPb61O49+MusuYRZLERabXx3/RqshkIDL8y5K7DAqWg5JJubnlSkbxLam4Eu/T14syF8Eir6syglAxIa2zfWfMDm8+dweD2cLMjnniWLWP/o47SNjKr1uq+OHstzH2/D7vGg8P0yrBrUV1qNd2Wms+tyBsaHikXzFvDRxQu4axla3Zg2nDndoEo0+HqVv7H6fXZlZmBRBqY2A9eHWSx0jY/nYE4Wozp2Zk6vPkzsmkp2eRkpMbFESyVaCHED055L6LI/gDcHIiajoh6XbL4OvrLqXT68eBGn18Opgnz2LVnEhkcfJyGi9j2XvzRqDH/65GPsHg8GChNdLf9shgUN7EhPZ0dGOhalWHzv/Wy7eCGwxdT1tvbUKVY1oBINvmz+6ur32Hs5E4tSmFpfWXMMm8VCp7g4DuVkMSKlE3f06cttqd3JKS+jY2ycVKKF8GvW39ZKqfNKqUNKqf1Kqd0hXldKqb8opU4rpQ4qpYY3RzlbO20WoPPuAccH4N4FZX9Fl/yiuYtVI6012puF9uY3d1EaxOX1svbsaRxeX3CaWuM2vXx48UKd1z42dDjPTZvJnF69mZTavdrwaQPFHb364jVNHF4vDo+HCreb/7dpPQkREdhqGJrV2P7flo0NqkSHKUVsWDjbLl3A1Bqvfx5YcnQ0SVHRGCheO3SAz7z1Ji8f2AtAbHg4Pdu2k0q0EM1EsrlpaG8eOn8eOFb5srn0L+jS3zR3sWrUWrPZ4XGz+fw5nJWy2eX18PGli3Ve+/nho/jt1BnM7tmb27qlhshmmNurN6Zp4vB6cHg8lLvd/GTTBhIiIgizNE1/1f/bsqHB2RwdFsbHly76s9m3FVeH6BjaRUVhoHj14H4eWbmcRYcOABDnz2apRAvxqZbQ7DlJaz1Uaz0yxGuzgF7+ryeBfzRpyW4Ujo2AEwLrOtrBvgQdYs5Lc9NmGbrgfnTuNHTubZiFX0brpmnRvVaGUiEXFKk6NKwms3v14a+z7uD52XfSMTaOMP91YRYLSsHKE0er7Rl5LDeHc4UFpMTEBs6/GhalGNmxIwMae9sKpSivstCYBspcbsrcLhxeDx7TxOHx8KttW/Bex3lkQogGkWy+3pzrQVfJ5orXW2g2l6Lz5/uzeSJm4dfRumlGQl2r0MlMvVeXntu7L3+bfQfPz7mD5JiYwOgwXzYr3j55vFo2H8rJIqOkxHf+NWbzqI6d6Neu/VXfIyRlUOFyBx0ygQq3mwq3Oyibf7F1E2YL/P+kEC1BS6hI1+Yu4BXt8wmQoJRKae5CtT762jYrbEK69FfgPoqv4u8C5zZ0+YvNXax6sRoGDwwcHGixthkGceERTOzWvUH3CbdaWbHgQT47bASTU9PQpq+1OFSQebXm9cMHuaVrN3q1a3fV/6A1cKGoqF4reDaEyzRDLlISHxFe7aONqWmSuWSiMShMbbSKL3FdSDbfZHTJL8BzHF82u8G5CV3xSnMXq17CrVbu7TcgKJsTIiK5tWtqg+4TYbXx1v0P8/jQ4UxOTcP051tN2fzaof1MTk0jrU3bq96QSAPni4oocTV2NnvxhvhgGBcRXu2YxzSbbPqYuFaSzU2tuedIa2CtUkoD/9Ra/6vK652AS5W+T/cfu9xE5bsxhE8G9X+VWr4jIfJOlGqBCxK49gOVezAd4N7bTIVpuDm9+nC5tJTLZaUMT+nIN8aOb9BiWSVOJyfyc2kbEcl3J0xk7+VMdmWm43bVvH2U3ePh1YP7r6ncptbk+vfDvN4U0CYikqxKW3VYlKJn27YynFuIlkGyuSmETwH1O9AuPs3me1tmNrv3Uy2bXXsg+vFmKlDD3NWnHznl5WSXlzGyYyeeHjO+QUOUS5wOTuTn0S4yiu9NmMjOjHR2ZaZTWkc2/+/AtX1+8WVz+TXdo74MpYgLCyezpCRwzKoUfdsnEt7A3TqEuFk097+MCVrrTKVUErBOKXVca7210uuh0iRk36pS6kl8Q8zo2rVr45e0FVOWdtBuBbr0OTCvLDb2+eYuVmjWVPCeA660foaBtUczFqj+Xju4n19/uAWX10uYxUq4xUpsWPXW3Zoczsnm4RXL0GjcpsldffrxlVFja92juTXSwJHcnMD3BjA4uQP/mHNns5VJCBFEsrkJKEtipWzOgfApqOgnmrtYoVlSwXuJT7M5HKw9m7FA9ffS/r3838fbcPuzOdJmIza8/tl8IDuLR1cuA3zbXN3bbwCfHzYSl/fGmopkas3RvNzA9wYwpEMKf5dsFqJGzdq3rrXO9P+ZA6wEqu7qng50qfR9ZyCzhnv9S2s9Ums9MjGxked53gCUtQtGm79gtFuCEfNFlGqaxakaSsX9FIxEUDGgosGaior+UnMXq05aa57dthm7x4NXa+weN6cK8th4/my97/GlD96hxOWk1OXC4fHw7onjnMjP45tjJxBhtWI0cS9FXAMaAa5F73bteXPBgyRFxzTJ80TjMFGt4ks0nGRz01HWrhht/urP5idb7IrdKv4ZMNpVyuY0VPSTzV2sOnlNk19/uBVHpWw+kZfLlgvn6n2Pp95/m1KXK5DNK48f5UJxEV8bM7ZZsrkhDfTXol9iEsvmLyQxKrpJnicaR3Nn7s2Wzc32G1spFa2Uir3yd2A6cLjKae8Aj/pXCB0LFGutZejYDUxZklHtV6MSnke1+Req3UqU0fJ/ibtNE3eVhbI0UOxw1PselysNdQbwaJNzRYV8fsQols9f2OgL0Izr1LnW1+/o07de9wm3WEhLaFPteL1/TbbEYYxC3KQkm0UoypKCar8GlfA3fzYvRxm1b+vYErhNL6auns0ljvrNOTa1JrusLOiY1/Rl81Mjx7Dk3vsbPZvHdqw9m+f27lOv+4RbLKTGJ1Q7Xt/EbZFTDIRoYZpzaHcysNL/D9UKvK61Xq2U+iKA1voF4ANgNnAaqABax2QcgfacBTMPrL1QRvVKVm2UEQXh465Tya6PMIuFwckdOJyTjcdfodZaM7qOymplXeMTOF9UGBgfaVEGvdu1A6Bv+0QMpUIu3HW1LhQX1/hamGHw5rEj9bpPlM3G2aLCasfrU9IIq5UvjhhVr+cIIZqEZPMNTHvOgJkP1t4oI6FB1yojGsLHX5+CXScRVhv92idyPC83sLK21pqRHTvV63pDKTrHxXOppLjSMYPe/lW0+ycmoZRq1Mp05WdVFW6xsPL40XrdJ9pq43xxUbXj9c3mpySbhahTs1WktdZngSEhjr9Q6e8a+HJTlkv8f/bOOj6uKv3Dz7mjca0mdRfqbriU0lLciuvirPsuy8pvjRWchYVlFy0tpcUL1Ch1d0811riM3XvP7487nWYyk2SSpknlPJ9PIHPlnHem7Xzve84rJ45Z/juofheEAzAh7WWE88z/Qv7XFdN59LOPWJubS1qcmz9ddBldo+zU1sWLU67k5tnv4dUDBEyT2wYPCVUV1YTgwm49+GLv7nrH6JGaxqHycnxmw3nV9a01B0yT+Bh7U5c0Ytf9GElOJ4PatmfG4CFc2qNXo+9XKBQnB6XNZy5m2ZPgmQXCDkhIexXhPPNbgP/7ymt45NN5rM/LIz0ujr9cfBmdUlJivv+lK65kxuyZ+AyDgGlw55BhjMm2MhtsmsZ5XbrydU79oeI909I4WF6OL4aaJ/XtBPsNI+YiacW+xmtzstPJoHbtuW3wUC7qfnrkwCsUrUlrFxtTnGFI/yqofg/wgrS+xGXJQ4h2K1vXsBYgIz6eN6++vsn398rI4Js77yWnrJQ0tzsiZ/j3F17Mt4cOUFlPldAjlRVc038A727Z1ODu9ZHKijrPSaAqEKjz/Ini1XV+NGESA9u2O2lzKE4eUoIhVdifQnG6IH3LwDsbS5uDx0ofQrRd1qp2tQSZ8fG8fc0NTb6/b2YbvrnrXvaXlZHujqNNQni62R8uupQL/vNqvZp5uKKCa/sN4J0YtPlwRXmd5062Nnt0nZ9OPI++maqewemI0uaW59SsaqE4fdFzIo/JcqRs3h6IpxqGafLhjm08t2oFi/fnNHkcl91On4zMqIW30uPi+WLGHVzXf2Cd93t0nUMV5STGUIykNVuLCyHw6CfvYUChUCgUNTD2W0/ZNTGLkVJvHXtaCMM0mbN9K8+tWsGSAzlNHsdtd9AnIzPCiQZoE5/AFzPu5Jq+A+q836Pr5FVVERfDbnJra7NXP7P/TigUzYnakVY0L/beRMiA1gYhWqbKZGsgpeS+j+aw/NAhfIaOy2bjvmEjeWxM8+aSBQyD9Xl5DGrXnnk7t0cVO4EVNu222yg7hdcuHJrGj+Z/TsA0uLb/QB4ZNbbFK58qFArFWYO9NxEJPVoHhDhzHwNNKbnzw9mszT2CN6jND44czUMjxzTrPH7DYEN+HoPbt+ejXdujhm8LINHpxG231xtV1to4NI3vfv4JAdPkhgHn8ODI0UqbFYp6UDvSimZFOAdD4kOA02qRIVIRaS+1tlknlbV5R1hx+BAePYApJR5d5/nVK5pVLP2GwQ2z3uX78z/lqUVf17liHOdw8PCosXx37ARcMeY4twZVgQA5ZaUcrqjg5TWreG7V8tY2SdFITKmdFj8NIYT4txCiQAhRuzL1sfPnCSHKhBDrgz+/rHHuMiHEDiHEbiHEj5vx41UomhXhHAaJ9wGOoDanIdJebPC+05lVhw+xNu8I1TW0+R8rluFtxmgon65z3cy3+f78T/nt4gV1OtHxDgcPjRzNE6PHnSbaXM4Lq1fw8ppVrW2SopG0tuaebdp85i5FKloNLfF+ZPx1YBaDrdMZvRsNUOr1RqzYakKj0u8j0elsljnm7dzOjqOFeOoJuWoTn8Bzl19Bn4xM+mRk4rbZ+eGXn+E3jFYNFWsIj64za9tWHhl1elVqV5wxvA48C7xRzzVLpJRX1DwghLABzwEXY/VVXiWEmCuljK2krkLRwmiJDyHjbzprtLnMF02bBZX+AG57bAW7GmLO9q3sLi6qX5sTEnj+8mn0TM+gZ3oG8Q4nP/rqcwKngTa/v3UzD4yo3UZeoWgRXuc00Ga1I604KQgtHWHvecYLNcDgdh3CUs9sQtAuMSFqnnNTKayqItBAtc9iTzVPLV4Yeh0wDTShtbhQOzSNQW3bxd5HGoizN35N71B5Gf/buJ6ZWzdT4TuF49gVpzRSysVAcRNuHQXsllLulVL6gXeAK5vVOIWimTmbtHlI+w6YNcRZE4LspGQy4uKabY7C6mp8DeQUF3s8/HbJwtBrn6FjE+L00OYYK4TX5GBZGf/duJ73t24+pcPYFac2p4s2qx1pheIEyYyP539XXctjn39MfmUVfTMzee7yqY3KK/LpOkWeatrEJ+CoFfZ1uKKcwxXlmA2MYUjJlsICAoaBw2Zr1p7TsdInPYOOScm47XY2FuTHdI/bbucH4yY2ap5NBfncNOtdTFMiBPxt+VI+vuk20prxAUlRNxKBefpUBs0UQqyu8fplKeXLjRxjrBBiA3AE+L6UcguQBRyscc0hYPSJmapQKJqLtgmJvDH9Wp74/BMKqqro36YNz10+td72UrU5ps1tExKxa+F7T4fLy8mtp/vFMXTTZGN+HoZpYtM0TClb3Inuk5FJdlIymiZOqjZvyMvlltkzMaSJJjT+sWIZH910Kylud1PMVjQSpc0tr83KkVYomoHB7Tuw8PZ7mnTvx7t28IP5nwHgstn497SrGdqhIwB7S4qZ/u6beHU9bGW9Lpw2G3ZNI6e0hLYJCThsGj5DxHRvrAisXXc9ypg7iovYUVwU81h9M9vw1PkXMrxDVqNs+NWCL6mu0QIkUF3Nv9au5ofjGyf6irOCo1LKESdw/1qgi5SyUghxOTAH6EX0VuyncqSmQnHWMaxDRxbd0TRtnrdjOz/88nOEALfNzmvTr2Fwu/YA7Cku4qp338Jn6A0ucoMVdWXTNPaVltAuMQmHpuGjeb8wBNaue7RF9B1FR9lRdDTmsQa2acuT510YehaJlV8s/IrqUA66QUGVwWvr1/J4MxdfVZwRnBHarBxphaIVOVxRzg/mfxYqHubVde6cO5uV93wHp83GP1Z8S3UgEJMj7LLZeGjkaK54+w22Hz2KJgR2odEnI4PtR48227eIxNqFz6uqOuGxLu7Wo9FONMBRT3XYa900ya+qPGF7FIraSCnLa/z+iRDieSFEJtYqd6cal2ZjrYorFIrTnINlZfzoq8/xGTW0ec4sVt77Heyaxl+WfUNVwB+TrrpsNh4cMZrL3vwPu4qOoiFw2DT6ZGSyo6j5tBksbc5vDm3u0bPRTjRAUXW4NgeUNitOEqeKNqscaYWiFdlVVISjVrhYwDDIr7SEp9jjadCJtglBu4QEbhs8lL8tW8q2oNNsSInPNNh29CguW/OumeVVVZHkdOKy2UiKsaBacvD6Y7jtds7r2q1J85/bpVvYWHF2Oxd07d6ksRSK+hBCtBfBWFAhxCgs3SwCVgG9hBDdhBBO4EZgbutZqlAomosdRYURodxeQ6cw6KSWeL0NOsA2IWifmMStg4bw12XfsDPoNBtIvIbBjqKjuJpQH6QuJJBfVRXS2ti12RWhzZO6NE2bJ3XpGqHNTdV5haI+ThVtVjvSCkUrkpWUTMAMDwzz6jrf+WQuP5twLlN69WFt7pFQRVCHELRPSqZtQgIAJR4PHZOSCRgG/1q7OmL8Y/jN+guV1STJ4aQi0HCBkAq/n3HZnZjQuQt/+vabeq89p207bho4iFnbtrD9aCGJThe/PPf8Jq14A/x84nmUer18vmcXdqHxnRGjmdK7T5PGUjQNs1Ela05dhBBvA+dh5WsdAn4FOACklC8C1wLfEULogAe4UUopAV0I8TDwOWAD/h3Mz1IoFKc5WUnJGLW02afr3PfRHH4x6Xyu6NWHTfl5EdrcLiEBieVoZyUm4dF1Xlm3JuocEqu1ZawkOhxUBhpu3VXu9zOpcxeGd8jibyu+rffawe3acX3/QczatpkdRUdJcrl48twLQyHsjeVX555PmdfLl/v2YNc0Hh01lkt79GrSWIqmobS5ZbVZyFYoSHSyGTFihFy9um6nQnH2IqUP9L2gpSBsTXPimpu/LvuGV9etwTRlmMPrttt595obWHwgh1fXrUFKmDFoMN8dMz5ULOWXC77knc0bo+YrNxeCupNLBIJYyqa0S0gMtSKxCcHM626id0ZmzDZIKTlSUYHP0OmSkootuFNw7PurMcVjzjaEEGtOMA8pgox+beRlr09vziFPGm+NeaXZ37+iaShtVtSFlF7Q94GWirB1aG1zAPjjN4v5z8Z1GKYZtuDtttuZdd1NfLl3D69tWIuUcPvgITw2elxIi37y5RfM2ra51bRZE7HVRmkbn0C532elgmka7193Ez3TM2K2QUrJ4Ypy/IYRoc1Kl+tHafOZoc1qR1px1iD1vcjiGSA9IHVk3NWI5F+3+pf998ZO4Irefbl+5tv4/ccdaa+u88nunfxo/CQeGjkGKSU+Qw/Z+/Kalfxv04aTaluiw4FH1+usAB5r7dHaOVL3zZvDj8ZPZERWNm3iE+q9VzdNHvx4LksO7EcTgqzkZN655nrS4+Jb/c9OoVAoFCeG1Hcji2YAPpABZPwNiKSft/r3+48mTGJa337cMPMdAubxKC2frvPZ7l08MXY8j4weG6HNz65cxrtbN51U2xKdTjyBQJ3aHGuB0YLq4/nUAkubfzBuAiOzOpEZH1/vvQHD4P6PP2T5wYMIAZ1TUnn7mutJdce1+p+dQtFSKEda0aJI3zKkZxYINyLhDoS9Z8vNXfoomEWE1nC9c8A1CdwXtpgNddEnI5Mkl4uKGj0XbUKEcps/2mlVD/UbBl1TUnlhyjT+umzpSbfLW48TfSIcKC/j0c8+xm2385eLL+OCbj0i2n4d4z8b1vLNwf2hoi/7S0v4+ddf8vyUac1ulyI2JJxOLTYUCkUDSN9SpOcDEHGIhDsR9parOSFLHgZZQkibq98H10RwnddiNtRFv8w2JDgdVNZId7JpGs6gXs3ZvpWffj0fv2HQPS2NZydP5ZmVy0+6Xd56nOimIoGcstKgNjt4+pLJnNe1W53a/Oq6NSw/dBBvUJv3lhTzq4Vf8Y/LrmhWuxSxo7S55VHFxhQthvR+hSy5H7xzwTMTWXQtUt/Tcgbo+wkLhJI+0He23PwN8MSY8biDhUc0BAlOJ9cPGMjOoqP88MvPQy2wcspKue+jOaEQqpPJyQxLM6SkKhDgwU/mcf5/XuVQeVnU6zbm54eqmoNVBXRrYcFJs0uhUCjOJqT3c2TJd4La/B6y6Bqkvq/lDDAOEB6kHAB9d8vN3wCPjx5P3DFtFoIEh4Nr+w9k29FCfvr1/JA27ysp4Tsfz40oUnYyOPna7Oc7n8zlgjf+zZGK8qjXbczPi9DmzQVKmxVnF8qRVrQYsvLvgPfYK5AeZNUbLWeALbvWARfYe7Tc/A1wTb8BPHf5VKb37ceMQYP56KZb6ZiUzIb8PESN4hGmlBwoKyPJ6apzrJYQ8nFZ2Ti16CvVjcGqNFrJY599HPV874yMsCqgNiEalcOlUCgUirqRFX8nXJurkVVvtpwBtlotEIUDbKdOF4YbBp7DPydfwZV9+nHroCF8dPNttEtMZH1ebth1hpTsKy0h3lF3tWy7OPnaPKlz14huIE3BlJK8ygq++/mnUc/3zsgM02a70mbFWYgK7Va0HLJ2JWgJ+FpsepH6TytHmgBIHeImg+viFps/Fs7v2p3za7VxctlsePVAxLFHRo7hV4u+ishSjrPbCTSiEmhT+fbwoYhjbpsdISDN7eZIZey9Iw0p2V1cFPXcPUNHsGh/DlsLCtCEINnl4rcXXNRkuxUKhUJRk9bW5meQxbcCBsgAuKeC6/wWmz8WLuzWgwu7hS+8OzQNX40dWYB4u4OHR43mN4sWtJo2Lz6QE3HMbbcjsPSzMX2dDSnZWXQ06rkHRoxkyYEcdhQdRSBIdbt56vzWT5VTKFoS5UgrWo74G6Hi71hV6gHciLhrWmx64egFbb62Qsa0ZIT99OhtOHfHtghBlsAvF30V9Xq/YZyUvOZYaJuQwBtXXcsra1czc+tmfMGHBpfNxrTeffn24AHyqyojwtIEVqGSmvgNg/V5uZhS8tq0q8kpLcFvGPRr0wa33dFC70hRF6ZUAU0KxRlB3I1Q+Szh2jy9xaYXjr7QZgHoe6yq3fYuLTb3ifDRzu0R2mxIkycXLYh6fcAwTmpIdn10SEzk9Suv5fnVK5izfWuYNk/v259FOfs4Wl0VYZ8mBF1SU8OO1dTmN6Zfw77SUgKGQf82bZu1L7aiaShtblnU33hFiyHi70AioPIVkEWAaYV22wcgtPqrQzabDVoCOAe3yFzHOFBWyuL9OcQ5HFzWoxcJzrrDvqKxrlb4GBASwdq0domJQxXlSCn5yYRz2VSQz6aCfARwaY9e9MrIJLeygsHtO3DX0OE8t2o5yw8dxK5pODQbf7/08tA4lX4/1858m8PlZQgEKW43s6+/mTYJ9Vf4VigUCkXjEAn3IIUGla8FtVla2uzojxBxLWODltji2pxTWsI3B/YT73BwWc/exDsat0C7Pi8v4lh92tyazWb3l5WhCcEvJp3PlsICthUWIIHLe/amW2oqh9LTGdahI3cNHc4/V3zLqiOHsWsaTpudp2toc7nPx7XvvUVuZQUgSI+LY/b1N5PRQIVvheJMRTnSZxnSrADhQojGOXPNgRACHEORshwwrB/fAmTZjxFp/2xxe1qCdblHmPHB+6Geiv9Y8S0f3XQbya6685trUx0INHxREAknfTfahvWnFw1TSv6zcT2dk1PYUXQUp6YhEGwpLGD+3t14dB27EKw6cpgvZtxObmUllX5/sDLq8b+T/1jxLTklJaG+2l5D5zeLv+aZyVNP6ntTKBSK1qD1tXlILW3+Gln2M0Tq0y1uT0uw6sgh7pgzCymtXddnVi5n7o0zSGqENntqhXXXR0toswaYdZwzpeR/G9eTER/PnuIiHJqGEIKN+Xl8tmeXpc2axprcI3x+y+0crqygOuCnb0a4Nj+97BsOlJfhDy4Y+Ayd3y5ZyN9qONsKxdmEcqTPEqRZjCy+K1ilWiITH0ZLfKjl7fB9Q3g+lh/8S1rcjpbi5wu+xFMjvzm/0uCNDet4eNSYmMdw2x11rnK3BlIIqOeB4NsD+3mztJSAedzmPSXFod/1YEXQBTk5TO/bL+oYu4uLQk40WL2k9xQXR71W0QpIoVpsKBTNgDSOIkvuClWplomPoSXe3/J2+JYQnhftA9/iFrejpfjZ1/PDHOHcygre3LSBB0aMinkMl91GwH/qaDMNaPM3B3PYVVQcpq17SktCv+umSaXfx5ID+5nSu0/UMXaXFIec6GP37KmjvomiFVDa3OKoQPqzBFn6vaATrQMGVL2M9C1scTuElgzUCp8SZ264bpGnOux1wDQpaEShD4A4e2RlbE0I3DY7TpuNIe3bM6RdB+zi+Jen+yTmKZkNrKpLwKY18EUuQdYzzrD2HXHbjr8H6312aIyZCoVCccojy54IOtG69VP5fNCpbVmElgrU2g0XiS1uR0tR4vGGvfYbBoXVVY0aIy6KzmpC4LZb2jy8Q0cGtW2HrYY2R7unuWhImw1TxtTRw5B17WsHtbnGe3DZbAzr0DF2IxWKMwzlSJ8tBDZgCXUQ6UH617a8HXFXga0t4MYKEnYjkn/V8na0EBM7dw1rDxFntzOpS9eY76/y+ymoqo44bkqJ19DJcMfx1HkX8dIVV5KVnEK8w4HLZmNcdudWy5fOKS3BMMMF3SZE6HPQhMBps3Fu1651jnH/iFGM69QZp82Gy2ZnYJu2/GzieSfRaoVCoWgFApsI02a8SP/6lrcj7lqwteFs0eYJQX05RpzdzoTOsRc5K/N6KfZ4Io6bUuLVdTLj4/nN+Rfx4hVXkpWUHNLm8Z26tJo27ykpDosUg2PabA/97rTZmdi5a51jPDRyNKOzsoPabOOcdu354fhJJ9NsheKURoV2ny1obcGouRPqRtiatooojSJk6eMQ2AhaGiL1TwhnbOFQQkuEjLng/RDMcnCNRzjOaZIdpzoFVZV0S02jU3IK+0pLcNpsPD5mHBd17xnzGA6bDVFPlZLcqkpunPUuz06eilPT8AUCmMCa3MM4NA2/WffK8skiEGXOFJeLKb37si73CB2SkvjZxPNIj6u7OInTZuOVaVdRUFWJbpp0SEyy8vgUpwQSMFu9tJ1CcQagZYJx4Phr4UbYmhZ9I43CoDZvAlsmIuVPCOeImO4NabNnDshKcE1EOAY0yY5TnbzKCnpmZJJdWEBOSTEuu4Pvjx0f0XqyPmo64dE4UlHBDTPf4dnJV+C02U5ZbU5zx3Fpz15syMulQ1Iyv5h0HmlxdReYc9nt/Hva1RRUVWFKSfvERKXNpxBKm1se5UifJYiUPyJL7gi+kmDvA3FXN2ksWXIv6NsBHUwPsvheyPwYYc+OzRYtAeJvbtLcpwuHK8qZ+tZ/qQr4MaXEabPx1tXXM7iR4clrc48wtH1HNuTnRhVBsMK1Hvj4w7A86jJfy/QAdWhanXbVpMznY2thAXNvurVR47dNOHNDCxUKhUKk/BlZciehus72fhB3ZZPGkiV3Hw8TNw4hS+6BzE9jdsyFlggJM5o09+nCofIyrnj7v3gCAUwpcdsdvH3tDZzTtl2jxlmXl8vgdu3ZVJBfpwbq0uS+jz8Myyku8XqjXtvcxKrNxV4Pe4qLGqXNQgjaJSptVihAhXafNQjnYETmZ4iU3yNSn0Gkv9mk6qBSekDfRlgomhAQWNN8xp4BvLBqJeV+HwHTxJASj67zuyWLGjXGq+vWcPfc2azLO4IQglS3O+o/WBPZKm010txxXN6zd0zXGlKySxUkUSgUijCEc6ilzcm/Q6Q+i0j/H0I0rg0TgDQra+Rah0aH1kjhOoV5ZuVyKn3+kDZX6wH+0EhtfmnNSu6d9wEb8vMQQpDmjouuzVIiWkGc0+PiuLxXbNpsSsmOoqMn2SKF4sxFOdJnEcLWDuGejHBNRIimBiM4ifrXRiSfiGlnHMXe6ojCH2W+2FeiddPkT0sX49F1DCnxGwZ+w+DxMeNJc7tD19mEIN7hQJzkthq1SXa5+ObOe+mVkRnT9QLokpJ6Um1SKBSK0xFha4+IuxzhmoAQ9YcM1z1ItLZNEjSlzTUp9ngway09lzZCm326zl+XLQ3TZp+h8/jY8aS6jmuzXQgSHA5ECy9zp7ndLL3zPrqkpMV0vSYEXVNju1ahUESiQrsVjUIIGzLpB1DxNOC3xNveB1wTW9u0U4opPfuwKGdfqL1GnN3O5Dp2bwurq/h0105MKbm4R0+ykpLxBAIR8muYJisOHeTBEaNJdbt5b8sm1ublUun315lDfbK49Zwh7C8r5blVy6OetwE2zYZpGridTpw2m+ozeYahWmwoFKcOQjiQid+Dyn8CvqA2DwDnuNY27ZRiSq/efHtwf5g2X96zV9RrC6uq+HT3TiSSS7r3okNSEh49EJGBapgmqw4d4pFRY0h0unhvyybW5+dS4ffX253iZHDnkOHsLi7i5bWrop63IbBpAiklLocDt93OXy+Z3KI2Kk4uSptbFuVIKxqNlnAH0t4XAuusImZx005gh/vMZErvPhRUVfLsqhUYpsk1/QfwSJTe0cdyqS1Rlzy9bCnvX38TvTMy6ZGWzu7iIoygEPsMg6WHDrAq9zB2TaM6EOxP3cJCLYC5O7dhSFlnkREDsAnITEzkTxdfytB2HUlwOgkYBh/u2EZBVRXDO3RkdHanFrVdoVAozlS0xLuRjn5Wlw6tHcRNbfoO9xnK9L79Kayu4sXVKzGk5Ib+5/DgyEhtPlhWxrR3/os36HD/ddlSPrj+ZrqnpdMlNZV9JSVh2rzk4H5WHD6Ew6ZR1Yra/P7WzVT5/Yg6Ck4ZSOxCIzMhgT9edClD23ck3uHAH9TmwqoqRnTMYlRWbDVvFIqzHeX9KJqEcI0BV6T4KI5z59Dh3Dl0eL3X/GP5t5T7faEwcL9h8PtvFvH6ldfwn+nX8NAn89hUkB9WrORYmHdrIYGD5eW8sm41ej3FTPyGQZnXx5HyCiZ0cqKbJjfPfo+thYX4DR2HzcYPx03kjiHDWs54hUKhOIMRrnHgUrvQ9XHvsJHcO2xkvdc8vfwbKv3+kLPsNwz+uHQJL0+dzn+nX8eDn8xlS2FBuDabBn6zdbX5QHkZr65fU682+wyDUo+X/MpK4h0OAobBje+/y46io/gNHafNxk8mnMuMQUNazHaF4nRF5UgrFK1IYXVVWC61BIqqrb7RbRMSmXndTcy78VYc2qm3q1CfUB/Db+ihnfNF+/ex7WghHj2AEey1+YdvFkXkkitOfSRW+Njp8KNQKBSN5Wh1dciJBus772h1FQDtEhOZdf3NzLnhlgbbYLUGsWrzsZ3zr3P2srP4aEibreKoC1s8LF1x4ihtbnnUjrTilEHKALLiafB+DloyIvlnCGf9q8anO5f26MXKw4fC8rUu6dETTyDA9+d/xhd7doWJ+emGISXd06xCJuXeyJZcVrEWHbe98VVqFQqFQnHysbT5z+D9ErQURPLPEc76o61Ody7p0ZO1uUdqaXMvqgMBvvfFJ3y5d89prc26lPQIanOZ1xsRhR4wTQKmeUouFCgUpxJqR1pxyiDLfwfVb4J5CPStyOK7kYGdrW3WSeWGAedwz7ARxAeLflzXfyAPjhjNzxd8yVd7d0cV6pZcxxNYVT2bSpzdTnXAehAZ0TErbIXbLgT9M9soJ1qhUChOYWT5k1D9TlCbtyCL70Lqu1vbrJPKjHOGcMeQYcTbLW2+ceAg7hs+kp989QVf79vb6k60ALQTeBqwtNnakbbyoWtos6YxqF175UQrFDGgdqQVpw7eeUDNNhR+pPdLhCO2foinI0IInhgznifGjA87vmj/Pvx1hGfVlm+7EOhNFPUUl4syX+ROcU3O79qNr/btrfcaTQj6ZGSy4+jRiNYiWclW+5VOKSm8MvUqvj//M4o9Hoa0b88zk6fGbKtP13lr80ZySksY3qEjU3v3rbPYmUKhUCiaCe/HhGtzALwLILFna1l00hFC8INxE/nBuPCOJEv25xCIIXQaTkybU10uShvS5m6xaXPfjEy2HS0MU2YJZCVZ2tw1NY2XrpjOD7/8jBKPl2EdOvDPy66I2VafrvPmpg3sLytlVMdsLu/VW2mz4qxBOdKKU4jaO5N2hBatN+aZT4rLTbHHE9O1TRVqoEEn2mGzxWRH97Q0nhgzjgc/notZw5yh7TtyTtt2oddjO3Vm6V33hV77dJ2AYeBoYOVbN01umv0e2woL8Rk672/dwvq8PH557vkN2qY4OZxJOU4KhaI+amuzrY6+1Wc+yS5XzH2nT0SbG3KiHTZbqJ5KffTOyOThkWN49LOPwuwZ3TGbfm3ahl5P6NyFb++6P/Tap+vopoldqz9wNWAYXPf+O+wqOorPMHh/62Y2FuTxkwnnNmib4uSgtLllUaHdilOHxMcBd/CFDUQiuKe3nj2tyFPnX4TrFAir8hsG6/JyI47X/po+UlHBMyuWRzw4VAX8Ucf16Tr3fTSHAS/8k/7P/4NfL/y63sImKw8fCgq1FSbu0QP8b9N6qvzRx1coFApFM5H4KMe12Q5aIsTFvmN5JvHUBaeONq/Pz4s4XlubD5aV8uyqSG2urEObvXqAe+Z+wIAX/km/5/7OU4sX1KvNyw8dZF9JMb5g9XKPrvPvdWvw6oHGvSGF4jRFOdKKUwYt4UZE6j8g7mqIvxORORdhy2hts1qFcZ06M/fGW3lo5OhG3+vQtIhVZJfNhkPT0IQ44X/0diE4r0u3sNzp6kCALUcLIq5126MHvfzhm0Us2b8fU0oMKZm5dRNvbdpQ55yeQCAiVEwTIlQIRqFQKBQnBy1hBiL1b5Y2J9yJyJiH0NJb26xWYWLnrnx44wy+M3xUo++Nps1xNnsNbT6xnURHFG2uCgTYXnQ04tq4OmqTPLV4IUsPHtfmdzZv5L2tm+ucs1oPRPSs1oTAp7deGzCFoiVRod2KUwrhPh/hPvvCdQ+Xl/PzBfM5UFbGsA4d+dW5F9ArI4PvjZ3AB9u2cqSyosExNEDTNLKTkxnUrj1f7NmNXdMwpOTK3v2YtW0zNuBE14k1TaNTSioumy3CkbVrWqj1httu5/HR0fuZfnvoQGh3GaxV7GdWLufZVSvolJzC/110Cd3Tjj+oDevQEU1Yci2xHkh6pWeQERd3gu9G0RQkZ1b7CoVCUT/CfSHCfWFrm9HiHCwr4xcLvuRgeRkjOmbxy0nn0zsjkx+Mn8is7VsoqKpqcIxj2tw5JYV+mW34at/ekDZP692X2du2BLX5xAqYCU2je3o6Sw8dCOtvLYjU5kdGj4k6xrJDB0K7y2Bp89+WL+Xvy7+lc0oKf7zoUrqmpoXOD++QFbbI7dA0+rVpS4rbjaLlUdrc8ihHWqFoZSp8Pq56701KPB4MKTlSUU5OaQnvXXsjQgj+ftkUbp71br35VpoQaFKiAbkVlRgyl9evvIbqQIC2CQlMf/fNegukOG22MOGtD79h8Oam9aS63GGOtNNm4+6hwyn2eDCl5MYB5zC4fYeoY3RITGJvSUlYD+mj1VWYQEFVJdfNfJsFt99NsssS47S4ON679kZ+MP8zcisqGNSuPX+6+FJV0EShUCgUJ4Vyn5er3nuTUq8XM6jNB8vKeOua6wH4x2WXM2P2+/VW8LYJgQhq8+HycnTTDGlzRnwc17z3dr3a7LLZwhzb+vAbBq+vX0ui0xmm506bjXuHjaCwuhpTSm4aOIhB7dpHHaN9QhL7S0vDXPqjVZY2F1ZXce3Mt1lw290kuawc+cz4eN699gZ++OXn5FVUMLRDB/540aUx2atQnAkoR1qhaGXW5B7Bq+shMfYZBpsK8in2eMiIj2dExyw+vOlWHv5kHvtKS6KOYUqJCWCagEleZSVrco/wwIhRbCrID3NYoxGrE30cwU8mnMvPF36JXzdw2jTaJSTywPBRJDidDd79nRGjWJN7BFNKBNaq97FHCYlVXGxdbi7ndu0Wuqd3RiYf3jijkXYqFAqFQtF4Vh4+hE83QvrpMwxW5x6mzOslxe1mdFZnPrxxBg99Mo/9ZaVRxwg52UFnOa+yko0F+dw9dDjrghpYH7E60TX52cTz+OXCr/DrOk67nfaJSdw/fBRxjoZbTT48agwb5+Uhg660t4Y2m1LiNww2FuQxvlOX0D19M9swV2mz4ixFOdIKRSvjsGkRxTwM08SuHd9t7ZfZhgFt2tbpSNfGbxgcrbZCzrqmpEYNGDsWJt1oezWNkR2zubr/ALqnp7PkQA4pLjfX9BsQkxM9f89uHv/8YzQhMEyT0VmdWH74YCjsDCzBjkX0Fa2H2aIdzRUKhaJlcWg2aqukKSW2GpFQ/du0pV9mmzod6dr4DIOioDZ3T0uP6kg3VZudNhujs7K5tv9Auqel882B/aTFxXFNvwEx6elnu3fy3S8+xSYEAcNkbHZnlh06ELZjbkpZZ3614tRAaXPLooqNKRStzMiO2WQlp4QVCAH487ffhL2+Y8iwOot3RWPezu38eekS4hwOZpwzOOycXQgGtW3XYGuL2ghgdHYnXpwyDYAh7TvwyKix3DZ4aExOtG6aPP75x3h0napAgIBpsib3MBd07U5c8L25bHZ6pWcyrEPHRtmmUCgUCkVzMSa7E+0Tk8K0WQB/WXZi2jxr21aeXraURKeTGwacE3bOIQSD27XHLhqvzeOyO/P85ZY2D+vQkUdHj+XWQUOIj8GJ9hsG3/3iU7w1tHnVkUNM6tI1TJv7ZbZhcB1h4QrF2YjakVYoWpEKn49nVi4j1eUKW5k2pOT9bVvIiI+ja2o6l/fszbAOHXn9ymt4ftWKiFXiaBRWV/P6hrUETJNfnnsBPl1n5tbNWMHfEDBNHJotbCe4IeyaxtrcIwx5+TkGtGnLy1dMp11iYui83zCYv2c3pT4vo7Oy6Z6WTl5lBYlOF8kuF+U+b0Q+mZTW5zCpc1cSXS56pWdw++ChjXbyFQqFQqFoDsp9Xv65Yhlpbjd7a2nzO5s3keJ20z0tnct69GJUVjavTbua51atiIiuikZhdRWvrluNbhr89oKL0Q2T2du3YAIGljY7bTZ0vXHavPLwIQa/9CzntG3Hy1dMp01CQui8T9eZv3c3ZT4fY7Ky6ZqaRn5VJUlOF0kuF6VeD7U3x00p8QZ0JnXpSqLTSd+MNswYNASb0maFIoRypBWKVsCn6/x2yULe27IJ3TSjhnH5DYNnVq4A4PdLFrHkznsYlZXNqKxs9pYU8/An86K2taiJR9f5YNsW2iUm8G6NFhamlOwsLmq03QHTDDnwWwryuWfeB8y76daQvdfNfJvdxUVICRJJsstFhd+PYZo8MGIUj40eR5LTSZHHExrTa+gsO3wQp81GdnIyT51/Ia5GrO4rFAqFQtEcePUATy1ayPvbNtetzabBMyuXA/D7+HgW33Evo7M7MTq7E3uKi3jok3kN6qtH15m1bQtJThfvb98SOm5KyY4GdD0aNbV5U34e9300hw9uuAWwnjeumfkW+4pLkMKaI9npojJgafNDI8fw0MjRxDnsYd00fIbB0kMHcNpsdElJ5bfnX6y0WaGohVpWUihagcc++5j3tmwiUIdQ16bIU81TixeGXsc5HPxw/ESSYginLvf7+N2SRRHHddPEMI/PLoI/sWICWwoL6Pvs3xj5r+d55JN5bCrIx6PreA0dn2FQWF2NV9cJmCavrF3NNwf289qV15DmduO22cLG8xsG+ZWVLMjZ1wgrFK2CBFOK0+JHoVAoYuXhTz7i/W2bY9bmwupq/rB0ceh1nN3BjydMItHRsDaX+Xz8uVaYOFjabNbY1W6KNm/Iz6PPs39j5L9e4OFP57G1sBCPoePVdauGiue4Nr+0ZiXLDx/ktSuvIdUVXZuPVJSzeH9OI6xQtApKm1sctbR0liPNahBuRCPzcVoSKQOA/YxpdRQwDL7ct6fOap02IaK201ibe4TqQIAnF37NzG2bo9wZnfrCzAa3a0dVIMDhinIChoER48NDTfymSZHHw/x9e+q9zqPrvLlpAy9dcSXL736Aw+XlXPS/18I+Bwl4A3rdgygUCsVZwOmizUKcOYWnfLrOov376mxnVac2HzmMJxDgZwvmM2f7tpjnC9RTkXtI+w6U+3zkVlbgN4xGpWCFxjdNijzVfLVvb73XeXSdtzdt4NnLp7Hingc4UFbGZW++HvFePXqg0TYoFGc6p+43tOKkIvVDmIWXIAuGI/MHY1bPbW2TIpD6QczCycj8gZad3q9b26RmQRMi6uqyTQhGdsxi58NPkBClOMiekmJGvvxco5xoTYg6HWOXzcbfLp3C5zPu4O+XXo7TZqfxUt045u/dzbrcIzhsNrqmpTEuuzPOGqvfAsHYTp1OshUKhUJxaiL1A5iFFwe1eQim5+PWNikCy8bLkPkDMfOHI30LW9ukZqGuxXq7pjEuuzO7HvluqPBWTbYXHWXEv55vlBNdnza77Xb+dukUvrj1Tv588WScNluTqng3hk9272Jjfh4Om40e6emMzMrGqdXQZiEYm935JFuhUJx+KEf6LEWW3APGAazSFj4o/zkysKO1zQpDltwFxj5AgqxElj6O1Pe3tlknjE3TuG3w0JAgCyyhvqpvf1678hqEELx4xfSIKt66aeKJsaekXWi47faItlo16ZCYxLEporv2kOh0Eme30y0lNaZ5Y+HjXcf/nr0wZRqX9+xN+4REBrVtz7vX3kD7xKRmm0txcpCo8DGF4mQgS+6uoc1eKPsJUt/d2maFkFIii2+voc0VyJJHkfqh1jbthHHabNx8zqAIbb6mX3/+NXU6AC9MuTK6NuuxRVLZNUub6+sfnV1Tm+v4Cgtpc2pqTPPGwie7doZ+f2nKlVzasxftExIZ3K497157Y1jxMsWpidLmlkeFdp+FSOkHIwfC9h8FBDaCo08rWRWONCvBOEyYjcJm2Wjv0mp2NRc/n3gePdPSWXJgPx2Tknlo5GjS4uJC58d36sySO+7lhdUrmLl1M74GHGi3zQZC0C0llV4ZmXy6eycBXa93FTunrJSr3n2T5Xc/wJjsTiS5nPgMHd00cdvtjM/uzN3DRpDssipuX/Lf1/DWYUec3Y5dsxEwDCQSTQgu69mbD7Zvjby2xm57gtPJ05deXv+HpVAoFGcBUnrAOERYF2GhQWAT2Hu2ml1hyFIwCwi30Q76JrBnt5ZVzcavz72Q3umZLD14gKzkZB4eOYYUtzt0flKXriy64x5eWLWCWdu2xKDNdhDQIzWd7ulpfLZ7F4EGnO7dpSVc9e5bLL/7fsZldybR6cSn6+hS4rbbmdSlK7cPGkpqXBwJdgeXvfl6ndrsttlw2u0EdAMzqM2X9+zDrBoFzo5Rs01WksvFPy6bUq+dCoVC7UifpThAuMMPCQG2tq1jTjREHJF/PSVoma1hTbMjhGB4xyzKfF4W7d/Hc6uW46slrh2Skrh+wDkx5Yb7TRPDNEEIPtm1g4BpEsvedYnXy8OfzCPe4eDDG2dwZe++jOyYxT1DR/D8lGmMye5E/zZtyU5O4YUpV+LWbBFjdEhM4u6hI3DabKEiY1lJyQxu147e6Rlh1yY4HNw4cFAMlikUCsXZhhuIknOsnUranBjloHlGafOwjlmUer0szNnH86tW4K/lpGYlJXNt/4ERO9PR8JtGUJvhk52xa3ORp5rHP/uYJJeLD2+cwdQ+/RjZMYv7h4/kmcuuYGynzvTLbEPn1FSevXwazlotqUTQzruHjsAuNDxBbc5OTmFQu3b0SEsPuz7R4eD6AQNjsEyhUNRE7UifhQghkMl/grLvW6vdAM5x4JwY8xhSmsjqdyCwCmzdEAn3ILT4ZrTRhkx+EsqfBITl6DvHg3NMs83RmuRVVnDtzLep8vuRwOGKcgqrqyNWgAe2bce9Q0fw/OoVdRZAAaudhSkl244WNtqWRftzOFheRueUVP58yeSwczmlJWwpKKB9UiIdkpJwOezoAYlummhCkBEXx/OXT+Xm2e+FhbbtLinmyUULiHM46J6WRteUNLKTk7l3+EiykpIbbaNCoVCc6QghkCn/B2U/rqHNEy19jhEpjaA2rwZbd0TiPQgR1/CNMdvoQCb/Esp/x3FtngSOEc02R2typKKc62e+Q1XAD1jafNRTzV9raeOQ9h24Y8gwXlq9ivpKdB7T5i2FBY22Zf7e3RypKKdjUnLE/HtLitlWWEjHpCQ6JiXhtjsw9UBIm9vEx/PM5Cu4efZ7eGto867iIn696Gvcdjs9UtPonJpK5+QU7h0+UqVVKRRNQDnSZyla3CVIxxwIbACtDTjHN7jzKaVEVv8Hqt8BswikB/ADLqRvPmTMQoiGWz7EbGP8NUhHPyuszdYOnOcCXmTVO0jjCMI5CuG+uNnma0kW5ewL61Hp1XU+3bWTv116ecQq9xNjx7OruIjP9uw6KbY4bDYKq6pYmLOPcp+PCZ27MKR9Bz7ZtYPvz/8Mu9AwpMRtt1Hu84Vstmsa9w8fRWF1VVgbrWNIoDoQIK+yksdGj6N3RiarjxymILmSoR06npT3omg5zqQcJ4XiVEGLuxzp6G3pntYWnONi1OZ/Q/VMMI+C9HJcm7+GjPeatbq2Fn8D0nFOUJvbW4609GBWvQ1mHsI5BuG+sNnma0m+3rc3rEK2V9f5aOd2/nLxZRF/Dj8YN5GdRUcbrIrdVBw2GwVVVXy5dw/lPh8Tu3RlcLv2zN2xjR9/9UVIm112G+V+3/H7NI0Hho8it7LC2g2vhcSq1J1bVcl3x02gW2oaq44cpktKFUPadzgp70XRcihtblmUI30WI+zdwd495utl9RtQ8TfAU+uMz8rr8q8GV+wr5zHZ6OgPjv7W/NKPLLoe9BzAh6x+D5l4D1riI806Z0ugSxnRzkKIuntFdk1Nw65pTWqBUR+aELjtdu78cBaVAau1xd+XL+XxMeOtcPMaIW21W1/4DYND5WX0b1N/2KFumny2ayc/+vJzbEJgSslNAwfx80nnN+t7USgUijMBYe/ZqJxoWfVvqPwn0bV5HwTWg3Nkc5pYS5t9yKJrwTjIcW3+DlriA806Z0ugH0uTqoFWTwuy7qlpLDoJ2mwTggSHk1s/mElVDW3+/tgJ/H3Ft/hrzFdbm32GwZHKCrqnp9e7CGOYJh/t3M6CnH0hbZ4xaAg/mXBus74XheJMRuVIK2Kn+h0ihfoYAmsF/CTiWxwSagsPVL6AlLFVsj5V8Ok6r65bHSa8dqFx99AREaK3Pi+X73z0YcT1zUWvtHSklCEnGqzybk8vXxpRREUTAlsN++Lsdoa078DIjlkMbt++zkUAAczftwevrlMVCODRdd7avJEdRUeb/f0oFArFWYfnXerWZg3kydbmBWAcIVybn0HKk91QsXnx6gFeW78GvYbdVuRVpDavzT3CfR/N4fUN606ONqdn4DeNkBMNljb/adk3YU40WE63FqbNDga368C47M4MbNO2Tm0G+HJvuDb/d+N6dhcXNfO7USjOXNSOtCJ2hKuOExrgAMewkzu/9BCZiiSBABBZBAtAGoWAAVq7mIp2tQRLDuRQWFUVdsyQJo+NHht27F9rVvG3Fd+G5Tc1FYemkZ2Uwr6ykrDj+VWVlPt8ddwVjpQSt8MRrMwN1/UfyNTefRFC8ObV1/Pu5o0sPrCfJKeTjfl57C0twaFpPDpqLM+tWhH2sOHQNPIrK+mTcWYUqDnbkJxZ7SsUitOaOlOqNKuwqGPwyZ1fVlsrpmH6bAA6EGmblBLMQqwiZaeONi/MyaHYE74gYZgmD40Mr83y/KoVPLtqebNpc1ZSMjllpWHH86sqKfd6YxrDlJI4u4OAaWnzTQPPYXLPXgghePuaG3h780aWHtxPktPN+vwj5JSWHtfm1SsI1Nbmqkp61ioUqjg9UNrc8ihHWhEzIvExZOljgBdLNTUrv9reHZH8G4R2kotIOUda8c8hsXaAYzCidgVyQMoAsvQR8H1j2eroB2mvIbTW74Po0w1qB3FrwVwngE937eBnX39JqS82Ea2N02aje2oaVYEAhyvKibPb+dull/P8qhVQFn5taQNOtD1YCfRYPnd1IIDLZuPpSy5ncq/eYdfdMmgItwwaUuN96jhtNgKmySvrVlNdI/xMN03lRCsUCkUzIBIfR5Z+l0ht7oFIfgqhRau03YxEFAF1gnNY1JopUvqRJQ+Cf7llq2MgpL3arMVKm4rPiGwZKYIhzwDzdmznFwu/jHnxuTZOm42e6emUeb3kVlYSb3fwj8lT+NuypRHXljTgRNuFBqKGNuuWNv/jsilc0qNX6DqHzcZtg4dy2+Chx99nUJv9hsHLa1djbUZY6Kakd7rSZoUiVpQjrYgZ4T4f0l9BemYBLkTCbVYuV0vNb2sP6f9Flv3UWs12DEek/CHqtbLqFfB9SyjcPLAVWfEHRMpvW8zeuhiT3QmbJkIL+E6bjREdsoh3ONhckM/35n/W6JVuu6YxqE1b3A4nIzp25MGRY3DabCHBXHn4UJ1VQyM2EoLYhODqvv0p8lSHFVPxGQb/Xr8mzJGOhstufb04bTbemH4td3w4m3KfF4fNxrOTp9Iu8SQ/3CkUCsVZgHBfBGkvIz0fgHAjEm63aqC01Py2jpD+RlCbi8AxEpHy+6jXysoXwb+S49q8GVnxJ0TKr1vM3roY16kzNqGFafPorGxcdjsb8vP40VefN1qbHZrGOW3a4XY6GNkxiwdHjMZRQ5u/PXSgzjSnurTZLjSuHzCQQ+XlLD6QEzruMwxeX782zJGOxjFtdtnt/Gf6Ndw1dzYVPh9Om43nL59Gm4TW33BQKE4XlCOtaBTCOQrhHNV68zsGQsb7Vk6WWQlmCWhRWjb412KtzocOWAVXWhHdNJm7Yxu5lZX8fOJ5zNy6mdzKCkZ1zObJ86wKp8sPHYxaZbMuBNaKuUuzsfloIQ+PHMPDo47vDhwTzL8s+yYsfKsmcXYHnVNS2F5DzG1C0Dsjk59OPI8fzP8s4p7G2AgwoG07Vt7zAOU+H0kuV0z9NxWnNlKFjykUpwzCNQbhar32kMIxCDJm19DmUoi2Ex6orc2+VtfmgGHw4Y5tFFRV8YtJ5/He1s3kVVYwJqsTvw5q87KDBwgYsddjOabNTs3G5qMFPDZ6LN8ZMTp0PqTN39atzW67nc4pqWGOtk0I+mRm8uMJ5/Lopx9FvpdGavOgdu1Zdc93lDafQShtblmUI604rbCqg94ARs6xA5D+CqJ2RVJ7D/Av43gBNDvYWm6Ffl3uEfaXldInsw39MttgmCYzPpjJpvx8fIaOy2bj8dHjuHd4uN2pbjd2TYsQwzS3m3O7dGPezu1h/aQlVr5ZVTBs+oXVK0Ltq2pSHQiv6lmTOIeduTfdykc7t/Pzr+fj0XWykpJ5Zep0kl0uZgwazJIDOaGV+Di7nTuGRM+H31ZYwPtbt1DsqWblkcMcra6iS2oaL1w+lR7pGaS4I8PwFQqFQnF6I6UXWXQd6AeDmUsS0v6NcA4Pv9Dew+rwUVOb7T1azk7/Wqtoqb0vwtEH3TS5efZ7bC0sDGnzD8ZNjNC4VLcbp82Gp9aOdHpcHBM7deWjXfVr87MrlzOxc1cGtm0Xdr+nHm1OdLr46KZbmbN9K79a+BUeXSc7OZlXrphOotPJbYOHsvzwwTBtvrMObd5SkM+sbVso8XpYefgQR6ur6ZaWxgtTrqRbaprSZoWiiaiq3YrTC89s0PdaxU1kNeBBlv044jKR+DDYu4JIsH60NojkX7SIib9dvJAZH8zkFwu+5Jr33uI/G9ay9OABthTk49EDmFLi0XX+vOybsBXugGEwtXdfuqSkEme3Y9c0K+fpkstZc99DPH3p5fx04nm4bXWvfwkh2BWl4ub4Tp3rvKfKH2Dmls38cP5nVOtWjtiB8jIu/t/rePUAEzt35dnJUxnavgOD2rbj9xdewrQ+/SLGWZ+Xy7Uz3+a1DWv5cOd2cisrCJgme4qLuHn2e/iaoTCLQqFQKE5Bqt8DfT8Q1GbpsUK9ayESHwdb5+PabGuPSIq87mRglv8GWXwnsvzXyKLrMKveYtH+fWw7WhimzX/4ZlEo6kpKScAwmN63H9nJKcTZ7TiC2vzc5CtYfe+D/O2yy/nBuIm4bNGLnoLV9SJaNewxnTrVeU+Fz8t7Wzfzk6++CGnz/jJLm326znldu/HPy6YwpH0HBrdrzx8vupTLe/WJGGdN7mGuf/8dXt+wjg93bCe3spKAabKrqIibZr3bqJ12hUIRjtqRVpxWSKOA4y02gpglEdcJLREyPoDABpAGOAchRFyz2WGYJn9cuoT3t27Gpmk8OnoMtw4ayq6iIt7avCEsj+oP3ywOhW7XxqvrLDmwn8c++4iqQICuKak8f/lUvjf/M3YWHcUEXt+4jgu69yDB6eTmgYP4cMc29gQFuToQCMuhklLSPS0tYp6N+Xl1vhdNE3xzMAddhmdjVQcCzNu5g+v6D2Ri5y50TU1lQ14ur61fyytrV3PnkGFc3W9A6Pq/LV8asVoPhIqUHSgro1eGqgSqUCgUZxrSLCA8ZBswiyOuE1oSZM4JarMJzugFQ5uKYZr8/ptFzN62FYdN4/HR47j5nMHIwHaoft+y8ZjUVfyeKu9/IsYwpcRvGCzN2csTn39CVSBA99Q0np08lSe++CTkEL+2YR3ndu1OvMPBbYOHMG/ndnJKreeRqlo7zaaUdEtLj5hrc35+ne/Fpmks2R+pzZUBP5/u3sn0vv05t0s3uqelsz7vCP9au5qX16zi7mEjuLLGYvfTy+rW5kq/n4PlZXSPYptCoWgY5UgrTiuEcySyys3xnpkOcAyPfq1wgHPESbHjuVXLeXPT+pA4/d83i8mMiyfR5cKhaWGPE3ZNo2tKapjDaxOCnukZlHg9PPDRnJBQ5pSVcs3MtzGlxAj+bMjP476P5vC/q67DZbfz/nU3sfzQQaoDfuxC4/EvPrG6eBsGtw8exvAOWRH2Vvjr7iNqSlmniJZ5veSUlnDTrPco9XrCekv/YsGXCCG4qm9/AApqtfSqScA0SVWhY2cUZr3dSRUKxdmEcI5CVv2XMG2unXJ17FrhrPPcifL3Fd/yzuaNIW3+7ZKFtE1I4MKsfBAOkDXUWdgY2SHeascVxK5p9M3IJK+qkgc/nhvS5r2lJVw78y1MCGnzutwjfOejD3l9+jW47Q5mX3+zFWod0BECnvj8UzQBfsPk7qEjGNyufYS99WmzUcfCOECp18vekmJunvUeZT5vmDb/5Ksv0BBM7dMXIKLdZk0ChkmKS2nzmYTS5pZFOdKK0wrhGodM+i5U/BnQrfZXqX9pcTs+2rUjbIXXo+t8vGsnvzr3AnQzfPXYabMxpH0H/j3tar73xacUeaoZ2LYdz02eyhd7d0WsNtdeOTalZNmhg1z6v9f58YRJXNCtBxM6dwmdW3j73eSUltImPoFOKSmh+8q9Xl5dt4YD5aVkxke2FhFYDw1PjB7HbYOH8tr6tWG51A5NY0x2J26fM4uCqsqI6qEeXeeNDeu4qm9/1uQeZm9J5O6DTQicNju3nDNIVQJVKBSKMxThmoRMehQqngYMcAxFpPxfi9vxya6dYRrqDWrzhV2Ggay9K+umfUpPXp2WyPfnf0qxx8Pgdu15ZvJUPtq5PTJKq5Y2G1Ky5OB+Jr/5H3468TwmdenKxM5dAUubF91+NzllpbRNSCA7+bg2l3q9vLpuNYfKy2kbnxCRjqVh7UZ/f+wEbho4iNfWrw17T07NqiZ+2wfvU1Ad6SR7dZ03Nq5jap++rDx8iP21elTDcW2+ffBQMqI8HygUithQjrTitENLuB0ZfxugW7vOrUDtFVwNQao7jjYJCbx4xTQe+ngeXkMnxeXmtSuvxmW3MyormyV33gtYFbwPl5dT4Y3ej9IG1M5a2l1SzEOfzOPx0eO4b/hI/vztN7yybjVSSi7s1oN/XDYldO3qI4e5efZ76PVU8JTAOW3bcUXvPpR4PSy49S7umDubXcVFJDmd/P7CS/jHim85WF5W5xjH+ky/sGplRIG09gmJ3DFkGH0yMjm3a7c6x1AoFArF6Y+WcDcy/i5aU5uTXK6w1zYhSHPHWe0z0/6JLH0MpB+0VETaqwjhYEx2J7658z7AqlVypKKCcn/0Ps7RtHlncRH3fzSH742dwN1Dh/N/Sxfz2vq1SCm5tEcv/nrJ5NC1Kw8fYsbsmeiybm02geHtOzC5Z2/KfF6+uvVO7pz7AXtKikl2uvi/iy7lT99+w5HKijrHcATztZ9btTxCm7OSkrl10BD6ZbZhYpeudY6hUCgaRjnSitMSIQTQOkIN8JMJ53LrBzPxGQaaECQ4HHxnhNUWbGLnrmx44GEq/H6SnM6grcfZX1rKTbPfpczrQzcji3zYNY0OCYkcrCiPOOczDP66fCkZ8fH8Z8PakKO8aP8+frtkIU+dfxFSSu6e+0G9TvQx1ufnMen1V7BrGgPatOXda28k0ekE4Ku9e1h26GCd97rtdh4ZNRYAf5T30Tk1lfuGn5zwPUXrIiWYqsWGQqGoRWtr888mnssdc2bh0w00TZDocHLvMCvFS7jOhbZrQVaBSIzQ5r0lxdw8+z0qfX4CUTTNoWm0iY/nSGVlxDmfYfCXZd+Q6HTyv43rQ/r71b49/HHpYn557gWYx7S5Hif6GGtyjwS1WXBOu/bMuv5m4h3W5/r5nl2sOnKoznvddjsPjbRabfmjFBLrorT5jEVpc8ujqnYrTnukkY9ZfAdmwXjMoluQet0C01wM69CROTfM4NFRY/numPF8esvtZCUnh84LIUh2uSKEGuA7H39IfmUlHj0QsVIsgL9ePJlPbrmNVLc7aqaLYZp8uW93WKiXzzBYcmA/YOVcVQfqzruqybFcbJ9hsLmwgN8tWRg6l19ViSlrB3RbaMDY7E5MCq5m3zZoCG778XW5OLud2wYNickGhUKhUJx5SCMPs/h2S5uLb0UaR076nCM7ZjP7hlt4dLSlzZ/NuJ0OSUmh80JoCC0pqjY/8NGHFFZVUR1FmzUh+PulU/jkljtIqbXrfQy/YfDl3j11anOp14PfiK17haXNJj7DYFN+Hv/3zaLQufzKylBV8dpowKQuXRjfyUr/un3Q0DBtdittViiaFbUjrTitkTKALL4ZjCOAAWYRsvhGaDO/Wat0R6NXRga9MsY2+r49JcUR+cbHcGo2dpUU0Tszk1nX3cR3PpnHzqKjEddtys/HUaPftADaJSTg03VeW7+m0TaB9RCwLtd60Fl28ABLD+6vsy2GCSzen4PfMHDabFzUvSd/vugyXlyzEgncO2xE1DYcCoVCoTjzkdKPLLoRzDzABH+x9brNfISI7og2F30yMumTkdno+/aWltSjzRo7i47SIz2dWdfdzAOfzI1oZyWA7UcLo2qzVw/wnw3r6nSA68NnGKzNywVg6cH9LDt0oM6IMxP4au9edNPErmlc1qs3ftPgX2tXA3D/8JFc0qNXo21QKBTRUY604vRGzwGziONZS6bVwzKwA5xDWs+uemiXmMih8siwbQCfafDymlW8unY1F3Xvyac338YzK5fzjxXfhgReArmVlaS74/AaOkirhdWT513IjA9msqkgHyPKTrJD09BNM+xBQRMitOtsF4Luael8tHM7P/zyc7y6HgpZObZ2X3vUmtVOp/Tuw5TeynlWKBSKsx59D8gyLNcOwABZAfoucAxsTcvqpG1CAnlRwrYBvIbBi2tW8tLaVUzu2ZvPb7mdp5ct5fnVK8K0+UhlBWluNz7DQEorVesXk87n5tkz2VpQQG3391jRz3q1WdPokZbGnO1b+enX8xutzdP69GNajXZYCoWi+VCOtOKUQRr5yKpXwCxGuC9BuC9t+CYRZ/WJDh/IOn6K8szkqdz6wUwEVg/H2gJ4LKfpq317+GTXTvpltsFeY4X7GNUBP2M7dWZyz95M7NyVYk81G/PzIq6zCcHo7E7E2e0s3p8Tdt4uNBx2DYEgyeXiV+dewHXvvx3qg21iifhtg4bwwfatlPl8mFLittmZ1LUrLrv6CjlbkSoPS6E4K5BGXlCbSxDuyQj3RQ3fdBpq83OTp3LbnFloIro2H2sx9fnuXVzSoyf920TXZk8gwITOXbikRy8mdelKXmUlWwryo2rzuE6dsQuNbw7kEKjVhsuhWdqc4nbz80nnc+U7/4vQ5juHDOO9LZup8Ae12W7nwm7dQ8XGFGcfSptbFvUUrDglkEYR8ug0kOWAgfR+iUzKQ0u4vf4bbVngugB8C7H6V7qt3tH23iff6CYyuF17Ft1+D1sKC9BNg18v/Jr8qip8tXKnvAGdnLIS2ickRg3j8hoGi/bnsLmggJfWWKvktYUaCPa7zGV0VnbE+QSngxemXIlumgxt34E4hyMk1MfQTZPDFRW8dfUN/GXZEg5XVDA+uzPfHzehGT4NhUKhUJyqSKMwqM0VHNfmH6Il3FL/jbYu4JoAvqWEtNk1DmzdW8DqpjG0Q0cW3XE3WwsL0Q2TXy38koLqqrAezQB+Q2dfSQlpbned2vx1zj7W5+fx8ppVXNKjZ53avPrIEUZmZYU50QApThf/nHwFppQM7dABt92BL4o251aU8/bV1/PnZUvIq6xkQucufG+s0maFoqVQjrSiVZGBHWAWIP3rrUqaoRBtD1Q+Bw040kIISH0aPLOQgS0IRx+Iuz5qIZFTibS4uFAv6K9v70ZhVRV3zp3NzqKjoXAul91O34w2zN+7u868LVNKCqurKKyu4qU1KxFEhngBePQADpsNt90ecpSdNhsTOndlVFZ22LVX9u7HW5s3hBVMWbx/Hxvyc/nwhhmN6gctpeTdLZt4c9MGXHY7j48eF3rfCoVCoTg1kYHtYBYi/WuiaPMz0IAjbWnzM+CZiQxsQzj6Qdx1p7w2p8fFhzRqQdd7KKyq4tY577OnuCikrQ6bnb6ZbZi3c3u92ny0upqj1dXsD+YnR8OjB4i3O4iz20Oa67LZmNilK6OzO4VdO61PP97dsilssfurfXtZm5vLnBtnkNmIftBSSt7ctIF3t2zCbbfz3THjGdupc8z3KxQKC1W1W9FqmOW/RRZdhyx9HKpeILI7Y2zVLYWwIeKvR0t5EhF/M0KcXutDmhC0S0zkhcunkRkXj8tmQwOGd+jAuV26kpWcjFNrOEyrdo5VTdx2O+M7debH4ycR73Bg1zQmdu7KHy68JOLaH02YxG2Dh4ZabQB4dJ2jVVX8vkbl0Fh4c9MGnlq8gC2FBazNPcJ9H81hTe7hRo2hOBURmPL0+FEoFI3DLPsVsuj6oDa/TKQWN0abbwxq840IcXqFGx/T5henWNrsDGrzqKwsJnXpSlZSMk6t4cfoaDVLjhFntzOxS1e+N3YCcXZLm8/t0o2nzo8Mn//ZxPOYcc7gsCrcHl2noLqKPy1d3Kj39p8N6/jDN4vYUljAmtwj3D3vA9YHC5opTmdaX3PPNm1WjrSiVZD+teCZCXiDIWM64Y60G9zTWse4VqJLaioXduuBEAITq4/kg5/M447Bw8hKTibe4cBttyOwVqzttQTcJrSo7bI0IeidnsGsbVt4evlSeqVnMH/GHfxr6vQwZ/kYdk3jR+MnMbBtu7DjupQcKCtt1Ht6Y+O6sJ1tr67z7uZNjRpDoVAoFC2D9K8C7xzCtbmmI+iGuOmtYVqr0T0tnXO7dbMKgAErDx/m4U/mcc/Q4XRISiYhTJvt2Gvtumt17MJrQtAnsw3vbNrAP1cuo29mJl/deicvXnElcXVo808nnke/zDZhx3XTJKcZtHnm1s2NGkOhUKjQbkUTkNK0Co94PwUtFZH0QytsqzEYB4lcx7GBvR/ISnBdjEh6orlMPi0orKpi1vYtoWJjHl1n6cEDHCwv4+Obb2VhTg7VgQATOnembUIiH2zfys+CFTztmkaiw0m5zxuxK90lOYXcigqKvB5MKdlUkM8Ns95l0e331FssbExWJzbm54XCyNx2O6NrhYE3hF2E/xkLwGFT63cKhULR3Fja/DJ4PwctPajNjeykoB+AiCVZAfYBlja7L0MkPtpcJp8W5FZUMHfH9hraHGDR/n3kVVXyyc23sXD/PrwBnQmdu9AmIYGZWzfzq4VfHddmp5Myb6Q2d0tN42BZKcUeDxLYkJ/HjbPe5evb7q5fm7M7se1o4XFtttkZk9WpzuujUVubwersoVAoGodypBWNRlb8Far/h1VABGTxTZAxF2FvRH6NvU9kRU8tDZEx65TPoTpZVPh92DUtJNYAdk2wq+gov1m0gLV5R9BNk26pafxr6nSu6tuftgkJfLFnN6luNzPOGcKDH89lTd6RGvdrXNqzN//buD6Ue21KSbU/wO7iIgbU2nWuyUMjR7Oz6Chf7tsDwPhOnXls9LhGvadHRo3he/M/q+GMO7h10NBGjaE4NVGVQRWKUwtZ8UeofgdLmwWyeC1kzEPYG7EA6ugLslZhLK0tWubs5jT1tKLS78cRoc0aO4oK+cWC+azLy0M3TXqkpfOvqdO5rv9A2icm8uXePaS545gxaDD3zpvDhvy8sPsv7t6D/23aEHKwTSkp9/nIKSuttw/2Y6PHsauoiIX79wFwbteuPDJqTKPe08OjxvDjr77Aq+sIIM7h4JZzhjRqDMWpidLmlkU50orG4zkm1EGkH7yfQeJ9MQ8hHH2RST+Cij8ANhBuRNorZ60TDdA5JZU0dxw+XceQEoFVsOXnC76kKhAIXbevtIRbZs9kyZ33Mr5TF8Z3Ol68673rbuSXC7/io53bsWka9w0byUXde/D6hrVhcwUMgwSns157HDYbz0+ZRoXPB0CSy9Xo9zS5Vx/iHM5gQRMb9w0bSd9aYWkKhUKhaAY873Fcm6Wlzb4vwH5XzEMIxwBk0veh4k9Y2hyHSPvXybD2tKFLairJLhceXccMarNNaPzkq/lU19DmPSXFzJg9k8V33svEzl2Z2Llr6Nzs62/mZ1/P55PdO3FoGg8MH8XEzl15fcO6sLkChkGio35tdtpsvDx1+glp87Q+/Uh0upi5dRNuu4MHRoyiV0ZGo8dRKM52lCOtaAK1w38ENKGIiJZwCzLuSjCLwdYeIeoXjzMdu6bxzrU38OinH7GruIiOSckkO11Ri3MVezzcM3c2WckpPDRyNB2TkgHL8X7q/IvCCpVIKRmX3Zmvc/aGjplIZD0FUGpSl0hvP1rIU4sXUFhdxQVde/C9seOj9q48r2s3zuvaLaa5FAqFQtFUooRk0xRtvg0Zd3VQmzsgRGS+7tmE02bj3Wtv5JFPP2JPSTHZyckkOJysyT0ScW1hdRV3fTibTimWNrdPTAIsbf79hZfw+xoFPqWUjOqYzeIDOcePAUbtiIA6qEubtxYW8NvFCynyVHNRtx48PmZcVG2+oFt3Luh26rYjUyhOB1RChKLxJNwDIi74QgPhBveUJg0ltESEvfNZ70QfIyspmVnX38y6+x4iweFgfX5u1ErcAdNg8YH9vLdlE1e8/V8Kq6vqHFMIQZLLGfaIZUjJ/y1d0mQ7j1SUc93Md1h+6CC7i4t5Y+M6fvr1F00eT6FQKBQnSMLdQG1tntykoY5r89ntRB8jOzmFD264hbX3PYRDs4WFadckYJosPpDDO5s3csXb/6XYU13nmEIIEp2R2vznb5uuzYfKy7j+/XdYfvggu4qLeG3DWn618Ksmj6dQKOpHOdKKRiMS7oOkX4LzXHBficj4AGFrjwxswyy+F7Poesyq/8W04yllABnYigxsR9bOmT6L2Xa0kB1FR9HN+lemDSnxBAJ8vHNHvdcVVFWFOeRWj8u6ne+G+Hrf3rB2W15dZ+6O7THvcitObyS0euuMs63FhkLRECLhQUj+OTgnQdyViIw5CFtbZGALZvE9mEU3YFa9FaM2+5GBLcjADmSMO6RnA1sK8tlTUhyTNlf7A3yya2e91xVUR2pzQVXTtfnLvXswatjm1XU+2L6tyeMpTi+UNrc8KrRb0WiEEIj4ayD+mtAxqe+zio7J4OprYAdSliMSH6xzHGmWIotuBDMPkGDvDelvIEK73Wcf1YEAv1n0NUsO7A8V6DqGAMZmd2ZN7mF8NYqemFI2KOoXdevB+rzcULuLOLudC7v1aLR9248WUuSpxq/r1E5nt2naWZ3jrlAoFK2Jpc3XQfx1oWNS340svhlkMHc6sB0pKxH11DSRZjGy6CYw87G0uR+k/wchGp+Le6ZQ6ffzm0Vf883B/fiiaPPEzl1ZduggAbOGNiMbDNO+qFsPthTkn5A2SynZXnSUYk81fsNA1Arxt2tKlxWKk4VypBXNgvR8DNJb44gHqv8L9TnS5b8LtsEKFusIbEdWPg8J9yPLfwOBdWDrhEh+EmFvXGuH05V7533A2twjYY4yWG0puqel8/Co0Tzy6Uf4g+0ywFr59uk6Uso6HVmX3R6qOCqAqb37cv/wkTHbJaXkJ199wbyd27FrGoaUuGw2AoaBISVxdjv3DhvRlLesUCgUipOE9MyLos1v1FscVJb/JqjNQYcxsAVZ+SIk3IUsfxICG8DWBZHyJMKWdVLtPxWQUnL33NlsyM8Lq9wNVv50r/QM7hs+kk0FeZR4j583TBNvoH5tdtfS5ul9+3NPI7RUSsn353/GZ7t3hrTZabcRMI9r8/3DRzX+TSsUiphQjrSimRBEFjppAH0HIScaAB/4tyL990BgM+AH4yCy6DpoMx+hJTWfuacgFT4fq44cDttdtglBm/gERmdlM2PQEG6b835o5foYppQ8v3olftPgiTHjI8ZddeQQv12yECMYzmcTgsMV5dga0TNyyYH9fLRrR9jc6XFx3HLOYAqqqriwWw+u7te/ke9YcdoiQUXxKxSnCwLCAogb0OrADkJONAA+CGxFFt8J+nbCtDnzC4SW2OwWn0qUer2sz8slUFubExIYk92JmwYO4vY5syKiyAwp+efKZQRMg4dHjY0Yd/mhg/xx6eIwbc6tqEBrRGTXgpx9fL5nV5g2t4lPYNrAvhytruai7j24qq/S5rMGpc0tjsqRPoOQ0kT6FiGrZyH13Y27N7ANs3AKZv5QzKIbkUb0Qhp1IeKmWoVNQgLtBOcEpFlZ9032ftZ1IVzg6HHciQbAtH4PrGmUPacjdk2LyF1z2+387sKL+dtlU/j20IGInepjePQAr66L/hmtPHw4bBVdlzJqtdH62F9WGupDfYwSj4dfTDqf56dM45r+A1RYt0KhUERBShPpXRDU5j2NuzewFbNwclCbb0Ea+Y26X8RdVYc215OH6+gP1Cwy5gZ7t+Didw1tll5rd/oMx65pEUU/3XY7f7zoUp6+5HKW7M+JCPc+hkfX+dfa1VHPrTx8MMz51qVk1ZFDjbJtf1lpRGpXkaeaJ8+7kOenTOPqfkqbFYqTiXKkzxCkNJGl9yNLH0NWPIU8ejWm5/PY7jVLkcUzwNgFsgoC65HFt8ZUYEQGtmKW/xHpeQ9S/mEVOTkW6OCdjzx6OdIsDs5TaRUjyxuAmT8CHEMscRbxQBw4zoGEe7Gc57BZCBf1M5M4h4Nr+w8kzm59fk5No11iIuOyOwOWcNvqEcTaju4xMuPjcdVqfZHqcke9Nreigs0F+VT6/WHH+2W2CdvDEECnlJRG7WorFArF2YaUBrLkHmTZE0Ftvgrp/TK2e81iZPGtYOwJavNaZPFtjdDmPyA9syDln+CcSEibfZ8hj05BmiXBeSowi+8OavNIcIwCW5egNrvBMRgS7iSqNp8FVb2TXC6m9e57XJttNjomJTOqYzYAbrujXi2sW5sTcNvDA0PT3NFrxBzT5qpa2tw/s03Yc4EAuqamKudZoWghVGj3KYyUXkCLrTWUbxH4Vx0v9gVQ/mOk+5KGv1ADmwkP+zLByLeKgNk61m2ff40V6oVlJ+JNS3AxscLC/GD6kRV/Q6Q8hSz7IfiXAQGQAaj4A6S9itBSQWhg64YQGqZ7Kng/AzyAE2xZ4Iw9n/dUx6frvLh6JRvy8+iTmckjo8YS77AeRn53wcX0b9OGFYcO0Tklhe+MGI0rKLTT+/bnxdUrKff5QqFgx4iz27m2/8BQNe4Ul/v4fX368ddvvwkL/ZrUpWuEXX9b/i0vrVmJ02ZDQ/Cfq65lcLv2AIzomMWDI0fzzxXLcdg04uwO/nXFVSfj41EoFIpTGkubbbG1hvJ9DYG1Ydosy36EcMcQZeXfQLg2G2AcAbMQbO3qts+/Ell8D8e1+X9gH0hIm6UfpB9Z8Qwi5ZfI0u+BfwWWNpdBxe8g/TWESAZhC2qzwHRfCt4vg+O6wNYZHEMbfh+nCT5d5/nVK9iUn0+/zDY8PGoMcUFt/tPFlzGoXXtWHj5E19RUHqihzdf0G8Ara1dT7vdFOM1xdjvXDzgHwzQp8lSHafM1/Qbw9LKlYdp8bteuEXb9+dsl/HvdGhw2G5oQ/Peq6zinrfXnPzq7E/cPH8lzq1bgsNlIcDh5+YrpJ+HTUSgU0VCO9CmIlF5kySPg/8Z6HXcTIvkX9TvEZmFkYoT0YOUgN+CIi0QiV5oNEAn121nxNJagYt0vqyGwpdZYOhiHrV/9yzgeFob1u38FIunhcHNS/oB0DLTCuW1dEQn3njF9pqWU3DtvDquPHMZr6Cw7dIClBw8w+/qbsWsamhDcOmgotw6KfDhpE5/Axzffxitr11Di9TC4XXu+ztlLUXU1l/ToyUXdejD21Zco9/mQSC7r0Yt1ebmYpkmpzxs21pwd2/jBuIlkxMcDsDb3CK+sXYXfMEJh4PfO+4CV93wndM9DI8dwyzmDKfF6yUpKxllrl1txdmE2tiaCQnGaI81qZOnDQS0DGX8rIuknMWhzLX2VlUhpIEQD36FaU7X5r0Ros7691lgBMIJhxP7lhGtzAOFfjUi8P2xckfJnpOPNoDb3QCTcc8b0mZZScueHs1mXl4vP0Fl26CDLDh9k5rU3Ygtq822Dh3Lb4EhtbpeYyEc338qr69ZQ7vUyqF17vty3l2JPNZf17MX5Xbsz5tWXgpFekkuD2myYJhV+X9hYM7du4ftjJ5LitqLGVh4+xOvr1+EzjFBq1/3z5vDt3cf/bB4dPY7bBg+lNKjNDqXNZzVKm1sW5Uifgsjy3weFLZjX6p2FtPdGJNxY902OwYSvXGuW0MXigDoGgWM4+FcDHhBxEHcjQktpwNDa+c8SRApIH8dFPA6c46xfRZIVnhbCibClRQwrhIZIuBW4tWHbTzMOlZezOtdyogF8hsHekmK2FhYwKLj7W5Oc0hJ+v2QReZUVnNe1O4+MGsPPJ50XOn9M1KWUjPv3yxTW6A09d+f2Ou1waBpHPdUhR3p3cVHENUXV1fh0PbR6DpDqjiO1jtAzhUKhOJORFb+1Ir+OaXP1u0h7H6sdZF04htQ6YAN774adaLB02TEY/OuxIrTiIP7Whot7ydr5zxJEarB69zHHzQ2uoDZrSWDWXGx1gpYaMawQNkTCbcBtDdt+mpFTVsr6fMuJBvAZOjuLjrKz6Cj92rSNuH5vSTG/X7KIgqpKLujWg4dHjeEXk84Pnb+1hjaPfvVFijzHIxLq02a7plk710FHendxEbJWhnZ+VSUBwwhzmJU2KxStg0pwPBXxr+C42GHtLPu/rfcW4egDKb8H3FhOdHdE+r9imk4IDZH2MiL5V5DwICLlL4ikH0dcJ81SpG8ZMrDVKorlngbU7CvphsQnwDUJsFl2xF2OSLjTmiflN0H7HECcFTbuPrvCg3UZuVbo03V+9OXnvLFhXVixscLqKq56902+ztnL5sICXlm3mp989UXUcSv8/jChbgibptE5+fhCSY/09IhrJLD0wP6Yx1QoFIozmtraTCza3B+SnyKkzfYeiLSXYprO0uZXEcm/sLQ59Wm05O9HXCfNEqTvW2RgW1CbryBCm5O+D64JWNpsg7ipiHjLIRbJtbTZng1xV8Zk45mCYZoR1bJ9us7353/Gm5s2hGlzQVUlV737FguC2vyvtav4xYLoee8lXg/lPl/Uc9FwajaykpJDr3ukpUfdX1x26GDMYyoUipOH2pE+FbF1ACOH4zvMDkvYGkCLuwLpngL4EcLV4PU1EcIG8VfXGRAiA5uQxXcEX+jgHAP+TYRW5kUiJP0ELX4KxE9BSh8gwnbEhes8yJhpPXiIJIi7AiGiF706U+mSkkr3tHR2FReFQqgNKdlRdJQ/Ll1Mhd/HQyPHALAwZx9+wwjlXHl1nQ93bONnE8/jp19/wbrcXJJdLs7t2pWBbdvj0LSI6p01saqCQ6rbxSvTrg7lfgEM75DF9f3P4T8b14Xd88hnH7Ps7vtIrqM4meLsRAJSqvAxxVmG1j4YDl1Dm2Poo6zFX4mMm0bTtNkO8dfWrc3+DciSOwFhabNrHPjWc1ybkyDpZ2hxl0LcpVFrrwj3hZDxrhWyLlIhbkqj7Tzd6ZaaRufkFPaUFIfaXBlSsu1oIb9fspBKv5/7h1u1Wr7at5eAaYT+Fnh0ndnbtvCDsRP4yddfsCEvj2SXi/O6dmNgm3YNtrM6ps1pcW7+Pe3qsCiw0dmduLpvf97cvDF0TALf+XguK+55gETnmZH2pmgelDa3PMqRPgURyb+y+jNKHYQALR2RcH/DN0IwV6v5BVCWPgay4vgB/8JjZ4L/MxBaZg07otsgHH3A0afZ7Ttd0ITgzauv57eLF7AgZy9FHk/onEfXeX39upAjbVXiDP9CFEJw54ez2Ha0kIBpUlBdxe6SYhyaRve0dPaXlWLXNAKGgW6aYf0p7x82gvuGjyLR6Yya0ze1T1/e37aZqsDx3t4B02DUKy/ittv53tjxUXO3FQqF4mxApDyJLLoRpAFIsLVBJNwb270nTZsfDU+z8n1NeJqXjrAdD02ua/FaOPqBo1+z23e6YNM03rn2Bn6zaAELc/ZR7K2tzWtCjrQmRMTChhCC2+a8z67iojBtdmoaPdIy2FdWgl3T8BsGRi1tfnD4KO4eNqIebe7HnB3bwrTZb+iM+NfzxNnt/HDcRG46Z3DzfygKhaJBlCN9CiLs3aDNF+BbZrWWcE1EiFbOfYnoXVm7nYM/2GPyfE4lpDTAtxDMInAOQ9h7trZJJLtc/Oniy/jnimU8s3JZWAXumhp6Ybce/OGbxfgNHUNK4ux2ruzTj1nbtoRWzI8RME12FB3ll5POp0NSEu0Tk/DrOnfNnU11IIAhJf9ev5aqQIBfnntB2L3Fnmr+uHQxO4uK8ATCe2Ee2+H2GwZ/+GYxWUkpXNCtezN/IgqFQnHqI+w9IfPz4M6tK6jNrRytYzagzTJgabNrQouZFAtS6kFtLgbncIS9R2ubRLLLzV8umcxfl33DC6tW1CrzdlycL+nekz9/u8RyioPafHW/AczcujlCm/2mybaiQp4870LaJiTQITGJ6oCfe+bOwaNb2vyvdaup0gP8bOJ5Yfcera7mT0sXs7PoaFi/abB2y41gcdDfLllIVnJK1G4cCoXi5KJypE9RhJaOiJuCcF/S+k40WP2eIzoJ18QJ9q4tZ08MWP0770KWfQ9Z/jvk0auR3vmtbVaI6X374bbbQ59knN3OPUNHhM6nuN18dNOtXNNvABM7d+EH4yby04nnRSxh1GTm1s1c2qMXg9u1DxUeqxl+9t+N68PCvz2BANPffZM527exIT8PTRNoCJKckTsnXl3nq317TvBdK84MBKY8PX4UiuZE2DIQcVcg3Be3vhMNYOtKvdosnFZP6FMIKXVk8e3Isu8HtfkqpHdBa5sV4up+A3A7HGHafN+w49qcFhfHvBtv5ep+A5jUuSs/njCJH4ydUGe/aID3g9o8qF178quqrEj84DmPrvOfDevC7q8OBJj+zv+Ys2MbGwvyEaJubfboOgty9jbHW1ec9rS+5p5t2qx2pBUxIVKfQxbPALMc0CFuGnjnA9IKQXdfCK5LW9vMcHxfQmBDrf6dP0G4L25Fo47TOSWV2dffwt9XfEuZz8u03n25rv/AsGvaJSbyfxeFf64zzhnCu1s2hvWePEaZ93jl1YBpRjjdEsLEevWRw5R4vKFVdN00sWsaf77oUv6y7Bt2lxSHrrVrGpnBKt8KhUKhaH1E2guWNssqa/c57irwfmqdlAFwXQyuC1vXyNp4Pw+2yqzdW3tl69lUg26pabx/3U38c8UyKvw+pvftzzX9BoRd0yEpiT/W0uabBp7D+1u3RNXm0hrarJtmZOCAlJhShvKplx86SJnPF1r41k0TmxA8fclkfrdkITllpaF7HZpGRpzSZoWiNVCOtCImhL0LtPkajCOgJSO0NGTST6zelCIl2M7j1FhhkjIAnrlI3xfWg0TYyQqkNBGi5YMx9pYU8/GuHQgE0/v2Izs5hV4ZGTx3+dSYxyj2VJMeF8eorGwOlpWxt7QkdM6uaQzr0DH0enynLjg0DYGl2S6bjYmdu4b1f5aEh5ODtZ8xIiuL315wMXd+OMsScE0jxeXijsHDmvbmFQqFQtHsWKlgC2tp8w+scG6RinD0bm0TQ0jpt7TZ+znhfasJarNsleeIPcVFfLxrJzYhmN6vP1lJyfTNbMPzU6bFPEZRdTWZ8QmM6pjNgbJS9tVwdO2axvCOx7V5Uueu2Gpp8/ldu2PX6n8uEUIwMiub3194CXfPnR10rjVS49zMGKRypBWK1kA50oqYEcIB9uMhYkJLBueoVrQoEikNZPFtoG8N9sysuexrA3vfVnGitxYWcP377+ALrlS/vGYVc268he5pkW2n6qLU6+Hyt96gxOMhYJo4NI0BmW3ZWXwUTWj0ysjgqfMvCl2fGR/PrOtv5tcLvyK3spLxnTrzkwnnho05smMWKS43nmAetV0IRmVlkx4Xz6iseObeOIMFOftw2+1M7d031NuyOZBS8vbmjXy4YxspLjdPjB1Pv8w2zTa+QqFQnA1EanPKKajNurVzHtgBRNFmx8BWcaI3FeRz4/vv4jN0NCF4ae0q5t44g66paTGPUeypZvJb/6HU60UPanP/zDbsKi5GE9Answ2/Pvd4VECbhARmXX8TTy76mrzKSiZ27sKPxk8KG3N0VjbJLhfeYB61XdOY0KkzyS4XY7I7MeeGGSzav484h4OpvfuS7Gq+QnZSSt7ctIF5O7eT6nbz3bET6JOR2fCNCsVZiHKkFWcW/m8gsA3w1DohwN4LkfZia1jFn75dQnWNiptVAT//WPEt/7jsipjHeH/rFkq9x8OwA6bJlqMFPDv5CoZ16Ei7hMSIB5Huaem8cdV1dY4Z53Aw45zB/HnZN4BVwGR3cRHlPh/JLhc90jPokZ7RmLcaMy+tWcUzK5fh0XUE8O2hA8y76Va6NeIBRtF61JMOqFAoFOH4FoO+k+ja3BeR+nxrWMUfly7Go1vabEpJdSDAMyuX89dLJsc8xsytmykLOtFgafO2o4U8f/k0BrdvH1Wbe6Zn8N96tDnB6eSmgYP4xwqrT7lhmuwsKqLC5yPJ5aJXRga9Mk6ONj+3ajkvrF55XJsPHuDjm2+jc0rqSZlP0bwobW5ZVLExxSmFNCuQ3s+R3s+QZkXDN9Qm6j02aLMCLXMuwtbuhG1sCuU18qPAWosv8XijX1wH1YEAgWDv6Zr8ZvEC2icmUeH38+amDbyydjV7iotiHvf51StDedMSKPP5+Gjn9kbZ1hT+vX5NKJdMAt6Azofbt530eRUKhULROKRZbumy93OkWdnwDREDlEU5qEHb1WiZHyBsrRONVFZLm00pKfXWdvbrp9Lvj6jWLTmuzeU+H//buJ5X1q5mb426Iw3x0pqVoa4eEijxevh0985G2dYUXlu/LlybdZ25O07+M4FCcTqidqQVpwzSyEcWXX28OJiIg4wPGuf8OoeBkDWixuxg74VmS21maxvHFb37sqPoaEic4ux2pvXp26gxLujWnWdXLQ+rug1WEZNjYd+lXi+GafK35Ut57cprGJWV3eC4fqNWWw3TjFospbmJ6MQpIvO1FQqFQtG6SCMvqM1BB1MkBLW5Ec6vY0StrTI72PujaUnNamtjmdq7L3tLisO0eWrvxmnzRd178tKaVRHaXOL1UOypZspbb1Dm84W0+Y2rrmV4h6wGx/XXWjg3pYxog3UyiCbDSpoViuioHWlFk5H6bsyShzGLZmBWv4s8wXgSWfEXq6ekrLJ+zBJkxZ8aNYawdUSkvQK2bCAOHMMQaa+ekF3NwZ1DhnHf8JGku+PIiIvnsdHjIqqANsSANm354biJYYJmAwa1bc9/NqyjqLoar64TCDrCv1r4VUzjXtKjFy7b8TU1u6ZxXgv0o7x76HDi7Na8AnAH+2QrTg+kFKfFj0JxtiEDOzFLHsIsuhWzemYzaPP/gVlSQ5uLkZV/bdQYwt4JkfYyaB2BOHCOQKS/fEJ2NQf3DBvBXUOHk+aOIzM+nu+NncD0vv0bNcagtu14fPS4sGM2IRjavgP/XreWIo8nTJt/vfDrmMa9qHtPXDWKg2pCMLEFtPnOocMitHma0ubThtbW3LNNm9WOtKJJSP0Asui64O6xhMAmpFmCSHyg6YMah4GaK7BG8FjjEM6RiDaxCVVLIYTgsdHjeKyW2MbCysOHeOTTeRytrqZbWhqPjh7LC6tXopsm/TLb8NyUqTyzYnlEaFmpN7bQ8T9ddCnxDgcLcvaS6nbzm/MuOml50TW5d9gIkl0u5u7cTpLTxRNjxjWqwItCoVAowpF6DrL4+uDusYTARqRZjki8u+mDRmizDvqhRg8jXKMRbRc23Y6TgCYE3xs7ge+NndDoe5cfOsijn35EkaeaHmnpPDrK0mZDmgxo245/XnYFf/52SdSd6lj46yWX8auFX7No/z7S3HE8df5FLVJD5MERo0l1x/HRsWJjYybQKSXlpM+rUJyOKEda0SSk9+NaVbE9UPU60n0FmLlg74HQYq9IDYBrHAQ2Y1X0BHCDs/GOZ50267vBvx5smeCc1CrVuxtLYXUVd82dHSpUtq+khHc2b2LjA48gpcQVXDU+v1s3Zm3bHApPs9ppdItpDpfdzh8uvOTkvIF6EEJw48BB3DhwUIvPrVAoFGci0jM3Upur/410XwJmXtO02TmuRrVtADe4xjefzYGdENgItjbgnHhaaHN+ZSX3zPsgpM17Sop5f+tmtjz4KIZphrT5ou49mLdze0ib3XY7F3brEdMcbrsjold1SyCE4JZzBnPLOaqllkLREKf+t9VZipQBzMpnrbDpsp8izeIa58x67mwhooWKySrk0cuQJQ8gC89H+hY1akiR8AC4L8b6a2kD94WIxO80i7mm51Pk0auR5U8hSx9Hltwf0+copRdpFJ1waFxT2VJQgK1G4rAEyn1eCquqQkINcH7X7vxkwrkkOV24bHYu7dGLX517QStYrFAoFGcuUgYwK/4Z1OafnXraTBStMiuQRyfX0OZvGjWiSHwYXOdjJRNp4L4EkXBvs1hrej5CFl0b1ObHkKUPxqS3ra3Nmwvy0Wppc5HHQ1F1dZg2X9S9Jz8YN5EkpxOXzc7knr35aa02lAqF4vRF7UifosiS74J/AeCHwFqkbyky+edQ9jOQZUh7L0TaSwhbwwUrmt02/QBo6YADMDku3L7gBX7rf6WPQttVCOGMaVwh7IjUvyLl74Ovj/dFNKvfh8q/gwxA3DWIpO8hhK2OkWrZKyWU/4TQaroE/KvAtwjc59d5n1n5ClQ+DWhgaw/pbyBsHRucL6+ygt8sWsCB8jJGdczmh+Mn4LY7YrK1Nhnx8RFhYbppRu0ZOWPQEGYMGhL5PqRkyf4cij0ehnXoSJfU1DrnK/f5+NnX81l95BDtEpL4v4suoa/q7ayohZScUTlOCkWsyJJHwb+EkDb7v0Um/RjKfg6yHGnvE9TmDi1vm54DWhvAyfHdY47/HtLmR4LaHNsjoBAORNo/kNIHiDBNN6vegapnQeoQdx0i6YmYd5SllFD2U8K1ebnVxtI1sc77zMoXoPIZLG3uGNTm9g3Od6SinKcWL+BgeTljsrL5wbiJYU5vY0iPi8Mww514U0bX5juGDOOOIcMijhumyZID+yn1WtpcX3upcp+XH3/5BWvzjtAxMYn/u+hSeqvezopaKG1ueZQjfQpieheD//MaR3SrdUTpE4A/eGg3svgOyPwioj/hyUBKA1n1MlTPBPMI4AZM0LLAPEzUVXApreJhMQhcTWo60ADSuwDKf0NIbKv/hxRuRNKjMY4YCIa6hY0KZmGdd0j/qqBQBytkGoeQJQ8iMufUO1Ol38/0d96kyFONISV7i4vYV1rMa1deE6Ot4Qxs05ZLevRk/t49GKaJJgSPjBpLUhSxjoZhmtz54WxW5x62HHIJv7vgYq4bMDDq9ffO+4AN+Xn4DYOCqipueP8dvrztLtrEJzTJfoVCoThTML1fgb9mEUcdjGIo/S4QCB7aiSy+C9Hm0xaxSUodWfUiVM+upc3Z9WhzAMxSK82pEdTWZtPzBVT8gVBv6Oo3kFocIvHBGEf0EnqmCRu4Hm32fQuVL3Jcmw8gSx9BZMysd6Zyn4/p775JsceDKSV7S4rZX1bKv6ZeFaOt4Qxp34Hzu3VjYc6+kDY/MWY8cY7YFs110+S2Oe+zPi83tFj+xwsv5ap+0Qud3fnhbDYXFBAwDQqrqrj+/Xf46ta7yIiPb5L9CoWieVCOdAsjfQuRFc8CAYifgRZ/Xfh56YGyx6LcqBPegMC0CoDIChDJJ9Nka/ry34JnFsdXuYMtqsx8IB6oirxJ2EE78aJV0vsxEavr3o8hRkdaCCfS1gOMPVg76AA60taz7pYOgY2EHozAuk9vuH/jisMHqdYDod6PXsPg24MHKPd5SXa5Y7IXrJV6iVUI5elLLmdBzj4OlZfRv01bRnSMPQrh8z27WXXkEL4abTR+9NXnDO/Yke5p4XlyVX4/a3OPhPWtNKVk5aFDTOndJ+Y5FQqF4nRDer9GVj4H6BB/O1r81eHnzUoo+16UOw3Cs+RMMHKQZjVCO/lOjiz/NXjmEl2b446/rolwg9YMRau8HxNyosH63fMRxOhICxGHtHUFI4eQNssA0tajHm3eRLjzbUJgW4NzLTt0AE9AxzymzbrOwpwcqgMB4mN0fiFcm5+57Aq+ztnL4fJyBrZtx7AODUesHeOTXTtYl3skTJu/P//TqFFj5T4vmwryQw63BExTsjr3MJf26BXznAqFovlRjnQLIn3LrbCwY4JX/ltMJFr89ccvMo4QdQU5FEZdEwGihVYjPTOJunIsnKFwsXDiEWkvIkTTQprD50jGelCp8f61xMYNkf4vZNFdYO49NgCUfgeZMQthj9Jr2dYRhCO4gHHsloYXBWxCi8jZkkTpmVwP723ZxG8WL8Cr64zomMWLU6ZxQbfuMd9fk4KqyohelAAvrV7JHy++LOyYwxY9VN7tUF8TikhMFT6mOEOQvqXI0sc5rs1PYiLQ4mvsVhqHid5N10l4RWsAm+WsnmSklOCZTWh3tibCYe08R5AQ1ObYUqPqRYumzY3rCy3SXkEW3wVmzrEBoPQBS5ujpVLZOmJ95jUceK3h9CNb1Mg92aj+yO9s3shTixfgMwxGZWXzwuXTYi4cVpuCqqowJ9qyBl5dt5rfnH9R2HGnzRbluUIS18SUMcWZjdLmlkUVG2tBpOcdwndWPVD9ZvhFWluQtUVZg7RXwDUWa/fXBbgh6Rcx5zidOHX8w5QGJDxo2SQSLbsSf4FouxThHNU8MyfeExzbHrTDjUj6UePGsHUE90SsBQkAn5VrXv5U9Btcl4JzjLVQIRJBxCNSn25wnjHZ2WTEx+PQrH9abrtV+CvWUOw1uYf59aKvqQ4EMKVkbe4RHvn0o5jujcbQ9tHz9Kr1yAcsp83GXTV6OzttNrKSU5jQqUuT51coFIpTHVn9FpHa/N/wi2ztojimGqS9Bs6RwUXtoDYn/7oFK0/Xpc0mJHzHskkkWXYl/SqozSOaZ+aE+0AkYBUhE0AcIumHjRvDnh18tqmhzWYpsvx30W9wXw7OEbW0ueGe1uM6dSHV7Q5pc5zdztTefWMOxV55+BC/WbwAj27taq85cpgnPv8kpnujMbRDh6h/cpWByI0Jt93BbYOHhrTZZbPRJSWVMdmdmjy/QqFoHtRWU4sSzZkK/yMQWhIy+ddQ/qQVGi11SHwIzTUc6RwKvq/ByAPnIISjBdsGxd8KnjeDvSmP4YKUv6LFXYyMvwaMXLB3aXxrjQYQto6Q+RGyejbgR7gvRTj6NX4g4wAR4dpm9F6YQmiQ+iIEVlu5ZI5BCFu7Bqdw2x3MueEW/rb8W3JKSxid1Yn7ho+M2cQVhw4RqLFKrZsmq48cifn+2gxu34HLevbi0927QsdcNhtX9R0Q9fofj5/EwLbtWH7oAJ2SU7lt8NAmF2NRKBSK04JoBTFrRVMJLRWZ/Eso/+1xbU56DM01GOl8GXxfglEAzsEIxzktY7YQyPibofo9wkOs3ZD6NzT3hcj4a4Pa3BXRHOHcNee3dwpq8wdY2jwZ4WhCGpBxkHBtNoLHoswpbJD2LwisCWrzYIStbYNTxDscfHjjLfx9+bfsLytlXHZn7hkW+4LC8kMH8evHd/4DpsnKI43vpX2M4R2yuKhbD+bv2xM65rLZmN4neo70zyeexzlt27PqyEE6p6Ry++ChOOuIIlMoFC2HekJuQUTC7UjvZxwXPLfVVqIWWvw1SOcoK6fX1glht0KHhNDAfVHE9U1BSj2YW/UhCBsk3I9IeKDOwmUi6QdIW3vLkdcyIP5WhKN/qHqnsLWPKComzVJrxzewFey9ESm/arKTLWztEUmxFjCpA+dY8C0jbOdBz0OapQgtNXJOIaydhkaS6o7jyfMubJKJGfHxOG22UM9JgBR3bLvZdfHs5Kk8t2o5b23eiMtm57HRY+sMFRdCMLV3X6b27ntCcyrOfFqp64xC0eyIhLuR3q8J1+aHIq7T4q9HOseAvsdaNLZb36OWNl/SLLZIGUCW/9LKNRZ2SHgQLbHuVlMi6SdIWxb4FlohzvEzEI5+DWhzcVCbt4OjLyL5l012soWtQ/Nos381kdpcjtAia8AIoTVJm9Pj4iPCpmMlMz4el90eps2p7hML33/hiiv554pveW/LZlx2O0+MGcekLl2jXiuEYHrffkzv24RNBMVZhdLmlkU50i2IcPSHjLeRVa+B9CPib0C4xkW/1t4J7CcvbEdW/D1YoMRnJeZUvojUOiLir4xujxCIhNsg4bbYxpc6svgW0HOAABj7kUXbIPOjmNthNTci/jZk9Ttg7K1x1IOs+BMi5fetYlNtpvfpx/82rmdfaUmoKMofL7z0hMYUQvDwqLE8PGpsTNcHDINVRw7j0QMM79CRVHfcCc2vUCgUpzLCMRAy3kRWvQ7oiLgbEa4x0a+1dwZ755Nmi6z4C3g+xtJmH1Q+i2nriBY3Jbo9QkMk3AEJd8Q2vgwgi24+vgtsHEAGtkPm3OapadIERMJdSM97YOyvcbQSWfFXRMqTrWJTba7pN4D/bdrAgbLSkDb/3wlqsyYEj48Zz+Njxsd0fcAwWHnkED7dYHiHjqScoCOvUChOHOVItzDC0R+R+ufWNgN8XxGRE+b7EupwpBuNvi9YnOVYuJZutbTQd4EjeljxyUYIDaml13KkdcumVmJ3cRGPf/4xB8vK6J2RyT8um8Ks62/m8z27KPN6GZPdiZ7pJ175PFZ8us7V773F7uIiwMqTnnPDLfRoQRsUCoWipRGOgYjUv7S2GVbUVzRtrsORbjT6LjDzOK7NATBzrV12R+tEIglhQ2pptRzp1tXmHUVHeeLzTzhcXkbfzDb847IpfHD9zXyxdzflPh9jsztFdL44mXgCAa567032lZQA4LLb+fDGGXRLbd5wfYVC0ThardiYEKKTEGKBEGKbEGKLECKi55MQ4jwhRJkQYn3w55etYesZSUSItT2mypcxI+xWsZMwTKyiJBZSmphV/8Ysug2z9AdII7f55q8LxxDCc9VdwWMtT4XPxw3vv8O2wkIq/H7W5+Vy46x30YLh1TMGDWlRJxrg+dUr2Ha0kIBpEjBNqgIB7pk3p0VtUChaEiHEv4UQBUKIzXWcv0UIsTH4860QYnCNczlCiE1BfVrdclafPJQ2tzIRIdbNrM04ImM/pbQ0O/TSxKx8NajNP0Iaec04f11mDeZU0eZyn5cb33+XHUctbV6be4QbZ72LXdOY2rsvt5wzuEWdaIBnVi5nZ1FRSJsr/X7um/dBi9qgULQkp4s2G+YqCwABAABJREFUt+aOtA58T0q5VgiRBKwRQsyXUm6tdd0SKeUVrWDfGYk0cpGljwb7Lgosx9YGIgGReH/zTWTraolgYD3W6roL7P3A3vu4LRW/h+qZgAcCGtK3GNp8WmcetTSLrVZbWrs6c7kbQiQ9igxshMAGQIBjACLpu0gpmzxmU9laWIBumqFmZ4aUFHs8HCwva7VV5iX7cyKOHSwra3lDFKc88sxpsfE68CzwRh3n9wHnSilLhBCTgZeB0TXOny+lPHpyTWxRlDa3AtI4bLXH1HdgabMdsIGWYFXHbi7sPayosMAmwAe4wTEQbMfrZsjyJ8EzB0ubbUjfImjzWdRaIpbtRYAOWtsT0ObvIgObIbAFkFYRsaRHW0WbN+bnY8pwbS6squJIRQWdUlJa1JZjLDmQE3FsX2lpi9uhOPVR2hyiRbS51RxpKWUukBv8vUIIsQ3IAmqL9VmJ1A+Bf7nV4sF9IUKcWMEpsFaZZfGMYMj1sd1iGyQ+ioi/plmrbQshIP0VZNXLENgM9n6IxPtDLUGklFD9NsfDy0zAC96vIP66WnbryNIngiFvGjj6Qdq/EY3sJW3Z5Yb0/4J5BKRESi/y6JVWnpjWDpH6T4RzcMMDNQOJTie6Gb4zoJsmiY7IHPJvDx5gX2kJvTMyGNkxSt/rOjCl5EhFOXF2BxnxDfccb5sQ+Zlq2hnzpaxQRCClXCyE6FrP+W9rvFwOxP4P8DREaXP9SP0A+FeAlgiuC5ul5oeUOrJohhViHdJmrYY2N9/CqhAapL+GrHwJ9K1gH4BIvK+GNpvgmcnx3tQGSC/4FkDcVWFjSRlAlj4GvsXWAcc5kPYKQktogl1xkP6W9XwiBNKsQh6dCsZBpNYekfaslcveAiQ5nRgyUpsTnOE55FJKlh48wP6yUvpmZjK8Q1bMcximSW5lBfEOB+lxDWtzm/jIzzR6b2yF4szgdNHmUyJHOvhBDQVWRDk9VgixATgCfF9KuaWOMe4D7gPo3PnkFQJpCaR/LbLkTqsImBBQ2REy3kdoDX/Z1ouZD0Yhx4UaEA6Eo0+zt6wCEMIZtSr5cWqHl1n/kdK0ioIF1oC9OyDAt4iQ0x3Yiqz4HSLlD020S4AtCyn9UHgemEXW5Gau9bm3+brOlffmpH+btozN7sSyQwfw6DpxdgfT+/ajTUK4YP564VfM3LoFiUQA9w0fyWOjoxepq0lhdRW3zHqPQxXlGKbJ1X0H8PsLL653df/RUWP4at+e0EOEAKapCt4KxTHuBj6t8VoCXwghJPCSlPLl1jHr5KC0ORzpX4Usvif4SoA929JmcYJFn4wjYBYTrs1Oq6ZKM7esAhDChUh6tJ4rapf9lVjabCCr34bAOmtnWxrg+wYI9j4ObEJW/B8i5akm2mV9plL64Og1IIutE+YRZPHt0GYhQktq0tiN4Zx27RnRMYtVhw/h0XXi7Q6u7T8gwuH9xYIvmbN9G2ZQmx8cOZqHRkYvUleTgqpKbpr1HrmVFRimyfX9z+E3519YrzY/PmYcSw7khGnzNf2it8pSKM5CWk2bW92RFkIkArOAx6WU5bVOrwW6SCkrhRCXA3OAXtHGCX5ILwOMGDHitC7+Lst+drxfs8Sqrul5FxLuPLGBRSJg1DpogohsL3GyEUIg464OVg73AprVt9N1AbLsx+D9jFBIuHASXnzFD/71J26EcRBkNeEPDQICO8A1uq67mg0hBC9dcSUfbN/K3pISBrRpy+W9eodds7ekmPe2bsZbo+XGC6tXcss5Q8hsYIf5B198Rk5pCXpQeOfu3MaorGyuqkd8+7dtx+vTr+HXC7+mwu9jco9e/HTieU1/k4ozEok4ncLHMmvlSL3cFFEVQpyPJdYTahweL6U8IoRoC8wXQmyXUi4+QXtPCZQ2RyLLfkpYv2b9gJWelHDriQ2sJXF8Bzg0OERp/XSyEUJDxk0Dz6cc12YnuM5Dln3fihqrT5sD60/cCH0/Vth57eM7wTn8xMdvAE0IXpl6FbO3bSGntJSBbdsxuWf4X++dRUeZvX1rmDY/s3I5Nw8cTFpc/Z0unvj8Ew6UlYac4tnbtzIqO7vetpOD2rXn39Ou5snFX1Pp93NFzz78aMKkE3iXijMRpc0hWkybW9WRFlavhVnAm1LK2bXP1xRvKeUnQojnhRCZZ1g+WiRmca0DPqSRz4n+0xBaEjL+Lqh+4//ZO+swSaqrD7+n2nt8ZneBAIsT3J1AgAR3CyRIcJeEYCEQPEACwQkOAT5cgmuQYAECgQS34KyO97TX+f64Nd1dLTM9s7uzdt/nadiuvla9s/Orc+8RCrFR4XW8JB9jjzSfiQYWgtTzEBiPNJ1sEp6kHqH4UJE2cdE4+NzRg4vP+AKcNtCs/5pmqyR7mXUEHIfdVqjtrjZtYICQ4/geVUKOQ2dyYFhD+r2pUwpGNEAyl+Ptyd8PaUgDbLjoYjy9zwxu2lgscw7TVHWtGRlARFYBrge2VtXpg9dV9Tvv/1NE5AFgHWCuN6StNtfA7Sq7kEbdKTNBm9vQ+L4wcDtGmyMQ3hCCs6nCRfO5qLOwcdkOLGC0WV1IPUUxHKuaNgchsMSML2AO0Oag4/CzFVeu+Xktbe5KJYc1pD+YNtXnOp7MZfnP5ElDGtIAGy22OM/sc0Bd67dY5gLmCW2ebYa0GB+WG4APVPXPNdosCExWVRWRdTC/sadXaztPEV7HiwceFJKYr6alasZLyOElyxpB7Uen+TdoeA0TGxVYBKLbjXkij0FEAkjjkdB4ZOGa23sxlTvzSvHUOA5OE9J8+qjn1exHaPdxJk7aaQO3F3MyH4ToVkho2WHHGCt+2DGuwskuHAiwWEvrsH0ntrTQmRwo9I8Ggyw1xplGLZa5HRGZCNwP7KOqH5dcbwAcL464AdgCOGs2LXOmYbV5CMJre/HAg9ocQcJF7yWjze8CAQitMEJtPgkNr+Np80SIbjsbtTloXL9L3L/d3vMp3vcg5drcjDSfOup5NfsB2v0bEysuraCl2rwdElxyuCHGjOXGjSvUkx4kEgyycNPwXgSLNrfQk0oVvrlYMDjmWcAtlrmdOUWbZ+eJ9IbAPsB/ReRt79opwEQAVb0a2A04XERyGH+qPVXL6zbMe0jLeWj3USbZGEGTcCSyCQDqdqHT9wR3imkc+AG03zmiuCGJbgpsOtPXPaO4yadg4C9DNwqtiLRdO6pkJgDq9pmEa+plotYkSDs0HowEFgfve55TaIlGuXnHXTn80YeYNpDgB03NXLvdjkSCxX+670+dwjuTJ7FAQyObLL4Ejvfw9afNt2L3e+4k5+bJq7LKhAX5+UqrzK5bsVjmSETkDmATjJvZN8DpQAgKOvR7oAO4yjNsct4u+gLAA961IHC7qj4x5jcw87HaXANpuQDtOhKybwBBaDoOiRhvQnU70ek/K+bcCEyE9ttHlBRzjtXmgUdg4MahG4VWQdquHnUuF3W7PW3u866kwOmA+AFIaCkIz1luzO2xODfuuAtHPvow05MDLNzczHXb7+zT5vemTOY/UyazUGMTP15s8cLGyEVbbM3P7r2TvOuSV2X1BRdi9yE80yyW+ZG5RZtlXtS+tdZaS//1r7m/pKdqDgj4dqXdnt96ccWDO8NhiP0Mp2XkZTw19w3aeza430J4XaTpxJmSHXy0uJPXLhq4tQhvgNN+86jn0PRraPfhoP0lV2PIuIeQ4GKjHncsyLkuQcdf+v3e99/l98//HcHEXG+46ESu3nbHws9MbzrNf6dMIh4MseqCCxWMbMv8g4i8OaPuU+VEl15YF/vjTCyXNwv5eNfTZ/r9W0bHPK3N3cdD6jGKHlVhiO+F0/zbkY+f+wrtPceczIbXQ5qOn73aPGkNoH/oRuGNcdqvH/Ucmn4Z7T66ijY/igTn7ET51bT5znf/w1n/eK6gzT9ebAmu2Hq7Cm1uCIVZZYEFrTbPh1htnje0ebYnG7PURqTKX0/2E/zuVRmTgGOEqNuDTt/VM1xdyH2J5r9G2mZj0llNDNMgBtHtZ2wOp4nKhGs5LxHbnE25UOddl1Ofe4ZMvng/L3/9Fa988xUbLmo2BZojkcKfLRaLxTLjVNXm3Kf4w5JGq81d6PTdim7NuS/R/LdI21WjXe5MYGCYz2eCNldNhpozZcbmcMq1OZvPc8YLz/q0+YUv/scb333LOgubTQGrzRbLvIEzfBPLHEVoFaB0ZzriXRshmX9iSlYMJglJQ/pF1B1OMGch4bWgPG2LtBv3LmeccXGP7TJjcwSXN0lciJm5JAbxPZFAx4yNOxsYyGYrYrQEmJqYjX+HFovFMj8SWgUorSkdHV0iz/QrmM3yQW1OQfpZUxJqdhFanUpt7vC0eTw0/RonvuMMzrEKhNfFr837jEkpyplNIpuh3NvTEWFqYrjDAovFMrdhT6TnMqTpeDT3HmQ/ABRCqyFNx45ipBp/9RJA3U5IPgJkIPJTZGZkyK4Dab3Uiz97EwhBbC+k+eSZmnBFRKD1Ckg9jOa+RELLQWTzmTb+WNIUibBIczNf9fQUDOq8KqstuOBsXpllnkeZm0psWCyzHGk6Ec29D9mPAYXw6kjjEaMYqNZjmaD5aZB6FMh52jw2J5rSdqWnzW9htPmXSPPxs0Cb/wKph9Dc10hoBYj8ZKaNP5a0RKIs2NjEN709hYRieXVZZQGrzZZZjNXmMcca0nMZ4sSh/U7IfwMIBBYenZiF1zcZq/MZzO53DGLbgNuFTtvRq6+ch/7Lof1WpMapt+anQupB1E0h0c2R0A9n4N7akI7bUdVZmq1UxIHYjjNcsmRO4JadduOAB+/ns65OGsJhLt5iGxZvHbsSIRaLxWLBJBVrvwfyX4MEwPnBKLX5RyDNoGmMq3gMYjuAO71Em9XT5v9DQtVLZGl+CiQfRDWNRLdEQlXLfNd5b+1Ixx1joM0BiO0812uziHDLTrtx4MP387+uLprCES7ZalsWbWmZ3UuzWCwzGWtIz4WICAQXnbExnDh03I/2Xw65ryGyPhLfF+39gxeb5cX2aA7tPBDVJEgEmk7Gie9uPspP8oS9H8ijiWuh/QYkvPaM398I0OwH5oQ+8AOTNG0+StqxSHMLT+2zP9l8nlAgMLuXY7FYLPMtRpsnztgYTgOMewDtu8JsmEc28LT5jGLcNIBm0c79UU0YN+imU3DiJvRJ89+j03YobIhr4jpovxEJrzljaxuxNr8P2Q8huAgSXmeG5p7bWKy1lWf2OcBqs8Uyj2MN6fkYcVqR5tN810w987KEH9qL8RfJQO/ZaGBRJLIemrjJb3STQnv/gIx7YAxWb3ATd0LfH0Acs8botkjLH8Zs/jkFK9SWMWfeK/hgscwRiNOOlFXiUHc6xbjpwYs9GG3OQu8ZaHBRJLw22n+dV0ZqsH0S7Tsf6bhn1i/ew03cCn1/KmizRnfCaTlzzOafU7DabBlzrDaPKTbZmMVPZAtMso9SSv9VptHMS97lbqob3WODagr6zgZSZuddk5B8BDf19OxNmmaxWCwWy8wksiXDanP6Fe+yV42jFHcMtdlNQN8F+LX5ftzUs8a7zWKxWOYRrCE9l6OZ13G7f4XbfTyafbd6G82gyQfQxI1o9r0hx3Ni20DTMSZGSxqqlIUKIU47ABLZCoiWfBaFyFajv5mR4nYD5bu9Kej+NTplPdzkY2O3FovFYrFYPDT9qqfNJxgX52ptNI0m70cTN9VsM4gT3wEajyrR5oayFmHEMfkxJFquzTGIbj36mxkpbpeJE/eRhu5j0Mnr4iafHLu1WCwWyyzEunbPxWj6JbTrCCBl3qeeho7bkNDKxTaaQafvAfnPQfOAg7acbwzmGjgNB0LDgd4cL6Ndh2NOnh0ITIDYzwCQ6KZo8++g/1LjWhbbAWn69Sy622oLHW/qQrupsg8y5n89J6Ph1ZHAQmO3JovFYrHM12j6ebTrGIra/BR03GEyUQ+20bSpF53/CjQHBKD1QiS6Rc1xncaDofFgb45/oF1HUdTmBSG2KwAS3RxtOhkSV3javAvSePQsutsqBBYEiZuTaB+D2nwCGl4NCSwwdmuyWCyWWYA9kZ6L0f4rGRRqQxLtv97fKPU45P/nCVrGtO89vf5JwutAaCWMC5mCBimIIeDE98CZ8ArOAm/gNJ+G1CzdAep2o/3X4fZdiGberH8NNRAJIO1/BecHVNS4BJAQ5D6b4XksFkslqjJXvCyWsUb7rqBCmxM3+hslH4HcV542Z4EU2uOPix6S8HoQXB6jzS7mXCRb+Nhp+EWJNv/WZMSutV63y9Pmi9DMv+tfQw1EgkjbzeAsQNXHTAlB7vMZnsdisVQyuzV3ftNma0jPzWi2ysWya263t9td2i9R/xSJWyD7LqYMRwbcr9GeERjig+O4Pei07dH+SyBxLdq5H27/rajOWFYECS6NM+F5GPcyECmbNAuBhWdofIvFYrFYRkauyrUybdbuKtf6655BEzdC7gNvrizkv0J7zxrZMvGM6Gnbedp8Ddq5L27ijhnX5tAPcSa8CONeoFKbM1abLRbLPIE1pOdm4vvgTz4SReI/97cJr43/rzkIoRGUwMj9F//Oes4T7xGSvM/ETRUeHNLQfzbadQCqmaF61oUTHAct5wJRkCbz/8bDkeASMzy2xWKxWCx1E9/blKQqEEVie/jbhNfBH10X8q7VSbZcm7MwTJx1VQbu9fKNlGhz3+lo1yFo1c36keEEF4Dms/Br8zHIDJYJs1gsljkBGyM9F+PEd8TFhYG/AgGk8QgkspGvjYRWQFv+BL2nmd3u8FpI66X1TxL8IfB3IO1dCEBw6RGvVd1+qu7SZ95EE9chjUeOeMxynNgOaHhN484dWAQJLjnDY84LvDtlMte8+QaZfJ69Vl6VjRdbfHYvyTIPMIMHVhbLPIsT383kzB64FQgijUchkQ18bSS0MtpyHvSeYbzEwmsjrRfXP0lwOUj/g6I2ByG4zIjXqtpLxck4QOY1NHET0njIiMcsx4nvjIbXNrlaAovaDW6PdyZP4vq33iDnuuy18mr8aOJis3tJlnkAq81jizWk53Kc+M4Q33noNrEtIbblqMaXhgPR9IuQew9wwGlDmod3H1N1Ifehif8KLo9EN0ET1+PfQce8z/5nVGurut7AwtZlrIT3pkxmj3vvJJkzmxgvfvUFl265LZsvNfLNEIvFYrHUhxPfDeK7Dd0mti3Eth3V+NJ4iClFmf0IRMBpR5qHD7sy2vwBaApCKyCRn6CJv1Jdm98Z1dqqrje4CAQXmWnjze28M3kSv7jvroI2v/DlF1yx9fZstoQ9ALBY5iasIW0ZEpEwtN/mGcVZCC2HSGTIPqpZtOsgyLxtSmBIDGm/C2m9BO3+NVCayTMCwWVrjKNo4jpI3gWEofEQJLoTIrWTFGj2v2j/dUAaif8ciWwywjuet7jp7bcKQg2QyuW4/PVXrSFtsVgsczEiEWi/HXIfedq8vNHrIVDNoJ0HGLdwCYA0IB13Ia0Xot3H4zemI+bUu+o4Lpq4BpL3YrT5cCS6/dDanHnH20zPIvG9Krzn5jdu/Pe/KrT5ijf+aQ1pi2Uuw8ZIW4ZFxEFCKyDhVYc1ogF04A7I/BtIGndydzraczIS3QwZ/ywEFvXqYMYhuAzSeET1cRI3QP+VkP8a8p9Bz0no1A3R3FfV22ffRafvDeknIP0c2nUMmpq/61XmXLfymvX7sVgslrkekUCJNg9tRANo4lbPA2xQm6ehPacg0S2Q8X+HwCJFbQ4tj3iltirHuQYSV5do8/Ho1I3R3DfV22feQTv3gfSTkH4W7ToSTf19Rm59ridbTZvz+dmwEovFMiPYE2nLzCf3Cf6dbdeU4AKQMLRcCG4PEuiA4Aq1y3Ik78F/eo0R/q5DkPFPVDTXxK1l7VNo/1+Q6Ojc2ucFfrHyqjz1+aekvJ3vWDDI/qutMZtXZZnbUZinyldYLPMF+Y/xa3MecoPaHCnR5vEmJKumNt9XWSPanYx2H4aMe6SiuQ7cXDbvoDb/ZPT3Mpez98qr8fwX//Np835Wmy0ziNXmscca0paZjoRWQpMPUTRqgxBcHk2/gnYfATigGbTpRJzQykMMVOP0O/8/VLOIhAqXVN0a5cDm7x3edRZehGu23ZHLXn+VTD7Pvquszq4rrDi7l2WxWCyWsSa4MvA4RaM2CKHl0fSLaPdRQAA0izadghNaqfY4tbQ59wmqLiJFZ0dVF9xq5cDmb23eYNGJXLXNDlzxxj/J5fPsu+rq7LK81WaLZW7DGtKWutD0y2jmDSQwAWK71nTx1tTTaN+V+LOA5iGwhDGidaB4ue9CNLJRzQye0vQbtOsIKjKKSmPBiFZVtO9PMHAz4GKiFQZdpqIQ33/E9zqvMDWR4KvebpYbP557dv/58B0sFovFMleh6ZfQzL+QwAKeNld38XaTT0D/NfirZ+TBWQLtPtp/wtx3HhrZsGaJKmn8jelToc2tBSPaaPN5MHAbVpv9TEn083VvDytNWIB7rTZbLHM11pCeC9Dcp5B5E5x2iGxW291qyDG+hszr4DRCZNO64qkGcRM3Q9/FQBIlCgN3Q8fdFWNo5h20+zdUZv9USN5JUUQ9JAi5z6GWIR35Mdp2M/ScBO4kIAQo0npRceTkvTDwfxQfDkIg4yCwEMT3wonvVPd9zkvc98F7nPbsM4QCDlnX5Q+bbc5Oy60wu5dlmVdQwLqPWeZzNPsJZN8EZ5ynq6PR5q8g8wY4Td4YoeE7ebj910P/5RS1+V7ouLNiDM28BT0nUl2bbzP/L0VCJhyrliEd3QxtuxF6TgZ3MkabQVovLI48cIeXKLRUm8dDcEGI7YsT377u+5yXuPu9/3LG888WtPmPP92K7Zb94exelmVewWrzmGMN6TkcTT2Ddh9n3ogDwRWh/a+I1P9Xp5k30M6DTIkMgMDi0HFXfYnD1IW+P1HceU5B/gtIPwdlsceafp5iTcty0kDZQ4bmILj4kPM7kbXR8X+H7BuQnwqhVZDgoiXDvoA/LjoLTiPOuHuGvrF5mKkDCU599mnS+Twpz3vulL8/zcaLLU57LE46l+PS117lje++YfHWNk7ecGM64vHZu2iLxWKZi3CTT3jGKUabQ6tC240jMqY1/SradViJNi8FHXfUlzhM89D/Z4qGasok/kq/CNHNyuZ5lkojepBq2pw1zwlD4ETWRcc/C5nXwJ0OoVVNiatBMv8oi6POQqAFp2P+1eZJ/X2c/vyzpPO5gjaf+MwTbDRxMVqiUdK5HBf/8xXe/P5blmxr46QNN6Y9ZrXZYpmTsYb0HI72nExBABVTzzn9NES3HuEYyeKmc+5zSN4P8XpcinJUjWVy+ysuidOMEgIyVcYRiGwCmVcxMdJZaPo1Elxq2BWICITXqf5hYCHMj/Hgw4RAYAKa+wrtPducZIfXR5qOH9EpfDma/w7SL4PEjFeAE0fzkyH5EKoZJLYlEpwzSkp929tLKBAgXZIBNBhw+Ka3l/ZYnCMee4hXv/6aVD7HO5Mn8c9vvuapvfcjFqr/JMRisVjma3pPwafN2Xcg/XeIblH3EJXa/AkkH4T47nX0zlLh5QWgfRWXRFo8ba6WR0Qg8hPIvMhgjDRNxyPBxYZdgYhAZL3qHzpVtNlZAM19gfaeY06ywz9Cmn49g9r8LaRfMdoc/QkiMTQ/ydPmLBLbqq7njLHg694ewgGHdMkjVVAcvuvrpTkS4ZBH/sbr335LOp/jP5Mn8c9vvuHJvX9JNGi12WKZU7GG9ByMqpoSFb6LOchPG9lAblfZhTSan0I9zh8iYTS0hnlIGBRh1eqGbWwXSNzkuXqVl1hykOazPXfuLyGwABJYcGT3UYK6vSARpPFwU+LK7aZgwAeWRKftCvQBLuS+RPPfIW1XjG6u7Lto597mvgEkjka3h9TdoBnARRPXQvvNSHj1Ud/TzGLR5paKslc512XR5ha6U0le+urLQumNnOvSnUrx+rff8OPFq7vYWyzVsFXULPMrqnnQRNlF15zMjgS3u+xCBtypdXUViaKhlSH7HkVjVSG8dmXj+G4w8Fdv7PJ/uAGk5SxAPG1eyMRbjxKjzVGk8Sg0/TS4PZhnB4HAYp42JyhoszsJab14dHNl3kG7fln8ZdR7HhrdGlL3etqs6MC10H4rElpl1Pc0s1ispbWi7FVeXRZubmZacoDXvv2GjLcBnnVdOpNJ3vz+OzZcdPhNDYtlEKvNY4utIz0HIyIQXAm/25UD4TV97dTtw+05HXf6Hri9Z6NumcCH1sC/ZxJBqoltrXW0XQXhDUAaITARab/e71492M5pgcZjQRbE/6MVhNgvkMA4xGk1NS9HaUSr2407bTd0ynro5NXQ/hug9cbBTwEXkvdSEGoAUpB+BtVqJ+V1zNlzmpckLWleOh2SN3vXct48SbTv/FGNXy8fTpvKVW+8xk1vv0V3KlmzXUc8zh9/uhXRYJDGcJhoMMhFm29NWyw2S9dnsVgs8wMiAQguT4VLdMi/kapuL27PaZ42n4uWl4wKr4Zfm8MQXqv+dbRdC+H1PW1eHGm7EQn8oErDVmg4GmQB/Nocgvi+iNOOOG1IeLVRG9HqduJO29nT5lXRgVugbVCbXSDvxUwP4NPm1BOoVsvqXcecveXaPBWSt5Rocx40ifZeMKrx6+WDqVO46o3XuPntt+hJ1XKhhwkNjZy32RZEA0abY8EgF2+5Dc2R6Cxdn8VimXXYE+k5HGn7C9p1KOTeByLQfBYSKiaNUs2hnb/wakFmIPs+mn0H2u8uZM+U1gvRzl9C7gPAgYZDkcgG9a/BaUXarxu2ndt/OfRfjz9mWSCyOdJ8kq+tagZSj5rT8vC6SKi+sg/ac7L3XXjCm7wN3E6MMA9uw9VwLS/bN1K3D+37I2Q/gNDySNOJiNNU5cbq9ABwe+trNwpe/vpLDn74b2TzeYKOwzX/ep3H9tq3ZvzUdsv+kB9NnMi3vb0s0txCS9QIdWs0xkYTF+eVr78ilc8RdBxao1HWWXiRquNYLBaLpRJpu9rT5o9AotB8LhJarvC5agadvifkvwSynjb/F9rvMJvkgLRejHbuC7mPgQA0HoXUCmOqtganDWm/Ydh22n+JqWyhZdoc3RJp+o2/raY9be7xtLm+JJXafaL5Lga1OXEz5Cfhdz+v5lruraV0LLcX7bsAsh9BaEWk6QTEaazsVq8HgM46bf7Hl19w2KMPFrX5zTd4fK99aY1W37jecbnl2Xixxfmuz6/N42Jx1l14kYJrd8hx6IjHWHOhKhsjFotljsEa0nM4EhiPjLsf1SwQLAhwgdyHkP+aovGYhuwnJiFYcElzKfuBZ2g7QAAGbkXjeyCBcTNtnaoK/VdTKZRBpGFvXwyUecDYA/KfG1d1AmjL+TixbYafKPM2vvIdmvTuvxzBnBbkgBjEdvIlaDMbEHuZeHEykPvQbEB0PFCZLCa8AaQeo3YiNYDoiOLWR8qZzz9LKmfuO5/P05lKcut/3ubYdWtviLRGY1XF/Mpttuey11/lje++ZfGWVk7acGMbH22xWCwjQAILIuMerK3N2ffB/Z6iJqbNtfzXxWzY2fch9xVFbb4Zje+GOO0zbZ2qeUhch7/sFWbN8b19Gb5V0+j03Y3xr3nAQVsuxInVEfedfadsjiTkv6vSsEyb47v7NFc1i3b+HHJfAFlPm/8DHff56lMDEF4PUk9SffN8kNgs1eYznv+7X5uTA9z+3/9wxNrr1uzTFotVeIiJCNdutxOXvPYKb373LUu2tXPShhvb+GiLZQ7HGtJzCT6xcztNOSyJoVLlBBWldIdX+86lmLHTBe1FB25Bmo6biSvMUzUpGVl04P/8ruSpJ0xpjcLueBZ6fw/1GNKBBSHXWXIhYsQ096FnlLsMijPqQv4biGyIxPfxj5P7DPJfURTgjHmf+xRC/lIU0nw6qt1ehvAqyV0GCc668lK9Gb8RPxjbPBoiwSAnbLDRzFiWZX7GxmFZLDW0OY5KlOH+kWjvORS1OQNuN5q4DWk6ZiauME913cqiA7cj4TWKl5KPmjjpUq+y3tOgHkM6sADkekouRCGyvvEg08E1xEySU00ZIzuyMRLfyz9O7mPIf0txAyJjNrzzn0NZQk9pPhN1e7xEabW+a/Xc8GcNfRm/EZ91XbqGCL0aikgwyEkbbjwzlmWZn7HaPKZYQ3ouQ3OfGncxXPNyFoPAIt7ubQaIGEMwUJKcwi3P4pmrkuRkBnGnmTgs7azyYdlOvdvtGb0llCduqYG0nGcSfw0+GASWQBoPhtgOaP/FkJ8O0c29nfah0qkJlb9t/BsQhZZOHGm7BtU8mn0Pen4N+cmYU4Qs5kElBT3HoaH7Z0n27s2XXJr7PnivsPMdDQb5yRJzRiZSi8Vimd/R7EcmzMoUcgVnCZO5uuAxFoHQihAoyS9SnkyUnJecaybiTgNpBu2u8mGZ3mkXFSfXFWusjrRcgHYObli7EFwGaTgIotsY1/J8J0S3QuI/r0Obq1GZ0kecRqT9euNhln0Xun/tJVQr0+buY9FxDyLBmZ9Q86dLLsXfPny/UCXDarPFMn9hDem5DO05xStv4RmB+c+h4VAITTOnsqGVkcZf+12golvAwF0Ud76jSHTz4efKfW52goOLD2kcqqbQ6T8DrfYAEEXi+/kvhdemIuFJaA3qQULLw7gnIWt2/QmvZ04EghNHlvkzuBQElvFiutJAxLwfokyGSAAJrwLj/26M6skrUrHTn/lXxa75zODUjTYhk8/x2CefEA0GOGnDjfnRRJvJ02KxWOYEtOe3/tJT+U+g8Uhz8pr72NRZbvqV34iM/NSUovRp80+Gnyv3mQnXCi4xZGkndQc8ba4siQVRpGFf/6Xwuhi368HT4FDt0pNlSGhFT5vf8rR5fRNOFVwcab2krjEACC5raljnPqW4AbHckHWtRYJIeDWY8JwJHZu8Cn5tFuMpMAsM6TN+vBmZfJ6nPvuUWDDIyT/amPUWqUzGarFY5k2sIT23kf8O/0lqGtzJOC1n1+wiTSd6yb0eAYlA43FIZGjXXjdxG/T90ZSr0hzaeDRO48HVG2c/8IS61LXbMYlKGn+FhFf1rye0PNpyoXEZ034Ir4m0Xjrkenz9A+MgsGXd7auOIQFovwXtv9TEqYVWQBqPrYyProljvsvS5C3igNM2Q+uqRSQY5IKfbsUFP91qloxvsYwMQbWeAnoWy3yC+33ZhTTkp+C0nFWzizSfgpI14U4Shcbjh00E6ib+Cn0XFbW56Tichv2qN86952WwLtfmDYzehVb2rye0EtpyPvSeYbzEwmuPyAiWwPiZoM1BaP8/c4qd/RBCKyFNx1TGR9ck5L1KwqFEwGmdoXXVIhIMctEWsy4G22IZGVabxxprSM9thFaH9LMUd4xjw5ayEgkhLWdCy5l1TaFuJ/SdD2SKNnv/ZWhs2xqlNcImHtm/UKTlD0hg4apzOLEt6ou7moWIE0eafzu6viJo05kmthsXCELwhxAZ/jTBYrFYLPMYoVUh/SJ+bV5zqB6IhJGWc6Hl3Lqm0PwU6LsQSBe1ue8iNLp1jbJVYSrjo4NIy3k1y1w5sW3qy1cyCxGnAWn+3ej6iqDNp0PvWZgNhJDJXxLZZGYu0WKxWABrSM91SMs5aOdBXgkoNUm1otvP3Enyk0BCUFp3WcLmehVDWp2JZrfXTWNEOwqRH4Ezb5dtcOI7oaEljTu3Mw6iW/syg1ssFotl/sDk7zjQCxdSiO8J0ZlskLqTPW0uPW0NmetVDGMNLA7SZJJ7FbR5k1HXip5bcOK7ocFlTAiYM95qs8VimWXY3yxzGeK0IOPuMZkqJYxI9VqFM0RgYpWLOQguXnFVNQNdP/dqLbtAAIJLIq2XD5NQZN5AQqtAaJXZvQyLxWKxzEbEaYOO+0yuEIkiEp35kwQWo/KE2fUnF/VQzUDnnuB2UtTmZUaWS2QuRsKrQllYmcViscxs6g06scxhiNMya4xovEyYrX8BaQSiIHFjGFerbZl5q6xURR5yn9RIbmKxWOYZdC55WSxjhIggTuusMaIBcZqR1itBGjDa3IC0Xok4LZWNM6+DOwm/Nn/gz+thsVjmPWa35s5n2mxPpC0VuMnHIHEVyAIQ3wlp3B+RcI3WOSrLVQhotlpj1O1Hs+8g2f+A0wGxnYYY22KxWCwWC4CbfAT6rwZZEBp2RRr2ra2fmqWqNlNLm/vQ7H88bR4HsR2tNlssFsswWEPa4kNTz0HPyRTKcSQuQckjTUdU7xBaDSTm7XLngbCplemM84/r9psak7n3zHsAIjBwB3TcZQXbYrFYLJYaaOpp6DmFgjb3X4QqSNNB1TuE1/IqSwxgXLvDJiGatPrHdXs9bf7AvDedTcnMjjtMeUmLxWKxVMW6dlt8aLK03jRAHhKXobkvq7YXpxHpuBfCG0FgCYhuh7TdUBEfrT0nFozoImlTCzP1zEy9B4vFMotRUJW54mWxzAvowJ1UavOFaO6rqu3FaSrR5iUhtgPSdm2lNncfVzCii2Qg/ymkn5up92CxWGYxVpvHHHsibSkjUuWaiybvQZqOr9pDAgsh7dcOPWzm9Rof5FC3t8IBDUBVgfxMybapmgR1EadhhseyWCwWi2VMqRp37aLJB5CmY6t3CSyMtF839LjZt6pf1/zYaLM7AKjVZovFMldiT6QtPqTxUCrjqgDNzeDAVZKhAJCB5P2eMBdxE7egk1dGJ6+EO30vk6UcULcTHbgbHbjT1NQcBtUcbvdv0MlroFPWwu061GQznYVo9hN04D40/Y+K+7JYLBaLZaRI42HVrmJCqmZk4KYaH6Rh4IEq2nxTUZs790Vdk1jUr83Thp1WNYvb9St0ypqeNh8xBtr8safNL1pttlgsMwVrSFt8SGgFiO0NBEquxpDYjjM2cMt5tT/LvY0mHyy81fSr0HchkAFcyL6Ndp+A5iehU7dGe89Fe/+ATtsazf1vyGk1cQOknsY8bOQh/Qrad9GM3csQuMlH0em7on1no93HoN1HWsG2zJvM7oyf81lmUMv8jYRWhtgv8GtzFIluN2MDD6nNb6CpxwtvNf0i9F1MQZszb6I9J6H5b9GpW6G953javFVNl/PCWIlrIP0sRW1+Ce27bMbuZQjcgQfR6bt52ny00WerzZZ5kdmtufOZNltDeh7FHbgbd+pWuFO3xu0+FXfKZrhTNsLtvxzV8jqUfqT5VGj6LQRXhNA6SPtNSGh5XxvVLG7PybiTVsKdvBpu/zVDjulE1oH2+yFYo+ZyuhgnrZnX8MeCZSH7L7T/YtAeIGk+1z6061dDzkvmn2VjpYdwM58xVBV6fuutbcC8Mq9A5uVZMp/FYrFY5i7cxB24U7fEnboNbvdpuFM2xZ2yMW7/VcMadtJ8OjSdCMEVILQu0n4LElrW10Y1g9t9gqfNq+P2Xz/kmE5kA2i/F4IrV2+Qero4djVtzryB9v0ZtNf7LAXaa2KvhyJdrs0pyLw2dJ9RopqH3t/h1+YXvecDi8ViGT02RnoexB14EHrPxRicQP6z4oeJ61HCngt3dUQEadgXGvat2Ub7LoLkY0AGNAP9V+EGFsGJbVu9ffoVSFwLRDHuaGUPDM5CxfkDE1Ci+ETWaYP8FEz20RLyH6Kpp5Ho5tUXGpgIvE6x5EcAAovUvK8ZI4XZqS+jDhd0i8VisczbuAP3Qd/5FLX50+KH/degEkEaDqzZ32jz/tCwf8022ncBpJ6kqM2Xo8FFkeiW1dunX4LEdUCcqtoc+EFxfmcCSgRIFz932qtrc+6/aOo5JLpp9YUGJ3rx2YNhYwEILlrzvmYITVauDwF36qyZz2KxzDfYE+l5keSdFIS6HE1C8gE0+ZiJZxrG/aom6Wfx7yYnfafKvinTr6Fdh5nT2dzrVP7YxSCwEG73r3B7z0cjm0FwcYywx4AY0nIeRDar0lfRgTtqLlOajoXABJAG83LakObfjexe60QkBoHF/GtUF8I1TuEtFovFMv8wlDYzqM2PogP3oLmvRzdH+nnKtVlTf6/aVNMvo11HQOZVyL1Gpb7GwWn3tPkCNLoFBBejoM0SQ1rOheimVOZWUTR5Z81lSuNvwBlfos0dSNNJI7zZOpEGCCzkX6PmIVTjFN5isVjqxJ5Iz4tIbOjP89+ivafAoBtZ+w1IeK2RzeG0Q/6LkgtBI4pV0IGbqSjbEVgCgsuC0wKEoP9SzANGEFKPQesNkH4YCEB0JyS0GITWRhPXg/u9fwKplmnc+8hph45HPReuPITXQ5xayVVmHGm7Ae06yPtuItByPhJcepbNZ7HMPuad8hUWy9hQLfN2Cbkv0d7fGW0WoO1mJLz6yKZw2iBfaoQHIVBDmxM3U6HNzlIQWtposzrQfxlGm0OQehxar4X0I0AAie2CBBeF0Bpo4iZwJ5fNMIQ2Bzpg3GOeNqunzY0ju9c6ERFouwntOtB8NxKF5j8iwSVmyXwWy+zFavNYYg3peRBpPArt/Bd+gXQwrk0h838tumZpzynI+KdGNkfzaWjnXphs3g44jUjDIRXtVF3IV3Gfctpw2i5HVdHJK1F0vc6B2wWdO4OEza5x/hu05Y9GDFsvRDsPLLm3KNJQLZtpyVqdOEQ3G9H9jRYJLoKMfwLVNBCuqNlpsVgslvkTaTqmTL+g6E4dxKfNCtrzO2T8YyOc4zS0a1+jnTjgNFd1F1d1wa2SXTswztNm19PmQdfrLLjToXMXT5tzqDsZms9FxIGWP6Fdh5TcWwxprHwm8K3VaYDoT0Z0f6NFghOR8U+jmgIiVpstFstMwRrS8yASXgM6bkcH7gIEIptC9m0j0G4XpB7wd8h/jdtzMtJ4HBKYUN8coRWh42FIP2dENboV4rT62qgq2n005D4q6x1FGg4ebEVl7NLgg4QXb5x+GjIvQGQTJLw2tN+CJu8AHCS+FxJaqa41jyUyxCm5xWKxWOY/jH7diibvARyI/ASy/wLNGqM29ZC/Q/4L3J5TPG0eV+ccq3ra/LynzVsjjr/8pNHmwyH3aVnvKNJ4kPdnl8rUumXanHwUottCZEMksh6034wO3AkSQOL7mCogcxhStR63xWKxjA5rSM+jSGglpKXEwPQSfmj6Ra+cRZk7V/IhU9pi3BN1uz5LcFEI1k5IRvZNL2N12n89soVxL3e7EacVjWxhDHLfmkrQHOS+LniJSXg1JLxaXWsczIJqd58tlpnMPFS+wmIZKyS8qjF2B4n+GABNPYemnsYfQ52D5N88bX68btdnCU4cWpszr3kZssu0ObqVcS8P9SBOi8lXkv6H165KIjJcnxu5hNcwG/l1oKpWly2WWYHV5jHFJhubz5DIRtB0HBAu+yQHmoD0CzNvMreTqj9i6UfRvj+h07ZF3U6k9U8Q390k6pJ4lYFyaHD5Ktdro5rE7ToCnbwCOnk13MQNo7oFi8VisVhmNRLdFBqPobo290PmpZk3mdtJ1TjK1MMl2tyFtP4ZYrt6STSrneRmYaTa7CZwuw5FJ6+AO2lV3MRfR3MHFovFMkdgDen5EKdhP5jwFhVCquY/6naZ3fHM66b+IqCZd3B7TsXtOQPNflLfRKFVgHyVD/KAcTPXxC2IhHGaT0PGPQRa/VRaAm31zTl4Kz1nQPpFb64k9F2Gpp6tr6+6aO5rND9p2LqeFovFYrHMDJzGA2HCv6j+aKao2+lp8xsmxhnQzL89bT4TrXDVrkF4VVNRooJBbe5EE7cjEsFpOQPpeICqpR3BJDcbAdr7e0i/TFGbL0Lr3MAv1WaLxWKZE7Cu3fMpjhPGjW4HqacxLtUOSAQNLARTf0ohdjm4Atp4BHQd4bUTNPUAtN+JhMxOdC0XLQksCK1Xoz3HmSQlFXiJxQqEqZ5tMAxuP+r2QPJe1O1FIpsMnc008xJ+t7WkV9PSn3RM3T6TiVRTaHgDU9ey/8rieiMbQusViIRqz2WxWCwWy0zAcaK4kS1Kylg5IFFUxsHUzSlq8ypow0HQfRSDYVFGm+9GQsua9zW1eWFouwrt/g1oF5W+oDnv+mCHWjk/wqD9qNsNyfs8bd506NCr9Mv4jfIUmnoRifzY10zdXk+bM542vwH9V3mn6aCRjZHWyxCxj7EWi2X2YX8DzcdIy/loYBEjbIGFkOaTTU1J7Ss2yr4LvWdQjF9W0CSauA6aTkC7Dofch6g0I61/qhBDiayPTHgVt+ccSN5SuYaSjJ0iAbThGEhcXNYojgYWhGnbeyKaRRM3oS0X4MS2rn5zTju4ZdnC08+g7kmFODN1u9BpO4LbjUmsksUY8iU79elX0cQNSOPQmcEtlvkO66xhscwSpPVCtO9yU9858AOk+bdo50Fl2vw29J2JL7eIJtHEDdB0DNp1GOQ+RqUVab0IifzIP0dkQ2SBf+L2/N6rb122hsimxT9LCG04HBJX+Bs5TajTAdO28zbFc6YMVutFSHTz6jfntEG+038t/TjqHmcqbIA5eZ+2A7i91Nbml9DEX5HGyozkFst8jdXmMcW6ds/HiIRwmn6NM+5enLbLzS51/ruyVilwByo7axLtPAByH2JKdnSjXUejua+qTxZYAFN6q3QBE5DIxr5LTtPh0HweOBOACARXRDruQFKPe0Z0BvNbIgV9f6h9b81nUfHjrX1o4i/Ft4m/eifPqZJxy93dUuaBxWKxWCyWMcCEO/3G0+bLkMBC4Ja7M1fTZgUdQDv3g9wn3vsutOtINPdN9ckCC1KpzQshkQ19l5ymY6D5HHDGY7R5JaT9DiT1sGdEZxnUZu09t/a9tZxNhTa7PWji2uJdJG7w9N5qs8VimbOxhrTFT2glfI4KEvPqPMZKGkUhugPkv8AnbhKoKWwS/wUEFvGSicVA4kjblVXbOvFdcSa8hLPgf3HGPYAElzAu2IV6lh5axcAfnC+8upnPRwYGbkezH5u37lSK9atrEYHgMsO0sVgsFotlFhJaAQgU30vMlM+Scm3eGvLf4tdmB7L/qTqsxPeFwA/82tx+RdW2TvxnOBNe9rT5fiQ40bhgl+vokNq8FjgLlV3NwMAtxRjv/BQq9L4Cq80Wi2X2Yw3pORBNPY07dRvcqT/F7b9uTBNeScuFEFwCU2sqCLE9oelMaDoBAktAYClo+QMS3QKfqANoHs1+gKZfq1izOA3IuAeR5nOR5tOQcY/6S4AMt67oj/FnM41A5KdDdwqvQ0UGVE2gnXujbh8S2aTsIaQcB4JLIQ2H171Oi2W+QAGVueNlscwk3OQTuFO3xp26OW7ihjHW5osgsDhFbd7bnO42/tpcDywNLed7LtXliUTzaPY9NPNG5bhOIzLuIaT5HE+bH0NCK9e/rsim+DN6RyE6nDavTaU296PT90Ldfi+XyXDavCzSeHDd67RY5gusNo85NkZ6DkPTr5oEIINxT/1XoAjSeNDQ/VQh96nZCQ4tiwxpINZGAh3Q8Qi400BixbqVDXubV+mczadB79mYnWMF0pC8A03eDtFtkRa/67VIFGLbjm5doVWg9WK092zQBER/gjSfOXSfplPQ7PuQe7/skxzkPkCim6P5Y6D/ctAsBFeA3GdAEoLLQuPxJsbbJjOxWCyW+RpNvwQ9J1LQ5r7LUAJIw35D91M1btaahNAPjQ6OAglMgHGPGU8qiRe0WRr2g7I1aNMpXuhTHqPNGUj+H5q8DY3uiNNyln9siUFsu9GtK7w6tF6I9v7B0+bNkeYzhu7T/Hs09wHkPir7JAu5j5Ho1mjj15C4CjQHwRUh9zGQguBy0PgbJLKe1WaLxTLbsb+F5jA0+QC+5CEkIXkPDGFIq+bR7iMh/apxr5aYyaodXHRUaxARCIwfvl1gopfToMSFbNClK/UoGv95XTvbmn0f3CkQXM5k+q41X/QnvuRkw67PaURbr4Vpm+BzE9M8iHkIcRoOhAaTrEQ1C8mH0fx3SHi1iuQsFovFYpk/0eR9VGjzwD0VRqyvj+ZM0q/MG8a9Whqh406Tj2QUGG2eMHy74GKoLzmXFrU5+SAa3xMJrTDsOJp9zxjuweWRwAK154tu4Xmp1UdRm3+Kzy1ccyBNADiNh0DjIeayZs2685OQ8OoV8dsWi8Uyu7CG9JyGxDBuWSUuYzVLT3gk7zVGNEnPrWMA7TkR6bij0ERzX0D+SwgsgQQnzpSlauIaataWJGDinIapGuX2nA7JB0CCxsBtu7wiAdmM4AQn4Mb2gNT95kSAmClpFVze1041j3buD9n/Amk0EUEbj8BpPHSmrcVimZewJdYt8xUSp1KbhzldTt4FmdeBlKfNSbTnZKT91kITzf0P8l9BYMlRb36Xo/1XU1ObJWA2rqltSKsq2nsqJB8x7clD61Uz1YB1ggvhxnaG5MNA0jz7hDeB4NJla8mhnfsazzId1OZjTM1ti8VSgdXmscUa0nMY0rAfmnrI2z1WIIo0HTdkH81+AiRLrriQ+5/32X/R3nO8RCMRwEWbT8GJ7znji9UhEnVp3kuOUhs39Q9jRA8+ZADafSxMeKtq7cshl6JJtPePkH0TAhNNrJe3gy7Nv4fIemj2IyS4GES3rxw/80/IvUvxe0xC/6Vow/6IhL058sZ1TZpGvD6LxWKxzL1Iw/5o6lFvQ3ZQm381ZB/NfoT/FNuF3Ofms8w7aN85psRkQZt/jxPfbSasdhhtLttIrmiSftYY0YOb8wxq8xsj12Y3gfZdYBKRBhb3tNl4vEnz2RD5kafNS5qQsAptfgWyH+DX5ovQhl8WXLuNNg+ANFpttlgsY4o1pOcwJLgEdDyAJm4DUkhsJ5Plcqg+oeXRZIyi0AQguDSaedOUwSDtXfdcu3rPRaNbIE57YQx34G/Q/0fQFES3QJrPKhiQNYnvCz1vUlmWwoHWSyD9Em7ucyS0HER3KAicah7t+S2kHqrsqylPEBuGnru0iyraeQhk/wXkTV3rqS+gE17AcdrNvNEtkeiWQwzSR0WCFsQ8NEkYN/k49JwE5Ez5j/YbkeBSda/RYrFYLHMvElwaOu73tDmDxHZBwmsM3Se0QhVtXhbNvI52HkilNp+JRjdHnJbCGO7AfdB/IWgaolsjzafXqc1vQ0VBWQdaL4X0C7i5/xn37uh2Zdp8AqQeo1Kb+zGn3MN4yJV2UUW7DoLsv814uQ/Rqc+jE17EcVo8bd4KiW5VexC3l0ptVvN9SBA3+TD0nALkwVkA2m9CgovXvUaLxWKZEawhPQciwcWRllML71WzaOJ6yPwbgksjjUciTomhGdsZMi9B6hnjIi2tSOuFxlgtCLVvAshPAs+Q1vSr0Pt7CjvnycdQQl69R1C3x3QrEXcAJ7YlbnJjyLxAUbDDENkNknej6VeAJCoxyLyCtFxgxhu4FVJPUmmAA844/73Vg9tZNKILpKH7t9B+jZkz9ZT5DgFpONjLbFpCaHX8Dx0BCC4O0mzc4ntOovD9uJOMG/j4F+zut8ViscwnSHBJpOX3hfeqGTRxHWTegdAySMORiBMvdojtDumXIf28cZF22pGW872EorW0eTJ4Wqvpl6H3TIra/DAqEeNlxaA2C+I0+4ZxYtviDtwP2ZfwaXP05zBwm5e9O4kSg8xrSMs5ZrzEjeY5oqo2L4gMF2ZWjjsFsu+UjZeCnt9Bmymx5SYfh8SNIA7ScKiXsbuE8JogWiLPQQgugzgNplxWz+8ofJfud2jXAcj4Z0e2TovFYhkltvzVHI6qot1HQf9fIPO8qbXYuadJvuEh4iAtf0bGPY6034WMf9Ik7dJkrVEhUIzF0vSz+N3PUpD+O6oZ3K5D0Snro1PWx+06DFV/3JW0XQqhNTHlL6LGnbthJ/CMaDNB0hjn+e/Ne0/EK5AOpO36+r4Xtx/VnHc3Ln4j2iP3ofk89QzafbxxLcu+jXb/Bk095586sADSdqP3vcQgtDrSdrMxlLPv4i/1peBOQ93OutZqscyT6FzyslhmAea09XDov8Zoc+IWtHOvgi4BiASQ1stMSan2e5BxT5qQI03VHrgkEZmmnqZCm1NPo5rG7TwQnbIBOmU93K4jfc8EANJ2OYRWo6jNK0N8a8iW6m8Skn9D81PN28wbZfN5OOOQtuvq+15KtVldqtaDzr4HmHJi9JwEuXcg+2+0+1do+h/++wgsZJ4LAotgtHkNpO0Gb5x3vRjuwuyQ/w43313XWi2WeZLZrbnzmTbbE+k5HXeq2dEuJA7JQP5rE/McXrPQTEQguIi/b2xPyH1QZlCHkdYrEaepeEnaMFnBSoRYGtG+y7wkZp4Qpl9Gp25qdsEDCxjjPbwqtP+fWROKahK6f0WFGEsANGH+HFwC0l4Ck2IDiO2GhH445Neh+clo1/6Q+wIQtOFoSP2NiiQw4NXcBE3cQvnDiA78FYlu6l9ieA1k/N8rJw0sCOKWDZ+D6buiHbcjgR8MuWaLxWKxzGO433uJxAZPltOQ/58xEsOrFpoZbS5LIhbfA3rLc5tEkNar/B5ZThvmMa3EGJUmtO/P3tyeZqdfQKdu4mnzgkjrxaZiRvudJpEZgroJ6Dm2ihEfoJDRO7g4ZKpp8x5IaJkhvw7Nf492HmCSmiJow7GQupfq2ryE+f9AFW1O3FKRcFTCa1U/ZXYWrBwbF6bv4mlz7SogFovFMjOwJ9JzPHmqxu5WO4Etw4nvBE2nGNEKLAGNJyILvFmReVMafu4JdhjzIxE2YjtwHX6RSxvD3jPmtWt/ND8dEUGCE9HMv2D6zpD/nAo3aWmDwGLewhassn6F1H1V70Nzn6MD95iT5a4jvURqOSALiUs94S4X0xjScoZ3gwEqGcEeUmhNiGxJRQpydxLaPXQiOIvFYrHMg2iO6tpc5QS2vFVsN2g60dPmJaHxt8gC/0Ii6/vbNewDTitGmwPm/9oPAzfjdw3PlGjzV2jnfqjb5WnzYmj6n9C5M+S/wK+VDgTGFU/Ba2lz8t4aX8GnnjY/i3YebjYSCtr858IGu594UZupos0jqQ0dXhcim2G+nxLc74wXmsViscxi7In0HIxqFs1PhsBETwCzQBCkxbhp1YET38Psfg+BOG0w7hFTp9HthYG/gjuZ4X0vBHL/hcAmuMnHvDjrKgZ+aGWk9RJEPEN04LYa41X+OGrqOZMtFAGR4s55gVobCi7kPoPgEkjDoWjmTYqbAlHEq09ZDyICLReg5CD1SNkcn9Q9jsUyT6E2P4Bl/kQ1g7rTIbAQ5L+hoM1OG4RWGra/iCANe0HDXkO3c9ph3KNl2jypnhVC9n2IbIg78DD0nUnVuOfQap42e9qbvL3GeJV1LE3I1HHU1uYq8wEmIehnEJyINB6Gdr2DT5sbDh7u5goYbb4I1WMh/YR/bqvNlvkVq81jij2RnkNRtxedtiN07Q/ut6bGorMkRH6KdNyDSGymzidOK9LwSyT6E4xxWm5EV0sykkfVRVNPQv+lVC+5EUDa/1rm/lztH3kAGo/yXVE34Ql1ClOGo1yohxovbUpuABJZD2m/ASKbQ2RLpP1GJLxOjbFqzCCChH8ElH7vUjxlt1gsFss8j7rd6LTtoesAkxhM4hBYCiKbI+13jzwh1zCI04Y07OeFIlXb3K5Wyzpv6i8Pq823lLk/16vN/V7CtNFq8x/Np5ENkbZrS7T5ZqQkZK0eRMTzsivVZgeCE0c0jsVisYwGeyI9h6J9f/JclgcFMAzR9XAKLlGzCKfVc1krJQTNvzexVombMS5lAXAWge7j0Kq70Zg28X0rjf6Gg6H3DIq70AFoPAkn/rNCE81PR6fvAiTqWHSNk/OSWDAJr42E165jrCGI7Qjpp00iNTFudtJ64YyNabFYLJa5Bu07v+QUGtAwRDbEaT51yH4zjLSAlhvEIWg+w5y+DtxGUZsXg+5j0NLcJD4CED+gsoxWw0HQ+wd85bqaTsGJ71Joovkp6PRdqZowtIJa2lzsK5H1kMh6dYw1BLFdIf13SL9mtFkiSIvVZovFMuuxhvScSu5j/LvIGch9NMunlcAP0PjuMHCfmV9CEN0eJ747mv0ATdzktcxD/hNAa2hlABqOQMp2sgGc+C64EoHk3Rg36yOQ8KqmhmXiOkj93biWu1Nn4E5iEN1hBvpXIhKA1qvM3432Q3C5kZfqslgsFsvcS/YTKrQ5+/Esn1aCE9HYzpB60BjUEoLozjjxXdDsu6asJGC02VSsqK3NRyONh1d84sT3wCVmYqKduCm1GVrZ0+ZrIPWsp83TZuBOYmZTeiYiEoTWa8wzkiYguLy/DJnFYrHMIqwhPacSWsXEOBUSikTMtTFAmk6DyMaQ+9QkQomY7NaauJli9nCoqtLOohBcCmk8eMgTYCe2LRrZBO09De0+DHXajXtc+nmqlt+of/Vm5z62G9I0fCIw1bwxkOsdXQSGySxuscwPyDxUvsJiqZvQyt6m9qAWjqE2N59p9Dj/medOvgmAqf9MZoiejikfFVgKaTwUCa9Ru2V8BzS6Gdp7Ktp1COp0mAoY6X8w49rcCvE9kMZjhm09Om1ebgbWZ7HMG1htHlusIT2HIo2/RjNveSfTAqEVkaZfVbRTtxOS96NuPxLdDKki6Jp+Ce39A2gfRLdCmk4sJv6qNreIEWhPpIsMJdSAmEzZEtlouNsz6+r5lVdeKwPu9NElB3EW9ZKvZBk0omX8U4jTOvTcuc/QrkNN9nGn3dT6nFHXb4vFYrHM00jTCWj2bZMwCzHJNJsqPa/U7YSB+1BNINGfIlWSkGn6BbT3PBMaFd0GaTq+mPir2twiEN0U8JdurHT5LieCNJ+FRDYY9v4AtPtor6b0oDaP4sTdWRjcKRhtdjxtfhpxmoeeO/sJ2n0Y5L9BnQ6k9fIRx01bLBbLWGGTjc2BqCradw7kPPcspx1aLq6INVa3E522Hdp3MST+gk7fG00952+TfRftOgLynxqXrIG7jFFd1zpSaO4rUxsakNie+BObRIEOCglFnAUgWN9praoL6ZcYdhcdhyH3e5qOg+gW4CwEoTWRjruGN6I1h3buWyzN4U5Huw5G8zPirmaxWCyWeRlVF+09q7jp64yDlksQ8Sf80vw0dOo2aP8lnjb/Ak3/w98m8w7adbQpF+lOgoHbCwkyh1/HoDabE2KJV9PmdgraHFgIgsvWOXYWMt4Gd00GtXmIE+OmkyDyU0+b10I67h7eiNYM2lWqzdPQroPMpoTFYrHMgVhDek4k9RCkHsXs5KaNAdx7UkUzHbgT3B6vnQIptO9cf5vUM/jrTaa8sYdG0y+jU9ZDp22PTl4PN/V3JLIu0nY5hFaF4PLQdDI4UQo/Rvlv0M6fGzHUJKq1a11rVdeTIMUyGw5IE3Q8iUx4neqZSR0ktCpO68U4E17A6bgdCS4x7L2R/97EOJfXus59MHxfi8Vi/unMLS+LZWaR/BuknqCozZOg9+SKZjrwf6C9+LS5bANb00/hd5VOlZVXrI6mXyhq85R10fQLJvt166UQXAWCK0DT78CJUNTmr9DOX5hN5GG1udpjYbk2N8O4p5EJb1BRw9lrI+HVcNou9bT5NiRYR4WL/Le+RGSF+bIfDt/XYrHMfr2dD7XZunbPgWj23TIxyVcXErePirIWZRk6ReIoQX+7YcpzqNuHdh+JLxN3z3Fo+Dkk8mMk8mNvne+h/d0UaznnzOnu9F0Kbm/a+CucajWbk7dTURpDxkHjfiYWyxmPNB6LBBcxc8V2guQ9+OpGNxxd+HxEVMtMrjlwOkY+lsVisVjmCzT7Dv5s1bnqG7Bur/nM17m/rFED5hGstF21DeOSIdxutPuY4vOBYt6PfwGJbuqVyPJOu7UXnzbnJ5uSmvnPAUGbfoPTcGDlJMlbMQZ4SR1omQAN+0DmRXAmIE2/KpS01NgOkHwAvzYfV1ZWq06cVirc1DVrtdliscyxWEN6DkSCS6JEKe5WCwQXrWwX3czsfBfaRSGyBeC5SPWcCqnHMUItmC2gKDSeMPQC8l9T6awQhNwXEG4vWUAE1PU30xTkPqcgqv1XoqHlkMjG/nYDt1DxoBHZEKfhAGg4oHJNTSdCfpKJ25I4NP8WJ7bd0PdRC81AdEdIPQwoSNDEjodWGN14FovFYpnnkeDSZdrsQKDypFWim6PJe/Bpc3QrAFTTaM8pkHoKo5Ml2tx0/NALyH9FpTt1AHJfQri1ZAERfIYwAGnPiPa0ue8yNLicV4O5hEQVbY5ujNN4IFDF8G462dTTzrwF0gDNv8OJbT30fdRC8xDd1ntuEfOKbY/YBJ8Wi2UOxbp2z4nEdofwmkAMpBGkFWn5U0UzCa8NLeeBs6CXqXoHpPl3AMaNLPUExq1bgQCEf4y0XY0TrywLpZk3cadtjztlI5MBVDPlDcDbgS4QWMpb5+AuehQjfqUinEQz//IPlfsKNI0fqXlSrm4vTN8Vsm94h9g5SD6I23lwRUz4cGjmDXTaTyD9pLkQXB5aLkOazxvROBbL/I2AziUvi2VmEd8TQquBeNrstCEt51c0k8h60HyuyRsiLRDbGWky4Vnae5ZnRJdq86ZI23U4sW0rxtLMG7jTtvO0+dYq2pyt1ObgsmadFdpc6tKdMglNS4fKfUllbLSAVD8pV7cbpu8C2bdKtPk+3M5D0PTzVfvUQtOvodN+aupBoxBaHlqvRJrPHtE4Fsv8zRygufOZNtsT6TkQkSC03QC598FNmIzdTmPVtk5sW6givqSfwx9/lYPAglWzdmruC7TzAAoua6knjRDnPjWntZqDpuMrXLVEBNquMafi2fchtAIkbgf3i5JWUV8/N3Ej9F1c5aajSHyvqveo/ZdB/huK7ukJyLxgPsu8hracjxPbpmrfirG6j8Xnsp7/BBE19wKo22927Z1xBdc1i8VisVhEQtB+M+TeM+7VwRVqa3N8e4hvX/lB+nn8eUtyEPgBElm3oqnmPkU7D8KvzcuZLNoSMkZ108lIYHzZOh1ou84Y3rmPILQSJG4G95uSVhEksEDhndt/LfRfXn7HphpHfI+q96h9l5icIz5tNknVNPNPaL0QiW5RtW/FWN3H+LU59xEiUqLNfZD/nwn7CixU15gWi8Uyq7GG9ByKiGPEbxRo5l/gTi27GqwdZ5T+B/6d6rQx4jseRdxvUecHSHCpGusMIQ37FecOrYp27U/BXS2wJMR2M5/lvvKM6NKHCAciP0Uaj0RCy1RfX+4LKmLBC6QgcTXUYUiruqaUh+9iHnJfQwQvi+oBZt2aRRv2x6mjFrXFYrFY5g+MNq88qr6aeR0qMlCHTPbvaqRfwO/hlTJGfMfDiPsd6iyMBJessc4w0lh0xdbQCmjXgRRykwSXgdhO5rPc554RXa7NWxhtrqH/5P/HUNqs/VfXZUirZkG7yy66XpgZaOZNtOsgs3bNog2H4DQdPey4FovFMquxhvQ8huYneYJTKr4CThsEFkb7/2JKVEU2Lez0Gretci9/F/ouQN0pkPsQJYw2n4UT36n23Jl/oamnILo7BBczJ7qRjQo1qzX3CZVuY0Fo+CUEl659U+G1IPM6/hN2303X7luCiIMGFoP8l1BIGegYFzIwtSu1r9gh8Vc0sgkSXqOu8S0Wi8ViqYbmv0O7Dsa/aS1mg9sZ72nzcoWEYebjGJXanIf+P6P5ryH3CUoEbT67ashWYe7MGyXavKQ50Y1sVKhZrdlq2hyAhv2hhqEOQHhtyPybmtpMvdocQp2Fy07MBYLLm3KgXYfjS6SauB6NbIyEV61rfIvFYplVWEN6XiP7byqyYSMQXAl6z0FJm1jk2G5I82nm4+g20HchaJkYZp7HJDZxgRT0/h4NLY1UOSnX1FNo9/GmHUFTumrcI0UjWtWrG12e8z4DnQegEoDWSwsZwX2rbzgIzb4P6We8/koxkUoMSk7Eh0Pa/mJqSGu/cVlvPBKCP8TtPLjytBpM9nFrSFsslcxD5SsslllO5i2oVloquBz0n4tqGoig8Z/jNHsltaLbQd+fqcgpkn6GYmbtJPSeioaWQbxN4VLc5GPQczJFbW6GcY8WjWhVzyut/B90Fjr3RSUIrVdUJiUDpOFQNPuBF0pWRZvj+9f11QBI+7VGm90EkIOmYyC4JNp5YOVptYiXOM0a0hZLBVabxxRrSM9rSDOV/4oEMq9S2DXWJAzchTYcigQmIE4j2nQ89J5BRbZO346ymoeBaoZ03wXF8cmB9qEDdyFNR5kd5Z6ThqiRmaZQxmPcs0jA74IuEkTaLsNNvwKZf5r1Z94DyUJsL98pubpdpvRI4AcFI943VnApGP+CietyWhGnCbfrSO/7qUItlzaLxWKxWOrFaQbRMnl2IPMaxZJaSRi4FW08BHHaEacZbfwN9J1NpTaXZeXOvl3wrvLR90cqtDl5L9J4qKfNv/ESk1YjDZo25TDHP4c4bb5PRUJI25W46ZeM15gOeNqch9g+Jk7cQ91OU7KzpjYvDeP/4WlzG+I04nYeAtnXKpelrgkbs1gsltmMNaTnNcLrQ2hVyLyNcdUKmzio1MN+AZcQaC8wwbyNboP2X+6dyuaAGMaILnH3kgCUJTUp4Kt7jRlDE2h+sjmpzr7O8NtkQbPLHKiM5XaTT0LPCcV7CkxA2h9EnIZim76LIXG9GcdpgvbbkODiFWOJBP3lxDIvU8utzbp1WywWi2WGCW8IwRUh+y5Gb0IQ26W6Nru94JhSkxLbFk1cAW4XkDPu3prDF5ssTu0465raPAnt/g1k/8Xw2ux45S/bKj5xk49Cz28pavNCSMffEIkV2/T+CQZuxmhzi6fNEyvGqtTmf1IZgx2AhkOsW7fFYpkjsIb0PIbJ1nmDOf3NT4LQKhBaBU09VtLKMfUeA0UhE6cROv5mjOn8dxDZCJyFoOc4TOZOgeDKhTrVFUS3hYG78Ne0/hE6fRfPOK8m1IOuaR6aQaUN7b8Ssh+ZhC6x3ZDM89B7dsnYKchPQQfuhob9EBE0/bLJSkrWvNwU2nkIGvwB5P4HoeWR5nMrTrvNzTf6s4UShsYjcBqPqPk9WyzzPdZ9zGKpG5EAtP/VGM75yaY8VWgF1Oep5RivssDCxX5OM3Q86Gnz9xD5sTGae06gUGs5tBpENqs+cXRrSN5PUT8jEFpvhNqcRZ1WtO9yyH1iNutjuyCZ56D3LPza/D06cA/E9/G0+QVI3kZRm9No16FoYLypfx1aEWk5B/E2DvzLaAC3NOQsAo1H4zQeUutrtlgsVpvHFGtIz4OIBAvZOAu032ZKP+W/NclGWi9DJOzvF+hAWs7wXdPQA8ad22mHyCbmYaDanE0nojiQehQkbmpmahLVASpc0ACIQtNJ0HdBscRWw6HQeypk3wPSpkxI/2UoQmUykxT0X4Amroa2ayH3IX7XNzVluDJfA3lIT0U79/bitv33IM1nod2/8vqHTJmw+H5V79NisVgsltFgtHln/8X2W43+5L+D4FKeNvtdnyUwDmk503dNQ0uZRF/OOIhsXFubm39ncpCknvS0+bdAL6pJqj9xx6HpOJM3ZVCbG4+AnhMh+yFGm5+D/ktqa3PfH9D+q6D9WtPHV/vahfxnXsZv19PmfUwmcvHHkEvzmV7ulUFtXhhp2LfqfVosFsvswBrS8wkS+iEyvhgHpeqiA/ehuQ8hsLiJXXK/gNCaSGzXgqBJcKkh44Q18za4kyC4Ak7zb6H5t8XPUs8MsaIUEv85RNYzCb0CiwF5dOA6iiU4amUCHcQF7TIlq5rPAEJUuoENxnjnzINK/isILuFrIdHNoONOEyctTRDdDnHiw8xtsVgsFsuMIaHlkfFPFt6r5tGBe9DcxyYO2O0C9ysktA7Edi5U25Dg0jWrXaiqiZl2J3vafBoMJhcFNPVk1X6GJBLfByIbQO5z83ygSbNpXdDm9BD9wWhzJ9p5gJlXImVeX14bAHKmBGX+W79bN5jSWR13eNrcArHtEYkOM7fFYrGMHdaQng9RVbT7OC/TZpKCexguJB9Hs28jLeei+anmhJm8qSdZInJmjF9D+nEGd7U1fhjS8Etw2o3Yh9c3hqkOUHXn253iM9Q18zaVGcerIWXjuRBYGqI/gdQz3i56hkqxT6FuX9UZJLQChFaoY+760dw3aOJmoA+Jbo9EfjRTx7dYLBbLvIPR1WO8Chd+bdbU45D9D9JyBpqfDKnHMdq8JRJcpMoYT1HU5qOQhr1KtHlDE95VVZsV3Gk+Q10zb1BZhqucQWUtHS9vspKHf2w8zCQImqVykzyNuv01tHlFCK04zNwjQ3NfedqcQKI7VM1IbrFYLPUw3G9Gy7xI/mtI/51iptDSkhVJSD6Am/0InbYN2nch2ncROn17U+ZisEfmXz4jGoCBq9GpG6OdexhRdBqQjvshtH6VRQRQdwC38yDcKRvgTt8DlRhIK6bkVjUi3lhlP7aaAYkhLRciHXcgrZebGK4KFLoORvNVylzNZDT/HTp9RxMblnwA7ToCd+DhWT6vxTJm6FzysljmFvL/g/SLVNVmTULybk+bt/W0+c+eNn9cGELT//QZ0QAMXOFp8y88bW5EOh6A0NpVFhFA3QRu5wGeNv8clVazKV7zkXFQm8u0WzPGnbz1kqI2B6sZxQpd+5vM3rMYzX2DTt8Jkrd72ny4KRFmscwrzG7Nnc+02RrS8yM6YHaGa+JA/zWgfZhMnDnQAa/ElUf6Bar/S8hC9n2014vnkii43+D/UQtBbDfoPhIyr4A7DbLvQOe+0Hod1U+lHQguCdm38JfkErO+6Vuj3YeZHXQJQfaNGvfejXbuh+Y+G+L+h0Y1i9t3Ge70PXG7f4PmJ1W2GbjL2+0f3KBIQeLiUc9psVgslnmcYbVZoP9K0H6MNmc9bf5jsUnmOWpr83/Rvj94Q0WNO7VPb8MQ+zl0H2Lcqd1pkP03dA1qc7VHxkCJNpfmKfG0edoWpnxWcGnTP/dWjXvvQjv3R3NfDHH/Q2O0+RLc6Xvgdh+P5qdUtkneUanN/ZeMek6LxTJ/Yw3p+ZHgkl696Wp//SEILguaoCJJWL4TTT2L2/sHGLhpiAkyXm1MIHmXyR5eOpbTAvFDPBEfFF7XGO69p1JhSEsjtFxiYqkr3LUHt7bykH7FnJ4nbqL2dpdC/iN0+m5o/rsh7qE22nOSKbOVfQtSj6HTd0HdvrJGafwGP55Lm8VisVgsVQguY1yua2lzaEXPiC7VZvW0+Rnc3nNg4P+GmCAD6VdNr4HbwZ2KTyudNojva7KKF/TLBbcH+k6vXJc0QstlkPuUSnftUm1+Ee27DE3cwJDanPsQnb5r1c3petDu30DiRmP8F7S539/ITVHxbKPl5S8tFoulPqwhPR8iEkY67oDQmiBtxtUquIopdxX5CdJ+E0S3NPUqC0SABNpzHAz8lcqkXmW4k3CnbODFPZeJlOa9ZF5lhiY5b7e6bGzNQeAH+He7q5GGzOtUzxJehma8GLOR4eaneXHjgw8NeeNyl3nJ105i2wKlSVFildlaLZa5FQVU5o6XxTKXIBJB2u+A0OqeNq9kyk46C0F0c6TtBqPNlGpzFLQH7TkeBm5leG3+FnfKhsYLrFybySFOjKranH2zsr3mILhglfblpCH7GsP7c6rZhB4yGVp13Pz3kH6SojabetlkXvG1k9j2VGhzfNcRz2exzJFYbR5zbLKx+RQJ/ADpGGLnOrYz6k42J6+4EFrHCGFF5s0hcKd5Cc3CFAXYgfAaSKADje1ojFJNVuksXjKUHMT3wQmvghtaFbL/pbZB7UBgEST+CzT9CkVBdaAiKGPkARqqOej8ZY2+/l8KEloZ2v5iXO50AGI7Ig22LrXFYrFYaiPBRcxGdy1iP0PdqebkFR2lNk+F9D+o0ObQ2khgATS6jWfMDqPNDQfghFbGDa4IuQ8YWpsXRWK7oJnX8Wtz+ca3Ul/S0ZIemoXp+1OXNodXg7Yr0b4/mWeP2M5Iw2Ejms9isVgGsSfSlqqICE7j4TgLvImzwL+R6KbDuCbX+lFyzc566fv033Gn7QLOItD4e1Neo2K4RZHWPyMd9+I0n2DW1PYXCK+L2U0OUukC3oo0/w6JrI+0XQWh9SC0lnE9CyxWOUd06yHupwq5z8D9tsoHYZMFtQyJbIgz7kGc8U/jNB5VUSPTYrFYLJaRYLT5KJwF3jLaHNlolNqMKSlVwIX0k7jTdjVltxpPg8DEyj6BJZCWi5CO+3CafmWGab8OwmtRU5uddqTpJCTyI6TtCgitaxKdtVwJTpU5olsMcT9VyH0CWs0dPGqqh5QhkY1wxj3kafMRVpstFsuosSfScwDqJiDzMqAQXh9xmmf3kioJrc7QLmO1TnhzoJOrXH7XvAJLQvNZ0HUIhV1qiUHDL5HIJr4u4rQbt3PAzU2FnqMh+wE4zaZ9bA/EaTJtIz8qlJvS7MdVYq4ETb8KgQ4IrVNf3WgJgJbfZwBaLy7Ma7HML8g8lHXTYqmGuv2ea7BCeIM58/d8eA1Gp80Z0KmVbXP/Na/AstB0BnQfQfEEOQbxX5qN9RKMNt8CgJubDN1HQ+4jT5v3R2I/Q5xG0zayMRLZ2MyWfd+crpetwWhzG4TXRXwhZrVwqmtz22WFeS2W+QWrzSNHRATYC1hSVc8SkYnAgqr6+nB9rSE9m9H8dHT6zpgM2RgjsuN+JLDg7F1YGRL64TDO0KP8l5v/HMl/Dm2XoX2XgmYg/nMkvlftmdx+6DkKsu+ZecPrIvH9EalRNksTXv3K0otZ6D0TlYDZlR93P+K0D73WwJIQWt6bN40p+bEcEl53ZPdssVgsljkazU9Fp++CSe4FSNzT5gVm78LKCS4/TIPRavPHiPsdtF6C9l/uafNeSHzP2jO5fdB9lOfmrRDZAInvV/vEVxPeBnXpxRz0noGKY5KfddyHOG3V+w8SXAZCy0D2I4ravBISWnNEt2yxWOZbrsLEmWwGnAX0AfcB1WoE+rD+LLMZ7b/YxBJrwrzcTrT3D7N7WRWoDpdMZAbGzr6PRDbBGfcAzvhHcRr2xmwO1Wjfe7ZnzHrlP1JPo0NlKg3+ECRS5YOU951PMfFSwyDiIO03Q/yXxpU7vi/SfkttA95isVhKEJFjRaRZDDeIyFsiMkI/VstYoP0Xgjvdr82lJSDnGGZdNQjNvo9ENyvR5l8Mo81neEa0p83JJ9CBO2tPEFweCFX5IGm+8/xktG/4spEiAaTtFpNxPLwhNOyHtN9kXbYtFku9rKuqR+K536hqFyaJxLDY3zKzm/zX+BN0uF5ZqDkLkUBZrDNU/fGRDkaWKCQAweVGtpjsW/izhyYh86+azcWJQ9vNQwyYg9yXviua+wK3+yTcrkNxk48Ux5IoTvPxOO034TSfUKfbmcVisQBwgKr2AlsA44H9gfNn75IsVcmVa3Me8t/MrtXURCQMlIeDVXu0a2ek2iyhkWrz21Roc7ZG3Wgwbtdt1w81IOTLtflz3O4TcLsOw00+VjJWHKf5BKPNTb9BJFo+mMVisdQiK+ZUTAFEZDx1lQCyhvTsJ7w+/lIMUQivN7tWMzTN5+IX4io/PtpJbVcyh4oNHmdpiO1R7J55A3f67rhTt8btvxLVKj/HgcXK5g5DcIkhly6BRauvFzDf+TrFNeS/NS59qQdN1vGeU3ATtw45vsUy36FzyWvOYvAX6DbATar6DiOzbixjRaSaNlcmrpojaDmHYbWZLkakzYFlIbZ74a1mXsedvpunzVfX0OZynY1UTyZaggQXB2p5dZVpc+4rdPqukHoI0s9Cz8m4iSEynFss8yOzW3PnTm2+DHgAmCAi5wIvAXW5B9sY6dmMNByE5j6DlHfqGdkIaTp2TOZWdwCSd6PuNCS8PhLxZ57W9Ito/zXgdoLb5cVxl/70Vyt1MVi6otq/EpeKOpTulzBwLTQeiWY/RDsPpJDYpP9a1E0izcd76+03a2n+HXT+AjRt5gksgjQcMuS9ihNHA0tC/tPKDyMbIY3F0lQ68DdMSa7BB4UU9P0Zjf8cEftPxmKxjJo3ReQpYAngtyLSRJ273paxRRoOR3OfQ+oJcyGyCdJ41JjMrW4/JO9B3elIeEMk4jfgNf0C2n+tp83doL3MdG3O/w9NXIc0HmaSgnUeREGbE39BNYM0HVNcr9sJTb832kzGzBOYiDQeOOS9itOEBiZC/n+VH0Z+7NN2Td7nafPgPaSg709ofHerzRaLZdSo6v+JyJvATzC/KHdS1Q/q6Wt/88xmRIJI659QPQdwx8xVWDVpTl3z3wJpNHEL2nQSToNJ8qXpV9CuQrjASEcH4sAAIOCMA7evxlgp6L/GGNKpxzGJQgZJQuo+aD4eN/F/0HceEACJQuuVCANACMJreu5twxDdEhKf4X+QaMVpu7KsYZ7KZ9sE2n0ktF49ZIyYxWKxDMGBwGrA56o6ICLtGPduyxyG0eaLUT3Pez82rsLqDpgEpPlJQMZoc/PvcOLGc0vTL6JdRzM6bYZKbe7Fr7uDpCBxDTQehiYf8c+nSUjeDU3H4CZugb4/YrQ55mlzAlMWck1EqsVAlxHZ3GyolyLtOG2XlzWsps39aPexSIWOWywWS32IyHrAe6p6pfe+SUTWVdXXhutrXbvnEEQiYxtvm3oK3O8pCmgK+v9Y+FgHbmV4oY5gRLkKwUWRBd5FFviwUBajNoOJzMJU/kgG0exH0HcBZpc7CdoFPcdAeCNTM7oeIxqQ2LbGCC8Qg4afF96pJlG3y6svXWXM9CvgflfXXBaLxVKF9YGPVLVbRPYGTgV6ZvOaLEMgEh3beNvUE5CfgtFmxZy6FpOcaeKvjF6bFYKLF7W57SaGjCwYTDIq1bQ5hGbfh74LKWpzJ/T8yitxtV59RjQgsR2A0uefGDQUK3eoO2C0ObK9d29lpF9A81XKbFosFkt9/AXoL3mf8K4NizWk51e0H8pjnDSDFmoxDnfqGoDIj2DCKxDbB3/mzShEfopIGBFBgktB8zkYASz/kQtDdDszY3wXkIaSNlFoPMrUoyzPjO12UygZVicSXBppvxVC65hsoY1HIo3Hoqq4vRegk9dEp/wIeo6HpuOqrNUBnXUZUi0WyzzPX4ABEVkVOBH4Ehhup9EyP6H9FDeXB6+VnhgP99gWgMjGnjb/Ar82xyC6RVGbQ8tC8xlU38SOQGx7ACS+uyn/5dPmoyH7IZRnxnanmrCxESChZZH2v0JobU+bj0EajvK0+Tx0ylpGm3tPhsZjq6zVarPFYpkhRIsGEGqSQNTltW1du+ciVDOgGZPpckYJb4BfjMRL4uW9azgATb9IVZev+IEmplga0cQVJvEHDkawHYjtjDQe6evixHfADS4LnbuXjelA89lmzsBC0PEAmrgetAeJbo9Ef4KbfqtSJCUCMvLvQUKrIB23+a5p6klI3k4hriz3AfR9jsmE2od5qAlBcFEvmYrFYrGMipyqqojsCFyqqjeIyC9n96IsM8ZM1ebIBtBXrs2Lo6rG+G08CO18lerafBjSeAhIA9p/qZd7xcE86gUgtivScKivixPfxdPmn5eNGUCazzArCCwMHX/ztLkXie6IRDfFTb8OWhaPLQ3GxXuESHg1pMNfxlKTj8DAnRS1+T3o/wyk2dtIH9TmJSDwgxHPabFYLB6fi8gxFE+hjwA+r6ejPZGeC1BV3L4/o5NXRaesgzttd9TtnqExJbgENJ9SOgvkv0F7z0I1hYTXQtpvhOAKmNPpoHk1HI3TfJJJEDJwB/Qbo9cIcBaCy0Lj8VT70ZL8J1CRECSPkCxZ16I4LWfitF6CRH9iLqYexB8XFURaL51pNSI185aXwKSUNJCE0CpmgyG6OdJ+m60ZbbHMY4jIjSIyRUTerfG5iMhlIvKpiPxHRNYo+WwrEfnI++zkOqbrE5HfAvsAj3rlNurzf7XMcZgT0z8WtXn6HqjbO0NjSnBpaC79UVLIf4n2/gHVNBJeB2m/wSsbWarNx+I0H4c4jejALZC4yUtClgby5qS3qqfVoDaXa1satJiATIITcVrO8rR5U3Mx9SD+0/Mg0nrZTMsjopk3gXJtThm9Dg5q85ZI+y22ZrTFMo8xxtp8GLAB8C3wDbAuMHQWYw97Ij03kH4KEn+lIFi599Gek5G2q2ds3NwXZRcykLwdTT8J7bch4bWRcX9D3R7IT4bAD/w77qnHqBC53H9h6pooQTT2M6T590WBCyxS6U4uQZCmmkvU3KeQfAB/FlKB0Eoju9fB8VSBrC+uWgKLokSpjDtLQ2hlnOZTRzWXxTIvI3Ne+YrRcjNwBbVdrLcGlvFe62J2rNf1jOArgc0xwvuGiDykqu8PMdcewC8w9aQnichE4E8z5S4sY0/qMRj4PwranH0X7fkdUpEka4Rkyw9CMpC8BU0/Bu23G2N63EOeNk8ylSucBv+6fNqskHsbpqxhtDn+C6TpFL82l2fzlqjnzl0dzX4EyYfxG9IzWZuDi6FEqDx9T0N4DZzmk0Y1l8UyL2O1eWTa7LX/s6ruOZpFDruFJyJHiUjbaAa3zBw08wZ+UcxC5u2RjaGpkvhnDwlS+SOg4E5Hu39VbOa0mBgmpxF1+3F7TsGdth3kvxxixpwprZW4vjhOeHWI7wpEPbfsGNJyydA7yW4nlCcskbC5PkLcgfvQyaugk1fBnbYTmp9iPoj/DEKDu/ulBEblPm6xWOYeVPUfwFC/UHYEblHDP4FWEVkIWAf4VFU/V9UMcKfXdqi5JgH3UcyYNA1Tu3LEWG2e/WjmdSq0OfvWyMbQZA1tLtejWtr8Q8RpQN0+3J7fetr87RAz5mDgdjRxc/FSaC2I7oBPm1svHfpk2Z1WRZtDJn/JCHEH7kYnr+xp8y5ofpr5IP5z4+VW8V0MvQFvsVjmfsZKm1U1D4yXejMXl1GPL8yCGGv+bu+o3Nb+GWMksAgVmSoDC9TVV3Nf407dAp28Gjp5Vdzk48VxY7vXiGXSKqfVZsdYu/aH5EOQ+9gI6ZDkIHGd7yHBaf490nEn0nIRMv6JootYtVW4/Wh+UpUkImEITBxm7rKxsv+B3jMxO9su5D4y5azAJF5pvx0ajqXoZRkEaUbivxjRPBaLZZ5jYeDrkvffeNdqXa+JiBwM3AtcUzL230a5LqvNs5vAolRos7NgXV019yXu1J+ik1dHp6yGm3yq8JnE96yhzW7VesuqLtq5rzkhzn0M7vRhZs9B4pqCNosITsvZJdr8JBLZuPba3T7Unepz/fYWPuJYZc28Db3nYDJ/u5D7EO0+2ltXBOm4CxqOolKbfzaieSwWyzzHTNNm4AvgZRE5TUSOG3zVs4hhXbtV9VQROQ3YAlPv8goRuRu4QVU/q2cSywwS/zkkH/QEVABBWs6rq6t2HQj5rzAxxinoOQkNLWsyabvTza6uDuB365LqSbXc702WTgbFM1/ZpmIBfWbdwSWLo4dWgNAKxSapZ9CeU008V2h14xanGXT6rt7awOz5uOCMB4mjUzdFIz/2XMfrKE2S+Tf+OOu8ccMbTOAiQaTpCDSygUk+Jo1I/GdIYPzwY1ss8yM619ht40TkXyXvr1XVa2u2rqTajeoQ14fiSMxu+WsAqvqJiEwYwVqKE1ltnu1Iw15o6iFPYx2MNv9h2H6FTen8t4CamN+e49HQgyZ/SUGbk1Rqc5VN5Pw3kPuMkWlzD+S/hmBxvHJtdpNPQu9pJpN4eC2k9VLQFDp9F9CUWY9Pm2OeNm+CNJ+GSJVSVeVk38QfupWD7H+Ka5Ig0nQ0GtkQTT0N0uRp87jhx7ZY5kesNo9Gm7/zXg4wIneXumKkvSyjk4BJmN94bcC9IvK0qp44kgktI0ckAh13Q+YVY1iG1qrLwFNNGqEsNSDFgew7qDQaIS8YqgDilZ8KIW2XVhlPqEugfYTQvivQ4CJIfC+k7CRdsx+j3cdRiE/O/hvtOhKcCZ779uB8AYhsDelnganmUvJeNPsudNw1fA1uZxzmx71kB12aK1zXJLwaEl5thPdosVjmYKap6loz0P8boHRncRGM4IZrXB+KtKpmBn/viEiQ4QW+JlabZy8iMei419PmJITWrs/A034T21z6Vy8Bs7krUbTrgLIEmIPaHEZaL6kcDsFvjNZDEO27BA0uisT3rnim0OwH0HMCBW3OvIl2HQNOk+e+nS+MQ2Qbk8uloM33oNn3oOOO4Te6nXGY0+aS9TstFc0kvAYSXqPiusVimWuZY7RZVc8c7SKGNaS9dOC/xMRyXQ+coKpZMYGtn2BqYVpmMSIhiPy45ueqabT3dEj9HaQBaT4VIj/BCFSZ8essANm3qfTsD0DrZUhoDcSpkmSk78/4T3XFew1eC3nvc941ATKQfgTSAXTgThj3CBIoOYDJvoH/OTIH2X9DYPmydechXaXkR+5DdNrOMO5vQwt2dEsYuANy74IqoEjL+bXb14nmPoXMOxAYB+GNbOZQi2Xe4yHgKBG5E5PQpEdVvxeRqcAyIrIEJtPnnphEYkPxgoicAsREZHNMiY2HR7Moq81zBiJhiGxS83PVFNrze0g/52nz6abOc7X8JM54yLxV5TMHWq9EQqvW0OaLqEj65dPmwdC/rJkHx/w5/Qikg+jAXZ42l2wCZN7Ar/dZyP4LgsuUzZWD9Ev4NqlRyL2HTt8NOu4b+mQ6uo2nzR/OXG3OfmJOtgPjPW2ea07pLBZLfcw0bRaR56iyqa2qmw23iHpOpMcBu6iqL7OUqroisl0d/S0zGc1PQXtOguwHEJyItFyA9l/tZepMg/ag3cch7bdCy3nQ81tzEg0Q3tDUkM68hl8kDRJeGwig6vqMQs1PhfTjZX0CpgZ08l6zux5eGxqOhP7zIPcJ5KdSzISdB+1HB+5Gmo4qmbDVjONbRAzCa0LyvbLV9VT/QvLfmdiw+O7F9apC+u8mXiywGES3Qdr/CukXzEl3eA2kxN18NLjJJ6DnxJLvdl1o/Ys1pi3zPsoMnKPOWYjIHcAmGDezb4DT8QIyVfVq4DFgG+BTYADjRo2q5kTkKOBJzC+xG1W1/JdWOScDBwL/BQ71xr5+yB61sdo8h6H5yWjPiZD9CIKLIy1/9Oo5P0VRm49FOu6A5nON23RBPzYxGpJ5mcp/XIKE1wKkijZ/b7TO18eB5vMgeQfkp0BkPYgfCn1/gPxn5lphUzoH2osm70MaS2pMO60m6VlpHLQ0QGh1Y/T6qKHNua/Mc0ls5+J6VSH9NOQ+NfWfI1sh7bdB+nlweyC8JhJcfIhveXjc5CPQc0rJd7uB2YiwxrRlXsdq82i1+fiSP0eBXanTzaeeGOnfD/HZB/VMYhk9mvvKiFZgESS0Aqp5tHNvExNFDrJd6PQ9zZ99p7VpNP0CTtMxaOiHkPkPBCZAeENEBA2vA6FVvezfaSACDQcbN+v0s4Cg8f2QphOM+GiSSoM3igQXNQ8Fg+tVRUMrezFO5SUrcpD7BtVk0RU7uoWpd5n/BDQPONB0ponTSt6G33CPUFmiyhtX/bU7te8cY+Br2pTxSD+DtPwZiVbfXFK338SYOW1IsEoMWnl7Veg92axn8JdW5jXI/GPI0wmLxTJnoao/H+ZzxcQ2V/vsMYyY1zuXC1znvWYIq82zF819CbmPILAoEloe1RzauZcX95yHbDfauYennaVamIH0P3AaD0dDy0P2XZM8NLyBp83rQ3BFc72gzYeZBFzp5wEHjR+INB1X1GZxykKpY54231VcryoaWsmUqPSdHkN1bd7K0+bPi9rcfJbJd5K8C782h6nUe0wbt8//vfWebupPq3dv0WdxWv8E0Z9W/54L2tyOBKvkbilvr64xon3a/Ip5RTYctr/FYpkzGGNtfrPs0ssi8kI9fW0d6dmAag5ST4A7xSTXCq9etZ078BD0nurtCufQ+N4mm2d+MsWNElN7sZjRcpBQoeazBJeG4NK+T0UcaLsBUg9D/nsIrYqmnoH0Pyi4bQ38HxpYDMIroZo12Ujdr725HSCMJh9Bu3/tuaydYgz//mupqC89SPoBdMrj0HoVEtnQuKx33A6px72T4rWQ0MqmJIhEyuLEAGciuF+VDRqE8PrF7zc/BQbuovCwoAPG5b3hEwgtW7Ekzb6Ldu4HuKBZNL4nTvPvqq+/QNZLtlI6EN4pvMVisVQiIv+juvvYjLnHWGYKRpsfB3cqhNZEwqtWbecO3A+9ZxS1ueGXSGwX06/g9ux6xmKlNpt4Z5DQshWaJBKA9r9C6iGj9aFV0NTjkH7ZjIkLA7eggcUh/EOzZpkA+i1FbY6iA/ej3ceYxJnNp6K5jyFxAzW1OXU3mn7YeFVF1jcu6x13mRNltwvC6yChFVE3gRKmYlNbFvbWUIoD4fWK32/+e0g+QNHoTkLqSTR3eFUPMc28Y+LFUU+b966jdnQa80xUhjt5mH4Wi2V+RUTaS946wJqYyhjDMlsNaRHZCrgUc9R5vaqeX/a5eJ9vgzm2309VR1akcQ7DnCjvD9n/Yn7ZB9CmU3Aa9ixrl4Le32HcwbyLA7ehkY2o9DbIQ8Mh0H+VaU8InDaI7TrkWkSCfperQnmoQZLQdzY6WNPSGQehdSHvuUs7C0HybxhBnWoSkQQWoaZQm1lAk6b01PiXEKfRCHbMX+JNJIa2XAw9vwYCoFloOh6J744m/s8Yyu734LQizWeabKPFG6nikhaqPLXO/Q/y36A9v/V/lrwbjWyKRDYY4rsLo4ElzW59YWfeNaf8FovFUp3SxCpRYHegvUbb2cb8qc05U0Iq+x5GYwNo8+9x4rv527kJ6P09kClqc+KvaGgD7+S2lDzED4FEqTa3+3S3GkabdynO2ft7KrX5dE+bMXlPQusYz67A4karUw9T1OYjIbAQw2vzANp9BEx4BZGYp807+dfmNKAtF0HP8SZBmmah6RQktiM6cBsM3A3uJE+bzzabBYO4PZ42l9yLBCtPrXOfQ/5b4yavJZ8N3I5GN0XC6wzx3cXQwKIl1UoAtdpssViG5E0oZPzOAf/DhGENy2wzpEUkAFwJbI7JvPaGiDykqu+XNNsaWMZ7rQv8xfv/3EvmRc+IHsyWnYW+c9D4z/yxtW4XFRncJYhoEo3tCKlHvdPaKIRWQxoOgfC6aPp5xGmG2G5IlcyXqi7af7kxgCVqXLcH3Z0DC0D+S/wHJpmiQZrPQGgNnI6bzBInr41/VzpdeUpbEzGxzU7lCfEgTnQzNPwc5L6EwEJIwGwOSeNB0HhQ8Z7yk9Dk/Sa2OrKpKQ9SUTpEILhcoY/bfw30X4n5J9Dvn1hd40o2hCENIO3XoZ0He8Z0GFrO8z80WCzzMvNIHNZYoqrlBX4vEZGXgJpu2mPNfKvN6ech9z5FYzMLvWeisV39sbXudCrDnEKIZNHoNpB60hsjaipsNB4KkbXQ9ItGk2O7IU5ldRXVvImnTj4MTtxo82CYkDPeq8BRSqk2fwPhtXE6bjZLnLwGfm3OGIO3LtRoc3Cpmi2c2OZoZFCbf1CoxiGNh0DjIcWR8t952hw32hxcwui0JkpGC/g85ty+KyBxDeYkv0ybUch9DkMY0gDSdgPadTDkvwAi0HKBKflpscwPWG0eMaq6xGj7zs4T6XWAT1X1cwAv69qOQKlY7wjc4vnB/1NEWkVkIVX9fuyXO5Nwu4197PtBz2N2m0tKODnjTWxvqWGqWQgui0Q2hfA6aPa/xh0q5hnh4dpu4oUh+i8zcU/ew4J2/wrab0LCayLNp6PTdgcSNXpnTUwYXhySlrdTk4009YC34zxYY9Lr62s6YBKYBRZGEzea3ePwukjZQ4s47RBuNw8Z+UkmhrkkA6hxy9675HtbEOm4D8I/htQ9JRMGGNyd1tz/PCO6ltHveJlJh0YCCyPjH0M1DYRtIhOLxTIkIlJav8fBnFCPqGblGDD/arOWP4FmvVe4eCmwoOfhVHK6qxkILmOyTUfWQzPvIaGlIba70YXwWl6ysNpo359h4DYgabzCu46B9ltMScbmM9Hpe1DcgC8naxKcYQzyipAoXFP1I3k/5lljKG1Oovlp4CyAJm4wMd/h9ZHYTjW0Oedpc7s5wS58Je+gXb/03gDBhZH2eyDsPSMUHoJKtflTSFzrrbFKzLXIkAZ+oVlwUWT8E1abLRZLXYhICDgc2Ni79DxwjerwO5Cz05BeGCjdYv2Gyh3tam0WBsZUrDX3qcmKrf0Q3QknttXoBwutUSbWZje2vA6ySBBtvQK69qXoOpyH/BdIcBGI7YSUuVzVXH9+unFdDizixSeVimwKTT5iDOng0mj7X6FzD6rXiw5DaCVvKd9U+VwgshHSsA+afBRwTMKSnlMg93b5qqD7AJQ4JpY5C+mn0Oz7SIv/cEaz7xt3eO+EWZvPxYnvYD7r+R2+Wtj5b9DErWVCjTHs088Yd7n8t96DUHmMV9y45sX3RiLrUS9DlvawWCyWIhdR/MWUA77AuHfPScw92pz9GE1cA5owm7DRzUc/WHhN/DvcQQgu5zMOwQvrab0MuvYvaZ+H3P+QyEIQ28XES9ez/vw047ocWMQk4CrX5tTjxpAO/RBtvxE692J4bf4SYySXtYtshjTs5WlzwNPmE01JSP+qoGtflBiFjYTUk2juQ6T5t/6W2f+inQd6WqpoywU4sW3MZ71l2pz7Ch243cR++7Q5ZUqDxXaA3Nee63fZkiQOmoP4fl5lkfqw2myxWOrkLxg3mKu89/t41w6q2cNjdhrS1bYIK2s+DN/GNBQ5BDgEYOLE4bMu14vmvjC1EAfdhNOv4movTvxnoxpPghOh7UoT++N2Q2hFpPXK6m1z76Ilu7WQQ3tPR8b/vbg+zULyPjT3BRJaBaJbF3ZfVRXtuwAGbjWGozRT+VfuQGldyuAyVP+Kw2bHvelkb3FhKmtdRhFnHBJcCmk6pnDVDS4JufeoTACi+E6/NQnJO9DmkwoCaGLKDwDtKrbrPRUNr4oEFwN3WtmYGVPiqtpcg/FrwaWquLk1QNvNSGCBggu5xWKpjVj3sdHwCMU4LLw/byQicVV9e7atys9cos2fo50/K26wpl9Bm8/EiQ8df1wLCS4BbZeb0pJuL4RWQVqvqN44+1/MSepgvpIc2nsmMv7J4vo0A8l70dxXSHg1iGxZps3nmFwfEgRpocJdnIAxIAtvl6FayUqjzT9Emo4vvq/Q5hgSaEeCSyNNxxauGm3+kMq8K4r/9DtpEpw1HW8ShDIYU34gaHexWc/JaGhlk107X67NaS/reNlcosVrwaWNweyjEdpustpssdSJ1eZRsbaqliZSeFZE3qmn4+w0pL8BSmsZLAJ8N4o2AKjqtcC1AGuttdZM+zHS5D1lsbZJ6P8LjNKQBpDIj5AJrww/t9tJhUHoFpNiuW4epm3jZbFWk0kz+ybSfJppkH4eBu4wY6iXZdpZGJPjZvA01gHpQFWNyKefobpYuxDZupgJPLAgGvkxpF/0xoqY7KODu+KAm3wG+i+F/Ed1fCuDiFnr4E6y21npQi5BI/7BxUzdzdRT+Mp55KrlvAkY1zZAAguhvvraDtJ2Tc0MrRaLxTKTWBPjzv0QxhjdFngDOExE7lHVP87OxXnMHdo8cFeZNqcgcSWM0pAGkMiPkQn/HL6h20mFQajFWsqum4NpW4P7DaDoQBji/y6e6KafNuUZB+OcNeUl6izVZgFpLdHmJ6m+V+FCdDvEMZnACSxs8nukX/XGikJoeQguX+yRfAL6rzCJQ0dEjkIWcndqFa+uIOQ+geCiEF7bnDSXanP2jcohNWjcvTEu2dp8tletJIDR5uusNlsslllNXkSWUtXPAERkSaq7/1QwOw3pN4BlRGQJ4FtgT+AXZW0eAo7yYrTWBXrGPAZL81SKV13f7QwjkY3RxC0UhTViYpAH6TsX3C9LemRg4A608RiT1CT3If44I9eU3Gq5CHqOM+3JQeJSVAfQ3GeQfrTGanKQuAg3+wbScoaJD269FB24FbLvmNPqhoNM6Q7A7b8a+i+jznrmHsY9TXt+h2bfMHHizWdUNtOceVgApPks1O0yNSILf0/lf18BaD4VCUwoXHFi26KRTcyJdmBB6wJmsVjGgg5gDVXtBxCR04F7MXFZbwJzgiE992qzVtsEnvlI5MfowB34tDm8SbFB3xleqchBMuZEt/FoxGlEsx+VGaGuMUxbzoeeEzAb6Dno/zOqCTT3gWdIVyMH/efjZl5DWk5HAgtB65Xm2SH3H3Na3XBgIZmp23+FV+FjpNq8Gtp9Ipp9E5wJnjaXf/85Lzs4SMsfTHWOzGsMqc0tZyCBcYUrTnxHNPpTq80Wi2UsOR54TkQ+994vDuxfT8fZZkirak5EjgKexPg03aiq74nIYd7nV2OKaW8DfIrxM6rrpmYmpqTD7RQFMwbxvYfqMvPmDq+DNp8BfeebnffIJkjLOcUGqYer9FJvl77FlKiSqD9OSWKVBq4mvfIcwx0WKGReRKftAuOfRJxWpKHyr0TVHcKIdihmW3Mxu9sO0AqRtU3dzPQzQNYIaeeeENnGXJOQFye1J+KdfIvTiLTfhJv9FDp3899r4Z4jEFjQO8Hoh/BGSGhZs4M/uItvsVgss56J+I7oyAKLqWpSRKpkVxp75hptju+MJu+moM0Sg4Yx0ubIBmjzadD3R5N/I7oZ0nJGsUHysSq91DOeG5HgYihR/DHRUS8JZulGfRISV1CfNj+PTn8Hxj2JOM1I4wGVrTRXZY5BqmlzAGiByHom9jr9LJXa/HSJNu+DhMzJtzhNSPstuNkPoPMXlZ5lYLTZWQAduNNod2Rj435utdlisYwtHcBKGAN6R2ADoGeoDoPM1jrSqvoYRpBLr11d8mcFjhzrdZUioeWh/WaTUVMTENsZie8zZvM78V0g7k9covlJaO95PleyInGzWwwmmUjqSePiLQEjVJqo4c5V7+606yXuehFi21dtoYlra48X3gRaLzTu8dl3jDtb9t8mAVj6MSrdyhXST0B0Z4hsigQX9teM9pDgROPaXjWraQi6f4epPJMHLoW2q5DIj+q8Z4vFUoGNwxoNt2OyXD/ovd8euENEGvBnxZ6tzB3avCK034D2XWI2g2O7IvHyg/NZhxPfHeL+PHGa/x7tOZfKsk0ATeB0mD9Gt4PUE5B+uUSb+yHfVaXfSLQ5BemXwEv4VY72/4XqRrRA5KfmRLz/Ksj+BwKLQvZNUwor/TCV2uxC+nGI7oZEf2zKYFXV5iW9XC/ViED3Cah2mXX1XQJtVyPDlJ60WCxDYLV5NJymqveISDOm9ONF1FnWcbYa0nMLEl4D6bhtpo2nmjGGcPoZkEak+VQksmF9fd1+dPquXi3LKjQcXHDhEnGg9RLIfYBm34beC/DvgA8SxbiA1/mvTwr/qVxf6llI/KVGxxA0n4LjNELzCQC4039hSl8N6S6fh9R9IHmInl99SRI2Gx5dB3nxayWir31AX8m1bEXSNovFYpnVqOrZIvIY8CPML9HDVPVf3sd7zb6VzZ1IeG2k4/9m2nhGm8+F9N/BaUGaTqu7goO6vej0XTz9qULj4YVkY0abrzTanHkL+v7ETNFm8PJ+VFlf6ilIXF+jUwiaBrX5RADc6T/ztHkod/k8pO5GxcVpObf6ciQC7TehnQd7iclKtbkH6KZ4f9mKpG0Wi8UyBgwaIdsCV6vqgyJyRj0dq//GtcxStPdMSN4H7mTIf4Z2HY5mP6ivc+afnvtyNXGLIFG/QS4iSGgFJLh8FYF1ILAkxHelkEBkWLxMoqWx2iVo5lUqa1gO4hpXuFJy71FfzLlC8hF06sa403ZA0/+oaCGhFZDxL0Pjsfj3iFwqvq+SpG0Wi8UyVqjqm6p6qapeUmJEW+YAtPc0UyLSnQK5T9CuQ9BsnQm5Mq8wWAaqkggSWd93paDNoR/W0OalILYb9WtzEKQBwtU9rTT9MtWNdTCnwRf4L2U/YGgjujAyJB/AnbIR7rQdvXn8SGhlZMKr0HAU/uzkLhXfl1uXN6XFYrHMTL4VkWuAnwGPiUnOUJeNbA3p2UHqcYox1wAZNPVcnZ2rnwRD1Li2hVau/nFoBZBWin/lAoFFkHGPQvZ9KstFVcFZGGI7IB1/Q5xm30ean4KmngQ3RW1Hhzykn8bt/UPJmBNqtK1G1mw+5D5Eu47CTf+7ooWIIM44hn74iIB167ZYZgydS14WS72knsSvzTmvnGI91NLmmJfXY/nqH4dW8kpTDvYXCCzuafM71KfNi3ja/EChssYgmp9stFkzVJbYGiQP6Sdwe0s2up1xNdpWI+dp8wdo1+G4mcqqMSKCBDoYXpurb9JbLJY6md2aO3dq888weUG2UtVuoB04oZ6O1pCeHVRkoQwiTqy+vuH1vZqTg8ZqGEKrI+234JQmOymfUiIQ3aHkikLe7LqT/47hf6od0G4ktqsv+zWAZt5Bp22J9pwMqYcY+oRZYeB2ND/JrKvlQrOLTvl3EqlyrZQUdO2BO3Ur3OzHaOkJc3QbCIwv6R+F6C7e9xaByI+R5upuaBaLxWKZXwmXvQ+YhJ11dd0QpAm/Nq9ltLn5dzW7icQgui2+0uL57yD3GbjfU78274YExvs+0cxbJdr8GMNr8y2oV/9ZWi/y6liX33+Yyu+plBR07o47dRvc7Kdl2rw9BMaV9I9CdFdvIyFi8qC0nDnM/VosFsvMRVUHVPV+Vf3Ee/+9qj5VT18bIz07aDwBes/A7HwHwWmG2I51dRUnDuPuN8nP8l9DeF2k4RBE6virTD2A31UrhSYfNAlQ3MlVOkQwwpsz/TSBdh0GE/5pYpI9tOc4qmbkrHkTIeO+FVjQ1Icc9xSaegb6zsMktBVw2qH1cug+Etwu/IluS8h/DtO3QwmgwWWQthtNKY2Ov0HyXtSdjoR/hESGzRdgsVgslvmZpt9A77kUtbkFYjsM1wswFSTouB/tvxjy30B4A19JyCFJPYhfm9No6mGQdmBalQ6Dp7pZ00/70a5DYcJrvmcB7f41VStZ1LyJoBe3PA4Jr+Fp81Oe23cWo83jTe6V7iPB7aa2Nn8K07fxtPmHSPuNiNMOHQ9B8h7U7UIiGyHhtYHz6l+jxWKxzEFYQ3o24MR3QQMLGOPRaUMa9jYCUyfitPvLYFVB3X5IPWIMXK/cU6Vbl2MyhgZXhly1hLE5jDFdWiorgWY/R8LLFa/lv622SobaSVe3s+jIFhiPpp/BCLL3MOFOMob1uGcR+tDUy9D7O/xud6XkIfcp2vNrpP1W81DTsF9NZzuLxTJ6RM3LYpmXcOJ7oIEfmKSZThvSsA/itNTdXwLjkBpJtwZRt8/T5gHjHRVcmkptFnMttGKNKhsuRptL3L61H819hYSWLGlWbYN8KG120Pw0JLiUdz8T0PRTGG32+rjfmeRo455H6EWT/4C+3zO0Nn+Mdh/vGdON0LC/1WaLZRZgtXnssa7dswmJbIjTcjpO0zEjMqLrQd0+dPr2aO8f0L4/o9N3MwlAGg+j6KYlIFEktruXBKXctdyByFZUxmcpJK4sv5vKRRTisR0IrWviqxHz0hx0HYbbd2mxff4b/Dvyaspi9Z2KOO048e2Rtr9AZDNqx3nlIPv/7J1ldBxH1oaf28Mgth10mNHZMGyYmTnZMDNtmJlpQ1+YN8y4Yd4kG2ay45BBDIPd9/tRLQ0LbMuS7H7O0YnVU11dPRnN27fq1nu/rPCah4eHh4dH70jo73naXDdD+1anFZ26Jdp2kdHmqdujqfchdjCF2hxBItu51TzKaHN4C0pXgstpcxmkzvSBDwKrgzU3OW3OQPNBOB035Nrbv1MYeKspi9V+ttHm2LZI3Q2mtGWv2vx532Pz8PDwGGF4gfSsSOLfYE/BzBBngCTadjZWdBeouRSC64FvcSCONh+IqgPR3TAJCj6QUVB1LlJ7JfgXL+0/U2QkYs1b2kaqYPS7yBxfYzXcg9TfgdkXpZhyHgno/D/UnmLaB1emNEHCgcRTqJoVcQmtidTeaPZAS7RMe0zamYeHh4eHxzBDu+4HZyqF2nwOVmwPqLnIBKO+xYGYq81+iO5MjzZbo6H6AqTmMvAvUnqB9P8Kf7fmKm1j1cDo95E5vsJquAupvxWzup2nzR03oN1lvAIrUxog25B41Dw7ABJaC6m7GUIb96LNAzEW9fDw8BgZeIH0LIjajZTMVruGH1ZkUxO02hNAJ4M9HtpOMHudxryPjHkPGfMOVmxnU/MyvDGFxiICvkJxlrorKHHidP6EjsvB/g3NfIXaf5q90QUnBnpqbkrVqeBbsNzdFJ4igtRcjtRcBVUngm8xI9wSB4mZBwwPDw8PD4/hhtNISZaXmnJPVmQLCK4ATrc2/wJtx4HT5Wrz+1hj3sGK7mC0ObQRhbor4Ju7oGupvYqSoNb+HTqudLX56wra7He9SUCqzwDfAn3emoggtVcjNVe42rxIoTbXXtJnHx4eHh4jDW+P9CyIhNZGu+4jt2epqKRE4lEK60k6kHzCBNf19xmR7u4rujeafNYYm7n7tor3gElgOTS4OqTzaztnIPEimnjaFekAJTUpNYta9SapzIpCw33o5LUomASQKsoF04TXMzu9onu7tbXbjXu5b45+vkseHh7ThXq7HD08BoKE1kW7HqJQm9fNNUg8BlqszY8a/a2/s7Cv2H5o8nnX2RuMNp9b2CY4Dg2sDJn38o6mIfksmnjcBMyEzXarfNRGpc7V5pirzX+nYBJAqs348tZjjDZv4GrzXq42d7ra7K1Ie3jMFDxtnql4K9KzIBJaHarPzCv3tF6hwEq5UlsOZL8xP/l9WVGk4VGk9hqk5mJk9EuuOUoRgSUoXLm2gE4gBdoB2uKmXee3saFpT1S7A2eH0mA7Y/ZKV7pX8ZmU7/CmMzyIVqcDzf5ojNs8PDw8PDymAwmtBVWnukFoGMIbIdVn5jWopM2fmVKV+X1ZMWTUE0jtVXnavHDp6YHFKckq0y6MNneCNoNvTgpXt21o3iunzVqmbJYme933LOI3Kd/hTWZ4EK1Ou6fNHh4ewwJvRXoWxYruCNEde35Xpwntus8IT2Q7aP+eUrMSC7S0lIVIEELr9Ho9iR2Cpl5za1ILpiRH/sy6gj2JwtXlLDiTIf0RhNZwZ8WL5nbEMsH0NKLqGGMUpx0CyyO+hn6d5yRegtYTjKu5OmjtVVjh9ad5HB4eHh4eHlZsV4jt2vO7Ok1o5z2odkJkR2i/lLLaXKbMlNHmdXu9nsSPRFNvug7eAuoA+SWxnNxrPWSNlmc+heAqmJVoH4Ur0r7p1Gbb1eYOCI7rt+mqk3gOWk8218eB2muRPp5PPDw8PAYLL5CeDVCnCZ26landTAYIQexo6LrFpETjYEzG4qj9OzrpEDdVekWk7tp+OZeaGpqPm6CYDGo3ubWyu4NpAd+8YP9a5mx3FdoaDb75wP4JE3Ab91ICy0/bfWsWbd7fNUdzA/T6u5HAMr2f5zSZIJpkLu5vOQYd89aASqF4eMzSeCU2PDymC7Ub0cYtXQ8Tt9xk/BjovNFkcqEYba5FM+PRpv3N8eDKJkvMqu3zGmJVwainIP0hYKP2ZGg/L2+i2wLfWMiOLzdAt8mcZtXankBOm2MQWHba7lszaNO+kP3SXB+B+nuQwFK9n2dPMUF0njZry1Ew+h3zDOLh4eFp80zGS+2ehVFVNPMd2naVaxzSXQsyCckHkdEvQmhD47odXNO4hraealK9yELmY7T5yH5fTySIhNZAQusgkW0huGLeqxZUXwSBcRiHUOgO3gmsYH7NfumWwer+FhCI7j/tApl4EtKfmjQ27TB1NltOMO+N04zTfCTO5PVxmvY3hivdZH91947lk0ZbjneN3Dw8PDw8PKYNo83fou2X501wu9qceBgZ9RKENnC1+e9QfQ60nWa2SJGF9Edoy9H9vp7R5jWR0NpIZAfw509OW1B1oalZ3ZMC7jfp58Fx5tfMF2D/SYE2xw4y3ibTQuJR02ePNrejrSeZ98Zpwmk+zNXmA1D7r9x59vhSYzRNGW3udhn38PDwmIl4K9KzKKq2malNvQXYmNnu/AZdiFWP1F3fc8jpuLmonRtMqxYYkPUL+xdjNJI7AC0HwehXoP0yyPwPfAsg1acbMxNAux4gZ8IC4EDHVTipt8A/NldbM7CEaZ98Ce240fQd3duks+ffov17UX+AM8m8N017ujPwGUj/iTbuDKNfQiRinE9LUtYcSL+DNm4Po56f9gcIj9mCP3+exO2nP0DzXy2sue0qbHvkZgP/G/Lw8JjlMNp8OKTewwTQxdrcifgaTG1mF6fjegrdvjNu9tc0YP8Emfxzs0abR70EHZeadG7fgkab3T3b2nUPpjRWz4ig/VKc5Gvgn8e4cke2RwKLmVcTz0PnzYBCdF+s6LaFt2j/RqHhKWD/abLIGvdwV76zrjbvAqNfRCRsstpKtp85kH4TbdwRRj1n2nl4VOD3H//kjtMfoGVyG3/fYVW2PmxTT5s9pgsvkJ5VST4JqbcpCSQBCLulM3Ko/Sd03ESJqEtsmr5kNPVWaV/aDOnPsGrOqXBWueukIPNOzzOEdj0I9XeDtrqry+79tZ2Hgw8ruh2aegtNvevO9IdybfCBfylT/iP7G7kHE9uYrmS+guBKiG8MWn0atF1A4cODDdpm9nWF/j7Ad8RjdqHxz2YOW+mfdLV14TjKd//9kam/N3LgJXsN9dBmKOKlj3l4DJzEY24QnSjzYhjCmxQc0exv0HErZkI8D5m2TC1Nvk6pNjci9jdIzXkVzqqkzW/nafMD0HAv2FOh9Z/ktPksV5u3QlNvoKn3TblNwrk2+M2KuD0BnD/yxtetud+afdS+udCqk6H9Ykq02WmG9CcQWn1A74fH7MPU3xs5fOWT6WpPoK42N/3Vyr7n7dr3ySMIT5tnLl4gPQJQezIkXwIUwhv3y51as79QKtRinLzDGyPVpxe2b7+cQgMSMOnY5YNe1QTacauZ3Q78DYnugYgvr0Ww7Hni1sws+1p0N1Muq2zw300C7bgaJFzULgFd9+FoG7RfaX4nZNppBvCDbx6k9kpMelqROzgOSG7MVnRXnMA4aNyOkgeYsg8VHh6Gtx/7gHQyjeMYNUt2pXjqXy/OcoG0h8fsjtp/QfJlQFxt7tudWrM/UVmbN0eqTi5s335pmfYWVJ9LOdTpQjtvBftnCKyERHdHJG8XX3FqdDdu3ehySHRPNPkifWpz+7X0pKjnHSdxL45OhvZr3NdCxv+kW5v9Y039aU25ZmgFN1SozbE9cALLQ9POlEwIeNrs0QtvPvI+6WQazdPmJ659bpYLpD1mLl4gPczR7K8mnVhTmHSqy9H6u7GCvRtwiX9xlAg5AbYgsDxWw7/Ln2D/RYlDgX8xrMgWpWPSLNq4G2R/AlKQfA3NfOoGqS6RbaD9HIoDVm09EW07C2KHGafQ7M8QXBWJ7W1MwOrvRjuug/RblW/OaTZGJyU3HYD2K8iJeArwQfU5SGg9sEb1rK5raF1IvUFO1GvQjtvR4ApIdE9EfFiBJXBC60DqXbddAKx6CK5UeWwesz2qpdPB6rl/eHjMUmj2F5NOrGly2nwPVrB3Ay4JLIlKJM/syweBv2E13Ff+BKecNi+JFdmkpKlqGm3aBbK/YOpFv4ZmvkBqL8k1iuwI7ReW9Kktx6EShdiRZlU4+zMEVzPaHFwe6u9AO/4F6bcr35zTVCFQD0H7VeScx7u1+QIktDZYDYiI+e4MrQWpd+jRZqse7bgFDeYm7CWwNBpc3TVQ69bm0RBcofLYPGZ71NGSP6Vyeu3hMRA8s7FhjnZc6bp3pjA5VAlo2hVN/7f3E8NbQGRLIAgSBWsOM+NbidDaQH4NyzCENy3fNvOJEdme1KoEJF807uD2FDT1DiSfobx1YAa0FTougq7bIf06dFyCTtkQJzvFzKKH1gFqK481+x1kviy+YROcF5cIUQfBRnyjC1LUpfZqqDoBQluY4NhphNRz0H4F2nJMXrtrIbYfBFaFyPZIwyPeHiyPXllru1UIhAKIZT5voWiILQ7aqI+zPDw8RhLafnmRNndB085o+uPeTwxvDaFNyWnznEjt5ZXbh9bBpEF3E4Hw5uXbpj+G7ARyOpiA5NOo04bak402J56ucKFubT4/T5svRqdsjGNPNf2G1gOqK481+zVkvim+YYgfTGk6ubranJvgFhGk9jqoOs5os9SCMyWnza0n5trV3QixfSGwCkR2RBoeRiSEh0cl/r7jagTCgZ7PWygaYqtDNh7iUXmMdLwV6eGOPZXSNGQbbT4CmaNyMC0iSM0FaPxII/a++UzNSRdVRbvugq57AR9ED4HI1pB4xDSIbIXEDi7btyaepTTFyzL7kttOc1OzUmXO7AXnT2jcFNUsZQ1YCrApWGn3LYHUnIYEV8YJruWanHU/SAgE1yjpQcSHxPZGA8ujza/ltU9C6jXUnoT45jBup1XHDOxeZhCa+QayP5r/d31kIHgMH0bN08D1H1zErSffS/OkVtbYZmV2OmHroR7WjMebyPeYnXGmUvpHYKMtRyBj3qt4mgkWL0HtY4w3h29+JG8V12jz7dB1PxCA2KFmUjzxuGkQ2QaJ7Ve2b02W2xploak3oPV0zLPEQLX5N5i6san7PFBt9i+NVJ+KBFfECa7mGqS5WitAcLWSHkT8SGwfNPAxms7X5tyEvVj1rjYfO7B7mUFo5muTkedfAJnGEmAeM58xY0dx7XsXcvup99MyuZW1dliVHY7ZcqiHNePxtHmm4gXSw53whmYFmCIXaW1DNdXnDKz45ix7XLsegI6rcull7WchtVdB9dnmvIL9znnnaRISD5W+4JvHFepyBir9pKdu5kBwILgsElwZMCvN2nqaCaatWqTmfMQ/fy/npyhNzLDKOIPOXJzOO81eb/GBOmh0L6zqE4Z0TB79Z97F5ubsx04a6mF4eHgMFqGN3MyoIm12mlDNIiUlFAsR31xlj2vX3dB+LT1a2nYGUnctVBsjsIra7HRC4onSF3zzzwBt7mSatDkwDnHLYErt9WjrKZD+AKx6pOYCxD+2l2sOU23uuBU6rs1pc2xfrCGabPcYOPMvOS/nPO5ps8eMw0vtHuZI9B8Q2qz0BWv09KUxJR7O26MFkEQTj5iV2gpCDYDTBhS/7nPH2JdQC2buppIhSF9CLWAtSuH8TwACy+RaWHGsumuw5vgAa/SLZpU6+TZOy9E4TQfgdN7vrnq7+Jdx91v7cv355zcTA0OEOs3QfjmQdB9gEtB1l2sg5+Hh4eEx1Ehsv5LqFwBYc/UZRPdK4hEKtTSJdj3WtzZrG6VrI34IbUzfq9Dd2lyx877PtxYp6iPo1qZ2W1hxrLrrsOb4L9boF8wqdfJNnOajcZoOxOl80F31dgks75qKdj+mBsC/MFh9m60OFmo3QsfVFGhz521oduKQjcnDw2No8QLpYY6IYNVdDvET6NlTJXVI3c19nqtOM5p8BU29gxbXRZZIUWsxffeFNQqsBgqDYQe6/kVlsY1D/YNQcy1GaKc17yQMtRcVCakDnQ+gFWapnfZroOVASD4P6Teh/Vy08UAcx6TLixVFGh6C4JrgGwuhDZD6ewpdTmc2TmOpYYsEwZ48NOPx8ChGTYmNkfDj4TEYiFhYdVdD/BiMNscGoM1Nrja/WzixC+W12eqPNo8Bq4ZCbbZdbS7eHtbddTXUPwTVV1M6QT4QwlB7iXk+yL92572Vtbntcmg5GFLPQ/oNaD8bbTokT5tjSMPDZmuWbyyEN0Lq7xramr/OlPLa7Hja7DFMGAaaO7tps5faPUKw4geh0Z2MK6Zv3j5XozX7I9q4K0ZAHfAtBA339xhlSdWxaNP+mP1UAhKpuCc6HxEL6u9Cmw8G+xcgQElqWw8BwI/UXQeB5dGWv9N7+Yyeq1A+2LYR/4JFkwK2GUfiCYjuXNBanTbovJnC8lUOZN+BycvhxI/Aih+C+OZC6m/tx7hmPJp6D01/hPhGGTMzCYFvXkofamwILDoUQ/Tw8PDwqIAVPwyN7uZq89gCL5JyaOZ7tGl3erTZvyjU39dznsSPNfpaoM0H9DkOEZ+petF8CNjj6V2bg4APqb0eAsuYc/q1d7qSNmcR/8Kl2uz8ZIxHI9sXtFanCbruoESbM2+42nwMVvwAxDcPUn97P8Y149HUO2j6f4hvtKvNQfDNR+n6kw3+hYZiiB4eHsMAL5AeQYhVB1Zdv9pq66mg7fSIXvYHtPUiiG4PAXdPccO9aNdjIH4kuiviX6R/4/DPj4x+ASf9OTTtTYlTNgARpOZ8s0fKPxa1J4HT3q/+8Y+D7LeUpIpLHZp8zk1hyydtVnGL6UlDL2eOkoaOG3Gs2tz7Glhppq5EO533QvulQAolBF0PQsPDZrKj/na06SBzrxJCav+FWPUzbWweHh4eHv1jYNp8cqE2Z75F2y6G6HbGnCu0OtTfgyYeBwkg0d2QfgZq4l8QGf0iTvpTaPoH5bU5htScC4EVEP+8qP0HaFe/+sf/N8h+RcmEuDSgyefd+8q/2YyZYCimR5vLBfpp6LwOx6pBrGpTVSOw0kxdiXY674D2q4Gkq80PQ8ODiBWFutvQ5oOMp4tEkNobzP9/Dw+P2RIvkJ4FUVXIfE/hzHEKkg+jqSfBvxzU34YElkNqlpumazit50LiAQpnlLvxG5fR8JY58bNq6V9Ktx+CK4KvBlIfuP27DwM6CdrOpTRNLQCu2VgBvjnd0lZ/VrhWAtrOQSVsBN8ahcaPQyJbDbpoqyq0X0yBW3h2AqRehfCmSGA5GPOeeTCR+NCmmnt4eHh4TDeqatyei7U58SCafBQCK0DdrUhw+Wmq1KCqaNvZriFoJW3eukib66iY+l18bnAVsCKQ+Rg0X5v/grYzKNV4PwTKafM8YFWDUyFDTRPQdqarzWmw5nC1eYuZoM2O61HSHeQnwf4JUq+b9PLgOBjzgavNVUObau7h4THkeE/nsyDa9QDlU6izZuY586lZ/ZxGnLYLIXEv5YUawAeJR9DJq6Hpj1F1UPs3iB2ISSnLF578uRwLJA7RPZDam5GGf5cJkDNF1w1C9RlIcKXSYWg7BFaisD52MbZrGpIG5w9oOwVtP7+X9jMKm9KVci1YtRcRxKr2gmiP4YmOkB8Pj2GCdt1D+RTqrAke0//LlaCclv7bzu5lghvAb4L2yauj6U+MNmf/gNh+QIjetbkaYrsidbch9Q+aoL/4Hkq0+ZzyEwLabuo/90ubM6YEV9vJaPvFvbSfURQ/Y7hoOW32gmiPYchQa+5sps3eivQwQtWG5LNg/27Sr0NrTVtHyefpfYY5iWZ/LvHOVqfZlI7KfAa+eZCaixD/woVt7ElufcvecB8UtBlt2hsjsIqZt4lB/GhjHtJ6HIXBpAOahMatoO7/kOCKaIXyXT1YcyPhTc3l1IHEY2jmC+O83XEr6FS3oZigOvsVps61UN5lPANdD6Lxo01a2SAh4kcDK5pJjfz0tuAqg3ZNj+HBu09+yIcvfELDPPVse8RmxGtjQz0kDw+PXlDNmr2+9p8QWA4JrTltHfVLm38po81NaMspkP3S7MOuuQjxL1jYxv4dEo/2NQC3cRPatCeF2hyH+FGuNh9PYdq1Yybhp27lrpiPQ31zVN6CDWacYeNqbrT5ETTzFfgWgI6bgGa3oUBgVch+BqpU1uY0dN2Dxo9CrMH7zhQJoYHl3NJm3c8nWn5l3WOW4q3HPuB/L3/GqHnr2fbIzYlV98Pkz2O2xwukhwmqjtl3k/4IE4iG0PiBWPEjBt6ZVY8RxnzBzjcJiSDBZYuur2jTvpD9ATMDPNWYlY1+GbFqcw2dFuNa2e9ajkViTDskHoOqkym/dzkJijFbGfMBEv2Huy+6QmktZzw6dTNoeNLMVidfwohwsdGKQuZDqH8GyX4MEkI77gH7G0ofbCy0419uQD4WiZ9ozMBmMFJ3A9pyvEmTs+qQ6gv7qHntMdL592VPcvfZ/yadMJ/Ne855mGNvOZhN911/iEfm4eFRDqPN+0P6U3LafBhWvG9zzhKsOiobdmH23OaVjDLXV7TpH25KeLZIm/Mme6dbm9sg+RTEjqZ8hJwETZrnlDHvI7F90eTLVCx7af+MTt0cRj2Btp0HyVdMH2W1+X1oeA7JfAgSRjtuB7t4exoYbb7W1eb5XG1u6Of99h+pu9nV5k/cmtcX917z2mPEc/+Fj3LfBY/2aPPdZz/MCXccxkZ7rjPEI/MY7niB9BCimoauh4zZh1VtAqoeUUpAxw1odD9jcDEApOoYNP0WaApQU55B6kEbQW2IbAbh7QpPchoh+yM5gVPAhvQnEF4v186/ACYFrItpzs2wJ0Lnjb230RQ4jUhgCah/EG09HbJflG/rTEUbdzGp2T3BeYWpciuCRHcz/w6uYWbl7V/zGvjNw0jX/UAKMp+iqXdh1POIFe//PfYDsWqGzC3cY/CwszaTJ06luj5OrCa3cqKq3HnGg2TTuQkkx3a45tD/Y+6F52S5tZcaiuFOO7NQapaHRz6qKVeb/zLbjTKfUajN16CxffqsnlGMVB2Hpt9ztRmQEEita8iVhfCWEN6q8CRnEmTHU7A6SgYyn0N+1pp/IczWqc4BjamA7ATovKn3NtoF2mIC/ob70dYzzEp5aUNwJqNTu7W5W5MraXN1njavgjbuZVK6e/CbZ5kCbX7P1eYZu3IoVt2QuYV7DB7ZTJYpvzVS3VBVsNqsqtx99sPY2VxKv2M7XHnATcy90JwsvcbiQzHcacfT5pmKF0hPA8bM63NwpkJgaaSv9OOyfWTQxt0h+z1mljZI6affZ0SLAQbS/gVh1LOQfM4cCG+KyhjIfGAcoAN/K93bI2FKV2Yd1P4DbT0FsJDoHkhgKeP23Xy4CUCtOcD5q8y5vY7QzPT22sTqcUGVwJIQ3R5t+5byIuyA82uZ42W69c2R9+85YdTLaOZ/0HqeMSULLAnp98ndTxa0A9LvgZum5uFRiV+//Z0TNziHrrYushmbvc7aidW2WJF4bZRwPFwQRHeTTWd57+mPRl4g7eExzCjU5mUKvu/730fGTMxmf6ayNovR5oEG0v5FYNQzkHzBHAhvhspoV5vDSGCF/mtz9jc0eQrgc7V5SeP23XKEmay25jBBeMX90uVWxrXyhHXuJkBqzD8DS0NkW7T9W8pnmDngTOi9v+5u86pSiG8eGP0Kmv4Q2i4wzxiBpVxt7r6fLGgbpD8onOz38CjD+K8mcuIG55DsTGJnbPY+d1dW2XQc8boYgVCgIIjuJpvO8sGzH4+8QNpjpuIF0gNEVdHWk0wKsfjMCm/dDQPfM5V+F+wfyZmCFadj+cA3F1iFaUuqtqkX2Qfimwti+7vnJE2ZqszXRv9985u6lVZVrr0VRyM7Q+JxzMx7CKw5XWdpM3uuiWeg4R7j9j36RXPMaUYnr0n5QNoH1vyukHZ/SVnk9mWVo7u+5TWIBNzxp9DM11R+IOgnEi+p8SkiSHBFGP2Ee60EOulvZU4uHa8p6dUE/gUQ6c00xWN24YytLqb5r2az1Q+447QHuP+CR3EcZeVNxmH5LBy78G/F57eoqp+x2Q4eHrMbRpuPNynE4gNsqL3JlJMaCKk33TrMvWnzfGYlueD6/dXmefK0OQFNe0LmW1ebF4T6ewuyn8SqRSPbQeJpcto8N7RfQE6bn4aG+5HA0sjol8wxeyo6ZR0qundb84Izkf5rcwjEQmqv67lP1aSrzQOZSC+D1CBS+DgqIkhoFRj9pLmW04FO7p+HiKfNHsWcvuVFtExu7fn9tpPv5d5zH0Ydh5U3XaG8Ngd8VNV52uzRO54d8EBJv5Pbh6sdQAJtOWbg/TidUGIp4jPiRtiYjdXf3TM7rdlfcKZsjE5aCmfSqialqZ9o+/WQ+cIdcwKy35nJgCKk+iyk5hyI7ArxY8EaQ6HDaALtKEz7EqsOgmuWuRfAGoWMfhpqrjLCTwAjuJUC4iBU/RMZ/QoSWjc3/pbjIPEUObH2gW8aZghlFE7bpSalvlITiUBoQyCcu5ZEIbhGQTun/Rp0ygZo0+7o5LXdhwmP2ZFsJkuiI4Ft2/z586SeILqbVFeaTDLDxy9/RjmT16qGKrY8aORlO4iOjB+P2YTU66Z8YLc2awJtOXbg/Wg5bbZcDQtDYHmk/s48bf4JZ8qGOW1O/7f/l2q/BjJfkdPmb9wMsEKk+jyk5iyI7ALx49wV4WJtvrloyA2ueWU5bR6DjH4Gaq4Eay76p80nI6NeRUJ/z42/5RhjkFqgzYv2694Lb7Aep+3y3rXZikNoHXLa7AepKjHodNouz9PmddDMNwMfj8csQSadIdGZJJPOMPnXqSWvp7pSpJMZPnrp07LaXDOqik33H3n+JUOtubObNnuB9ECxfy89pm2o9mZfWYbgikUH/OBfCmvMq1hzfo7V8FBPyriqbcxG7Am4TlxoyyFm/1Z/yH5F4ay6QupVnNQHBc1EBIlsi1VzLlZ8P8qmUWtpWS2p+5dZeS7GNy8iAWOIoi3l++shDNVnYsX2KjD2Us1A6hUKHxpCSHx/aHianKj2A2c8dN3b58SH1F4BkZ3ANz8EVoT6hwtWCDT9MXTeDqTNQ5e2GnM0j9mOu85+iC1je7Jd/T4c+/czqWqoqtg2lUgzbr1lCEWChGMhLJ+wwDJj2WCPv/PLF/3bmuDh4VEB5w+3IkMe2mwcowdCcBUKV2UDEFgOa8zrrjY/2JMyrpo1lSnsifRoc/NBqD2lf9fKlNPml3DSHxc0M9q8PVbNeVjxfSmvpanSc+pucifni/DNh0jQuF9ra4X+uolA9blYsT0KjL1UU2byIv+6Ekbih0L9kxgvlX7i/AJddxuDr16Q2msgvIOrzStB/b8LHLw19QF03UNOm1vQ5sP6Pw6PWQJV5fbT72er+J5sV/cPTtrwXGI1lbdIZlJZxq2/LKFIkJCrzQsuOx/r7fZ3xn85cSaO3GMk4gXSAyWwNIUiK6bMg5uG3F/ENwdSf7eZvZUaCK5R2XjKmWIcOQuu6zOp2v3Bv2SZgwrN+5pyFJWI7EphoBpGoruaUiB5iASR2ktL28YPNVdy2kHL7Z8CsKDuXuPQrV04bRe6TqB5rxfPqAtAACuwuDEEseYrbVORJKReQ52uyk0y30DyUbPPLvsltB5dOFOe/YGS9Ddn8sAnUzxGJHbW5uYT72a7hn249zxjUGJnHX7438+MXWwuIvEwsZpoyV7HcDTEJvuuz78+vJhjbzmYUfM08MePf/Holc9w2pYX8vztrwzRHXl4zAL4l6ZQBwR8CyIysMcc8c2J1N0FvoVdbV4LqbulfGP7LzczrUibs/1cBQ0sUeagQtPeva+kRnejsAZzGInsUkabQ0jtJZRqs5n4VaejF232Qd2DMOZdRFtcbc7/jhLK6q4EsIJLIvW3uUH8QLT5ZROgVyLzFaQed7X5c2g9tlB3sz9Qkmbu/DHwyRSPEYmdtbnpuDvZftS+PHDR49hZBzvr8N1/f2SBZecjHAu52lx4XjAcYIsDN+S6Dy7iuJsPpn6uen7/4U8eveppTtnsfF6+542huSGPEYG3R3qASGAZtOpEd++wD6yayiLbZ1/LIqOf7UfDakpTruyS/dMVT48fgXbdUaaPLNp2NtLwcNnzrOg2OGTc1VcLQhsYh049EvWNNfftmxdtvxJSb4B/EZBasMJIdE8k5KZDZz6idJ9ZN46pWWnVodlfgBTa9W80tj9W1VGI+NDoHpB42C2BFTAPN6F1zOmBFUCnMGCbwnJ5PC7a+k/X5M0l852pz9ntKOpfiJKHA6thwJMpHiOT20+7n6dvfIlUV+EDXzadZeJ3f3DXD9fx46fjSXYmueaQW8iks9gZmzW2WZl1d1kDEeGb93+gdWo76aR5CEx1pbn5hLvZbL8NhuKWPDxGPBIch1YdC+2XYbS51qzITlNfyyOjn++7oVVbGohqFqz+lUuU+DFo1z2U7jHOoG3nIA0Plr9sdAccstB5J4gPQuujrSeb7Cjf/K42z422Xwapt402WzUgUSS6NxJa1XSU/pDK2my72hxFs7/So83xQ7DihyISRCO75PmqBMz7EXRTvwMrmGogA7YQ7k2bTyrS5m/M9aM7m9/9C4JYhZe05hjwZIrHyOSWE+/m2f/7D6muws90Jp3l9++NNv/06XiSXSmuPvgWshmjzWvtsBprbb8qIsLX735He1OhNt903J1stNc6Q3FLHiMAL5CeBqzYXmh0R3BawRrdL4OR6UGsqBu8X9l9AEIbQGC5/p8fPx46LqdEsDM/4LRdAuJDIjuV1DG2ojtCdEfUnoxO3Yiees72RJPSFlgFUv/BGLMISAzix0PmSxQxRi+JJ3sfoDMJnDZyKWIJ6LwJjR+GiB+pOg31LQzpt8A3DxI/LJdqrW2VZ9T9y4F/CUi96K4a2EAYwhv3bkDiFKflJVH7jx55l+AqaHRXU4ZDAoAgtX2U8/KYZXj1/rdLguhuGuapo26OWlbeZBwAK228PL98OZFYTZT5lpinZ5W6qy2BYxdObBWLv4eHx8CwYvug0V1cbR4z6AGUWHE0fix0XNt9xJSXLJsFVu78GBo/BjquplSbv8dpuxgk4GrzfAUvW9FdILoLav+FTtmEnvJc9gSjzf5xkH6dnDbHzf7qzGcomGA6+VTvA3R+BydCgTZ3XIfGDkbEQqrPRP2LGPNU37yuNrsptE5r6T114x8H/kUh9VKhNkc2KzEELRxP8T7XJGpPymlzaE00siN0PZTT5rrre79Hj1mG1//9bkUdbZinnvo566jf1FSDWXGj5Rn/5a9U1ccZu/g8Pe06W03FjXySnZ42e1TGC6SnEZEI+GaeG6QV2wcNrADZr8E3DwT/Xlomo7fz4wfg2L9D4gEKxa0Lum4DLLTrXmh4xJToKCb7NZA/YaAm+E09l9efGlFsPx9FgAAaP5w+dxBIVZlgWDH7tvxmr1dsN4jtVubcWvf8ptLX/Atj1Z6POseh7VeZfWzB1ZDYAb2PJ7C8W2bDHZNEkEChk7dVfYpZKXcawb9IgQO6x6xNOFa6988X8BEMBznhtsL9eJF4hKVWW6yk/d82Wg7r9NzfRSAUYKVNlp/xg/XwmM2Y6docPwANrmTSuX1jIbjmgLRZYgej2d8h+TCF2twBXSYbzGjzY6a0ZTGZL82qdM8qrILTDOmXKNTm9jxt9qNVx9C3NldDiQGYg9HGoAmmY3tCbM/Sc606kEiuZnY+gcWwas5H7ePQjiuN90xwDcR1M69IYFlIf0Su1FYYCY4rvGz1GWj0H542z4aEoqXa7A8abT7+1kMLjkerIiy1eqlp7UqbjOPucx7CdoPpYDjAKpuvMDgD9pgl8PJdRhASXB6J7oaE1h6QUPecX30mFAWEORzjctpRYWXVGkXZ9PKyHyEbI3QJM9Me25fcfi4L4xAaNAGwxCG4AT2z6QD4IDCuX2UrRMTsxSoxNokgbvq3WPXGpKX+Tqz4ISVlNkr6rL3crGTjNz+xg5AydSrFPx8SXMET6tmMcileG+21Nrd/czWLrbhwxfPamzvobDNpiQssPZZzHj+JORccQ7wuxupbr8Qp9x41aGP28PAYPCQ4ztXmtQaszSKC1JwL/mUrtHBAu9DOm8u/bI0yZTiLzymbIt2tzUlovxxi+5lg14wEo80hV5urILguuTJgYLR55d5XjXvuy+f6vhRveYogobVNG18DVs0FrjYf1Gd2n9RcZVayu7U5fliBi3hPO0+bZ0s22LP0s7DJPutxx7fXsMi4MpNQGGOytqb2Hm1eaLn5OfPhE5hzgdHE62Ksse0qnHTXEYM6bo+RjbciPRshImhwdch8QvkyFwrZn8uf7F8aQpu4qViuSFcdA3YjdPW2R9yCyI5gzWHKZFi1SNz9UnKmokSgaZfScdRc1v/7CiyNjnkPWo6F9NsYgT0YiWze7z4K+rPqkVGPGSMWCXl7nz0K+OF/pX8jv3wxkVFz15dtn+xKceY2l/DFW9+gqqyz0+qcdNcRrLjR8tzz078Ge7iDxyxUvsLDYygRETS0BmS/oHw6tEKmgjYHlofwhqa6RbepVtWJYP8GXXf0dlWI7GbKXCZfAKseiR8O2OA0oYSgaffScdRc2v/7CiyHjnkfWo6G9HtAAOKHI+GN+91HQX++BmTUk542e5Tlh4/LaPOXE6mfs65s+0RnkjO2upiv3vkORVlv1zU54fbDWGWzFbjn5xsGe7iDh6fNMxUvkB5GqP0n2vVv0BQS2Qzp5x7ogSDRHdGuO91amWUEO/sdqklECstKiQjUXALprYxA+5dCgsujqmjXfUBnmatZ4JvbBKbRbSG6bdHr80PqA1SChelfEkE0wUCwrDjU/x/qFvGdlhX7EiSGdt1n7k/8SPwIJLwJYGYxyX5t9oEFlkasmum/nseIwPKXrppYvsrJPTcdfxefv/l1T6rY249/wMLjFmDnE7YZtDF6eHjMONT+He16CDSNRLZAAsvM8GtIdGdjPKZdlNfmL1FNl6wGG22+3HiI2H9AYCkTwKqiXQ9SmO3Vjc+UwLJqkOgOEN2h6PUFIfUOKoHCkpcSRgpWqPvGsqqg/vZB0OZ70K4HXG0+GglvCHRr85fgdLjaXD391/MYEVi+Um32+Str8w3H3MGXb3+LnTXa/OYj77HYigux3VFbDNoYPWY9vNTuYYLaf6BTt4LOm6HrNrRxTzT19gzo9080+QKa+gBVRXxzIQ1Pmplo/yoU7nsG8INdWrge3BS00N9NCltw+Z5j1HSX13DTwrrTrvxLI/V39S6c/oWgXNko3zylx/qBiAxIqLvFXdXBabsQZ9LyOJNWwGm/Fu180DjA2j+ZCYaWE9HUW6g6aMvhaNPuaMuR6JT1ey9V4jFL4TiFD7kiQjaT5fFrnyt4LZPOMOW3qbx81+s9QTRAOpHh01e/nGnj9fDwmHY0OxGdujV03uJq8+5o6r3p79f+w2hz+kNXm+dBGp4wZSf9K1GqzT5wyniB0K3NayPRXXsm4I02X4TRZj85bQ5AYFmk/o4+tHnhMtpsgW+uabjb6dFmG6ftvJw2d/wL7bwHOq7I0+bj0NS7qNpoyyHm+anlCFebv5um8XqMPLo/M92ICKmuFE/+6/mC17q1+T/3vtkTRIPR5k9e87TZY2B4K9LDBO2803Wv7H4QT6LtlyKhtaa9z9T7aMvBGEF2ILgq1N6I+OdFas5Cs7+hUzenMM07iSaf7qkB3R+syMao/wFj0CU1ENkSkTBqN6IdV6P2HxBaA4nu2+OiquqgnbdB8jnwzQ/2eMAy7uF1N+WcP6f13tUBZzJIddm+nK5Hof0Csy88uDoExkHXv+mZve+8zdxLwWx+Eu16CHFaIfVOwWvaciwy+oXpGrPH8Oe37//g/ac/Kjimqvzw8c9M+HIiz97yMuPWX4ZYbYwHL3rcBNZl0qzSyf65gNq2zUt3vs6Eb35n4eXnZ8M9p80fwcPDY9rQztuLMriSaPtlSOixae8z9Q7afJgxCcOB4JpQe53Z21tzNpqdYCbWC7Q5hSaeQeJ9mGXmYUU2R/1jIf1fY8wZ2RKREGpPQTuudbX576YkVoE2/x8kn3e1+RfAZ1Z+624uyVYb8L2rbSpjWDVlfVCcroeg/SLQJBpcEwJLQdcj9Ohtxy2uwWiRNiceQZxJkHrftHW/d7X1eGTUM9M1Zo/hz4SvJ/LRi58WHFNVvv/oZ8Z/OZGnb36ZFdZbhnA8zEOXPoljl3eUTyf6qc1ZmxfveI1fv/uDRVdYkPV3H7g/gsesgRdIDxe0nZJ0Li2XLj2ALluPKxSb9AeQehnc9GTxz4tWnwdtJxae2HETGly9xA2zp1+nw9SjzC8t4l/MrKCnXwP7d+No3bidW0cyC+kP0ex4pOY893avgq67yQWjYai7xRiE9MPIpNf7zrrlP5wmwEGrjseK7Zd7Pf0RtJ1Dj4lK+gPIfEZh0JygdEUAkDDYE6A4vc3+Y7rG7DH8aZ7cynHrnEk2Xc5fANKpDBO+/o0JX//WZ1/ltjC1TGnl6ZteoqO5kzW2WZnl1l6Kc3a4nP/95wtSXSnCsRD/+8/n/POuI6fzTmYACuLtw/KYHSiY4O4+Np3a3HIc+cEeqXcg9RqETR158c+PVp8FbacUnthxHRpaFQmUGpOpqhmXxAof6P2Lo6l3IP0q2H+g0d2gcVvj7E0W0h+h2QlIzVmmn/ZLTWnHHo2LQN2txux0urX5F7TpH+61HbTqn1ixvXOvpz6AtvNz106/73q69KXNAhJ2610XpbLbv0/XmD2GP01/NXP8emeTTZcvhZpOZpjw5UQmfDWxz/3D5YLh5kktPH3zS3S2dLHWdquyzFpLcOY2l/DZG1/3aPOnr31Z4gw+JHjaPNPxAulhgoS3RBPPUiBe4a37fb6m3kbbLzL7gsKbQXRvN4jNb5QF+8/CY6F1MW6d+X95CtlvwQ2kTUqMDfZ4tOkAU/eZIFpzOVZkI7MXq/kwE5CShNSbkHzGnRzo/mJLQuIRtPpMYxDSdT+FgpeGzP9MbcvpRJsPAeev3D21X4MGVkCCpoSBpt431+shkzNQ63kfLFOnO/0/cnU4w6Y8h/0HJl0ukWvrX3S6x+0xvLloj6tpntQ6Q/r6/I2vOW7dM2mb2s68i83FXmftzCmbXkBbUzt2xubJ619goeXnZ/yXE8mkTHplsjPFmw+/x77n7cqY+UbPkHF4eHj0jkS2RJMvUqDNkf77G2jqTbTtYrP3ObyFSd3W5qJWdhltXg+z+664vvR3pgwUedqc/QVt3t+s9EoIaq5Cwuu52nwwpD8mp81Pg9NJTpsTkHgQrT7duGZ3PUjhRHEayX6GhFbu9z1XfC+aD3afH7q1+Qo0sHzPVjFNv1tybeNIXqzN49wyWN3aHEGi+4L9CyqRvAUEC/yl5Qc9Zi3O2+UqWqe09d2wHwHmxy99xnHrnElbYzvzLj43e56xI6dscj7tzZ3YWZsnr3+ehZdfgF++mkgmmdPmV+57i33O25WGucobm3nMuniB9DBBQmuiNRdCx5WmbmN4u5y7dR9o5isTyHYLUNed5qcENzjECLC2XwRd91Ly7SKCWvOgHTdB592g3QG5H1PbGSABrcejgWdMelr6faDbMCzlPhQUb8G3Ufs38M1HqTmZU77e5ABRdcD+ueieHFNr0w2kxdeAEqRQsEN5v/uNMFefB84kNPEIEECieyGBxVD/4hDdDbruMW2tOqT2mukeu8fw5ou3vp1xnSl88abZV//rt7/zv/98QSad7dlLbWftsg6kPr+PRMfAzH48PDymHQmtYzK3Oq4B0hDZEYkd0q9zNf0Z2nwEOW2+zfyUTF5LQXCsbedB4gFKgmgB9c2LdtwAnfeAdu+ZztNm7UJbjobRz5vJ8+4gGjDa/DulK7oOav8OvrkpNSezUU2VLaY1EFSzbjZX8aT9N9DtuWI1GLdw8p8F8iet/SYbruZ8k/mWeAQIIbG9Ef8iqH8RiOzsTtT7wdeA1F41nSP3GO588/73M6wvVfjirZw2f/zy52RSmZ691HbW4fuy2myRaE+AF0jPdniB9DDCimwJkS0HfJ4mX6JQeIr3fliAD6qOQ4JuHenks+6e4PxUGB8QMCvh6f+6pTOKVm4LSKKJh5DITpQGzX4TYGuKAuGcuglqLUHZmXb/ApXv0WkzM+34TakOZ7KpNe0Gx92IWKhVX7gaL75C87LItmYCwf7Nne3urq2ZN566GxH/WGAsElyp6BqCVJ+Mxg8Gp904k/dRm9pjZGPbdtk9VWIJ6kxfHpU6SiaVIZstnzLejeWzqKqPM/cic07X9WYYXvqYx2yCFd0GogN32S9cyYbK2nxSz6osySch8SiF+6NdA8/IDpB6w53E7UObux5BIluASNHfagDEKjqmMHVD1FrKjIeiFFnfApXv0Wl1a1FbrjZPgcDfcvfjIuJHpQa0Je+g5QbvLpEdTRBs/+nev+3eW742/x/im9vobrBwldxo82lo/FCTnedp8yzPYGtzNpUpMAsth+WzqJujlrkWmmO6rjfD8LR5puJ9wwxzNPUO2nG9cc+M7olVUkIKkChlxa8b34LIqCcL9jdp+mNKZ579UP8QVnAJnEmrUSjUFei8Aw1tBf753BrUGbpXaam/FaZuTYnIO+VW9gLgWzA3PvsPs486+xs4v4MzFVCwRrt7n23AQqtOx4rtVtCT1FyNthwE+MyMfGBlM1Ot6jqHRqDhMWOm4rShHdeC5qcF2ZD6AIK9p7KJVWfu02OW59J9/lXiCAr0KtSj5q1n6u95Lru9iJsv4EMsIZMq/Rv2+S2i1VEWWHosJ997FIGgVzvVw2Oo0dSbZmVYbYj9w0yEFyMxzGNWBW32L4o0PNo/bW54GCuwOM6klemfNt+ChrYAa26wf6VHm30NUHszNG5dOi7nayhZew4UBNKa/Q3tuAqyf4DzW27SWka5K+SuNlefgxXdsaAnqb0abTmUnDavjvoWzGmzFYVRT7ja3GGuox35A0TSH/RsO6uEWPVg1ff9HnmMeC7a4xrKiWslbRZLaJi7jqm/NeU+6tOqzQEf0aoICy03P/+8+0h8ZUpjesz6eIH0MEbTH6LNh9Izo912Fg4OVnT7gnYS2cF1Fm2jcBYbTBmqRUtrT/rnd9Ob8wU5DcmnUP9cFK5w94YDTTu6/UTAmgMCSyDVZ4NE0UoPEGYU5L7BbGg6CMdXC6F1IPGEez9FM43OX3m/2NB+Nhrd2ezt6sY3J/iXhOwEM+Odfh+mboFao9HwRkhoHSS0hlmZBrTzxqIvUst1U502VBXtvMWs+EsQ4kdjRTab5v48hpa2xnbefPi9EmG2fFZF50/ACHV/EKgZVc2hV+/DjcfcyeRfc+XnQtEgWx6yMYdc/o9pGruHh8eMR1PvFaZst56Ko4oV3aqgnUR3Qrvucv1CymnzYqUGXr75oKw2P4f65jBbv/qFA03bYgLobm1eytXmcC/arJRq8/44vhqzbzvxaAVz1CJtbjsdjexQaN7kmwv8S0D2V1eb34apm6PWGDS8savNq0FkO9Nlx3VFY5tebXbQzpuMC7gEkarjkPDG09yfx9DS9Fcz7z75obG4ycOyBKdCIK2O5rS5T+MxqJujloMu24sbj72TKRNzmY6haIhtj9iUAy7ec3puwWMWwKsjPYzRAudMgAR03VXSTnyjkFFPQ+wACO8I1rxmJlxiYI1Bqs8o7Ty6O/iKDYsUum5FJ69qjFH6hY0JutWMjyxSez3iGwOp/1A6u51PviA6QLMptdF1b/kguiyKZifkfnNa0cadIfOp2dutbe74Umb2vOsOtPkQnM77c13EDga6y3BYxlRsAGYyJSPqvA06bjDXs3+G1n8a11SPEceEb37jsn3/VTa1q7cgut+I2ffcMqWN5275D7d9fRVHXLc/8yw6F3MuOIbtj96CAy8ZpkKtI+THw2MGU6rNybK+JOIbg4x6CmL7u9o8d06bfXMiVaeWnhPbC6yGoqMOdN6ITl696Lq9YWOC8W5tVqT2OsQ3CpIv0vvjX7E2N7nafE/5ILosDppnoKZOUy/aPNHU6G4+CKfr4VwXsQMp1mbCA9/+1jOGzpuh8+YebdaWE1zzUY+RxvivJnLFATeSLafN05nSDfRoc9NfLbx45+vc/s3VHHr1vsyzyJzMueAYdjx+S/a9YLe++xkKhlpzZzNt9lakhzXlZl7Lz8aKbwxSdTwAqhlTzkltCC5XtlajSBCN7m/qNZbsr5rWAEFN2rXTCL7RpszUNPXV2yp2MYLkP1ikP6JkT1UJSei4FGK7A2DF9sGROrNv3KpF4oebPVjTSiKv5qV7PU08gYTWnPY+PWY6f/48iaNWO5VER7JsWveMQBDsjI2dsfnsja/Za+EjSHWlQGH02AZ2OmFrfD4vXczDY1hRblW0wkqp+OZEqk4AQDXtarMDweXL1mQWCaOxfaH9Mkq1ufe9mpVR4yuiLSi1aPpDpk2bi8fTGxaSn5ad/hCj7b19lyah/WKI7gSAxA5ArdGQfM6YesYPR3zT4RGReJSS+tPJp8wquMeI4fcf/+So1U8l2ZlkkKQZAROkZ2w+eeUL9lroCFIJo81zLDCanY7bytNmD8BbkR7WSGwfcrOxAGGQKM5fS+NMWh6n46by50kAAuPQzH/Rxt1xmg5Cs6UugxLeyMzwDsiP0zIpYuEdgXJ7NW2wanDaLoLEw2Ve7ybAtAfseUi80AhFQvRrqktTBcGRFd0Gq/4WrNpLEf/80zmm4okLcfexewxn7KzN1YfewhbRPdiqak8u3/8Gkl2pQQuigYK+04k0rVPaSLQnSXQk+eOnSdz6z3sH7doeHh7ThkT3xbhJdxMGAq42j8PpuLX8eRKEwApo+n20cTecpoMLMqp62oU3cbVsoNo8tzHsKjvh7oDE0bbzIfl4L/0EmTHaXGW8Uwr67QeamxgXEazotq42X4IU9DctYyrWZsvT5hFANpPlyoNuYovo7mxVtSdXHnAjqa7UoAXRQEHf6USa1qk5bf79+z+5/bQHBu/iHiMKL5AexkhgGaThXghtBqH1IbQWZD7H1D1OQMeNOIlny56rbedAx/9B9itIv4E27oTakwr7982BNDwMwXUoHxQDBMGaBwjlUsXrH8CqvbD8OaENQTvKl9UquHgUfIv0/SYA4IPoAWYs5AX+1txI/T3GoKRnuKu4Dt3doi2UPlQEIbhW4d4tFy3ebDMNSNVx5B6yTBAtsX2nu1+PweWe8x7mP/e8QTqZJtmZ4qt3vkOdGfBAWYHaMTX4/Lmv4GKX0Ww6y/ivJg7a9T08PKYNCS6P1N8DoU0gtAEEV8/T5i7ouM517C5F286AztvytHkH1J5a2L9vLqThIQiuTe/aPC85bZ4TaXgAq+ZCyiYbhjYDpwUSD1JZm91J315cugvxQ3R/SrV5XqPN+SvuoTXAmpM+tTm0TtkrzRBtjudrswmiJbr3dPfrMbjcdea/efX+t0gnM0ab3/0OZxCj6Nox1Vi+ytqcSWf55ctfB+36HiMLL7V7mCOBZZE6U6PYmbIRJXumU69CZIuCc1QVEo+RS8NS0DTadR/EDysQN/EvhNTfgiZfRluOd/v3mXOkBsLrI9VnmXRtpxP8C+TMUYKrQfrVvCsHQW108vr0ngIWQBoeN/vMusrV/ysujeVA9itk9EvmYcWqR/0rYlmls+4iQaj/N9p5KyRfBnuiGZd/Ech+CtjmvqrPLXzPsr+izQebfVNSi9ReOc2p2BL6O9TfhSaeAAkh0T2nfybdY9B5/6mPSXXljHzsPspRTStiCRc8cwoLLb8Ax6x1Oq1T23Bsh9rRNTT91dzjDhoMB1h85f5ONs1cBJBZaI+Th8dAkeDySNCYYTmT16PQoDOBpl4zK8t5qDqQeJLc9iXHZEd13Qfxg4u0eRGk/v9wEs9D6z8p1eYNkeozwZ5igvcCbV4V0m/mXTloxjRlI/rU5lFPoJ13QFdpFpu5fv73og3ZH5DRL0LmC7AaUP/fKmhzCBoedrX5P6b8JEEILAKZT0xfVh1Un134nmXHo82HgP0LKnVI7dXTnIot4fWg/nY08RRIBInu4WnzCOC9pz8q0ubBmeC2fBYXPHcq8y85L8esdTrtzR092tz4VzPZPG1ecpVFB2UM04unzTMfL5AeSVj1YOengflNOaiyFK+2pkypqq5/Q/29SKDoSyC0IdReA+l3QGqR6C5IvhmZb56eyWNVRTNfQfrdouv5If2fvu9Dwoh/XojtiXbdS25yIAChjSHzETj5q+cK6Q/AGoWENy17dwXdWzHUqnGD6IT5yX6c110LtP0T6u/O3U/TP8D501xLm9Hmw2D0C4hvrr7vp9wYgiuU1Lj2GN7UjqmeMR3lG96WQ5UVNlgWf8DPzZ9dzhdvfE3dXHWMXXxuTtv8Qr7/6CcAFvnbgux34e4zZkweHh6Dh1VvyjT2UEmbhfLafCuaeNBos3/hwjPCm6ISMnortUh0N8SXZ0bmn7fnn0abv4D0f4uu6YfUK33fh0SMP0j0H2jXg+QmBwIQ3gzS75k60bkrmmcGaw4kPE/P1Sp2b8VRiRtzMRJAl9H7bpxmaD0Z6m9378dGm/Z2nwcUtAltORhGvYT4pq1mrwRXQoIrTdO5HkND7ZgaJnz926Bfx3EcVlh/GXw+H7d8fgVfvvUNDfPUM/cic3LKphfw0ye/ALDYyouw9zk7D/p4PEYGXiA9gpDqM9CmPY2JGBZYcSR2YGk7ETS6NyTuKzLWSJmV6ZYjzAyyi9qT0KZ93FqTCvEjC4PoPJyuR6HtbErrWCrQT6fvkCkRIr65oeEhs2fLmQqhdZCq49G2CyFxf9FJ7sNAGVTTaNtZkHzJ7PmOnwSJpymtxdlNBtL/RdU2ZbOcJvfhIG+WU3xm9XsaA2mPkcfBV/yDI1c9hVSiv+VlKtDHbPDo+UbjD/j58p1vOX3Li7AzNo7jcOKdh3PF6+fw1/jJoDDngmPKbj/w8PAYXkj1mWjz3sZEDAGrBontV9pOBI3uYUojUqTNThptPgoZnduupfZfZpLX/h1wIH5cYRCdh9P1ELSdR86pu6cX+q/N25hx+ueFhn+72twEofWRqmPR1rMhWex9YlHJBFU1hbaeCamXzf7kqlMg+XTRc0k+aUi/h7p1pXGmmHT0gvvxQeYrmMZA2mPkcehV+3DU6qeSTg7E7G7gzLXgHPh8Pj5/82vO3OYS7IyNqvLPe47i6rfO469fJoPAnAt42uyRwwukRxASWAYanobUGyABCG+KWDVo+mOzJ9pphtC6SPXpSNWJqG9u6LrbXcXuFiJ1V2pzaMsxYI+nJ2Wr4yY0sFxJarNmPoe2c+h/jekK2F+jmkAkggSWMPvA86+TfqvMzY9Cmw9Bg8shsYMKam9q2/mQeBZImtIcbWdA0ax+KUF6LAKsKkqjH6dMCRKPWZkFl5mPc5/6JydvfN6gmZjUjK7m3CdO4q3HP+Ci3a8hk8o9GFy+3w0stdpizLXgCHlA9NLHPDwAk+ad0+YQhDdDrCo0/SHadq4JBkPrI9WnIVUno755TSmp7slrMP8tyDgDbTnSPeZO8nZehwaWKUlt1vSn0HY+06/NX6GaRCSMBJZCGgontDX9dpmbH4U2H4wGxyGxA43ZaXf7tnOM4zYp453Seir4FuxjEKFckCLVlDiVq+1p82zGwssvwFmPnshpW144aLpTN0cN5zxxEm88/C4X731dTxo3wCV7X8uS31/HXAt52uxRimc2hjtr2nkvTvsVaOqNoR5Or4h/LBLb06ReWzVo9he0aT/IfmvSnxJPoq2nGLfL2J5I1SmlTpW+eQp/z3xFoVgl0Y4bcSatijN5TZxON9BNf0J5N08/A5qTyXyDtl9V+XUtU/5Kp0D6dei4xYh2fqSTeoWSmp7+Bd37tsh9zPM/7pap8Yy7r7rqZIwJiXFGJ7g2BFbs/z15zBL8bYPlWGj56XRt74Wl11yco9c8nXN3uLwgiAbwB/wzJX3Nw2OkoJpEO+9xtbnMBOswQvzzIbG9kOjOJojO/og2HQDZ71xtfhxtPR0RCyu2N1J1YpE2C/jGFnaa+YYCzdU02nF9nja7zsGZjylfNnKg2vwl2n5dLw3K+EboJFebb0KbDyvU5uQrFAb3KQgsiqlGUkGbxUKzv7j/jELVCRRoc3gDCCzX/3vymCVYedNxLLDU2L4bTiNLrbEYR6x2CufvclVBEA1Gm3/95vcKZ3rM7sz2gbRqGm3cBW2/FDpvRpuPwun4v6EeVv9JvUFxEEzy5dyvoXUhvDVGhOIgNUhtkVCWpHH7jPmHNpvUqvZLcZqPQtsvpzSlOwKBcQzso5SCzJeVX47uSmHZL8g9TCRNrWg770tN4kVtA+BbBGl4FGKHQuwIqDqdwvSzBNp8VM9vVmwv4zJadRLEjzUurKnXZohTqMfI4tr3LmKRvy00KH2/+8SHpk50GbLpLHMsMGZQruvhMdIw2rwT2n6Zq81H4HTeMdTD6j+p1yk09kpCvpN3aCMIb45x3e7W5msK+yhZeZUibb4Ip+kotP1qSgPpmBtwDlSbv6j8cnSXMiWk8rX5vUJ/E6tYm/2If3Gk4RFXm4+EqlMp0GbtNFly3V3E9kXq70aq/wnxYyCwEqReH9SyhB7DDxHh+g8vZuFBmuh+5/EPSXeV39aVSWeZY/5Rg3Jdj5GPl9qdetNNa+5e0UxAx1VobH9ERsA8g4QpEcq8tGcRQWrORWP7g9OCImjnHWj6I9AmI+CRnaHrNnrcshUK91QlIfUSZVej/Qu4QfFA9pX6wDcWp2lvsxpuzYnUXoYEljJjjh2CShASj5tifvZEClechfzJA6k+HW0+3B2D392fthti1SFVRwOgHTehBRMO6qbV5b9ty+Nkf3TT10GxILQa1N7o7YeZjQiGAtzw4cV88soXnL/rlbQ3dQ76NcUSNj9wQ8YuPvegX8vDY0SQehWy+d/9CWi/Ao3uM0K+j8OYADEvwC3R5gvR2EHgtLra/H9o+mMTKEsVRHYq0malcG91EtIvU3al2LcAZL9hYNrsB/9YnMY9zbm+uZCay5DAkmbMscNRwpB4wjQv0WarIKNMqk5HW452xxAAqxaiOyNWDRLo1ubr0YJJAHWfyXJIcBxO9jtov8S0EAuCa0HtdSPks+AxIwiFg9z4v8v4338+57ydr6SztZ97/6cDsYStD92YuReec9Cv5TEy8QJp7Shz0MHMJIdm8mCmgfAW0HGDKU9FBghD/KiSZuKfH8060LidKZXRjXZC5/9BzaVGkKQG7bgOMh8W9VBhZdaeSKlPp98E6NpS/hwZDen/gePuD7PbjYnaqJcRX4N5wIjtD7H9zarE1M3A/hPzQBIE/0IFKXAS+js0PIgmX0OsGES2RazaoiEtZCYdeu69NI1O1Ya2syh48Ei/b9xSp7EUlsfIIp1M89BlT/LTZxNYfOVFOOH2wzlr20sH/brqKE/f+CI/fTaeC587lVBkmH/3qFdiw2OQcToo3eyXdX8q1VYeRkS2gs6bjFkXWYw2H1vSTPwLoNkfoXHHPrS5Fu24AjKfFvVQoUyfU67OreVqc1v5c2QMpN4Dx91iknW1efR/zMS0WEj8QIgfaNLup24G9iRy2rwo+HKTgRJeDxruR5NvuNq8HWLVFF7Tv7B5b3omCAR8hauOqhloO5eeFX4F0m8bd/LQquXvxWOWIpVI8e9Ln+SXL35lyVUX5dhbDub8XXrZIjiDUEd54rrn+enT8Zz/7KkEQ8P8u8fT5pmOF0gHV6FQrAMQWNbUPBwBiFUFo55CO+8GZyoSWg912nCmbAI4EN0Lie5l3EK7HqjglpmE9sug7loksDRI2DiFkqJ49beUAFA0GSHVUH0OtB5FedeDGnC+KzykafOA4NugsCsJQv1DaPt5kPnB/L+pPq0kW0ACS/WsaGt2vCnP5V8Y8bmziN1pdImnjVEbAaTu2qIxJMrcq7iTFB6zOrZtc+KG5/Lj/34mnczw4fOfDFqKdzmyGZuv3/uee859hAMu2mOmXdfDY1gSXLWolFwAAisUmFkNZ8SqcbX5HnCakPB6qN2Yp837YMXM37l2FlfY6CYJ7VdC3dVG3+SfxhOFFGaVuty+6G4CxnwzH6se4qdB23GU1+ZqcL4tPKQpU8EitE7h/UnYaHPbeZD9CYLLIVXltHkZY5QKxtMl8yX4F8mVrwptCpHXIfGc0WYJIbVXF42hXFaQmGofHrM8tm1zwnpn8/PnE4w2v/AJi67Yl6HsjCObsfnynW+5/8JH2eecXWfadT1GBrN9IC2+uaHuTrT1ZBMwBVZEai8Z6mEVoNmJkP0RfPOW1n8GxKpFqswqtJN42bhWd6dbtV+BSgiJ7mKC1Up2fs5EtHF3aHgQCY6DUY+iiedMKlnXDRXO85Vf0a+90nUQrXAt/a7MwXSZvc7u/fkaSoW1Ak7HTWaFXgKgGbTmMqzIJnlpdIeAtoJvYWNkkn8dK4765it0SVUbAsv369oeI5tfPv+Vnz8b31NiI5VI88375T6r048vYIEKdrZw4iabzvLtBz8MyjU9PEYS4h8LdbehracZbQ6uhNQMfnbIQNDsryaI9I9F/IuUvC5Wfc/2IifxvLttqFubL8WRMFZ0B8xKayVtHo827Qb1jyDBFaHhYTT5vGnfeRPls8V8pUE0QM3V0HZ65Wvpt2UOZnrR5tGlE9IVcNqvMyvsPdp8JVZkQ1ebL0Fjh5uVcv/CSPE+bKkB35y5MmDgarNnOjY78MPHPzP+699y2tyV5ut3y31Wpx9fwEIdxbEL/0YyqSzffvDjoFzTY2QzAjYBDz4SXAFr9ItYc3yEVX9zaVrwEOJ0PYlO3QJtPR5t3AGn/ZreT0g+QuGepQR0PQSARLbDpFBVIoG2X2/a+hfBqjoKYvtQ2UvfR2n9yJh5/+xfeh9nGbTzJtT+a8Dn9Zyf/dEE0d1lsEhC64k42fFo5z1o570gUSSwbEkQ3Y3U3w6+hQEBqUJqr0H8g+fi7DF8yKSzWFbhV+Jg+dkEggFitaWfQZ/fx4LLzjc4F53R6Aj58RixSHClnDbX3YRY1UM9pB6crsfQqVsabZ66PU7Hv3o/IfEwJdqc6NbmHehVmzWBdrraHFgMq+poiO5FxS1X+ChdJ4magLSoxFbfKNpxA2pP6rtppR4y35kgukCbj8fJTkA770a77gOJmdXrEjMzdz953Z1u6SyzBU3qrjOTLR6zPNl0FqtoL7w6g/PlHggFiFbHSo77Ap42e9pcHi+QHsao0+XOHifdld8kdN5mAsZKlBEhJIKqg6bfcWsmB0FqKXXGBtKvoKlcrUhxfqN0D3Q3DiWp0KJm77E1DfX20u+hjTujmuy1mdp/4TTthTNpNZzGXc2qAID9G0jxw4NC47Zo+yXmZ+pmaLZyiSHxzYM1+llkjq+x5vjY7PHymC1YePn5qR5Vhc9vJofEkkETa9t22PXkbQlGgvSUTLWEsUvMwz7nealjHh7DGXU6XD+NPG3uuBnNjq98UlltjqJqF2lzHWWD6uRLaOq93Kl2X9pclPYtgvjnBWsaKgOk30Ubd0W1d+Mytf/AadzD1ebdc1prTyyjzTY0boO2X4a2XWy02f6zYt/iH4s1+nlXmz9EilLNPWZdFl1xIeJ1MXx+E7KIJYM2yW1nbPY4bfsSbV5gqbHsfdZOg3NRjxHNbJ/aPVxQTZpSVpqE4OqIb4y7/6fYkTtg0pvKpJGB63ideo3cfqswUnW0qdvcdTs5s440+BZ1aynnB8MO2n4ZEloLp+Me6LiAylNHAYgfBp03dF8dqf2X2bddew3avC85B/D+lJFyzENJ5jsIlk+nVs2gTbuD/Ydpn2lBm3aF0a+YleSSGtRZClLaNYN2XIPUXtbrSESKV9o9ZlUmT5zKz59NoGHuOq5553yuPez/GP/VRH7/YdqzI/oiHAuxzeGbscbWK/PJK1/Q3tTBsmsvyRKrLIo/4H0te3gMF1QTprqHplxtHm1KT4mvUBp7tHmBsv1I/HA0/bbReBQII/EjTVnJrrsp1ObFwf6RQm220Y4rkNAjOB13QMcl9KrNscOg81+YaMBCam80hl+116LN+7mnJuifNtugLZD9Htz9zqXvUxpt3A2cyaZ9psWkpI9+2TyvlGizDZqX0q4ZtONapOaiXkfiafPsw+Rfp/DTZxMYPbaBa969gGsP+z9+/ea3QdXmaHWUbY7YlNW2WolPX/2C9uZOlnO1uXuS3cMjH++JbRigTgfauIPrfgmIBfX3GTdLCVBgQqIZ44xZAQksAfWPoF0PAlkkuiMSWBZtPpLCmpaYINq3MNjfFw0ogaY/hI5e9jkjED8QK34wGtsH7CngG2PMwTClpHTUy9C4EzhJ+ifWADb0ZvRmT3BdULv7c8yDSeY7JDgOrT7X7BEXH2CZ2Xf757wOHM+gxKOHD579mPN2uQp/wCKbcdhwz7U57Op9Eb+P3ec9eNCum+pM88BFj/GPs3dhnkXmGrTrDCqzUGqWh0c51GlHG7czmqEYXal/APzzUTLJrRnXgbo8EljKmHN1PQgoEt0JCSyNNh9MqTb/aMpX2T8VHne60NT70HExlf8ALYgfZrQ5vk8ZbV4BHfVSnjb3E7XdcpsVyP6EcQPvDv7difHsD+YZpPpMaDvbXZn2mRrZBWWuHLA9bfYwvPvkh1y4xzX4/D7sbJaN91mPI67dD9t22HvhIwbtuomOJA9d9hR7nLYD8y7qabNH33iB9DBAO+90TTTctCkFbTsDq+ERqPs/tPnA3KpqzSXGIK0XJLAoUnNG0UGrzB+XBaHVoesHci/6ILQRmnydyn+NAYgfhRU3gYZICPzz5u4n+wvaeYeZmXa6S2P0hzAExoF/sV5uLmIEPR+1Qcx+Uyu6LRre0KwY+OYy7233vunu+0u/jzNpZag6ESu6cz/H5jGr4TgOF+x2NamuFCn32LO3vMxLd72Gb5BXhdPJNF++NThmKR4eHjMG7bzNLb3YvVosaNuZWA0Putp8kLuqCtRckasSUQEJLI7UnFV0tNwOOx+E1oKunynU5o3R5CtU1uYQxI/Biu9vrleizT8ZTXQmuxPKvVXkyCcMwZVc/5AKSLR01blAm3dEw5u62jw32nkLdLj7pk0LSL/tavPJrgmbx+yIbdtcuMc1pLpSPceevuFFXrjtlUHP2Eon0nz59jeDeg2PWQsvkB4OOH9SULsYwJ4MmNljxrxnxMdqmPayXLEjoP3sooMWpN6lUJRtk2YWXKVCRz6w6pHorjjpr01atyYhuhtWeAM0OwFt3B5TD7M/02LunrDQauBfEontWVI+Ix/xzYOG1oXUS7n+rTjqW6hnt5hYcbBcl9HYgagz1TVc604jc0Bboe181DcP4tWIni1JtCdIpzIlxzOpLJlUfyd/pp1R89YP+jU8PDymA/sPCleLNU+bV3S1eep0avPhbvZXPhYk36RUm2+DwEoVOurW5p1x0l+62pyG6J5Y4XXR7M8m800T9F+b602d5sDSSHQPU8+6Er75ILgmpF/L9W/VoNYCFbT5MNRuhMRj5N5j29Xmc1DfvIhXI3q2pLOlq6SiBcw8bR4z36hBv4bHrIMXSA8DJLg6mngGs18JIGhqaHa/LgGosAqtapug0p4CwRWQwLJl21mx3XFwTL1oEkAMaq+GlgPLtE5B+q0Ko/VD3e1o5gdo3pOeFOv0mzjx48BpLhNEC6XCbYF/eSSyKUR3MzUp+0DVMfu0cAr7dNoh8QDE9io5R8SHVJ8O1afjTF69qCZ0Ek29WRBIqz3ZpI/7xva5uuAxsolWR4nVRGmbWqZMzEzAtvu7GuTh4TEkBFeH5IvktDlkJn1dRIK9aHPWnOs0QvBvPbWUi7Hiextt7rjKvU7c1eYDyrROQeadCoMNuNr8JTTvS6E2/9OYcZYE0eW02QeBcUh4E1eb+54gUHUDYJP/nuvTaTNu5bFSA0URH1JzNtScjTNpFVfbc/ep6bcKAmm1J4H9q6fNswFV9XHCsRAd6cEPmsuRzXja7NF/vEB6EFBNoW0XQvpdsEYj1WcjgV7SlcNbGBOPzlsBB4IrI9Vn9+M6Ntq0L2Q/d1OqLLT6rIopUVZsT4jtiWq6Z7+UQ5CS1fBeyULicUi9Rsm+546rIbILJcIsNeCbF7LfmvOxQOJI3TUlgqiqZoZfgohVkzue/sRNo0tQWnMzCZnPgNJAWjWFtl8B6ffA6Sq9HScXRDldD7l1Pv2AjVadhhXbrY/3w2OkIiLMscDoIQukX7v/Hf5515H4fCPTwES8fVgeIwzVJNp2AaTfB2sMUnNO2frP3UhkWzT7A3TdASgEV0WqTu/HdbJo096Q+ZpuzdPq87Ci25Rtb8X3gfg+Pdqsqih++r8tCiADySch+Tyl2nw5hLelVJvrwJoL7O/IaXPMlH30Fbp7G22eAhIq0uaPzD5vTVGqzQnIfgaUBtKqSbT9Mkj/1z234FUThLs4nQ9C+7lAALDd5xzPQXlWRUQYM98oOpo7h+T6L935OifcdljvGRjDGE+bZy5eID0IaMtxxuWTFNi/GlfpUc8jvvIloUQEqToOjR8N2D1Bbp+k3oTM5xhXbJe2s9HI9r1+ART07x8H2f/273oA2Gbfs3aUec0x6V0FDwAhiO6DVXUYTuJZSD4HVi0SO6Q0iHba0Kb9egJu9S8PdTcgVhRtPgBTf7IcoQIXc+OA/i7qNJvJCXuCO54y70nyGTSzj5H+tu4HJDfNrP0CNLyeN/s9i5JOZfj1q9JSaD6/hZ3trzne9PHf5z5h9a0qpWp6eHjMSLTlaHc7k6vNjbvAqBcRX/lUThFBqk9Cq45nYNr8GmS/plCbz0QjW/dLm0UE9S8L2U/6dz0AbJOZpmUmjLHBvxAl2hzbDyt+EE7iGROAW/VI/JDSINppcSftvwccNLAC1P4LkYDr4VIp4AmDr1ib3zHa3HELOBPN2MrtE088gcb2RjUF7We6B92xt52DhtY1DuoesxzpZJrfvvuj5PjM1OaPXvqMlTcZN1Ou5TGy8epIz2BUs5B6FXrsixSwIVUpHSuHiK//Qg3GvbpEkzP0d4VZNQlauW5jRZL/geBqZV6IQue1FA7KgcS9aPZnrMgWWHX/wqq5APGPLR1P29mQ/codv2MeIqasj6Y/odT1W4CIMTIJLIXE9kXVwclORKdsbSYz2k5xXU+7HxzKTdNlIf0mtBXvUXPb2xN7fSs8Ri6f/OdzHKdUlLc+YrOZNoYJX3ufLw+PmYFq2pSYzNdmtSE9SNpcUug2RX9XmFUTrlHnAEk+B4Fy+4rj0Hl98SCh6240Ox4rsqWrzechvnlKx9N6hjvBncGUtvrIaHPmM0ofQvK1eWkktperzb+iU7ZEW46HtlPBGU+Bw3cJNqTe6kWbf+/ljfAYyXz4wqc4Tunz2nZHbT7TxjD+K0+bPfqHF0jPcCzKCosEZvylgn8DzRcgH/gX67/pSdeDPcYpOeJQfbnrtOkHaxT4i/ddJ4xgE80dkjGYms3dqdfdZMBpRJsPLTsEzf6K03wIztRtIfk6pS6iCUg8lHNG7SEANRcgdXch9fdD9jt08uowdSNXoMvNypfDb5zAy5bEssE3fz/78RhpJLvS+INFSTkCa267MmLNnJSuL976hptOuIuv3v1uplxvhqIj5MfDAyirzQIMJEDuL8EVKfzw+cC/lPE76QfaeW+Rnwcg1VB9GRDBaPMY8C9ddGbCNeLM1+Y5gLSrzfmBfAacKWjz4eXHkJ2A03Sw0ebUW5RqcycknjCGZgUEoOZCpP5upP5eyHyDTl4Npm4Mzq/0X5t95jmk+H0AMxb/fP3sx2OkkepK4Q+UbnlabeuVmFnZ1p+/+TU3nXAX33zww8y54IxkqDV3NtNmL5CewYhYEN0PI3YAAZBaCK3X63mqitp/oU5LmdccNPMtmvnSzKp3X8u/IFJ7jekfywh13f/1e6yanUhudt7FCmFFt0bG/A8Z8z4y+p0Kq88ZjCBGIHY8Un8jlf8yFOwJZo9V/lGnCW3cEVKvu2lwFdLDUp9TuMoehPA2iHaAtrn70fYHbab/9apdrDoIb21KexTvdAhtXpLi5jHrsNw6SxV8Jv1BHz6fxambXVjyWR0s/vvcJzx65TP8c6Nzee/pj2bKNT08ZkdE/BDdmwJttuohuE6v56k6rja3lnnNdrX5KzRvslf8iyC1V+W0ObAMUndz/wdr/0qJNksYK7oNMscnyJgPkNFvVaiukaZHm+P/ROqupXdt/qX0qN1oHL7Tb7janCg9FSD1P0q0ObI9ou3gtKGaRpv3J2cSOgB8DcY/ppw2h7dBLK/qwazKuPWXKdTmgB+fv1ubZ84Y3n/qIx698hlOXP9s/vv8QLZYeMxueHukBwGpOh71L2RShn1zI7GDTNmHCqjThDb9A7LjAQeNbIdUn2f2SWnKfe0bwAJrNDQ82CMiEl4PCf8XVS3Ye6VOi9m3ZM2JSHkzIwmthCYfcWeqAQIQWMG8JpaZAQcILo8mInnt8klA4mE09QaFK9FFWKN7xqdOCyQeRdMfgybJCWyFb0gt3seahuTTaPJpUx87uFqZWfGSuy3t35oPGfUoYlVB1clodjxkPjbjCW2A1F7WR58eI4lfvpjAxXtdx6Rfp7DIuAWpHVNNqivvcyOCnbWxswMx35sxpBJpbjnxbm+/tIfHICJVJ6P+RU06d482Ryu2V7sRbd4bsr9itHknpPosV5sTrjZ/bxpbc7jaXGeuFd6ggjY3Gy215qxY6lGCq6CJp8gFsAEI/M28JhZIlXt4eZQI5QPdBHQ9jCZfpHdtznm3qNMEicfR1EcYA7C+tLk4/TVj9jYnngAEQmtQUlu6hHLavADS8Ih5bqo6zdXmz8x4QhsjNRf20afHSOKnz8Zzyd7XMXniVBb920LE62Kkk3mfWQvslDN02nzS3ayy2Qoz/doeIwMvkB4ERASJbg/R7fvVXltPhWzeXt7E0yZtO7I92nELZL6iZ3baTqLNR0H9bQUp3D1BqirafgF0PQD4wDcn1N9T3ugstClEvoSu2wExdZzLCVRoI4jsAV13YoS1aGZZOyH7cYW7C4P4kNrrTFOnGZ26FTgt9Gsvt1RR3mQs6V4bSL1H+QcFAXxAAMKbmPfY/gnjTBpG6u/scR8VKwr1d6FOo3Elz36Pdt4Bsb0HtjfOY1jS1tTOceue1eMC+vmbX6NFe7CyM6E+ZW8kOoqdaz08PGYkRpt3hOiO/Wqvrf+E7C/ktPlxk7Yd2QrtuAEy35DT5l/R5mOh/pYCzSjQ5rZzTDkofOCbC+rvLW+YFd4SMl9C192AmL3GNWX2Coc3MwFm1z2U1+Y2d/zliBhtrrvGNHWa8rS5l8C758aqTf+FF6RHm8H1hin3vdqtzUGIbAbpb8H5BaPNUaThTsQyE/lixaD+PtSZampOZ39EO++E2F6eNs8CtE5t4/h1z6Kz1aT8f/b6V8NQm5N9N/KYbfEC6eFA5gsKxSaBpj9BItu7K9H5D9g2ZD5Ep24JDQ8jVm1hX6kXXaHOmB97ItpyHNJwX8lljSPpiWjVUaCpHuEq3+4kNH44mv0emvbFzIArEDR7jMvm2wjED0eiOwMhNPU6mnje1JouK9QRCG/s3ubvEFwTcKDzurLjyqFmVTr9EYgP1DH1L+NHGhHubqVZ43KuKQgsWz5LoO0sdz9YEgijqVfNw06FlQOPkcF3H/6EY+c+o8VCPdRYlrDebmv23XC4MIvtcfLwKEv2K0q1+VMkshVkvqVUm98zwWjDw6V6mnzWBOL52tx6IlJ/Z8lljeaeglYd1w9tPgWNH4Vmv4Wm/TDa1a3NoV60+QgkuhMQcLX5GVebywUtEQhvDqTB/hNCa4PTCV39SFcPrGbMycQHakN0byR+aBlt/gw042pzrLSftjNcx/Uk8KLJgqu/09PmEc63H/xQkMY97LTZZ7H+bmsN9TD6j6fNMx0vkB4O+Ma6Zlfdn/4w+BYy/wwsA6m3KZjlRcH+A22/Aqk5r6ArzXxZlIJtu26blREJGcHtA01/bOpp+hcxY7S/Nmlbzl+VeoaO68yYUq9SeZY7CIGlIfuHWwNTwD8fElod/AuiXbdTWF4jjHmA6X6/kpD+GCQO8aOR4FJIoNggzd0jF/xb5Rt0/syVLevuN/OVmcwIFJu6eIwkYtURHLvYLGf4sMa2q3DARXsM9TA8PDzy8c1jHLjztFn8C5h/BpYx9agLgmkF+ze0/Sqk5qyCrjTzBYUp2Fm3znRl+q/NH5qMMf+iGG3+ygStvWrzNWZMqVeorM0hCCwF2d8h+bQ5zz8/Elwd/GPRxD0Ultsqo80ZV5urjkECSyNltNRo84qVb9CemBdEu/1mPzNp9YElKp/nMeyJVkfLOnQPF9becTX2Oa+0DrqHRzfeVN4wQGouMqYkEndLRiyJxMxDtcQOgOAKlDqBZ9x08KK+fPOTM1PBnOebu6CNagqn4xaclpNwOu9Dte8Aw+l6AloONnvLsp+b2tPaiRG27hns4jE6QNqskvcm1MGV3ZXiSaY9Kcj+gDbvC04bMupliOxiVqirz0dGPenWq84nYQxNsp+WDaL7haYo+ZMQn3vcYySzxKqLstTqixOO9tPRfiZy7C0Hc9YjJ+Dzl/cy8PDwGBqk5mKQmjxtXhqiu5jX4odAYHnKarP9c2lf/gUwgWbPEfDNW9BGNYnTcZOrzQ+i2rdBl9P1CLQcCul387S5C6PN3dpeSZtfoHdtXsXV5snktPl7tPkf4HQgo16C8E4QXAuqL0RGPW4WBgpwtTnzVdkgul9oyvihFGB52jwLsPSai7P4SgsTGobafOIdh3PaA8fi83na7FEZL5AeBoh/QWT0y0jttUjdrUj9/T17f0SCSN2dEN4OyC+dEe4xHykgsp1ZdZWoK/5VSM0VqD3FlJpy0mjT3tBxPSSfgPZL0dYT+x5kx2WUlr8oNQgpU9i6F2Kmj/T7ZfrGzKin3jBCbv8OEkT8CyP+BbFGvwy+5YpOyEK22JhsAPjmcycduhM1fOY9DCw17X16DAssy+LC507lsGv2Zcx8o4Z6OD3sf9HubH7Ahj2/N/7ZzF/jJ5etbz3cEB0ZPx4e04r4F3G1+Rqk7jak/t48bQ4h9feYqg/90uYdITAuT5trkNpL87Q5hTbuCR3/crX5IrT15L4H2X45fWvzwgxMm+Omj/Q7ZfqGnvrbmc9MJpcEzXvlXxhr9H/At2TRCVmzqjyt+Bc05b4KtLnGW42eBbAsi4tfPJ3DrtqHUfMOHyf2gy7bm43/sW7P71P/aGLShCkzraLH9DDUmju7abOX2j1MEKsaQuX3YYgI1JyNOn+ZfcAAwZWQqqPKtPVD3W3uLHIn6l8K7bjEGJjhM+U+nGZyKVIJSL6E2lPKm55006crdsidMe7vX0cQfKPBHt9LGwvN/OQ+KJjxauo9qL8bCY6D0OrQ9X3evYQhVK5UV/8Q8UHDfWjr6Sblzr8QUnMBIuG+T/YY9vj8PsQSGv9oGuqhAFDdEKfprxaaJ7VQ3VDF+btexQfPfoxlWYxdYh4ue+Us4rVl9gp6eHjMNMSqgdDfy78mAjXnovZfkPnEHAyuisQPLdM2APV3unuBu1D/0mj7+ZB8AVORo8FNI+9eZU1A8lnUObmPUk99aXPYfWrtrzaHwFfXR+BroZnvIHEROW1+FxruMxlhodWh6xcKtLlsGc3+IeKH+vvRttPN3nT/IkjN+QWGqx4jF3/Aj6NK818tQz0UAGpGV9P4RxMtU1qJ18Y4b+cr+fCFTxFLWGDpsVz68hnEajxt9jB4gfQIQSQMdXe4e6kBa1RBSY3CthYEx5lfuh4zBl/dBifOpDJnWG4Zql4IbQjJR8ufSwD8y0L200qjp1TEs2D3tnospsZz9jMK94cn0S4TSEvVkag9HlL/MS+FN0JiB/d+H30gVj1Sd8N09eExfLn77Iexs8NjtbetsYMnr3+B1x58h833X58PX/iEjOtOOv6riVx7+K2cet/RQzxKDw+P3hCJQP3d4EwBLMRXOePFaLNbRqfr32jyZXoC4bL7ma2+J7GD60PqqfLnEoDAcrkgv3RElGpzxmSAVURMjef0R5Roc+e9SO0lSNVxqP0rpF4zL4U3RWL7934ffSC+UUjdTdPVh8fw5Z5zho82t05p4/Frn+O1B99h473X5uOXPyOTMlsgfvl8Av86+g5OuvOIIR6lx3DBC6RHECJiVnEHgGY+p9DgxMaIp4XZJ+UDCaNdj0Bs94IyWaopSDxrnLqTz5a/gG8BpP4OlABMWbtMgyqoOg7az6VQsNWkZmljmXMsiOyOVB2NNu1T5nXzZWvS3q9DNQGIt3Ls0Sd2ZmjLaBTj2A4tk1q5/8LHC45n01m++/DHIRpVP5mFUrM8PKYHo81jBnRO/7Q5hnY9ZKpQ5Gm/ahISz6DZH1wPkjL4FkLqb0NVYOoGZQZdA7EjoeMCSrW5DrRc5o4FkT2RqqPQpnLmiPnafIOnzR79Zjhqc9OfzTx4yZMFxzOeNnsU4e2RHmLUacZpPgRn8lo4jbuiFWs+ThviX5hCgxML/EubNCupA9QYgXTdgk7dCrXNirVqCm3c0dS97LqdwpnnboIQ/BvimwsSz1B2LxUZzMNBoOi4YkzKas1+MSxyH0fLXWX2QeyAovGHwGnHadoHp/MeVBWRiCfUHv3i7ztOe3rhzMTyWcy72Nx9N/Tw8BgU1GnCaTrY1ebd0eyEGXsBXzltXs4YfFGL0eYm6LwJnbolaptsNNUkOnV7tO0849RNOcMtYxQmvrkg+QxlS1ppCiRI6XqK+xTebYBaoM0+V5v9EC2nzU04Tfu6JqaeNnv0n7W2W3Woh9AvfH6LsYt72uyRwwukhxBVNSuuqTfBmQyZT9DGXVGnbcZdJLprkcFJLVJ7FVb9nWDV0D2DDDZoO9r1oPk18Sxkf6VwxjwfCwJLIFWnoppxzcjKTYPZxkwsUGwMBmg71N1sUtYhbyxZcFrR5iNNOazwThBY2fwQMCYn6Xeh43K0/dJpeFM8Zlc23GttxDcQ052ZiwhEqyPUzVnLMTcdNNTD8fCYLVF10Ka9IP2Wq83/Qxt3QZ2OGXYNie1pSmh1a7NVj9RegVV/N/jiFOihtpuVaYDEk27qdYLymmtBYCmk6kSTVdZxZYV2DmTeg3JVLrTZeK3U3ZZrC0AGtBltOQJSL0NkJwis5Gqz39Xmd4yJafuV0/rWeMyGbPSPdUeENtfPVccR1x8w1MPxGEZ4qd1DiTMZsj+Tmy1WIGPMSCqYmwyUnMHJF6a+dGAZxIq7lysOkm1Q90FBWyg7iw1AGOKHI7GDEBE38K+US5Ixglt2tdqB5v2g4d9lXktA5l233wjEj0CsarcWp5Mbf9c9aNVJFfeLz0g09T7adgY4LRBcDam5KPdeeowI5l9qLD6fj6w9vNLIwAj1AsvMx+HX7MdiKy9MJOat5Hh4DAnOn5CdSE4D3XJRmS+MkdYMQCQI9fdA5kvjURJYBrFcA6MSbc7mtNlppXLJqjDEj0Zi+7na3ERlt+40JF+ivDYrNP0DGh4sPV8Trpu3q81VxyASdFPVuwPuBCTuhurjK78BMxBNvYO2nWXem+AaSM2FuffSY0Sw4LLzYVkWtt13OdaZjYiw0Lj5OfSKfVh8lUWGZRlNj6HDW5EeSiRMTni6cdzjM/AyYiHB5ZHQaoWBX3gLClOzwkh4U/PP4GpAfu08cX/CENu3J4g2L1WZWfXyV6e8UHfTBZ03GTOznrF0C3d3cJ6Azpspfa/y2wwumv0FbT4Y7AmgrZB6DW05ZqZc22PGEYmF2XifdYd6GACIJSy47HxE4mGiVRFitTFOe/BYll936RERRA916YzZrcSGx0xEIpTqluMen4GXEZ+rzasWBn7hLSnV5o3NP0OrUbgGYpHT5gN6gmhzgToo62zdree9aXMndN4GoXXpVZs7bgR1KNHiftTAnhFo9ke0+VCwf3W1+RW0deYE8B4zjmhVhA12nzELSNOL5beYf6l5iVSFiVSFidfFOO3+Y1h+3aVHRBA91Jo7u2mztyI9hIhVg0a2g+TT7gx0CPyLQWCFmXP9qhOM9CWfAYkgVSchwRXNa4Gl0JrLoO1M0E6z36r2alOmq7gfEdS/LGTeKXql2zSlN9QYmQVWgejOkP4vaBbsnwvP1QSE1ge53HUxdYAwRLYdtNVotf8yLum+BUwqecG9pCH9jrsPbPimI3mUMnaJuRGB4VAO8roPLuLz178i2ZVmubWXpGZU6d+Xh4fHzEWsejSyFSSex6RQh8G/ZPk06MG4ftU/UQSSz4FEkaqTTclHQALLoTUXQ9s5rjavhtRehVhVpf2IoP4lIfNh8Sv0T5ufgMAaJoU78yFoxtXmvC9PTUB4I+i4yrzevVId3XFab79P1P4TnEajzal3KNHm1FuDdm2PwWO+JeehrJH8zEbhXx9dwmevfUU6mWa5tZeiuqH078vDA7xAesiR6vMg+Dc0/Ylx2YztYWomzoxrix+pPhmqTy44rk4XOE1IeH0ksol7rAns31DGgoTR9isg9SpYdUj16WavV0kgDWZVu3jWu/ibUiHzKQQWwxr1FE7mZ2jctOgcBzSFNDyCtl1sAtzwekistF7njMBpvwY6bwUJmPFG/wFiFQ5bQl4QPcJIdCa5/ZT7h0UQPdeCYwiFg6y86cyZOPPw8Og/Un0hBFZGM5/mabOvz/NmyLXFj1SfCtWnFhzPafNGSGRzc8xuBHuiq80htP1yU3bKakCqzzTmoiWBNPRfmz+CwOKuNn8HjVsVnZMFzSIND6Ntl5gAN7whEhscjwen/QrovDNPm/eiMHuOCqvwHsOZzrYu7jrr30MfRAPzLDonoXCQVTbztNmjb7xAeogREYhsD+HtTFpSsSDMZJyux8wqtPiAINTfjma+gbbzXOGyIbBiroakPR5t3AOqz8M4c+fv3fJB7GDo/Be5b8cwhDaA1EtFbVOQ/tjsgW4qUwtaIpD90QT39TdP4709Cu2XmWuFNoaq4xHtAt/cZr+ai6Y/hc7bTTt1HVE77wPfXK7JSxoIQfzEaRqHx9DR3tQxLIJogLkXmZNsJos/MEK/hofJ+zgjEJFNgWswX8C3qurFRa+fCHTX+/EDSwKjVbVJRMYD7ZioJKuqK820gXsMGiIWRHcA3X6YaPPDZhVafEDYaHP6M2i/yNVmxxiLpv+H0eYJaOOuUHU2pdpsQexAs62qQJvXdz1Nymhz+jNoPqR0YBIB+ycktA5Sf8s03tu/of1KIA3hTSF+rKvN8xifFxdNfwRdd1OgzV0Pm9Jj9l/0aHPVyWWu4jGcaZvaPtRD6GGuhebEztr4/EP7Nz/NeNo8U7V5hD7BzVpo5nu0eT9wmgEfWnMZlrsSPFPHkR0PbWcDafcPMYE27esKVp5wpd8uOjMJbaeaNCt7ovmdCES2xao6Co3tB4knjEt36O9IYBmc1nMg8RA5wfaBbx73emVcyzUL/vlyv6Y/ds1FmiG4FlJzNtLL/jVNvWMeQrrLeCWfhuQTqERAolB/N+JfxLyW/QmT+5vfQys0PIcknkGdqUhwdSS0Rh/vqMdQ892HP/Lo1c9iZ222PmwTlllzCfwBP9n00JuNffbaV5y00Xlc9sqZ+HwjVLBnAcQsM/4L2Aj4DfhQRJ5S1a+726jqZcBlbvutgGNVCwrtrqeqU2fisD1mApr51tXmVsCP1lyOFdlo5o8j+6OZzC7R5gSF2vxu0ZlJaD8TfPOB/Ztp66ZdW1XHorEDXG3ugNA6SGApnNYzIPEYOW32g29u8z5omWBHs+Abm/s1/SHadrYx5QytjVSf1WsJLE29CW0X0KPNiScg8VieNt+L+Bcyr2V/Kg0SdCrUf4AkH0edJiS4JhIaGWUOZ2e+fv97Hr/mOVSVbQ7flCVWXQTLNzxsmz555XNO3vR8LnnpDCxreIxpdmSkaLMXSA8xqg7avC84U9wjGWg9EQ0sieQFjjOF7Hcg/qLMrgQQpHytynwyZrU2fiTYf5j9XOGtAYzBWWzPgtZSdQyaftukaANIHKI7Qfq9Mn0HIX5oT6Cr2Qlo0370lOZKPodqO1J3Q8XRaeo1Cmthu4GUdoEm0OZDkNH/Mcf8C5VuoJVaROqR2D8qeqB6DC++/e8PnLD+OaS6zGf3g2c+5uzHT2L/i3bnX0fdPsSjg0w6y4//+5n//ecLVt5k3FAPZ5YWa+0AAMJRSURBVHZmFeBHVf0ZQEQeBLYBvq7QfjfggZk0No8hQtV2tbnRPZKB1uPR4POIb56ZO5jMd2YlukCbO4AQfWtz2qzWxo8G+3ck+DfXzAyzrzq2V0FrqToOTb8LjvssKtUQ2caUAishCPEjewJdzf6MNh1AjzYnnkGdTqTu2oqj0+R/KNRmN928R5sPQ0a/YI51B9T5WKOwfLXGBLXX98FjuPDVu9/xz43PJdWVBuD9Zz7ivKdOZu9zduH/TrxniEcHmVSW7/77I5+9/hUrrD9zfBE8yjIitNmbahlqnCYorhstfsh+M/PH4pvXzC4XYFG51EYRIkhoHayas5DINr3uHxarBhn1DFJ7HVJ7DTLqBcS/qGtWkk8A6m/HiufthU69RaG5SApSr6NlcnbVbkRT77sPIIGS191WZo+Z6zIqwRUgti/mISVq/hveBOzxfbwBHsOJhy9/qieIBkgl0tx/waNsecjGQziqQkSEzpbOoR7G7M48wMS8339zj5UgIlFgU+DRvMMKvCQiH4uIV/x7VsGZAk7R36b4IfPtzB+Lb94yLtg+KpeoLEIUCa/vavNWfWhzHTLq2Txtft5MYpdosx/q78GKH5g7lHqLwn3XKeOlUoYebcai8pqOmu1jrrZLcGV3T3S+Nm+MZif0dvcew4x/X/pETxANkOpKc/8Fj7HN4cXeOEOHWEJHS9dQD2N2Z0RosxdIDzVWNaW5SjZYc870oUhgaYjuCYTNCjFhqLkSqk7CCFcfHxfNgm+O3puog9p/oE4LIiEktBYSWhuxYmaWP7oXhWU/bMj+WTTQaOlYJFDycKCpd9GpG6Ath0PiQXcfWaX7sMif2beqjjE1PsV1N008hDZu69bK9BgJZMqkb2czWV6841WGy9KF4yhLrbH4UA9j4OgI+oFRIvJR3k+xoJb7NFTaZbYV8E5R6tiaqvo3YDPgcBFZu8K5HiMJq44SZ2u1wTcE2hxcHqK7ktPmCFJ7DVQdT/+02QZrTO9N1Ha1uRWRcJ42R012XPf1c2e46eL5A41QavwVpBhNvY1OXd/V5kcxWW+V7kMo0ObqE6D+Tlebbeh6EG3cBs1UWqTyGG5U1ubXho02q6MsudqiQz2MgTPUejsbarMXSA8xIkGovgAjUDEgAuGtjHAOAVb1SUjDw0jNFcjoF7AiG2HF9kZGv2xKc5We4Qp7CHyLoFO3xmnco+wMsdqT0ambolM2RSevidN2fskqslV9kju50I0DbWegme9zh8KbgK+B3ApzGOLHFl5LFW05wk0Pa8fsLXMgujvEjqb079MPyf8UHko8ikltzwC2STNruxiPkcFWh25CKJJ7iAtFg2xz+GY8cuUzlb+KZzJLrb4oY8aOGuphzOpMVdWV8n6KHZF+A8bm/T4v8EeFvnalKHVMVf9w/zsZeByTjuYxwhEJQfU59GizRCCyvZlwHgKs6lOQhoeQ2iuR0S+YFebYPkabfQuXOwOkipw2b4HTtBea/bWkpdp/5WnzGjhtF5Vos1SdCpJX6xobWk9Dsz/lDoU3dycg8rX5uMJrqY22HGm0VdsxQbJtJvFjx5S5D79xIc8n8YirzVlzrnah7ZeUOddjOLLt4ZsSihZq87ZHbMYjVzw9bLR52bWXYtTc9UM9jFmdWUKbvUB6GGBFt0FGPY7UnIfU345Vc/6QjkcCiyPh9RDf3LljvjmR+LEUzkiHofois2rtGwv29+D8CZmP0cadUafQmERbj88zI8sYt83Ui4VtNJHbN91zcQsyX+b9GkManoT4ERDZC6m9Biu2T+E52gGaLOlHAksh8YMoDaTFBN35OE2UrEg4rXiMDFbeZBynPnAMi6+8CIv8bUGOuekgNtjj78OqZNknr37Jn79MGuphzO58CCwqIguKse/fFXiquJGI1ADrAE/mHYuJSFX3v4GNgS+Lz/UYmVjRHZBRjxltrrsTq+asIR2PBJZAQusivrlyx3xzIlXHUKLNNZdAzeXgmyenzekP0aZdUKejoF9tObZQmxMPQqpoYlk7MO7l+QPyQear3K9WHBn1FMQPN9pcdx1WkT8K2kpJmrj4kcAySHx/SrRZfOD0R5tb8BgZrLrFipx8z1EsttLCLLriQhz3f4eyzs5rDCtt/vDFT/hrwuShHsbszojQZs9sbJgg/oXBX25WeebgOJ2Q/gghA8GVEKu25zVTu/IvCK6C1F2Ldt4FCBI7EAmtjtqTUHsiub3Ujvl35hM0uBrYf4LVAJlvKNw/lUDTXyDh/H0xYVMDUhO5Q6oFKePqNEHyNcQaDZGdEV9D6Q1J3Jik5Gd5qAP+xRDxocG1IP0+plwGJk0sWOTCHd4cUm/TY5xCGCLDZw+PR9+ssfXKrLH1yj2/JzqTbHXIxtx6yn2kE+lezpw5qKPsv/SxbHXwRhx61b5DPZx+IwybDLzpRlWzInIE8CImL/V2Vf1KRA5xX7/Jbbod8JKq5m+cnQN43H0A9AP3q+oLM2/0HoON+BeB7ooOQ4DR5g8RshBcGbFqel5TpxOcSRBcE6m9Bu26C/Aj8YOQ4ComVdv+gwJt1hRkPkeDK+W0OfstBYGpJtDMV0g4z6FcYpiPeH5aroJVrM2vItYcEN0Vscqs6Emt2Z6led+/aoN/UUQCaHB1t7xm3uuh1Qv7CG0OqffJaXMEwpv1+j56DC/W2m5V1tpu1Z7fEx0Jtjx0I+4840HSiX768gwiaiv7L3kM2xyxGQddulffJwwTPG3uYaZpsxdIz+ao04m2HNbjlq0EQKJo7ZWI04JmfzO1JkVMIFp7FVb9HahmIP0emnwR1cI9TAYHtf+EyWth0qqzIHWYkm5u7o5EEP/8BWeJCFp9ObQeD/hAFELrQnANk66d/A+0nWSEVwTaL4GGxxD/2JJ+qL/Fdfe2zQx41XFIYEnzeu01aNsZ5r6teqT6/JI+rMgWOM5k6LgJyEJkByR2WD/f11awJ5s6mFa0X+d4DB6qyi0n3cPj1z6HZQk1o2tondqGnbVxbGdI08kyyQzP3foKK226gufePUSo6nPAc0XHbir6/U7gzqJjPwNDsw/HY5ZGnQ60+VDIfGB+JwASR2uvQJymPG22ADWZWfV3oprO02abQkdsMNr8O0w+Gsi42lwD5D+DRhBfYdUQEQutuRRaT8JoswOhjSC4iqvNL0LbKUabEWi/FEY9XpDZ1t0PdbegzQeQ0+YTkYDZOia116Ntp0P6A7BGGW0u7iOyNepMgc5bTB+RXZBY/7yE1GkBe4qnzcMEVeWGY+7g6ZtewrKE2tHVtExpw7Ed7CHW5nQyw9M3vsjKm47z3LuHiJGgzV4gPZujbWcbweohY1Kvmg9AiQBuSlX3l1nLsTijX4Lmw8D+GZMSXcZ1WGqg/aLCdGltwew1A3AgsDxEti8zqjQExgFZM6sd3sqc3no8JJ8nVx4DIIW2XwrRPdHUG4iv3qxSW9VIYDkY87YxRLEaEKsuNzwrhtRe2ef7Y8X2dR28+4/T9TC0nWscXgFqb0JCq/Z+kseg8ubD7/HMTS9hZ2xsYOpvjX2eMxgstcZiBAJ+Pnuj0BjHztj8+vVvXiDt4eEBYILJzH/zjmRAm6F5/7LarM1Ho6NfguaDwJ5AZW2ud2tS5wXY2gpE3aDchsBKpuRVyaBSRrexIbo7Et7CHG45GlIvU5Bxpim0/XKI7ISm3jKZY5FdTPp3cFyeNo8qyIATK47UXt3reyMiSPwAiB/Qa7tinM4HoP0C13hUoO5m4wTuMWS8ev/bvHD7qz3aPOW3pj7PGQyW+fsSiAhfvFlYMcexHSZ8/ZsXSHtUxAukZ3eSL1Oy1wgw6lzO+j9lZoGzP1C5fqW4tTeLUmfFD1X/NLPLEofA8mZ2Og+n817ouMxN7bag9Uu09Rxys+XFY3Ug8zXafCCQRAlC570w6hlTvzr9iUlb882HhtYf9D04mv3VfUhJmYcOQFsOhTHvG2M5jyHh6/e+I9nZV73VwcWyhInf/sF5T53MxXtdy1+/5PZf+QI+xi4xk2vTTi/DxBTGw2OWJPkq5f/IetHmjpsg+zO9a/NkSrU5CFWnIr45jEFZYLky2nwHtF+NSafu1uazMdqslNXm9Bc9daKVIHTdBw1Pudr8MWS/B98CaGjdmaDNP5vJfdI9aeXafAiM+QAR71F4qPjynW+HhTb/+s3vnPfUyVyw61VM/jXn02P5LObztNmjF7xvj9kYtf8kt8eo32dB5hcqC7XbplioAdRB/EsAGbT9QnDa0cgWEN4JEg+b2fPEY3n7ox3MrHlxalo+YVPvs6dNGpwpaMuxKH5Iv2P6Eb9JQ6u5dHAFO/uTuVb+F5naJs3bP+/gXdejV+ZaaE6CkeCQ7ot2HKW9qYNTN7+A858+mbO2vQzbtsmms2y8z7qsvOm4IRubh4fH8EGzE+ldY8vhQHZatdlGAku47tfng9OJRraC8HauNncZp2wGqs1/5Y0nDfZktOV4FHU9SlxtDm+O1Fw4wPsdIGW1OWPMTYegpJmHYe5F5iQYDpBODt2+aMdR2qa2c+pmF3De0ydz5jaX4NgO2XSWzQ/ckL9tuNyQjc1j+OMF0rMxak/FOH0WB9M+Ck3B8gka0cmEyAmkReFstFA6JRaE6G4gYbRxL3oEuONm84NDoYlJP4lsBYmniw5mIP1G4SFNQ/IliO0PgSUGfp3+4p/P7DkrvDj4Rg/eNT36ZPODNuTVB97i2//+iDpDP10bDAe5b8INTPj6N2pGVTPXQr3XX/fw8Jh9UKeSNhebfeXTrc1BcsFyf7V5T8BCmw4gp803mJ9p1ubt3BrR+aQhXVTKStOQeAaN7WeM3QYL3/yl2iwC5QzRPGYa2xy2CW/8+x2+/+jnkpJrMxtVJRIPc9/4G/n1m9+oGV3NXAt62uzRO175qxGEJl/EaT0dp/061Gkr38bpRIvLPpXB6bgNmnahRKglDvWPgW9eTEBdhuTT5MTZR6lHYJkvw+CaWNUno8kXKJzFTrs/AxHqEMic0PACVs0FEF7fHOsL8YPTPIDrDBzxLwzxI90xVgFhqL3K1CT1GDKCoQBXvXkeh1099M7Yyc4UNWOqicQjLLHKol4Q7eExwtHk8642X19S9rGnTb+1+WZo2oNSba6GhkfAmpuKj27JZ8npbzn9LqfN62BVn4gmn2PGaPPc0PASVs05EFqP/mlzYPC1ObAYxA+lR5slgtRe4225GmKC4SBXv30+h1z5j6EeCsnOFLVjaohWudrsBdEe/cALpEcITsfNaMtJkHgIOm9CG7c1pS9cVFM4TQehk/+GTloO568lcVrPdV07C9HUG9BxLSUCac2B1N+FFVwSGfUKRHYBikXGxohrdxpOmNLV6zKp0/Z4nM77jMvogIiDRNxxhKH6UmT0q8iY17ECC5mr1VxsSl9ITa89gQ7uarSLFT8QGfUcUncjMvpVrPAGg35Nj77x+X1sefBGQ14bwrEdHr6spBTiiEN0ZPx4eAwmTsf1aMvJrjbfiDZuZ0pGuqgmcRr3RyevkKfNF6Ja6k2iyVeg8wZKtXkupP5urMBSyOjXILwjhdosGB1OkdPmGKWBcyVtvgs6bxvgnVcVafMVrja/ihVYwFyt9lIIb2ImAfrCv/gArz9wrPihyKhnkbqbkFGvIqF1B/2aHn3jD/jZ8uCNEGtoxdmxHR667Mm+Gw5zhlpzZzdt9gLpEYCqQsf15GaoM2A3ui6Zbpv2yyH9FjnhtCHxINp5c2l/qf9SmjJWjTXmLSRgnAlFBLLfUbqfqvjTX8YVFB8QKPxd4tB+DpVTxssRhNg+SPV5SNUJSMMDWNFtEd/oAiMUkTBW7aXImA9M+lbBTLxlfqy5kLo7Cpy7BxPxj0WCqyC+UTPleh79wx/wE6+JDfUwePaWl7HtgfwteHh4DDeMNt9IgTY7UyH1aq5N2yWQeTfvLBsS96Gdt5f2l34/zyOkmzqsMW8ggaUAV5vtYm0uZ/bVRqle+yjc0ecHiRon6wFpcwhiByDV57ja/CBWdKsy2hzBqr3c1eZ5KXzk7NbmeZD/Z+8soxs5sjb83BZLZntmMoEJMzNnN8lmw8zMTPuFGTfM2TDDhpk3zMzMjENmW9z3+1FtS7Ikjz1jj2HqOcdnrO7qqmqNrLdv1YW6WxGnD8b2ACD+CUhwRZNF3DJsCIQCRGLhoZ4Gj1719JC7mFtGFtaQHhEoxe5VCvluYqm3KRbCDCSeK+pNfOMocrcqZfD5F6Fw1dtP7+kAHSAAFUeDfyEj0BIDZwy4zb1cl0/QXCMx8M+DxPZBIpshsT2QwOK9XiniIHW3Q2Aps1Lumw+pfwBntq/Mg0hw6T7OwTKaOeGufyG+oV35VsVm1rRYRjxZinRXtbtiA1BGm9OQfLq4O2c2irTZX0qbF6ZwsXpa6W66tPk48C+Qp81jjeHfJ7q0OQr+eZGKPZDIFp42L9brlSI+pO6/EFjS0+b5kfqHPG1+EQks0cc5WEYrIsIJdx4+5NqMYg1pS7+wycZGACIOGlobkq+SS/CVQFvPQbN/IBX/Z1Z7M18VX+yUWHWNelmyM796nl6KVJ+NJl9FO+8DJ4JE94bY/maXOzsJxMl7+i+zcu3MhYx5ApEgGtsV0p8CaQgsiU5ab1p3CZXHI5HNIPUuSBiCq/Y7fkl8syH19/TrGsushbqKICZz7BAQDAdYY+tV8PnL5CAYKdhnDcssjogfDa0JybfIaXMcbTsTzf6OVBxqtDn7XfHFTrGBLNEd0fgD4P6B+QMTpOpsNPkS2vmg0ebYvhA7CFJvQHaKp81445fRZt+8SMOjiATQ2I6eNmc9bV57WncJlScjkY08bY5AcJXp0ObZkfr7+nWNZdbCdRXRoZOWYCTA2tuvjuOM8D1Gq80zFWtIjxCk5iK09UyI/49c3cY4dNyKOmOQqpPQye8CLXkXRZHKY4r7kgjUP2Dcz9xOCK6Epj+DlmMwyUYEjT8F0pVIzIXAikZEy7p/OeCfr1tcRfwQXLb7rIbWhsS9lP8L9yHR3Y3bWnj9fr03Fkt/uOpfN+NmS9VOH3zqZ6/jn3v8jd1O3W5IxrdYLAOLVF+Gtp5hqkJ0abN2QseNqDMWqToZnfIBxtW666IYUnl0cV9OFBoeguSLRptDq6CpD6HleHLa/CSIn5w2rwSpdyivzT7wL4CI2cEWCUBwue6zGvobJB6ivDb7kejOVpstg85V/7oZd4iqajTMWcc/91ib3U7ZdkjGt4xcrCE9QhCJINVn42a+g/RHeWfikHgGie0KY59HE09D+mPwzY1ENgaCaPob8E9AJJzXXxDCG3S/1qb9yWXsVPN7/vdZ6p1pTDAMsT3Q+OPgm6vIjVqqT0Szv3mxYkpxWQ4X8yBgP5KWwWXKH41DNnbz5BZ2P237kb8bbbFYAGP8Ss25uFO+hcyneWfikHwGie2Qp82fmJCl8CaAv4w2hwq1uX0vCrU5WcJ1vBd3WAlDdCejzf4JSKCwJq5UnYJm/4D025TXZu19DItlAGj8s2nIxm6e1Mrup2038nejLTMda7WMNJx6KKgF6YCXNEOcKiS6LWBW1NyuOpASAPxQd2svsUzTKnGh5LKBlsC3KDTtj+IDXDS6A07V8eZKtwniTyDhNdDKo8EJwdSt8pKq+E3MlyZMUrLpQDVuMqcmXzKuZ5Un4EQ3K98+OxltvxSyf0BwDSS2Z0GSFMvoJRDwkyQ57YaDgUIyniJaGRma8S0Wy+Dg1FGkzZ77tjjVSHQ7wHiiuG2XQcf1njYHPG1etEzHvehuN718nxVp8y44VWY3XN1GT5v/jlYeb+bTuHUPbV7MvJbpS9KobgfachwkXwYnBpUn4UQ2Lt8+OwltvwSyf0FoLc9TzWrzrIA/4CeV6MvnfeBxsy7pZJpQxJYqtfSPITGkReQCYFNM2snvgT1VtblEu5+ANsxWZUZVV5iJ0xyWSOXRaOptUC9jp4SRiiOK2rnJ96D9SiDd3Vab9kfGvmp+T3+Ntl0M2gLhTSCyA3RcWiJjaHePFD4k5BOCzMcUGOOdd6GRrcGpQ6duBm6b14cPqs+G6sug7XzI/mj6zPyETvkn1N+H+OYwc8z8gsYfBRSJbIL45y37vmjLSV6m1KS5h9aTUP/sSLD4I6NuGzp1S3AbzZxTH6DZn5DqM8v2bxk9zLvEXHz6Wol8AoOM43eYZ4m5Ro8RbeOwRh1Wm6cfqToWnfoeaBoQkBBScVhROzf5NnRcR6E2H4iMfcn8nv4CbbsUtA3Cm0F4R+j4D8WVNrrIMm1tzjNOOm9Ho1uBVKJTNgPtIKfN50D1JdB2AWR/Mn1mvkenrO9p83gzx8xPaPwxQJDIpoh/7rLvi7Ycb1zVSYGbgJbjUd/sSF7oV3dbtwWduoVXUzprtDnzC1J9atn+LaOHCYvOwVfvlMgnMMj4/D4WWHae0WNEW22eqQzVjvSzwPGqmhGR84DjgWPLtF1bVfuaVnLUI/75oOEJLx7LxCyJbxyqWbTzVki9B755PKOyx8qeOwnVFGT/RBu394xmhfSXJrFYxdEQv8e4goW3hvZLgJR5MPAv3MNtDUxc9GIQ3RVaT6PAkJYAuH+h8Ye9jN1d59LQchRmpXsJ8y9JoAPcONpyMlQejbZf45X3Mi5m2nkj1N1Zfkc9+TKFq/JJNPlqSUOa5Cvew0PXnOIQvx+tOtXEdltGLU/e8By/fPX7TB2zqqGSVDzFAsvNR82YSnZf8BBmX2A8/7pmP8bNPWamzsVimQZWm6cT8S+Qp80OhDdEfGNQzaAdt0D6A/DN52Xr7qnNf6KahezPaOOOuQXtzBcQOxgqj4D4/cbbKrwVtF8EZDxtXggyn/WYjQ8Ci0FkZ2g7wzPuuyYagOxENHm3WUjvjq1OQ8uRgN9k1876MOspHeAm0JZTofJfnjY/R06bb4C6e5BAmTrQqVcpLNWVQpOvlTSkSb5kYsO75xSH+D1o1UmI2HCY0czj1z7DH9//NVPH7NLmhZafn4raCnZf8BDmXGh2Dr9mP8bOZUuXWvrGkFgNqvpM3su3gG2GYh4jFfGNh9juBce05RhIPEsulqoUVYgEceOPezFWXctWcei8FWfc2xDbJddndAvI/AROLWR+RJv2y+s/CKG/IzUXm7Zt5xTuZmsaTX0KqVcodht3gRRkPqIoFiv9NTp1B4pW37UTbbsEqbu+zJtSAZqXzIUg4tSUeR9cLwN5wQDYZbzRzfN3vspV/7qZZGfP2uiDy9lPnMBCK8zPIascz9uPf0A6leGvnyZz6KoncMvXl4+eHWrLiMdq84whvtkhtkfBMW0+whiIvWmz1CHiw40/Vhj/rJ42j329QPM1urmnzXWQ+RZtOohCbV4XqbkAULTt7MKxNIOmPoLk6xQnKPO0Of0BhXqYhfSX6NQdKdbmONp+GVJ7VZl7q/AWrrsIIE51mTciS7EOW10e7Tx964tcc+RtJDtnbsjVec+czHxLzc3BKx7HF299Q8bT5sNWPYGbv758WNS1tgx/hkPgyV7AU2XOKfCMiLwvIvvNxDmNKNRtgcRT9G5EA92uy6WShhQeMzvXE8E3B+Ibh4RWgarTQGox6y8ZSL6CTlwZTb2D1N0MUgcEzKq5Uwsd10Dmm14mVCJzsk6hrAubZyhrdipuy0m4jbvjtl+DagapPg0IAz7zr68BIrnsi27nA7iT18edvD6anQwSJPfxD5vdAwlgGb08ef1zM92IRmCeJeZi6h+N/PTpL6RTZlHJzbokO5N89fa3M3c+A4WCjJAfy3RjtXkGUbcRks8zbW0+q5eT5bR5Tk+b14Cqk0BqyGnzC+jEVdDUB54212K0OQpOFXRcXbokV26UEocmUVqbFVxTLUSzk3FbTsRt3AO3/XpUs0jVqRRq8ziIbNV9tdt5b06b3bYS2ryJ3Y0e5Tx5/fMz3YgWESYsOieTfpnCr1/9TiZPm+PtCb557/uZOp8BYxho7qymzYO2Iy0izwGzlTh1oqo+4rU5EbNdeUeZblZX1T9EZCzwrIh8paqvlBlvP2A/gAkTJszw/EcUmmGaayJSi4RNLWeJbIJ2Xm9KdKDG8I3tmesu/QXauCcm3jiFhtY3cVCRzSGwODp1W8yDgfdw0LQXWnMLMvZN0BY08TK0nUqvCVDK30yZ4xEIb2YSl0zdEtwpmPjmD9HM9zg1F6B1t0PnfwE/xPZHHJO4zI0/Ca1n0P0Q0HEZxP4F6Xch+ycE14CK/XBbjoPEi+BUIlWnIKG1pmP+luFKODpz45/EETbefz1CkRCJULKorIe6ij9oQwksMxerzTMRTTNNbXbqkdDfAZDIFmjnzbmwKyIQ2yuvu0/Rxr3oiq/W0IYmf0hkGwgs4XlzJTDam4SmPdDa25Cxb3na/By0nsmAa3NkM9RtL5F75Aec6nPQulug8y7ADxUH5LS581FoPYtubW67CCqOhPRb3cnGiO2N23y0CclyKpGq05HQ6tMxf8twJRTtX03yGUUcYYtDNyAYChAIBXDdwk0d11UCVpstfWTQPimq+o/ezovI7sAmwLqqRX62XX384f07SUQeAlYCSoq1ql4HXAewwgorjKK1jj7g1JmYpvRHlK4lKRDbu3tVV/wToP4+k9DEbYHIJkjEZBNVVbRpH9Cm3OXJJ9Dk86b2ZHirEv0DLYfA2PcRpwbVjlwytHx8C0L2e0ruRPeGVEBsX4jsiCYe8namu9zFE5B4HDd7gqm16f7hVQj5H1p3h4mpjt9LwUq6mrIkTv1d3Yfc5iO92LYkZJvQpkOg/u5espxbRho7n7wN7z3z8UypIe0L+Djw4t3Z7CBTxqa6oYo1t16ZNx55j2RnkmA4wBwLjWexVRca9LlYLPlYbZ6JOGMhsCikP6W0NjsQ3bc7K7X454a6e9D2y02CzshmSGRrwNPmxn29uGaP5GNo8lkIrgThDSnpFt18CIx9x2iz20FhvLKHbyHIflvi+mkglSa/SnhbNH4fuO0UaHP8IdyKY4w2Zyd6c34arbvLxFTH76FwlzsByedx6m/rPuI2HZ5LJJptQpsONInPysVkW0Ycu526HR+/+PlM0WZ/0MdBl+7JJvv/E4D68bWssskKvPPUByQ7UwTDAeZedA4WXnGBQZ+LZXQwVFm7N8AkMPmbqnaWaRMDHFVt837/J3DGTJzmsEfdJrTjBiNQ4a1A6iH1LEViKFVIpNAAFv8CSO0VJTrt8JKD9SQBqQ/M7m2pBwKNm2ulAjJfUbKcVravbqxBcOY0Hm2xPXGi23vZPLeG7JeUNMQ774DsL3Q/JKjJ5C0ND5od9564PT52yecpXKVPmxVwa0iPGtqmtuEP+knFB9+9W0T4+/arI5Jzyzz2tkN59Mr/8fkb3zBh0TnY7ujN8QdG8Kr3rGUSzRJYbR4Y1G1EO2402hzZ3tPmFyipzdEtCg8FFkZqryzRabPJ5F1EAlLvQHAVSodLtWF0MeRpcwn9zvYWgpVPCJw5PG3eBye6jXkOmbolZL+i5JdCx22Q/Z2cNgvaejJSf29pbS6Ip8bL+J2vzRlIvQbWkB41tExunWnarC6svcMaBdp84t3/4uH/PMWXb33L3IvNyXZHb4bPP4LDCaw2z1SG6inuCiCEcQkDeEtVDxCR2YEbVHUjYBzwkHfeD9ypqv8bovkOO9RtR6ds4bk4p02G6+jeSGxntOU0cCcakQouj1QeAwiaeNHERwWWK/gSKUBiICHPXbwnCXM8vBEkHik85dSCxFB1TXbRfuFg/vKjIIrUXGHivvLvt/lEyH5B8TdEyLh/uZMoWml3J5lbqjgITfZ4iMl+j6a/zlvVDgP5z41+prdupmV48ts3f6IzYcUbwPEJFbWFnx+fz8eWh23MlocV1lD99oMfeP+Zj4nVxPjHLmsSqbDJxyxDhtXmGUTdNnTK5uBOBTImCWjFAUhsF0+bJ4EThcCKSNWxoK6nzdUQWLYXba4CCRRm4O4mAfgg9E9IPlF4yhmDSMhkBU883M+76anNVyOhVQvvt/m4MkZ0CELrgv5FoTZr9+60VByKNr5aeG3mazTzncmCDt7zSH6Mud/EeltGDb9/+yfZTCmPjYHHH/QRrSrUWJ/Px9b/2qSo7dfvfc+Hz31CRW0F6+6ypk0+ZinJUGXtLukz4bmLbeT9/gOw9Myc14gi+Zy3c+yJqsZNbcqKQ3HGPl3QVFMfo01beK9cCKwItdd0u3qr2w7uZPCNRyQMNf/pkQU0j8x3OLUX4raOg86bMAlMQkjt9YiIEes+LYeJKX8V2xsJrYImP4XEoyZJmG+ewvm7jaVX8wECyyA1l0DiOTTxSF7m8AAEVzS/+hcrca1jMpN2GdKVx0Pryd49B4y7fGQLLKOHCYvNSWYmifUqm66AzzftFe03HnmXs3e6lEw6gz/g5/6LHuOaD8+3xrRlSLDaPAAkngY3P/woDu1XI7N9gox9tqCppj5Em/bCbPFmIbgq1FzV7epdrM2XmbCjUjHOmW9xai/xtPk2jDaHkdrrvAb91eZ9kNDKaPJjSDwGvrHgL4xx1+wUrzJHKW1eHqk5HxJPo/EnyblwByG4stemlMeXD1IfQpchXXkctJ6O0eYg+OohvGkf7sMyUpiw6Bwzxa0bYPUtVsZxpp1n+eX73uSCPa4w2hz088Alj3PV++dZY9pSxAj2K5zFKShf1UWXUPbI8tlyJGh77kDqHUg8AZHNTCmsluNBfOa6mquR0Bpo3R3QuHXxuE6V989RaMW+JrGIbw5ETLIIET8aWhuSr9JrQhOpxml4wMwv9Q60HIoRSsfEWtU/ZOLFAG0+lpKu4jhI+G+IBNHwhsZtreMG8x4ElkOqzvTm5EMlVugyJo4xlrt6im6O+sejiZcQpxai2yFOZfn5W0YcbY3tOI6QdQff7+mdJz/sU7vLD76epOfOls2kmPJHI8/c+jKbH7zBYE7PYrEMGkmKXawzqGrRbrM2H1GoS6m3IPE/iGyE2/kItJ7kabMDtdciob+hdbdC4w7Fw3p65VQdh1YcWEKbg2hoLUi+Qck46S6kLqfNyTeg5XAKtflhxD+XOd9yNKVjv3152rwJpL/yFt6B4ApeJm8wj6BhCuKkRXpo89aob3Y0+Qriq4fI9t3Jyiyjg7bGjpmmzW89/n6f2l1x6I0F2jz5tym8cMerbLzfeoM5PcsIxBrSI5XQWiDn5tnSIVPXWUqstGUn9TiQhOzvaPYvaDnBvPb60eYDYeybSGAJ1GnwXMe7EIjtmnvlVBt3NA/NfI+2/hsyf5pdZW0xBrw6GKFUjEEcNpk4mw6H7B+Q+Y7c7rcL2oF23IB0letKf1r6PZAwhNY3v4oglUegFYcBGUTCqKbQzC/gNEDVv82CgZm42aUOrVvYXXAlJLhS6bEsI56mv5pxHIdsf5PdTQduH3e+O1sLy8lkkmnamzrKtB5ejKbyFRbLgBH8G8gFedochvC6pV223R7arClw/0Azv3keUnna3LQ/jH0LCSyDSh1oY96FAtGdc696anP6W7TtLMj8Bb55jTa7Hea6Im3eC7fpsF60+Wak+hRzKP1Z6fdAwhA2yZxEBKk6Gq38P3LanDTa7BsDVWd496pm0SCwNHhZzLu7C61a5FJuGT00/tVM6bSGA09fXcjjbT20OZWlrbG9TOvhhdXmmYs1pEco4hsPdXeiracZYze4BlJ1QunGgYU9wfO+QCQEgSUg870Xc5Xvwq2Q/RPxz4vW/w+a9jBiKpVQcwmOf96SQ2h2Mjp1O2/nW4EwhNbBqb3UnHfbIX6fcdP2L2JW2rvKbxX3VphUxTc7ZJry2gr45kVqLu1eGe9+X8QP+NHUu+bBQ7OAC9XnIfX3QOp94xoWWs9ra5lVWHz1hXH8Tq+bMQPFGlut3Kd2K2ywDG899j7ppAnRCIQDLLfeUoM5NYvFMoiIf06ouwNtPd3ESYf+hlQeV7qxfyHI5CfQDJhF3mwpbc5CdiLinwtteDpPm6ug9nKcHm7XXWj2L7Rxe2/n29Pm8Po4NReY824bxO9F3RbwLzwNbXZ7aPN4yORlEUfANz9Scxnim6PwfenS5uRbZsFeXTNG9UVI/d0mmalvDIT+YetGz2IsscYiBEJ+kp2DL85/2261PrVbbr2leO/pj0gnjTekP+Cz2mwpybQDBSzDFgksilN/D86Y53GqT0ekdJ1cqbkcfHNicsj4TVKy0JrmWM8yVZoFZwwAjq8Kp+FBnNk+wRn3Ok6ol93a5CuYFe0u8U2YMhdqjHdxKpDYnjiVR0L2tzKu6V2EkfDmuflXn2cMeakAIiYJWLYRbT0FzfxUdLVqwjOi2zGr7UloOQ6cWiS2CxLe0BrRo5RHrnyKnec5kJ3mPoAHLnmc/Oo94+YZy9o7DH790brZazjypoP61Pbomw5i5Y2WIxQNUTOumqNvOphFV15wkGdosVgGEwksjlN/r9HmqlO63auL2tVeYRaKu7S5Yn8ktJqnzT2SiqmaHCKA46vGaXgIZ7ZPjTYHly8/meTLXvLQPG1OPGESgwLiVCKxvXEqj4DMj57x3os2R3LxyVJ9fg9troDsFLT1JLPj3AN1Oz0jugOjzQloORKcBk+b17dG9ChEVXnwsifYae4D2HmeA3n4P08WnJ99/nF9NnBnhIY56/m/6/brU9vjbj+MFdZfhlA0SO24ao69/TAWWn7+QZ6hZSRirYlZAPGNh4anTdISiXXHF4l/brTicGi/PJcNtPqc6Ys/En8J7RV6xmsblPJCHYCq05Dw2rleAgvCmGfR1Psm6Yg7GXAh/Qk6dQcY81zhnLN/UhSjJgGzA++brZ83ZhkpPPffl7n+2DtIdprY/JtPvptIZZiN9vkHf3z/F4esfHz3zu9gII6w/D+W5OT7jiIYDPTpmkhFhFMfOGrQ5jSoWPcxi2WGEN8c0PCccfGWSsQxmf7FPz9acRC0X+Vpa8Z4VZUqFzVNAhTrsFPiGPSuzUGoOhMJrZWbf2CRPG0+zctU7kL6Y7RxB2h4DnHyMmy7fxR3KwFjwPvG9v2WLCOK/938AjedeFe3Nt9w/J1EqiKsv/va/PbNHxy6yglk0qXy4AwM4ggrbrAMJ91zBH5/38yeaGWEMx4+dtDmNKhYbZ6p2B3pWQQRB/GNAzJox824bVeg6c9xKvZBGh5Hai5HxjyDEykszaOaxG05GXfS33CnbIWmPi49QGhdLxFZ15dUGEIbmDirnnMJb2Tcy4uIQMXhCKCJp9G83XJxahH/gl421C4j2QVSnmtcHs4Yz6U7/0bS0MPVzDK6eObWl7uFGiDZmeSZW18C4OJ9r6GtsZ1ER4kEeGWqzfSXZddZkrOfOolopc24bbFY+obR5tmAJNpxo6fNX+BUHIA0PIrU/MfT5g0LrlNN4Lac6Gnz1mi5eOXwP8CpoFCbNypp1EpkExPfXNwJVByBkC2hzXWIf15vlzlPmzXh1a3OwxlbXFpTU96uvGW08uxtxdr87K0vA3Dh3lfR3twxqNq84obLctbjJ9iM25ZBwe5Ij1BU42jLyZB8EaQCqToFCa/b+zVuEzplk+5VY+24Eq2+FCeyflFZi+5rmo82Y5AE90+0aXeofxTp0V6cCqh/GG2/CjJfQ/oTSL2ETnkWje6MU5WLERP/BLTmSmg7D7JTjMuaUwmhdaDjKhQFFfDPhcYOQYhDYHlTF7tnhlDNFtWUFKcCrfq3SWDStZpfcRDin6eP765lJNKzNmTXsc62OJ+++mWJK8Af9LPuzmvy4l2vkUrM2G71xy99ziX7X0vLlFZW32Il1tv1b+VrwlosllGJup1o64km3EkqkerTkB7Js4quyU5Fp24CbhPd2lxzBU54XSijW9p8RK46hvsn2rgLNDxRHJvsVEH9I3na/CmknkMnP4VGd8OpOjrX1j8vWnM5tJ1vsn67rklaFl4H2i9Du77PfHOjsYM8bV7BaHCRgVxKm6vQqtPN7nW3Nh9WlOvEMrqIVRXX/Y5VR+lo6eDLt74peU0g5GfdXdbihTtenWFtfv+Zj7l4v6tpmdLGmluvwj92XmvaF1ksfcQa0iMUbTkBEs9hsnq2oc3/B/V3IoElCttpHDrvQ91JkJnsZeHu8vvIQssRuM6t0Hk7kEGiuyKhVbxr1dSrzi89pVlIvQr+nemJ+OqRarN7DYncMPG70NDfurNuavpLaD4Es3ot4KuDuvtg6mZekhOPzDfQcgSKQ1fCMCKbQOIpr150GILLgX/Rork40c3R4PImaYtvLsQ/X3/fYssIY7dTt+P9Zz4m2ZlCUcLRELufvgPfvP9DyfbhWIiLXjmDHz/+mUA4wNM3v0A6Mf3uZdlMlqdvfhE36/LBs58w5bep7HRCiRJyFotl1KItx0LyJbq1uekwqL8HCRTqlLqdXgLOyZCZ6C1wd5GF5sNxa2/2tFmR2G5IcEVzrbreAnc2v0NIvgbR7YvmJL4GpPoU3ElrUKDNnf9Fw3/P9Zv+HJoPN32JmJjsuvtg6kZAPHdd5qtCba65CMIbQOJZ004iEFjJJC/rgRPdCg2uCNkfwDfB7GZbRjW7nbYdH734GQlvVzocDbHrqdvy1TvfYbadC32RI5VhLnrxNH745Bd8Poenb32JTHIGtDmd5embX8LNurz/zCc0/tnEdkdtPu0LLZY+YA3pkUqXUHeTMqvTeYa0ahKdui1kfvbaOhQHT6RN9k8vlbEmX4XaK00yMsB8RPK/wBxM3cfSqLrg/tXjoGvik7sM6dZTC2tnZtPQtBu4f/bszcyvi5YjoPZWJLgKmv4M8c8PkW1Ll/zCy57qn7PsXC2ji/mWmpsr3z2PZ255EVVlvd3+zlyLzM4hKx2Hmy0ueZXoTPKv1U7E8Tn9yhYaDAfIpDK4PWteCt3jJDqS3HP+I6PakLYlNiyWEiRfplCbM8bAzTOkVRPo1K0g+zs5be5JCpr2JKfNL0PtNSYZGQL4KPTQcsq4ZXeNmfbyixQcNdrcZUi3nJLTZsWEZjXtWlymq6c2Nx8OtbchodXQ9BeIfwFPm0t75Ih/LrC70LMMCy43H1e8fQ7P3PoSIsJ6u/+dORcczwHLH1NSm+NtCQ5f/SQcx+mu5dwXguEAmXQGN1tem5OdSe4656FRbUhbbZ65WEN6GKOaQJuPMbvCEoSKf+HE9jAnJVJojBIw2azzSTxvMmR3i3q5+rn5X1QJtP1qJLQmIoJWHArtV2AybAbAqYGwqd2sydfNyrRvbgiZOpkiDuqM7xF/5YB/gdzLbH5taoC02X3uCy1HIWNfRyJb9K29ZZZiwiJzsM+5u3S//vyNr/n16xIJbgCU7tIW/SGVSCMCoWiQbMYlm8lSN1sNLVPayKRy/WUzg1+v2mKxzHxU42jzUV5oVRAqjsSJ7WpOSqRH2Sq/F6OcR+IZb+G4n9rccS0SWs3T5oOg/Vq6tdlXC6F/mPklX4HMt6ZmdGhtT5sDqDOmh1Es4M/LROz21OZMH7VZoeUYZOzLSGSrPrS3zGrMvdhc7Hvert2vP3nlC/78/q+y7Wdcm7NkMy7142tomthSoMeljHeLZXqxhvQwRlvP8Ny3MiaWqO0S1DcBCa8DlSdCy/EYIQ6AUw+RLXt00E7vVe4FU3YjUXhYU7ht/4H0x+BfEKrPhNRbJlFIeFO05UQ09TZoC2YVPADh9U2ZKkBqr0Ibd8MkHElDdGcktAqanWxWvwNLQXIyuYeIoOmnZ/xzCZcfE0NmsfSNX776bVBqU6pCJpVhkZUX5JJXzuSvnyax/9JHdRvSoWiQf+7+9wEf12KxDD3acmqu5KNmoO0C1D+3yWhdeYLJz0ESCJrayOFNe3QwndrspnDbLjNxzoGFPW1+E5zZILwx2nIcmnoXtNX0IQEIb4xUn2V6rb0abdyTnDbvigRXRLOTIPODp82NTJ82T8Vi6Ss/fzGY2pxliTUW4YLnT+WP7//igGWPJpsxn+lQNMQ/91h7Gr1YLH3HGtLDmeQrFLqIxdHky0h4HZzIxqhvPJp8BXGqIbIN4lQWXh9cpUeHQQgsbVag058YIzm0tqmx3C3YITNmx/XmWOpt8M+P1N8PpNHJG3gr2l3CmjWCHH8Kje6DBBZEAovBmJch+yM4dZD5BXfy+pD9CVOKQ8E3wZzHB+HNIfFI4VSlHsIbQ/y2vINOyZgri6UcT17/3KD1nc24fPPeD4gI4+cdx8WvnMG1R95K8+RWVttiJXY7ZdtBG3vI6a1KjsUy2kl5Sb66SaDJV5HQWiY/h38ONPka4tR42txjRzrY5Z7dfQCCy4NvLkh/Bv6FILQWtJxAgTZrK3TcSE6bF0Lq7wVNoFM2yJWG7ELTEH8Mje2N+OdDAkvmaXM9ZH7AnbQeuL+YOeCaOWR/AnwQ2QriDxbOXcaYne/EXXkHfRBYbHrfTcssyFM3Pj9ofWczWb5651tEhDkWGM/FL5/BtUfdRuuUNtbYemV2Pmn0hlxZbZ75WEN6OOPU9nDDCpjSTh4SXA4JLlf2cvFPgLob0JYTTQbO4EpI9XlFBrdKGO24xiQSi2wObReQe0hIGlFNf25cybWN4tVpvAycud1icWLgLIGmPkab9iP3MOCtQGZ/h/pHTPx00y6YeK+ui2dD6m5EAgvi+uaE9vMxScnmQmqv7vUts1jymfrH4HowVNVV8OLdr5OMp1h+vaW44PnTBnU8i8UyDJAaIH8HNghOQ+50cAUkuEL5y/3zQO11aOtJ4DZDcBWk+pwig1slhHZcZ7bZwptB+4XktDRpkmlmvjK7wQXlp/IHC5gxul52a/OHaNOBhf2BiYuuf9y4pzftRkH8tsyO1N+A+BfAbZ8A7RdhtHkCUvOfsvdrsfSk8c9B1uaGKl646zXSyTTL/3NpLnzhtEEdzzLrYg3pYYxUnY427WmMTRxwapHYrtO8rqCP4IrImGd6bxNex7iLA5r5BW27sGcLjPHso+xSl3agjXui/kWR2ivMTrSm0fjDFLmnAYgfyf6Otp7pGedd+CGwIGR/Rv0L4FTsgcZ2Rt0OzHtQWdyXxVKGJdZYlNcefGu64q16IxQNgSoKXLzfNaCKOA4Xv3Q6Cyxrs9BaLKMZqT4DbdyHbl301SPRnfrXR2hlZMyzvbcJr4eE1wNAMz+g7Rf1bMG0tbkdbdwVDSxujF2n1tPmBymtzQHE/R1tPsm4oHfjaXPmF/AvgFOxNxrb1WQft9ps6SeLr7Ywbz76HunUwGpzOBZCVcmkMlyy/7WgiuNzuOSVM5lvqbkHdCyLBawhPayR4HJQ/6hXjzIC4Q2KXcQGGt+cJjFY5hvM7rHfGMWBxQExsVjZX71z+XFSXhbPzGemVrW2m/PS0KNdV/MM6raA+3uPCWQg9Sqaes/EVlcdY9zQmw4wxrrEoPbqXlf7LZYuDr96X6b8NpXP3/waN+MijuA4DtlMCa+KPhKKBNnsoPVJJVI8ce2zZNK5vi498DqueOucgZj68Me6j1lmUSS4IjQ8bLJxS9TT5tg0r5shfHObmtKZ78lp8xjwLwKo+T2bwmTTLqHN6U88bW6jd21Oo9kpoBN7TCADqZfR1DtobA+cyv8zeVSaDgCNo1IBtdciwWUH7S2wjB7+77oDmPLH2Xz1zncDqs1bHLohHS2dPHnD82TztPnyg6/n0lf/PRBTH/5YbZ6pWEN6mCP+ucFfuAutmgIcRAb+v0/Egbrb0LazTUIT/wJI1cmIhEyD+nvR9suNmLutkPmSgjIYuF6ik67JNkJXrcnuv24fVJ0MHTf0MpM4dN6CG90VmvbNrYxri3EVH/PK4C8qWEY8saooJ9z1L/78YSKRWIgPnv+UV+9/y6tfOX0osM7Oa3DiRmcXGNEw+O5qFotleCD+eaFHDeTB1WYf1P0XbT0LMp+b+OiqExEJmgb196Ptl0HmJ5OUM/M1xdrckjfZLm3O/w7zQ9Vp0HFtLzOJQ8f1uNEdoWm/vHJZzWjTPp42D/KigmXEU1ET4+R7juDPHycSjoX54LlPeeW+N/jmvR9mqN+1d1yDY9c7s8CIhsEP87LMulhDegShmvJKbjwDCBrZFqk6rWwd5elFnAqk+uwy5yqRqhPNXCYuTcl46QLSXuKwvxvDO7Q6Et4Ycapx26+axrU+E/9VAk1/iCZfA3ciBNdBIpuWrVlpmXW55ZS7ufeCRwmE/Liuy5wLzc4Pn/zcrz6C4QA+v49sJks6mSGTznDQ8scWtRNHWO4fSw3U1C0WywhBNYk2HwHJ5zHavCNSddIgaHMlUnNumXNVSNXJpmzmxGXpmzaPgfAa4LZDaE0kvBHiVOG2XzqNax1If0VhwjQARdMfo8mXTOKz0D9wIhv35dYssxg3nnAHD1zyBIGQH3WVORYcz4+f9lObIwF8vkJtPmDZo9EeGfHFEZZfz2qzZXAY2G95y6CibZdA8iXM7m4W4o+gnbdN46rBoq91+AT8c+JUn4NTeyVOdCeTZRxMYrOyH0Ef+GY3Wbo1XXhK281KeOctkHgS2k5GO6ZllFtmNT57/Svuv/hx0sk0na1xEu1JvvvgR9x+1Hd2fELDHPXc9ft1LLbawohPcDMu6irqFoq1P+Dn4Mv3GujbsFgswxxtuxCSr5LT5gfQzjuHaDJ9dY0V8E/AqT7P0+YdEKfKnApvSnlt9oN/bhMCVlKb94bOWyHxBLScgNt+zXTeiGW08vFLn/Pwf57q1uZ4e4LvPvyxoNbztHB8wtgJY7jnj+tYeMUFEJ+Q9bS5p2tzIOTnwEv2GNibsFg8rCE9kki9QWFykLiJ0eonbvpn3Clb4U5cEXfq9riZH9DsFFR7/xJTVc91DUTCEFi594EkBlKBVJWOS5GKQyGyA6bsRhCCa4NvARNzJlVAGDrvgti+QMRr10WW7m9LjUP7NUWrkJZZm58//5U+BQuVcWSona2abY7cjCvfPZdYZYSfPvulrBHu+B2WXXdJIrHw9E94BCGA6Mj4sVgGnWQJbU693u9u3PSPuFO29LR5R9zMT2h2av+02YmBf/neB5IYSCVSfWbp05X/B5FtyWnzuuCb37uuCjQA8fsgthcQpqw2E4cOa0hbCvn5i99w3d6/nEXMTynqZq9lu6M354q3zyFSEeGnz3/tVZtXXH8ZQpHQjE57RGC1eeZjXbtHEs5swNfkdoP94Jtjmpdp6gNT0iKwCOomoHGbXB/pj2DKBigBk82z7hbEv0BxH4kX0ZYjQTtR35xQfTm4f/UyqkDlaUhodcTXULqF+JDq06D6tNw4bhs6ZX0T45Vtgs4fIfQ3pP6/aPNxkP22zHjTn6DCMjqZa5E5enX39wV8+AM+kp2pkucPvnQv/rbdat2vx809lpbJrXSt14hPcMQhEPLTMEcdR9144IDO32KxjBB8s5lSVN3aHDAeVb2gqpB+H7J/QWAx1G2Fxu3pNkLTH8CUf3raXA91NyP++Yv7STyPthxlEn75JkD1ZSbkqTcqz0BCqyG++pKnRfzGyM4ztNVtQSevD9oM2Ubo+AHC//C0+Vjv/kvd6MBmZbaMfOZceHYcp7w2+wM+fEEfyY7S2nzI5Xuz5la5jZyxExpoa8xlmHccQRyjzWMnNPCva/cfuMlbLD2wO9IjCKk60dupjZqVYaceqTis12vcllNMWarWk9Epm0LjthS6ZXctC6XBnYQ27lW0s6uZX9Hmw72EX67J2t24E2R7iWeRWpzo5mWN6LKk3jA7zN2GcQKSz4F/QfBPKHNRGMIb2hhpSwFLrbUYmx74T4LhAP5Q4ZphMBxg1c1WwM2WXhb1+X1ID6E/+uaDqKiJEa2KEKkIs+jKC3HTl5dy9fvnc8Nnl1A7rmawbsVisQxjpOpkkEqMNkfBaUAqDinbXlXR1hPRxr09bd4YGnek0IMmX5sneuW2evST+Rlt/r9cDensz9C0E7i/lZ+sMxYnumlZI7osydcwtaa7nh8SJrTKv0gvC/phCNsYaUshy627JBvus25ZbV55k+VxM+W12ecrNF2OvfUQYjVRolVRIhVhFlt9kW5tvu6Ti6gZUz1o92Kx2B3pEYT4J8CY/0HydcAxO7W9ZK7W9CcQfwSI9z0dvjvFGMySVxMy8zmIP68PNX2W7DQAEkJqr+7jgKUm3tNFJ4u2nAaxvT0Xurh3XMAZC+H1kcpjpn+8fuB23AEdNwIKsb1xYrvMlHEt08d+5+/GpgeuT+NfzXz0wme8cNdrhKNB9vz3Tpy32+Wkk+mS11XURgmEAnz88ucsuspCBEMB5l5sLm759j98+da3RCrCLL76wvh8vpl8R8OIUeSaZbHMCOKfB8Y87WmzD0Jr9V5VIv0RxJ+g79qs4P6Jup2IE83r51MQX6E2d2XRLiIAEkZqruzLgCWQEtrsoi1nQGw/SL1Dzr1dwBlnFrgrj5zO8fqOqqKdt0PHzWbs2D44sf7V9bbMXA66ZE+2PHQjGic288Fzn/DSPW8QiYXY6+yd+ff2F5fV5qr6Chy/w8cvf85iqy5EIBhg3iXn5rZvr+DLt602A1abZzLWkB5hiFMHkU371jj7Vw+R7esgPUpXOA0Uu04L4AO63LYcCKwIFUcggQUQp5LpQdNfkjOU80g8CWSR+ju9JC5ZJLIjElx6usaZHtzOR6DtPLofFtouwJUITnTrmTYHS/8ZP+84xs87jsVXXZidT8z9X5ULqV9stYWY9MtUzt3lchSlYY56/vPmWcSqY1TVVbLyRsvNpJlbLJaRQv+0+U8Qp5/a7AOJFB5yGijuxMHoczb3OrAqUvkv8M8/3WUjNf0FpbX5URAXqb+jO8GaRHdGAktM1zjTNbf4A9B2UW5+befiSgwnuvlMm4Ol/4yfbxzj5zPavOvJ2+ZOlBHnxddYmIk/TuacnS5DVRk79xgue/3fxKqiVNVbbbYMDda1ezTjX3Qa8UkOxWspAqlXCw8FlofQusZljQgQhsrjjDuXxMyPfwGk9mqc0LLTb0Rnfu2ltnQCks8ggcVxqs/CqT53phrRAMQfoCihTPzBmTsHy4CxxSEb4AsUrlovt95SjJt7DM0Tm+lsixNvS/DXjxO5+eS7h2iWFotl1BFYfBrZtR3MQnU+4iUczSO4MgTXLNTmihNMfLbEzHH/QkjtFUhw6ek3ojM/mioZJUlA4n9IYElTnaP6nJlqRAOeNucb+QlIPDRz52AZMDY7uFibV9poWepnq6VpYovR5vYEf3z3J7efcd8QzdJiMVhDehQj/rmg+iJMVs18/OCMh9rbKTakM2jqk8J+RJDqi5CaK0xtzPp7cGJ7IA1PILU3IrU3I/UPTbdId+P+RW6HuxRDnBHZiRUf67l7bxkxbHvUZkUlrL5442u+ff9HMuncQ246meGXL3+f2dOzWCyjFPHPDdXnAz0zCfvBmQNq/0uxIZ01rtz5/YggNZcjNf/xtPlenIrdkIYnkdobkNpbkPoHTCbvGSH7J1Da1dZMZIgzIpfSYavNI5btjtm8SJs/efkLvvvoJ7KZHtr8RS/5ACyWmYB17R7lOJH10PCHaOYHaD0f3B8hsARSdRri1OD6ZoPsT3lXBIBKNPmSEc/AEkhgSZPIK7RGQd8iQQgOoCuNbz7K16cOwEyIteoNqTgU7U6GBhBBKg8d0jlZpp/O1ji+gA83m/vMOT6H8fOPY9Ivk0klzINjKBJk8dUXHqppDlvElpuzWKYbJ7IBGl4PzXznafPPEFjK0+YqXN84k9izGx9KBSReNIvOgaWQwOKeNq9Z0LdICILTKIHVH/wLUN4PPQAVMydHSTmk8jB06rt070pLBKk4eEjnZJl+Opo7CQT9JOO5rN0+v8Ps849j8q9Tu+OnQ9Egi6++yFBNc9hitXnmYg3pWQARHxJYEOqvLz5XcyE6dTeMy7ILZKDjPLQj0N1GK4/Hie3Yp7FMSY9PQFshsLiJG+vrPH31qDMXuL+WOgvaVn7c7CS0+TBIf24yptZciAzkgwQggcWg7n40fj+gSGQbJLDQgI5hGTiy2SyPX/MMX7z5DXMtMgfbHLEp4Whu56RmbDV142qY9MuU7kz1btblgIt357L9r+Ord75FVVl67cXZ6YSthuo2LBbLKMVo88JQf2PxueqL0MbdyWXKTkP7WaYclodWnYQT3a5PYxVq8xKIU9v3efrGojIe9M9SZ6ehzX952vwl+MYa77bgMn0eu0/zCywF9feaWGkEiW5bsoynZXiQzWZ59Mr/8dU73zH3YnOyzRGbEgznapHXja+hsr6C1O9N3dqczbgcfPleXLjXVXz7/g+owrLrLsX2x9g4eMvQYg3pUYAmX0U7bgIEie2DhFab5jVdSGApNLY3dFyDEeuu3bm8+K22f6PRrc0OdG/zUBdtPsRkLhUfqKI15yGhtRAp75atbiPEn0Q1bUpcpUoZ0ilouxQ3sDqS/QH88xjDFi9jZ9MekPnRzNv9HW3cHY3ujgSXhdC6A1YaSwILIoHjB6Qvy+By/h5X8vpD75DsTBIMB3jz0fe4/I2z8PmNy6SIcP5zp3DyZufy61d/UFVfwQl3/R8TFp6DC188jal/NOL4HGLVUT5+6QvcrMuSay5CpCIyjZEtFosFNPkS2nEL4ENi+yKhVfp8rQSXQaN7QOf1GF1WjC7naXPr6WhkK0R6f5RTzaLNB0HqLcDvafP5SGhNs3td7rrsVEg8iZI12pwuZUinoP1iNLgSZH4A/7xIYFFvXEUbd4PsL3SVztTGXdDoHkhwOQitPYDavDASOGFA+rIMLufsfBlvPf4+yc6U0ebH3ufS187szrTt8/m44PnTOGWzc/ntmz+paqjk5HuOYM4FZ+eSV87s1uZoVZQPX/gMVFlizUWJxIY4/M8yS2IN6RGOJl9Gmw6lKwmWpt6D2quR0OqF7dKfoO3XAykkuiMS+nvupNtIr/FPCLhtMK26k4mnvGQoeSU9mg9FJQI1VxbNCbzV6imbg3ZiHhB6i5FOQuN2qPhAs2hsP5zKQ0BbIPMzhZnFU9B5AxoPQ3hzpPqM3uduGVU0T27hlfveJJMyn6dUIs2vX/3OF29+w5JrLtrdbvb5Z+PGzy/FdV0cJ5cyQkRomKOetqZ29lv6KJomtiBApCrCFW+fQ8Psffe0GJUotsSGxdILmngBbf4XOW1+F+puQIIrFbZLfYx23ACkTbbrfDdtbaR3TcSUu5Jp1MlNPAHJtyhIyNV8MCpRqLm6pIGv2T/QKVt4oUzT0GaNo1O38xbQs2jFQTgVB4A7FbJ/UBiylYLO6402R7YxNbgtswyNfzXxxiPvdbtnpxJpfv78V75+93sWWyXn4TfnguO56cvLympz69Q29l3yCFqntJmKZ9VRrnznXGrH1czsWxpeWG2e6dhkYyMcbb+RwkzSCW8FPK9N+jN06q6QfBqSL6JNh6GJp7vPS2glTMbPUgg4Y6AvLtrZ30CTPWcI2ok2H4y67eaIJtCO23BbL0BbTjKuZiSZ5gMDAiS8OpkJ6LgWzfzmZSwt9c2h5iEg/hCa/WPa87eMGtLJDI5TuNMhjpStTZkv1PnccsrdTPplCvG2OJ1tcZonNnPNEbcM9HQtFssowxjHPbX5psI2qY/Rxi5tfgFtOhhNPN993hjd5bTZAd94kKppTyb7K0ZjC0YH7UCbD0TdTnNE42jHrZ42n9wPbTb3163N7Vei2b+8BJ2l8p542tx5D5qd2Ie+LaOFVCI9INp84wl3MOW3qXS2xelsjdP4VzPXHnXbgM/XYpkW1pAe8ZQyIAuFSztup2dpCG2/OvcytAEEuxKJCThzgVSa333zInW39s39KrA4lHX/FuPWpSl06rZo24XGZS31GsU1qssO0KPLILgTjct5xWHF57vb+cFt6eMYltFAwxx1TFhsTvxB43Tj+BxCkSCLrLxgv/r5/Zs/u3e1wcRp/fHdXwM6V4vFMhops7ib/6rzFoqM7XxtDm8CwVW9FwLOhDxtns9UzOiLNvsXozhDeN6c3D9QTaJTt8nT5tcpn/yzJz10XwKQnYhIBGIH07s2t/ZxDMtoYOyEBuZYaHyBNkcqwiy0wvz96ue3b/4sqK6RTWf53WqzZQiwhvQIRyr2prAsVBiJ7dWjVanV5JxAavz+vNrRAtqMNDyOjPscZ8z/EP+Evs0ltAZE96JkxIBmwDcbJF+EzK/kHh56CnXQzKEkPdtmwT+f9+uPZa4TkEiuHaCaQTvvxW27CE08053MwjJ6EBHOf/YU1thyZWabdyzLrLMEl795NtHK/sU3L7nWYoSiuYfEYDjAEmss2ssVsw6iI+PHYhkKJFZCm6N7FjYqWUs6d0w774bUm109etr8hKfNT5oSl32ZS3htiO5KaW3OgjMWEs9B9ndyO9d91WaheDFcwT+vdzs/lL9OKsA/d+4qTaOd93ja/Nw078sy8nAchwueP5XVN1+R2eYdy3L/WJLL3zir3/HNS621GKFInjZHAiyxhs3gDUOvubOaNtsY6RGOhP4OtZej7TeBOF6yscJYZInuiCaeJWe8hiG6R65B+38oMGy1E+18wMQf9xOn8nA0tifacTN03GBWpjUDVScjTi3qdpi/oJ5/RBIzgh7ZHMJbQtMeeXPygX95yHxUeE1ofdNndhLEnwBS+R0CAZP4pOay7oQqqi7atDekPzJxXRKByI5I1XH9vlfL8KaytoIT7/rXDPWx/TGb8/1HP/Hmo+8CEK2K8OVb33DXuQ+x3dGbdSdHsVgslnwk/A+oudRooZRONibRnU2pyQJtzjO2O64g501mtJn4I0jF/v2ej1N1FFqxH9pxPXTckqfNpyNOFartoCV2oCVqjke2NjvkTXuQM7Z9EFgB0h8WXhPa2PSZ/RMSz1Bam+f3tNkYQ6pZtHEPSH8GxFEiaHQ3nKqhLXtpGXiq6io56Z4jZqiPnU7cih8++Zl3nvwABaKVET577UvuueARtj1y07Iu4RbLQGMN6VGAhP5emDwsD3Wb0c57wGkwMUm+2SC6B040v2RAzx1rl0Lh6+d8nCqk8nA0sgVkfzbu4V0r56GVoaBSRgACy+DU31E479rr0fZLzINDZGuIP1s8p+wPXuME0MOgkRhSczUSWrnwePpDSH+cqwWtcei8Da04GHEqp/ueLaMTf8DPKfcdya9f/86hK59Ay5Q2mie18uNnvzL1j0YOuXzvoZ6ixWIZpkh4HSS8Tslz6jai8XvztHk8xPbCiWyS16hYm1VTZX22pjkfpwqpPBKNbG0yafvmQ/xzmpPBVUEkb5E7CMHlcepuLZx37bVo+2VGdyPbQvwxymtzHJOALH8SMaT2+uLylKn3IPM5uYWDOHTeiFYciDjR6bxjy2glEAxw+kPH8NPnv3D4aifltPnTX2n8s4kDL95jqKdomUWwSzajGNU0OnUnSDwJ7m9e4pAUEtm4u43b+SC4HT2uDCHhDUv0l0Wzv5tyVSXHy6Lpb9HMd6i6iH9uU/oqz/1MfHMgtTeDb16QagithdReXdSXhFbGqb8bp+FRnNju4B9PobHsgDOb+dU3h1kg6F4XckBCJma7aJLtFH/sfV6SFIulNB+/9AWZdAZ1zRNhsjPJk9c/Z8MCLBZLvzG5QnaExP/ytDlToLtu5325Bd9uQkh4/RL9ZdHMb6jbVGa8DJr+Bs1872nzPJ42z9ndRvwTkNob87T5b0jNFUV9SWg1nPp7cBoewYnt4mlzvqY6nh4DvglmoaBbux2QMPhLhMeU1GbHq+hhsZTmoxc/L9LmJ657dohnZZmVsDvSowTVtEmo5dQh4olR5jtw/yBX2iptYqAy30NgYTT5OrSeRs6tTMCpN+5WgUKh0+wkk100+yeQRSPbIlWndic6UbcVbdzZrHIrEFgU6m4pWT9agsshY54uOt4bUnkkmnw192AhQaTyGPOr+KDuv2jLcZD5EnwTkOrzEKeiuKPAUhTGa/mMIe6M7dd8LLMWpfP5DEz90xGLXUOwWKZJaW3+GtxJFGrzzybXh38B4+7deiaF2tyA1FyOBBYq7D/7l6fNE4EsGt0BqTwpT5ubPW3+HVQhsATU3VSyfrQEV5gObT4aTb7peYYBEkYqjzK/ih/q7vC0+WvwzYNUn1t6hzmwDIXfqX4TP+1Mo+ymZZamVLI9sdpsmYlYQ3oU4MafgZajAAWJorVXQOoDyHxT7BqmalytAE08Q2HGUAX8SHDFojG05RhjJHclFYk/BMEVwHND07ZzIPMD3Q8G6c/R9iuRyoGJbxLfbDDmKZOsTIHw35G8klziG4PU3TjtfpxaT9iPNvUt/YsiNRfnHnAslhKstsVK3HjCnaSTaVxXCUVDbLL/en3LmGuxWGZJ3PhT0GIWfJEYWvMfSL9vjMpS2kyXNj9NsTaHit2hAW0+0pSe7NLmzvshuCKENzDnW/8NmZ/IafOnaPu1SOVhA3KP4pvDaHPiJWMHh3pq8zik7uY+9FMPdbejzUeD+xcEFkeqL7bfsZZeWWOrlbnllLvJpDLd2rzZIRsM9bQssxDWkB7haPZ3z4j2RFeT0NiVnTOFUTYfRmRDEFgMfF4Ga6faa5cn6OXihNNfUJiZM46mP0W64rnSX5BbXQdIQvrzGbu3zPdoy4lmJT2wHFJ9JhLZaob6BJDAIkjDYzPcj2XWoXZsNVe9dx43nXgXjX82sepmK7DlYRsN9bQsFsswRTO/QMuxdCfm0iQ0ldPmMASWBt88pq3U5J3zKKfNma8o1ubPEM+QJv0lhdqc8BJ6TT+a/hZtPdF4qAVXQKrORKIDoc2LIWOemOF+LLMO9eNruerd87jppLto+quZ1bdYiS0OLQ5NtFgGC2tIj3TS34D4e7hy5CcL8074VwP9CzJfoZPXhqrTkOhuaOe9XmxSBggilSeWHsc3J2Racv0RRvzzmBHcdkydSIeCkhnpb9HML30un5WPuk3o1O1B28yYyefQpj+R+nv73ZfFMhDMNs9YTrjj8KGexrBhNJWvsFgGnMxXfdBmgcBq4P4Jmc/QyX+H6jOR2J5o/EFPm7MYbT6h9Di+OcwOd/dAEcRnSkqp2wYSpEibM1+jmV/7XD4rH81ORRt38OamkHgWzU5E6u/sd18Wy0Awfr5xnHjnv4Z6GsMGq80zF2tIj3R8s5XI7FkCJwKp34AUaAfafDhSfw8y5kmIP4S6cZNhNLBYycul5nyTuIwM4JrV88g2qNuOTt0MspMoqjupk9Cp26PhzSD5KOCD2CE4sR2mPd/Ue5gHiK5vhDSkP8FtPhYJr51bbbdYLBaLZbjhm70P2mzCqYxrdtpoc9MhSP39SMMTkHjE0+Z/IIHSNXKl+kITA00Wo83LQmRLk7dkymbgTqFIm92/0Mbt0dDGkHjMlMKqOAwnuu207yv9jtdflzanIP0BbvNxnjYXJ0OzWCyW0Yo1pEc4ElgUje4EnXd5ZSa6Vru7/g2ashap1ygsUZGB1BumZmVke5weibnczgeg7VyTQCS0NlJzHjLmOUh/amo+B5ZCxEE774LsZEqXy1Kzoxy/I3e+7Rxcpx4nst40bixS4qALiYfQxP/Q2Dc4fYjx0uxkr7TIHCYpmcVisVgsg4wElkCj25qY5ZLaHILQmpB8mULXaxdSb0J01zLafA+0XWhcxcPrmORdY54z7tpSAYElPW2+3zOiy2iz2wrxu8x5BVrPRJ0GJLz2NO6sOIGo0eYH0cRTaMUPOBUHTvP90ewk83xhtdlisYxgrCE9CnCqjkMjG5tYYv/C4LagrSeDOxWCqyJVZ6CT1zHC200AzfwIE5cB0qhvPFJ7E+KfB02+Ba2n0x13nXwRbTkZp+ZCCK1eMLa6LRQ+BPQkTaFvWxzaL8JNv2sSokkIqTgQCa1ReFlwJVM6I/MD3TFm+X10XINWHFI2SZiqmhiuuLcT7hsLdf9FfON6mavFYrFYLAODU3UyGtncxBL7FwZ3Ktp6KrhNEFwdqToNnbwmaL6G+tD0dzBxaSCD+ubwtHmCV2njLLq1OfE8KqfjVJ8zANqcQNsuQJNvQOYjIIhUHIyEViu8LLS6507+MyW1uf1KNHZA2SRhqi7acjwknsBo82yeNo/pZa4Wi8UyPLGpikcJElgSCW+A+OdFgsvgNDyGM/YNnJqLECcGlSdgVpId869TB/FHMIKchezvaNNeAGjyFQozhiYh+UrpcUNrAcG8Iw65mpFhs3vdk+wP0HkLZD6B9Lto00Fo6p3CfiWI1N8NFQdDYAVMDHY+LoUJVnqQeNQT6hQQh+xvJvO4xWIZGHSE/FgsQ4gElkLC65vazcHlcRoexxn7Ok7N+aYMVOWJGG0W869TD4mHMUZqFrK/ok37AKDJlynW5pdKjxv6G5Bf4qqHNlOiBFX2O4jfCumPPW0+AE29X9ivBJG6ez1tXo5ibfZczMsRf9jUz+7W5l9NeSyLxTIwDLXmzmLabHekZxGc6Oaofy40+Tri1KAShraz8j7MCtk/Ubcd8dWjBClwCXOqSvYrwaXR6vOh7UzQTgiuBaFVIP0V+Oc3q/BN+wHxXmaXQDvuQIIrmZloytTE9DXgVByARrZAp2yYt2ofhOAqiPQU8Bya/ozumtMAZM2cLBaLxWIZJjjRrVD/BDT5JuLUovih/dwe2vwLqgmvpnKAgp1mqS7ZrwSXQ6vPgbazPW1eG0IrQPorxL8Q6p8fmvan0DDvSQLtvLO77FZOm8d42rwpOmXjPG0OQWi1Xl21Nf0xhc8DGch82dtbZLFYLMMWa0gPM1QV0u9C1quj6J+/dLvE82jnfwE/UrFfydrPPZHgckhwOfMi+VaJBaEASBQi20HnHZCdglld9iFVp5ft14lsAJHyyb+0/l60/WpIPkfpeC1AfMYdO/U2NB+ESdKiaPX5OJENvdrPJ4E72XNXP7X3e/XPhxIm95AgMB0ZSi0Wi8ViUVVIvQPuJE+b5yvdLvEs2nkHxjX6gJzm9oIEV0CCK5gXydeKtVlCQAiJ7oh23mlcw7u1+bSy/TqRjSGycekxAa2/x9PmFyirzfg9bX7L02bjCabVF5lcJ3W3oy2neKFkqyHV09LmBXposwNelnGLxWIZaVhDehihqmjLsZB8BhDQLFp9Nk5XrWYPN/40tBxNlxBp49tQd0ufBLub4MoQWhuSL3aPRfW5JuZYKqH+UUg8DtoBwTWRwELTf2O+OaHqBJjyKrmEK/mEwRmHTlySIjFvORoNLmvqSzY8WLJ7TX8CyTdNXezI5ohEILItJJ7x4rB9QACpvmD678FiseRQW2LDMutgtPlIz+Ds0ubzzCJvHm78CWg5npw2vwV1tyPBpfs+WHB1CK4JyVdBPG2uOt/EHEsVNDyR0+bQ3xD/AtN/Y765oOpEmPJaGW2OgFNbRpv/Dw2+aMLKGh4q2b2mPobUW+DUeNochugOkHjWhHbhmDwp1edN/z1YLJYcVptnOtaQHk6k34Pk04UuyS3Ho+ENC12lOq6j0B0rgXbe1i9DWkSg+mJIvZ23wp7b/RanwgjeDKBuI9q4L2S+AATCm5jxtMUkEnPqTZbR4ErQdgGlV8RTaOo9pMdiQhe5B5c0EICOW6DhIWNM195oxtZO8C9m7mkQ0Oxk8x765jYx4e5kQMEZWzbhisVisVhGCKm3jBGtnbljLcei4fULE152XE+xNv+3X4a0iEDN5WZMd7LJwu2fN3d+ILQ5OxVt2turPy0Q3sxU8dBWo2NOnVlQD65gMoSX1eaPkDIVONzOR6D1ZIw2B6HzNqh/EJEQ1N0Cmc/Ns86gavMk8x52a/Mkc7/OGKvNFotlQLCG9HAiOxG0Z/43F7S9bBxUN9r/JSgRMfHMfUDdRog/7NW0XLdsTUs3/iR03OytpKcg8w3dScESD2OSn/hAYkjtdYgEcNsuptc4Le2ZGTSP1jPyrs2a7KjxxyC6nSkhkv7c7IgHSiRWGQDcjhuh7RKQIKgL/vm8ewaCy0PttWYV3mKxWCwjE3cixhk6n7QxBAsSapbS4enV5lX71FazUyHxMOomvXrTpb3H3PjjZqFZfGbeme/IafODmOSgDkgVUns9In7c1vPoXZt7Odd2Zt61ccj8ZhKARraC1OuQ/hL8E0w42SDgtl8L7f/xtFnBPw9kvjUngytC7TXGqLdYLJYZwBrSw4nAEhRmohZv17ZHoq/YPtByLDmRCiOxXQdtWpqdgk7d1NSdJIt2XAu11yE9jHA3/hS0HEfvyUs8ozjzhWfwboU4Y3rETOUjEFiyl8l19jiQBm3DbbsMOm7CrKQ7piRH7c2IZCHzC+qbDSENTh3i1E3jHSgzdPoraLvMjNHlFpf5LNcg9QHadilSZTOSWkYh1n3MMqsQWKI7Ntgg4BtvKmLkE90HWk+kQJujuwzatDQ7CZ2ymVlsJ4t2XAN1NxblTHHjj0PLCUwrsRgKpD+FxJMQ2QzxjUUJUVzmCvqvzVlwW83CeeetnmY64J8PrbkJkTRkfh0gbf4C2q+kUJs/zzVIvY+2/QepOmq6+rdYhjVWm2cq1pAeRoh/HrT6PM9IzhjX4Lobi1yQnMiGqPjQjttB/EjsgFyikj6gqQ9MLLY7BfwLQc01OL7a8u07bwO3xcwJMPUm/42EHi9s2HkbvQt1fqdJb5UfiG4D8Xsg+2uPTNsADnRcAzUXm8vULXSlC60KydfJZTH1o/6loWn3vGNZyH4LU9ZFUUwJkLiXmVzR0HpIYAHzXoTW67vLV+YHb3W/XIMkpD/oW18Wi8ViGZaIfwG0+mwvjCgLzjik9qaidk50U1zxm2SdEkQqDkSCy/R5HE29a2osu1PBvwjUXoPjlPdG046bTahU9wJ8Fm09C2l4uLBhxy30WZvxMnMDRLaHznvB/aOMNl8FNeebufTU5uAqJpSrW4cd1L84NO1BgTZnvva02SWnzSHARUPrI4H5zHsRWrcf2vzdNLQ5AekP+9aXxWKx9II1pIcZTmRDNLy+SSQiFWWFQ8L/RML/7Hf/mvkFbdyd7hXm9IcwZR107JvlXZDdZnJGdNexthINy5e8KCYEgWUATDxz/QNo00HG5augBmUWEk/jdtwJ7ReAdqKBpZGaqxFfPVJ9MdpyFCTfAKfCZBf3z47io6BECFC8qu6tVCefRJMCEobwlkj1aX27Bf88PXYpehIwJcAsFovFMqJxIpug4Q3NTmsv2uxENoQeScj6gmZ+Qhv3pFuX0u/D5LU9bS7jgqxd2bvzj5XQZunPo54fPONfnCg0PIQ27g/ptynW5idwO5aB9vNBE2hgGaT2KsSpQ2ouQ5uP9JKNVSJVZ4JvnCnvVaTNPY18T6uTj+e0ObIdUnViH29hXqvNFotlptAzINcyDBBxEKdycJJhpN6gyKDUDrTzgfLzCa8H5BvZYShhxEvFAT3alZu/HyoPR/JiwMyDglAo1Hm0nWMWF1BIf4Y2H2Kucypwaq/Bme0TnLFvmLk647x6m/1BzYp7/H40+1efrpDAYlBxIBAySdOImLElZn5845HKY/o5D4vFYrEMR0R8g6fNyVcpSuql7WjnI+XnE1qfIm0OzYg2B6DyqALXcJGw17yUNqunzZ3mfPoTtOlwc51TiVN3nafNryPhdcA3u6mu0S88be68y8SD9wEJLAmxfclpcxScsXnaPAdSeWQ/52GxWCzF2B3pWQ2JlD6ebSx/SWhNtOoUaL/YuGSHNy5pIEpoDai9Du28HfBBYGlovwyz2ixm7NrbTCmrUivkwRU8V7B8Q98xGUTdprxjGUh/VH6+4jO1LaduBzqlbLvSF/u9eLO+4VQciEY2h+wkswouYUh5cwsuY5OZWEYlgi2xYbEMKGWSbok2lTwOIOG10coToOMyEwsc3gypPKK4XejvUHu1V9/aD4GloP1yCrX5v0hgkV60+QOKtXmMV6Wii0yv4Uwifqj7r6fN5Z85Sl/s93bb+7ZI7lQeika3guzkEtq8LCLB/o1vsYwArDbPfKwhPasRWg+IAPnxTj4k3Hv2bie6jYllngYSWgUJrYK6zZB8A63Y34sljiGx3XqteSmxfdDka5B+J+9gJcQOhLbzKVitl8re5+GfE8a+gjYfBsnnpjlvg1dD2zehj+29sXyzm5X2LkIr9+t6i8VisczihDeA1tMoNFb9pjxkLzixHSA27XJYElodCa2Ouk1Gm2P7QvYn46Ye2x3xz1f+2tgBaPIN427efbDK7Pq2XwCaF/rlVBV3kN+XfwKMfc0L5XppmvP2OjWVS3xz9LG9N5ZvjsJrrDZbLJYBxhrSsxjiRNGGp6BxV3B/BUJQdUpRls8ZQTO/oVO3ptvwlSqk4aFpZuAU8aPunz06S2Kygy4M6a/pci+T6rOnOQ8RP5r9tZcWAVM/M/0JZH8D/3xIzWV2pdpisVgsMxVxYp427wbubxhtPh0JLjtgY2jmF3TqNpgYZTWZsesfRJya3ucmATT7R4+jSVNayrcAZL6nW5urBkibI1tC6n3I/gH+BTxtDkyzb4vFYpmZWEN6FkHVRdv/A/G7AQdiByLRnQcl1kvb/u1lEvViqjSJtl1ekMTL7XwAOq42tZdjuyHR3c1c3J4xUElT+7Hi/yD7G0IKAiuUrZVZPJmeJTjyiO6FU2XjpCyW6WI6atdbLJZCVF207RKI32fcl2MHI9EdBkebW88AbaVbm7NptP3KgiRebue90HGteRHdA4nu4mlzDxdzTZns2JVHQfZ3o83BlXr1Oiu8vjdt3h+n6rC+35jFYslhtXmmYpONzSJox83QeZMxVN3J0H4BmnhycAbL/klhYpKM2fH1cONPQ+vpkP3FrLy3X4J23m1OBpahcH3HMaWxmg+GtrPBv0jfjWgwO86UiQvvvBV1+xmnZbFYLBbLAKEd15nSkdoI7iRoOxdNPDs4gxVpc7qHNj8BrWeZUpTZX6HtQjR+vzkZWIqivZfOO6H5EE+bF++7EQ0Q3pTy2nwD6rb0vS+LxWIZIqwhPauQeLSwDqTGIfGY+TX9CdpxCxp/HNVMmQ76QXAVCjOERiC0Wu5l/AEKyl1o3DsGUnMx+BfDfDR93r9pk2RE29Hmg6c5vOatxknFIRDbHaSOokyl4odMoXuZuu1ox624bf9BuxKTWCwWi8UyGMQfozBnSZ42pz4eWG0OrQLkJ8CMQDBfm+8vnotnSEvNZaaec4E2p/K0+ZBpDl+gzZX/B9FdQGopqc3Z3wuvdVvRjls8bf54mmNZLBbLzMAa0rMK0jMBiANONW7ng+jUXdC2C9GWk9DGXWdYsKXySAitQbfYRjZBonvkDR2jWDjNyrQ4dTgN9yPjPoLKUyiqTe02otqzBqVB01/gTlobnbgI7uR10fRXiPhwKo9AGp4Agj0vKEhEom47OnUztO1C6LgCbdwNN/5U/98Ai8VisVj6QlFyLgecGtzO+4wed2vznmivtZGnjVQe4y1qd2nz5kh057wGsRIXmWzi4qvHaXjQ0+YTKHp8dCehWrp8paY/xZ30d0+b/4GmvzXaXHU00vAYpbV5fO6l24pO2RRtuwg6rjTvy2Dt2lssFks/sIb0LIJUHoVxo/JWkyUK0QO8LKEJTGKwTsh8CckXZmwsCeLUXoWM+xAZ9wlO9VmI5D5qEjvAM5y7jOkwUnl4jz7CSGBhigxuZ7aSCUfUbUcbdwP3d0Ah+yvauBvqenFY2gK+Bb37D5ufqtMQX0Ouk/hDplQGSdMHCWj79wy8ExbL6EV0ZPxYLMMZqTwao82C0eYYRPcx4U8F2vwpJF+ZsbEkhFN7bZ42n1GozRUH9SiRGUEqymlzj8dH35wFfXWhbhvauAe4f2C0+Re0cRdUvezk2lpCm89EnNpcJ/EHwW3EaLMLJNDWM6fzXbBYRjdDrbmzmjbbZGOzCBJcGhoeQONPAH4kugU4Y9H8klJgkhS4zQMzpoRLHw8sDPUPoJ33gGaR6NZIYLESc14OrdgX2q8BCQABpPaa0oPlZQ3NOwjZn1CtNlnEtRNjILsQ3QMnunVhc23HZDPNw21BNY6Uq79tsVgsFst0IsHloP4+NPEUEECiW4JTh1LCM6yXmtL9GrOsNi+Wp83qafOiJea8EhrbCzqu97Q5iNRcVXqwzDcY3c0nBZmfUQmjU7ct1ObYPjjRLQpaq9sKPZ9V3GZUk4iEsFgslqHCGtKzEOJfoGDnVxMvYj4C+QKlEFx+JsxlfqTqhGm2cyoOQSM7mtVo/4Ru0VS3w6xIp98z7tmxA4w7WD6aAqcWjT/ildHqEvOUyZBadVRh+9Aa0H41BfHbZNEpW0L9g4gTnd7btVgsFoulJBJYqCCJpiaew7hf5y0OqwuB5QZ/Lv4FCrJ4l8OpPByN7myyeRdoc7unze+Dby5Ta7pIm9Pg1KCd94ImKNTme6HyX4VzCq2FdtxAoTan0albQf0DZRcGLBaLZbCxrt0jBNWsqQGZ/Wtg+kt/gjYfTqER7YfoDhTFKw01Ti2aeh1t3Be3+Wg0+wfatD8kHjeZv1NvQ/PhENncc0sLmn+jOyO+8RiR7rkiXuxXIoElTbKzgj+LrKljGX9w0G7PYhlx6Aj6sVgGEaPNP6PZiQPTX+pDtPkICr2j/BDdkWG39+HUoalXPG0+BjfzJ9q0DySe8LT5TWj+PwhvjHFfD5p/o7sjvrH0WZuDy0D1+RRpc+ZXiD88KLdmsYxIhlpvZ0FtHmbfypZSqNuINu4Kmd8AFw2tg9RcjIhvmteW7TPxAibeKJ8MxO81bl211yGhlWdk2r2Pr1lIvWXcqQPLIb4x5du2nQud9wBxSDto8iXPDbsr8YoLpCH4NyS8PmR+AP8CSGh1czq0gXEP785GGjHZQksg4X+gEgHtyDuaQt2mntHa/UY1a97bzKemjFd0p5Lx3haLxWIZ/mh2Ktq4s1dWKouG/4lUX1gyVrjPfSaepbQ234PG74baG5DgijMy7d7H14xZnNZ2CCxfmEekZ9vWf3sVN+KQ9kG3Nne5pXvaHF4fiWwImZ/AvyDSVcUjvKFxD+/eaY5AdNeSYzmRDXBbQhRmFU8PSCiaasaU4Mx8Dv7FkOiOiNjHY4vFMm3sN8UIQFtOgsyPdItT8iW0824ktnOv1/WGSAzFT1FMsHZ6Yx6LjH1puvtXjUP6G3AqwDcfIpJ3LmUSg2W+ojuZWN1tSGDJEv2oqVXZvXPuem7axdlBxQkgoTUhtGb3MbfjNmg7D2N0V4B/AkS2RKK7lZ98cDVIvpw3ZhAJrdr3my+BqqLNh0HyVcxDQxhNvgi1N83QQ5fFYrFYhgZtOd7svHZpc+J5CN4H0e2nv1OnEuPW3SNGulubj0fGPDfd3avbCZlvzTi+eUto8y5eXLOYn7r/lsxhoupC/O68eWbLaLMiEjQL26G/dR91O26GtgvNdVIBvnkgslVhFvGeBFeG1BvktDnglducfow2HwLJNzDa/ASafBlqry94bywWi6UU9gl+JJD+gkJRjUO6dB1FTX2MO2UL3Elr4racYAzaUkS3BqcaKLMj6k5/UhPN/IROXhdt2hOdsiXa/K/CshjxB809aafZ+dUOtPmY3nosPhRYHuMqBhAEZxwEC41dTb3rCXWarkyfSBQntnuvAinV53l9BUAqoep0JLhCn+69LNnfvYyrXSvvCUh/6D2wWCwjD3FHxo/FMmhkvqSnNmv6k5JNNfUh7pTNcSethdtyIqqJku0ksh2mXGWZfQ63cbqnq5nv0cnreNq8BdpyVEFtZzrvhfRXedrcjrYc2/cBBAgsS4E2++aAHjvomnwT2i6lW5s1AU4FTmyX3rW55iJjTBMw71HVv43b94yQ/TnPiMb8m3oHst/PWL8WyxAx1Jo7q2mz3ZEeCfjnhdREcq7MYfAvWNRMM7+iTbtBl/Ecfwx1W5DaK4v7TL0LobU9l7QopF4it8rrh+DS0z1dbT4C3Kl0G8DJlyDxmIlhBjT7O4VJQ/BqUGqRiIoIGtnGi4OKAw5IEKovgeTzkH4HfBOQ2H7F2TtTH1C4456B9KfTnL84FUjd9X2+376RAPH1WBPweSv4FovFYhlx+OYGdzK5XdgQ+BYoaqaZn9GmPfK0+VHUbUNqLy9spwrpdyG0DmQngoQhle8dFfAM1elDm/8Pk/m7S5ufM/HMkU3M+VLanJ1YRpsdNLIFxB/3rnGAINRcDomnvUSg8yCxfRHpkXcl/SGF7uuZspsDBWM6lUjdjX2+3z6h8WJtFp8x7i0Wi2UaWEN6BCDVZ6FTt/Ncu1wTXxvbvbhh6jXIX10mCckXCkRQ1UXbLoXOWzGGaQj8c0PFEdB+EZA1MUI1l07/hLM/U6hKcTTzXXeMsQSWQ4lQEOukbeikZdHK03Gimxfef9UpqG8cJF4E3xik8ljEPw78OwE7lZ+HbywmuUneOPm1KWcmvnnAGWN2psnQXS80sPDQzMdisVgsM4RUn4M2bu8ZXS74lygdcpV8GTSbf8AsBOdhtPlCiN/hGdwhs4hecTi0XwpkIbAEUnPh9E84+wsF2qwJNPNDTpuDy6KdPbW5GZ20HFr1b5zIxgXdSdUZqG92SLwMvnFI5TEm30lsF6B0HhLAaCE94p2d+um/rxnBP795LsgmMJsVPpBq8C80rSstFovFGtIjAfHNDg3PmEQYBI2Ylko0JmEoSomV+y92Ox+B1hMpzNSdhOxviH9OGPcpkJ7xuoz++bydX2+VXiKIP89gDK4IkU29JCUu3cKundB6MhqYryBeWsSHVBwEFQf1bx7hTYyrWuZLQEBdpPr8Gbix6UfED3V3mpi6zNfgnw+pPteW7bBYLJYRivjngoZnIfOF0V//4qVzXkgEE/ecfywXVuV2PgitJ1PoQZWE7K+If4GB02bfPF5ukq4d9DASyPNuC64GkQ0h/giF2twBLcej/nkL4qVF/EjFIVBxSP/mEdnclKDsDm1SE1I1BIgEoe4utOUEMx//Akj1OcW76BaLxVICa0iPEMSJFsUZ9USDa4Ock5fwIwIVBxv36PTXnlCnylwc9x4AvFqQmV/R1tPMCnZgeaTqJMSp6Ntcqy9GG3cy2Ts1A6H1vfIXJk5Mm/b2WvrIuat34ULqfSiReKy/iASg7naT4EtbzH3455rhfqd7Pr4xSN0NQza+xTKgjKLyFRbL9CJObNraHFoX5Lwe2nyYOZf+AlpPoyjxZ/fFnT20+Re09VTI/gbBFZHKE80c+jLXmss8be402hzZ2FS1ADT1Htq0L3QlGSv1B576AEokHusvxni909PmVk+b55zhfqd7Pr5xA+8ybrEMFVabZyrWkB4lqGah+RDPJcwFfBBcDqdiP9Mg/THFu9VdiJfAw+vLbUOnbgvabPrK/olmf4a6O/uUxVL8c8GY5yHzPUhFt/Gqqqb+s7b3crUfnPLlNvqLiB/Caw9YfxaLxWKx9BWjzQflGdE+CK6IE9vLNOg1NlgKjHR1mz1tbjF9xf9EM78h9bf1aS7inxvGvGBKREplt/FqtPmAHmUfe17sQC+lsPqL1WaLxTIasFm7RwvpTyDzGbkEHllIvYN2Zfj0jYVSRrB/EaTudsQ3W+5Y6j3MznWX+1fK9K/NfZ6OSBAJLFq4A6wdoG09WgYxmcPDIFEILALh9fs8jsVisVgsw5b0B547db42v4m6realM5biRzEB/6JI3X8R39jc4dQ7FGvze6jbU1fLIxLytDlvB1hbc4nQuumhzf7FIfSPPo9jsVgsswJ2R3q0oJ0Ui7EvJ47BtUy9xdRbXnsXqi/CiaxX3JcEKfYNUcqWyuorEgOp7GGQ+6DqLIR2k/AjtK5ZqR6mqNuBtp0NqQ/BPzdSdWrhIoTFMosg1n3MYpk2JbXZ8bS5ylTPCK5osnUjoFmk5jKk1G5tybhdpSj+ur9IpYnx1nz3cgeqz0O0ZYRoc7unzR+Bf16k6hTEN26op2WxzHSsNs9chu+3oqV/BJbCGLpdsU1+U7/RGQ+YUhXUXA2pN0y5jsDSiH/e0n0FVwTf7JD5GbP6HYHIBn2OkS6HiEDt1V4cFka0Y3vjRL3SG5rExEwPz4+lcX/b1+zOk4Lsj+jUT6Hh6T7HqFksFotlFiKwDEbT8rTZP4+3E+1pc+21njZPgcAyiH+e0n0FVwVnnImP7tbmTU0OlRnAzOEatGk/M09NQ8WBOJENgS5tHr6FX4027wXpLyjU5v/N8HtjsVgsvTE8LRZLvxGnEurvQluOg+yvJnto9bkFGURFBEKrT7svCULdPWjH9aaUVWB5JFqipMf0zDO4PIx5GbI/gjMG8Y1HNYO2HGvqWQIa3hCpPt8kCxtOuFNzRjQAWbPbkP4QQmsM5cwsFovFMgwRpxrq7/S0+XfwL4nUnFuQb0TE6ZOGiISg/n6041qj84GVkOgOAzPP4Iow5hVPm8civtlQTaPNR0HyaQA0vIn3XDHMHh3diZD+kkJtbjPx56FVh3JmFotllDPMvg0tM4L450Pq7x2YvpwKpPL/BqSv4r4rwVmq+7V2XAOJZ+le8U48j/quRioP61e/mv3LCKdTC4EV+5QYrV+In9Iu7zPoVmexWCyWUYv4F0Dq7x+YvpwKpPLIAemruO8e2tx+BSRfJKfNz6D++Uw5yn6g2T/NIrRTB4EVBl6bKaXNeJptsVgsg4f9lrH0imoaTTwH6ffANwEJb4L46vvXR+Y3tOVokynUvwBSc4Gpjd1F8g0gkXdFAlKvA303pDX1jucy7gNcCK4ENdeUruk5nYhTY8qYJF/y5hs0rvPB5QdsDItlRKCA2kAsi2WoMNr8jCkX6Z8HiWyCOHX96yPzi6fNP4F/QU+bx+capEpoc/IN6Ichrck3TUZw6dLm1aDmioHVZl8DGloLkq/Rrc2+OT23eotlFsJq80zHGtKWsqim0KnbQeZLulZ7te0SaHgQ8c/Xxz4SaOMOJvYLF9Lvo1N3gDHPIRJE1SsHgkMuBssHhHEn/Q3cZgguh9RcjDi15cdpPqIw62jqHeOOFt6w3/fdG1JzMdpxM6TfB/98SOwg4wpvsVgsFstMQDVpymBlvqZQmx82Ja761Efc0+ZGctq8E4x5BpGAKdtVkHcFwA8SyNPmFZCaixCnpvw4LUcA8VwXyTcg+TyESyQ6nQGk5nK040YTauWf39PmYRYeZrFYRh22/JWlPPGHCoTa0Im2ntH3PjLfeVlLu4xk18QuZb5H1UWb9vHijrvOB0GqjBi6fwJxSL2NNh3Y+zju1MLXmobsH32fZx8R8eNU7ItTew1O5TEznIDNYrFYLJZ+Eb8fMt9SqM0daOuZfe8j/TVogpz2ZkGbIPMTqlkvedfneWMEwak25TG7tfkttOngskOoKrhNPY5mIftn3+fZR4w27+9p89E2AajFYpkpWEPaUhbNTsJk0e5B9q++dyIR0EyPjjOmFFbyZUh9APSoXxk7GLMK3kUG0h+hmqIs/oUp/Dj7vUzmFotlMBAdGT99uheRDUTkaxH5TkSOK3H+7yLSIiIfeT+n9PVai2Wg0exflNbmfhioEgHt0YdmwYlB8gWTb6RAmwVi+1OozWmzk92zn64rRMC/AIXaLBBYsu/ztFgs/WKoNXdW02ZrSFvKIsHlKK4dLaYER1/xzQehNYGIdyACoXXAN5e3i9zzrykDvjooSkbiLzGXvFnVXmX6JGjaVh5uspD2Ac1OQuNPosmX0II6mhaLZbQjIj7gSmBDYDFgRxFZrETTV1V1Ge/njH5ea7EMGBJcnmI9dPpUlaMb/0JeRus8bQ7/0+QvcaeC9ix3lQJpoPixMVTiWN5ca642pTgJmjlXHoUEl+3TFDU7EY0/gSZfRnsuyFssllHNSNFmGyNtKYuEVkcr/g/aL6Tb/Su4BlJVvLCjbosp7eGbw5T76OpDBGouh/iDaOYbxL8IRLZERNDgMhQa0o5JRhb+J9pxE2S+B5JAECqP7TXTp/hmh4ZnjGuaVPQ5blnTn6ONu3S9MoZ//V2mzMgAom6ziUXzzWljqi2W4cVKwHeq+gOAiNwNbA58McjXWizThYT+jlYcCu2X0K2hwbWQyqOK2qrbbMKcSmrzlRC/H818hwQWhfAW5mSgp6HrgH8RJPJPtPN6k5ysS5urTuhdm/1zQcNz/dfm1Mdo0x5dr8C/INTdMeD6qW6TcT+32myxDDdGhDZbQ9rSK07FPmhsT1Q7EQmVFBo3/hS0HAviB82g1efhRHJJvkR8EN2WnlIr/gXQ6gug9TgTR+1fEKm9zoxRfzfEHzZJyoIrIMGVpjlXEQHpZ9bSluNAO3IHMt9B5z0Q261f/fSG234dtF9u3h9CUHcrElhkwPq3WIaEkZMYtEFE3st7fZ2qXpf3eg7g17zXvwErl+hnVRH5GPgDOEpVP+/HtRbLgOJUHIDG9p2GNj8BLcfnafNFOJFcki+jzdsXa3NgYbT6HGg90STx9C+M1F7jafO9njZPheCKffL8GhBtTn9tYsOjO/Wrn95w26+C9qs8bQ5D3e1IYMEB699iGRKsNs9UbbaGtGWaiPgQqSx5Tt0mY0STyP3xthyLhlbuUykOJ7I+Gv4nkCnIsCkShOh2vV6rmkbbLoDEM+BUIVUn9cngLiA7sceBBJr9o+jBYnrR1MfQfgWQAk0BnWjT/sjYlwdoBIvFMg2mqOoKvZwv9efe81HkA2BuVW0XkY2Ah4EF+3itxTIo9KrN2SnGiC7Q5iPR0KsFO9PlcCIbo+GNKNbmEES37/Va1RTadh4kngenGqk6GQn29idYAndSjwMJNPvnAGrz+9B+LQXa3HwAMub5ARrBYrFMg1GhzTZG2jJjZH/1VnPzED9kfi3Z3O18GHfyRriTN8TtvM80F5muMhXaegZ03g3uH5D5Cm3cB01/279OAstSGGsW8eLPBojMVxT9Pbt/9Z44zWKxzEx+A+bKez0nZmW7G1VtVdV27/cngYCINPTlWotlSCinzdnfSzZ3Ox8wujx5I9zOh0zz6dbmU6HzPk+bv0Qb90Yz3/evk8AyFOz1SAQJLNfvuZSlqCIJkP2tbOI0i8Uy0xkR2mx3pC0zhm9OU2oqH02b4z1w409B6ylAwhxoPROXIE5089ylmV/RzjtA40hk0+5VbM38irZfBokXAMfsVieeyPUFQNrUp+yHa5bUnIc27gsZr8xHbE9kIOtb+uamoAynGdTGYlksw4d3gQVFZF7gd2AHoMB/VERmAyaqqorISphF6KlA87SutViGBN8cZbR5fFFTN/4YtJ5OTptPxZUQTmSj3KWZXzxtTiCRzb1kpOCmf4H2SyH5EuBAbCeIP0mxNr8E/vn7PH2pucDT5i/Ngdh+SHjtPl8/TXxzgzg90rTUG3d3i8UyHBgR2mwNacsMIU4dWnWmMZAlYFykqs5EfPXFjeP3UCiuCWi/HLf9MiNoke2g45ruutMafwANrWf6TTwB5D0UdP6XYs8NH0i4n/OvQRruQ912kOCAG7gSWgUNbwXxB8x94CK1VwzoGBbLzEboe/mK4Y6qZkTkEOBpwAfcpKqfi8gB3vlrgG2AA0Ukg6kJtIOqKlDy2iG5EYslD/GNRatOg9bTPG3OQPW/Eae2uHFnCW1uuwS37UIQn6fNV5l46W5tXt/oduIJIC+jdsctJWbjw2T37sf8nTqk4QFPm0PTtTPeK8HVILwpxB/JaXPNfwZ2DItlJmO1eeZrszWkLTOME90CDa1mXMl8cyG+saUbSqT4mJvnAt5+CSY7eNe3QAqST5QZNQEyDlTN7/hBKiGy2XTdgzgV03VdX3CqT0VjO0N2MgQW7lPsuMVimXl4LmFP9jh2Td7vVwAlV8BKXWuxDAec6NZoaE1PmycgvjGlG5ZagHZ/zv3efjGFdatTkHyszKgJkNlAm+nWZqcSIptMzy0MmjaLCFJ9Jhrd1SROs9pssQw7RoI2W0PaMiCIbyyUM6C72lQciCZfp3DlO5/piE1yxgEKoTWRioOHrRCKfwHwLzDU07BYLBbLLETftPkQtPEdBkybBbPQjUJoLaTyEMSp6V8fMwkJLDTUU7BYLCMYa0hbpgtVRTvvgs7bAR9UHFQQT1WaiFn51nJiDSa8we3DDAS0MRcDFr8DzXwLtVcjTuksphaLZYBQ9bxBLBbLcMJo8x0m/En8SMWhSHj93i+SMBCkvCENxjuyLwa1mB3erlCs+H9NorHaKwfV88tisWC1eQiwWbst04XG74O28yD7PWS/gZbj0MSL5dtn/0Abd/XcvcogUag8rmSishwOBFbDrAH1SKSS/gBtOb4fd2GxWCwWy+hBO++Etgsg+wNkvkGbj0aTr5Zvn/0dbdwNaC3fqUSh4hhw5uhlZB/4V8NUweipze+irSf14y4sFotlZGANaUuvaOod3JZjcVtOQTPf5U503o2J6+8iYYzrErjxJ9DJG5gd5JL4ILwFUv8ATmwPpOF/nltYPlEY8wYy7nOk5iJKl4jLQOrtPt+bxWKxWCwjEU2+hdt8DG7LqWjmh9yJ+D0Ua/P9JftwOx9FJ2/YywK3H8JbIfUP4VTsiYx5CqShR5sKGPs2Mu4zpPbcMv1YbbZYLKMT69ptKYsmX0KbDsO4ewmaeBTq7zfxvlIiA6eXsETTn0L6U3DGo8GVoeU4IFliBDEJUKrPRoIrmmsTL5qVa20BqQIU/PMi1RchPk/AffUmuVnyNQqyhQIM0xhpi8VisVgGAk08jzb/HzltfgTqH0T885XQZsnT5k8g/ZnR5sAK0Hoi5bV5Hk+bl/fGfNbUh9bWPG2e32izlwlcnXEQXNEzmq02WyyW0Y81pEcJJtu7O6A1ELXtUnIxUwoaRztuRqrPQioOQ5v2p0vIkTAS2xe3425oO9tcIg4ElqO040MAIlsiVWciYnaXNf0V2nx4bkxVCK6MU3dT0dVScwXafjl03A6kTH8iSPXZA3b/FoulPKOlxIbFMpgMija3X0qxNt+GVJ+GVByONh1EgTZH98btuMOEY4HRZv8KprRV0d9xACLb4lSflhsv/TnafCSF2rw6Tt11BVeKCNRei7ZdAp13YIxpv9HmqrMG7P4tFkt5rDbPXKwhPQpw22+A9kuBDBpcA6m5DHFiM96xpnoeADWr1xJaFepuReP3An4kugv454Op29AdH6VA6n3jhV3whx2Emitxwn8r7D71FoWJxtJl3cFEgkjlUWjFoZB4ztSeDq6M+CdM581aLBaLxTJwuO3XQvt/gCwaWgupvgRxojPecSltpkub14C6mz137gAS3RX8E2DqlhRoc/odikOkglBzDU54jcLDqTcp3GFOe8eKEQkiVceilYdD4nlPm1dF/L3lPrFYLJaRiTWkRziaeMETak9YU2+hrad4ccQzSHQHaL8ItCveKoxEtu4+LcFlkeCy3a/dzG8UZdwWH0T3gs6bQTPmfPU5xUY0gFOFyQyaf32J2tP5pyUEkY37fEsWi8VisQw2mngG2q+iW5uTb6CtpyM1581459HtoO1ycrHQYSSyVfdpCS7f7ZIN4KZ/omjrWfwQ2xs6bgTNmvPV5xYb0eC5cgcoMKal9wUBkbDVZovFMuqxhvQIx9Rlzk8skoLUGwPSt0R3RXGh8x6QAFJxOARXROOPgzsZAsshwaXNPNxGaNyJIkNaE5D9A6ovRfxzg9NQfkU+vDF03ASZX+l21648eUDuxWKxDDDWfcxiKYsmX6NQm5MDqM17oQh03gcSRCr+BYFl0PijpvRUcAUksKSZR3YqNO1CUekqTUD2T6i5HPFN6F2bI5sabc7+gdnVDkDVKQNyLxaLZYCx2jxTsYb0SMc3DlP/Mc/Vy6kfkK5FBIntAbE9AFDNmBJW6S8wK9M+tOpUnOjWaPs14E6h+C9YIXE/JB5Hq87AiW7Ry3ghqL8f4o+A22TcwTxD3WKxWCyWEYMzjqJSUAOqzXtBbC8AVNNo486Q/sYbz4dWnYkT3RxtvwLcRkpqc/xeiD+KVp+NE9mkl/Ei0PCQp80tEFoVCSw1IPdisVgsIxlrSA9j1G2H5HMmLjm0JuKbvaiNRHcysVDuJFDXS+px5uBMKPkiZL4kt8qehtbT0chWZmW7Z5ZOhNwqeALaz4NeDGnw3MGi23e/1vSnaOcdgCKRnaxhbbFYLJYhxWjzsyZWObQW4htf1EZiu6GJB80OsbogDlJ9xuBMKPmcZ0R3egfS0HYaRDcHt5Q2Q4E2t50HvRjS4BnT0R26X2vqYzR+JyBIdOfuHXCLxWKZlbCG9DBF3RZ0yubgNgNGhKm7EwksVtBOnApoeMRL6tEBwdUQ/1yDMym3yWTrLCAFZCC0FiRfIWdk+yjpStYPNPUR2rgbXZlCNf4U1N2EBFfo/9zLjaEJtPkYSD4PEoSKI3Biuw5Y/xbLaMVmBrXMiqjb5Glzizkg50LdXUhgkYJ24lRC/WNGWzQOodUR3xyDMym3ieKwqjiqWQiuaRKDdec68VNkWGuc/qCp99DGvchp85NQdxsSXGY6Jl9mDLcTbTnGLOBLCCqOwontNGD9WyyjFavNM5dSdYkswwDtuNHEIdMJJEA7TQ3HEohEkMgmSHT7wTOiAYLLU+ge5gffImjzUWZFW/yYj5QPgisBocK2wXX6NZy2X02uxAdAAm2/atrXZX7FbToUd8q2uO1XoFpqNd5r23q6EWrSZiGi7QI0+VK/5mmxWCyWWQPtuN4LY4qbH+1AW08r2VacKBLZFIluN3hGNEBgxR4H/OBfAm3+F7RfYl53a/PKFGpzAEL/6NdwRod7avPV074u8wtu08GeNl9lDP1ybVtPheTLGG1uh7ZzvZwwFovFMnywhvRwxZ1IQWwVQHbykEylC/HPj9ReDlIH+CCwJPjqvBX3VtA2IAj1D+HU3eolI8n7iGU+Rt22foxYYgfbK7+lmsFtvQB38j9wp2yNpt43x91GdOrWxu0u8zG0X4e2nlR+iOQrdJUN6RpTEy/3Y44Wi8VimWUoFcbkThmSqXQhgQWRmktAajDavLTJqp18sYc2P4ZTdzNUHU+u9JVC+kPjrt5XNFniYJc2p3FbzzXaPHUbNPWROZ6dgk7dyjwvZD6G9mvLLkAAkHqVIm1OvtL3OVosFstMwBrSwxQJrgXkl34KQahEWYqZjIT+jjPuLZzZvsSpv8er85xf09JFUu+YXxOPkXM3y0D2F7TtnL4PFtkJCOcdCEPUuHZp67+h83bI/gKZT9HGvdDMd5B8yRP5rnETEH+k/Mq3U9PjQACcMX2fo8VisVhmHYJ/p0ibg2sO0WRySHhdnHHv4Mz2JVJ3J6TfpVCbFUm/bX6NP0bOuywD2R/Rtgv6Pli0hDZHdjSjtJ4OnXcabU5/gjbujmZ+9Iz6NDltjkP8AbQoXKzrhmp6HAgOWLI2i8ViGSisIT1cCW8EFfthMnL7TEKTql52VocKCfc44AOJmV8zfxS3jz/S55VvJ7I+VJ0F/oXAtyBUnY7TVZcy8SiFO9YpEyeOQ26lvWCipadfdRrmoSho/nXGILFd+jQ/i2WWRQFXR8aPxTKASGQzL1t2lzavjVQdN9TTKkBETFxxwUEHpML8nvmr+KL4/ajb0af+ncjGUHW60WX/QlB1ltFr8BbQ87U5A8kXACkhw6V1GUCqTqdAm31jkeiOfZqfxTLLYrV5pmOTjQ1TRASpOBiNHQQoIsN0zaPyWGj9N0Y4Q6YcV3hDcy6wKCR/6XGBA5mvoI8Jw5zophDdtMSZQHG/EoTQ341xr0lMsrMwRLYs+/5JcEVoeNi4eEsEwhuZBG4Wi8VisfRARJDKw9GKwxjW2lxxDLSdS7c2O+Mh7Bm7gYUh9XuPCxzIfAd9rIzhRLeE6JYlzgQorJ/tAEEIrwNtF2DctV0gAtFtjNFfAgmtDA0PQvI146Ye3ghxYn2am8ViscwsrCE9zDEiU37VdqhxotuhvrnR1OuIUweRbREnak5WHAXJZyhMUCYl3Kmng4pDoe18zEOCD6QSwpshTg00PIy2XWxi2UJ/M/U2e0H884J/3hmfk8VisVhmCYa9Nsd2Qv3zoKm3EKcBItuY8pIAlUfB1Bcp1uaqGR+44hBouxijzX6zCx7Z2DwfdGvzXxBeG4nu0WtX4p8f/PPP+JwsFotlkLCGtGWGkdDKZvXYw9TYfBEhjYa3gcTjmFitIITXA9+MC6MT2wX1zYYmngGnDontifhM/JT4ZkNqzp/hMSwWSy+MHs8si2VUIqHVkNBq3a/VbfO0OYuGt4TEUxhtDkFkA7OoPIM4sT1Q3+xo4llwGpDYXsaIBsQ3HqnpRyy2xWLpP1abZyrWkLYMKOo2ejU220wxO/VD1bGI22p2fUP/7HblUrcDbb8E0l9BYHGk8l+IRKYxQg4J/wMJ969sR5/uQVMmm2jiKSAIlUfgRLcf8HEsFovFYpkZmKzZW4DbjnnS9kPlcYi2gH8+CK2Xa+u2m53jzDcQWBKpPDy3m90HJPxPJPzPgb8HTaGtJ0PiGSAElUfjRLce8HEsFoulr1hD2jKgaNuV4E4FMt6qmEDiOaTupsJ2mkUbd4HMt0AK0h+j6Q+h7u4hjznTtnMh/jjGNa0DWs9CfeOR0FpDOi+LxWKxWKYHbf8PuI3kSnc5kHwBqbu+sJ1m0MYdIfMjOW3+COruLBvPPLPQ1jMh/hQ5bT4d9c2GhFYf0nlZLJZZl2GaJcPSHzTzC5r6AHVbh3oq4PassamQ+gi39Rw0vw525mvIekINQBLSXceGmMRzFGYdTaCJ54dqNhaLxWIZgWjmZ0+b24Z6KpD9g0JtdiH9IW7reWh2au5w5kvI/kqhNn9uylkNNckXKNLm5ItDNRuLxWIZGkNaRE4Tkd9F5CPvZ6My7TYQka9F5DsRGV71JYYJbuvZ6JSN0aZ90Ml/R1MfDu2Egmua7NcFtEPn7ejUzVC3qfy1An0J7lB10dTHaPL1wVk8KEq44genduDHsVhGMKIj48fSd6w2Dxxu6xnolE3Qpn09bf54aCcU+huF9a8BbYXOWz1tbvGOuZROotYfbX5jcLRZKnscCIBYbbZY8hlqzZ3VtHkod6QvUdVlvJ8ne54UER9wJbAhsBiwo4gsNrMnOZzR5NvQeQ+QBG0HbUebDx7SOUl0B4jsQHHUQMbEZiW8/2r/QuCbE1MjEvOvbz7z46HJN9GO29DkK6iavzrVjHkwadodbT4Unbwumv62YCTVZHf76bqHypOBMODDlA2pQWK7TXd/FovFMoKw2jyDaPINiD+A0eY20Da0+ZAhnZNEd4LoNpTW5jYvJwgQWAyc2ciVmAxCYCHwTei+QpOve9r8Wp42p9GmPfO0+R9o5vuCkWZYm6t6anMtEttpuvuzWCyWGWU4x0ivBHynqj8AiMjdwObAF0M6q+FE9keKVondqaimEelZZ3nGULcZbb8Ksr9BcDUkulPJWGYRQaqORyuPRScuQ6Eblgua8tr5oe4utO38vGRjR3X36bZdBB23YWpB+yCyOVJ9BsQfgtR75OpUCtpyJNLwKJr9A23cB7I/AEG0+mycyCa5e1AXyE7zvZHQylB/PyRfBAlDZDPE7khbLBYLWG2eNtkfvZ3dPNxJqLoDngNE3SZPm3+H4BpIdMeSscwiDlJ1Mlp5IjpxKXKu21CozQGov9vT5q5kY0fmtLn1PIjfCZoF8UFka6TqFLNwkPqQnOYL2nw00vAgmvkNbdoHsj8BIbT6XJzIhrl76LM2rw7190LyJZCop8010/fGWSwWywAwlIb0ISKyG/AecKSq9vT5nQP4Ne/1b8DKWHL4F6TIBcsZOwhGdCc6dSvITgTSkHwdzXxjDNsyiDhoZJO8pF2A+CG0dq6NU4lUn1k8XnYydNxMgdDHH8BNfwbZyeSMaAA1DxCANu7rGdGuGbPlBNS/IPgXMtnBO24AXDT0N6Tm0l4zhEtgIbMKb7FYSjMDO0uWYY3V5hnFvyBFDn/O7INgRLejU7YEdxKQMdqc/d7buS2NiIOGN4LE/yjU5r/n2jjVSPVZxeNl/4LO2+nWZgU678FNfeRpc/7CuZqFd8gzol0gDi3HooEFwTc/2nYBdN6C0eZ1kJqLe80QLoFFILBI72+MxTIrY7V5pjJort0i8pyIfFbiZ3PgamB+YBngT+CiUl2UOFb20yEi+4nIeyLy3uTJk8s1G1VIcHmI7Q0EQWIg1UjttQM/UOo1cJuAtHcgDvH7UE31dhVSdTpEdwLf3BBYGqm9DfHPU9BGNY4bfwK37QLcjodw265Emw7FCG4+ach8Bjqxx3Ef+Bcxc8l+3+M6MRlH449Bx62YRCsuJN9AW//dv/fAYrFYRgFWmwcfCa4Esd0x2lwBUoPUXj3wAyVfAW0ml0QsDp13oprp5SKQ6n9DdHtPm5dB6m5H/BMK2qjbiRt/3Ghz58O4bf9Bmw6jX9ocWBTVeJ4R3TUBB1KfoPEHofMOctr8Ktp6Tv/eA4vFYhlCBm1HWlX7VOBXRK4HHi9x6jdgrrzXcwJ/9DLedcB1ACussMIssxzjVB6GRnc0Jaf8c/erDnOfKSvKPQW1EJEAUnUcUDoXTa6u5aT8q+hbNXkBQuAbh9RchEk6EgbtzJ8AOGO82K/8XewkJN/swxgWi8UyurDaPHNwKo9Ao7uYklP+efpVh7nvZErIpTJtbQ4iVScCJ5Y8r9lJnjZPyb+K/mnzeKT6AkxMc5DC3WrAN8aLI++hzak3+jCGxWKxDA+GKmv3+LyXWwKflWj2LrCgiMwrIkFgB+DRmTG/kYb4xiCBRQbHiAYIrYpJPNL1cQlBaM1eHwxU07htF+NO2Ry3cV80U1zWStvO6WFEQ6FQd218hIoHcOaE8IZQcQzim83EhFWdB4RN7JREIbCiyVTqG08ucYrXr2/MNG7aYrH0xlBn/JzVMoPODKw2DyziG+tp82AY0UBwdeOW3a3NYQitg/lvKY1qCrf1Ak+b90MzPxe3af13DyMa+q7NE/K0eazR5upzKNDm4GoQXAN8s1Okzc7Yad21xWLphaHW3FlNm4cqRvp8EVkG8838E7A/gIjMDtygqhupakZEDgGexqRovElVPx+i+c7SiFML9fejraebWpTBVZCqY3u9RltO8naCE8DX6NRtoOF/SL4BW8K4Lhw4ClXnI74atHFvCla03V8h8SskHsJNbolTcx5OZH00MD+kPgZfAwTXNDFpsb3RxONm1x4FfMbt3GKxWCz/396dh0l6lXUf/95VvS+zZichRIjsBkISwIiyyRKECAqSF0nYBMSwCUIABRSRRRZBjRAwyBKIEVkCJGwvKCJvBILsaySRhJB9pmemp7equt8/nprprXqmq6e6qqv7+7muvqb7We+qWX5z6pznnLnM5i4S5e31bP4LqP4C+n+VGH3JAc/JsfNg8vPMZvM34LDPFNfap3rNQW48BJuLZ5lzx7OYn83/C5P/W8/mx1Pa8lpKg48ie34ZZr5dfIjd94CigT38THLy8vqjY1Bk86ubfh8kqVM60pDOzCcvsf164Iw5P18GLFp+Q83LTHLiEpj4FJQ2E6PPJ3rutOzzo+f2xLZ/XOa9ajB5KcWM21DMCFopZtocevzsgX0nQ+X7NB6GVoYYJPrvR5RGYds/kuMXQuWn9dnK55j8GFl5LtFzbPGaFryuKG2C7Z8oZuFmCvpOJ8pHLu+FS9IGYTa3X2aSez9UfPBc2kqMvoDo+aWDn1gXPXcgtl24zHtV6x9wL8jm6S/B4GNnD+y9F1R+zNLZPEz0nUqURmDrBeTe98DM1VC7Zv6hkx8mq+cS5aOJ3hOh98T5tZe2wPZP1rN5pp7N9khL6h5refkrtVCOvxP2/APF80hBTn8Ztn+C6Dl2Fe7WaC4aKDov5hw1+iJy5vswcyX7h42V7wFRg/JxxKaXF41oKEK771RqO1+0uCFN1nubl34tURqCwUet6NVIkrQacvzvYM+7mZfNh32SKB+zWndssG1hNp9HVn4MM/89e3zPPYAqlI+vZ/NIcWz//Yj++1HbcS5MXbP4XrXb6o9XNRalYZizTKUkdRMb0hvF+HuYndQjIadg8pMw8uzW32vqsw029pLj7yV3/SmUthNb3lzMbLrtIqjdQlIhSkcQUQR65hS5+43k1BXFpCWbXlnMKtr3qzD5iQXXLkPPHVv/OiQ1lixv3iFJBzb+XuZn8yRMXgbDz2j5rXLy0yz6oDv6yD3vKoZ8lw4rlp/qOwW2fQhqN5NUidKR+5fuypwkd72enP4qlI+tZ/Ox0P9rDbK/B8ontPx1SFqC2dx2HZlsTB2waF25JFfpb1vufhuzQ8f2qUL1R0AFajeSO/6ArN5ARBDlwymVj97fiAbInc+DvZdA9Scw/WXy1t8lazuIwcdB/yPnXLcMWy7Y/+m4JEldo51rvu55O4uyOWeKnKUCtRvIHc8gqzfVs/mIejbP/lcxdzynmG27ehVMf6mezWPE4O9B/9wJ4Xtg6z8Wo8EkaZ2yR3oDyOoviuHS8/K6jxhYraHOMw22TTD/easyzHwLykctOjJzolgfc+5zXMzA9BXEwCOJrW8ja39O1saLZ6/2f1JeAyoHnLFUkqS1IKs/b7CqVB/0P2KVbricbC7BzHeg/JDFp9f2wPT/Y342T8H0V4mB3yS2nk/WdpC1vWazpA3BhvQGkDtfBDk+Z0sJRp5bDJVeDUNnwe63MTtcbYDFjesaxJYlLlA+6PYobSFKW8jKz8jpr5LT/wWTnwJqZO8pxNbzi0nGJLVcANHOnjRpHcqdL1yczaMvXKW5Syiyec/fcdBsLm1pfH4slc2z/5WM0laitJWsXENOf52c/n/1Cc5qZN9pxJbzHUEmrRKzuf1sSG8ElR8xfzhXbc5yE60XQ08lKRdDs2OAGH1hMXHJ7rcBFYjeYo3nvlMbnx995ODvwsSlFIHfC6WtxbqTc+TUFfWlN6rA9OyOmf8mx84jtp6/Sq9QkqRDVPkJ83uDa1DbuWq3i+FnkFGGvf8KpUFi5I/Jme/C+N8Xs3dHL/TdD3pPbnx+DJKDZ8LE5cxm83bov/+843LqP8kdf1i8nrnZPH0lOfYKYuvbVuslSlJb2ZDeCMrHQeUHzI4fGyR6Vm8CkIgghs+B4XNmt/X/Gtl7z2IdydLRMPDwec9dLbrGpj8ne04shpGVjyNGnrPoWascO4/ZT9bnmoHpr7fo1UiStArKx9aXmZqbzcev2u2KbH4aDD9tdlv/r5K9J0Hlu1A+BvofXqzxvNQ1Nr2W7LkLTP9XPZv/iIiBeccU2TzZ4OwZmPlqi16NJHWeDekNILa8ibz1/wAVoAp9952/ZuQqy5kfkmMvh9ovoPdkYvNfzZtYrJGIEjF8NgyffYALH6BXvbR9hdVKkrT6YvObydt+n9lsPh0GHtO2++fM9+vZfBP03ofY/PgDfsANEFEmhp8Cw09Z+qAD9aqXDltJqZK0JtmQ3gCi505w+Beg8n2IEei56wE/cW6lrN5K3vYkyN3Fhql/I3f8AbH9kkO/eO/JxafiVOZs7IcoE5tfd+jXl7S02sEPkbS06P1lOPz/wsz3oTTa5my+qWjE555iw9QXyB3PIrZ/6NAv3nsvmLmSxtn82kO/vqSlmc1tZUN6g4jSCPSd1v4bz3yd+X+rZ2Dmu2RtN1EaPaRLx5a3FM9hzXwT6IGBM4n++0DffYny7Q7p2pIkrbYojUL/fdt/4+mvLlh6awZmvlnMuH2IS1bF1rcV85fMfAfogcHHEn33hr77EeVjDunakrSW2JDW6orBBhsTWrAMRpS2EtsvJnMa6J33SX5WbyiePSsdVXzqL0mSCjHUYOktignHDvXSpW3E9n85SDYfTfSeeMj3kqROsiGtJWVm8RxybCJihX9U+u4P5eOh8j/AFDAIQ08ior9ldS5cmzInv0jufH7xH4KcIYeeRGnTS1t2P0kusSF1Skuyuf/X6pOdXQNMFR96D51DtKAhvc/CbK5NfA7GXgzRU8/msyltenHL7ifJbG43G9JqKCtXkbc9pT5pSJCbX0dp8Leavk5EL2y/mBz/IFSvJfpOgYEzFt8vKzDxcbJ6LdF7d+h/6IqeFcuskmMvACYh67OG7v0gOfhIovdXmr6eJElrRc78iNzxNKiNASVy8xsoDT6y6etE9MH2S+rZfB3Rf1/of/ji+2UFJj5GVq8jeu9JDDxkZXXnTNGIZmK2F3zv+8jBM4jeu63ompLUaTaktUhmkrc9tZjJc5+xl5O9d1/RslkRA8TI05bcn1kjdzwTpq8EJsgYhMGziE3nraD4Mcjq/G1Rgsq1YENaktSliqx8KtRumd049tJ6Nt++6etFDBIjTz/I/Z5ezEOSEySD5NCTV9aLXNvJolmQogeq14INaUld6sDrHGhjyjGo3bZgYxlmvrc695v5Fsx8g/1rQucE7H0/WRtr/lqxpZiZfK6sQu+dD7VKSftkF31J60XtNqjtmr8teqDyg9W538yVRT5nPZuZgL0XkrU9zV+rtG3xnClZgR7nMJFaptN5uwGz2Ya0FotRYOE6zzUoH70698s9LP6jWIYcb/pSESVi27vrDepBoA82/WmxBJgkSd2qtJlihrC5qlA6anXuV1sqm/c2famIcj2bN8/J5letaJSbJK0VDu3WIhFlcvPrYew8iDJkDQYfVazbvBp678n8/xyUoXzkiv9zEL33gCO+DNUbobSNKA23pExJkjolopfc/Fcw9orZbB44k+g7aXVuuOi6ZSjfDkqHr+hy0fsrcMR/QvUGKG03myV1PRvSaqg0eAbZezeY+T6Uj4Leezc9+VdOf5OcvAxikBg6iyg3bhhHaQts+wC588VQux567kJseSsRKx8wEdEHPcet+HxJktaa0uCjyd571LP5mGJ95ibl9DfIyU9DDNWz+ciGx0VpWz2bXwS1G6HnrvVsbn4i0P3XjD5YwfPckrQW2ZDWIjn1JXLP30POwNCTKfU13xOdU/9O7nguMAmUyb0XwWGXEuVjGh4fvXclDv/UoRUuqU0SXGJDaquc/CI5/g/FvB9D51BaSSN68gvkzhcwP5s/sfQH3b13Iw6//JDqltQuZnO7+Yy05smpK8gd58LMf0Plu7DrVdT2fmT+MTlJTl5OTnyErN7Q+Dq730gR1ABVyD3k+PtXt3hJktahnPpPcufzixm0K9+BXX9Kbe8n5h+TE8vI5jewKJv3fnBVa5ek9coeac2TExczG7IU3+99Lww9rthfGydv/R2ozQnpbR8onkueqzbBgg31ScUkSVIzcu9FNM7mRxf7a3vIWx9XX7YygRJsu2jxGs25MJurUGt+Yk9Jkj3SWmThbN0w9/OW3PsBqF5XzNpZ/8qxVyw+ZfDRwNylLgaIgUe1ulhJHRLZHV/S+tCg3yNm8zrH/wmqP6/n8gTkODn2Z4vPGWiQzYOPaHWxkjqk05m70bLZHmnNE8NPJSc/z/41nRkgRv5o9oDqL4Dp+SfVbll8nZHnkVmDyY9B9MPIi4j++7Wszpz+JlS+V8wg2vcbhzT5iSRJa1kMP52c+jdme6UHiJHnzB5Q+wUwM/+k2s2LrzP6xyQJk5+AGCBG/4ToO7Vldeb0N4p1rcvHQt+vm82S1jUb0poneu8B2z9Ajl8IOVPM6Nl/+uz+/vuTEx9ltqHdB333XXydKBObXgSbXtTS+jKTHHtp8Z+AffcfeAhsfrOBLUlal6LvJNj2fnLveyArxNCTiP77z9n/q+TkJ+cM3e6HvsUfXhfZ/BLY9JKW1peZxezeU5dTLGfZCwMPh81vMJslrVs2pLVI9N6T2PLWxvsGHk6O/AT2nA/UoO8UYtNftK223PWXRS/3fhMw+XkY+naDNS8lSVofou8kou9vGu8cOAMqP4HxCyiy+TRi06vaVlvuehVMfXLOlgpMfhqGz4aFc6hI0jphQ1pNK42cSw4/B6gUa0K2SG38vTD+LiBh6MnE8LPmfZKdOQETS8wuWru1ZXVIWgaX2JDWjIggRl9AjjwPqBLR25LrZia590IYfw9FNj+VGH76/Gyu7YGJf2lUldkstZvZ3FY2pLUiESVgeY3ozFr9+KXV9n4cdr+F/UPG95xPTn+drF4NMUiM/gn0nkQxP1514dnQe/cmX4EkSetLkbXLm0d2OdmcE/8Ku9/ObDa/nZy+gqz+FGKYGH0p9NyFYqLSBtncs2DWcElaR5y1W2RtBzn5GXLyi2ROte66Mz+gdtODyBvvSu2mB5Az31764MmPM/vcNcAkTH8ZqtdC5cfkjueSM1fXA3vu5z8Bm99ClI9sWd2SJHVa1m6bk83TBz9huded+T61mx5Yz+bfIGe+u/TBE0tl83VQ+RG54zlk9XrouSOLsnnL3xDlw1tWtyStNfZIb3BZuZq89QlApdhQOhK2f5gojRzadXOCvO0cyJ3FhtqN5K2/R/Y/hBh5zuK1LWOUYoKSuUNSanO+n4Spy4lt/0iOvRxmvgmlo4jNryd6f/mQapXUpISoHfwwSSuTlavIW5/I/l7e8jGw7RKiNHxo162Nk7edDbmr2FD7BXnrE8j+h9az+S7zTygtJ5s/Q2x7D7nzZVD5DpSOIba8nui50yHVKqlJZnPb2ZDe4HLXK+uBWg/J6nXk+LuJ0Rcc2oUr17BoKQ6qMPVZcvo/YNs/zwvsGH0uOf3vkJOztcwL7nIxxLu0hdh6/qHVJknSGpZjfwa5m/05WPlfcu8/zV+OciWqVzO/IQxQgalPFxm87cNE74n798TI88npr9SzmXo9c7O5BxgiStuIbe88tNokqcs4tHujq17P/FCcLoZTH6rSNsiFDem6nCD3fmDepui5E7H94zD87OJr5KXAwL6LFc9iDT3x0OuSJGmt61g2XzRvU/Temdj+0Xo2PwtGXsJsNpfr2fy7h16XJHUhe6Q3ur7TYOJGYN/zV4MN14VuVpSPJIefBuPvBeb2Mu9TWXxOz/HzesKz967k5KcgRojhs4ny0Ydcl6QWcWZQafX0nVosHzUnm6Ml2XwMOfRk2HsR85993mfhhGEQPScsyOa7kJOXQ4wSw+c4R4m0lpjNbWVDeoOL0T8lKz+Hma8VGwYfRww+ftFxOXUFOf4PxSfZQ0+iNPiohtfL2m5y9xth5gfQe1fY8jfFZCVTn2f2PwQDxOATDl5b//2J/vuv7IVJktSlYtOryeoNMPMNimWnngADv73ouJz6CrnnHUAFhs6mNPiIhtfL2i5y9xtg5kfFKhdb3goTH4OpLzA/mw/euxz9pxP9p6/wlUnS+mFDeoOL0jCx/X3FOpDRS0T/omNy+kpyxzMpepaBse9QyyqlocfMPy6r5G1PgspPgWmo/BBmvgXbPgKTH4G9F0P0ESPPI/pOXv0XJ0lSF4rSCLH9AwfJ5q+SO57NvGymRmnwjPnH5Qx521mzc5dUfggz34Ft/wITlxRfMUCMvIDoO2nVX5skrRc2pAVwwFm6i2emJudsmYLdb4AFDWkqV0H1Z8x+uj0NlZ8R1f8hhp5QfKIuSZKW5YDZPP5+FmXzrtfBgoY0lR9D9efMTgA6DZX/IWpXE8NnwfBZLa5akjYGJxvTwTV63CJvIWe+s2DjwiUygMj6dknrSnbJl7ReZYNszZvIme8v2LhUBpvN0rrT6czdYNlsQ1oHN7T4mWnoqw/hnqPnjlC+E7BvCFp/8XPPHVe5QEmSNpih32mwsQ8qV8/f1PPLUL5DsQ+Afui9C5RPWN36JGmdc2i3Dir67kfGCOSeuVsXNZAjyrDt/eSet8HM96D37sTI84vtkiSpZaL/AWQMQe6duxV6fmn+cdED2y4i9/xNfSLQuxOjLyDCvhRJOhQ2pHVQEQFb303ueEaxIadh5A+J3nssPrY0RGx6WZsrlNRu4RIbUkdFlGDru+qTgUaxqsbIc4neuy4+tjRMbHpF+4uU1FZmc3vZkNayRN/JcPiXoHoNlA4jykd1uiRJkja06DsVDv+PejYf7prOktRGNqS1bFEagdLiXmhJktQZZrMkdYYPyEiSJEmS1AR7pNUyWdsDEx8ha7uI/gcQfSd1uiRJq8XnsKSukLXdMPFRsrabGPh1oveenS5J0moxm9vKhrRaImt7yFsfA9WbgRly/ALY8iZi4GGdLk2SpA0pa7vJWx4NtVspsvmdsOWtxMBDOl2aJHU9h3arNSY+Um9ETwE1YJIceym1sdeQk1/scHGSJG1AEx+G2i3Mz+aXUNv1GnLq3ztcnCR1NxvSaoms7QJmFmwch4n3kzufT238nzpRlqTVkBT/J++GL2kDy9oYi7N5N+x9P7njudTGP9CRuiStArO57WxIqyWi/wFA3xJ7J2H3W9tZjiRJG170/zrQv8TeSdjz5naWI0nrig1ptUT0nURs+WsoHU7RoF74R2uadAIESZLaJvpOhs2vn5PNMf+AnO5EWZK0LjjZmFomBh5ODDycrPxvMfFYTtT39EP/6UTEAc+X1B2CJPxgTOoKpcEzYPAMsvJT8pbHAnOz+YEdrExSK5nN7WePtFoueo4ntl4IPSdC6TAYeASx+S2dLkuSpA0ren6J2PZuKN+xns1nEFve2OmyJKlr2SOtVRF99yEO+1Sny5AkSXXRdypx+OWdLkOS1gV7pCVJkiRJaoI90jqgnPkxOfYyqN0AvfciNv8VUdrc6bIkdZrPYUkdkzM/IMdeAbUbofdkYvNridKmTpclqdPM5rayR1pLytpt5G1nQeW7ULsZpv6NvO0Zq3/f6o3k9DfI6i2rfi9JkrpJVm8mb3vSnGz+ArnjWW247w31bL511e8lSd3AhrSWNv01ilXT9326NQOV75G1Xat2y9reS8ibH0rueAZ584OpTVy2aveSJKnrTH+V2VwGmIGZb5K18VW7ZW38g+TNv1nP5gdRm/j0qt1LkrqFQ7u1tBhssDEh+lbldlm9AXa9BpiCnCo2jp1H9v+aQ9aktcbhY1JnxBDzG9L7tveuyu2y+nPY/TrmZ/NL6tk8sir3lLRCZnNb2SOtpfXdH8rHA/31DYMwdDYRA6tzv+q1ixvpUYbq9atzP0mSuk3/6VA+jv3ZHIMw9HRilT7kprJENtduWJ37SVKXsEdaS4rohe0Xk+MXQfVaou8UGHjU6t2wfDzk9PxtWYPy7Zq6TGaV3PP3MPlJKI0So+cRfae2sFBJkjojog+2X1LP5uuIvtNg4JGrd8OeO0DOLNhYg9LRTV2myOa3weSnobSJGH0Z0XeflpUpSe1mQ1oHFDFAjDy9PfcqH0Fufi2MvaIYopYV2PIWojTa1HVy95tg70XAJFQhb3s6bL+E6L3L6hQubTRJMX2CpI6IGCRGVn/yT4AoH0VuejXselV9+HgVNr+NKA03dZ3c/XrY+8/MZvNTYfu/Er0nrkbZ0sZjNredDWmtKaXBx5D9v14M5y4fe8BnozNr5J6/hYl/LYadjbyQ0uCjYOIjwOScI6fIyc/YkJYkaQVKQ48jBx4E1V9A+bgDfsC9v+d54qMQA8Toi4mBhxc/z8vmaXLyczakJXUtG9Jac6K0BUpbDnpcjp8P4xcCE8WGsZeRpS313uy5R5ZXbYI0SZI2gihthdLWgx6Xe/4Wxt/LvmzOnX8CW7c0zOYomc2SupeTjWlFsnINOX1lS5bCytpucvKL5NR/kPtmBF2OiY+xvxENwCQ5+UkYeR6wb0K0EsQwMfjYQ65TkqS1LCtX17N596Ffq7aLnPwCOfVlcuH8JQcy8XEWZ/NlMHwus9lcLmYfHzjzkOuUpE6xR1pNq+36C9j74dmlNrZeSPSdtKJrZfXn5K2/W19SI6F0RPHM1HKW1IihBRuKRnNp6Alk6bAiuGMTMfIMonzUiuqT1Fi4xIa0ZmQmuetV9eHUvUDAtn8ieu+5sutVfkbe+nhghiKbjy7mGllWNi9cOrOezcNPIstHkJOfhthCjPwBUT58RfVJasxsbi97pNWUnPpK8Uwyk5C7IXeTO/9o5dcb+3Oo7YDcAzkO1Z8XQ7aXIUb/hEU9z0PnFPsGHkxpy5sobX4lUT5mxfVJkrTmTf9HvSd4qp6nu8kd5674crnr1ZBjc7L5Z+T4u5Z17vxsLkOMEMO/X+wb+E1KW95MafOf+QG3pK5nj7SaU72mWJJqrtrNZFaJKK/getcyf4rBaahcvaxTo/8BsO39xXDuGCCGnkg0uVSWJEldr3INUJ2/rXYDmUlENH+9htl8zbJOjYEHwbb3khOfgtIQMXQWUW5uqSxJ6gY2pNWcnhNZNJChdPTKGtEAffeBiWuBfc9fDULfacs+PfpOWvGwckmHwOFj0trRcyKwIIfLx62sEQ3Qe59ihu552Xzqsk+PvnsTffde2b0lrZzZ3FYO7dY8Of3f1MZeQ233X5OV6xbtj75TYfgpQB/EcPGc09Z3rPh+Mfpy6L030Av0wMDDiKGzV3w9SZLWm5z+OrWxP6e2+01k9fpF+6P//jD0ZGazeSuxZXmPSTUSm/4Uen+F/dk8eAYx9H9WfD1JWo/skdZ+OfWl+jNVk0CJ3Psh2P5xoue4eceVRl9IDv0+1G6DnuOJGGh4veWI0hCx/f1kbSfQs7yJTCRJ2iBy8ovkzuczm80Xw2GXLpr/o7TpxeTw2VDbWc/m/hXfM0ojsO2i4jlps1mSGrJHWvvl7r+mCGqAGuRecu/7Gh4b5cOJ3jsfUiN63vVKWwxqSR0REY+IiB9FxFURcV6D/U+KiG/Xv74SESfN2XdNRHwnIr4ZEV9vb+XaCHL3G5mfzXvI8Q80PDbKRxC9v3xIjej914owmyV1TDdksz3SmpUTCzbUitk6JWmeXDfPYUUxwcPfA78JXAd8LSIuzczvzznsauA3MnNHRDwSuAC475z9D8rMW9pWtDYWs1nSspjNtDmb7ZHWrMHHAnPXfxwgBh7dqWokqR1OA67KzJ9m5jRwMXDm3AMy8yuZuaP+4xXAsW2uURtZo2we/K1OVSNJ7dAV2WxDWvvF8B/C8NOhdDSU70BseWMxgYkkrV+3A66d8/N19W1LeTpw+ZyfE/hsRFwZEc9chfq0wcXIucUkn6WjoXwCseVNxcSfkrR+dUU2O7Rb+0WUiNHnwejzOl2KpLUs6abhY4cteD7qgsy8YM7PjdYHavjiIuJBFGH9a3M2n56Z10fEEcDnIuKHmfmlQ65aqosoE6MvhNEXdroUSWuZ2dz2bLYhLUlaz27JzFMOsP86YO7SBMcCi9YXiohfAd4NPDIzb923PTOvr/96U0R8lGI4mg1pSZKWti6y2aHdkqSN7GvAiRFxQkT0AU8ELp17QETcHvgI8OTM/PGc7cMRMbrve+BhwHfbVrkkSetTV2SzPdKSpObVOl1Aa2RmJSLOBT4DlIELM/N7EfHs+v53AK8EtgPnRwRApf5J+pHAR+vbeoAPZuanO/AyJEkym9uczTakJUkbWmZeBly2YNs75nz/DOAZDc77KXDSwu2SJOnQdEM2O7RbWgWZSVZvJmu7Ol2KJElibjbv7nQpktYBe6SlFsvaGHnbU6HyY6BGDj6O2PQa6kNMJElSm2VtRz2b/weokoOPJza92myWtGI2pKUWy7E/g8qPgJliw8QnyN6TiKHHd7QuqZWie5bYkCRy7BVQ+Qn7s3nyY9B3bxj87Q5WJbWW2dxeDu2WWm3mW+wPagAmYOYbnapGkiQtzOacIKfNZkkrZ0NaarXyscz/q9UP5Tt0qBhJkkT5dsDcYdxms6RD49BuqcVi82vJW3+P4pPvGpRPIIbP6XRZUms5fExSF4nNryNvPQuoADXouRMx/KROlyW1ltncVjakpRaLnjvA4Z+rD+cegL77ENHb6bIkSdqwoueO9Wz+b2Cwns3+N1jSyvkviLQKorQJ+h/Y6TIkSVJdlDabzZJaxmekJUmSJElqgj3SkqTmJFDzOSxJktYMs7nt7JGWJEmSJKkJNqQlSZIkSWqCQ7slSU1Kl9iQJGlNMZvbzR5pSZIkSZKaYENakiRJkqQmOLRbktQ8h49JkrS2mM1tZY+0JEmSJElNsCEtSZIkSVITbEhLkiRJktQEn5GWJDXP57AkSVpbzOa2skdakiRJkqQm2JCWJEmSJKkJDu2WJDUngZrDxyRJWjPM5razR1qSJEmSpCbYkJYkSZIkqQk2pCVJkiRJaoLPSEuSmpSQtU4XIUmS9jOb280eaUmSJEmSmmBDWpIkSZKkJji0W5LUvHSJDUmS1hSzua3skZYkSZIkqQk2pCVJkiRJaoJDuyVJzUmg5vAxSZLWDLO57eyRliRJkiSpCR3pkY6IfwbuXP9xC7AzM+/V4LhrgN1AFahk5iltKlGSpA3FbJYkafk60pDOzN/b931EvBkYO8DhD8rMW1a/KkmSNi6zWZKk5evoM9IREcATgAd3sg5JUpNcYmPdMpslqUuZzW3V6WekHwDcmJk/WWJ/Ap+NiCsj4pltrEuSpI3KbJYk6SBWrUc6Ij4PHNVg1ysy8+P1788CPnSAy5yemddHxBHA5yLih5n5pSXu90zgmQC3v/3tD6FySZLWJ7NZkqTWWLWGdGY+9ED7I6IHeBxwnwNc4/r6rzdFxEeB04CGYZ2ZFwAXAJxyyimOa5Ck1eTwsa5kNkvSOmY2t1Unh3Y/FPhhZl7XaGdEDEfE6L7vgYcB321jfZIkbTRmsyRJy9DJhvQTWTB0LCKOiYjL6j8eCXw5Ir4FfBX4VGZ+us01SpK0kZjNkiQtQ8dm7c7MpzTYdj1wRv37nwIntbksSZI2LLNZkqTl6ejyV5KkbpQ+hyVJ0ppiNrdbp5e/kiRJkiSpq9iQliRJkiSpCQ7tliQ1J4FardNVSJKkfczmtrNHWpIkSZKkJtiQliRJkiSpCQ7tliQ1z5lBJUlaW8zmtrJHWpIkSZKkJtiQliRJkiSpCTakJUmSJElqgs9IS5Ka53NYkiStLWZzW9kjLUmSJElSE2xIS5IkSZLUBId2S5KalFBz+JgkSWuH2dxu9khLkiRJktQEG9KSJEmSJDXBhrQkSZIkSU3wGWlJUnMSMmudrkKSJO1jNredDekNKGs7YfIzkDMw8CCifLtOlyRJ0oaWtR31bK7AwIOJ8jGdLkmSdAA2pDeYrN5M3nom1PYACXveBNs+SPTerdOlSZK0IWX1RvKWMyH3UmTzm2HbxUTvnTtdmiRpCTakN5gcfyfUdgKV+gbIXX9JbP9gJ8uS1G1cYkNqmdxzPuQYUK1vmCZ3/xWx7b0drUtSlzGb28rJxjaa6s3sb0TvU7utI6VIkiSgdhP7G9EAJFRv6VQ1kqRlsCG90fQ/GGJwzoYB6H9Qx8qRJGnD638IsDCbH9ypaiRJy+DQ7g0mBh9D1n4O4++ErMLgI4nRP+50WZK6TTp8TGqVGPwdsno9jL8bqMHgo4nR53e6LEndxmxuKxvSG0xEECPPgZHndLoUSZJEPZtHnwejz+t0KZKkZXJotyRJkiRJTbAhLUmSJElSExzaLUlqTibUap2uQpIk7WM2t5090pIkSZIkNcGGtCRJkiRJTXBotySpeS6xIUnS2mI2t5U90pIkSZIkNcGGtCRJkiRJTbAhLUmSJElSE3xGWpLUtHSJDUmS1hSzub3skZYkSZIkqQk2pCVJkiRJaoJDuyVJTUqX2JAkaU0xm9vNHmlJkiRJkppgQ1qSJEmSpCY4tFuS1JwEag4fkyRpzTCb284eaUmSJEmSmmBDWpIkSZKkJtiQliRJkiSpCT4jLUlqXtY6XYEkSZrLbG4re6QlSZIkSWqCDWlJkiRJkprg0G5JUlMSSJfYkCRpzTCb288eaUmSJEmSmmBDWpIkSZKkJtiQliRJkiSpCT4jLUlqTqZLbEiStJaYzW1nj7QkSZIkSU2wIS1JkiRJUhMc2i1JappLbEiStLaYze1lj7QkSZIkSU2wIS1JkiRJUhNsSEuSmpe17vhahoh4RET8KCKuiojzGuyPiHh7ff+3I+Lk5Z4rSVLbdDpzN1g225CWJG1YEVEG/h54JHA34KyIuNuCwx4JnFj/eibwD02cK0mSmtAt2WxDWpK0kZ0GXJWZP83MaeBi4MwFx5wJvC8LVwBbIuLoZZ4rSZKa0xXZbENakrSR3Q64ds7P19W3LeeY5ZwrSZKa0xXZvC6Xv7ryyitviYj/XcGphwG3tLqeVdZtNXdbvWDN7dBt9UL31Hx8qy+4mx2f+Xx++LBWX3eVDETE1+f8fEFmXjDn52hwzsL1Q5Y6Zjnnqs5sXtO6rV6w5nbotnqhe2o2m9dBNq/LhnRmHr6S8yLi65l5SqvrWU3dVnO31QvW3A7dVi90Z82tkpmP6HQNLXQdcNycn48Frl/mMX3LOFd1ZvPa1W31gjW3Q7fVC91Zc6uYze3PZod2S5I2sq8BJ0bECRHRBzwRuHTBMZcCZ9dnCL0fMJaZv1jmuZIkqTldkc3rskdakqTlyMxKRJwLfAYoAxdm5vci4tn1/e8ALgPOAK4C9gJPPdC5HXgZkiStG92SzTak57vg4IesOd1Wc7fVC9bcDt1WL3RnzWogMy+jCOS5294x5/sE/mi556rluvHvWrfV3G31gjW3Q7fVC91ZsxrohmyOogZJkiRJkrQcPiMtSZIkSVITNlxDOiIeHxHfi4haRJyyYN/LIuKqiPhRRDx8ifO3RcTnIuIn9V+3tqfy/ff/54j4Zv3rmoj45hLHXRMR36kf9/VGx7RDRLw6In4+p+YzljjuEfX3/aqIOK/ddS6o5a8j4ocR8e2I+GhEbFniuI6+xwd7z+qTL7y9vv/bEXFyu2tcUM9xEfHFiPhB/e/g8xsc88CIGJvz5+WVnah1QU0H/H1ea++z1I3M5vYym1eP2dweZrPWhMzcUF/AXYE7A/8GnDJn+92AbwH9wAnA/wDlBue/ETiv/v15wBs6+FreDLxyiX3XAIetgff71cCLD3JMuf5+/xLFlPXfAu7WwZofBvTUv3/DUr/HnXyPl/OeUUzAcDnFenr3A/6rw38WjgZOrn8/Cvy4Qc0PBD7ZyTqb/X1ea++zX35145fZ3PYazebVqdFsbl/dZrNfHf/acD3SmfmDzPxRg11nAhdn5lRmXk0xA9xpSxz33vr37wV+e1UKPYiICOAJwIc6cf8WOw24KjN/mpnTwMUU73NHZOZnM7NS//EKivXn1prlvGdnAu/LwhXAlog4ut2F7pOZv8jMb9S/3w38ALhdp+ppoTX1PkvdyGxek8zm5pnNa8eaep+1Pm24hvQB3A64ds7P19H4H5Ijs1ijjPqvR7ShtkYeANyYmT9ZYn8Cn42IKyPimW2sq5Fz68NqLlxiuN1y3/tOeBrFJ5qNdPI9Xs57tmbf14i4A3Bv4L8a7L5/RHwrIi6PiLu3t7KGDvb7vGbfZ2kdMJtXj9ncemZz+5jN6rh1ufxVRHweOKrBrldk5seXOq3Bto5Mab7M+s/iwJ94n56Z10fEEcDnIuKHmfmlVtcKB64X+AfgNRTv5Wsohrw9beElGpy7qu/9ct7jiHgFUAEuWuIybXuPG1jOe7Zm/kzPFREjwL8CL8jMXQt2fwM4PjP31J/Z+xhwYptLXOhgv89r8n2W1hqzGTCbD8hs7hyzWWreumxIZ+ZDV3DadcBxc34+Fri+wXE3RsTRmfmL+hCRm1ZS44EcrP6I6AEeB9znANe4vv7rTRHxUYrhRqsSJMt9vyPiXcAnG+xa7nvfMst4j88Bfgt4SGY2/Ie3ne9xA8t5z9r+vh5MRPRSBPVFmfmRhfvnhndmXhYR50fEYZl5SzvrXFDTwX6f19z7LK1FZrPZfDBmc2eYzdLKOLR71qXAEyOiPyJOoPik7atLHHdO/ftzgKU+RV9NDwV+mJnXNdoZEcMRMbrve4oJOr7bxvrm1jL3eZTHLlHH14ATI+KEiOgDnkjxPndERDwCeCnwmMzcu8QxnX6Pl/OeXQqcXZ+58n7A2L6hj51Qf3bwH4EfZOZbljjmqPpxRMRpFP9G3dq+KhfVs5zf5zX1PkvrjNm8CszmVWM2t4HZrLViXfZIH0hEPBb4W+Bw4FMR8c3MfHhmfi8iLgG+TzFk6I8ys1o/593AOzLz68DrgUsi4unAz4DHd+BlPJEFQ8ci4hjg3Zl5BnAk8NH6v3k9wAcz89Ntr7Lwxoi4F8VwmmuAZ8H8ejOzEhHnAp+hmPHywsz8XofqBfg7ihliP1d/D6/IzGevpfd4qfcsIp5d3/8O4DKKWSuvAvYCT21XfUs4HXgy8J2YXRrm5cDtYX/Nvwv8YURUgAngiUv1OrRJw9/nNf4+S13HbG47s3kVmM1tYzZrTYjO/j2QJEmSJKm7OLRbkiRJkqQm2JCWJEmSJKkJNqQlSZIkSWqCDWlJkiRJkppgQ1qSJEmSpCbYkJYkSZIkqQk2pCVJkiRJaoINaamFIuLUiPh2RAxExHBEfC8i7tHpuiRJ2qjMZkmrITKz0zVI60pE/CUwAAwC12Xm6zpckiRJG5rZLKnVbEhLLRYRfcDXgEngVzOz2uGSJEna0MxmSa3m0G6p9bYBI8AoxaffkiSps8xmSS1lj7TUYhFxKXAxcAJwdGae2+GSJEna0MxmSa3W0+kCpPUkIs4GKpn5wYgoA1+JiAdn5hc6XZskSRuR2SxpNdgjLUmSJElSE3xGWpIkSZKkJtiQliRJkiSpCTakJUmSJElqgg1pSZIkSZKaYENakiRJkqQm2JCWJEmSJKkJNqQlSZIkSWqCDWlJkiRJkprw/wHJ3B62tufrzwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "<Figure size 1152x1152 with 4 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(16, 16), ncols=2)\n", - "data.plot.scatter(x=\"x\", y=\"y\", c=\"guess\", colormap='viridis', ax=ax[0])\n", - "data.plot.scatter(x=\"x\", y=\"y\", c=\"source\", colormap='viridis', ax=ax[1])\n", - "ax[0].set(xlabel=\"x\", ylabel=r\"y\", title=\"Guessed source\")\n", - "ax[1].set(xlabel=\"x\", ylabel=r\"y\", title=\"True association\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "9b1363ec", - "metadata": {}, - "source": [ - "Note that if the sample clusters were not \"blobs\" of data, but were in concentric circles, the assumption of this method would be false and the method would simply not work well. This is why it is important to understand the underlying assumptions made in the method." - ] - }, - { - "cell_type": "markdown", - "id": "7076f779", - "metadata": {}, - "source": [ - "## K-Means\n", - "\n", - "Another common method used for clustering is the K-Means, on which one simply tries to find the cluster centers which minimize in-cluster distances (in an Euclidean sense) while maximizing distances between the centers. It can be shown that this method is a special case of the Gaussian Mixture Model when the covariance matrices are diagonal, which would mean that within each blob, there is no correlation between the variables (see https://en.wikipedia.org/wiki/K-means_clustering#Gaussian_mixture_model and references).\n", - "\n", - "While this is an approximation of the GMM model, it is still a very useful approach, since there are faster algorithms to achieve the clustering than for GMMs.\n", - "\n", - "The scikit-learn module also provides an easy-to-use implementation of this algorithm:" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "2f280e1d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1000\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10, 10), ncols=2)\n", + "data.plot.scatter(x=\"x\", y=\"y\", c=\"guess\", colormap='viridis', ax=ax[0])\n", + "data.plot.scatter(x=\"x\", y=\"y\", c=\"source\", colormap='viridis', ax=ax[1])\n", + "ax[0].set(xlabel=\"x\", ylabel=r\"y\", title=\"Guessed source\")\n", + "ax[1].set(xlabel=\"x\", ylabel=r\"y\", title=\"True association\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "9b1363ec", + "metadata": {}, + "source": [ + "Note that if the sample clusters were not \"blobs\" of data, but were in concentric circles, the assumption of this method would be false and the method would simply not work well. This is why it is important to understand the underlying assumptions made in the method." + ] + }, + { + "cell_type": "markdown", + "id": "7076f779", + "metadata": {}, + "source": [ + "## K-Means\n", + "\n", + "Another common method used for clustering is the K-Means, on which one simply tries to find the cluster centers which minimize in-cluster distances (in an Euclidean sense) while maximizing distances between the centers. It can be shown that this method is a special case of the Gaussian Mixture Model when the covariance matrices are diagonal, which would mean that within each blob, there is no correlation between the variables (see https://en.wikipedia.org/wiki/K-means_clustering#Gaussian_mixture_model and references).\n", + "\n", + "While this is an approximation of the GMM model, it is still a very useful approach, since there are faster algorithms to achieve the clustering than for GMMs.\n", + "\n", + "The scikit-learn module also provides an easy-to-use implementation of this algorithm:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "2f280e1d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ "KMeans(n_clusters=3)" ] }, - "execution_count": 18, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "kmeans = KMeans(n_clusters=3)\n", + "kmeans.fit(data.loc[:, [\"x\", \"y\"]])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "950a7eec", + "metadata": {}, + "outputs": [], + "source": [ + "data.loc[:, \"guess_kmeans\"] = kmeans.predict(data.loc[:, [\"x\", \"y\"]])" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "16a56489", + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "kmeans = KMeans(n_clusters=3)\n", - "kmeans.fit(data.loc[:, [\"x\", \"y\"]])" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "950a7eec", - "metadata": {}, - "outputs": [], - "source": [ - "data.loc[:, \"guess_kmeans\"] = kmeans.predict(data.loc[:, [\"x\", \"y\"]])" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "16a56489", - "metadata": {}, - "outputs": [ + "output_type": "display_data" + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9IAAAOjCAYAAABX7Ty6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddZyc1dXA8d95Rtc3G09IiBEIMdwtBAkQ3KVIS0uNupe3FCrQUoO6YQWCu1twTSDECESI67qNP+f945ns7uzOWrJZSc7389km8+idodkz57n3niuqijHGGGOMMcYYYzrG6ekGGGOMMcYYY4wxfYkl0sYYY4wxxhhjTCdYIm2MMcYYY4wxxnSCJdLGGGOMMcYYY0wnWCJtjDHGGGOMMcZ0giXSxhhjjDHGGGNMJ1gibfoMETlGRNb2dDt6kogcKSKf9HQ7jDHGmF2NiFwsIs9vx/nPiMhlXdkmY0zPsUR6FyMiF4jIuyJSJyKb03//qohIT7fNtE9VX1fVPXfEtUXkFRG5ssnrY0SkQkQuyHLsShGJi8iAZtvniYiKyKgd0UZjjDE9R0Rqm/y4IhJp8vrinm7fjqaqd6vqCR05VkR+LiJ3NTv/JFW9Y8e0zhjT3SyR3oWIyHeBm4GbgCHAYODLwOFAsAeb1ieIZ5f4NyMiJwCPAp9X1XtbOewz4MIm50wGcnZ864wxxvQEVc3f+gOsBk5tsu3urceJiL/nWmmMMd1jl0gKDIhIEXA98FVVfVBVa9TzoaperKqx9HHNeyUvF5E3mrzeS0ReEJFyEflERM5rsu9kEVksIjUisk5EvpfePkBEnhSRyvR5r29NSEVkmIg8JCJbROQzEflGk+vliMjt6V7RxcCBbbw/EZE/pnvZq0RkvohM2vreReTO9D1Wicg1Te6f8cRYREale1T9TT6PX4nIm0A9MEZEJjb5DDaJyE/Sxzoi8iMRWS4iZSJyv4iUtNLejM81vU1FZFw7n2XG8PZ0z/D30u+3SkTuE5Fwk/0/EJENIrJeRK5seo82PsuZwP3ARar6SBuH/g+4tMnry4A7m10rJCK/E5HV6c/qHyKSk97XL/3/iy3p/8ZPishuTc59RUR+ISJvpj+H5yXdAy4iYRG5K/05V4rI+yIyuK33ZYwxZsfYGptE5IcishG4rQNxrtX4kOX6Y0Xk5fTv/FIRuVtEipvs/2E6VtaI991kenr7QSIyR0Sq0/f4Q5NzThORRekY8oqITGiyb4SIPJyOT2Ui8pf09ubfiW4WkTXp688VkSPT22cAPwHOF6+3/qP09obvWOnvDNekv5dsFu97SlF639bvIpelP59SEfnp9vw3MsZ0PUukdx2HAiHgsW29gIjkAS8A9wCD8Hoj/yYiE9OH/Be4SlULgEnAy+nt3wXWAgPxesF/Aqh4yewTwEfAcGA68C0ROTF93rXA2PTPiXiJWmtOAI4CxgPFwPlAWXrfn4EiYAxwNF7yd0Un3vrngC8BBcAm4EXgWWAYMA54KX3cN4Az0vcYBlQAf+3EfZpq7bPM5jxgBjAamAJcDg2B/DvAcel2Ht2B+54K3AWco6pPt3PsO0ChiEwQER/eZ35Xs2N+g/ffZJ90G4YDP0vvc4DbgN2BkUAE+Euz8y/C+281CG/UxPfS2y/D+286AuiPN7Ii0oH3Z4wxZscYApTg/U7/UgeObys+NCfADXixdQLe7/6fA4jInsDXgQPTMfNEYGX6vJuBm1W1EO+7xP3pc8YDs4Bv4X03eRp4QkSC6Xj2JLAKGJVuV2sjs95Pt78E77vRAyISVtVngV8D96V766dmOffy9M80vO8n+bSMgUcAe+J9P/pZ02TfGNPzLJHedQwASlU1uXWDiLyVfhIbEZGjOnCNmcBKVb1NVZOq+gHwEHBOen8C2FtEClW1Ir1/6/ahwO6qmkjP81W8HuaBqnq9qsZVdQXwb2DrnNzzgF+parmqrgFuaaNtCbxEdy9AVPVjVd3QJMH7cboXfiXwe7zkuKNuV9VF6c9uJrBRVX+vqtH0Nd9NH3cV8FNVXZvu4f85cI5s2xC31j7LbG5R1fWqWo73YGKf9PbzgNvSba8HruvAfacBnwJvdrCdW3uljweWAOu27hARAb4IfDv937AG74vFBQCqWqaqD6lqfXrfr2iZ7N+mqp+qagTvC9DW95bAS6DHqWpKVeeqanUH22yMMabrucC1qhpL/85uVXvxoTlVXaaqL6SvvQX4A43xIoXXUbC3iARUdaWqLk/vSwDjRGSAqtaq6jvp7ecDT6WvmQB+hzc16TDgILyE/fuqWpeO9Rk9603adVc6liVV9ffpdnS0jsnFwB9UdYWq1gI/Bi5o9p3hOlWNqOpHeJ0O2RJyY0wPsUR611EGDGj6C1pVD1PV4vS+jvx/YXfg4HTyXSkilXiBYEh6/9nAycAqEXlVRA5Nb78JWAY8LyIrRORHTa43rNn1foLXaw1eIFvT5P6rWmuYqr6M9yT3r8AmEfmXiBTiPUAINjt3Fd4T5o5q2oYRwPJWjtsdeKTJe/kYL8Bvy5Dj1j7LbDY2+Xs93lNtaPn5Nf17a/4PiAGPikgIGqqMtlZM5n94vcaX02xYN95T/lxgbpPP5Nn0dkQkV0T+mR7WVg28BhSnH360997+BzwH3CvesPXfikigA+/PGGPMjrFFVaMdPLbN+NCciAwSkXvTw7er8UY/DQAvycbrWf45sDl93LD0qV/A6/VeIt4UoJnp7cNo8r1AVV28GDkcL86vatrx0BoR+a6IfCze1KpKvJFSA9o5bauMNqT/7ifzO0NrMdAY0wtYIr3reBsvQTq9nePq8ILbVkOa/H0N8KqqFjf5yVfVrwCo6vuqejreMNxHSQ+hSvfafldVx+ANHf5Oev7SGuCzZtcrUNWT0/fbgBfQthrZVsNV9RZV3R+YiBc4vw+U4j2R3r3Zdbb2nLb1fhsu3ewzGNtKE9YAJzV7P2FVXZfl2Iz7ikjGfVv7LDtpA7Bbk9cjWjuwWbtOxvsy8GD66f5JmqWYTLqdq/CKjp0MPNzsWqV4w60nNvk8itQrUgPekP89gYPTw+62jopot4J8emTDdaq6N14Pwkwy52sbY4zpXtrsdVtxrr340NwN6etPSceLS2gSK1T1HlU9Ai/WK96wcVR1qapeiBdLf4MX1/KA9TT5XpDuIR+B991gDTCyvdFk6fnQP8Qb/dUv3TFR1aRdzT+P5jLagPfdJIk3hcwY0wdYIr2LUNVKvKG9fxORc0QkP13oYh8gr8mh84Cz0r2F4/Ce5m71JDBeRD4nIoH0z4HpObJB8dZXLEoPk6rG641FRGaKyLh0oNq6PQW8B1SLVyQkR0R8IjJJRLYWFbsf+LF4Ral2A65u7f2l23FwuleyDogCKVVNpa/zKxEpEJHd8eYNb53LOw84SkRGpot8/Lidj/JJYIiIfEu8QikFInJwet8/0vfZPd2mgSLS2oOLj4CJIrKPeMXBft7kvbT6WXbS/cAV6f8+ubQ+9yxDeojdDLyn5fc06yHO5gvAsapa1+w6Lt5Q/T+KyCAAERkujXPgC/C+SFWKV5Tt2g6+L0RkmohMTretGu9hybZ8RsYYY3aMVuNcB+JDcwVALV68GI73oJz0eXuKyLHpUVRRvLiy9fvHJSIyMH2/yvQpW78XnCIi09PfG76L19nwFt53kw3AjSKSJ15xy8NbaVMS2AL4ReRnQGGT/ZuAUdL6ah+zgG+LyGgRyadxTnW7PeHGmN7BEuldiKr+Fi+J/AGwGe+X/D/xnqi+lT7sj0A8ve8O4O4m59fgFfW6AO9J6ka8J7yh9CGfA1amh119Ge+JMcAeeAW6avF6xv+mqq+kk9xT8ea9fob3hPo/eL2h4CX+W3s8n8cbztuaQrygXJE+pwxvzhN4CXgdsAJ4A68gyK3p9/QCcB8wH5iLlyi3Kv0ZHJ9u90ZgKd68YvCKmjyON4S9Bq8Y18GtXOdTvCrqL6av0Xz+VWufZYep6jN488pn4w2tfzu9K9aBcyvx3ud44M42vgigqstVdU4ru3+Yvvc76ffyIo3zx/6ENyetFO+zera9djUxBHgQL4n+GHiVloXOjDHG9JAOxLm24kNz1wH74fX4PkXmCKgQcCNeLNmI1/v8k/S+GcAiEanFi9EXpOc8f4IXV/+cPu9UvKW84k2+m4zDW+JrLd6c6uaeA57BqyuyCi+JbzqF6oH0n2Uikq3Oya1432tew/ueE6WNDgNjTO8jqu2NPDHG7AzEq/a5EAjZE29jjDHGGGO2nfVIG7MTE5Ez00PF++GNHnjCkmhjjDHGGGO2jyXSxuzcrsKbv7Ucb17YV3q2Ocb0LiIyQkRmpyvvLhKRb2Y5RkTkFhFZJiLzRWS/JvtmiMgn6X0/an6uMcYYYzqnr8RmG9ptjDFmlyUiQ4GhqvqBiBTg1Uo4Q1UXNznmZLy5iyfj1T24WVUPThe7+xSvnsBa4H3gwqbnGmOMMaZz+kpsth5pY4wxuyxV3aCqH6T/XoNXvK75OvOnA3eq5x289c6HAgcBy1R1harGgXtpf4lBY4wxxrShr8RmS6SNMcYYQERGAfsC7zbbNZzMarxr09ta226MMcaYLtCbY3Obi833VQMGDNBRo0b1dDOMMabHzZ07t1RVB3blNU+clqdl5X1j2e6582OL8JaV2epfqvqv5sel13F9CPiWqlY3353l0trGdpOFxWZjjPFYbN45YvNOmUiPGjWKOXNaW9bWGGN2HSKyqquvWVae4r3nRnb1ZXcI39ClUVU9oK1jRCSAF6jvVtWHsxyyFhjR5PVuwHog2Mp2k4XFZmOM8Vhs3jlisw3tNsYYs8sSEQH+C3ysqn9o5bDHgUvTFUIPAapUdQNeAZM9RGS0iASBC9LHGmOMMWYb9ZXYvFP2SBtjjNlxFHBxe7oZXeVw4HPAAhGZl972E2AkgKr+A3garyroMqAeuCK9LykiXweeA3zAraq6qFtbb4wxxmCxmR6IzZZIG2OM2WWp6htkn0/V9BgFvtbKvqfxgrkxxhhjukBfic02tNsYY4wxxhhjjOkES6SNMcYYY4wxxphOsKHdxhhjOklJ6U4zD8sYY4zZCVhs7m7WI22MMcYYY4wxxnSCJdLGGGOMMcYYY0wn2NBuY4wxneItsaE93QxjjDHGpFls7n7WI22MMcYYY4wxxnSCJdLGGGOMMcYYY0wnWCJtjDHGGGOMMcZ0gs2RNsYY02kutsSGMcYY05tYbO5e1iNtjDHGGGOMMcZ0giXSxhhjjDHGGGNMJ9jQbmOMMZ2iKCm1JTaMMcaY3sJic/ezHmljjDHGGGOMMaYTLJE2xhhjjDHGGGM6wYZ2G2OM6TQXGz5mjDHG9CYWm7uX9UgbY4wxxhhjjDGdYIm0McYYY4wxxhjTCZZIG2OMMcYYY4wxnWBzpI0xxnSKAimbh2WMMcb0Ghabu5/1SBtjjDHGGGOMMZ1gibQxxhhjjDHGGNMJNrTbGGNMp9kSG8YYY0zvYrG5e1mPtDHGGGOMMcYY0wmWSBtjjDHGGGOMMZ1gibQxxhhjjDHGGNMJNkfaGGNMpyiQUpuHZYwxxvQWFpu7n/VIG2OMMcYYY4wxnWCJtDHGGGOMMcYY0wk2tNsYY0ynuT3dAGOMMcZksNjcvaxH2hhjjDHGGGOM6QRLpI0xnaJuNZpci2qqp5tijDHGGKAqGmVtdRUp1/okjekuNrTbGNNhbs2foO7fgB+cYii5C/GP6OFWme6mKCmsMqgxxvQGv33zdf774Rz8jkP/3FxmnXU+wwsLe7pZpptZbO5+1iNtjOkQjb0J9bcBCSAC7ia08us93SxjjDFmlzV75Qru+OhDEq5LJJlkfU0NX3v68Z5uljG7BEukjTEdk1gEmmiywYXksh5rjjHGGLOrW7xlM7FksuG1q8qn5WU92CJjdh02tNsY0zH+ESBB0MaAjW9wz7VnG2hyNVrze3BLIXw8knsZItLTzTLGGGO2yYjCIsIBP/WJxgfdQ/MLerBFnbeiopzfv/0GZZEIJ43bg0un7Gux2fQJlkgbYzomdCIEn4L464APACn+U482qTM0tQktOwu0Fq83fSGa2owU/qCnm9b3KKRsGpYxxvS4meP34slPP+GtNavxOV7yefOMU3q4VR23vqaaM+67m/pEAleVBZs2UlpXz3cPO6Knm9b3WGzudpZIG2M6RMSB4j9DciG4VRDYG3FKerpZHRd9HjRGwyqLGoHI3WCJtDHGmD7KEeGfM09n/uZNVMeiTBo4mH45OT3drA57ZtlSYskUrnoZYCSZ5I75H1oibfoES6SNMR0mIhCY3NPN2Eaa/jHGGGN2HiLC1MFDeroZ20S1ZVzOssmYXsmKjRljdg3hE0BCNP7ay4GcC3uyRX2W4vXr94UfY4wxvddJe4wn5PexdUZ0jt/P56bs05NN6rMsNnc/65E2xuwSxDcE+j+E1vyuSbGxK3q6WcYYY8wua3hBIY+cdxG/fesNKiL1zBg3niv22a+nm2VMh1gibYzZodStgMhDqFuLhKYhwak91hbxj0L6/aXH7m+MMcb0BmX19Tz48ULq4nGOGzOOKT04NHxsSX/+OfP0Hru/MdvKEmljzA6jbjlaeiq4lUASrbsViv+EhI/t6aYZY4wxu6TS+npOuvsOqmMxkm6K/3w4l7+dfBrHjBrd000zpk+xRNoYs8No/QPpJHrr+pZRtOZXlkj3eUIKW+PTGGP6orsXzKMqFiXperNVo8kkv3httiXSfZ7F5u5mxcaMMTuOW0VjEp2m9T3SFGOMMcaQ7onOLPlUF4/3UGuM6bsskTbG7DASng6Em2wJQej4nmqOMcYYs8s7Ycw4wv7GQalhv58Z4/bowRYZ0zdZIm2M2WEkuD8U/QacoSDFkHM6UnhNTzfLbCcFXO0bP8YYYzIdvNsIfjP9RIbm51McDnP2XhP5yZHH9HSzzHay2Nz9bI60MWaHcnJOgpyTeroZxhhjjEk7dc+9OHXPvXq6Gcb0adYjbYwxxhhjjDHGdIL1SBtjupwmP0OrfgDJNRDYCyn6LeIb1NPNMl3IKoMaY0zfsry8jO+98CxrqquYOHAwvzthBgNz83q6WaYLWWzuXtYjbYzpUurWomUXQGI+aDnE30XLL0E11dNNM8YYY3ZJ1bEo5z54L/M3baQ8EuHttau5+OEHcHUnmrBqTDezRNoY07USi/CWvNoanFOQ2gSpdT3YKGOMMWbX9dGmjSRdtyEyJ12XtdVVbKyt6dF2GdOXWSJtjOlaTg7QvPc5CZLbE60xxhhjdnm5gUCL3ueU65IbCPRQi4zp+2yOtDGma/knQWAfiH8IREFyIHwK4hvQ0y3bZurWQfRJ0FoIHoEE9uzpJvUoxeZhGWNMX7LP4KFMHjSYjzZtJJpMkuP3c+Zee1Mczunppm2z2nicxz/5mPpEgqN2H8X4/n33e0ZXsNjc/SyRNsZ0KREH+v0HIg+gyeVIYDKET+/pZm0zb8736ZDaAiSBm6HfX5DQUT3dNGOMMaZDfI7DnWecw6yF8/mssoKpg4dyeh9e/qo6FmPmPXdSGqkn5br84Z03+dfMMzhi5O493TSzC7FE2hjT5UQCkHvRzvFcNPIgpDYDsfSGJFp9LTJwdk+2yhhjjOmUgM/HpVP37elmdIl7F85nc30d8ZQ3lSzhuvzf7BeZfdkXerhlZldiibQxxrRB3Qoak+g014qzuLpTPCYxxhjTB5VF6huS6K2qY9Eeak3vYbG5e1mxMWOMaYOEjgDCTbYEIXRETzXHGGOM2eUdvftowv7G/sCQz8fRo0b3YIvMrsgSaWOMaYMED4TC60GKgBCEjkYKf93TzTLGGGN2WYeNGMm1Rx1LUShEyOfn2NFj+dW043u6WWYXY0O7jTGmHU7uGZB7Rk83wxhjjDFp50+azPmTJvd0M8wuzBJpY4wxnWJLbBhjjDG9i8Xm7mdDu40xxhhjjDHGmE6wRNoYY4wxxhhjjOkEG9ptjDGmUxQhZc9hjTHGmF7DYnP3s0/bGGOMMcYYY4zpBEukjTHGGGOMMcaYTrCh3cYYYzrNVasMaowxxvQmFpu7l/VIG2OMMcYYY4wxnWCJtDHGGGOMMcYY0wmWSBtjjDHGGGOMMZ1gc6SNMcZ0igIpbB6WMcYY01tYbO5+1iNtjDHGGGOMMcZ0giXSxhhjjDHGGGNMJ9jQbmOMMZ0kpNSewxpjjDG9h8Xm7maftjGm11DVnm6CMcYYY5qw2GxMdtYjbYzpcerWoJXfhPjbqIQg/0c4eRf0dLOMMcaYXVZ1LMrXnn6Ct9euIcfv55ojp3H+pMk93Sxjeg3rkTbG9Dit+iHE3wNSoPVQ82s09k5PN8sYY4zZZX37uad5b906XFXqEgmue+1l3lu3tqebZUyvYT3SxpieF38XiDfZEEPj7yChQ3qqRaYNCrj2HNYYY3Zq765bS8JNNbyOJ1O8t24tBw3frQdbZVpjsbn79dinLSJ7isi8Jj/VIvKtZsccIyJVTY75WQ811xizIzlFzTaEEKd/jzTFmF2ZxWZjzFZFoXDG65DfR0lOTg+1xpjep8d6pFX1E2AfABHxAeuAR7Ic+rqqzuzGphlj2qBuNVr1E0jMBWcQUnQDEth7u64phb9EK74MKIgPnGGQe07XNNgY02EWm43pm6qiUX7w4nN8sGE9Q/Lz+e3xM5gwYOB2XfPG6Sdw1VOPoar4xGFEURFnTdi+eG/MzqS3DO2eDixX1VU93RBjTNu04ipIzAcS4Jah5ZfAgGcR36COnZ/agNY/AiSQ8MlIYA8kdBgMeBTib4MUQPgERMLtXcr0oBTS000wO57FZmP6iCsee4hFWzaTcF3KIvVc8OC9vHjp5xmYm9eh89dVV/PwkkWkXJeZ4/diXEl/jtx9FI9fcAlvr11DYSjEjLF7EPL3ltTBZGOxuXv1ln8NFwCzWtl3qIh8BKwHvqeqi7IdJCJfAr4EMHLkyB3SSGN2derWQ2IekGqyUb1CYTntd05pcjVadqZXUAxF626FktuR4L6Ifwz4x+yophtjOs9iszF9QHUsxsItm0m6bsM2BeasX8dJ48a3e/5nlRWcfu9dRBIJVJV/fzCXe84+j6mDhzCupD/jSmyqlTHZ9PiMdBEJAqcBD2TZ/QGwu6pOBf4MPNradVT1X6p6gKoeMHDg9g1lMca0QgJZtgGS26HTte5foHV4ibgLRNCam7qwgcaYrmCx2Zi+I+Tz0XypZ1Ul158lZmfx1/feoT6RIKXqReZkgt+8+VrXN9SYnUyPJ9LAScAHqrqp+Q5VrVbV2vTfnwYCIjKguxtojPGIBCDvSyBbi42EwDcCQkd07AJuJV4C3YRWd2ELTXdQFVLq9Ikfs80sNhvTR4T8fr6w7/7kpIddh3x+RhX347ARHRsFUhmN4jbLxGtisS5vp9mxLDZ3v94wtPtCWhk6JiJDgE2qqiJyEF7iX9adjTPGZJL8b0FgAhp7H3zDkbyL8DqvOiA8E2KvAdH0hhxvmzGmt7HYbEwf8sPDj2TyoMHM2bCO3QqLuGTyVAI+X4fOPX3PCby9djWRZBKAHL+fU8fvtSOba8xOoUcTaRHJBY4Hrmqy7csAqvoP4BzgKyKSBCLABarNB68YY7qTiEB4BhKe0elznZwZuG4Z1P0NNAU55yB5X9oBrTTGbCuLzcb0PSLCKeP35JTxe3b63FP33IuySD1/n/MuKVUumjSVK/c7YAe00pidS48m0qpaD/Rvtu0fTf7+F+Av3d0uY8yO4+RdDHkX93QzjDGtsNhszK7n8n324/J99uvpZhjTp/SGod3GGGP6GNeW2DDGGGN6FYvN3Wvnme1tjDHGGGOMMcZ0A+uRNsbsMKqKRh6E2KvgG4LkfQXx2XqUxhhjTE9RVe5btIDXVq1kaH4BXzvoYEpyOraMpTGmkSXSxpgup4mFEHsdjb0Hibl4Vbr9aPRZGPAM4hT0dBPNdlAgZQOajDGmT/lo00beWL2Kt9es5oMN64imUgQch2eXL+W5Sy4nP9jBFThMr2SxuftZIm2M6VIafRGt/A6QAFJN9iTBrYHYi5BzZuevm1yB1t0DxJGcM5Hgvl3UYmOMMWbn9szST/juC8+SSKVINSmyn3BdqmJRXv5sOaftOaHT111eXsZdCz4ikUpx7t6TmDpkaFc225hezRJpY0yHqFsN0ReABISORnzZg6VWX0fjOtHNRdGqn6K1f0WK/4AEpnTs3snlaNnZoBFA0cij0O/vSOjwbXgnxhhjzM6hMhrh+eXLSLou00aNYWhB9hFf1776MtH0OtHNRRNJvvf8s/zpnbe45aSZTBo0uEP3/rSslLPuv4dIIoECDy9ZzH9PPZNDR4zc1rdjTJ9i/f/GmHZpqgwtPRmtvh6t/rX398SSVg6ubetKQBJSq9Hyy1G3vGP3r7u1IYn2RNHaP3biHRhjjDE7ly11dZxw1+1c9+rL/PL1Vzjx7tv5tKw067F18Xir13FRkuqysqqSix++n4pIpEP3/+fc9xuSaIBoMskf3nmzk+/CmL7LEmljTANVRROfoon5qMYat9f9A9xyIAJEQevR6l9mv0jwSCDUZIMPnCGQbUmGxPwONqyOxiQ6ze1YoDc7gpBSp0/8GGNMX+eq8klZKfM3bSTWpFf5z++9TUUkQiSZJJpMUheP84vXZme9xpEjRxH0+Rpe+0QYkpeXNRFYuGVTh9rVNIlu2NZKr7fpDhabu9vO806MMdtFNYFWfB4tOxctvwzdciKa2ujtTG0CmgZHBTfzqbe6NWhqCxTeAKFpIDngDICi30PJfbT8dZMCKexQ2yTnbCDcZEsO5J7TuTdojDHG9DHxVIpLH3mQs+67m4sfvp/j77qNzXXeyK+NdbUZ850Vr5e6qepYlC31ddx0/AymjRpNrj/AwNw8/nLyqdx/zoWIZD7kTrpKYShMR5yz9yTC/sZZojl+P+dPnLSN79SYvsfmSBtjAND6uyGerrCtgEbRqp8gJbd6iXHsVbweaYAwhI7yzlNFq38GkYcAB/x7ICW3I06Rtz+xCC2bCfhoLD4WhuDBEOhYwTAJHYkW3Qi1twAJyLkIyb28i965McYY0zvdPu8DPti4vmF+czSZ5CcvvcB/TjuTY0eN4c3Vqxp6gcN+P8eMGgN4vdg/evE5HvvkY0SECQMGcscZZzckyR9t2sgps+7EJw4p9WJzjs/PESN3Z0oH50gfO3oMN04/gVvee5ukq1w6ZR8umbxPF38CxvRelkgbYzzJJWQWCUtBchkAknMGmloNdf8GXAgfjxR8zzss8jBEHqehxzr5KVp1DdLvzwBo5dWgNU2uG4Dci5GC77V4Et4WJ+dkyDl5W9+d6UIKuDagyRhjdrjFWzZnFAlLqfJpuTci7PyJk1lTXcV/P5yLq8pJ48bz3UO9Ipz3LpzPU0s/IeG66ets4ZqXX+SWk2YC8NWnHqemybzpgONw2T778b3DjuhUbD5tzwnbVO3bdD2Lzd3PEmljjMc/EXiaxmTaD/7xAIgIUvBNNP8bDa+30sQcGnuqARKQ+KjxZWpDsxsJ4huIiA9jjDHGtG7SoME8v2JZQzLtdxwmDBgIeLH4+4cdyfcOPaLh9Vbvr1+XMV854aaYt8mLx6rKxtqmD7jBEWFwfh5OJ5JoY3Z19tjCGAOA5F4IocOAMEgu+IYhRb/OPEak5ZNq32gyi4s54Nutyf7my2A44N+zC1tujDHG7Jwum7ovh+w2grDfT24gwG6Fhfzy2OMzjskWm8cU9yPUpLiYI8KIwqKG40cUFWVeAxhfMmDHvAljdlLWI22MAUDED8V/h9Rq0Cj4xyASaP+8vEvR6LOQ+gwvFAeQol81HlB4HVRcRkPVbcnr8NzorVSj3jBzyQff7p0admZ2jJTuHP8NRORWYCawWVVbVMkRke8DF6df+oEJwEBVLReRlUAN3uT/pKoe0D2tNsbsKgI+H/899UxWVVUSS6UYU9yPgK/9EV1X7ncAz61YyqrKSkSEoM/Hr489oWH/9cccxxWPPdRQdbswFGbfoUM71bZIIsGyinIKgkFGFffr1Llmx7DY3L2x2RJpY0wDEQH/7p08Jwz9728sVBbYF3GaVOOuuxVv8Eu60JjWonX/gtDRaO0/gDiSezESPi7r9TW5Gi2/0FtHWpMQPg6KfoeIDagxXeJ24C/Andl2qupNwE0AInIq8G1VbboA+jRVzb5wqzHGdAER6XSimhMI8Mh5FzNn/TpiqRT7DR1GYahx9NitH85FRNB01e+qWJR/z53DoSNG8o857xF3U1w2dV+mjx6b9forKsq54KH7iCaTJFMuJ+0xnt8dP8MedJuucjt9IDZbIm2M2W4ifggdnH1naiWN1boBYhCfi9bdytb52BqfixbdgJNzSovTtfLb4JYBbvr0lyD6BOSc3oXvwOyqVPU1ERnVwcMvBGbtwOYYY0yXCfh8HDqi+fQqz2eVFbhNls6KpVK8v34tf5/7XsN87Dnr1/GHE05mxrg9Wpz/jWefoqy+vqFH+7llS5k2ajQzx+/V5e/D7Hr6Smy2Lh1jzDZTTaCRx9G6W9HE/Jb73RpvKHfGr5owuLVkVgiPQt2/st8ktZKGJBpAI2hy6Xa33ZjOEJFcYAbwUJPNCjwvInNF5Es90zJjjMkUT6V4dMli/vvhXBZs3tRif3UsSn4wmFFYLMfvpyISzagQHk0m+cecd7PeY1VlBdrkdSSZYFl5WZe9B2M6oqdjs/VIG2O2iWoCLb8YEp/gLX3lQwuvx8k9w9vv1qClp4K7hcZE2A+ho4EgpBY1u2AMt+o6IILknIUED/K2+0ZDcmHjNSQH8bd8Om66jyKk+s5z2AEiMqfJ63+paitPbdp0KvBms6Fjh6vqehEZBLwgIktU9bXtaq0xxmyHeCrFeQ/ey7KyMhKui88Rbpx+QsMSVdWxKCfdfSel9XUNPdJ+cZg+Ziyu67KodHPG9aLJJD+b/RLRZIJz9p7EQcO9YqKjivuxeMvmhmQ6xx9gXEn/bnufpiWLzQ26LTb3mU/bGNPLxF6C5Kd4S18lgCjUXNsw34rII+kh2YnGc6QIp9+fkbxLgHCTiwUhtQ4i90DkYbT8SjT6kndK8R/A6Z/u2Q5B6DgIn9od79DsHEpV9YAmP9sSqAEuoNnQMVVdn/5zM/AIcND2NdUYY7bPs8s+ZVl5GfXJBAk3RTSZ5P9mv9iw//5FCymL1DesLw1QkpPDLTNmctk++xH2N/axhXw+VlVVcveCeTz48SIuf+whZq9cAcAtJ82kf24u+cEgIZ+fk8btwSl72IocpsN2ithsPdLGmDZpYhFafxegSM6FSHCqt8OtBHWbHRzD6zn2oW4tGUk0sHU4twT3hZL/oLV/A42DhCH+Jg2VvYmitX9EwtMR/0gY+BIkV3jJtG+kFTMx3UpEioCjgUuabMsDHFWtSf/9BOD6HmqiMWYXM3/TRu5e8BGqysVT9mHq4CEAVEajpNzM2FyXSKCqiAg18RiJVCpjfzTlDec+cNhu/PfUM/nbnHdJuC5Bx+HNNasbI3MyyR/efpNpo8Ywurgfr11+JcvKyykIhti9uHhHv2VjMvSG2GyJtDGmVRr/CC2/FK/XGTTyNJT8FwkeCMHmqwn4ITAJEW9ZDgkfidb9g8a50CEITWs4WoIHISXeQ0K36seQMduKdFKePlbCENi7696Y2W6u7hwDmkRkFnAM3jCztcC1QABAVf+RPuxM4HlVrWty6mDgkfRDHT9wj6o+213tNsbsuj7YsJ5LHnmgYT7zk0s/4X9nnsP+Q4dz0PDdMh42BxyHfYYMbdh2zO6j+fcHcxrODfn8HNekMvehI0Y2FCj7zvNPN4/MxFKNc6jD/gCTBg3eEW/RbCOLzd0bmy2RNsa0Suv+ydYk2hNFK3+A+oaCfxQU/hJqfg1aDYGpUPQn3JqbIfo84ANnMLjrAQfCJyBFv0Q1Avgz1qiWnDPRyFM0Jt05kHNex9qY+AQSH4EzEEJH27JYplNU9cIOHHM73lIcTbetAKbumFYZY0zr/vLeOy2Kgn3nuacZkl/AmH4l/HLacfzq9VepicfYb+gwbp5xCr9763VeXLEcv+MwOC+f9TXV+EQ4aY/x/PLY44gkEgR8PvxOYww9Z8Iknl22tOFeOX4/5+09uUNt/HjLZuZv2sig/HyO2X20jSQzndJXYrMl0saY1mm05TZ3PbjrIDEP4m8jg2YjkuPtqroOIg+RWZEbIAcC+6PlX4TEXEBR317gGwmS8hJhyQEp8v7MORfJu7Ld5rmRJ6Dqp4CACAQPhuK/WzJtjDFmpxVt0iu81drqatZUVzNv4wbeXruaNz//RcJ+74H1T19+nkeWfJyRfAP4/X4OHDaMSx95kA83bkBVmTBwELsXFZNwXT7auIEcv5/iUJicQIALJ03hC/vu3277Hv54EdfMfhHBWwP78BG7849TTrNk2ux0LJE2ZiekqQ1o7T/BLYfwSTg5J23TdST3QjQ+h8zEeOtAr6Q3Tzr+PoSO8jZFH6ZlEg0QgdrfefOht64pnVrs/WQ0PAeKrsHJObHdtqlqOomONjYr/i7E32hsjzHGGNNLrKuu5u9z3qMyGmHm+D2ZMW78Nl3n4klTmbdxQ0ZivDUyJ1yXsvoIczes5/ARuwPw8MeLiTWbFw0QSSa54Y3XiCZTpNKFQhdt2cyiLZmVu8N+P9dPm85xY8a127aU6/LTl1/IuN+ba1bx1trVDe0xZmdhibQx20DVhdRaED84Q3vVU1ZNbUFLTwOtAVyIPY9b9SPw74YU3YAEpnTgGuu9pFRyofB6qP8PuAlwV9OQCANoksy5zb42LlrbgdZHoPaPaHAq4hvSzrExIN5yc6q0A/cx20OhLy2xYYzZRfTm2LyxtoaZs+6kJhbHRXl2+VJCPj8ji4q46fgZHZprvK66mnfWrSE/GOS6Y6bz3w/mkHRdVlVVNiTCAEk3RZOX+BwHsiTSADXxLHG0mWgyyU1vvcGUwUMYlJff5rGRZJKkmzmzWoAtdfXt3sdsH4vN3c8+bWM6Sd0atOxstHQmuuVEtOKLqLYfiLpN9HHQehrXbnaBCCSXouWXoqmNbZ6u8Y/Q0pPR6uvQyh9C/X+Q/g/gDHouS8GvGJrc0Pgy70tkLmu1DVIr0NJT222nSNhbY7rprzF1Idj+gwJjjDE7F3Wr0LIzvfix5US08iuoNl85ouc8smQxdYkEbvrhs6tKJJngk7JSLnr4frbU1bV5/twN6zjxrtu5dvZLfPf5Z7hj3gc8dsElvPC5K9hzwMCMY+OpFOtrqhtef2m/A8jxb1/f2bLyMmbcfQebatt+KJ4fDDKiqBCnyUOMlCpTh7T3cNyYvscSaWM6Sat/BcmleEOKYxB/D637T083q5EmaEyim+8TiM9p+/Sqn3iJuNYD9ZBcBfX3eTtlYMsTIg80/FXyroLCX3hrPYeOh+CRtNlL3WojatG6OzM3JZbgln8Rt+xc3LrbvKU8Sv4DvjGA4/WeF92E+NsfemaMMWbnotXXQ3IZXoHMGMTeQutu7+FWNUqkXFxtXgM7TeH99evaPP8HLzxHfTLh/SQSrKis4L5FCxAR+ufkNL8c9y1a0PD66oMO5fpjjuP4MeM4Ycw4jhq5O75O9tYrUBOL8b/58zK2L96ymSsee4iz7r+H2+d9gKpyx+nnMLq4H44IeYEAN594CqOL+3Xqfsb0BTa025jOSswnc0hx1CuW1VuET4C6v4NGWu4T9RLOVqgmwd3SbGsMTW1EAJwsvc1Nq2+LILmnQ+7pDdvcTQd4Vb0bj8J7hqeAC87u4JYCTZ/GpzLO0eRqtPyCdHIPJD5F3Sqcgm8hA59OjwgIYLqHIqS09wyZNMYYEguBpj3QvSs2nzRuPP+c+x6RZMtCYYqSF2g9hiVdl7L6zKHR0WSSjene4dws54aa9ECLCGfvPZGz957YsG3y3/9MXaLxu4yTPk7xesvHFPdjY20t9cnGzzSlSk28cWnKFRXlnPfgvdQnvGM+Kd1CTSzG1Qcfygufu4J4KkXAsT677mKxufvZ/7uN6Sz/ODKfQYXAv20FQ3YE8Y9B+t0Jgf1B+pHRI6wu6t8z63lu3d3opqmgVc0umIMEvfWeJe+LQNMn32Ek/+q2G5R7aZNzxEvk+z+O9H8IGfgGzqAXIO9zZA4JD0NoBlr/IG71r9DqmzLWlYYI1N/d+DK1ES09Bd20F+7mQ9HYu223yRhjzM7FP5bMEVC9Kzbv0b8//zvzXPYbMox+4XBGj7AqjB/QP+t5t8/7gIl/u5nqeCxje47fz8HDdwPgywccnDF0O+z3c/WBh7TZns9N2afhHEeE3GCQpy+6jEfOv5h3v/BlXrz081w8ZWqL6544Zhz3LZzPL16bzW/ffD2j4FkkmeSO+R82vF5XU80Jd93OuD//gYP/8w/eW7e2vY/JmD7FeqSN6SQp/BlavhDcCkDBNwbJ+0pPNyuDBKci/WehyWVo6ek0FgiLQ+XXYMCjGcdr/EOo+Q2ZT/MB/JD3FSR8rHfdwEToPwutvwM0heSejwQPbLst+VejTglEnwGnH1LwbcQ/NvOg0Ayon5VebisA+d+GyD1o7E28YXp+Wg5X976EqLpo+aXgbgAU3DK08ksw4LkOFCwzxhizM5DCa9GyxemHwQr+cUj+l3q6WRn2GzqMB8+7kE/KSjlt1v8aCoTFkgm++tQTPHL+xRnHv7duLTe99ToJNzP+BRyHbxx8KEePGg3A1MFDuPecC7jzow9IusolU6ay/9Dhbbbl+4cdwaC8PJ5Z9in9c3L53mFHMKZfScYxp+yxJ/ctWkAkmSTgOPzwsCO5dd4HvL12NZFkEr843goaTTjp2JxyXS5++H421daiwJb6Oj7/+MPMvvQLDMzL6/RnZ0xvZIm0MZ0kvgEw4Jn0MDI/BCYi0kv/KcU/wPtnvjVBdiG5BNU4IsHG4xLzaJlEO8jghS3WZJbA3kjRbwDQ5Brc8isgtRoC+yKF1yJOQebxIkjeJZB3CaqKRh5Ga34LzgAk/+sg+VBxWZOe8BTU/xPcOrzK3ADNh8KFIe8L6be0BdwyMqqHawotvwR1BiL530BCh3bs8zId5tqAJmNMLyK+wTDwWUgswovNkxDZhhod3WDO+nX4HKchQU4BCzZvIuW6XoXttA83rm+59rMIH3/tWxnFvAAmDxrMTcd7S12uqqzkkocfYG11FfsPG851x0wnPxjMOF5EuHyf/bh8n/1QVe5btIBfvf4Kg/Ly+ebBh5LjD3DpIw829ISnVPnrnHepjcWIpiuAJzUzwQ/7/Xxx/wMA2FhXS2U0mrGuR8p1Of/BexmYl8d3Djmcg3cbsU2fn2mdxebu1Uu//RvTu4mEILh/TzejfU4JiGSuUEWQ5vOJNdlsWSsAKWyRRGec49ai5eele+ZdSG1CU6ug5P5WlxzRur9B7b/wepkdNPoCFP262b1dcOtpu0hZEHIuSr/HQlr2Vse95D61Gq24CkpuR4L7tXE9Y4wxfZ1IuE/E5pKcnBaJcI4/kJFEA6ysrKR5ebLCcLjFuU1Vx6Kcdf89VMWiuKpsrK1lTXUV9519fqux+Q/vvMmtH84lkkziE+GFFcv41bTj0SZ3d1WpicVbXUpL8IabXzRpKgBFoTCpZj3psVSKlVWVrKyq5IrHH2bWWecxdcjQVt+LMb2dPbYwZmcWmgb+SekCYyEgDIXXtwym8XdanhuY2va1E3PT85a3Bso4JBahtbfg1t2JW/EN3E374W4+HDfyrHdI3X/wkmi88zTiFW/T5j3OLkgOrf6KkiQSf837q+RAwfe890aIrUO+G0XRyH1tvxdjjDGmmxw/Zhx7DxxEbiBAyOcj7Pfz62OPb3Hcu2vXtNi2/9BhbV77/XXrSLiphgrhcTfFvA3rufndt7njow/5ylOPM/nvf+bQ//6T55cvBWhIosHrea5PJFiweSPJZomwqy45fn/WRF7xlt16ffUqwFsG6zuHHE6O30/I52sZmZNJ7l+8oMV1jOlLrEfamJ2YiA9KbofYC5DaAsH9kMCkjp3sG9zqLm+I9vOgzde9TELd37Yelf6jFqp+gPqGeus8Z17J6zUPHwexl7050hKCnHOR3MvQqu9DcgVoZYvTmg73dvKuQANTvUS+7lZwmy8jYr/qjDHG9A5+x+Ges87juWVLKY3UccDQ4Uwc1DLmZlssa3BeQZatHleV55YvpS4ez9ieVOWW995uSGYVqEvE+dZzT3Pv2ec3zNVuuK8qg/LyOWbUGF5d+RnRVJKwz89Fk6dw8eR9+M7zT/NZZQWV0WiLNiTcxt7qqw44iP2HDWfRlk38a+4cNtTWNOwTwNdLh94b01H27dKYnZyIH8IntX1Q3ueh+hd4a2MDhJHc81s9XGv/BNHHyR7ms22Lo7HXIHSMl9STxKvgHUBCx0HuZRB7FpIrwb8nhKZ5c6v73wuAW/E1iL2ebp+A+CF4ROb7DO4Hwf1Qpz9U/ajJe8lBci9p+/2bTlGFlNqAJmOM2VZ+x+GU8dlX0djqC/vuzw1vvNrQW5zj93PBpMmtHn/TW6/zxKdLskZhaBmdt/YgT9t9NC+tXEHSdREg4Pg4bsxYLpmyD08v/YRVVVVMGDCQY0ePAeCh87ypVVc+/ghvrllFLJXCEcHv+Dh8xMiMexwwbDgHDBtOcTiHH7/0fMOc77A/wCVT2hn5ZjrFYnP3s0TaGIOTey4uQYjcBxJG8r+GBLIHa429BnX/IHvC3JqAVxQs9jLefGjxtvX7D+L3lu9oK9mX4j94Bcpib3k95QX/B6nlaPxNr9hbkyrgTs7JqOSgkftBQkjel5DAhE601RhjjOl5l0zZh5xAgPsWLSDXH+CbBx/K3gMHZT325RXL+dfc9zsVmYOOjw01Nbyy6jNS6SQ66PNx+xlnM6ygEICZ4/dq9fy/nDyTG954jbfWrGZYQQHXHn0sn5SWsrm+jsmDBmdUAT99zwnkB4Lcu2gBuQE/Xz7gYMb3H9CJ1hrT+1gibYwBwMk9HXJPb/MYN1UJFV+nc0k03nDt2Bs0VuEGUCT+QYcKw4iEkML/885SRau+j8ZeBMSr0F10A07OKY3Hh6ch4WltXlPj89DKb4K7GXyjkH5/Q/yjO/e+jDHGmB3o7AkTOXvCxDaPKa2v42vPPNHZyEw44Gf2yhXEmhQPU+DDjRvYr5252OD1Kl93zHTvPFW++exTvLxyBYI31/r3x8/gpD0ae92njxnL9DFjW7maZ+6GdVz9zJNsqatjTL8S/jnzdEYV9+vkOzOme1j/vzGmQzT2Kmw5isYh0021XkHUOxlwq5ttTKBuhZcYuxWoxrOd2VLifW94uNan52hHoepHqLasItpqc9xytOLz6bWnU5BagZZ/DtXmS4CZ7AS3j/wYY8zO7KUVyznytv9kJMNbtfcbUNSr8t1UIpWiMhpBVamIRIhnuW42b61dzcsrV1CfSFCXSBBNJvnuC8+2WGe6LaX19Vz+6ENsrK0lpcqy8jIufviBFtW/TWt6PubuarHZeqSNMe1Stwat/AbZk2hov4e6Psu2AAQno6UnQWoNoGjBd3G2rg/dmtQmWj4DTHlJtRS20460xMfNNii4NZDaAP6RWU8xxhhjepPKaIRvPPsksVTzlS887UXm2kS8obr3Vn7HYeLAQRz3v9tYW10NKD88/Cg+v2/bo8c21da22JZIpYgkk+QGAlnOaGnh5k0ZFcEVqIhG2Fhby/DCDsZ3Y7qR9UgbY9qXWkPb6zq3J0TTKtsAOIOh9r+QWgkkvP01t6Dx99p+gh2YCBm9zwLOIJDWK5m24PRrdg28+zsWqI0xxvQNq6uqWqw93Rlhn69Fxe7hBYX85f13WV1VScJNkXBdfv/2G8xZv67N2Dx50JCMpFzS1+poEg3QLyeHpJt5j5TrUhgKdfgaxnQnS6SNMe3zDYXtGvac5VwJQfJjGtehBoij5Veim/bGLbsQTZW1PM0/BopuxFs32g/OUKTk1pZrY7fFP8FbcktygSCQA3lXIU5xZ96UMcYY02OGFRSS6ODQ62yiqZZDpsN+P5+UbslIsOMpl8898gDj//JHzn/wXsojLUeZ7dG/PzdOP4GQz4ffcditsIjbzji7U+2ZMmgwx44eTW4gQNDnI8fv5xsHH0qBJdKml7Kh3cbsQtz6x6DuFtAk5F6A5H251QRUkysg/j44xRA6Fgqvg+qf4/VMN18/ui1Ci95ogJxzoP4OcDc22ZhK/wCJD9Gyc6DkTsQ/IuNUJ+dkNDzDmycteZ1LosE7vuh3XhXx1GrwT0BCh3TqGrsyxZbYMMaYrvLQ4kXc8t7bpNTlksn7cNX+B7Ya15aVl/H++nX0C+dw3JixXHfMdH7+ysv4HKEu0fEH3l5BsJaJ9HkTJ/P3Oe+xpb4xzqfUZWu+PnfDes66/x7uPvO8FsOtT9tzAjPH70VdPL5Nya+IcMuMmby4Yjmrq6uYOHAQh+w2ov0TDWCxuSdYIm3MLkKjs6H6/2iY51z7D5QAkn9ly2Njr6IVV+Ot2SzgDPGGQ+MCHSwK1ni1LNt8SN7nITgFrbgS8IHG8BLurce74K5Dy06FkruQwKSMK4g4IPmdbEvT8wXC07f5fGOMMWZ7vbB8GT975cWGtaL//N7bBH2+rHOSX/psOVc/8ySCF8OG5hdQHA7josQT2edJt0bBW3i4iYDjcNnUfdmz/wCufOJRfCLEUykSbqoxMquyuqqKGXffzv3nXMCEZstxOSLb1YMsIhw/dtw2n29Md7LHFsbsIjT6GJnFwiIQeQRVF7f237hlF+FWfhtNrUOrfpw+NuL1+qZWQGIuXhLd2eqZITKf2YUgdDwiggQPRAY8hxT9GvK+hDdcu3nD69HqX3TynsYYY0zv9/CSRQ1JNEAkmeThJYtJuS5/e/9dzn/wXr717FOsr6nmBy88RzSZJJJMUp9IsLyinLkb1hNPpTofmdNDsBtf+zl5j/GICIeOGMkLn7ucG487kSv3O4Cwr2W/W10iwfWvzd7Wt23MTsF6pI3pYapxSC4FguAf6/W07giShzeYq8kTaCcXrb4eIg8DUUg4aOzN9LJSXSEI+VdB4ACovg60EoJHI0U/b2yWbwj4ZkBoOhp/CxLzaRjevZVb3kXtMV0lZc9hjTE7sVgyydLyMkI+P+NKSjo9haij8gLB5pGZ3ECAa2a/yOOffEwkmcQR4Y01q6iKRrrknkGfj68fdAhTBw/l56+8RHUsxrTRY7j+mMZRWsMKChlWUMhxY8byxppVLNy8qUWF79L6bCtymJ5ksbl7WSJtTA/SVClafgG4ZaAuBPeBfv9GJNj1NwufCZGHaAzXQcj7DlR+gcY5zC4QA99wSK0l69zmBiGQHC85bk3eV3Hyv+r9feAzbTZPJAAld6GVv4LYvTT2fIcgNK3Nc40xxpiusqm2lnMfnEVFJIKrygHDhvOfU88k4Nue1SuyO2fCJB795OOGithBn4/vHHIYn3vkwYaCX64q0WSSEUXFrKuuItlG9eywz0/I76MqFmv1mG8dfBhfPuAgAF689PNtti/o83H/ORdw7ewXeeDjRQ3JdMjn47gxYzv1Xo3Z2dhjC2N6kFb/DFLr0z3AEYh/iNbd1vX3UU3Pj25KwD8q+wm5F4N/oncMDi2fuYW8StkF3yHrcOwGLded1thruKVn45aeilt3d+ZyGqlNEHuUjOHjziCk4Htt3MMYY4zpOj9+6Xk21NRQl0gQSSZ5f/067vjowy6/j6ry09kvZMxVdkQYVdQv6/GX77Mvew8c1BiZmy19FfL5+N9Z5/DtQw4n7G+9ryzbutMvf7aCM+69i5PvuZN7F87PiM0ba2t47JOPM3qkh+YX8J1DDu/gOzVm52Q90sb0pOSnZPb6RtNLQnUxrfKqUzdNUCWAJD9Cc86ByGNABC80B73loVJ/p+FZW2AfSK0CBELHInmXIv5xaGCqNyw8+ak3lzqDH3EGZDYj/j5a8XUaEuya36IokneJt7/iKqDZddyNaPwjCO6HSNf3BpjOUwRXd8wwR2OM6WlLy0szln+KJpMsLt3c5fcpjdSzrqY6Y36z33FYsHkTZ0+YyBOfLmkY2h3y+dmz/0DWVFfhEwGF/YYMZWVlJSJw3JhxXD51X8aW9GfSwME8vGQxy8rLqG9WyTvgOPTPyc3Y9vaa1Xz9mSeIpudq/+K12agqF06eCsDnH3uYaLNlttbVVLNg80amDh66XWtZm65jsbn7WSJtTE/y7+n1SDck0+F0T3AXk1xaVs92QQqRwmtR33CIzQZnMBR8F8rOBa1oPDQxB/rdidNsiSiRIJTcA/G30LrbIT4HL0kWb53o8HEZx2v9A7QoeFZ/N6QTaVKfZWl8AiouQSmA/ncigb235RMwxhhjOmTP/gPZVFvbMIQ67PczaeDgLr9PfiDYYt6xq0pROMyvjj2e3QqLeHXVZwwrKOB7hx7BaffelTFk+73167jv7PM5cPhuGdcI+f08cM4FvLFmFbd+OJe569cTTSWR9L7mQ7JnLZzfkESDV/Dsf/PnNSTSKysraC7hupz7wL0UhsLcc/Z5TBgwcHs/DmP6HHuEZEwPksLrwbdbOtENQ3B/JO/yrr+PBCHn4mYbB0HwEER8OPlX4fS/F6ffzYiT7/VgN1f5HbT+Idz6Z3FLz8QtPQM3+iIifiR0FNLv35D/Ze9BQPBIKLkPJBfVJk/DJYg3XLxpOwKNf3da+6KiQDVadhmaZd1LY4wxpqvcMP0EhhUWkhcIEPb7OXj4CC6dum+X3ycnEODCiZMztg0vKOCAYcPxOQ5fP+gQHjj3Qm6eMZOgz09NrOXyk1c/8yQPfbyIJ5cu4dR7/sdps/7HyyuWE/D5mDZqDLedfjZX7X8gkwYO4phRo3n43IsI+/0kmvQwh/wtR3s1nQ8+KC/7UpMKVMWifO7hBzKnaRmzi7AeabPdNLkSrbsTiCI5ZyLBA3u6SX2G+PrDgKcgudxLKH1j2q0MqqoQex6SqyAwHgkd02x/ElIrgSD4RjReL/Zc5oXc9WjpiahbBYF9keIbEacfSAFZ137WUm9ON00S48qv4Rb9ESfnZER8SP5XIf+raHINWnEFmtrgnVpwDU7ehUjuZWj0CdBo+h5hJP/qxs+j+E9o+aVAjOzLbNWAW4EmF3nVvZ1hkHMaIvarzBhjmtLkCrTuf0AcyTkLCbZcl9hkNzAvj+cvuYLl5WWE/H5GF/frUGx+dvlSVlVWMmHAQI4eNTpjfyKV4rPKCnL8AXYrLEREUFWeW74s47hVVVVMv/O/VMdi7D90ODcdP4OicJjicBjNEps319fxk5eeJ+E2xswvPvkofz35NGaM2wO/4/DNQw7jm4ccxqrKSi599EE21tYgIlx39HTOnzSZz+97AE8vXUok6cX3sN/PNw4+tOF6fzn5VD73yAPEksmskbkyFqU6FuODjetZsGkTuxUWcvqeE2zIt9np2bdPs100uRItOzM9P1bRyJNQfDMStirLHSUSgMBeHTpWVdGqH0D0ebyENoDmXoBT+GNvf6oULb8IUpuBFISOhOI/A3Fwm8/viqfnPQPx19HScyDvcxA8CEKnQuzxLC1INHutUPMbyDk5c2vFl9NVv9Mht+YGNDgRCUxBC34A9bOAAOR/I+P/KxKcCoNmQ2IBWvmtLMtwCVp/F9Tfmk7GwxB9DPrdtuOWDTNZ2RIbxvRemlyOlp0NGsGLzU9Av78goaN6uml9RtDnY8LAQR06VlX55rNP8fLKFcSTSQI+P5dO3YcfHu593pvrajnvwXspra8n5bpMGzWGP580k7pEgvJmS1rFUylWVXmjwl5ZuYIz77ubS6bsw6G7jeCkceN5etmnLe7fNIkG7zH1DW+8yoxxe2Rs/8ITD7O2uqohHb/utZeZNGgQEwcN5geHHcm9i+anq4YfnvEgYL+hw3j18i+ycPMmvvb04xnrXoNXIO3fH8zhtnlziSaThP1+HvvkY247/WycHbRsmMnOYnP3sk/bbBetu6MhifZE0do/9GSTdm6p5RB9Dq8wWJKtc4w1tQUArfoppNbgFeyKQewltPZmIJwePt6aJLhr0Jqb0LILIHQshGbSYhh2NhrziohFHkOTy7yh16llNO9R1siTuGUXQ/WvveJkyeVQ++fMod+AOCVI6GjI+zrQbLhZ/o+h7p8NXw4hAomPIP5+++00xphdhNbd1uT3JEAUrfljTzZpp7akdAsvfbac+kSCpCqRZIJbP/yA8ohXPPP7LzzH2upq6hMJYqkUzy1fyl/ff4f8YJBgG0tqJVVZWVXJb958jbMfmMWp4/fi5HHjOxKZiSWTvLN2DY+mi44lUik+q6jI6NMW4LFPPub8B+7l12+8widlpSwtL+Pm994m2Sw5H5CbyzGjRvO1Aw/xip01cc2Rx/DvD94nkkx6kTmZZO6G9XywYX3HPkBj+ijrkTbbqWmgTtOWSx6ZLuJWgPgzP3Lxp+c0D4TkIqBpZU2Futsg/5tI8S1oxddAfKDx9HGZVTi9HucE1PwcZ/B7uO4voPQEb53rrAO6AClBy6/Aey6nUHg9SFGz9aVdqL+LlhXKl0PsdVyNQs0vvYcywaOQohuRvM+jTn+I3Af4IP/rSGA8WvvbZg1wQKs79PEZY8wuQS02d6fKaLTFUlQBn0NVLEZJTi4fb9mcUVRMgX/OfZ+vH3Qofz5pJl9/+gn8jkMslcJ13RbrRCdcl4Trcs3sF3n/i1+hJhZj+p23Uh6NtChWtlVBKMQVjz2EpO/3m+NOJD8YoibeWKwspcodH32Y0aMdTSb5tHQLb6xeRXUsyi9fe4X6ZILpo8dw4/QT+coBBzEwN5f7Fy8k6Pj41iGHMbKomBveeDXj/o4I1W2sZW3MzsASabNdJHwmGnmaxkrMOZBzXk82aefm34vMgSTi9TT7RnovnQFZhnAnwd2ChI6Agc9BcgkqJVD9c0guI9taz1uHVDtOHlpyrzecPLkC/KPBrU73OAO+AyA1l4wvbNU/BGeo90VOAoALGqNl0g4QQSt/gDcnOh1wY7PR6p/gFP8JyT0Dcs9obJYq+Eak54BvvZ56y3OZbqOAqzagyZjeSnLOQqMvkBGbc8/vySbt1PYeOIimI7gcEQqCIXYrKASgJDeX0kjm0o7xVIqySD3TRo3hxc99niVlWygJ5/DT2S+woqIio4r2VrXpJLggFOKBcy/ku88/zcrKSsaWlFBeX8/ydHXtg4YO5/0N6zIepXzruacZVlBAPJUk4PhwUWLJZMYyX1vVJ5N8+7mniCaTxNJFyZ5fvgyf4/CHE07m3ImTObdJkTRXlWEFhayqqsxI7KcMHtK5D9JsF4vN3c8+bbNdJHQwUvxH8I8H3+6Q/zUk78qebtZOS5wCpORO77MmAL5xSMndXlVugPxvZTsLnCLvb74hSOgYnOAUpP8spOD74D+AzCHcfgjsh0afx91yLFp+PgQmIYPewOl/rzfsmyBIHqTmkbUwmbvRq9BdcA349yV7Er1VNQ1JNHh/j72a9UgRQUpu9xJnyQHfSKTf7YjPlt0wxpitJHQ4UnwT+Pbw4kXBN5Dcy3q6WTutonCYu886l5FFRQQch/El/Zl19nkNla+/ffBhLc5xRCgMhgAYWlDAtFFjmDpkKA+eeyE/OOxI9hsyNDMyOw4HDd+Np5d+wlG3/5tzH5zFfkOH8c6VX+a+cy7g2NFjCfp85AWCfLBpQ7bIzIaaGsJ+Pz8/+lj2GTw0axK9VVUs1pBEA8RSKV7+bEXWYx0R7j7rXPYZMpRcf4DRxf2468xzGZDb1pQyY/o+65E2203C05Hw9J5uxi5DAnsjA18AQBML0KofoW4FhI5DCr6Nhs+E6NOwdUBXwY8QyWl5HQnhShiSC8lMhpOQmIdWfkBDcbH6+7wjQtOh3qsC6w0Pb036eollkHiz82+yjWuLbzDSf1bnr2mMMbsQCZ+IhE/s6WbsMiYNGswrl3kdCRr/CK25CndLJYRO4Pgx3+S08Xvx3PKlDdW6rz36WEL+ll/Dw/4AQZ+Pj0u3ZEZm1+W9dWt5Z+2ahqHYdy34CEccDh8xkrsWfEQ8lSKeav3BteIN5/6kbAtvrV3d6feYrZd8qyH5BTx47oWdvqYxfZkl0sb0UZpchZZfkp4LB9TfhWo1UnQj5JwBqfUQmIAE9m79InX/IuvQbprPa4p6yblvBK3OlW7RwBhEHujYsS2kUI1kfQBgjDHG9FaaXIFWXNokNt8JWssfT7yWt9auZl11NZMHDW6zIvg/5rzXojI2kNFDDF5i+8SnSxiQm9uiOFhr4qkU9y6c3/E31EQinai3VSDNmF2JJdLG9DGa2oxGHoH4O5BR8ToKkSeQol9C6NBWz8/UwaQYgBxvjnSbw7SbSuEN287GwavI7Uu3wSWzEJkDBDrRNtO9hFSH6sYaY8yuYVNtLQ99vIhJeY9xeEm8yW/IKEQfQ4p+zuEjdu/QtVofcN1Sjt/P6H79sq4xnU3KdalppdfaAXyOg5PuNXdVMwqf+RynRVE105tYbO5ulkgb04doaiNaehpoLZmJZ5p08p907hVQcxNe9fV2SAj1T81+36xaS7jzIPdyCEyBxLteL3fkXkiuxOsJz4H8K5HOvhdjjDGmB6yrqWbmPXdSl0jwubHrOLBICWV02nYunl2xz378/u03svZKNxfy+9h/yNAO90i3Ni86Pxjki/vuz14DBvL++vWMLCrif/PnsbqqklgqRY7fz1cPPNjWhTamCfumakwf4q3bXUOrSWobhd40sRgSH4IzCELTEXGQ3ItRCUPdPZBa2PbNU6uh9i/b3niAoltwcmagbjladl56WS0FZyTkfx3ic7w52/X34rr1SMF3LaE2xhjTq/3ngznUxOO4qjy2eg++MuFDHIkRcJRI0k+w8CutVvddsHkT8zZuYEhePtPHjMUR4Yp99iMnEGDWgo9YuKX5ShyZPquo5G9z3tuu9v9z5ukcP2YcW+rrOOf+WVREIrgoY/qV8I2DD+W9dWtZtHkz/5s/j7p4nO8eegQ+65k2xhJpY3oz1TikNoJTgjj5oBW03tMbQoItK4MCuPUPQ/W16XMF/OPQkvtwnDCSew5ucinUt5NIE4Pkx9v+ZiQXCewBgFb/ypvDvbV3O/UZJD6G+Ls0zNmuvwfFQQq/jyaXe2tgp1aBMxTpdwsSmLTtbTHbxZbYMMbsymLJJBtraxmQm0teMEhlNNqw7FN5LIeZz5/DF/eaR0koyqsb9+ALh57C5MKW17lv4QJ+/upLDefuNWAg959zASG/nwsnTWHJls3tJtLRVJIlpaUN60V3Vq4/wB4l/QG47pWX2VBb09C7vbSslNHF/Xhv3dqG3vE7PvoQv+PjO4cezqdlpXzlqcdZXVXJ8IJC/nryqUwcNHgbWmG6gsXm7meJtDG9lMY/Qiu+kJ4HnUILf46ET2q2bndTjremdPPrqAvV15AxJDv5MZTORAc+BYnF6Urc7QlBYBIk5tOhoeAZBFTRqp+igYmQWJLZHmJeb3nG+4pA5DFcklB/Dw0F0Ny1aPllMHA24mT5ZmKMMcbsIB9sWM/nH3+YZMolpS6/OvZ4Zu6xJ88tX9pQ1XpzNI9fzTscgLDfzzcCLWt+pFyXn778Am6T9HfB5k2ccs+dPHXRpXy0aSOzFi1otz0hn4/Jgwfz/vp1xFIdnXrlkfT/fP+FZ5k8aAiflJVmDBGPpVLM3bAuY4h5JJnk4Y8XUZeIcfeC+Q1VwldXV3HxIw/w+uVfpCAU6lQ7jOmr7LGFMb2Qagqt+CJoNV7SGofq6735xIXXesOzCeAV6wIIQ+gQ8I9reS13A1nnNbur0arr0Nir2fdn8HlrNudfjRT/qcl9OyoIpCDxAdTfB+4WMp/jhcE3tOV1tcyreNqiijiQ/KSTbTDGGGO2XdJ1+fzjD1Mdi1GfTBBLpbhm9ouMK+nPz46axqC8PAKOgy89jzjH7+eokaMYXdyvxbVWVVZmJNFbrais4Jevv8Lsz1a0O+/ZJ8KYfiVcfdAh3Dzj5Ib7dlTA5yORSjF3w3ruWfgRZZF6fE2KVYX9fobmF7SYF72prpY7P5rXYqktVWVpeVmn2mBMX2Y90qbTVBWij6LxhUhgDOSch4hVWO5Sbnnj0hlbiR+SS3Fyz4bcs72e5sgjaGKxN2Q651wkSxCV1BYUh6wVuqOPQvAYIETWZLVBClJrwd2EhKehJfdB+eV4SX5HqnjHaRx0FgeVzPY4A6Dot1B2drqQWgrv15OTPrcZTYDT8ouJ6T5WGdSY3sWLCY+iiUVIYFw6JtjXvK60pa6uRfLodxyWlpdywaQpXDBpCinX5cGPF7GkdAt79R/AOXtPyhqby6L1rQ7Hvm/RAqaNGk3QcYi3kUynVFlVWcGm2jpOGLsH959zIZc++gCRRKJDa3IkUqnGyJzyfqs3Te4H5+Vz0/EzOOO+u6mLx0mp4nccBCHhtoz9CdelOBzuwJ3NjmKxuXvZb1jTaVr9E29NYY2gkTBEX4B+tyJiAxy6jFNMiwEjmkyv4+wRcSD3bISz276WbzjeP/UsCSlJSLwHTn9w17fTqAhadxfqFEByKeRd5q0T7bY9fyvd+GavmyXtbhniboEBT6L194HWe9vr7255KcmB8MlIlt53Y4zZVWnVDyH6PLA1Nr8I/f6TNYkz26YkJ6fFtqTrslthUcNrn+Nw/sTJ7V5rRGERAZ+vRWK+9Zpz1q+nJDeXjbW1bV6nPpnkrvkfEvYHWFZRxhf22Z97Fs2ntL6+3Ta0iMzN2rK5rpaKSIRnLrqM+xbNpz6RwFXlf/PntbhWrj/A6XtNYEy/knbva8zOwhJp0yma2gKRJ2hMyqKQmAfJRRBoP3CYjhEJoEW/h6rvej3RmoC8y5DA3hnHqWq7X5LENxAtvD5dbKxpz/DWi0Ra9n63JtJkLnXsJTq3DnVbYmjiY5zg/kjBN7xmJdegkXubNDcA/j2Q/G9AaFoX3dcYY/o+TW2E6LM0PqSMQmIOJJdAYEJPNm2nEvL7+cPxJ/GdF54h4DgkXJcv7nsAew0YmHFcR2LzkPwCrjv6WH7+6svEm/QMb1WXiFMT71j5sP/O+6Dh7y8uX9ahcWIdEU+lWFy6hX2HDuNbh3hzvldWVjBr4QIS6Z7yoM/Hnv0H8M2DD2PaqNFddGdj+gZLpE3naISW82MdcNt/8mk6x8k5Dg0+5/X++oZm9MC6kaeg+megdWhgH6T4r4ivf+vXyj0LDR2Bxt+Dqp/QWNQrACS2sYXbmkQ7tOwhdyH2NuRd0rBF/COg5C60+npvmazQMUjBDxEJbuN9jTFmJ6X1IL5mz0l9jaN7TJeZscd4pg4ZytLyMoYXFDC2pDH2Pv7Jx1wz+0XqEwn2HzqMv59yGiU5LYuAbnX+pCkcM2oMb69dw09eeo5oukc44DhZe6o7YluTaAdwREg2WWc6pco7a1dz8eSpDdtGFffjnrPO5eevvkxFNMJxo8fyg8OPIujrbO0UY/o+S6RN5/iGg28wpNbg/bp2gCAEJvZww3ZO4hsCviEAuPWPQ+wZb0fsDRp6HhLz0cqvI/1ntXOtQUjOTNQ3Aq35JbhVkCpn2xPpbSHefGjfHpB4M3NXlqW1JDAJ6X9/N7XNdJSq2BIbxvQmvpHeFJ1UjIbYLGHwW2/0jjC0oIChBQWoKg9/vIhnli1FgNdXr2wYHv3hxg187eknmHX2+W1ea3B+PmfsNYERRYX88rVXqI7FKK2vIxHPNh1rxxBgUH4+o4qKeWfd2ox9i7IsvzV1yFAeOf/ibmqd6SiLzd3PEmnTKSI+r5ew6ofekDHfCKTot94ax7sQ1SRa93eIzgbfIKTgR4h/1A67n1v3X6i5Ba+4V/PyJElIfNjuUDLVFFpzI9Tf750fPhF0AbjVrZwRSt8r21Jb20ogNAMiD2VpYC1uxTe8KQKRWeBWQGA/pPj3iFPchW0wxpidi4gfSu72YnPiE/CPSsfm1ntDd0aqCbT2rxB7DXxD0rF55A673z/nvs+f33ubSDLZMjK7Lh9saK/2iHfcL1+bzQOLFwJwyh578v76tdS0kkiH0j2/zeczbw8R4cQx43hg8aIW+6qjMb7+9BNMHjyYu+Z/RGU0wkHDd+MPJ5xMkRUWM7s4S6RNp4lvEFJyW083o0dp9bXpueJRSDpofA4MeAbxDWz33G1S+y8a127OMmdK8tudj6V1f4f6WTQMqY4+BgygZWIe8OZlS//0MlXtaaUieFYuRO5spYGVEHvW+9kq/g5a8ZV2e9uNMWZXJ74hSMkdPd2MHqVV10D0GbzYvBiNvw8Dnm1z6tP2+Ofc9xrWWM42m7kj6ynf/O5b3LtoQcNQ7gc/XsSg3NyWkdlxCDg++ufmsKUDhcQ6FZlVuSNLATGA8miEp5d9ytPLPm3Y9sbqVXzl6ce556zzOngHY3ZOlkgb00mqCpFHaFx72QWNQ2w25O6ooJItHAbwQqVA4S/bv0T0OVpW7i6FwNHe0lYkvOu5q73orWtbXCIrKQKtaqWN2yuR7m1P2BJrvUzKho8ZY3oR1RREH6dxlnA6NsdfhZyzdsg9U5qZPgvecliOOIjADcee0O41nlu+tMV86C319RwzajSrqqpwXRdFWVNdDW7K+7MDinNyqIxGcbVjBcs6I+G6vLduLSnXxedYLOhNLDZ3L0ukjdkmzXt/hRbLVXWlnHPTS0Ft7ZUOQ8G3EQIQPAAJ7AV4Sb5GHof4G16BsrwrEafQO6W1dZcTr3rXCx4I8XfxEuJOJMWBAyAxF7R8295bu/zYrypjjDFtE7o7Np+39yRmLZzf0Csd9vv53qFH4HMcDhq+W0M1b28u9WLeXLuK4QWFfHG/AylM91b3C7dcUkuB2Ss/I8fvZ/+hw3h33Vpc1U4lxYcMH8Hba1dTEe3K6VmNgj4fji2tZnZx9u3UmE4SETT3ovRc43QVc8mB8PQdd8+C76FOkbd+t1OEFPwACUxqcZzW/AHq70y3K4BGn4L+T3jz5HLOg/g7rdwhCvHXt6FhhVB0gzcEvOxsINtwsyDZ17Bu9aJ4leFTQAgKvm/roBpjjGmTiIPmnA+Rh2mIzU7ODl0u8cdHHE1xOMwzy5bSLxzmJ0cew94DB7U47sY3X+Ou+fOIJJMEHYenPv2Epy66lJxAgPMnTeH99euyXj+STPLGmtWdbldxKMwN009gQ001Z90/i/pky6KiQcch7nb8obngrZGdcl1Cfj8/PfIYi81ml2eJtDHbQAp+jPp2g9grXrGx/G8jrfX4dsX9xEHyr4L8q1o9RtWF+v/SOOQ8AalSNPoy5ByXHtrdVXwQOgkp+jniFKKJuVnnh5HzdaAuvf50MtsRaQHvmr7dIedskBC4pUjwACR0aBe22xhjzM5KCv8P9Y9IFxsbiuR/C3GKdtj9fI7D1w86lK8f1HqcSrout344t2EYeNx12VxXy+yVKzh29BiebTL3eLvbIw6n7DGeX0w7joJQiLfXVrbspAe+fdChVMSi3L3go4b1oLMJOA4+x2FUUTHnTZxMwHEora/nkN1GcPBuI7qs3cb0VZZIG7MNRBwk7zLIu2yH38tN1UL5BZBaCgiEz0GKfpHlSXCKlitIRqD6h2h1une3y6Qg9hRaXg79fu1V2G5eGQUg8tf0xnaeWksB9J+F4x/dhW00O4oCbnv/TY0xppt5sfnzkPf5HX6v6liMcx+YxbLyMkSECydO4fpp01vE5pTrthiSXZ9M8q3nnsZVbajC3RVS6vLEp0uoiES44bgTKI9EvLouzfzpvbc7EpkpCod58NwLGVlU3GVtNDuOxebuZzPSjentys+C1Kds/RVJ9H609m8tDhMJgL/lcG+viJiLt4zVtvyC9ZE9CVdIvoVuOQn1jwXN9lRbm/3ZCq2Eqh82vkytw635I271jWhi4Ta02RhjjNlxTp31P5aWl3mRWZW7F37EP+e+3+K4kN/fMFe6qWQ6wY6ml87qLAdveHZzCry+ZhUn3nU7e/YfkDX6djAyU1Ffz/eeb1xJY01VFb9/+w1ueP1VFm3etA2tNmbnYom0Mb2YunWQWtlyR/Rxb39yJVp3O1o/C3WrINjWMOh0yJQRQF7HGuAMAmc0EGvjoAjEXkOKb2bbf6W4kE6YNbkGLT0N6v4J9beiZRehsbe38brGGGNM16qKRllbXdVi+6OffAzAiopy/vvhXO5Z8BHVsSiHjWh9LeutyezIgkJy/R1bnWJwXj5j+pW0Oce5LpHg7bVruPnEU7a5jzIFzN+8EYCVlRWcMutO/j7nPf794RzOffBe3l27ZhuvbMzOwYZ2G9ObiZ+sY6alCI3PQysuA00CLlT/Anxjabu4VwgGPgFbTgCta//+7hZgc/vHpT5DCq5GwzPSc7GbDzHvAMnzqo7X3Zpu29YvCFG04jLUGYAU3YSEDu/8tU0XE1tiwxizywq0Mhy7OBTm/fVrufzRh0ikUijw81dfZmy/kjaLe+UEAjx50aUce+etWQuDNbe5rpZNHQjhn1WU89UDD+aEseN4cfmybYnMFASCAPxz7vvUxeMN30aiySQXPnw/A3Pz+NOJJ3NoGw8LTHex2Nzd7NM2phcTCUH4tOZboegXaPV1oBG8odspIJkeAt5aqAxB0Q1I4kPQmg62oINLbQQO9P4Mn+NV8s6qnXlgWoNu2g8iT5B1+S23FK34Kpq0J+DGGGN6Tm4gwMl7jM/Y5iBcP206P5v9EpFkkqQqKVWSrsunZaUt1pzeKuTzcdNxJzJ3w3rqE+0n0dDhyMyBw3cD4LyJkykIZq+T4m9nHeiKaIQpf7+Fp5d+kvW+W+rruPKJR1lf07H1rY3ZmViPtDG9nBT9FvXvCdGnwCmGgmtwAmNx3cosRyveP2shs0p2AIpvwQlPQ2PvsE09xtlbB/69kNxzcOsfh+qf0vow8Pbu6QLtPWJ3IPER+K1aqDHGmJ5z84yZTBz4Hk8t/ZT+Obn87OhpjOlXQlWWdZsVCDg+HHUzqmT7HYd/nnIGR40axeurV5LsxHJUbXEQJg4axFkTJvLQ4kVcM/sFYqnsMbi9e7pAbTsJvk+EeRs3MqygtQfpxuycLJE2ppcTEST/Ssi/MnNHeBrUP0DLxNUBpx+45XhDvEMQ2AsJHQ1sfZLdmXWd26KQ3ARuNdT8Iktbtke2Ie3qPUwwPcorrmOVQY0xuy5HhC8fcDBfPuDgjO3TRo/hocULWwzjdkQoCudSHomQcFOEfD4mDRrMkbvvDoAgxN2uecjtomysqaE6FuW6115uNYneFtkW6HBR+oXDXXYPs20sNnc/S6SN6aOk4EeoWwPRpkOhfd4azPk/gtgL4G6AwCQk/zuIpIdvRZ/q4paUo1XXgHb1sK5iL3HWyibbQhA8rIvvY4wxxnSNnx01jbp4nCc//QQ3nXL6RMgJ+PnpEUfz/IplbKitYergIXz30CMalst6dMniLm3Hlkg9P33pBWrjXfXg3DMgN5d4MkVVvPHBea4/YOtKm12SzZE2po8SCeIU34QMXgwFP/YqdgePAI1DzTUQe8kbdl3wU8TJBbyK2ESf6frGxF+m47O2Ovi01D+aFj3nWtMssTbGGGN6j5Dfz59mnMKnV3+bHx9xFIeNGMmRI0dRn0jy09kv8OJny5kyeAjXHDWNnIBXpXtVZSUvrFjW5W15vhPX7EhkFmBkYTGJZstdVkQjXZ6wG9MXWCJtTB+hbjmaXItq5hAtEQcn7wqckjsguRioB60FohB9BOJveeerohVX7ICeY+h4Eh0G/z5kDoZxIHAQSHGTbX5ILgKtb3a+DVkyxhjTe5TV17O2ugq3WTExR4Qv7ncgd515LvM3bySSTFATjxNNJrl34QLeSS8dpap87pEHqNkBiWhHI3OO388+Q4bik8YY6wCH7TaColDjkG2fCAu3bGpRFM3rVe/o3YzZedjQbmN6OVVFq6+FyEOAD3xDoOQuxDeo2XEpcEubnRxBYy97S0ZpDaTWdV/DswkeCsEjoXY1SLogi4RBnHQF8q2SZBZLAwhD8EDEKemmxpq2pOw5rDFmF6aq/Pil53lkyWJ8jsNuBYXcffZ5DMzNyzgunkpREYlkbIsmE7y0YjmH7DaCimiEjXW13dn0DAIcMWJ3DhsxklWVlcRSXuzNDQRJuC7RJstxJVVJNptvHfb7OXzESApDNke6N7DY3L0skTamB6lbDxJAJND6QdEnIfIY3jJXCUitQau+j5TckXlcah3QDyjP3F5/LxqajuKj66p1b6P4bO8HgIFQ8FUITofSabTeNj8EJkNgf6TgW93TTmOMMbus+kSCgOO0ul40wCNLFvPEp0tIuF4l7pVVlfzghWe57fSzM45bX1NNUTBEZZM5xQrcOf9DjhszlqSb6rJq3dtCgRc+W84Lny0HYFBuHlcfdCjHjBrFtDtvbbVtfsdhyqDBHDR8BN86xGqXmF2TJdLG9AB1q9GKL3lLOSFo3lU4Bd/MfmxiIdD0aXYKEh9nHOPW3QU1vyV7MppAa/8Oyfld1PrWCJCLl/B3YIiaboH6e5Ccs9sYEOaH4AE4JXd2VSONMcaYrCqjEb7w+CPM37QREeHqgw7h6oMOzXrsR5s2Ekk2jpxKui6LNm/OOObWD+fyu7ffyJqMJlyXv855h7nr13ftm2hG8Na9TqRSLSqJZ7O5vo5ZCz/i9L0mtHpMwHE4dLeR3H7G2a0eY8yuwPr/jekBWvVjSCzAS3yTUHcrGn0u67HiHwU0HTIl4Nut8VqpzVDzGyCKl8RmvWE3TF9S8O0OkkOH5zInlwE+yDkNyElvdBr/dAZCeCaqXbmsltleiuBq3/gxxpiO+v4Lz7Jg8yZSqiRdl3/MeZ+XVizPeuzYfiWE/Y39UQKMLCpqeL2+ppqb3nqdaDLZaq9ueX10h4dmBUYX9yMnEOhwlZGPS7eQGwhw8rjx5KTfo5M+2wEG5+Vz8h7jiSWbT8EyPclic/ezRNqYnpD4gMykN4LG389+bM45ENwXJBckH6QIKb4JdevQyKNofXu9tQ6EjmfHF+ryQ+oTL2nv6FcDyQX8SOGvoeCbEDwGci+G4r8DIXArofrXaNnZqEZ3WMuNMcaYuRvWZyS9kWSC99avzXrsBZOmMHXwEHIDAQqCQYrDOdx0wknUxuM8/PEi7vxoHtJG3HWA48aOxZEdG5v9jsOS0lKqYrEOJ+0FoRCOCL8/4SS+cfBhHLP7aC6dui9/P/lUgn4/ZZF6rn9tNmfff48l02aXZkO7jekJzkBwy5psCCG+YVkPFQlAv9sgsQBNLIbEYrTuDojNBrcaryhXKz3RAORD/G285DbQzrHbwgHC3vrVnVqaKgj5P0pX+/QheZ+HvM8D4G45gYzh7MnVUH8/5F3adc02xhhjmhiYm0dltPGhbdjnZ1hBQdZjgz4fd591Hh9t3MDi0s0s2ryZ/3wwhxdXLKM2niCRSpLU1lPXonCYt1avQlXxO06Xz5P2iRDy+Qj7A5RHI+2fkBZ0HH565NHeNRyHq/Y/kKv2PxCAo2//D9EmifNnlRU8+PEiLp48tUvbbkxfYYm0MT1Aim5Ayy/xcltR8I2E3IvQ1DovwfaNQZz8xuPFQVGouZHM+dIdUQ2JOem/+yF4HMRf3M53MBAGPopIHiQ+BHzeXO7aP9Gh+dEACNT8Aje5ECm8Pp1Qp7nNCqYRRd3NtviVMcaYHea3x8/gkofvb3g9qrgfF0ycwtrqKsoiEcb2KyE/GGzY74iQVJdfvf5qRoLZERXRKHM2ePOj/Y7DiWPG8dx2riU9OC+PJy+8lLDfz4cbN+B3HD7YsJ6b332LRAcTdUeE/5v9Egs2beK6Y6ZnxObyFtXHk2zpwYrjxvQ0S6SN6QESmAgDnoX4+yB5EDocrbkZ6u8ECQACJbchgSkN52jtLXQ+iW4umV5j2k/L5aU6YwtEHvd6kP1jUQUSi/CGjztARwJ2et5z5HEIHQ7hGYC3pAj+CZCY26SNYSR48Ha013Q112YGGWN2MlMHD+GFz13B++vXkRsIcNTIUfzmzde5e8E8Aj4fjgh3nXkukwYNbjjnT++81ekkurmk61KfTOATIdVGL3Z7NtXV8eSnS7h06r6MKylBFT7csB5HpMOROZpe3urhJYs5YuTunDB2D8CLzRMGDmTexg0Nvedhv5+Dho/Y5vaarmexuXtZIm1MDxHfYMiZCeDNj66/C4hBurCWVnwVGfRG4wla34mr+7z5x1pPi0reycUQOhFiL9KQzG6LyONo7NV0j/TW4eIuXiKdh1f8rCPLbUXQxCdIeAaqKbTyq+lq5ltDfgAKvo2Ejtz2thpjjDEdMCS/gFPH7wXAm2tWMWvhfGKpFLF0gvnlpx7jjSu+1HB8faLj06X8QE4wRH0i3iJhXrBpEyeMGcdLny3vUHXt1jyyZDFPL/uU+Zs2kkilQARXFZ8I+X4/kUSiQ5E5mkjyaVkZJ4zdg6Tr8sUnHmXhpo246XYHHR8/OPxIDhsxcpvbakxfZ4m0Mb1BcjktCnS5W1BNNK4xnXNuetmrtnqlAxCahuRfDW4F6pZB1XfJeA6t1RB7iu3+5++WQ2oFLZNxFy+BdmiZSGebo+0D32jvr5GHIfYOXhIOIOCfgJN3xfa11RhjjOmk5eXlDYnjVhtqanBVG4qEnT9xMp+WlWYshdVcwHE4cew4vnLgIVRGImyqq+N7zz+d0UNcGYvyzPKl+Lez+NiW+jrKI5GGxJ90+1OqJFzFcRxSzRL1gOO0GPot4lX7Brhv0QLeXbemobdagCmDB3PZ1P22q63G9HWWSBvTG/jH0qKqtjOwMYkGJOcsr3J1zQ20Og85fDYUXos4PgC07FJaH8zVFZU2W+vRjrdy31ae3PuGAqDJZWQ+KFBIrd725pkdQhVSO9HyFcYYk824kv44zX7VDSsozKi0ff7EyUSTSW584zXibva+3gsmTubao4/Fcbxht+c9MKv1yLwdQ7sBkq42JtEt9qWyDh1vbf701kJrn5aVZgxfV2BlZeV2tdN0PYvN3c8G0hvTC0jwwHRF6lB6iatCpN8/GvZrcjXEX4XggbSZAEfvhc1TcKt+hZtcB4l3dlyjdVMbOzszLC2MuN61JDCBxvWkAXzg32MbGmeMMcZsn8NGjOSSKfsQ8vnIDwYpCoX5xymnNexfWVnBK6s+45DhI0hp63Hvfws+YsLfbuZXr73CysqKhiJjO8KW+rpW96VUO1y0M8cfYEOtV0hs4sBBDetJg1cRfHz/AdvTTGN2CtYjbUwv4RR8F829KF21ezTi5AHg1t8H1b8C8YN2pBc5AZE7+lBPbgoCe3t/DZ8Gsbcg+jTggPRDin/Xo60zxhiz6/rxEUdz6dR9KY9EGFPcj7x01e7/zZ/HDW+86g2LTrleocw2JFyXW+fNZWVVRXc0u1Ud7e9OqsveAwcCcM7ek3hrzWqeXfYpjuMwICeX350wY8c10pg+wnqkjelFxDcUCUxqSKLVrYDqXwLRdLXtKN4/21D7F4u/R+/5J+5rfVfe1Yh/DOAt8yW5F3qVy0VAy7yCZqbXcVX6xI8xxmyv4QWFTB40uCGJ3lJfx69ff4VoMklNPE40lUTEIexrI9bhJbHvrl3TeyJzG/Oxv3foEYxKz5F2RLh4ylQCPh+C9/5fW7WyexppOqWnY+6uFpt7y79lY0w2qU1eT3SGJIROov0BJQmQ8A5qWGc4UPJo67vdtbiV38Kt/RuuW49WfAm0DjQCxKH612hyeXc11hhjjGnTxtpaAs2SZlddTt5jT/xO21+tE65LOBBo85ju4CA8deHnWt3/WWUF33jmSf76/jvUxmJc+fij1CUSRJJJYqkUP3/1ZVZW9mzvujE9zYZ2G9Ob+XbLPpw7Nhsk2PZQb98wpPhPaNklQO0Oa2L7FJyc1ndHHsYrWvYSRF8AjWbuFz8an4/W/hUSC8E/Bim8zls+zBhjjOlmuxcVeUtLNaHA7M9WEHCchnWWs59bzO9OOIkLH7qPuk4sndXVFG0zoX9w8UJiqRQvrFjGiyuWk2hWSM3vOMzbuIHfv/0mi7dsZlxJf3457TgG5uXt6KYb02tYj7QxvZg4+d6yVy1UQRuFTQAo+hUS2BsCE3ZI26B/B4/LQ3wjILBPK/tjjX8mV7TcrUmo+ztEn4PUSoi9ipad51UwN8YYY7pZYSjMWRMmttheGWs/Lv362BOYNGgwew4YuCOaxsCcNh5cN1EQDDGyqJgpg1o+lBZoqPwdS6X4tKy0xRzwpOvyp3fe4vnlS/mssoLZny3n7AfuIdbGMmDG7GwskTaml5PwdKDZEG1nMOR/FQiC5IEUQOAAkFxwBkHxv5HAfrh1s0BCtFhaq0u0Xhk0UwwRQUr+B8Ej8QbC+CF4vNf+psQH+d8Acrz3RBhyzoHURhqXzkp5a2EnFnbN2zCdpgiuOn3ixxhjdoTjxozNqGQN3tJYV+1/EEGfj/xAkMJgiAOGDCM3EGBwXj53nH42U4cM4a7588j1B3ZIZK7tYC93PJ3w3nvO+Rw+YiR+cfA7DieOGUuw2bB1Rxy+fchhhP1+CoJBwn4/F0ycTGmkvmHprKQqFZEoH5du6do3ZDrMYnP3s6HdxvR2wcMg52yIPJSeLy1I8V+Q4FQ05xxwt4Bvd8TJBcBNLIHq69DKb+L19qbYvkTaT/YltzraI5xENQFuOZJzCuSeA6Fj0fonIf5ik+PEW/orNA18I4CU16MuYTTyQLNrKtDzc8yMMcbsmo7ZfTRn7LU3jyxZTMBxEIS/nXIakwcN5sJJUyitr2NUcT9y0sOnF2/ZzM9mv8hXnnqcWCrZqaWosvGLZF1zOtLBHuG4uiRdl7JIhDP22puLJk/l2FFjeGTJYp5f0ViXRIDicJhjR49lt8IiXFUmDhqMXxxmLVyQcU1FCbQzR9yYnYkl0sb0egkkPAMNTAXfYCQwEXEKARDfAPA1ruXoRh6Fqh9kuUZHF7zIInAoJN7Yjmv40MjjUPOLxk3OYEitbXZNgeBxUHZmev53Ai38BZJzGoSOgNibeMl7yFtbOjBpW9+RMcYYs13iqRSnjt+L/YcOY2hBARMHDqYw5K2oMTAvL2Ou8AOLF/DDF59vcY3tiMwcNXI0L6/KMh2qgxwRHv3kY37+ykteQwSG5hewuqoyMzKLMH3UGE679y5vqS/X5TfHncjMPfbkkN1G8O66NUSTSUI+PxMGDGSvHTRk3ZjeyBJpY3oB1RRa+2eIPgtOEVLwE6/H2a1Cy84Dd7N3oNMP+j+Y/RqpjVD103bu1FrvchsSb4AzFtzP8Hq3swkC8db31f0DtL5xU+qzlodJDkTvAxKg6XnT1ddAeBpS/Ge07nZIfAT+8Uj+FxFpe5kRs2OldsigRGOM6T28ecBv8tzyZRSHw/zfUdOYMngIFZEIZ91/D6X1XlwbkJvLw+ddlPUa62qqueblF7Pu28ovDsn26p4088qqFYzrV8KKinJaOzPo+Ii72eN20HH487tvU99kKPjyivIWx+X4/cxaNJ+E6zaMQ/vhC89xzO6j+dfM0/nvh3OZv3kje/UfyFX7H4jPeqR7lMXm7mWJtDG9gNbcCPX3AxFvCnDFpdD/YbTuznTPbTrQpWJo9Y1I8W9bXiS5hPbLHmxLERAFdxk4I0AVdG2WY1pLogFfibecVbu3SeAl5E3md4kfUhuRwHgk/8pOttsYY4zZdte/+jIPfryIaHq49EUP3c8TF32Of815n/U11Q3zg+M1SW588zV+c9yJLa7x8ZbN7aY2nU2iAVxgWUU5uxcVk3RTrKupaXFMa0m0AIPy8qmKxbLubyrhugR9vob3CuA4wua6WsaW9OfLBxzU6bYbs7Owx0bG9AaRh4FI42uNoxVfgcgjZCSWJLNWtnYjz6AV36OxAvYO4K6Bfn8BOlYRtIFvJAQPpkVhsQYOEIaCa2nZ4+2Cb1hnW2qMMcZst0eWLG5IosFLTK98/GEe/WRxRmKZcN2svblPfLKE7z7/DPE2lsPaXquqKvnXzDMJ+zveN6bAqOJ+HDx8txaFxbZyRMjx+7n+mOmksszFHlpQuK1NNmanYT3SxnQh1Tha83uIvwXOEKTw/xD/yA6c2fyfYgpSq2g5gyoETiFafy8Ej0D8u6GJ+VD1Qzpe/Gvbia8EDR0HsSeztK0V8Xdg4NuQKoXEuy33B49G+v0ZkSCuk+e9F/EDrldUzcnvyrdguoACrtrwMWNM3xBLJvnNm6/z9trVDC8o5Nqjj2VEUVG75/mbDVNOui4rKytbRmafj4JgkFkL53PUyFEMLyzkww3r+eFLz2Uk4jvKgLxcjh01mqeXLe3wOa+vXsl7V36Fq556jDnr17XYf9zosdxy0kyCPh85/gA/ePE5/I6gwD9OOZ3cNtagNj3DYnP3s0R6F7Fp1Rb++5N7KF1XxsGn7M+53z0Vx+axdDmt/A7EXsNLapeiZWfDwOcQp6TtE/O/CjW/T58neL8Om4fqoLctPgeNzwFxoOROiL1FZq/1jqP1L3cuifbOgqrvQuJ9wIc3IG3r+UHwj4DEfAgegJNzMho6CtyN4AxFnLzWL2uMMX2cJtegtX+A1GYIH4vkXoGIxeau9vVnnuCN1auJpZIsLS/jw/vu5qVLr6A43PYIq68eeDB/euctIskkDoKLtoh+AceHAu+uXcu769biE2HW2efz+upVDUtM7WjPL13KM51IogFUlauffZIPNqzHJ4KrurXmGAGfj+GFhSzYvJH9hw7n1D334uhRo9lcV8uwgkJLoo1J69FEWkRWAjV44zmTqnpAs/0C3AycDNQDl6vqB93dzr6ucksVXz3gB9RW1uOmXD6ds4LNq7Zw9V9655xTVQV3ExBAfP17ujkdphqH2IvQUPbD9eb9xt6CnJltnuvkXYbrDILYc15Rrti7ZAz1xoHwTIg+TsN8ZAWtuhbJPR9vKajWCoF1obqfd/KEIEgY4m802SYgg/DeQDXU34PW348WfB8n73NeD7QzruvabIzpFIvN3UNTpWjZWaA1gAuJhWhqE1L4k55uWlZ9NTZHkwleWflZw/BkV5V4Kslba1Zz8h57tnnuF/c7kKH5BTy7bCmRRIJ31q3JWF7KAWbuMZ4nPl1CvMnw55/Nfokz9ppA0OcnmtrxyfT/vfpSp44PihAKBHhrzeqGbQ4wOC+fpLrUxuL8b/48Zi2cz0+PPIaLJ0+lMBRqqEpujPH0hsee01R1n+aBOu0kYI/0z5eAv3dry3YS7zwxl3gkgZvyErxYfYyn/v2iFxR7GXVr0fLz0S3Ho1uOxq34Gqrd80R3+zm0WK9ZgA5Wl3ZyTsIp/hNS/BfwDaVxneSgd6Hoo7QoFpZcgiY+Sx/f2hzkjvBB4ADwTdiOa7SiRaExBerSPzG89xSFmhtR7YaHAcaYjrDYvKPFXkyvULD14WvEe7DYK2NzDVp2bjo2H4Vb8c0+8/taWin11dHq0jPH78VfTj6Vv55yKoPz8xvmFAd9PkSExz5d0mI95wWbN7Kuuto7fjtG//lEOHDYcCb0H9D+wZ0hDvXxzJFsLlCfSFCfSBBNJUm6LtFkkl+8Nhu3F/5/0pjeoDck0m05HbhTPe8AxSIytKcb1deothyK1Ftpza8hsRgvwYpD7HW07taeblaHiPgh5zwai3H5QYogeGQnrxNE+j8IeVdAaBpeeEtB1gUuUhCZBcHDwTeObf8nrd6cbK3exvNbEydrT7kU0eKhAy7ojp/nbbqC4KrTJ37MDmGxeRej1b9IrwwRAxIQm43W39nTzeqQkN/P2RMmkpMuxhVwHIrDORw5clSnrhP2B3j0/Eu4Yp/9OHbUGFzXJaWaNclMqXLXgnkcO2oMY/qVbPOCRAqsrKykOt61hUTjbopUlm+GheGWPc5J1yWR6hsPTYzF5u7W0+9EgedFZK6IfCnL/uHAmiav16a3mU445NQDCIYDOI73qzyUG2TGFdPwRuf1MvF5ZC6lFIVEHxoxGD4ZgoeAfy/IORcZ8EinimWpW+PNf3Y34RR8D8n7sjc0uk1RiNwFqcVkT7Y7wgV3C7gtC450PQGnGLTp0HUf+MfZnGhjegeLzd0hNB0kSONXsRzIOa93xubEPFrE5vjcHmpM552+5wQOHj6CCQMGcsGkKTx+wSWdmudbHYvy/vq1lNbX8cPDj+JL+x9ITjvnR5JJbvvoA5aUlW5zZ4arypb6uqxLW3U1R4TCYIhok3Wl/SLsPWAgoU5UBDdmV9LT/zIOV9X1IjIIeEFElqjqa032Z4smWX8fpYP9lwBGjuxIleRdR79BRfz1/Rv5zw/vonR9BYecsh/n/eD0nm5Wdv5RkPqMxl7MIPjH9mCDOs6tuwdqbgQS3pcjCYEUdPh8TSxCyy/d+gLNOQ3yvppeX3lnopBc3OS1A4EpSPGfe6xFxpgMFpu7gfgGQv+H0ZqbwN0MoelIXu+sXYJvFKTW0BibQ+DvG7Usbp/3Ab9963USqRRBn5+cQICCTsz1/WjTRi595AHAW+bq7AkT+eK+BxBP7bglrXqCq8ri0i0Nrx1g6pCh/O2U03quUcb0cj2aSKvq+vSfm0XkEeAgoGmwXguMaPJ6N2B9K9f6F/AvgAMOOKCvjGTuNkNHD+b/7v9uTzejXVJ4LVq2ELQWUPANR/K+2tPNapeqQs2vaSwEFoHkUojNhvAJHbtGxdXpojNp0SeR0HS04FtQc3P62t0YuKUgsz07in8PnP737fj7mC7lbvNgRdPbWWzuPuIfifTr/Q8Rpeg6tOxcrxgmCr6RSF62wQq9S8p1ueGN10i43gOASDLBJ6VbeHXVZ0wf3bGH9F956jFq4o298Y8sWcwJY8bxjYMP4c/vvUM8lerWOcQFwRA1XTzUO5sJAwfxwLkX7vD7mK5lsbl79djQbhHJE/G660QkDzgBWNjssMeBS8VzCFClqhu6uammG4lvMDLgWaT4r0i/fyH9H+kjw30TtCgEBuB2Ys6x2+z/2pqE1EqcvC9A//vo3JJTHeA7uO39obYrjTc5EJzRWbbbL3Nj+hqLzSYb8Q39f/bOM0yKKmvA762qTpMjOScBiQISBMyKOWfMOeu6rmnVNayua/rMOa1rFsWEumZRQUCCZCTnNHmmY1Xd70c1M9PTPTM9OAm47/PMI111w6kB+9S5JyHyvkRkPRnVze8jtJSWFqteIraFLWMPoCVQGkzOELWlZEt5ecw1y7ZZVVzE5cNH8s5JpzV6cbhRHTrVef/oPnVXGt+BR9fplpkVdz1ZzdwqUwwUilZGS3qk2wIfRv9HNYA3pZRfCCEuA5BSPgtMwWmvsRynxcb5LSSrooGsW7qBws3FdB/QhYzc5MObAUc5e0Y3kWRNgxBupGsgRBZSaVBLCe4RyS+id3YKfu0wmIUORh/nj8ZeSDQatcWVvbaOm24IfpjkQilgr0pwPZmXCy+kXprkPgqFohlQunk3RporwC4Aow9Cy2rQXKGlgmdM0wjWRHgNF/3y8lmyfVtlZW0pJcM7JJfSrwlBp4xM1pWWVLum0SdaRbt/fhuEEI1qTFffqyYeXefDJYtqvV+dVMPF6pLiuOtJaWbD4PJhDXh/USj2UFrMkJZSrgQGJ7j+bLU/S+DK5pRL8ed5+vpX+Oz5r3G5DWzb5p+f3srAcU3QVqmVIbKfQxZfB+E5oGUjMu9HGF0bMP9pZOHZTuVqGQHfRIRnP+ee0JCegyD0Vd2LaN2jBcPCdY9zVq3jXgRESpJO8KJkBtUgzcmLTj0TkWTou0KhaHqUbt59sUvugsAkEAYgIfslhHuflharyXn5uJO4+vNPmLt5Mzk+Hw8dOoHOmZlJz3/u6OOY+MF7hCyLiG1x/pB9GNXJyWzQNY0Dunbj29WJDpOr6JWdzbrSUkJJVL+uyxMctqyki6QVhhreBSPD7WZQ23acM3goh/TYNXLgFYqWpKWLjSl2M37/cRGfv/gN4UCYcMAx5v5x4oNM2rZrtLD6MwgtB5Gz8+1AhNEL8r8Hcw1oWQi9Tez9zHuQW6cB5QnnA2BvBu9JEHyXer3XdUZiygT9nxuTECLjRoRr7ybcQ9FUSAmWVGF/CsWuggxNg+AHQLDygFQWX4loM61F5WoO8lJSeOuk03Z6ft+8fH664GLWlJSQ4/WRnxqbbnb/IYdz0GsvURGpvTDohrIyTu63N28vnI9Vj/d6Q1ntKWES6tznzxIwTW4ddwB98/KbbA9F06F0c/PT0u2vFLsZG/6IN87KisoJB5PxkO66SGkhA58gy59Bhqbu9DpCeBCuPnFGNEQN9fwp4D25jhUCYK8Hkmm51ZJ1f0SN9lcKhUKhaDKsNc5bdnXsQqRMUNtjN8KybSYvWcRTM39l6trVO72O13CxV25enBENkJ+Syv8mns9JfWs/GA6YJpsrKuptmQUtrJmFIGju3v8mFIrGRHmkFY1K94Fd4nKFctpl4/a6W0iipkdKiSy+DEIzgBAIDzL1IrS0qxt5nwhE5oFrIAQ/BRKFbQkQaaB5mrXAd8NxIUtucZ4p5SRE6pUIoc71FAqFokkw+hCXzqO1R4jd9zXQlpLzP/qA2Zs2ErRMPLrOFSNGcuWIUY26T9iymLdlM4PbtePTP5YkDN8WQJrbjdcwKA+3XseCS9P4y5dTiNg2p+09kCtGjERTRccUilpRb66KRqXvvr056+8n4/IY+NK9pOemce8nN7e0WE1LZA6EZwIBwHY8reXPIu06QrAbiJRhZOFZyJKboOyfJDaiAeFDpF0JadcByffJbH4qHA+JvRHKX0RWPNPSAikaiC21XeKnPoQQLwshtgohalam3nH/ACFEiRBibvTnjmr3JgghlgohlgshdvMvOsWujHDvA2mXAC4QqSCyEdnP1jtvV2bmhvXM3rwRvxnBlpKAafLYr9MImo0XGh0yTU557y3++tXn3Pvjd7Ua0SkuF1eOGMn1I8fg0fVG27+xqYhEWF1SzIayUp6Z9SvP/zazpUVSNJCW1rl7mm7efY8iFS3GGTefwBEXHkTJtlLa92i7W3ujAbBLiD+T0qK9sJMJsU6C4KdgLq07HFrLg6wnnNBwVx9svFB6C07hsdbcvjUAgQ8hTdUuUrQIrwJPAnUVOJgqpYzpByeE0IGngENx+irPFEJ8LKVMrqSuQtHMaGlXIlPOALsQ9M4I0ZoPW/88JaFgnDdVE4LycASvkVzBrvqYvGQRywsLCNQRDp2fmsrTRx5Lr5xceuXkkuJyc9M3XxKxrNatmU2T9xct4LLh+7a0KIo9k1fZBXSz8kgrmoSs/Ey69u+8+xvRAK5BxBqqGuhtQYvPc95prO1OJe+6sIug9J+VH4WIOLI0u6p2gTGQBvWRFt4G7yLN9Uj/m0j/pEb1/iv2LKSUPwKFOzF1X2C5lHKllDIMvA0c16jCKRSNjNByEEav3d6IBhjSrj12tVQzTQg6pWeQ6/M12h7b/H5C9eQUFwYC3Dv1+8rPIctEF6L5NbOmMahN24Zo5qRyumuyrqSE13+fy/uLFrTqMHZF62ZX0c3KI61Q/EmEngvZryJL/gLWVnDthch6okE5v1KGHC+BlocQsYpLWhuR1gbqT3q2wFyElBFnDWk7tmxzamujN2gdQXjAnJ/kJC8i7YYGbSMjC5CFE51nRED5Y5D3EULLbrDIioYjEdi7TmXQPCHErGqfn5dSPt/ANUYLIeYBG4G/SikXAh2BddXGrAdG/jlRFQpFY9EmNY3/HH8y1385ha0VFfTPz+epI4+ps71UTUKmSUHAT5vUNAwtVqdvKC1lU3lZvWuYts3vWzZj2Ta6pmFL2exG9F65eXRKz0DTBL9v3ZLUHK9hcOOYcQ3aZ97mTZz1wXtY0kYTGo/9Oo1PzzibTG/DD8sVDUfp5ubXzcqQVigaAeEejMj/Zqfm2oEpUBJN4RAeyH4B4R4CgDRXIQtOcnpLJ1U9zA0YSHMNUs8HXEAoybnJIgAdSHAKb/4B/JH8UnpfROY/GtzLVJbeBdJfdcGOICteRqQ3zCBX7BFsl1IO/xPzZwNdpZTlQogjgclAbxKHXLTmSE2FYo9jn/Yd+OG8i3Zq7idLl/C3r79ECPDqBq8cfxKD27YDYEVhASe88yYhy0xKu/oMA13TWFVcRNu0dFyaRojG/cIQOF73RO21lhZsZ2nB9qTXGpDfhrsOOJih7Ts0SIbbv/8Gf2UOusXWCotX5s7mulFjGrSOYo9gt9DNKrRboWhBpLUxakQHnR9Zgiy6CCcaBWT541GDMZl2FB5IvRy5/Tjk9sOg6FLHAE9UrfXPSQ3kNs5S3oMbbEQDYBXUuGCCldwpu0LREKSUpVLK8uifpwAuIUQezil352pDO+GciisUil2cdSUl3PTNl4Qsk6BpUhwKcv7kSZi2YzY/NO0nKiJhInb9ZrRH17li+EgmvPEah/znZS75+EMilsVeuXmNqpnB6ZndGBzas1eDjWiAAr8/5nPEttlSoVKvFI1Pa9HNypBWKFoS8w8QNXOQIlVGoV1E/d5k3cnH9p0NFY+BtQTH2LWAMJhLcDzVjckWnEJqHhDpSc7JILaSuBfh2X/ntveMq7GWD+E5YOfWUijqQAjRTkRjQYUQ++LozQJgJtBbCNFdCOEGTgc+bjlJFQpFY7G0YFtcKHfQMtlWUQFAUTBYr4tLF4J2aemcPWgID0/7iWUF26OaWRK0LJYWbMdjNF5gqAS2VFSQ4Xbj0XXS3cnp/Qy3J6aSuNcwGN+1+07JML5rt5i1fIbBAd12bi2Foi5ai25Wod0KRUuid4wvIiaDyKKrIOMW8B4J4Tk4rbUAXKBFC5kJEa2+2gHsCARerGOjhrT7SAfqz/uCcnCNBs8YKH+47qH6AEg9zanOHVkKWhoi4++VIewNRWTcirRLIPQ/QIe0SxG+I3dqLcXOYTe6L6VlEEK8BRyAk6+1HrgTJycCKeWzwMnA5UIIE+d/xNOllBIwhRBXAV/i5Dq8HM3PUigUuzgd0zOwanibQ6bJJZ9O5vbxB3J0772Yv2VzZbVulxC0S8+gbWoqEsfQ7piWTsA0eXHObwn3kDg9qJMlzeWiPFK/Li8NhxnfpSvD2nfk0V9/qXPs4LZtObX/ICYtXsDSgu2kezzctf/BlSHsDeXO/Q+kJBjk61UrMDSNa/YdzeE9e+/UWoqdQ+nm5tXNQibIpdjVGT58uJw1a1b9AxV7HFKGwFwJWiZCb3jYUlNglz0KFa/geJ6rV7j0Qs6bEJ4KFS87l1LORKRdV1ksxS75BwTeJbnQ752lroplSVYz09pWtQkTOiLnbYQreeUqpXR6TssQ6F1xuhtEr0ODisfsaQghfvuTeUhx5PbLlxNePb4xl2wy3hz1YqM/v2LnULpZURtSBsFcBVoWQm/f0uIA8MBPP/La73OwbDsmhNtrGEw65Qy+XrmCV+bNRko4d/AQrh05plIX3fL1/5i0eAFmE75j16V9NSFiKpbXRpuUVErDITQhMDSN9085g145yaduSSnZUFZK2LLompmFHvXiSymVXq4HpZt3D92sPNKKPQZproxWeg6ANJG+ExEZ/2jxL3st/Xqk9yhk4RkgqxvSQQh9jpZ+I6RdHjUaQ1VGdPkLEHiziaVLdeSgtlPzJF8S7Gr5yxJk0WXI9BsR7uEIPa/OqVKayOKrIfQTTmuxjpD7X6eNi1LUCoVCsUsjzeXIgolACGQEmXIaIv3vLf79ftPY8Rzbtx+nvfc2EbtKN4dMky+W/8H1o/fj6pGjkVISssxKeZ+cMY13FiXbtWLnSHO7CUQiCQuLAUkZ0QBb/RWVfxbAJZ9M5sYxYxnRsXO9+dYRy+LSzz5i+rp1CAFdMrN466RTyfL6WvzvTqFoLpQhrWhW5nw7ny9f+Q5PipsTrzuarv06NdvesvgasAuoNP6Ck8EzHrwHN5sMtSFcfZAiDWT1kGqdHXnAduAzKLkFCCP1rpD1JJT/XzNIFqJ2I/pPYK+DkuuRwoPMfADhOSiu7dcOpP91CP0clQWwViNL7kRkP9H4cimSQsKu1GJDoVDUgwz9jAx8CMKHSD0fYfRovr2LrgJZRKVu9r/v1MFoBXUv+uXlk+p2UR6pMqR1TcMdzQOevGQRt377FWHLokd2Nk8ecQxPzJje5HIF6zCidxYJrC4p5povPsNruHjksCM4oFt3XNVynqvz0pzfmL5+HUHLiYhbWVTInd9/w2MTjm5UuRTJo3Rz86OKjSmajV8+nsntx/yLb96YyucvfsvVI29h7ZINzSeAuYYYD6oMgbms+favj7TrgB29FjUQqYiUU5CRP6JGdLQFlrUGii7HMbSbmqYMGbeciuTF1yC3HYI01yceFvkd59mryWQuakK5FAqFYs9BBr9EFl0OwY8h8C6y4CSkuar5BLDWEhvdFAFzefPtXw/XjdwPX7QomCYEqS4XJ/cfwOLt27j1268Imia2lKwqKuLyzz6OK1LWFDRlyLglJRWRMJdP+ZiD/vMyG8tKE477fctmgmbVO0LEtlmwdWuTyaVQtEaUIa1oNl674x1CgWhbJykJVAT58PEpzSeAXtP77QGjZ/PtXw9aygmI7MfBexz4zkTkTnZyxSK/E9u+ynY8ulpd1bKbIdhEH0XjVAOXYG9Blvwl8W2jD7EVunXQW8/fm0KhUOzKyLL/o+qwUoL0IyveaD4B9I6xn4UL9ObziNfHaQMG8vgRR3PcXv04e9AQPj3zHNqmpTF386aYcZaUrCouIsVVu140RNO/do/v0g1XIxjztpRsLi/jL19+nvB+n9y8mArdhhANyq9WKHYHlCGtaDbCoZrVqSESDCce3ASIrMdBZINIA7zgOwI8hzbb/skgPAegZT2IlnkHwnAMfyncxHpkATyQcgWJ+0P7mljKKNZ0YoujgWPw+kBraLEYu1YPhEi9EFwDnHVFKmhtEJl3N1xehUKhUCSg5ve4U4+juRBZT4DIjOpmD3iPAc+BzbZ/MhzcvSePHn4kd+5/EB3TMwBwaRohMzZqK8VwcdW+IxNrZsMg6boif4If166O62/tNQx8hou2qWkNWsuSkmUF2xPeu2z4CPrntyHF5SLV5aZtWjr3HNjyqXIKRXOicqQVzcbRlx7KK39/m5DfUdAen5vDzms+ZSlcvSH/W8dg0zIQxi7S29D/CfHKV0L5XbVMCNMkec3JoLdBZL+CrHgZApOoehlzOy9HoWkgtxIfMi5A7xJzRcowROaBtCH7RYS1xinG5uqLEF4ULYst1TmsQrFb4Dsdyp+kqs2iF+E7vtm2F66+kP8dmCucqt1G12bb+8/w6bIlcZrZkjZ3/fBdwvERy2rSkOy6aJ+WxqvHnczTs35l8pJFhKJttzy6zvF9+/PD6lVs91fEyacJQdesrJhrYcti7uZN2FLyn+NPYlVxMRHLon9+m0bti63YOZRubl7Uv3hFs3HitUchhODdhz6meEsxti2Z/MQUeg/rgS+1eQwjoaWCe3Cz7LUDaa6F8E8gvOA53JGhIUTmJbhYm7eghYtMWBuQEkTGTcjIAjAXODJ5DgejN1ibQRsEvvPB/wyEp4MwABciq6oXtbTLkYWngxXNoReZkPseQs9vkcdSKBSK3RWRehFSaFD+CkinIKes+A+4+iNE80Q4CS2t2XXz6uIiflq7hhSXiwm9+pDiSlzwsjbmbt4cdy1US1/oJBtFNhlrSkrQhOD28QeycNtWFm/bigSO7NWH7llZrM/JYZ/2Hbhg6DAe//UXZm7cgKFpuHWDRw4/snKd0lCIk999k03lZYAgx+fjg1PPJLeeCt8Kxe6KMqT3MCpKKnD73LjcDVMYjYEQgn6j+lBeWI5l2limzfRPZ/PQ+U9x+7s3NLs8zYEMz0UWnQtS4nhdn4TcjxB15jfXxN+QHWl6b7SG0/M6ETYEXkfqnaOF3KK5YuZCCH2N4/EwIPIb5E5B2JtBloPRN+aAQZY/AeZqKkMOZQhZei8i+7GmeiiFQqFoMaRdBsKDEI1Rd6JhCCHANQQpS3H0hwWhb5EltyGyHml2eZqDmRvXc97kSUjpeF2fmDGdj0+fSLrHU//kKAEz+WKcEhq9ynZN6tTMUvLf3+eSm5LCisICXJqGEILft2zmixV/EDBNDE3jt00b+fKsc9lQXoY/EqZvbj6p7qp/k49M+4m1pSWEowcGIcvk3qnf82g1Y1uh2JNQhvQeQvG2Em6Z8E9WLVgLEibefhITbz+l2eX47at5MbnSkVCEmV8m8rjuHsjSO5y+1TuwtiD9ryPSrkh+EeF1KozvKoR+AWs1UC0n3lpZbYAJdgUi/APCd2ziNcwVxObtmTXWULQoUqgWGwpFIyCt7ciiCyprRMi0a9HSLm1+OUJTiY10CkHox2aXo7m47duvYgzhTeVlvDF/HpcN3zfpNTyGTiTcQmlUiRAiemifmJ/WreaPgkLCdpXMK4qLKv9s2jbl4RBT167hqD57JVxjeVFhpRG9Y86KwoJGEF7RKCjd3OyoQPo9hH9NfJxVC9ZiRSws0+LtBz7i1ymzm12OtKxUXJ5Yb3hK+m6c72oX1rgQAauh7SES/X40nMJebjCGgDGY2HOxpvyd1nbmvQNJcq256ljHPZTYZ3CDq3nD/hQKhaKpkSXXR41o0/kpfzpq1DYvQssirguDaFhhql2JokBsAc+wZbHNX9GgNXwJ8oE1IfAaBm5dZ1j7Dgxq0xZdiDrnNBZ2PR5vy5ZJteayZO26eZ92HfBWewaPrrNP+w7JC6lQ7GYoQ3oPYfGvy7EiVaeIIX+Ihb8saXY5Djv3AHLbZ+PxudF0DY/PzdVPXtTscjQb7rHEtm7yIjzjkp4u7QqQ2xLcsYEQaDmQcSci+2mnhYhIcfZzj6bF8qWtNcSHl+tU/R40p72JZ3ytS4jUi8EzGufFzgOuvRHptzSJuAqFQtFiROYTW3wxiAzPbX45fCeDno9zgKkDXkTGnc0vRzMxtnMX3NVaN/kMg7Fdki9yVhIMUhgIxF23pSRomuSlpHD3gYfw7NHH0TE9gxSXC4+us1/nri1WyWRFUSERO1Y360Lg0Y3KP7t1g3FdutW6xpUjRjKyYyfcuo5H1xnYth1/2692Xa5Q7O6o0O49hNz2WfhLq3JtPSlu2nTeucJNRVtL+Ofpj7JkxnIy8zP426tXMnj/vZOam5Lu47m5D/L16z9SXuxnn0MHsdfw3bMnsLS2gtEN9M5grQLckHYNwtuA9hDCRZ0Gsb0ZiiYiMx8D6YqGgNsQng24iG9r0hxEElzLhJQjIDwX9HaI9FsQWk6tKwjhRmQ/5/wOsUBr5+TxKVoFErBburCdQrE7oOWBtbbqs/Ai9Ia2D3SQ1jZk8XWOca7nITL/jXAPT2qu0NIg92MITHbqVnjGIVzJ6fVdjc3lZfTKzaPTtq2sLirEY7j46+j9OLBb8r2rqxvhidhYVsZp773Nk0ccjVvXCUUi2MBvmzbg0jTCdn2RXY1PzZZYANleH4f36s28zZton57B7eMPINtXe4E5j2Hw8rEnsrWiAltK2qWlKd3cilC6uflRhvQewt9eu4q/HXo3AoGUku4Du3D4+Qfs1Fq3HXUfK+etwTIttq7Zxt+Pvp8X5j9Cu25tkprvS/NxzOWH79TeuwrS2ojcfhxIP4732I3I+Q+ioVVJw3PANQQiv5PYQAWkCcVXEpvfVrIzYu8ELmqVK4ZiiCxGy/uwQasLPbl/UwqFQrErIjIfRBadT2VdZ6Mf+I7bqbVk0YVVYeLWemTRRZD3edKGudDSIHXiTu29q7C+tISj33qdQCSCLSVew8VbJ5/GwDZtG7TOnM2bGNy2HfO3bklooAKY0uaSzz6KySkuCgYTjm1sXJpWq1zVKQwGWFFYwMdnnJ302kII2qbtvmH/CkVDUIb0HkLffXvz8uLHWPjzUlIyfOxz8EB0I5k81liC/hAr5q7Gtqq+oIUQLPhpSdKG9J6ALH8OZBlVecABZNm/ELlvJb2GXfEKlD2KY6jqILJAlhKfW9xCTTVENrjHQejjJAbbYP7R5CIpFArFroRwD4W8L5woIi0D3KMRouG6Wdrl1XKtK1d31vUd1Wjy7uo8MWM65aEwdlRv+s0I90/9gTdPOjXpNZ77bQaP/zqNsGWhaxrZXh8lwUCcZralRLSAes7x+RjXpSsfLa0/fc+WkqUF25tBKoVi90TlSO9B5HXIYf9TRjPi8CE7ZUQDuDwGmh7/zyYtq4G9kXd37ELiDF47eS+xlCaUPQQEcfKNw85P2tWOQV2JDvho/nzoDESb78HoleR4AXry+WcKhUKxpyD0dgjfkQjP2J0yop1FErVtko5xrqikMBCoNKJ3UBxK3kscMk0envYzAdPEkpKwZRGyTK4bvR9ZnqoCmYYQpLpciGY+6M72evn5/Evompmd1HhNCLplJTdWoVDEozzSigah6zoXP3AWL9/2FpFgBLfXTfdBXRkxYUhLi9a68B4B4R+rtb7ygXdCwqHS2g7BLwAbvIcg9A4gg8R5mqUFoRmQejloWeB/F8y5QEX82KYm9Sww10LF07UM0KM/ttO+Czci66Hmk0/R5KgWGwpF60EIFzLtBih/HAg5hrWxN7jHtLRorYqjevfhl3VrKltf+QyDI3v1Tjh2W0UFny9fhkRyWI/etE9PJ2BG4o6tLdtm5vr1XL3vKNLcHt5dOJ+5WzZRFg4jm7h3dE3OHzKM5YUFPD97ZsL7OgJdc1L8PC4XXsPg4cOOaFYZFU2L0s3NizKkFQ3mxGuPpsegbiz8ZSm5HXI4ZOK4nfZw765oviOx7a1Q/gxggu8kRNqVceOqcqmjhnP5o5DzLsLVG2n0jIbq7civCkFkGkR+w/lf1x+3XvMgIPAJUlrUHtRiAbpTSCfzXwjXYISWipQRCHwC9lZw74NwJ9+zU6FQKBS1o6VdiHT1g8g80NqC75id93Dvphzftz/b/BU8O2sGlpSc1n8gV4wYFTduXUkJx779OsGowf3wtJ/58NQz6ZGdQ9esLFYVFWFFjeSQZTF13Rp+3bAel65REYnWDWlmI1oA7y9aQEU4jKglSs1CYgiNvNRUHjjkcIa260CKy0XYsvho6WK2VVQwvENH9u3YqVllVyh2VZQhrdgphhw4gCEHDmhpMVo1Wup5kHpenWNk+eOxudQy4uRS57yEyH4JWXxttD1K9erbYVqmGvcOJNjrwf8ysfl4NQmDXYKwNiI8Y5DSRBaeDeZikGHAhUz/K1rqOc0kt0KhUOzeCM8Y8CgvdF1cvM8ILt5nRJ1jHpn+E+XhcKWxHLYsHvh5Ks8fczyvH38KV0z5mIXbtsYUEgvbFmG7ZuvH5kMCa0tLeGnub5h1FBoLWRbFgSBbystJcbmIWBanv/8OSwu2E7ZM3LrOLWP3Z+KgIc0mu0Kxq6JypBWKlsTaTmwutQS7AHAqVmu5b0HuZJzq2K2NuozoHYSjlcuB0FQwl0TD3S0gCGUPIGXztwFR/DkkTvjYrvCjUCgUDWW7319pRIPznbfdXwFA27Q0Jp16JpNPO6veNlgtQV1G9A7CllnpOf929UqWFW4nYEawpCRgmvxz6vfNHpau+PMo3dz8KI+0otVgRkxevu1Npk76lbSsVC5/9DwGje/f0mI1Ld5DITwTqJ5LfShSBpDFN0HoK6pCu3dFLKTR3Qkyk4mKre0opOZNcE+hUCgULY2UEWTZgxD8GrRMRMbfEe5hLS1Wk3JYz17M3rQxJpf6sJ698Uci3PC/KXy9ckWMob2rYUpJz2ynyFhJMBgXhR6xbSK23SoPChSK1oTySCtaDU9f9wofP/0lm1dtZfmcVdx65H2sWrC2pcVqUoTvVEi9AEQK4HVyqVMvQ5bcCaFvaHkjWvDnviZ8iB0eadewGjljBhj9EEIZ0QqFQtFakaV3gf9tJ6XHXIgsvABpLm9psZqUiQOHcN6QfUgxnIJcpw8YxCXDRnDLN//j21UrW9yIdjTzznv1fIaBP+qRdvKhq57H0DQGtW2njGiFIgmUIa1oNXz75k+E/FW5v5FQhF8+Slx5cndBCIGWfi1a27lo7X5Hy7zDKQ4T+hGnf3Qy/Blll1nPfQmeA5JYRwO9Hwm/UvSOAAijMyL7OdDaAx5w7YPIfjFpSaUMIytewy65Cxn4VIWdKRQKRXMQ/AynFeMOIhD8rqWkaRaEENw4ZhwLrriGRVdcy+3jD0QTgqlrVhNJInQanBZYO0uWJ1E7s1gO7N693jGaEPTPy48zuSXQMd1pjdYtK5vnjj6edmlpeHSDER068sLRxycta8g0eXnOb9z5/Td8tmyp0s2KPQoV2q1oNbjcsf8cNV3D7XW3kDQtjJYJVmGSg/+M17q+3tZusIrqX0bvjki/Bll8NTE53+4hCFdVUTrhGYVo80PlZynDSBlBiLpzwJ1CZWdBZAkQQgY+gMg8RMZt9cumaBJ2pxwnhUJRFzW/n/Va+lbv/mR4PEn3nTb/hEFZHArVed+l6xT46+/c0Sc3j6tGjOKaLz6NkWdkh070y29T+Xlsl678csGllZ9Dpolp2xha3f62iGVxyvtv80fBdkKWxfuLFvD71s3cMnb/emVTNA1KNzcvyiOtaDWce8/peFIcw1k3dFIzUzjk7PEtLFXLIDL+AbSGF5UwmHMSXK/xRW1tQpY/RVwBMjuxopcyhF10OXLLIOSWQdil99R9ih2eCeYfwI6XiwD430DaFUk+h0KhUCh2irRrqKpjYYCWBr6jW1KiFuOegw7B0wpCnsOWxdwtm+Ou1zSh1pUU8+TM6XFGfXkkceePoBnhoo8/ZO9nHqffU//HPT9+V6dunr5+HauKCglFq5cHot7poJlsRJ1CsWujPNKKVsPRlxxKfsccpk6aTmZeBidefzTZbeoLPd49EZ7RkPchMvAJVDzTwNkunMCt6katB8dTvMN7/WcqZRvgGguRH6ut4wdzUfzQWrwWsuzfEPqpar7/faTeC5F6RuItZYD4cz8t2n87tcFPoFAoFIrk0FInIvX2yNBXoOUiUs5HaDktLVaLMK5LNz46fSIfLVnMM7/NaNBcl6Y5mrlaaLhPNzCl7eRcS7DZeS+2SwjGdunGD2tXY0eN34pIhCUF2+PG+ozEUWD3/Pg9P69bUzn/7QW/0yc3j9P2HphwvN+MxPWs1oQgZFp4a9lDodidUIa0olUx8qhhjDxq964GmghpbXAKjFlrndzhjL8jjF6I9OuxA5PB3pTEKprzo3UC90AIfgXCACzwHAPBD6NjkmlbVc8+rs4Q8VBVbXwHRrX1vYj0axIvEfqFKu8yzjoVT2JXPAV6Z0TmfQijWv6Xe2hUdoFzSGCA0Qv20Je5lkaye7WvUCgUdSO8ByO8B7e0GM3OupISbv/ua9aVljC8Q0fuGH8gfXLzuHG/cUxaspCtFfVHRWmApml0ycykX14+36xaiaFpWFJybJ++fLB4IToQ+RNGNIDQNHrk5PDz+rUx/a0FTgGxHQa81zC4euSohGtMW7+20rsMjof50ek/83/Tf6FLZiYPHHI43bKyK+8Pa98RUS0X3KVp9MtvQ6ZXFRFtCZRubn6UIa1QtDDSLkcWnAJ2IWCDtRFprYactxwFlfkIFJ1N3QZw1IhGOEZ3xITslxFUILV8KDiZuouXuXHaUCVDGPxvgsiMeoqrrZF6QfQ5LITvVIR7cOIl9PZgrSLGM24XOJ/tbciC0yH/K4TmFEMRWjbkvIUsucl5PmMQIuv+GAWuUCgUCkVjURoKcsK7b1AcDGJLycayUtaVlPDmSacC8NiEI5n4wft1VvDWhUBIiQZsKC3FtG1ePe4k/JEIuSk+Tnr3rTqLl3l0PcawrYuwZfHq3Nmkud0xhrRb17l4n+Fs8/uxpeSMAYMY1LZdwjXapaazprg4xqTfXlGBDWzzV3Dye2/x3TkXkh4thpaXksI7J5/G377+ks1lZQxt354HDjk8KXkVit0BZUgrFC1N5LdoiPIOZRqGyAKQRSBy0DzDkLkfIIuvAWt1LYvY1eZHwNoCkd8QaZdAZAGy3lDuZI3oaqTfBKV3Rue6QG+DSL0YoSURap16GURmg7RxzssD1eSXzjNE5oKnKkdeuHoj8j5ouJwKhUKhUDSQGRvWEzKtyjDnkGUxa9MGSoJBMr1eRnbswkenT+TKKZ+wpqQ44RqVRnbUWN5cXs7vW7dw4dBhzNm0sXLt2kjWiK7ObeMO4I7vvyFsmrgNg3Zp6Vw6bF98rvpDra/adxS/f7IZGTWlg6ZZqZltKQlbFr9v3cx+nbtWzumbl8/Hp09ssJwKxe6AMqQVihZnR05zdSyk1Cszj4SrL9K1dx2GdE3CYEfzovRuCdaHqjDphuIC93C0lBOQRg9k6CfHc+w7MSkj2g58DSU34HjQLXCNhMh0Yj3uNgjfTsimaC7sP9HDVKFQKFo7Lk2npo60pUSvFgnVP78N/fLyazWkaxKyLAr8Tjh4j+ychIb0zmpmt64zsmMnTu4/gB7ZOfy0dg3ZPh8n9ds7KSP6i+XL+Mv/PkcXgohlM7pTF6atXxvjMbelrDW/WtE6ULq5eVFVuxWKlsY9HPQOxP3vWP5wzEeRcg5VlVOTIPgpdunDILzgO7PGTQP0gTT8LE2Ae1/IfMr55B6Mln4lIvXspIxoKc2oER0AKnA8z79Fe1XvMJw9YPQG19AGyqZQKBQKReMwqlNn2qWlo1UznAXw0LSfYsadN2QfvEbyunTS4kU8Mu1n0tzuuCJeLiEY3LYdhmjY67kAxnTqwtNHHgvAPu07cM3I0Zw9aAgpSRjRYcviL//7nKBpUhGJELFtZm5cz/iu3fBFn82jG/TLy2dwLWHhCsWeiPJIKxQtiLTLkeVPAlnEVtK2IPABtpYLejeEbwLCPRRyXkKWPwvh6dSd84zjkfb/B0kEkfF3pB2C0CSqwsAjON7whhQfMyA8B7YNxzb6I7KfQehtq55HhiH4NcgScI8AvQfYW0CkIbR0kKXE9722wS4Hz1gQaWD0dgxzob6eFAqFQtH8lIaCPP7rNLK9XlZW8xpbUvL2gvlker30yM5hQs/e7NuxE68ceyJPzfyV6RvWxVTlTsQ2fwUvzZmFaVvce9ChmJbNB0sWVvbViNg2bl3HNJPvrmFoGjM2rGfwc08ysE1bnj/6ePJTqw63Q6bJVyuXUxIKMapjJ7plZbOlopx0t4d0j4fiYICaznFbSoIRk/Fdu5HmdtM3N5+Jg4ag19NbWqHYk1BvqgpFCyBlCFl6PwTewzFkEwVyhaHC8fzKsn9Bm+8Q7hGInBFIc5WTM20urWenAAQmI7W2EHqv2nUbrD92QvIIlQa8uQhZdCkib3L0mcJOkTBzRfR5JGjpjpGMiUy9FJF2tWMsy8Jqa4aiod1u0DsiMu9C1NI2S6FQKBSKpiJoRrjnh+95f/ECTDtxM6qwbfHEjOkA3JeSwo/nXczITp0Z2akzKwoLuHLKJywrLKhzn4BpMmnxQtLdHt5fsrDyui0lSxO0q6qPiG1XhmDP37KZSz6dzIennQU4RvRJ773JqsIipHD2yHB7KI+EsWybK0eM4soRI/G5DEJW1cF6yLL4ef1a3LpO18ws7j3wUDwN8LwrFHsC6lhJoWgBZPH1USM6QlLZULIAWXpf1Ud8kPZXID2JuWVQfn+CGyax3mER/UkWG8xF2JsHYG8dhSy8DswFOGHbQSAUzdMOOntVvAzhnxE5L4HIJj5MPex4r0M/NEAGRYsgwZZil/hRKBSKZLlqyqe8v3gBkVqM6Jps8/u5/+cfKz/7DBc3jx1Pmstd79ySUIgHa4SJg9Nn2q7m1d4Jzcy8LZvZ68lHGfHCM1z1+Scs2raNgGUSNE3ClsX2gJ+gaRKxbZ77bQbTN6zjleNOIsvjxavrMeuFLYuNZaX8uGZ1A6RQtAhKNzc76mhpDydQEcTjc6O14lAdM2KiG/pu0+pIygiEvoVaK2nrxIc/A+E5SNuPLL0HgpMasGMdodvGIJB+sDeAjET3bWiZk7DT8sr+up5xAaT/LbTsp6HNT0hrA2yfQNzvQdbsTa1QKBR7FtL2g/AiGpgr25xIGUGI3afwVMg0+WHNqlrbWelCJLw3e+MGApEIt333FZOXLE56v0gdFbmHtGtPaSjEpvIywpZVb7h4wvVtm4KAn29WraxzXMA0eWv+PJ488lh+vegy1paUMOGNV+OeNWDWk06mUOyBtN5vaEWTsnn1Vs7vew3HZ53LMWkT+ebNqS0tUhybVm3hwr2v40jvmZyQcx7TPpnV0iI1EtF+z3Ho4BqOaLsIRILCXdYK5NZRDTSiNWo3jD2IrIfR8j9DZD4Mwk3txn0jEfoaGZ6LEC40oxu4R+P0sN6BAPeoppVBoVAoWinSXIu97VDk1mHILUOwA5+1tEhxODJOQG4ZgL1lGDL0fUuL1CjUdlhvaBpjOnXhj6v/Ull4qzpLCrYz/IWnG2REa0LUqpm9hsGjhx/F/84+nwcPPQK3ru9UFe+GMGX5H/y+ZTMuXadnTg4jOnbCrVV5poUQjO7UpYmlUCh2PZQhvYdy65H3sWH5ZmzLJhyM8OjFz7Jq/pqWFiuGmw+/l3VLNyKlpKLEzz/PeJQNyze1tFh/GiF0SDm7WnsnARjgPQ6R/aKjzLOeJv5/TxMnTDoZdJzQ6TrUr9a+ulS1CJsG+EDrluS+9SODU6qWz3oSvEeA1haMgYicNxC6qgja2pGo8DGFoimQRReCtRYnOigIJbcgzeUtLVYlUkpk4blgrQIkyDJk0TVIc31Li/ances6Zw4cVGksCxwj+qR+/XnhmOMBeOao42KqeIMTih0wkyvaaWgaXsOgrv7RndLS2bFFbYF4aW43PsOge1ZWUvsmw5Q/llX++bmjjuPwXr1pl5rG4LbteOfk02OKlylaJ0o3Nz8qtHsPJByKsH7ZRqRd9UUuNMGSGcvpPrBrC0pWRUWpny2rt8XIqOkaS2csp2Ov9nXM3DUQ6bcg9R4Q/hn09oi0yxFaduV9zTMamf+9U6E7MAkI1bNiNN9Y7wZ6bwh/AYSp05C2VyMLTkbm/4xwjwSRDjKEY7B7wT0akXoBaOlIkQnbj6B2Q94HwoiGh0tAgHcCBCcnePiq/tBCS0VkPVjPsykUCsXuj5QBsNYT870tNIjMB6NXi8kVgywGeyuxMhpgzgejU0tJ1Wj8Y/+D6ZOTx8/r1tIxI4OrRowi01tVz2N81278cN5FPDPzVyYtXkiojvBsAK9ugICeWTn0yMnmi+V/EKnH6F5eXMQJ77zJ9AsvZUynLqS53YRME1NKvIbB+K7dOHfQULJ8PlINFxPeeJVgLXJ4dR23YRAxLWwkmhAc2WsvJlUrcLaD6m2y0j0eHptwVJ1yKhQK5ZHeI3G5DbwpNaoiC0Fuh5yWESgB3lQPmh77z1NKyG6X1TICNTJCCIR7mNMmKvQjsvwZp3VU9TF6O0TKKSRXZiRMZV51+HOcImZJhGnLYii5FkQKIvcD8B0DruGQegEi+0mEZyTC1R/N6IjIfhJIUE1bawep5+OEaEeLjGkdnfxrvXeNwamIlNOSeB6FQqHY0/DitCSsgdam2SWpFZGW4KINWl6zi9IUCCHYp0NHioNBvl+9iqdn/kq4hpHaMT2Dk/sPiPNMJyJsW1i2DQKmLFtKxLYTVUCJoyDg57ovPiPd4+Gj0ydyzF79GNGhI5cOG8ETE45mdOcu9MvLp0tWFk8eeSzuGnVuRFTOC4cOxxAaAcskZFl0yshkUNu29MyOfd9Lc7k4de8BSUimUCiqozzSeyBCCG589SoeOOdxNE1DAvscPJDhhw9Oeg3btvns+a+Y/+NiOvZpz6k3HocvtWYV5p1H13WufeZinrjqRQQCNMGwQwcx5MDd44teWpuRhaeBrAAk+Dci7e2IrEdixgnX3sjUC6HiWRIWIKsk2hvaWtJwYUI/grUOYXRBZD4QK6e5BiILQW+H1NqD8IC0cLzWGohcyHoCCs/Bqda9Q5wVUH6P433We4DeBfROiLSLEHqHhsuoUCgUuzlCCGTmv6DkZscTDeAeB+4xSa8hpYX0vw2RWaD3cL5zq0UB/XkZXciMO6D0n4BwYo/d450D2N2AjWWlnPre21REnIPtDWWlbA/4efiwI2LGDWnXnvOG7MNzs2ZSV31vW0psKVm4bWuDZflq5XI2lpXSIT0jbv+VRYUs3raNDunpdEhPx2u4sM0Ipm2jCUF+SgpPHHE0Z37wLsFqHvA/Cgv4xw/f4jUMemZl0yUriy4ZmVw8bATt0pLoAqJQKGJQhvQeyrgTR9Jt73+z5NflZLfLYtihg+qtii2l5MPHp/Dpc19RvKWYQEUIM2zi9rr4ZfJMnpxxPy5341XwPPy8A+k5pBvLZq4gt2MO+x4xlFAgzGfPfcXWtdsYtP/e7Hf8vo22X7MS+hFk9f7RQQh+jpQPxVVp1dKvxTaXQ+jLppFFuJD2Nqj4EWQpuPdDuAdjBz6HkptA6CBtEF6nlValzAakXYywtyMTGvnSqQhubUakXQVGHwj/htS3ItxDmuZZFM3G7pTjpFC0FjTfkUhXHyecW2sD7jFJ6Wbpfxn87zktB2UQJ0rJgwx9C7nvNmp1bS3lNKRroCOj3s4xpGUAu+ItsDcj3KMQ3oMbbb/m5NtVK2MqZAdNk0+XLeGhQyfE/T3cOGYcywq211sVe2dx6TpbKyr4euUKSkMhxnXtxuC27fh46WJu/uZ/GELDkhKPoVMarkr/cmkalw3bl03lZY43vAYSp1L3popy/jJmLN2zspm5cQNdMysY0m7XT53b01G6uXlRhvQeTOe9OtJ5r45Jj5/8xOe8fNtbhPyx+brhYIRNK7cwf+oS9jl4YKPK2GtId3oN6e7sE4pw7ZjbWL9sI+FghM9e+IbT/nYsZ99xaqPu2RzISq9udWqr5g0YXSFkJJjzZ9FAeqHwYiTl0WuPI1OuAf8zQKjKbo5rSxV28vmMfvXsYSKDX0Lo1kqjXKachpZxa6M+iUKhUOwOCKNXg3KiZcXLUP44MVFBAIScomCRueAe0ZgiIlz9wdXf2V+GkAUng7UOCCH97yLTLkdLu6xR92wOTNuOMz61OlqQ9cjK5gdN26n2VHWhC0Gqy83ZH75HRcRpO/V/03/mr6PH8n+//kK42n4121KFLIuN5WX0yMmp8xDGsm0+XbaE71avQhcCW0omDhrCLWP3b9RnUSh2Z1SOtCJpPn3+qzgjegdCE0RCTdtjcNYXc9m0cgvhoLNPyB/ijXs/wKqn2EdrQ8oQVLxMrFFsQMr5cUpPhudhF10JFa/Q+EY0oPcCIaHSiAawwf9/xBc403Cqge/Ah3ANAfdwcA2i9lxuAaFvgGA0lD0A/reRkWW1jFcoFApF0gTeId6I3oEGNepvNDqh78DaSJXOCED5E0jZxO0UG5mgGeGVub9hVpPb0DQuHTY8TjfP3rSRSz6dzKvz5jS6EQ3QOyeXsG1VGtHgJHD9e9pPMUY0OEZ39Xxtn+FicNv2jOnUhQH5beqssvL1yhUETZOKSISAafL673NZXljQyE+jUOy+KI+0ImncnsShYZomcLld7D1mrybdP1gRXzFaSokZNtF9eoIZIK1tgAVa23rD45qN0E8gt9e4aEHa1TFX7IqXoOwxkm95VRcupwCYvTr2sr0lGq6dDBKnGE60MnfKyeA9yvm95vwHGXgPglNBS3NC/qxVOOHfV0H508QcBAjD2Zs+f/7RFM2OZPdqX6FQ7NIIdy03NCclx5V8/ZOdQvqdc9SYVOEdUVfxskkpwd6GU6Ss9ejm71evpjAQeyBh2TZXjhgVc+3pmb/y5MzpMbnHO4tL0+iYnsHqkuKY61sqyikNJqf7bSnxGS4itoUEzhgwkCN69UYIwVsnncZbC37n53VrSHd7mbtlI6uLi3FpGtfsO5qnZv1KpJph7tI0tlSU0ysn908/m6L5Ubq5+VGGtCJpzrv7NO459RFCgTBCCDRdkN0umy59O3Dds5eSltW0PQYH7d8/xunpchvsNbIXHl98JWkpI8jiqx2jFQGufpD9CkJrBX0QZSKvvoaI5hnbgS+g5A6geCc3cIPRA2S54yUQPkTmQ04rrZoH57KknrV2fEXsyOf2Ax7IehDNO6FylBAGIuUMSDmjamkZcmQh4oQeVg8Nl5aTM61QKBSKP4VIuw5Z/BecQ1cBaKDlg9ETkXEPQktUabsRcY+qeQHc+yASGPhShpFFV0B4uiOrawBkv4TQUppWxiQIWWZc2TARDXkG+GTpEm7//mtKQ/W1o0yMW9fplZNDSTDIpvJyUgwXjx1xFI9O+zlubFE9RrQhNBBOKLoE/GYEj67z2ISjOKxnVbcMl65zzuChnDN4aNVzmiZuXSdsWTw/exbO4biDaUv65OweFdgViuZAGdKKpBl51DD+OeVWvnz1OzxeN8dfcyRd+zVf38i8jrk89O0/ePiiZyjcVMSAsf3460uXJxwrK16E0C84BVeAyCJk2f2IzHubTd5a8YzCCZHecYTvBvcwhJaCjCyEkr/RcC+0AfpA0L3gGoZIuwwh3FXGbGQmmItqmRvnSoiig/d4kIUQ+rba9RBUvOr0ia4DIXYccLgh5xVk0YVgl4JwIbIeQ+htG/iMCoVCoaiJ8B4C2c8jAx+C8CJSz0UYPZpvf72DE5VUcivYBeAagci8L+FYWf4shGdQpZsXIMv+jcj8R7PJWxtjOndBF1qVZtZ1RnbshMcwmLdlMzd982WDvdAuTWNgflu8bhcjOnTkiuEjcel6pTH7y/q1LC2oGaHmUJtmNoTGqXsPYH1pKT+uXV15PWRZvDp3dowhnQiPYVT+97XjT+KCjz+gLBTCres8feSx5Ke2AoeDQrGLoAxpRYMYvP/eDN5/7xbbv8+wnjz56/1M/+Q3KkoDlBaUk5qZ4Es/PJtYYzTsFFxpQaQ0IfgJWJsh/RYITHL+7B6ByLgjKuZ06m5zVRMR/XGDtRB8V6ClXVF1N2rM2mWPUP3UORYv6F1rtM7SweiNyLgFWXJTgodpWF66cPWH/F+cquAiPa4yuWLXQ6rwMYWi1SA8oxCemp7hZtzfNQhyP3Dype1ysIudNJ+aRGrq5lCL6+aIZfHR0sVsrajg9vEH8O6iBWwuL2NUx8784wCn+vi0dWuJNKAei8DxZrs1nQXbt3LtyNFcPnxk5f0dxuxDv/wUE1pdHa9h0CUzK8bQ1oVgr7w8bh67P9d8/mn8szQwX3tQ23bMvOhySkMh0j2epHpjK1o3Sjc3L8qQVuxShINhrt3v72z4Y5OTZwX887NbGTS+f+xAoyeEp1F56o3h9DNuJmR4LlhrwNgL4err9PYsPBciC3AKsngg/Rq01AtjJ4psR9aaRq/IBs84CH5GrKEtqQq5BsqfQ0bbV8UKVFshGpzQ77wPkIEpUHoHEAC9A2Q9h9DSIeUsZOgnql5+vJB6buLnjixGBj4AuxDCs5xWLHpXRPYTCKMniMza5VAoFArFLomUQWTBKWCui6ZgSch+GeEeFjvQ6Onohuq62ejZfHKGZzvVxY2+CNdemLbNmR+8y6Jt2whZJh5d58Yx4zhvyD4x87K8Xty6TqCGRzrH52Nc5258+scSLFnlP5Y4ueAV0YraT86Yzrgu3RjQJjYSKxCpvUhrmtvDp2eczeQli7jz+28ImCadMjJ48ejjSXO7OWfwUKZvWFfpJfcZBufXkHsHC7duYdLihRQFA8zYsJ7tfj/ds7N55qjj6J6VTabXm/TvUKFQVKHcQopdii9f/Z51SzYQKA8SrAgRrAjx0AVPx41z+hZ3A5Hq/Gj5iIzbm0VGu/R+ZNG5yNJ/IAtOxa74D4R/AXMhTmVV2/lv2cNIWaVEpYyA7ygwugA+HIPaA+mPoLX9FS3rIUT6zTgFv2pBCDCXx193j659jvQjA5Og9GYcg1w6Lxrbj0DKIMKzHyLrMXANAWMgZPwTzXd0/DLheciC08H/muN5tzcBEbBWIAvPRjZ15ViFQqFQtAz+d8FcA/id4mMy4IR610CkXQd6lyrdrLdDpDdPK0S79G5k4flR3XwKdsWb/LBmFYu3byNgRrClJGCa3P/TD5UtsKSURCyL4/v2o1NGJj7DwKVpeHSdp444mlkXX8GjE47kxjHj8OiJi54CaEIkrIY9qnPnWueUhYK8u2gBt3zzP/ymk7+9pqSEQ//7KiHT5IBu3Xl8wlEMadeewW3b8cAhh3Nk7/iir79t2sCp77/Nq/Pm8NHSJWwqLydi2/xRUMAZk95pkKddoVDEogxpxS5F4aYiQsFYg6xke2ncOKGlIXI/RGS/gMh6FpH/BULPbzQ5pLSwS/+FvWUE9tbR2BX/da6by8H/luMBlhVAEMr+jbQ2Q6JwGxlCBr/D3jwUuWVv5LajIeNB5xAACdgQ/A/SrnDGp5wORm/nBYREeUwSjO7xl8Pza38YoUHoZ+Lba/kh8JnzR89YROYDkHI2+F/F3n48tn9y7M7lj5G4BYt0fh/W2tplUCgUCsUui7S3Elfbwy6MGye0dETeZET2845uzpuC0BuvQrRl29zz43cMfe4p9n3xGd6cP8+RL7IE/O8D1XXzfVQEi+PWsKUkbFl8vXI5g559gr2e+j+OfvN1Hjv8KLpkZmFLiS0lr8ybgz/qUT5n8BB65eSS6nKR6orvcGJLSffsnLjrC7ZsqfVZdE1j6prVmDI2U7o8Eubz5U77yP27duehQydw9qDBvDB7Fse+9TofLV0cM/6RaT/HedLBecMoD4dZV1pf0VGFQlEbKrRbsUsxcHx/PD5PZT9rw20wYGzfhGOFcDk9jpsAWfGMYzATcLRR2b+xtTwnFFq4QFZ7oRAG6N2cfs2V+lB3wtnsQmTxlVQasfYaKDwNx2ttOT+R35FFl0POa07Oc+47EP7V8SRjQMkNUaEi4Dsb4U4U2lWe4NqOh7Ed4ztRIVJZjDTXIAsnOjlv1QeV3omNQEs5zvlsba1jj4gK697NsOvsTqpQKPYkhHtfZMXrVB2musA9IvFY4a713p/l/379hbcX/F5pON479XvapKZycMctCXSzzoj2KZVpYuD0je6bm8fminKu+OzjSiN2ZXERJ7/3pqOZpcSSkjmbNnL5px/x6vEn4TVcfHDqmU6odcRECLj+y8/RBIQtmwuHDmdw23Zx8paFa4/UsqSkR3Z2wnvFwSAriwo5c9K7lISChKp5lW/55n9oCI7Zy3k32lZRUeseEcsm06PCuncnlG5uXpRHWrFLsc/BA7nwvjNxeQw0TdB3317c/Po1zS9I4DNiva9BCE6JtnSqefLrRrgHI7JfAK0D4AXXEET2y9Hc45rjA8RatTZEpiO3H4kd/M5pNeXZD+E9FOHZH/K+RmS/hMibgpbx16pZVhl22WPYxTeASHTiLwAXpF+LSLsCqNl+xIV0jUIWng/2VuIt7QD4Xwd25J2tSrCHDsIHKRMbNSJAoVAoFK0H4RkP6dcALkAD11BE5r+aXY4pfyyL8b4GTZPP/lgGxl4ga+paL+0ye/HSsSfSIT0dr2EwrH0HXj7uJH5YvSrOE+w3zZiq3ZaUTF23hiPeeI0f16zGpeuM69KNQ3v24qDuPfnh3At55biT+Ors8/jL6P0q5xUHgzw87Seu/3IKbVLiI8s0nGrffx09litHjMJnxPq83JpTTfycD99nq78ixoje8cz/+X0OADM2rGdNjR7V4BQt8xkuLhw6jNyUlm89plDsqiiPtGKX44RrjuT4q4/AMi0MVwv9E9YyaxTX1kDLdozFrKeRxVc5/aK1TET2i5Un8KLN90C0gre10en1nBCduOrd1goovgY77RpE6kXIsofB/zIgkZ4DEVmPVg6V4d+g8GzijfTqSDAGgOdIsIsg7ysovtDJsRZpkPFPqHgC7PW1LyGc378sf464AmlaO0TqOWD0cV6yFAqFQrHboqVeiEy5ADCdiLAWIN3jifmsC0G214fQ20H248jia0GGQctyDqCFi1GdOvPT+ZcATgXvjWVllIYTt6BMoJlZVljApZ9O5obRY7lw6DD+9fOPvDJ3NlJKDu/Zm4cPO6Jy7IwN65n4wXuYsvbq2jYwrF17jujVh5JQkG/OPp/zP/6QFUWFZLg9/OuQw/n3Lz+xsbys1jVc0Xztp2ZOj6vk3TE9g7MHDaFfXj7junardQ2FQlE/ypBW7JIIIVrOiAZE+k3IwvNwvLQaiBREmqOIhWc/aDPbMZJFGqJGOwlpro2GSpeQuCWVAVp7sNcluBeC8keRIifqDY4ayqGpyNL7EJl3IaVEFl5C3UZ0FHMebD/ICRF39UfkvImItiyRwW+Roel1TPYi0q6M/jlBeJreGZF6Uf0yKHY5pARbtdhQKBQ1cPRdyxjRALeN25/zJk8iZFpomiDN5ebifZwUL+HZP6qbKxLq5pVFhZz5wbuUh8JE7PgCXC5NIz8lhY3l8QfgIcvioWk/keZ289/f52JGjddvVq3ggZ9/5I79D8KWkgs//rBOI3oHv23ayPhXX8TQBAPbtmPSqWeSEs29/nLFH8zcWPsBt9cwuHKE02ornKCQWNesLC4Z1jSh9YqWRenm5keFdit2ebZvLOSmw+7htA4Xc8OBd7J5dR25uo2EcA9F5E2C1KsQadch8j5F6B2r7gvhFFVJ0JNRFl8J9hacEO6axq6AjH9D3scgsmrZ3XJ6dcaElocg/HN0g3Iq22HVy45c7BBEFiLL7q92a2v0fiI0cI9CeMY5UqdMJLaauBdSJiYpg0KhUCh2N6S1GbvwXOyt+2EXno20Njb5niM6dOKD087impGj+cuo/fhi4rm0T0+vvC+EVqtuvuzTj9hWUYHfjMR5cTUh+L/Dj2LKWeeRWcPrvQOnQNmKmNDykGUxde0aAIqDAcJWEgfcOMXJLGkTsizmb9nMv376ofLelvLyyqriNdGA8V27sl/nrgCcO2go3mqh4V7D4JxBQ5KSQaFQ1I/ySCt2acyIyV/G38GWNduwLZvibaVcN/bvvLrsCbwpiZVdYyGMXoj0qxo+0VxJtapjNXCDtQJh9UHmvAvFV4G1LH5YZD7Oqf8Oj7YArQ1ShpAVrzVcJgDCEJ4LgAxNR4Z+IbHHHMCG8FSkDCOEG+E9GJn5L6h4wXm2lAvRfEfUMlehUCgUuzNShp12iPZmHH1R6HzO/8opmtmE7JWbx165eQ2et7K4qHbNrGksK9hOz5wcJp1yJpdN+TiunZUAlmzfhkvTKg1xAbRNTSVoRnht3pxaDeC6CFkWszdvAuDndWuYtn5tpce7JjbwzcqVmLaNoWlM6N2HsG3xwuxZAFw6bASH9ezdYBkUCkVilCGt2KVZv2wTxVtLsC1HqdiWTaA8yMrf19B/VJ8Wlq4WtLZ15B2HoOIFZMVL4D0EkfcJsvwpJ1e5UsVLkJtAZDvjkYAOGXcgC8+FyALis7jAMbxNYo14jSqvswFGD+zAZ1ByC04rkx1BKztO72u+ZlR91nxHgu/Ieh9foVAoFLs55gqQJVTpFwtkGZh/gGtAS0pWK21SU9mcIGwbIGhZPPvbDJ6bPZMjevXhy7PO5ZFpP/P0rF+ra2Y2lpeR7fUSsiykdKqA3z7+QM784D0Wbd0aF+MlcMaYth2rmYXAjhY7MzSNntnZTF6yiFu//YqgadavmasVSjt2r34cu1e/Bv8+FApF/ShDWtFq2L6xkHcf/IiSbaWMPXEU404cWe8cb6oHy4w1Gi3TxpfatCfefwaR/X/R/Gqi/SxrqsBovnHoWwh+DkZfnP9Va3iHZcAJr/ZOAM9+TiutyPz4cejgGgl4ITK1xv1oVW0AkY7I+Duy4Ayq+oHazt6+iRD8qNqLkRc845rcs6BovUiVh6VQ7BFIazOy4kWwixDeIxDeQ+qfJHwgaxzoSqtK37RCnjriGM6ZPAlNOP2Va2rmHdWxv1z+B4f17EX//HyMat7nHQQiEcZ26cphPXszvms3NpeXs3DrlrhxuhCM6dwFQ2j8tHY1kRptuFyahkCQ6fXy9/EHctzb/62sGm5Hx5w/ZB/eXbiAsnAIW0q8hsHB3XtUFhtT7Hko3dy8KENa0Soo2lrCZUNupLyoHMuy+XnyTLavL+CEa+r2cLbtms+oY4bz62ezCflDeFLcDBrfj24DujST5A1HuAZB/jcQWeRU7y69J5ozXaO9lAyCtQa0diQuHBaE8I/IyEKoeB68E0gcim1BZA64901wPw2R/aTTFsQ9BCF8SGpWKzXB3gg5r0PZw2BvAvdoRPoNO/cLUCgUCsUugbS2Ibcf63iTsZDBr5Hpf0NLPavuiXpX8IyF0M849Ty84BkDeo9mkHrnGNq+Az+cdyGLtm3DtGzu/P7rhO2lwpbJqqIisr3ehCHWQcvi29WrmLtlM8//NpPDevaKM6LBaZ81a+NGRnTsGGNEA2S6PTx+xNHYUjK0fXu8houQGfseYNo2m8pKeevEU3lw2lQ2l5cztktXbhg9thF+GwqFIhmUIa1oUVbNX8P2jUUs/nUZ/jI/VjREO+QP8frd79VrSAshuPXNa/nyle/5Y/ZKegzswpEXH5KwkEhrQmjZ4NkPAUjPOLC3IYsucsLedgR/CY/T+zL0DbXnVNsgt4G1LZqfLGoZGwDhwikItsNQdoN3P4S7RvVO7zHgf6vaOCA0FSK/I3InNagftJQSGXjXWU94EWlXO1XNFQqFQtFqkZEljl4K/xaNnNphTAag/Amox5AWQkDWExB4DxlZjHD1A98prV435/hSGNvFKdT1XbeL2FZRwdmT32dFYUGlZnXpBn3z8vlk2ZLaNbOUbPf72e73syaan5yIgBkhxXDhM4zKImUeXWdc126M7NQ5Zuyxe/XjnYXzY3pZf7NqJbM3bWLy6RPJa0A/aCklb8yfxzsL5+M1DP4yaj9Gd269DgiForWiDGlFi/H0da8w5YWvMdwGIX8I245VSTVDtmtD13WOvOhg4OAmkLLpEUIDvS1kPYUsOBNkMWCCax+kezxEFgFuEraYiqFm/nN1vAj3GKR7DJQ/5PTR9IxFZNwbL0/6jU47LP9/qaoMHgA7gix7AJH1UNLPJv1vQdkDlevIossh51WEe5+k11C0RoRqsaFQ7KbYJXdC4EPn8FUGiK+5kVzlaSF0SDmdXfWbQhOCtmlpPHvUsZzx/juUhEOYlsW+HTsyvms3Zm/aiFvTCNdTQMyStell8BkG47p2Y3iHjjw87WcitsX+Xbtzz4Hx4fO3jTsAl6bx3/nzKo3pgGkS8Vfw759/5N+HTkj62V6bN4cHf5laabxf+MmHvHniqQxp1z7pNRStEaWbmxvV/krRIiz8ZSmfv/QNoUCYihI/ZsSqLBgG4Elxc/BZ41tQwuZHGF3AeyCVBcDCs6Hkakg5F/SOQAqOR1kAHuLPwXRI+MqigdEbGfgAyh8FoxfkfoGW/SxCiz/BFsJAy7gxQUEY0wk1bwj+14lt0xV0PNQKhUKhaHXI8EwITgaC0XDumge0XvAd3xKitRg9snPYv3t3pwAYMGPDBq6a8gkXDR1G+/QMUl0uvIbhaGbdwKjhdddq8cJrQrBXXj5vz5/H4zOm0Tcvj2/OPp9njz4Onyu+F7ehadw67gD65cVGhZm2zeqS4gY9039+nxPTpitomry3aEGD1lAoFMojrdgJbNvmvYc+5od3p5GRm8bF/z6bnoO7NWiNTSu3xIV4abpGr6Hd8Zf62e+EkZx/z+mNKHXrR1rbHC9Apec5AOFfEPY6yPsIQj8g7QDCMwaht8H2fwSlt+OEYBsgUqMvPjVOv/UuYG0CWQjYTlXvojOR+d/UXSzMPTLaZmtHiLc3WrSsAYiaXzECp3q4QqFQKBoTKW1kxfMQ/BK0HET63xCuvRq2iLmW+ANZAcbeIMvBOwGRdk1jibxLsKmsjI+XLiEczZUOmBF+WLOKzRXlTDnzHL5fs4pgxGRsl67kp6by3qIF3Pn9NwRNE0PTSHO7KQkG4+LFumdls66kmMJAAAnM27KZ0ye9w7fnXIjHqP31fFSnzizevq3SK+3VDUZ17Fzr+EQYIt6P5tKUb02haCjKkFY0mJdvfZPJT35ByO8Ux1o07naenfMgHXq2S3qNHoO6YtcIh8rMz+DJX+9v9TlUTYYsdwxPWT2EW0eay6H0PojMBkyk3g2yn0NLOQ6p5yODX4GWBSlnQdHVYP5Wbb4BnsMg8CZVbUhsJ+fNXAGu/rWKI9IuR5p/RHO0Ac8YRHoDX6BSr4SSv1FpjAsvImViw9ZQtEpUZVCFonUhyx4A/9s4UUACWTgbcj9BGJ2SX8TVF2SNUGWtDVreB40p6i5FeTiMS9MqDWlwvMNLC7Zx+3dfMWfzZkzbpmd2Di8cczyn9B9Au7Q0vl65gmyvj4mDBnPxJ5OZt2VzzPxDe/Tkv/PnVRrYtpSUhkKsLimusw/2tSPH8EdBAd+vWQXA/t26cfW+oxr0TFftO4qbv/kfQdNEAD6Xi7MGDmnQGorWidLNzYsypBUN5tPnv6o0ogHCwTA/vj+d0286Puk1egzqyiX/Pptnb3gN3dBx+9zcN+XWPdeIBtA7O72hZRDH6BUgNSi5E6ioGmetRhaeA/nfOd5pz5jKWzL3TWTpXRD81DHKUy4Cz8Hg/0/sXjLieLDrQAgXIvsJpO301RRaWoMfSfNNQGo+pP89EB5E6kUN95AoFAqFon4C71KVSiOdQ9nQ/8C4IOklhGtvZPpfoezf7GiPKLJfaAppdxm6ZmWR4fEQME1sKRGALjRu+eYr/JGqThgrigqZ+MF7/Hj+xYzr0o1xXbpV3vvg1DO57duvmLJ8GS5N47Jh+zKuSzdenTcnZq+IZZHmctcpj1vXef6Y4ykLOe9h6Z6Gt6E8dq9+pLk9vLdoPl7DxWXD96V3bm6D11Eo9nSUIa1oMFqNkCAhBLre8JCgY6+YwMETx1O6vYy8Tjm43Ht2yK8QBuS+gSy+DszloLUHLRMiv8UPtguRRZcg9U6ItMsRevvoGgKR+Q/I/EflUCkl0jMaQt9VXwAZfSGoV65aDGgZWYos+6dTMdxzICL9eoSI/zsUnv0Rnv2T2EmhUCgUO0+CkGwa3k9YSz0H6TsR7ELQ2yf8Xt+TcOs675x8Old//ikrigrplJFBqsvNb5s2xo3d5q/ggo8+oHNmJleOGEm7tHTA0c33HXwY9x18WOVYKSX7dujEj2tXV10DrJoRAbVQmwG9aNtW7v3xewoCfg7p3pPrRo1J2Ff6oO49OKh7621HplDsCqiECEWDOeXGY/GmOF/gmibwpHg48Iyda2mUmpFC+x5t93gjegdC74CW+y6izUzQUiEyl8SVuCMQ/slpLbL9OKS1vfY1hQDSiH3JsqH83zstp7Q2IQtPh/CvYK0A/3+RpX/f6fUUCoVC8SdJvRDwRT9oILzgPWKnlhJaGsLosscb0TvolJHJh6edxexLrsSl6TFh2tWJ2DY/rl3N2wt+5+i3Xqcw4K91TSEEaW53jGa2pOTBX6butJzrS0s49f23mb5hHX8UFvDKvNnc+f03O72eQqGoG+WRVjSY0286nuy2mUx9fzqZ+Rmcfccp5HXMZcW81bx825uUF1Vw0JljOfaKCfWGapsRk9UL1qHpGl337oSe4NR0j8RcAuYy6m8zYjntSYJTIPWc2ofZ24g1yO3otZ0k9B3I6tVcgxD4FJnxrz07PH8PQYJqsaFQtDJE6hVIrY1TbEzPRaRejdDbICMLkWWPOsUovcchUs6o93tayjCYfwAGGL2dNo0KFm7dwoqiQswkWl75wxGm/LGMiYOG1Dpuq78iVjNLydaKilrH18fXK1dgVZMtaJp8uGRxjCdcsfuidHPzowxpRYMRQjDh/IOYcP5BldfWL9vIdWP/TrDCydlZMW8N5cV+zrrtpFrXKS0s47qxt7N9fQFSSroN6MKD39xZ6e3eE5G2H1l2L4R+juZKV0eAa3Q01DtU7bpNvQa39yCIzKMqf87n5E43VL7IUrALkHaI+DBCXRnRCoVC0UIIIRApp0DKKZXXpLkcWXhmtB80EFmClOWItEtqXUfahciCM8DeAkgw+kHOa3V3edjNKQ+HufuHb/lp3RpCZqy+FcC4Lt2Ytn4dEbuqIJmNrDdM+5DuPVm4dUtlKyqfYXBw954Nkk1KyZKC7RQG/IQtC1FDNxua0ssKRVOhDGlFo/Dd2z8TDlYV3Qj5Q0x+YkqdhvQz173KphWbMSOO4lk5bzVv3DuJ028+nievfolF05bRvkdbrn3mYtp3b9vkz9AakEWXQWQOsYYygAuMHpB2ORRfC7L6fcsxbKWsw5D1UtVWS4D3KETqxcnLJSWy9DYIRIuYYYPwOEXLsABfNKxQoVAoFK0FGfikxqFswCk+WZchXXo3WOuoPKCNLESWPwupFzjFLCPzQO+KyLwLoXdsUvlbA1JKLvz4A+Zt2RxTuRuc/OneOblcMmwE87dupihYdd+ybYIR06lHUotu9hpG5ZoCOL5vfy7aZ3iDZPvrV1/wxfJlGJqGJSVuQydiW1hS4jMMLh22b8MfWqFQJIUypBWNQiIdUZ93cuXvayqNaIBwMMLyOSu57aj7WDZrBZGQyeZVW7lm1K28uuxxUjPrrjK9qyPtcojMIta7rIOWD+4RkHImFJ5PVV/nHdhQ8SySMCL92vh1w7Og7D4cgze6pr0JIRoQRh/+CQKfOXvviEMTOeA7A+yt4DkI4Tsh+fUUuzYSZKLUfYVC0QoRxKb21OOhjCwlVg+FILIIWXi+k3ZEGKx1yIJTIO9/O9XRYVeiOBhk7uZNRKqFTOtCkJ+ayqhOnTljwCDOnTypsq/zDiwpeXzGNCK2xVX7jo5bd/r6dTzw849Y0S9TXQg2lZWhNSCy67vVq/hyxR+VHm2A/JRUjh3Ql+1+P4f06MkJfWtvc6nYzVC6udlRSS+7EbZtM+PzOXzxynesWby+QXNXzFvNRQP/wrGZ53DduL+zbX1Bg+YffNZ4vCmeSuPZ5TEYdtgQ/GWBWuf0HNINl7vqLMftddO1f6dKIxrAtmzCoQgLfl7aIHl2SYROXGEx4UVk3o2W9TCEplPlVa5JAPyvJL4VnlljngnhBJXA68JaGy+bLEJk3IaW/SRayokqrFuhUCgSIKWNDH6H9E9CmisaNjeyCHvbEdhbhmIXnIW0tjRovvCd4BQdqzSe3eAei7TryMN19QeqFxnzgtEdzKVU6RLb8XRH5jVInl0RQ9PiSn56DYMHDjmcRw47kqlrVseFe+8gYJq8MHtWwnszNqyLMb5NKZm5sWHvbmtKiuPytQsCfu464GCePupYTuy3t9LNCkUTogzp3QTbtrn92Ae457RHeOqal7hy+E1MnTQ9qbmlhWXccOCdrFm4jkBZgMXT/+CvB/0Du55iGgDL567iuRv/w5QXv+bv71zPiCOGYrgcT+dPH07nogHXU7ytBICKUj+3HX0fR3jO4ITc8+g3qg+d9uqAN9WDJ8XDXiN6cuqNxyHtWJUlpYwxuHdXhPCB70Sqqq66QGsDbuckW2he6mxlUlsulpYH1OhLqWUmXsLa7BSmifaOrsToS6wXQ4DeuWFebYVCodjDkNJCFl2ELLkeWXYPcvsJyODXyc21C5GFZzudEWQFRGYjC89BJtEeSUYWYZfejwxMgszHwT2OyiDE0BfI7Uch7aLoPmXYhRdib94be8sIcO0LelcQKYAXXIMh9Xycehwxu8AeUNU73ePh2D598RnO78+t63RIz2DfDp0A8BoudK3212m7FhdhXkoqXiP23Sbb60s4dlNZGQu2bqEiHHuY3j8vH72aoSyAbllZynhWKJqJ3d862YUJBUJoupZUa6gZU+Yw/8dFBMurwn4fPP8pxp44st4v1GWzVsY4G23LpmBDIdvXF9CmS36t8xb8vISbD7+XkD+E0AQfPfkF/Ub1wbYldsQiEjKJhExevf1trnv2Uv597pPM+WY+ZsSkvMjkuRte477PbyMjNx1N1+jUpz2apnHgGWP58f3phPwhXB4Xbbu2YeD4fvX/wnYRpAwjy5+DyO/g6oNIvRKhpQAgMu5BGv2dtlJGF0TqZVUFXrzHQfnzIEupCtPegWOES2mDvR20LISIGs++46Dskdg8Off4OLnssseg4gUQbkBAzisI1yBHLvcwZNplUP6k8+IkfIjsZxv3F6NQKBS7AFIGcYorJmFEhr6FyGyQVW2QZMlNCG8SUUHhecRGAllgbXQ6Lui11w2R4RnIwotw0oA0EP8FYwCVhSllGGQYWfYEIvMOZPENjs4hArIEyv7pfP+LDCdSSu+OEALbezgEv46u6wG9C7iG1v8cuwgh0+TpWb8yf8sW+uXlc9W+o/C5nL/jfx86gUFt2zFjw3q6ZWVx2fCReKJG8En99ubF2bMoDYfijGafYXDq3gOxbJuCgJ9Mjzdm3iPTfo4Jy96/W7c4uR78ZSovz/kNl66jCcHrJ5zCwDbO3//ITp25dNgInpr5Ky5dJ9Xl5vmjj2+C345CoUiEMqRbIaFAiLtPeZhZX84DAcdcdhhXPnZBnQZx4eZi7Bqe3KA/hBkx6zXEUzJ8WGasYWZZNr70xCejO3j5tjcJ+Z2iV9KWBCtC/DF7JbZVdWptRSw2r3baLM35Zn5lyDZAOBRh3g8LOfv2U2LW/evLV9BneE8W/LSETn3ac9rfjttt+kxLKZFFl0B4NhCE8HRkaBrkvosQBkJoiNSzIPWsuLlCz4O8j5AVL4NdDK5BThsquwC8h4LnIOS2sWCXARLpOQzMeSAt5+WoOsGPkPYNCC3HkSs8BypeBpwXLHAKn4k2v1RO0dIuR6ac4eytd6gy1BV7JHZ9eZYKxW6GtP3I4qsgPM35nHI2Iv2Wug+r7W3x0UKyHCmt+iN6tDTivcAWiLrrhciyh6mqpWE7Rry5pMZaEbCiYcThmmlDEUR4FiLt0ph1ReaDSNcbTucIvSci9aLdps+0lJLzP/qAOZs3EbJMpq1fx7QN63jv5NPRNQ1NCM4ZPJRzBscfHLRNS+PTM8/mpTm/URoMMqhtO75etZLCgJ8JvXpzYLcejHrpOcrDYUByeM/ezNm8Ccu2KQvHFhZ9b9FC/jp6HJleLwAzNqzn1blzCFkWoWhRsks/mcwvF1b93VwzcgznDB5KcTBIx/QMXKqN6B6N0s3NizKkWyHP/uU15n67oNIg/fKV7+g2oAtHX3JorXP6jewVU2FA0wRd+ndKygDtu28vBoztx4KfFhOsCOFN9XDUpYeSnl13ARF/aWz+s5SS9Jw0woEwoYCjlD0pHvY5ZCAAqVkpBKp5zN0eF5m5GXHraprG8VcdwfFXHVGv7Lsc1voqIxqAEFgrwVwMroFxw6W5Bll2P1hbwLM/Iu1KtIxbqwakTnTGSYncNt7xRu8g9GntcggXWNshakiTKG/PLkDKUEzLE6FlgZaV1KMqFArF7oQsuzdacyJ68Ox/B2nshUipvTsFriE1Luhg9EkuLcY1zAmrDs/FaV3og5Sz6y/uJWvmP0sQWdGopB2Gmxc8Y5w/aulgVy9i6U74PS+Ejkg9Bzinftl3MVaXFDN3i2NEA4Qsk2UF21lWsJ1++W3ixq8sKuS+qT+wtaKcg7r35Kp9R3H7+AMr758dNbillIx86VkKAlURCR8vW1KrHIamOZ7rqCG9vLAAWSNDe0tFORHLijGYs7w+smoJC1coFE2HypFuhcz9fmFMK6lgRYg538yvc073gV35y0uX40lxo2mCzn078s9Pb0lqP03TuPfTm7nqiQs587aTuPn1a7j0wXhFWVpYxpxv57N87iqklBx81jjcviqvpCfFzXn3nM6II4ai6RqarnHAaWM46fqjAbju2UvxpLhxuQ28KR7adM3n0HP3T0rG3QeLuIqpMoQsuQW74r/Iaoch0tqOLDgJQt+DuRAqXkaW/D3xsrLc8UwnjQ5G56qPRo9EiyJDvyS4rlAoFHsg4V+JbU0YgHDd35HC1R8y7sFpQaiB0ROR/VxS2wmhIbJfQmTcDqlXILIeQcv4a9w4aRchQ78gI4sdHeI9Gqje89kL6X8Fz1icOhs6+I5BpDh6XmTcHZXPBfjA6OSkBO1BWLYdVy07ZJr89asveGP+vBjdvLWinBPeeZPvVq9kwbatvDB7Jrd/lzjvvSgYoDRUs51l7bg1nY7pVQ6Gntk5Cf2L09avS3pNhULRdCiPdCskv1MuG5ZtqvzidrkN2nWrPVd5BwedPpYDT9uPSCiC29uwsFtd1zn8vANrvb901gpuOvRuAMyIxZCD9mbZrBXY0ZDwlAwflz1yLgeeth8HnrYf4WAYhMDtqfKIjzxyH56Ydh+zv55PamYKB56xHx6fJ+F+uy16l2j10+VUhdJZYC6DsgeRsgyRdrlzOfQDEKEqHC8IwY+xrZuh9O8QmQsiAzzjwdgb5yUoceVQBwPHM5GJyHneKW4WRbj3QfpOgcB/YqeUXId0T0Vo8ZEDij0XCUipwscUexhau2g49A6jygVJ9FHWUo5D+o4FwjERPskghAEpJ9carCnD85BF5wMCpOl4mUNzqfSai3RIvw3Ndzj4Do/md2sxqTnCezDkvuOErIss8B3VYDl3dbpnZdMlI5MVRYWVba4sKVm8fRv3Tf2e8nCYS4eNAOCbVSuJ2Fblv4KAafLB4oXcOHost3z7P+Zt3kyGx8MB3bozIL9tve2sDE1DSsj2eXn52BMrc6jByYE+sW9/3ljwe+U1CVz+2cf8etFlpLlVipWiCqWbmx9lSLdCrnnqIq4efStWtMdyVn4Gp9+cXI9eIUSDjehkuPe0R6goqQpNmjFljmPoRzWJbdnktM2qvF+bDN0HdqX7wK6NLt+ughAa5LyOLLsPgt+BLKx2NwD+/8AOQ1pocR2nQEDhRWAtwTGyt4F/BU6F7+5grwVhgIzgGNXVekf7LoK0ixFaWsKcPuE7Chl4H6j6e0ZGkFvHIIUX0q5Di4aSKxQKxZ6GyLwLWXC6U3cCCXo+IvXi5OYKQayXuHGQxdc4EUk7CH1LrOIwEXpVaLIQ3sTyufqBa/cp6tlQdE3j7ZNP4+4fvuP71asoDFalrgVMk1fn/lZpSGtCxB1sCCE4Z/L7/FFYQMS22eqvYHlRIW5No2d2LqtKijA0jbBlYdl2TO/oK4bty4X7DCfN7U6om4/Zqx+Tly6mIlIVqRi2TIa/8DQ+w+BvY8ZxxsDBjf9LUSgU9aIM6VZIpz4deGXJY8z9dgGG22D44UPwprTs6fD29YUxn2u2qAoHI6z8fS0jjxrWnGLVi2VZ/PrZbIq3lrL3mD507d+5/klNjNDSEZn3Y2tPQsVTxFfgjuI5CLR/gx2OjvGB7xgIfIhjRFcnAvYySPs7wmgHejukHYaii3EMYwuCr4HwIzJiw8OlXYgsexAif1CVu72DqIdbhqHs30i9I8Jbe+SCQqFQ7K4IoxfkfRn13HrAM65Ww7TZsGv2la5x+iojTv9nz9hmEykZpDSdtCW7ENzDEEbPlhaJDI+Xhw47goen/cQzM3+tUeatysA9rEcvHvxlqmMUS4nPMDix3968t2hBpTd7B2HbZnHBNu464GDapKbSPi0dfyTMRR9PJmBGsKTkhTmzqDAj3DbugJi52/1+/v3zjywr2B7Tbxocb7llWYQti3unfk/HjEzGd+3WmL8OhUKRBMqQbqVk5WdywGn7tbQYlXTu24HVC9ZVhpsLIWJyhtxeFx17t2sp8RJiWRa3HH4vi2csdwx/KbnljWvZ7/h9W1o0AITvWKT/pWhbFIlTSObCqvtaJuRORpY/DtYm8OwP3pMg8EHtiwbfR+R9HP3z50ghq4rQyQD430Cm3+yECwJSBpAFJ4O1Gcdojn4liFSQZTUXR4a+U4a0AhDYKnxMsQci9FzwHd3SYlShdwNrFVUGtCDGmBZupyd0K0JKE1l4rlP7Q0pAQtZjrUa3nNhvb16ZO5tAJOJoZsPgkn2GV97P9vn45PSz+b9ff2FLeTkH9+jBcX368c7C2mvZvL9oAR+d7kR0fbR0sROJH70XME1emzeHW8buXxkG7o9EOP7t/7LVX4Fp2xiahiYh1e2Oq/QdME2+W71SGdIKlG5uflSxMUVS3Dnpr+R0yMab6sFwGxx2/gGkZaeSmpmCJ8XD6GOGM+6kUS0tZgy/fDSLxb/+QbA8SMgfIhQI89AFT7e0WJUIowsi9z3wHA7u0ZBxOyL1wtgxelu0zH+i5byMlnoump4GKWcBtVTntKu1uZJmgtBwSUwLlPBvYBdRlVttAhpk/Av0mh4CA7TcBj6lQqFQKJoKkf0MaHkgUgAX+E5x8qJFOk5l7kPBc3BLixlL8EuILIweIgeAILLkppaWqpLuWdm8f8oZHN6zN/t17sLdBx7C+UNjo+3ap6fzwCGH8+rxJ3H2oKFkeL2cMWAgPiOxf6o4WBXtZdp2fOCAlDE9qKevX0dJKOSMjc4RAh457Ai6ZWbFzHVpGrm+lD/xxAqFYmdRHmlFUnTs1Z7/rnyKLWu2kZ6dRkZuOpc9dC4r5q0mIyeNbgO61N1LsxkxIyZf/3cqP3/4K2YkNmy6otSPbdtoWvOfIUlzFTIwBRAI37EIoxPC6IXIfjz5NexCENngHgHmOrBXVbtrgHufqo/uMdF86R0eCg94xtbo/xxnaTvyeYaBfjey8CIc41oHLSPa+kShUCgUrQFhdIf878Ha6HxHa9nI9BudcG6RhXD1aWkRK5EyDIGPkcEvie1bDcgypJQt8h6xorCAz/5Yhi4Ex/frT8f0DPrm5fP0UccmvUaB309eSir7dujE2pJiVpUUV94zNI1hHTpUfh7fpRu6plXGDnh0nQO79cCo571ECMGIjp247+DDuPDjDzBtG11oZPm8TBykcqQVipZAGdKKpDFcBh17ta/8nJaVyuD9925BieKxLIsbD76L5XNWEQqEY3K5NV2j55BuLWNERxYhC88E6YRkSf8LkDsJkbDtVC1r2MXI7cdGPcgRnIqx/cH6A6etSi9Exj8qxws9F3LfQ5beHQ0NH4NIr3Hq7x7u9Au1gjh52Aa4RyC0HHDnQN4HTh6b8IH3KCfcvJGQUiL970DwY+cFMO06hKtvo62vUCgUewJCuMCoCt8WWia4W0cK0w6ccO6JEFmKU4uj+iGuDq4BLWJEz9+6hdPff4eQZaIJwXOzZ/Lx6RPplpWd9BqFAT9HvPkaxcEgpm3j0jT65+XzR2EhmoC98vL5x/5VUQH5qalMOvUM7vrhWzaXlzOuS1du2m98zJojO3Yiw+MhGM2jNjSNsZ27kOHxMKpTZyafNpEf1qzC53JxTJ++ZHgar46OlJI35s/jk2VLyPJ6+cvoseyVm9do6ysUuxPKkFbsVvz2v99ZPnc1wYoafRsFdB/Qhbs/apnwMVn2cDSMbccFP7L8CUTWo8kvEvgA7GKqCo1FwFrk5Ja5hoLWNu5FRBjdETmv1LqkED6k9wyoeCR6xYLICqRd5hRFM3pCExWBkRUvQPlTOKF9AhmeDrmTEUa3JtlP0bjIRMEMCoVCkYjQj06bRwI1bggw+iKyWibt6oGffyRgOjrVlhJ/JMITM6bz8GFHJL3Ge4sWUBI1ogEits3i7dt4+shjGdyuHW1T4ztl9MrJ5fUTTql1zVS3mzMGDOKxX50+5ZZts6yggLJQiHSPh965ufTObZpUq6dmTueZWTMImCYC+GXdWj478xy61AgpV7ROlG5uXlSOtKJVUVFSwdRJ0/nx/WlUlFQ0eH55cUVcWwrd0Jm07WWenfMgeR1yGkfQhmKX1rggo0Zx8kjbT3y1bqD0nwi9HchypP8tZMXLSHNF8gv7n6Mqb1qCLIHgZw2Sbafwv0rVS5UEGUQGPm76fRUKhULRIKRdigx+gQx+ibTL658Qt0BJgosatJmFlvchQs//0zLuDCXB2E4VtpQUB2sa+3VTHg7HVeuWwN0/fke7tHRKQyH++/tcXpw9i5VFhYkXScBzv82obJMlgaJggM+XL2uQbDvDK3PnEIhWCZdA0DT5eOmSJt9XodgVUR5pRath+8ZCrhxxM4FyR4l5U708PeuBBhm/A/bbK6aauG7odBvQmYyc9EaXt0H4joKy6qfxPvA2rPKr8B6IrHiaqsJgUeziamHfxYAFZY9BzosI94j6F5Y1ctWwnArfTU6iML7WkWevUCgUCgdpbUYWnFilF0Qq5DbQ+HUNr+EqM8Doj6a1rG4+pk9fVhYVVhqOPsPgmD4NSzE6pEcvnvttZqVHegdFwQCFAT9HvfkfSkIhLNvm0ek/858TTmZY+471rhu2Ymu82FLGtcFqCpRmViiSR3mkFTvNmkXruOvkB7nhwDv57IWvYgzYneGlW96gZFsJgbIggbIgpdtLeeFv/23QGm265HPflNto160NnhQPe++3F/d/ftufkqsxECnnQtpFTqEwLRfSrkb4TmzYIkZ/SLuBWJWmg2sgsuJ1sAtwcs8iQMDJjU4G76FA9fwqAzzjaxvdeKSc7+ReAyBAeBG+5Iu7KFoWKcUu8aNQ7GnIyDLsoiuxC87G9r/3p3WzLPuXU5tDVjg/diGy/OEGrSGMzojs50HrAPjAPRyR8/yfkqsxuGif4VwwdBjZXh95KSncMHosx/ft36A1BrVpy3Ujx8Rc04VgaLv2vDxnNgWBAEHTJGLbBEyTf3z/bVLrHtKjFx5dr/ysCcG4Zmhxdf7QfSqrjwvAaxgcu1e/Jt9X0Ti0tM7d03Sz8kgrdopNK7dw9ahbCVYEkRKWzVpB6fYyzrilgcZhNbas3oZlVp3oWqbNljVbG7zOwHH9eH3lUzstR1MghECkXQ1pVzd4rgzPRBZf6xjKejdIvRoqngXMaG7ZE8jyJ4kL+04ydFxk3o8UPgj9AFoWIuNOJze6iRGpFyK1DAh8Alo6Iu1aRLWCOQqFQqFoGNJcjSw8Neo9lhD5HWmXItIurHdurVgbcIpR7sAEc32DlxGekYg23++8HE2AJgQ3jB7LDaPHNnju9PXruObzTykI+OmZncM1+47mmVkzsKTN3m3a8viEo3nwl6kJPdXJ8PBhE7jz+2/5Yc0qsr0+7jnwELo3oAjaznLF8JFkeX18uqPY2KixdM5svEKjCsXuhDKkFTvFd2//RDgQrozUClaEmPR/n3HgGWPZtq6Azn07kJXfsC/eoQcPZNlvKwj5nVBjT4qboQcPajSZ1yxax+Lpf5DdLosRE4a0SPXuhiKt7ciii6sKlVmrIfAOtJmNEBIhop5k7wHIwAc4HmlwWl3tn9QeQngQmf9sbNGT2FcgUk6FlFObfW+FQqHYHZGBj0FWr4odAP/LSO9hYG8Go6fTlaEhuMdUq7YNTn/q/RpP5sgyiPwOej64xyFE69fNW8rLueiTD/FHnAPsFUWFvL9oAQuvuAbLtvFEPbqH9OjJJ8uWVIaOew2Dg7snd1DtNVw8cMjhTfMAdSCE4KyBgzlroGqppVDUhzKkWylmxOSt+z9k7ncL6NCzHRfef2alYdpSfZCrkyhSLFAW4IL+1+H2uLBMi9vfvYF9jxia9Jpn3noi65dt5Pt3nCqVo48dwVm37byHuzo/vDeNB897EqEJEIJB4/pxzyc31/t7lDIIdgVoOS3TJ9tcSGwGhgS7FCG3IbSqHCvhOQCZfhOUP+LkPHsPRWTc3uziKhQKxe6MlBFk+TMQngFGV0T6DZWGqZR2KzACEyhnuwy5/QgQHsCErKcQnuQ9sCLtKqS5GkL/c9b3HoZIvbhRpLUDn0LJrTjpPQLcoyDrmXr1bUvr5gVbt6BV21cCBYEABX4/bdPSKq8f0qMXN44Zx6PTfyZs2RzRqw+3jk3ukFuhULR+lCHdSrnvzMf49bPfCAcjLPxlKbO//p3L/+98Hrn4GcoLK+g2oDP3fHwzbbs2f6XLjSs2k5mXjuFxYQdClUZ1OOiczEai/73n1If5oOAVXG5XUuvqhs4t/72WG168HAC311157/OXv+G1O97BDFscfv4BXHDfmejVcofqQkrJQxc+TShQVVTr96mLmTFlDqOOHlbrPLv8RccwRQO9HeT8B6F3qH8/azOy9J9grQX3vs6LlvAmJWscWi5Iq8ZFE0S8t19LPQtSz4qXR9oQ/gnsQnDtgzC61C67XYYsvR3Cs5x2Wpn3IVx77Zzsit0WKdmtcpwUimSRRddAeCoQhshsZPgXZPrNUPJ3kKVIYy9E9nMIvX3zy2auBi0fcFPlPabqz9HCkrL4amgzEyGSewUUwoXIfgwpQ4BAiCrdbFe8DRVPgjTBdwoi/fqkDxOklFEjeod8QHi6o68842qdZ5c/A+VP4OjmDlHd3K7e/TaWlXLPj9+xrrSUUR07ceOYcZWe44aS4/Nh2bGHFra0E/ZzPm/IPpw3ZJ+465ZtM3XtGoqDAfZp36HO9lKloSA3f/0/Zm/eSIe0dP51yOH0Ub2dFTVQurn5UYZ0K2Tml3OYOml65WcrYlFaUMY/T38UM+yEB61ZuI6bDrubV5Y83iynsZZl8c4Dk/n8pW/ZumYbbp8b27Jo260NW9ZsQ9rxp+DSlpRsKyWvY8N6HVY3oAGmf/obT13zcmXI90dPfYnb5+HcfyQXEmxGTEL+2L7S0pYUbi6udY4Mz4wq6miFTGs9sugKRN7kOveSdjmy4CTHaMUCcyXSXInIeSkpWeMw9gbvIRD6xnlRQYe0KxFaWr1TAaS0kEUXQfi3ymeRGXejpZyceHzRpU6IHWGwtyELz4S8LxG6UtgKhWLPxg5+A+Fvql0xwSqE4r9QWaPCXIYsvACR/3mzyCSliax4FvwfgL0R8AI2aJ3A3kBCD7WMODU0Gvi9XplKFMUO/A/K7qeyG4X/P0jNh0i7IskVg0DNrhGAva3WGTL0C5RHa4QAWGuRxVcjct+rc6fSUIjj33mDwkAAW0pWFhWypqSYF445IUlZYxnSrj0Hdu/O96tXYdk2mhBcP2o/fK7kHAembXPO5PeZu3lTZQ71Awcfzgn9Ehc6O/+jD1iwdSsR22JbRQWnvv8235x9AbkpKTslv0KhaBxaOgZpj+PXKbO5etQtXLbPjXz+0jdx94P+EPec+kjcdcu00LQqg9m2JVtWb6OixN+k8u7g6Wtf4c1/fsDmVVuxbUmwIkQkZFKwoRBvSvwJLIDhNshq8+cLVHz/zs+VRjRAyB/i+3d+Tnq+y+2ia/9OaHrVP3fLtOjSv472E5HfiS3eZYOZRP/G8MxoPvMOL3IIwtOQcX2k60ZKGQ0TFIjMhxCZjyLSb0LkvIyWdknyC4W+crzLBHFePEwovRVprorf066AyByqXmwkYDshjAqFQrEbI4PfYm8/CXv7cdj+D+Lv2+VQckOCmRaxr1I2WKuRdvPoZln6Dyh/Huz1zt74cQ5CtwC+xJOEF7RGKFoV/Iyqlo44fw58mvR0IXxOAc3qvz8ZQep15BBH5hNrfNsQWVzvXtPWryUQMbGjIXRB0+T71asrc5yTRUqJLSVCCJ6YcDSPTTiKW8buz+snnMJF+wxPep0pfyxlzqaNBE0T07YxbZu/fvU5a4qL48aWhoLM37qFiO28V0icd8BZmzY0SHaFQtH4KEO6GZn73QLuOfVhlsxYzoq5q3nq2leY8uLXMWO2rt2e8ADZ5TEQeo2/LiHwpe1kyHAD+fylb2NCo3dgeIxKL3l1fGle7pr8NwzXnw96SMtOjTGCAVIzGnYK+89Pb6Fjr6rQL00T/OP4B9m8upaq4HoHEDVOlrUkPOu1hrQl/7+a7X8fuXUockt/7IKzQJYgvAciUs9GuGsPRU+ItZVEJ/6y/IX4sTWft/J6LS9jij0aW4pd4kehqA8Z+hlZfB2Y88FcDKV3Yfs/jB1kbSBxN1038d/vumOsNjFSSogpMlkN4SKukwMAqYjsZxEiudSoOtEyiHv2BvaFFtkvglY93UiD4suQ1sbEE/QOOL/z6lPqT3HTE0buyQb1R357we8MeOZx+jz5KGd+8C6loRAHd+/JOYOHsk/7+tO+qrO1ooJQjT7REnhpzqy4sW5dj2thJpH4jOS834o9i5bWuXuablaGdDPy2fNfxXlWP37qy5gxue2zsMzYL1dN17jvs9sYetAAvGle3F43nhQ3Vz5+AbrRCMowCWqLHrctmzNvPwm310VqZgoenyPXOxufZ/D+ezfK3qf+9VhSMnzohoYQAk+Km4v/PbFBa7Tpks/wCUMw3I5hHw5GKCsq56lrXk48wXO4U/REpIBIA5GCyIqPFIjDPRK0HGCHgvOC57DkQ7HDs6H07qhX24bIHGTx9UnNTYirtqqb8d4SIdxOb+dKL4Yb9I6NWp1VoVAoWhvS/yaxxmgA/K/HDtLbOiHRMWiQ/Qq4Rzi6Ag/ghYx/NGPRsVqUs7Qh9XJHJpHuyJV+J6LNzwh38p7TOndOvQREKqBH5fAh0v/WsDWMTuAZTZXODIFd7NQZSYT3SHAPr6Gb6+9pPaZzV7K8XlzRAqM+w+CYPn2TDsWesWE9d//4HQHT8Wr/tnED1385Jam5iRjavn3Cv7nySPzBt9dwcc7goZW9nT26TtfMLEZ16rzT+ysUisZB5Ug3Iy5P/Be27oo1hFMzU7nmqYt54qoXMVw6ZsTirNtPZu/9+nLXh39j+ie/sW19AX337cVeI3o1l+gcf9URfPT0lzG5xm6vi5tfv4axJ4xkwnkHsnXtdjr2bk9mXkaj7t2mSz4v/P4wX776PZFQhHEnjaLn4G4NXmfTii0x3nPbstm0KrFHWggNsp6FyCwnl8w1CKG3rXcPIbyQOwlZ9hhYa5xiY6kXJS9keAaxXgQzGpq9cwj3YKT7cAh/Ue2qB+E9LvH49BvB1R8Z/hX0zoiUiTGFZRQKhWK3I9F3XI0IHaFlITPugNJ7QRhOzYr0a9E8g5Hu5yH0tRMB5B6McA1sHrGFQKacCf53iQ2x9kLWo2jeg5EpJ4O1CYxuiMYI566+v9EZ8j5F+j8EwgjvETtXnNJaR6zes6LXEuwpdMh+ASK/RXXzYITept4tUlwuPjr9LP5v+i+sKSlmTKcuDQrFnr5+HWGz6v0hYtvM2NjwXto7GNa+I4d078lXq1ZUXvPoOsfvlThH+u/jDmBgm3bM3LiOLplZnDt4KO4kC64qFIqmQxnSzciJ1x3F1EnTCVY4xqjH5+bsO06JG3f4+Qcy6ID+rF28gfY92tKlr5PLq2kaY44b0SiyWKbF41e+wNevT0U3NE6/+XjOuOXEWguXXfTARPI75zLtk1lkt83i2Csn0Gtod9zRw4G8jrlxRcVKC8t46pqXWT53Nd0HdOaqJy5scG/pHeR1zOWs207aqbk7GHLQAOZ8Oz8mKmD7hgJKC8vIyIkPRxNCOJ6GBiK0LETmnTsnpJaLczJfLSpB+3N55iL7Maddi/8t0DyQejXCe2DisUKA72iE7+g/tadi9ydRCzyFYldEpF6IDH5LlTHqRaRdGTdOSzkV6R4F5gqn9ZXRw5kvNPAe1iiySBlBlt7h5BoLA1KvQEurvdWUSL8FqXeE0PdOiHPKRISrX+UBqNDbOV0nqu9hFyJL74HIEnD1RWTcsdNGttDbI9KTLS5WC+7R1Wp5RDE3I+1ShBZ/MC+EtlO6OceXwt0HHrJTIualpOAxjMp+0ABZ3j8Xvv/M0cfx+K+/8O7CBXgMg+tHjWF8124JxwohOL5vP47v2+9P7anY/VG6uXkRNfMudgeGDx8uZ83aeS9eU7J87iomPfop4WCEoy45lH0Obp6T65q8dMsbfPjElEqj0pPi4bpnL+GQieMbZX3LtLh06I1s+GMTZtjEcOm07daGF+Y/nHQ7rMbGtm0uGnA965ZU5V7pLp1Dz96/suVWSyNlGFlwGpircArHgMh+EuFpnL+X5GSIOC81MgjuoQgtq9n2VjQ+QojfpJSNE8sZxderg+z+UAOK3rUgi0+4q9GfX7FztGbdLCMLkBWvAibCdzrCM6pF5LBL73cOPSuNSh9k3ofmO6pR1pcygtx+TDUvsAv0Loi8jxG11cloYqS0kNsnOFFclRjgOwUt864WkakmIdPkhHffZG1JcWXBsuePPp6xXbo2mwwRy2LGxvWETIth7TuQ+ScNeUXLonTz7qGblUe6mek1pDs3vXZ1S4vBL5/MisvX/uWjmY1mSK9bupEtq7dWhlKbEYvCzUWsXrCO3vv0aJQ9GoqmaWTlZ8YY0lbEYs2ixCFkzYE0lyOLbwBrPRi9EVmPInLfgeD/QJY6oeFG84XwSxlCFpzieFyQIDyQ+z7CqKOKqkKhUOziCNcARNZDLS0GhL4lLl879DU0kiGN+QfYm6kKpY6Avcn5znf1bZw9GogQOlLLrmFIm46sLcTSgu1c/+UUNpSW0Dcvn8cmHMWHp57J/1YupzQUYnSnzvTIzmk2eQKRCCe8+wariooA8BgGH50+ke5ZjRuur1AoGkaLFRsTQnQWQnwnhFgshFgohLg2wZgDhBAlQoi50Z87WkLW3ZGaecy6oZPdLqvR1jdcCapM2jKmOJpt27z/6CfcePBdPHDuE2xdt73R9q+NfiN74/ZWnbq7vS767tu7yfdNhNNz+kwwl4Asg8g85zMawnc0IuXMZjWiAWT5c448RAATZIXTW1qh2E0RQrwshNgqhFhQy/2zhBC/R39+EUIMrnZvtRBiflQ/tU5XawNRurmFiQuxNpKqSp08rvjYTymdMPLKjzZ2+UvYBedgF9+EtDY34v61iTUYp1jbDjzgGtL0+yagNBTk9PffYen2bZSFw8zetJHTJ72DoWkc06cvZw0c3KxGNMATM6azrKCAiG0TsW3Kw2Eu+eTD+icqFLsou4pubkmPtAncIKWcLYRIB34TQnwlpVxUY9xUKaVK2Gwktq7bzr2nPsLyeasQQqC7dDRd4EvzccYtJzTaPh17t6ffyD4smr6McCCM2+em5+BudBtQVWXymb+8xhcvfkPQH0LTNWZ8PoeXF/1frcXKireVYIZNcjvk1JrLXR/n3HUqS2YuZ8mM5Qig97AeXHDfmchoX8hmxVyE87/BjpcaC2RR1DvdrXll2UF4avw1a+cLqih2X+Tu077iVeBJ4D+13F8F7C+lLBJCHAE8D4ysdv9AKWXTnwI2H0o3twDS2oAsugbMpTgVsA1ABy3VqY7dWBg9wbV3tB9zCPDy/+yddZhU1RvHP+dOz/bS3SGChIQKBgYqKiq2KCoqBgZigIEigihioIL+wG5RVOxARQlBSrq7Y3tnJ+89vz/uMLuzM5s0nM/z7CNz76k7wr73Pe97vi+21mApzBSTuU+D9xvAC0EL0v8XVPu5xGM+Us8AQqBVr7QdFUmDkMGlEFwGSFNELOm+w2KbF+/ahSGNQsssJXs8Hrbn5VEvZf80SyrL9M0bY65tiFNzWqFQtjnCIbHNh82RllLuAHaE/5wnhFgB1AGKG+vjkp0bd/PfH0txJTo5tVdH7M79V042DIOHug9j16Y9GLp5/lbTBDcNu4bzb+l+QNW2hRCM/PExPh/9DWvmradJu4ZcO+QytHDpCSkl37/xK6Ggmfpt6AaBggCzpszlwlvPiRpLD+mMvO4V/vluHpomaNK+Ec/9/ATupIrXN3a4HIz5Yxi7N+9FSonfG+CuDg+zbe1OqtZJ58kvHjx0EWqRSJSoGJhKsCIhpqn0/wP6RjP9uwKlS6Q0QN8OmhuhlWMHXcRTP1VV8hTHLlLKv4UQDUu5P6vIx9lA3YO+qMOIss2lI0ObITAHtERwnHNAqhpIGUJm3GCmWIe1MUCDxPsQ7isOqNq2/Agx/wABAABJREFUEBqkvxvOPloO1hMRif0j5bqkNMD7BeZ+CpgbvD7w/wmu6M12KYPI7PvB/7d5wdYG0t5CaLE2rOx1uSD9E7NetxBIwxM5yy21mqZWiK31fjx5+Umy29GLRe1DhkFCMX0XKSUzt2xmU042LatW5eRadco9h24Y7MjPw22zke5yl9m+mjv2O41fG1uhODY4WmzzEXFGOvxFtQfmxLl9qhBiEbAdeEhKuayEMfoD/QHq169/kFZ6aFg2axVDzn/GDFRqghr1q/LanFG4EvZPWGLvtkwyd2RFnGgwS3I1alP/gJesArA7bNw4NFaVfB8SGfNZStPh//5/v7Fs5krqtayD0AT//rQgct567YL1jB/4Lg+9XTmlUCEENRpUIxgI0qfBXWTvzkFK2LMlg8E9nuHD9ePiqngfcKwnmLWq/bMx1WJd4LoUYYlO4zNynwHvl+F0PIFMuA0tqexz9lLfi8y80XwxQUe6LkMkjyh9dz9xAGT+QaGDL8B5SeWeT6E49rgV+KnIZwn8KoSQwP+klBMOz7IODso2RyMDc5GZ+8oZCrDWNTUkxH6KPunbwcik0IkGhB1ha3XAS1YBCOFAJN1XSoviIrQSkKYoWMGnEFxoRralDv4ZQFhvJbgEmfccIuWZSq7L/E6l9MPeK0BmmjeM7cjMm6DaNIR28G1zmxo16Vi7DnO3bcUbCuG22riy1YkxDu/QP6fyzcoVGEgEcHenLgzoVLZI3W5PPtdNnsSO/Dx0w+DqVm0Y3v2cUm3zwFNOY/rmjREHXwBXnBC/VJZCcRxy2GzzYXekhRCJwGRgoJQyt9jtBUADKWW+EKIn8A0QN1wY/pImgKkMevBWfPB56fY3IiWyAHas38WPE6ZyxQP7l0WXkOxCL+JEgxntTUit+O7x/iKE4Pybz+L3j6fjLwigaQKbw8apl5zMC7eMY/rkOfgL/NidNmwOW5QwWtAfYsXs1fu9hh3rd+Pz+KOOiwkh2LB4M23POnG/xy8LIQSkjgfvFKS+HmFtBc4Lo9rI0IZwjdDCvw94/od0X4+wRJcbK47MGRwWbwlHFnzfmyVDXJeV2Eezt0KmvW2WRjHywHk+InlI5R5QccwiEUdT+ljVYmekJlTGqAohumMa625FLneVUm4XQlQHfhNCrJRS/r2f6z0iULY5FpnzGFH1mkOboeALSLhx/wbWkiiMAEcGhzilnw42QmhIVy/w/oQpeqaZdbYdZyFzHgLf7+HrjnD97aLCaAEI/rf/iwhtIsrmRa6vBvvJ+z9+GWhC8NYll/PVimVszM6mdfUaXNg0+q/36oy9fLVyOb4i5bBe+3c217duS5qr9Gy5B375kc052RGn+KuVy+lcty6XNC9Z7O2kGjV5p1dvnv77D/IDAS5u2oLB3Q5dNQ/F0YGyzREOmW0+rI60MGstTAY+llJ+Vfx+UeMtpfxRCDFeCFH1GDuPFkP27uh3loAvyJ5tmfs9bkJKAlcOuphvXvsJvzeAw2Wn7VknckKXwyO2dd/426lWtwpzflxIlVqp9H+hLxabhT8/m4keNCOiAV+QYCCIpgkMwzQ6mkWjbvPa+z1/cpXESJR7H6FgiOSqhyAaHUYIC7h7U+KvPWOv+bIii7xUCJsZvSjDkS48gx1GepGBRYhSHGkA4TgNUe2nUtsoFEcRe/e3xIYQ4iTgLeBCKWXGvutSyu3h/+4WQnwNdAaOekda2eYSMLKKXfAjjd0l//4uJ0JLQ7r7QsEnmA6kA+xdwXrwN3Tjrid5JFKrY6ZsW2ogkoaANMxqEhG1bz/IAObRn30b9FawNNr/BWhpIIPR12QwjhDbwcOqaVx9YsnlSfcWFGDTtKhtBJumkeXzlulIr9i7Jyp13BsKsnjXzlIdaYDTGzRk6o39yrV+heIo4JiwzYfNkRZmDsvbwAop5UsltKkJ7JJSSiFEZ8zf2Bnx2h5LtD3rRGZ/P4+g33SCHG4H7c8uPBsUDARZM389CEHzkxtjtZX/f+Otz/ahddeWrFmwgZqNqtP9uq6HXmQrjMVi4YahV3FDkfTvd4Z+GnGi9yGNwjRwZ4KDhNQE7nnt1krPu2HJJp69fiy7Nu0huWoS+VkeDMPAYrVwxlWn0qj1EZR+aG1ObJqdHazlWKOlXjhdcF9/pypjpVBUECFEfeAr4EYp5eoi1xMALXyOOAHoAQw/TMs8YCjbXAr2TuHzwPucPAfCXqhtI2UAgksBC9haVagus5Y8GGnvbG6AWuqD86LDZpuFsJqp30XSv43c5yh87n1ICu2LG7RkRPITlZ5XBleY5SCNHSBSzRKQGKaiuPNihPXwlM6MR8uqVSP1pPfhsFqpk1R2FkG95BRyfL7IN+eyWg+5CrhCcbRzpNjmwxmR7grcCCwRQvwXvvYYUB9ASvkmcCVwlxAihJlPda0sXlPpGOTBt+9i+JVj+O+PZVhsGjc9fTVdenYAIDcjj/u7Pk7GjiyQUL1BNcbOeIaElPKnZ3e56GS6XHTw06MqyvSvZvPpyJjgRxTNT27MiO8fxZVYcaExAE+OhwfPGkZeVj5g1s9OqZbMNY9cSt3mtekc/p6PFISWAmlvI7PvMaPTWi1E2hsIUVgmRAaXQ3AxaDXAcWZENEakPI/MuBbz5ccAaxtwX3N4HkShOEIRQnwKnIWZZrYVeAqwQcQOPQlUAcaHHZtQeBe9BvB1+JoV+ERK+fMhf4ADj7LNJSBSnkdmDYDgXMAKSYMQDjObUBqZyIyrwcgApOkMp3+C0BLLP76zO9D9oKx9fzAKvoeCd0pvZDsJkfYmQitbOCse0shGZt5gloIEwAdaFXD3Q9iagP3ISmNOd7l559LeDPjhOzK8BdRJTmbiJZfjsBa+Vi/bvYvFu3dRKzGJMxs0jGyMvNjjQq7+8jN0w0CXkvY1a3FVq0MjpKZQHC0cLbb5cKp2z4DSM6KklK9jSp8fVyQku3n+1yfRQzqaRYvalZ7wyIfs3LgnkpK8fe1O3h36Gfe8WvEI7c6Nuxl33zvs2riHtt1P5Pbnbzgg6uCV5aX+/yuzjdVurbQTDbB24caoc+KGIfHm+zjlko7UaVqr0uMeTIS9PaL6TKQMIUT0P1mjYDLkPh1uqIH9NEgdhxACYW0E1aaaZU6E23zREUqBW3FgOFa8JinldWXcvw24Lc719UDb2B5HN8o2l4zQkhFVPkTKEGCJss0y91lTNGzfcZrQemT+a4jkRys8jwxtRuaOMCOz9lMQSQ9FbZ4ecnLLUSZc2CvtRAOFZa8i6GDkIZw9ENYjUyi/U+26/Hv7XYQMA6sWbVs/W7qY4X//icDUQzmzQSNev/BihBA0Ta/CtJtuY8nunSTY7JxUoyaaUuBWHCCUbT60tvmwi40pSsZitcRc27h0S9S53qA/yIYlmys8dl5WPvd0fpS8rHwM3WDb2p3sWL+LEd9V3OgfKLx53lLvO9wOzr7+9P2aIyHFjaFHp46Hgjru5P14AThEFHeipdQh9ykiiqkSCMyCwD/gOM3soyVF/qxQKBSK/af472IAQmuJFgwLmOJYFUQaWciMKwvTmkObkPo2RNr4yi73AFBQxn3X/ld3iFcOkpBZZuwIp7gTHdR1hv31B4Ei7xp/bdzA3O3b6FzH3BRIdjjoWq/BIV2nQqE48Kjw1FFGy85NsTkLz13ZXXZadm5a4XH++3MZAX8gUgor4Asw75f/8Hp8ZfQ8eLTpdgLFN2VTqiaRWiOFtJqp3PT01fS46az9mqNJu4Z0OPcknAkOs7JTgoOL7ziPtOop+zXuYUF6iSqXAoAwU8AVCoVCceiwnQQUzehygq0SQRH/LCLHcQDwgf8PsyTU4cLWnpgkBVHFTL3WqkHSA2juS/dzjpPA3gVwmXMJF7hvRGip+zfuYcATDFD8pIMmBHs8nsO0IoVCcbBQEemjjFuf68OaBetZ999GJHBCl2bc9HTFz71arLF7KFKCxaKRvSeHPz+dSdAf5LTLOlO32aFJeR46aRDDer/A0pkrsdos9BpwAXe80PeACq4IIXhq8kP88ckMtq3dQZO2Del6WecDNv6hRGiJSEsd0LcQeemSeuVe3hSKiiA5mkpsKBQHHZH0CDK0HIKrAQn29ojEuysxUEmvZQKp7wXfD0AIHOcirIcmoinSxoXPhi8AbOC6CZH80AG3zaS+Ab5vkaEtCFsrcJxzwMY/lKQ4nNRMTGJrbk4kzVaXBifVqHlY16U4DlC2+ZCjHOmjDFeCk1dmjGDnxt0IIajRoFqljFn7c9qQUiWZoD9EKBDC4XZw1jWnkZuRxx3tH8ab70PqBh8O/4IxfwyjRaf4Ue/MnVlM/fBv/L4A3S7rTKM2lTfsyVWSeOmv4UgpD6paqaZpnHvDkSVcUllE2rvIrNtBXw8iAZEy5pC9XCkUCoXCRGiJkP6FubEpLKDVrpwds3cDkRwueRgCXODqBUYGcu+lIAsACfmvQfrHCFv8EllS3w3eKUjpRzjPR9gqX+ZSaOmIKp8edNsshAVcl+93ObHDjRCCDy67klu/+4oNWVkk2R28csFF1Es5CjPfFApFqShH+ihECEGtRjX2awxXgpNx857jw6e/YMf6XbQ/uw2X3Xchbw56H0+2Bz1kRjhDQZ1HLxyBz+PH7rJzxwt9ufBWc5d477YM7mj/MAW5XoyQzufPT+HZHx/jpDNa7ffzVYR1izayduEGajSoRtuzTjxsJUMOB8JaF1HtJ6QMVqjUikKhUCgOLEKI8pUmLG0MLQGqfo3Mex30reA4DeHui8wdVnhuGkAGkZm3IKXHTINOegzN3du8pe9A7u0Vdrp1pGcipL+DsO9ftY6K2lazosRKsNZF2I/OzK/K0iA1lak39iOo69gssXo3CoXi2EA50scxyelJDBjbL+pa9u6ciBO9j7wsD0gI+kOMu/8dajWuQbvurfny5e/xZHkiKtj+Aj9vDHqPN+aNPmTP8P2E33hz0HsRA9/92q4MmnjXIZv/SEE50YpDzrEiDapQHGEILR2REq2ULY0MYjQxZA5mLmcQcochrfUQ9k7I/InhMlL72nuRec8hqnxx8BcfxvB8CHkvmNUkkEjnZWgpTx+y+Y8UlBOtOOQo23xIUWJjiii6Xd4Fh7tYmY0i/ygD3gDzfl0EmDWti5aSAvBkl6XueeDwe/2Mv+8d/AUBfB4/Po+f3z+Zwcwp/x5W0TSFQqFQKA4ojvMxhbiKUvSN2Y/0zwpfziHG6TZyD97aiiEND+Q9D/jMqLj0gvcrDN8fSFl6dQ6FQqE4mlCO9FHOor+WMfK6l3nuxldZPX9d3DYBf5DfPviLL1/6jjUL1pc63plXn8ZNw68mMS0BV6ITd3K04bbabaRWSzbbXnkqDnehSqnDbef0K0/ZzycqP3mZ+WiW6L/CAW+Akde+wpXVb2XapJmHbC0KhUKhUOxD+v/ByB6Ikf2wmeIcr430I71fIT3vlthmH5q7FyTeY56fFgnmTxR2hJYGgHBeADiL3HOB88LKP0xFMbLMc+JR+CH7PuSuLhjeXw7dWhQKheIgolK7j2Lm/bqIYZePxu816wjP+PpfXpz2NC06Nom0CfiDDOz6OFtWbUcP6mgWjYffHcCZV5dcW/iqQb24alAvABZMXcyTlz2PHjLQLBpVaqXR8/ZzAehy0cnc9fLNvP/UJIL+IOf2OZ1+I0qtn35ASauZSkKKO/L8+wj6gwCMuWU8rU5tQfV6VQ/ZmhQKhUJxfCP905BZ9wFmZpT0/QpVPjWVqPe1kX6zXrS+GWQIsEDqGISzR4njaom3Q+Lt4Tn+Rmbdg1l7WQNLTXBdAYBwnodMGgKe1820b1dvROK9B+lp42CpCcIdLtFYlLCtznkYaW+HsOyf1otCoVAcblRE+ijmo2e+jHIi/QV+vnhhSlSbv7/4hy2rtuPz+AkGQvi9AcbeNaHcc5x0Ziuan9wYKSWGbmCxaRFHFeCi289j0vaJfJ3xHgNevRWLteTzQLmZeXw+egpvP/YxS2eurMCTxsdisTB66pNUr18VocWKoFjtVjav2Lbf8ygUilikFEfFj0JxqJF5r7PPiTbxIj3vRDfyfg+hzWFnMwj4kDnR56JLxX4KWE/ATO82MOMihbZZS7gerfostBpz0ZIfNRWxS1qvkYXMn4iR9yIysLD8aygBIayItPdAq0Hc10xhg1Dp2XEKhaJyHG6be7zZZuVIH8WEAqGYa8Fg9LXcjLwY8bCCvPKfH/761R9ZPX89elAnFAixc/1uxt41scJrzcvK5462D/H+U5/x2XPfMPi84Xzz+k9IuX+qCA1a1ePjjW/w2bYJ2J3RglvBQIiaDavt1/gKhUKhUFSMWNtc1MkFQGbHuZZf7hmk5x0IrQjPFQR9MzJ3eMWWSdiJ3nsxMv8V8PwPmdkXw/PpfttmYWuBVn06VP0LKK67EgBLnf0aX6FQKI4ElCN9FHPZvRdECYM5XHYuviM6LeykM1uhFYnWWm0WWndrWe45Vs1dh7+gMOodCuqs+29Dhdf6y7t/krM3j6DffMEI+IKMu+8dHr1wJMFAsIzeZZNeI5VBb92Fw2UnIcWN3WWnz+O9qdu89n6PrVAoFApFuXHfYJakiuBEuK6JbmPvTPTpOlv4WjkJLiE66h2EMs5Zx6XgSzCyKXTq/ZD3FDKrP1Luv23WrDUgeTjgBJFk/jfxPsR+lglTKBSKIwF1Rvoo5twbzsQwJF+P/QHNYqHPE1fQ6fx2UW2atmvE4A/u5ZU7J+DJLaB1txMYOmlQuedo3LYB/3w3j0A4hdxi1ajfql6F11qQW0AoGLtLv3T6Cj4fPYUbnriywmMW55zrT6d115ZsXrGVmo2qU6+F2vEGkMFlZh1RGUC4r0M4Tj/cS1IcA+xnwEqhOGbR3FeamtkFHwJWROI9CEe0LomwtUGmjILcYSA9YO+ESH25/JNYW4L/b8C/7wJYm1V4rVLmEhMZBwjMQXreRST2r/CYxdHclyPtnUBfD5Z6CGuj/R7zWGDRrp28tWAuIcOgT5t2dKvf4HAvSXEMoGzzoUU50kc5PfqeRY++Z5Xa5vQrTuH0Kyqnpn3loEuY9/N/rFmwHk3TSKqSyMA3yzashmGwftEmfAV+mrRrSJeLTmbSC9/GCIP5vQFW/bu2UmuLR40G1ajRQKVz70MGlyMzrgdM0RfpnwGpLyGc5x7ehSkUCsUxjOa+EtylbxBrrovAdVGlxheJ/ZGBGRBcBUKAlo5IfqrMflIaZkq49IGtFcJxDtLzPtHRbczPwUWVWlvc9VrrgrXuARvvaGfRrp1cP/lzvCEzwPDXpo28fuElnN2o8WFemUKhqAjKkVaUit1hY8yfw1i/eBOhQIjGJzXA7rSX2icUDPFYz2dZMXs1mkXDmeBk7MwRPP7ZAzx7/Sv4PP5IW7vTRqM28VO8pJR8PnoKP06cis1h5dohl3HuDWciRMkiBavmrePz0d8Q9AW5+M4edOnZoXIPfoxgviAVVU71IfPHKUdaoVAojmKEcED6JxBaZSpz205AiNJts5QBZGY/My1cWEAkIKp8jkgdg8x+iGhn2mFGveOOYyA9/wPvl4AdEu9COC8p1TbLwCKk5y0giHD3Oe4zo95ZOC/iRAP4QiFenztbOdIKxVGGOiOtKBNN02jarhEtOzcr04kG+O7NX1k+axU+j5+CXC/Zu3N44ZZxnHpJRz5YN45ajWvgSnLhSnTSsHV9rn/8irjjTBrzLR8/8yU71u9i84ptjL5pHNfU6c+O9bvitl89fx0PnvUU07+czezv5/PM1S8y/as5+/XsRz/xRG/0Q74KhUKhUBxYhLAgbK0Q9rZlOtEA0vMhBBcDXlPYzNiLzHkM4eyBqPY7WOqGa1S7Tcc8XGordpz/gedN0LeAvg5yHkLuOQMZ2hq/fWARMvNG8P8C/j+QWQOQvt/359GPeoKGEXMtpCvbrFAcbaiItOKAs2nZlqgUbkM32Lp6BwB2h5XBH95LXmY+aTVSadq+IRZL/LIcP7/zB74Cf9S1rJ3ZPH7Rs7yzYmxM+29e+wl/kfb+ggCfjJzM6b27HIjHOioR7muRvt8ojDQ4wd33cC5JcQwg4ZgqX6FQHBfoq4mOOusQCouHCgekjAEjB2GpBtYTSi6Z5Z0cWyPa2IXMvhNR9fuY5rLgvWLz+pD5byCc51T+WY5ybmjTjmkbN+ALR6VdVis3tzu+M+gU+4+yzYce5UgrDjjNT27CVPf0iFNrsVpo0rYBC35fwlOXj0bTBMFAiP6jb6BFxyYljuMoIfq9dfUOQsEQVlvhX1/DMOKWA9OP8x1eYe8EaeOR+a+bJUfcN6C5ex/uZSkUCoXiUGNtA/xEoVNrBdsJSP90ZPY9gAVkEJn0GJqtdcnjCEf866E1SGkgRGGyo5QGGCozqjin1avP+J69eH3ubEK6Tt+27el9womHe1kKhaKCKEdaUS4WTF3M4r+XU6VWGuff0r3EFO+Z3/zLh898YSp0C0Cazmz9lnUYdvlofPmFu9JvDf6Yjj3alViiqt+z1zPs8tEEiznI7hRXxImWUvLW4I+YPPYHDN1AswgM3ZQsdLjtXPHAxQfg6Y9OpL7HTL2ztkSr8tnhXo5CoVAoDjDSPwMZmIew1ADXFSWmeBvenyH/f0Qf99FBa4TMvjc6wpw3CunoWmKJKpH4oNmnuNq3SI040VJKZN4oKPgIMDBPEu5LZ3aC+5aKP+wxwm5PPltyc2hdvQZfXnXd4V6OQqHYD5QjfRSwafkWls1cRUq1ZE655OQSU6FLY8eGXSyatpyEFDenXNwBm91W7r5fjf2edx7/DH+BH4fLzo9v/c6r/4yMGWPlv2sY1WdsjDI3Er5/8zf0YmeCLDYLm1duK9GR7nxhe57/7UlG3/Q6e7buxeawISU8+tH9kTY/v/MH347/BT1o7m5b7VbSaiRRrV5Vet19PufdeGa5n/NYwij4CnKfAmE3IwzJI9DcvQ73shTHChJQ6WOK4xwZXAPB+aBVBUf3klOhSxsjtBkCc0FLCo9Rftts5L8F+a8BXiROsyZ0lc9ixpCBBZDzCLHK3BK8H5n/LYqwgb4BSnKknWcj096BnCFg7ALM+UTqmMKRCz4F7+cUOu42ENXAWhNcfdHcl5T7OY8lJi1bwrBpf2CzaAQNg9HnXsDFzVsc7mUpjhWUbT7kKEf6CGfWlLk82+cVAISm0axDY16Y+iQWa/kN9uK/l/P4Rc+aYwhBnWa1GDtzRLmEwwzDYOLgjyNp035vgG1rdjD7+wUxZ4/n/LCAgC9OPUrA7wugWaK17UJBvUQneh9tTj+BD9a9zuK/l5O1M5sWnZtSq1GNyP1/f1oYdY46GAjhTnbz2j/PlvlsxypS32s60fhBhr+b3MeRzm4ILd1Ubs17FYLzwNoQkfQIQks/rGtWKBSKownD+3PYOQWEBra2kPZOhZxp6f8HmXWnWb4KwNIEqnxaPuEwqUP+SxQ6qj5T+Ms/HZxnF5vnD2Kd6H34gWJrlkGwNCx1fs3RBVntDwjMASMDbG3NElf7CPxd7Bx1ECwpaFW+KPPZjlV25ufx1LQ/8OshfOHM9kem/szp9RuQ4nTiD4V4efYs5u/YRuO0NAZ3PYN0l/vwLlqhUJSKcqSPcF7oNw5/QWGEd838dcz4+l/OvOrUco8xpt/4qJJTW1Zt45f3pnHJnT3K7KuHdIxQ9FkmKSWenIKYtompCVjtVoL+OM60gFMu7sCCqUvQLBqhQIhbRlxH/ZZ1ylyDEIK2Z8Y/O1StXhWsNguhcERaCEGVWmlsX7eTcfe/y54te+lwThv6jeqD3VH+nf7i7N68h/m/LcbhdnBqr464Epzs3Z7J7x9NJxgIcnrvLjRoVa/S4x9Q9G1mREEWEWoTNvO6lm6ehfPPxqwTuhjpnwPVfkQI12FbskKhUBxV5D5GxDmVmDWX/b+Ds2y7ug+ZMwRTQTt8IbQGvFPAfVU5egcpTJUuOmhezCUhUpDYiEnFNu+C4xwITGffGWmSHkJYG5S5AiEEOE6Jf1OrhfmKuc/RF6DVQIY2InNHmJFsezdE0gPl2jgoCalvA/8sEC5wnoMQLqS+E7zfImUQ4boAYS1Zi+VQsiU3B7tFw1/klcoqNLbn5ZLscND/+2/4d9s2/HqIxbt2MnvrVn654Sac1sq/uygUioOLcqSPYOI5rIZukLUru0Lj5OzNjfrs9wbI3JFVrr42u41Wp7Vg5b9ro8S82p7VKqZtj5vP4suXvydjWyZSRqeKWSwaA9+8A4vNwrY1O6lWN52qdapU6DmKkp/twe600efxK5g+eQ65GbmE/DoISb2WtRnQZQie7AKkIdm2die7Nu/lqS8fqtRcq+ev46HuwzAMCQLcg5x0v64bP731O0F/EMOQfP7cNzz/21BanXoEpGhZ64EsJu4iQ2CpizSywT+TwheqEMhsM7XQccahXafiqKbYP3GF4rhBSh2kp9hFw4zMVgQju9iFABh7ytVVCCfS1gaCyyh0ViXYO8U2dl8JBe+Hxy7+D9eCSBkOCAhtAkst87x1JZFGLggnIvEepP83MHIw7Y0ASwPk3isAD2BAaBPS2IlIfblycwUWIbNuKvxllDsK6bwQfF+a4ppIZMEESP8QYTup0s90oGiQkhpT9kqXBnWSk9nrLWDOtq0EwgKpQcMg0+tl/o7tdK1X9qaGQrEPZZsPLaqO9BGMEIIWHZtgsWpR11p3bRnVzpPjYezdE7m/2xOMu+9tvPnRZSlO7NoSq60wdcvhstPmjFhHuCSe/uYROpzbBneym9pNajLyh8ei0qv3kZSWyE1PX0PVulUQWuEZDavNwiV3nU9ajVSS05M4oUuzSjvRuZl53NPlUa6qcSu9kvvyxZhvGfXz44DAkAaGLvn57T/w5vmQhvnbJOANMGvKXIKB+GnnZfHKHRPw5vvwF/jxe/xk7crhq1d+wJvvIxTUMXQDX4Gf/z30QaXGLy8yuAqZ/ybS877pEJeA0NIh5TnACSLR/G/KaISWdlDXp1AoFMcDQljAegIxKdG29lEfpZGLkTMUI+MajNyRyOIlo+ztiI5n2MHesfzrSJsA9lPN3/OWhoi0dxCWOMelRCok3AuiBtGvfTZw90Vo6QgtDWFvV2knWhqZGHsvR+4+BbmrLbLgA0h7J3zXAPTwmekCCiPpPvD9jCy+8VveOXOHgiwAvOaP3APeD8LXQuac0ovMfb5S45eXFXt2M37uHN77bwE5vpJS6KF6QiKjzu6B02Il0W7HZbXy8vk9SXY4D+r6FArFwUNFpI9wnv7mEZ645DnWLtyAw2nn/v/1p2n7RpH7ekjngTOeZOuq7QQDIdYuWM/Kf9cydtZINM00mEM+vJdHzh3Ouv82olk0rnv0cjqc06bca0hOT2Lk94+V2e7D4ZOYNPrbqDPLQhN0vbwz/V+4MaptwB/kr89nkbM3l7ZnnUizDo3LtZYx/caz7r8NkVTuKeN+Jnt3ruk0h3fhiqt872Pf97EPT46HCYM/Yt3CjTRp35D+z99AQkpCTL/yZgDkZ3vKblRJpH+WeZaOIGAFzwSo+l2JZ5s1V0+k4zTQt4OlDkJLAUBoqUhHN/D/g5mWaDVfsuJFMRQKhUIRF5H2JjLrDgitAuGE5JEIW+Emt5QBZMa1oG8CghBcjgwugfRPzZRoQKS+jMzsC6HVgAUS70HYO5d/DVoaIv3tMtvJ/Feg4L1iZ5YFOM9HJD0Y3Vb6wfeDGUm2d0HYyrfpLrMfMb+LfdFxz3ug7yQ6/bykzexocSRp5CLznofgKrCdiEh6GKElxnYrbwaAzC27TSX5e9NG7vxhCkFdx6pp/G/+XH7q05dUZ/yjUpe2PIEzGjRke14udZNTSHGaTnRVl5sudepGUrttmkYVt4uTa5WuI6NQKA4vypE+wkmvmcb4uc8TCoawWC0RA7yPdYs2snPD7ojzGPAF2bB0C9vW7KBeC/P88br/NrJ19XaEJtAsGt+89hM9bzuXtBqpB2ydUko+efbrmFrOFquFXndfEKXwHQwEGdjtCbas3EYoqGOxaDz87gDOvPq0MudZ/s/qiBMN4PP42bFhFzEahQKsVvPstMPtoEffM6ME2vSQzqCznmLLim0EAyHWL97EyjlrGD/v+RhV9PbntOGvSbNKFFIDcLgdnHFV2euvLDL3GQrFYnQwspCejxFJ95bYR2ipoKXGXk99DZn3WlhsrIEpNqbORysUCkW5EZaaiKpTkNLc3CxumwkuB2MHhc6j37ymbylUww4uh9BmzCixBQreQ7qvPKDij1Lq4JlIdNkrzDW7b4hS+JbSj8y4ynT+pQ5oyJQxaK5ynPsOLio2h9fcyI1BYEbyQ4AL3FdFCbRJGURmXgehjUAQQiuRwcVQZXJUfWoA7KeA7xegWKWQKFzgvLDs9VeSYdN+xxcyn1vXdTK9BXyyZDF3d+pSYp80l4s0V7TNFUIw4eLLeGXOLOZv30bjtHQGdz1DnY9WKI5wlCN9lLCvbjKYZ56XzliJw+0gMTWeoqOMMupvPPBeRLAsFAiRl5nP16/9RL8RB65+oaEbGKFY4ZNQIMS343/hpCKp5H9/MZstK7dFBNBCwCt3TSiXI12tbhVy9hTuLttddtp1b836RZsIBUMYhsThdnDhrWdjGJJdG3dz8nltufSeC6LG2bxiK9vX7oxsQAT9Qbav3cnm5Vtp1Cb6PNK9424jNyOPf39aGEkXL46UkqbtGpa5/koTIyATinO+rnwIYUckP1h2Q4WiNNQ5LIUi2hE1MiEwH4QbKZyU9Y9E5o6gcIM0AEY20vMRIum+A7hCnbiiZASRBZ8g7B0KL3l/MM9JUyRynTsUyuNIW2pAKKfIBSc4ToXQ8rBTbmA6zteB9JlOtuMMhLtP9Dih1aYwZmQDIgCh9aCvB2vTqKYi+WmkkRMWSivpu5bhNPyDQ14g2okPGgZZPm8JrUvHYbUyuKvSKlHsJ8o2H1KUI32UsWn5FgaePhRDN5CGpHazmtRoWI1ta3YQ9IewOW00atOA2k1rRvoUFyzTQwZ5GbHKnvtD5s5skqokRjm5+yi+U5+bkYdezOn25pXP8Dz0zt08eNZTSEMikdRrUYdrHrmUc/qczrtDPyN7Vw5dL+/MpQMuiI0QRC+q3NddCU5GfPcouq6zdsEGRl73Cnu3ZaBZLKbYmG4Q8AYY1Wcs4+Y9T4MT6sYZeD9xnAveryh86XIiipU4USgUCsXhQQZXITOvJ1zIFbRGpnK1vgUzYuoA24lgKVLdQeYXGyUUFuc6gBh7QSSbopIxFLN3MouYyHXMGuMjUp5HZu47wmWAtRki4TZw9jRTy/VMcF6AcF9Xum2OzS8LEyvpI7RERPpbSBlCBpdC9gNhQTUN0xHXAR9k34+sOgVhbRQzxv5ybuMmfLNyOf6wSJjTauWcRkeGSrhCoTj4KEf6KOPF297Ak+2JqPJtWbGNax+9nKyd2axfvInmJzfhlpHXRZ0H7nZ5Z36YMBW/19w5dbjtnHZZ2eewtqzaxpaV26nTrGappZ38Xj/3n/Y4eZmxBtfhttN74EVR1046sxVaMTGyE4sJqJVEk7YNeXflWJbOWIkz0Un7s1tjtVmp3aQmj38ysFxjANQ/oQ4NTqzH+sWbCPqC2J02GpxYj/onlFyOy2Kx0KJTUz5Y+zq6rnOh47roCLWAJX+vOCiOtEh+DIkffD8DDkh6GOHoesDnUSgUCkXFkTmPRmcO6WsgcYAZeQ2tNussJw2MdiLjbpCeU/ZcoXUQ2gDWRqWWdpJGATLj6rglscCJSOgbfcneBTPtel802AblPLMtbCdC1V8guACEG+ynIoQVrA0Rqa+UawwArM3NGtahtRRuQLQsta61EFaEvR1U/9M8m77rJKKj8MLMFDgIjvSwM88moOv8um4tLquVId3O4JS6R0gpTIVCcdBRjvRRxu7Ne6Ok7QO+IBnbMhn45h0l9rl99I0E/CH+/GwGdoeNfs9eT6fz25U6z5RxPzPxkQ+x2CzoQZ0bh13NNQ9fGrftuv824sktwNALDZdmEbQ9qzU3D7+GE7o0i2rfpG1DBn94H6/c+T8Kcgpo3e0Ehk4aVPbDh0mrkcrpV5RQu7KcWCwWXvj9Kd5/8nPWLtxA0/aNuGn4NTHno0tC0zQcLntUfW5N00ipmrRf6yoJIeyIlFGQMuqgjK9QVAyBlKVFlRSK4wxjR7ELftB3o6UML7GLuUEaNDdIhRMSH0I4Sj/iZHjeh7wXQVhBhpBJg9ASbo7fOLQsrGBdpHAxGthPQyTej7BFi44KW2tkynOQO8ws72XvVCEnWFiqgeX8crePO4awQvrHZhQ7uBJsrRFJ98Wejy4RW/in0DYjRFy9kAOBw2rlxR4H7wy2QlExlG0+1ChH+iij1akt+Oe7eRFRL6fbQZvTS1fVtNqs3D/+du4ff3u55sjek8P/HvqAoD8YOSr1wVOf0/2a06hev1pMe5vDFuVE75vzwbfuokaD2PYAp/fuwum9SxbjOBS4Epzc+eJNleorhOC+8bcz9s4JGLqBxWahUZv6nHapUr9WKBSK4w5bW/BPpzCa60LYTy61i7lBOhJSRpZrCqnvhrwxgL/wHGTei0jnhSWUrbITez7aikgZVWKZK83VE1w9y7Weg4XQEhDJj1eurxDI5KcgdzjmBoINrK3AcdaBXKJCoVAAypE+6nhgwh3s6ZnB2gUbkFJywW3ncPb13Q7oHHu3ZWKzW01HOozNYWPP1sy4jnTtpjVISk8k4A2Exb7sdOzRlur1qx7QdR1pnHfjmdRvWYcl01eQViOVM68+NUoZXKFQKBTHByJlFDLz1nAJKAnua8F5gB1SYxcIG8ii0VabeT2OYywtDUEkmeJeGJgCYGdVulb00YLmvhJpbQbB+aBVA+eFZqRboVAoDjDqN8tRRlJaIq/98yx5WfnYHDacbscBn6NW4xpIGS37p4d06javFdM2GAjywOlPkrUrB8OQaBaNei3qMPSLB8sQFDk2aNGpKS06NS27oUKhUCiOWYSWBlUmg8wB4UQI54GfxNKA2AizEb4ejZQByLwWjMxwH4spAJb68oFf1xGIsLcFe9vDvQyFQnGMU95DJ4ojjKS0xIPiRAMkJLsZPmUw7mQXDpcdZ6KTJ794kJSqyTFtl81cxc6NuyOp5oZusHHZlhilcIVCcYwhj5IfheIQIYRAaKkHx4kGhJaMSB0HIgFwgkhApI5DaCmxjQP/grGTwlRzHUIrQFauNJNCoThKONw29zizzSoirYjhr0mz+HjkZKrUSee8vmdy5QMXY7Pb4rYNBfWYyLMQIuJYF8eTW8DKf9eycs4a0mqkcu6NZ2B3xB9boVAoFAqFieH9HvLfBFETEq5AJPRFCHv8xjJIbCkpQaFjXay5kYcMLkYEF4NWFVyXljy2QqFQKADlSCuKMeeH+bzQbxz+ArNU1ntPfIYe1LnhiSvjtm91anOcbgc+jx9DN7A5rDTr0Ii0GqlR7Ty5BTx89tOsWbA+cs3mtPH9m78wdtbIEh11hUKhUCiOd6TvN8h5jEiprPwXkRJE0m3xO9g7gnCEVbsNwG4KoonU6HGNXLP+c2iF+dnsDAWfQ5VPEULZZoVCoSgJldqtiOKHCVMjTjSYqdofDJvEtrXFS3uYuJNcvDZnFJ0uaEfdFrXpfm03Rv38REyUevRNr0c50QBBX5Ctq3cw65u5B/5BFArFwUOClOKo+FEojgVkwWcU1psG0MEzBhnaHLe90JIQVb4E++lgaQyuXoi0CTG2WWYPijjRhQRAXwv+Pw/oMygUioOMss2HHBWRVkRhd8buPktD8tPbf3DbqD5x+1SvV5UR3z1a6riL/1oe93ooqJOX5Yl7T0pplpY6AErYvgI/0jBwJbr2eyyFQqFQKA4pcc9dG0jv14ik++N3sdRBpE8sfdzggvjXpY40cmOSw4GwGKl+QJSwpVEASISWsN9jKRQKxaFGRaQVUVw75PLYY1WYqt37Q1J6YtzrQX+QXz+YFqMS/s1rP3JRQh96Oq/nwbOeIi8rH4Ccvbn8+Nbv/DDhNzJ2ZJU5rx7SGXXDWC5L7cvl6bfwRK/nCPjjnxE7UGxctoWf3/2TuT8vjHkuhUKhUCgqiki8M95VzFrJ+zNwUgk3/FDwdYwNMzzvIne1Qe5qjZHZF2nkASCNTGTBJGTBZ0h9b5nTShnEyBqI3H0ycndHjKy7TaXxg4gMrkYWTEb6pyvbrFAoDgjKkVZE0bR9Iy6750Is1sK/Gg63g3NvOGO/xn3onbvjOugAK/5Zze8f/x35vPCPJbz16McEfUEMw2D57NU83/c19mzN4NZWDzB+4Lu88cB73NpqIFtXby913kljvmXmN/+ihwz0kM7C3xfzzuOf7NezlMafn8/kns5DGHff2wy/+iWG9X5BGWzFscnhVvw8zpRBFcc3wtYGXNcDRTO0nAjnxfs3cMqoku+F5iJ9P0U+Sv90yHsZCAAGBOYjcwYj9W3IPRcgc0cgc59F7r2gxJTzyFie/4H/D8yNAB38M5B5r+7fs5SCUTAFmXElMu8ZZPa9yOz7lG1WHJscbpt7nNlm5Ugfo/z41lT6tRrIrScO5OU73uTGJgO4rt4dfDh8EoZRvA5lNHe/cgt3vngTzTo05qQzW/H8r0Np0rZhVJtQMMSYfuPo6bqeXsk38ulzX5c65klntGLcv8/RsnP8msszvi48J71o2rKoc9qhQIgl01fw3tDPyMvKx1/gx+8N4MkpYOR1L5c676I/l0aNFfAGWTwtfpr5/iKl5MVbx+P3BvB5/PjyfSz4fQnzf1t8UOZTKBQKxdGF4fkUY8/5GHt6YmQPxdjdHWP3GRj548t07ETyU5D0CFhbga0LIv0DhK15VBspAxjZD2PsbI2xqz1G/luljqk5ToP0L8HaJn4D32+FYwfmEH1OOwiBuci8l0Dmhu/5QOaaZ69Lwz+72Fg+CMwpvU8lkVKH3MfDayswfwLTITD7oMynUCiOH9QZ6WOQqR/9xfiB7+Ev8AOwecW2yL3PR3+L1W7juiGXl9hfCMFl9/bksnt7ltjm7cc+Ydrnswj6gwT9QT4eMZmaDavT/dqucdsv+H0Jnz//DXa3HaEJpBH9wlCjQdXIn6vUSsPhsuP3FjrAKVWTydieiaFHbwKs+28TM7/5l66XdY47b+0mNVk0bRmhoJn+plk0ajaqXuJz7Q9+b4CgP7bsV8b2zIMyn0KhUCiOHoyCyZD3HBCu5ayvLbyZ/z+kcCASbi2xvxACkXALJNxSYhuZ9zz4fgECIAOQ/xrSWg/hPD9+e/8M8EwE3JhpY8WceUvtwvm16kgcgL/wvpYO+m5MZfAihJYgfX8inN3jL9RaP3w+e5/NtIC1XonPtV9Ib+z6EGDsOTjzKRSK4wYVkT4GMZW3/XHv+Qv8/Pb+NP6aNIsf3/qdHet3VWqO2d/Ni3J0/QV+/vk2vvr2omnLeLLXcyyYupjF05YjtOgcb4fbQbW6VRh53cv87+EPOOWSjtRpXgtXohNnggOn28GDb9/FKZd0jOkrpeS7N38tcZ03Db+GKrXTcSU5cSc5SamWzF0v31ypZy4Lp9tB7aY1o9YodYOWXZodlPkUCoVCcRTh/YyIEx17E7xfI70/IAu+QIa2VG4O/zSiI71epO/3uE2lfyYy624I/AOhOcS+ErpBS8fIHoiR+zzS2QOsDczruEC4ECkjwdmd2LNbEun9rMRlisQHQasGIsH80aogkgZX8GHLiUgAS63oNUodbCVE4RUKhaKcqIj0MYjD7Sj1/q7Nexhz2xtIQyIEjPrpcVp3O6FCc6RUS2br6sKSWBarhfRaaXHbfjX2hyin2wgZ1GtRm4at65GYlojNbuX9pz7H5/FjtVmY9vksRv30GH98OgNN0ziv75nUaVqLk85oxRdjvmX35mghk3hK45F1Vk1m4tKX+O+PpRi6QbvuJ5KQcvDUQUf99DiPXTiSbWt2YHfaeejdATQ4oe5Bm0+hOHwcO+UrFIpDQzzl7SKENiFzH8csEA2kvYewt6/YFFoa6EWdcCtYqsVtKj3vEVNSS2sCtqagpYDUIP9VTOffBr6fIHUC+L8HLAhXb4S1Htg6ID3vglF8Y77kdxFhqQJVfwynV0uwn4LQ4ouS7i9CCEh7F5l1q/ndCCckj0ZYGx2U+RSKw4uyzYcS5Ugfg9z45FUsnbEi6mzwvnRqq82CoRsEvIXK1S/e9gbvrqyYyMeAsf0YdOZT6CEdzSJwJ7m55pFLY9oZhkFmHHXt5CpJPPnFQ0gp6em6nlDATO8KBXVy9+Zyd8ch2J02QkGdXZv28Mh79yCEYMiH9/HoBSMijrnD7eC6R3uXulZXgpNTL+lYoeerLDUbVuedFWMJ+ALYHLaYmp0KhUKhOD4RSfchM28l2nndl05tBQyQ4WwyCTLncUS1Hys4x1BkVl8z4ooGWnLcdHEpDTDiqGtbqqKlvYaUBnJXawpTr4NgZEBmbxB2kCGksQuSRyKEBikvILP6F3k2FyKxf+lr1RLAeU6Fnq+yCGt9RLXfkNIHOJRtVigUBwTlSB+DnHhaC176azg/TJiKEIJTe53M8lmrCfiD5O7N49f3p0W137F+F2P6jeOWkddTpYSocnGadWjMhMVjmPP9Aqx2K2dcdQrJ6dFlNKSUDL/qRdYvjlbvdLjtXB12uqWUyGLiZwGf6eQHw2WqZnw1h7Ou6UqXnh1oc/oJjP79Kb7/369omkavu8+n+clNyv3dHCrsTvvhXoJCoVAojiCEvROkf4j0fgFo4DgHgvNABk2n1vdtdAd9I0bOY4jEQQhL1bhjxs7RFqp8Z6Z4Czs4L0RoKVFtpJTI7LsgtLZYbyci8bbwnw1ipXX3OfnhTXrvD+C8CBxdEY5TIP09ZMFnICwI940IW6tyrflQIuLW41YoFIrKoRzpY5TmJzeh+f8KHcwuPU8GYO4v//HXF/9EnaHWQwZTP5rO3J//450Vr5Q79blWoxpcdu+FJd5fNnMl839dRMAXXRuy2+Vd2LVxD7mZeSSnJ9Gtdxf++W4+AW/8GpJ6SI86y93qlOa0OqV53LbF2aeCqnafFYoDzDFUvkKhOFQIe1vT2d2H80wApO9PpO83os9Qh8D7jVl2qupP5U59Ftb6YO1bcoPAnLBCdjEtFecFZnq5LQehpSAdZ4P/73C7OEJkGFFp5MLeAWHvUK41SimVXVYoDgbKNh9SlNjYcUan89vRb+S12BzR54r1kI4338ecHxcesLmy9+SiWWL/ik37bCZvDfmI21sPIntPDo+8fy89bzuH2k1r4kqM3S0OhXSatGtYobl9BX6e6j2aCx3XcknSjXzx0rdld1IoFAqF4jAgnN0h8T6geDZTCGQ+BGYcuMmMTOKeo/R9h8x7Abn3IqSRhUh9CVxXgKUB8c93B8FaMX0VaXgwsu5A7mqFsbMthuf9yjyBQqFQHBEoR/o4pPf9FzMl5/0YBWwApCQ3I485P8xn0V/L0HWzbNSKOWt4qf+bvDpgIhuXlU9NtEWnpjHlqgB03SDgC5KTkcc3r/2E3WFjwNh+/O+/MfjiqI0LBClVkyv0jK/ePZG5P/+HHjLwF/h5/8lJ/PPdvHL1NQyDHRt2sWdrRpl1PRUKhUKhOBBoibdC9XnEfzWTSCPTjFwH5ppnnAEZWIiR8wRGztPImFTtErC3BRlrm0EH/GBkIj2fIIQDLWUYosrXQPyMMbTyHQeLPEXuk+CfGZ7LC3kvIv1/la+vNJChLUh9Z4XmVCgUioOFSu0+TrHZbXS/tiszv/kXf0EAzaJhd9qoVr8qfZvdgzQkhiFp1r4RfZ64gqcuH42/IIAQ8NsHf/HKjBE0adsQKDlFq1rdKgyfMphnrx9L9p6cmHQTPaiTsze3cE0Oa9wa0za7lYLcAvKy8vn57T/Iz/HQpWcHWp3aosTnm//bYoK+QkE1f4GfOT8uiBEd8+R4+OuL2QS8Adqf24ZlM1fy0YjJZO/KBgQdzjuJYZMfwmpT/1QUCoVCcXDRNCeGo0eRMlYaCCdSVIU952EaUgOsJyETboPse9gn8CV9X0P6JITNPPpUkm0WljqQNh6Z/SDILGJzQUPh6/s6lKS+bQeZjzSywTsZaeQiHN0R9nYlP6B/JtFOuQ/pm45wnBnVTBq5pkq4DCDtp0FwLuSPD0fTQTrOQKS+ihDKNisUisOH+g10HPPwuwOo2ag6839bTPV6VbljTF+eunw0nuyCSJvV89fx6t0TIwrgUoLP4+fz0VO47bk+PHXZaNYt2khSWiKDP7iXzhdGl+pof3Ybvtj5FuPuf4dvXvspZg2n9eoU+bPFYqHvU1fz3pOfRdl1V5KTqnWq0L/tQ+TsySEYCDH5pe95+L17OPOqU+M+W0q1pBi18Jlfz6H/6BtxJ7kAyM3I4472D5OXmY9hGIQCIYQAQy+c/L8/ljBpzLdcX4YyuEJx3KGSNRSKg4JIHYPMe82s72ypjUh+FJl5G8i8wkbB/yDvaaIUwKUX6Xkbku5DZt0JodVIkYpIfRHh6BY9h6MrosZsjJwnw/Wti63B0b3wz8KGTLgLPK9HN9KSkFoV2HsxGFlAyCyDlfoiwnle/IfT0kDPjL7m/wlpDEJobvMxjEzk3l5g5GKKngUxU9GLRNH9M5Ce9xGJsYrkCsVxjbLNhxSV2n0cY7VZueWZ63h99iie/OJBajSoFlOj2V8QoCDfF9PX5/Hx6AUjWb94E9Iw08GHX/Ui29fFT7mqWrcKVnv0vk2V2ml0uiDa8e7z+BU89NZdVKmdht1po2mHRrz89zP8/cU/5OzJJegPgQS/N8Abg94r8dkGvtE/5ny2J6eAT0ZOjnz+auwPZO/Kxl/gJ+gLmlF4Pfo3kL8gwMo5a0qcR6FQKBSKA4kQdrTkB9GqfomW9irCUguM4rbVB0ZBsWsSZAEy82YIrQl/zkJmDUCGtsafzFITiNZMQdRCOLpGXdKS7oPkEaBVAxxgbY1I/xTh+y7sRAfN+fAhc0eW/GwpzxDz6mnkID0TCp/C83Y48uzDjF6Ho/DFnz/4X4nzKBQKxaFAOdKKKJqf3BiL1RL57ExwcNqlnXC4C1O7HG475/Y5nW1rtkedgdYsghWz4zudve7qQa1G1XEmOnG4HTgTnTw1+eG4bc+/5Ww+2zqBHwo+4Y15o6nbvDb5OR5CwVBUO58n1sHfR6tTW1CzUfWoa0F/iG/f+JUNS81yXBk7sggF9RLHALA7bTQ8sV6pbRQKhUKhOKjYWgGFthnhMstnCVeRRk5wXgj6NqIcT6FBcHHcYYW7L1hqg3ADLhBuRPrrcdtq7qvRqs9Eq7kErepXCGt9MwWbYHRDWdzBLzKfvSNotYpdDUDBB4VnvPXdFNavLgkHWJuV0UahUCgOLsqRPgKZ+c2/3Nb6AW5qdi+fj/7mkApeDf7wPuq1rI3NacNqs3BR/3O5f/zt9B99A3Wb16L+CXUYNPEuuvbuEhPx1UMGa//bwKJpy2LW7Ep08caC0Tw48U7uebUfby15iRO6lN8IdunZAXsRpXG70xaVFh6Pk85oFaNO7s3z8uBZT+HJ8XDKRSdHbRAUR7MI6reqy3WPqbRuhSIKCUhxdPwoFAcIw/szxp4LMfach+F5+5DaZpHyIlgaAg7ACq4bzOhu4gPmdUtTSHkunFJd7O+91JHBZcjA3NhxtURE1W8RySMQyUMRVX9E2NqUf12O7kQrejvBeW7pneydiFEnl/nIjD5IIx/hPBtwxesZRgNrc0Ti7eVep0JxXKBs8yFHHIuqxB07dpTz5pVPoflIY+EfSxja67nImWRngoMbnryKax6+tNR+Uko2Ld+Kz+OjYev6OEtxEMtCSknWrmwcbgcJye4S2/341lRev/dtQkE9ImricDtASrpf25VBE++q9BriMevbuYy//10K8ryc2qsj94+/HbuzeKmQQgrCTvPahRuirruTXQyfMpi2Z57IFy99y4fDviAYCNG0QyM2L9+Kz+OnUZv63Drqejqcc1JUhF6hONoQQsyXUnYsu2X5cTSsK2s9dd+BHPKgsanf4AP+/IrKcTTbZumfgcy6m8IzyS5IegAt4ebS+0lppllLL9haIES8MlLlXIOUYOwxo8al1JQ2PB9D3rOYytgSECCc5p+dl6KlDK/0GuKuy/crMvdZkB5wnodIHoYQJdtmaeQjM6+D0KroGyIRkfYWwt4BI38CeMaDDIH1RAitBnxgbQmJDyIcpyihMcVRjbLNx4ZtVr+FjjB+/eCviBMNprDXz+/8Uaojres6w3q/wMLfl2KxajgTnLwy4xlqNapRqTUIIUivWXZJi1qNawCFKttSSnzh89R/fjaTi+7oQYuOTcocZ+1/G8jYnkWTtg2oWqdKie1O69WpzCh0UdxJLkZ8P4QbGt4dlcKthwwSUswNgqsG9eKqQb0ACAVD/P7xdHZv2csJXZrTsUfbcs+lUCgUimMX6Z1MlLAXXij4AkpxpKUMmaJfgblmerVIhCqfmarZlUAIAZbqZbezNkBGiXPJwnRr7xSk+1qErVWZ48jgMtNxt56AsJT8PiGcPRDOHuV4gnB7LRGZOgH2nktUWrgMgUgCQEvsD4n9zcsyaK5b34mwt485v61QKBSHC+VIH2E43XaEEFEpY45Soq4Av7zzJwt/X4o/XIPZl+9jdN/XeXn6M5E2W9fsYPvandRrUTvsAO8/n476mqA/GPeeZtHI2J4JlO5Ij717Ir99MA2rzYoe1HnyywdjBMj2hyq10ul5+7n8+v40fB4/zgQHJ593UqR01z50XWdwj2dYPW8dfm8Ah9PO9U9cwXVDLj9ga1EojiWOwWQmhaJkhBszZbrIX/yyosvezyHwL+ALp1x6kTlDEOkfRprI0AbQN4OlMcJ6YPQ4ZP6blFj3WVjA2A2U7EhLKZG5T4D3e7M9OqSOP6AOrGatheG6HLzfAV7zrLf9LLA2LbaWEDKzL4SWg/QjPQ5k4n1mzW2FQhGDss2HFuVIH2FcMfBifv94Or58P1JKHG47t4y8rtQ+G5ZujjjRAIYh2bJ6OwCr5q1j/P3vsPLftdhddgzd4O6Xb+ai/iWUpqgAxcW/iqKHDJq2b1Rq/39/Xshv4Qi8P2z0R1zzMt9kvx+39mVp+Ar8TBz8IUunr6R205oMeLUfVWunA3DPa7fS7uw2rF+8kTpNa3H29d1ixl/05zJWz1+Pz+OPjPf+U59zxQMXR85m67qON89HQoq7wutTKBQKxdGLSLgF6fvBTNFGAk5E0sBS+8jgKqKj2AaE1pv3AouQeSMguBTz3LOBTH4SzX3lAVht/A1uc2IdrCeU2lv6/zCdaLyRfQOZfT9Un1th2ycNDzLveVNh29LQPIdtqQaASH4GHN2QwVUIa2NwXhQ7fmAWBFeYawHzv/kvIhNuiqR2S6mbEXeRqGyzQqE4pChH+gijbvPajJ83mimv/4TfG6BH3zNp3a10o9ekXSMcbkfEmdYsGg1PrMfSmSsZ3OMZAl7TSd2Xdj1+4Lt0vbwzqdVSImP89uFfTHzkQ/zeAN16d+H+N/pHiXvF4/J7e7J0xspIavc+NE3wxGcPMP/XRWxZtY3GJzXknD6nRwycruuM6Tee3z+Zjixebsrrx+fx4UosTWgkGiklT1w8iiXTV2DoBusXb+LfHxfwyeY3SKmaghCC03t34fTeXUocIz/bE2OAhRD4C/zYHTb++uIfRt/8OkZIJ61mGs/98gT1W1YuPU+hUCgURxfC2hSqfIX0fAQEEK7eCHuH0vvYWiG9LgqdQAtYmyMD/yIzbwX2bYCH065zn0Y6z0NohbbZKJgM+WNA+sF5ISL5qVLPHwPg7gs5/0FMQVkNUseC/y+M0AYzvdt5ccT2Sakjcx4G34/ElJuS+ZhR7vLrr0gpkVm3QXChOV5oJXLPNGT16WiaaZtxXoBwXlDyIEYuMeJpSPP7EFYM73eQ8xigg1YD0t9FWBuWe40KhUKxPyhH+gikbrNaDBjbL/I5FAzx+egprJi9mgat6nLD0CujHM0eN53J/F//Y9a387BYNJKrJDH4g3sZc+v4iBNdFKvdyt6tmRFHeuEfSxh714TI2ey/Pp+FzW5l4Jt3AJCXlQ9AUlq0uMnpV5xC557t+feHBZFUEpvDygX9zubHt6ayYOoS/AVmOvXC35fw8LsDAJjy+s9Mnzw7xokGSK2RWiEnGiB7Ty5LZ6yIKsUV8AV5od8bjPh2CAAzvp7DpBemAHDNI5fR9bLOUWO0Oq1FVD6MxapRt3ktElMT2LpmBy/c8nrku9y7dS9DejzDx5veULvfCoVCcZwgrI0RKU9GPksZQHomQmAR2JohEgYgtCICna6rwD8T/NPMFGktHZHyHDL7QQqd6KgJQN8FYUda+mdC7tNEotre75DCgUg21yCNHEAgtOSoYTTXRRgFX0FwBoXOtB2c10HBR2H1bi8SFwTmIFJGmON53gHfVGJrNgNaTYSooIipsRuCi4qN54OcxyHNLLFleH8CzzsgNETCHWHF7iLYTwYhi+wJWMHaDKElmOWych4n8l0a25FZ/RDV/qjYOhUKhaKSqPJXRzhSSp6+YgyfPvsVc35YwNev/sTAbkOj0qo1TeOxTwby9rKXGTtrJO+uGku1ulWi0r2LYhiSWo0LBUtmfzcvSuDM7w0wa8pcAv4gT/R6jqtr3sbVNW9j6KXPEwxEp4w98dkgTuzaEofLjsNtp2n7RpzX98yIEw2mYNqfn89k95a9ACz+e3nUfPtIrZ7CqB8fK9f34sktQA+ZAmLSMND1WMO/ftFGAGZNmctzN77KitlrWDF7DaNuGMvs7+dHta1aO51RPz9BrcY1cLgdnHBqC57/dShCCNbMXx9V6ktKyNyVTfaenHKtVaE4JpFHyY9CcRAwo613Qf7/IDANPB8gM/sgZaFtFsKCSH3VLCmV/gWi6i+maJf0lTxwESEy6fuN6NRwH/h+Q0o/RuatyN2nIXefgpE1wBTkKoJIew1s7TBLUznB1gbcF0LQdKJNvOD9BqnvMT8G5habL4xWFZE2sXzfi5Ef+Q6kNIhbDzq4DDDLiZEzGEKLILgQmT0Q6f87+jkstRBpb4GlLuACWwdE2tvhcZaGz3BHZgd9O4aeXa61KhTHJIfb5h5ntllFpI9wMndmM/+3xRFRr6A/yI71u1j571pad20ZaSeEoGbDaDXPi/qfx9qFG6McapvDyrDJD5GQkhC5llQlCavNEqVs7U528+GwSSz8fUnk+oJfF3FDo7vJy/RQtU46j31yPy07N+Olv4azY/0upJT4C/yMuPZl/N5oJ95qteANp5bXbV4LzaphhAqdXyEEF9x6No3aNCj1+9i7PZMh5z/D1lU7EELQd9hV/Pbh3wgEsti/zDrNawHw9as/Rm8UFAT4+tUfOOXik6Pan3haCz5Y+3rMnNXqpsekr+tBnXs6P8rLfw+nev1qpa5ZoVAoFMcYxo6wkNg+W+cHfYPpJNoLKz4IIaC4iJj7GshdQ6FDC+BApI5HaIW2GS0N8zWtiDMqkpB5L4XnDjvP/r+Qe84yI9SWmojUl81a0OmfmUJmCKThgZz74zjxFiKK3taGEAiLixVOCK5rELZmpX4dUt+BzOwH+iZzvoT7wfclMQJtAJawfkrBBxTfKJCeDxCOM6KaC3vH+FFmrWbs2BiQ0RtZ5ROEpWapa1YoFIr9RUWkj3D0kE7x7GGhiUg0tjTOu/FM7nr5Juq2qE3dFrXp/8KNfJP1PiefF13Wqddd55NcNRmbw4Zm0bA5bQR8AT4b/U1UanjAHyRzR3bEmR/c4xmyducghKB2k5osnbGCuzoOZsvK7VG2TQunm9dpahq1qnWrRDnRYO7u//JO/HSsLau28dPbvzNrylyG9X6BLSu3o4d0QsEQ7z35OdvX7qR4PXRngoP7x90OgMUWWwe6IrWhT+zakm5XnILNEb3vtHdbJs9eP7bc4ygUCoXiGEGGiD27K4gbgS3eynUlJD1iOpSWxpD4KKLGPITj1Oh2CTeClgrYAYv5X5kPBe8RnRoeMMtUEQB9MzLzZqSRhRDCLIXlnw2Zl4O+kWjHUwNL1cIouFaTaCcas733yxK+grXIgi+Qvj+QmXeZGwmEgCB4XgJ9C7GOrhuRMiz85zh2uCK1oe1dwHE25vdTBGM7Mvuh8o+jUCgUlURFpI9gQsEQe7dlUqtJTbat2U4ooGOxWkhMTaBFp6ZlDwBcdPt5XHR76QrdyVWSmLjkRaZ++Dd5Wfl889pP7N2aUWbqhRCC1fPW0aVnB/6aNIuxd02McZABWnRqwhOfPYDVZv51+3bcL3HH23e/KHN+mM8zV7+E0ARCCLweX9S6jDgp3fuub16xjbrNa3Pt4MtYOmNFJCrtcNm5ZvBlpT9csed85N0BGEGdPz6dETXHxuVbyj2OQnFMIZU+gOL4RMoA0sgASy3Qt2JGhq1mBNnWusz+QghEQh9I6FN6Oy0dqv5g1lA2cqHgfTB2lmeFEFwOjq4YBd9B3tPEPfdsa4dIfSWifo33kxLGixUelb6pyOxBgAAhCqPaEeLbZtAhtA6s9RGJdyKzFlEYlXYiEm4v6+EiCCEg5UWkvB/8P0fPHVpT7nEUimMKZZsPKcqRPkLJz/YwsNsT7N6yFynBmeAkvXEqDVvXY8Cr/XC6Kyj6UQbJ6Un0vv8i1v63ga9e/iGmDp3dZY8RLtNDOtKQTJ88m/ee/JygP3Yn3mLVGD31qaj1xtPn0iwaNzwZXfbDm+9lZJ+x+OMIphVFaCIm9TrgCzLhkQ857dJOtOvemmd/fJyvx/6AEILeAy8qUwk9Zg4h6HDeScycMjeSKr8vEq9QKBSK4wNpZCMzrjGFtKQ060trVcHa3CztVFFBrjIQWhok3AzBJciC9+K0cBJ7rlk3zyn7foH8scQvh2VBpH9QTAE83gu4BRLviboijfywYFp43hI33eOkdeNH5o1GOLubdanTJiALPgQ0RMItZSqhx8wgBDi6Iv1/UZgqr4G1foXGUSgUisqgHOkjlIlDPmL72p0EA6ZzanNYadv9RO4bV/7d2sqQnJ4YUx/aardy72v92LZuF1+9/D0BfxBN06jZqDojr38ZTWhmpLgYmkXjsnt7xjj9Vz9yKa8NeCsSIdYsGv1fuJGet50baZO1O4cBnQbjzfVSFsWd6H0UPRt+0hmtOOmMVmWOVRrn3ngGM7/5lwVTl2CxWrA5rDz60X37NaZCoVAojh5k3nNFotCAtIOjK1ryEwd3YpECsrhDbIPkYWb0teAjzHRvC2gNIPs+pLCA9MQZzALufrFltBJug9xniSrXlfQYmrt3pInUdyMzriD6fHdJlOBhy8K+wnEKwnFKOcYqBdcV4P8d/HNM8THhQKSM2b8xFQqFohwoR/oIZeOSzREnGiDoD7FhyeaDPm/1+tW48LZz+OXdPwkGQtjsVs6+rhsX9DuHdYs2Mvnl70GG05qXbSnRTlqsGn2euJIbhl4Zc+/8m7rjcNr5ceJUHG4HfZ64gpadm6HrOpNGT2HWt/PI2JZJ5s6sSj+Hw23n7D6nV7p/PCwWC09//Qgbl27Gk+ulSdsGFS7VpVAoFIqjmOAaoiO8AQiuPujTCmt9pOty8E0xHWphA+flaO7eyODScFQXQAd9pfnHuPbZAgn3IhLvirmjua/BwGWeidbciMQBCFsbs76053/g+wOMXWDs3Y8ncYHr0v3oH4sQVkj9H4RWmRsH1hOiy5ApFArFQUI50kcoLTo3Ze3CDQR8psG2O23lPhe9vwwY249OF7Rn07It1GtZJ6JuPfnl7wn6irxAxDHStRrXoF7LOlw7+DLanF5y+vRZ13Sly0UdePmOCQzt9Typ1ZOp37IOc35cWGLZrvIgNEFSWgIX9DubfiOvK7O9rutYLOUXHhNClKksrlAcD4hjqHyFQlFubG1Mh419R44cYDvpkEwtkp8GR3fQ14GlCTjOAjDrP1PaESjNLB9laYJIvKPU9GnN3QvpPBuZ+wQyqz9SqwKWhuD/m7ilscq/ehCp4L4GkVh2JpeUOkJUzDZja1l2Q4XiGEfZ5kOLcqSPUG4ZcR3LZq5i49LNCCFo2qExNz9zbUy7nL25/PLunxTkeTn1ko5xne15vy7izUHv4ckp4IwrT+H20TfGFfbahxCCLj070KVntLGNdwa6KM4EB/eOu41O57cr1zOOuPYVFv6+hKA/SPbuHDYurbhwV83G1cnYmkkwEEIIQWJqAu+uepXk9KRS+21euY2hlzzHjvW7SKmWzNBJg/Y79VuhUCgUxzYi6WFk8D9TMAsBtjaIpHti2kkjEwomI6UH4TwXEUeETPr/QuaOMoW6nD0RSQ8VCn/Fm1sIcHYHuhcbKN4Z6KI4EMnDEY7Tynw+AJl9b7imdACMDAhVIuKu1THPkRMENBApiGq/IbTk0ucOrkFm3wn6VqRWBZH6GsJ+cql9FAqF4nChyl8dgUgpGX//u6xfvBEQpFRP5vHPBsacNc7ek8PtbR7k3aGf8fHIyTx41lPM+WF+VJvV89cxrPdoNi3fyt5tmfwwYSpvDHqvXOvwe/1sX7cTXzhCfPEd5+FwFZ6pcrjspFZPMY07UKV2Oo1PKl+01jAM5v3yX6Q+djyEJhCaKLVU1a0jr6fr5V2oXr8qrbu15NVZI8t0ovWQzsPnDGPHerNsVvbuHJ64eBRZu7LLtXaFQqE4EAghNCFE6Z6F4ohBSgOZO7xQEVqrCimvIIQzup2+F7mnJzL/FfC8gcy4Hun/O7pNYBEy617Q15tK3AWfIPOeL+c6fMjQZmS4JrRwX4spOrYPJ5BORDzMUguszcs5dhAC/1BmhBuNuOWr9pE0GBznglYLbB0RVSaV7UTLADKrb2HZLGMvMus2c1NCoVAojkCUI30E8vvH05n2+UxCAZ2AL0DGtkxeuHlcTLsfJkwlLzOPUCAEEvzeAOMHvhfVZtaUuQS8hc6q3xtg2mczy1zD/N8WcVWN27ij3UNcWf1WZn07l7ZnnciTXz5Eyy7NaNKuIf3H9MXhtiMsprHeuWE3D5w+lGAgiK/Aj66XXuu6uHq3xWrBZjd34zXNjC6/t+pVvsp4F7srtvyG0AQtuzTj8U8H8vHGN3jpr+HUbV67zGfbvWUvBbneKGVyYdFY+9/GMvsqFArMYx1Hy88RhhDiEyFEshAiAVgOrBJCPHy416UoB95vwPczZpTVbzrAuUNimsmCj0HmhttJwIfMfTa6jf9XolOlfeD7vswlSP9fyN2nIPdegtzdBen/C+HoikgdC9aTwNoKkh4HzUHkFU/fjMy8HilDSOlFypJts5TxXgutFJbA0kAkQ9XfENXnElPDOdxG2NuhpY1Fq/4XWpWPENZybLLr26KEyCLzBVeW3VehUBx+e3sU2+bKolK7j0DWzF+Hz1N4TlgPGaxbtDGmXX62h1Aw2iAW5EUbIWeCE4tVi2pnd8YzfIV4cjwMu2IMvvxCI//s9WP5aMM4Ol/Yns4XtjfXuWA9uRl5kdrRekgna1cOAzoOYdOKrQhNcPPwa7k2Ts3m79/8NRLJ3kdazRSueOBi5v60kLSaadw8/BpqNqwOQI++Z/Hj279H1anuO+zqyP2KYCqTR39velAnrXpKhcdSKBSKCtJKSpkrhOgD/AgMBuYDLxzeZSnKQgYXEa1WHYLQitiGRq55L6pzfrFGCZivYEXbOSkNaWQjs+8rdDYl5udqf5nlpJxmyrcMLELKXGCfnQuBvgu591IzAo5AJj2IlnBr7CResxRVVB1oUR0SboTAdNCqI5IGIizmprV09QLv10XmAhIGISyVKA2ppcamqcsgaFUqPpZCoVAcApQjfQRSt0UdHG5HVL3iWo1rxLQ7rVcnvnvjl0gZKYfLTrfeXQAI+IO83P9N/v7iH/SQjhAgpalmfdtzN5Q6/44Nu9G0aCfXarOwbc1OUqsVOpt2lx1DL1a/2etn88qtGLoBOnz0zJc0aduAThe0j2r31dgfY5zZk89ry5UPXMKVD1wSs6bbnr+BPVsyWDx9Oa5EJ3e+eBPdr+1W6nOURMAf4twbzuD3T6YDEovFwhlXnUrT9o0qNZ5CoVBUAJsQwgZcBrwupQwKoeRhjgaEtSkyqm6zBpbYSKtwnof0flGknROcFwAgpR+Z8xj4fsV0PvfVWnZC0kOlL0DfTGw6tQVCm8CeWmQBDqIcYQD8YSc6bHfzXkVaW5q1nIvi+YCYTQDnGWiJtwJxHO+kIaDvgsACEAmQ/Dia68LSn6MkpA7Oi8D3E+b3IsB1CcLWonLjKRQKxUFGpXYfgfS87Rxad22BM8FBQrKL5CqJDPng3ph2bU4/gYfevptqdauQlJ7IOTecwd2v3AzAmw++z/QvZxPwBZESNKuFzhe1Z/iUIZwTpyzU0pkr6d/2Qa6tewdfvvhdzNnloD9I9fpVo67Vb1mHNt1aRs5NO9x20AR6kaixv8DPkhnRO/Y71u+KqJHvQwjTMY9HfraHezoPYfH05QgEelBn6kd/8/jFo5j9/fy4fUpiyfQV3NT0HqZPno0AmrRtxNAvHuSht++u0DgKxfGNAHmU/Bx5/A/YiBmS/FsI0QDIPawrUpQP97VgawfCBSIRtDREynMxzYTjFEgeCVoNs/6z63JE0mAA84y171fMms8SsIC9OyJtIprropixZGAuxt6LMXafjvR8CLLY2WUZBEuxI03W5uY6IxFuJ6ZjWnTz2ocMLIgeKrSJ2LPRAkT8SLk0siGjNwQXhI9jh8A7GSOzP9I/LW6fkpD+Oci955r1oJFgOwFSxyGSn6nQOArF8c0RYHOPXttcKVRE+gjEYrXw7E+Ps3bhBrx5Ppqd3Bh3Uvx6xWdd05Wzrukac332d/PwewsNoh7UqVq7Ch3OaRPTduuaHTx6wYhIOvn0ybNp1KY+m5ZtxWq3EgqE6DeqD9XqRqdXCSF45rshTBn3M2v/20iz9o34dvzPbFuzM9LG4bJTrU5hvy9f+pZ3n/g8Rp/f4XbQ667z4z7jB8MmsWvjnsK62nnw748LAVg0bSkPvzOAM68unxrpM1e/hLdIyvrGpWYt7H1p5p7cArau2k5ajRSq169WrjEVCoWivEgpXwVeLXJpkxCie0ntFUcOQtgg/T0ILTPTq62tEFpi3Laa+xJwx2ZX4Z+G6UTvIwSW2ghHl5imMrQWmXkbkXRy3y9gbWmqaAub6VQnDUFYom2VEBqkTTQd79AqsLUGz3tgbC3SyoGwFGa6GfkTIP+14k8MwoVwXxP3GWXeK6DvoLCutgcCpqiaDMyG1DEIZ4+4fWPGyr4PZEHhhdAqhBAR2yyNPNA3gFYNYalVrjEVCoXiYKMc6SMUTdNofnKTSvVdOmMFWTuzo65ZbRbSasQ/Azz3p4VRUeSAL8jahRuZsORFdm/cQ/X6Val/Qt24fa02K1cMvDjyuWXnpgw+f8Q+rVDqtazD+f3OBsxI9LtPfBYVjRaaoOtlnblh6JU0PLFe3Dm2rt5e6EQXw18Q4JNRX5XLkTYMg+zdOdHXdIMd63cBsGLOGh69YARSSoKBEFcNuoRbRpRdi1qhUCjKixDCAVwBNCTaBg8/LAtSVAghNLOWdCWQgX8hRoHaZqp/x8P/F9Fp1j7Tia/yHcLYjtTqIKyNS1inHZFYmIotba2QWbcSUfK2NgPXZea90PqwE13UwdfA0QOROABhLeFdRN9AoRNdHB8y/81yOdJSBkFmF7tohNW7QQbmI7NuM9cug8iE/mhJsVl6CoVCcahRjvQxxp6tGTza89mo88dCCJKrJlOjQXU+HjmZxic14JSLT47s9DrcDkSxM9GGbjDx4Y/I2J7JukUbsTtt3P9Gf8678cwS5146YwXTv5rDhbeeTZ1mtaheryqdLmgXqVm9cdnmmFrUVpuF3vf3pEGr+I46mCnsi/9eHjkLXhxDL34WLD6aplG7aU22r90RUewWmqBJu4YAPHnp83hyCnfEJ7/yA517duDE09T5LIVCccCYAuRgCoz5y2irOEaQ+nZk1u1Ep1cLU0hLq4bMfwOsLSOCYeZtF7En8HTIfwmpb4HQGiQOZPIzaO5eJc8dmIv0/QrOq8Da2IzoOk6P1KyWwTXEpnRbIOEWKMFRB8DeCQILiVYfL7bWciCEDanVKRYxF2A9ASklMusukJ7CW563kI4zEPa25RpfoVAoDhbKkT7GWP7ParTidaUEND+5MeMHvkPAG8DusnNBv7MZMLYfAGdefSpvP/oRAW+0IZ3zw3w0i4Y0JP6CAGPvmkCDVnXjRspnfD2H5254Fb83gMWqkZCawMTFL0acaCklc39ZhJTRKd1Bf4gh549As1oY+vmgiCJ4Ua5++FLW/reRWd/8i5RmZFka5jgOt4PeA2PPlZXE8CmDeficpynILSAU1Llh6BU0PqkBj188KiZaLQRsXrFVOdIKRTyUPFZlqSulvOBwL0JxiAksgHilpawtIX8kUvoBB9J9HVpyuKSW82LIewlksf0W/1QKlbW9kPsE0tYMYTshZnjD+yPkDMF0dq3h0lU/FDrRUoL/b2L/QQchsy9SWCH19VhRMkAk3IEMrgD/n+H+kkKRMxe4bynXVwMg0icgM/uC4QFCkHQfWBsjM2+NjVYLERZOU460QhGDss2HFOVIH2MkpSVgFHNWhSZY+PuSyJlpn8fPDxN+49ohl1OlVhoJyW5uHXUDrw2YGKOkXTTaKw3J8lmr4zrSEx7+MDK+HjLwZBfww4Sp3PjkVUgpGX3LOKZ9OiPums1U7yDPXP0iH6wbF1OGyhJ2shf8vpj//lyGz+Njzfz16CGdS+46PypKnpuRR15WPjUaVIs48UWp37IOn2x6g91b9pKcnkhCSgLDer/Awt+XxLSVkhJT2hUKhaKSzBJCtJFSxv7SURy7aMmmNkiUedYgMIfCklpeKPgQmdgfoaUjtGRk4oOQ9wwxStrFVbmD/5kCXcXJG01hxDgEMg/p/RKReIcZ7c15MFwbOx5+kH5k9gCo9idCS4u6K4QNkTYOwz8DAv+aZ5wDy0Do4LrRPCceRhqZYOSZ58GFrfhECGtTqPa3eeZaS0NoiRiZ/SE4J3ZZ0gBLKZFyhUKhOEQoR/oYo93ZrWnZuSkr56wh4Atic9g4r+8Z/PHpTCgScbbareRne6hSyzSMZ159Kh8+PYms3TnoQR2n24GuG1Hq3ZpFI61matx5fZ7o1C49pFOQ52Xv9kyeu+FVFv+9PBJFLgmL1cKWldvi1nOePnk2z/d9jWAghM1upUrtdN5cOBpXYqEI27tDP2XSC99itVlISHEz5s+nqdssVpTEYrVQq1GhyMr8qYtjVMotVo0rB12sotEKheJA0w24WQixATO1WwBSSnnS4V2W4qBi7wrWEyG4FDON2gau3uD7Ltq5FjazDrWWbn50XYT0vA5GFhAy071liKizyUIr+Zy19Ba7EALpQeo7kdkPQnAeZYewNAhtBHtazB3D+wPkPBp+JjtYaiGqfIMQhbbZyH0BCt4DrKClQPpHCGv9mLGEsIK1iFZKYDaxZ7AtkNBfpXUrFIojAuVIH2NomsZzPz/BH5/OYO/WTFp0bkqLTk34a9I/kTZCE7iTXNRuUuhMJiS7GT9/NB8+PYndm/fS8fx2VKtXhVHXjzXPTwtBi45N6Na7c9x5u1/blR8mTo2qad3p/LYM6DSErF3ZcZ1ooYmo60F/kJRqyXw04ks2LNlMi45NuODWs5nz/QJev+/tSMTb7w2wd3smP0ycyhUDL0YIwYKpi/nqlR8IBUKEAiH8BQGeuHgUNRpUZcuq7TRp14hBE++M66QnJLvwFVHytjms9HniSvo8fkUFv32F4jhCpY9VlkoW2VUczQhhgfT3TcdZ32WWp7K1Qvq+L9JKM1OvLXUK+2nJUGUKMv81M1rrONN0mnMeJlJr2dYOHGfHn9h5IXi/ojAq7QDbKciM3mBkEP8f8r608TAyiNRSkXmvQWgN2NqCqzci8CfkDi8ytg/0HciCL8B9I0IIpP8v8H6E6RAHwfAjs+5AWqqZ9a9tJyJSRiDCGwfRy0gAo+gmvQMS70VL7F/S16xQKJRtPqSI4mdWjwU6duwo582bd7iXcUSxYckmRlzzMjs37qFei9oM/WIQdZqWXUJi88ptLJu5kpRqyXS5qAMWiyVuu1AwxFtDPmLa57NwJjjp/8KNIOG5vq/izYsVInG47PQf05cJD32AxWZBD+lcO+Ry5v38H2sWrCfgC5p1paVEaCKu0JjQBEnpiYz47lGWzljJO49/TCgQnZquWTQM3cBqs1C7aU0mLH4x5hn++W4eI699GT2kY7FZqVa3CuPnP48rIX7tTIXiaEIIMV9K2fFAjuloUE/WGnL/gRzyoLHp7ocP+PMfCIQQ1Sks9IuUcvNhXM4hQdnmWGRwBTJ7IOjbwdoEkfpq3GhtTL/QWlPoS6sKjjNMRz1eOxlE5j1nls4SbkTSo4AfmfNotIBXBDckDYK8MSCsZvQ78W6zvnNwJWYShSPcVhBfaEwDkYpInwD+f5D5rxArPLbPWbeCtRGiynemInrRtft+RWY/hJnWbgNLHUTVrxAl1LVWKI4mlG0+Mm1zRVER6eOERm0a8PbyVyKfDcPg53f/ZMPijdRpVpv8HA/b1+zgxK4tOf+W7miaadDqt6xD/ZZ1ShgVls9ezd6tGTRt34g7X7yZO1+8OXJv1pS5Jfbz+wJcfMd5tOvems0rtlKnaU30kMHnz38TKY9VXPysONKQ5O7N49ELRnDf+Nux2qwxjvS+M96hoM7uzXvZsW4XdZvXjmpz6iUdeWXmCBZOXUJCagLdr+uqnGiFQnFQEEL0Al4EagO7gQbACuDEw7kuxeFB2E5AVPsl8llKHVnwBTK02jwHbGSBsRlh6wyuyyPVNoS1KVibxh1TSmmemTZ2gbUVWvJQSB5aeN/3S9x+Jl6E+0ZwnAah9WBpCNKL9LxJoch8WWLzBshMZGY/c17hiK4Rva8NACEIbQF9W3RaN5ils6p8CoF/QKSA6xLlRCsUiiMK5Ugfh0gpefb6scz5YT4+j980zMJ0TKdN+ocVc9YwaMKdZO7MYtpns9B1g269O0edK5ZSMvL6V/h70j8RJe7rHr2cy++/iNRqyQghaH9OaxJTE/Dl+2PUugEytmdFOerLZ69GaHFUTYuyT5C8yHBSSuqfUIfTLu3MzG/+xWqzmOndxRxxvzdAfk5xY27StF0jmrZrVMY3VzF2btzN5Je/x5NbwNnXnU7HHupMl0Kh4BngFGCqlLK9EKI7oArWK0zxr+z7wD8DU4AsnLqNgfT9BMHFiJRhSH0X+H4CdHCcj7DWjTPGr+wzlNJ9DyKhD2jppr23dwWREHZui9tmCcbeKEddBuYSW4arOHGMM7qpSm4/E/zTwhHuILFRbD/SyKdYvRFzVNuJYDuwe0wytBnpeQ/wIJy94iqSKxQKRXko6zej4hhkx/pd/PPdPHwec1dZShk5q+wv8PPb+9NYv2QTt7UexFuPfsQ7j33MHW0fYt2ijZExlsxYwd+TZkU5yJ+O+prr69/J/d2ewJNbgCvRxbh/n6P9Oa1j1mCxaPg8Ph7r+SxX17qN+7s+jivBQXKVRDRL/L+WdpeN9me3iUnNDviCuBKdDPnwXl6Z8QxPfvkQLTrH7tRLQ/L4Rc+SVazM1cFg9+Y93Nn+Yb4d9zO/vf8Xw3qP5o9Pph/0eRWKQ4Y8Sn6OPIJSygxAE0JoUso/gXaHeU2KIwF9A/inU6jiXaSclPSCdxJGcBVy70XIvDHIvJeQGZcgg6sjQ0j/7CgnGoCC15F7zkBmXm86rFoiosrXYOsUZxEWpOHByOyHsfs0jIzrkCIVRBIlvzI6wHYqUCy9XAbMdPLUVxBVPkWkvmYKrsUgIesWU9n7ICNDW5EZl4H3E/B+jcy6yywRplAcKxxum3v02uZKoRzp4xCfx4/FWvL/eqFpfDbqazzZHoL+EKGgjjffx/8e+iDSZu5PC4l3vD4UCLF2wXpev+dtwKzzvGPDblOwLIzVbuWCfmczrPcLLPh9MVm7clgxZw0Pn/M0I79/NKrtPjSLoF6LOiybtRI9VCR9W5jns29tNZChlz5P/RPqYrNbWTJ9Rdxny8vIZ/B5w9m8cltZX1OJhIIh3h82iYGnP8GoG8ayd1tGTJsfJ/6ON9+HEdmgCPDu0M8qPadCoThmyBZCJALTgY+FEGOJrW2kOB6RBWbUtkQE5I8DmY+pkh0EWYDMG13YJPAn8d9SgxBcgsx7NjyU00ynjooD28F1HWT3N9Opjb0QXAhZfSF1IvFfGS1gbQzBBUT/NRbm5709zPJZ1qZm/9CCEp49C5l5CzK0sZTnLx0pgxh5r2BkXIOR/RBS3x3bxvtpOBK/L7XcB/mvVHpOhUJxfKMc6eOQui1qk5gaP/JrtVtp1KYeBUWcwH3k7M3ln+/m8eag9/jype9j+u4j6A/x37SlAPwwYSp7t2ZGqXMnpSdyzeDL2LVpD3q4brU0JJ6cAl6+43+RM2D7cCe7ePyzB9i8YisBb7FSGOGdLT1ksPD3xbzz+Cd8+fJ3JZbaklKyYclm7u3yKLs37ynxGUpj9M2v88ULU1g2cxV/TZrF3R2H4MmJFm3x+wJRNbjB/F4UCsVxz6VAATAQ+BlYB1xSWgfFcYK1mZlyHffVzGamOMt8omtIS9Azkb6pGLkjoODjUiYIgN+s4CELPgFjD1FOt5YG7r6mqnhEHMwAIwfynopdl0iElFchtJbYdO19YScd/NORea8iPW9TcihKQmglMuMKpL6zlGcoGZn9IHjeMZ1/34/IjN5IIz+6keEjpga3LF2PRaFQKEpCOdLHIXaHjVemD6d1t5akVE2iWYfGtOjclOr1q3Jar44898tQTr+iC063o7CPy443z8ezfcYyeaxZZqo09m7N5Orat7Ni9uqYGs16UMeZ4EQPRRuzUFBn2cxVMWPrIZ3q9atGnO6SCHiDLJ5Wdr1qgIA/GFUSrLxk7crmz89mRs5f6yEDn8fHvF8XR7U765quOFz2yGeH20GPm8+s8HwKxRGJBKQ4On6OMKSUHqAecJaU8n3gLczwouI4RwgHIv1TsLUHkQbW1mBtA1otcJ6HSHsbnOcDriK9nCBzkDkPQcGHxNZdLoaxDWN3VwguIvavXQihuYhV2A5BcH5sexkCa8047Yvjh+Acys7nlCD9psJ4BTH0HeD/hUKH3qyXTWBWVDvhuoQiYvmAC9yq1KXiGEHZ5kOOEhs7Tqlevxov/vl0ifd79D2LjG2ZTHrhWwzd4KSzTmTRtGVR9ZbLImtnNrO/n4fNaSXoM51joQlad2tJWvUUzr3hDKZ9PjNyVrsoQgjcyS5CgRCX3duTlp2a0bJLM1bPW0eoBIdaaIKajapzyV09WPDb4oizq1mEGV0vJlCGqNg/ZD2k88i5w+O+CxQfqkXHJjz9zSNMHPwR3nwf595wBn2eUMZaoTjeEULcDvQH0oEmQB3gTeCcw7kuxZGBsNZFVPm05Aauq5HGHjPyigRbZ9NJjVHFLgVjD/j/BuwUOsca2DohLDWQzp5hZ9Ybp7MIC5WFIKEfmq0NhvVECK2g5BMKGljqIVy9kYF/KXR2i9WrBvOZ4sqOlYyUQci4hfiOevRYwt4O0sYh814A6TWV0BPurNB8CoVCsQ8VkVbERQjB9Y9dwTdZ7/Nt7oecevHJ6MGSo9AlCYQZhiS5SnLkszQks76dy92dB1OzUXXuee1W6jaPrWddq2kNHv34fl6bM4rbRvUBYPiUwZx05ok43HYsNkvMWeqUqknc9fLNtD+7DcO+foS23U+kzeknMHTSg9RtVmwOCWdedUp5vw4ANq/Yys6NsWeubE4bJ593Usz1k89ry5sLXuD91a9x45NXRUqKKRSK45oBQFcgF0BKuQaoflhXpDhqEEKgJd6DVmMBWo2FCMfpmErYJVGK3REpRT4Y4P8FY+8VZtmtxKFgiVPP2tIIkfIiospktKSB5jDpE8HeETPSayXGEdbSEUmDEY5uiLTXwdbFFDpLGQdanDmcPUp5njiE1oCMlw7uBPupMVeF43S0qt+iVfsNLfHumPrVCoVCUV5URPoIwJvvZf5vi5ES2p9tlow60mh1avNSz/gaRvFdZRM9qJOxrZgSp4Q189azZt566rWsw33jb2foJc9FIshOt4PL7+1Jl54dorqlVE3m+V/NWpiZO7MYftWLrP1vI4kpbnoPvIiLbj+XhBTzu+vYo22k3NSGpZvZszV6DUKDhX8sIbV6Kied2apcdaPjbRZoVo0nPh0YmVehOF4Qx5Dq5iHGL6UMROoBC2Gl7JxXxWFAGvnh1GAJ9tMQWtLhXlIs9g6Uns5d0l+tAMjiOiESQkvMH0tzSBoG2XdTGEF2gfsmhLN7VC+hpSPSTTFSI7QLsu+F0CrQkiHhFoTraoSWaLZ1nIFwnGHOFlxuRteLrUH6/wFLGti7IISLstGIVT+1QNqrkXkViuMFZZsrjjANch+gsZRyuBCiPlBTSvlvWX2VI32Yydqdw4BOg8nPNsWqnG4H4+Y+T7W6VQ7zyqJp1KZB6Q0q+Q93y8ptbF21naFfPMj7T35O0B/k4jvPo9fdF5TYx5NbwNNXvsia+euQhqRd99Zc8cDFMWWx9uHN88aolIcCOq/d8zYWi4XEtATGzX2O1Gopcfvvo17LOjRp25A1C9YT8AWxO200btuQk846sDUuFQrFMc1fQojHAJcQ4jzgbuC7w7wmRTGkvgeZ0RtT3AsQbqjyFcJS4/AurDjWE8poUEnjrK9GGNsh9RVk/mumIJe7D8J9bckzGXmQfU84zVuC4zSE++aSI77SA8JSbIkhyB2GFJopflZlMkJLK32t1mZgawbBVYAfsxxXa4Tt5Ao9skKhOG4Zj3nO5GxgOJAHTAbi1QiMQuWzHGbeG/opmTuz8eb58Ob5yNmbx5uD3jvcy4pB18sSE6k8axZuoEvPDoyf9zwTl7zEpQMujFHuLsq4+95hzfx1kdJcM77+l2/H/Vxi+0YnNcDutMdc9xcEKMjzkrEji7eHlKZ0aqJpGs//NpTeAy/i5PNO4rL7evLC70+V6MArFApFHIYAe4AlwB3Aj8ATh3VFihhk/hgwMkxnT3rAyETmPX+4lxWHMsTF9gMZXI5wno1W9Wu0aj+gJVxfqm2WucPCTnS4NJf3Z2RBKWUfrScAtjg3vOZ3ru9C5r1c5jqFsCDSPjAVx+1dIeFmRPq7KmVboVCUly5SygGE02+klFmYIhJloiLSh5kd63dHqVEbusHOjZUry3QwsVgsJFdJIjcjL3JNaCJGITu1ego5e3JNMa9yoFk0mrQtI9pdjOX/rI5KM/cX+Fk6cxWX33dR3PauBCfP/zaUO9o+FPe+HtTZtjb6fNXWNTv4ZORk8jLz6X59N86+thsADpeDW5/tU6H1KhQKxT6klAYwMfyjOFIJbSFaPEsHfevhWk2JCGFHkkz4yH2YeCJe6UAW5Y9QWxC2lhVbTPA/opW9veH60tfHbS60RGTaW5BZkhBnEPRNUVdkaD0y/w2QeeDshebqGR7LjUh+uGLrVSgUCpOgEMJC+BekEKIasb9E46K26w4z7c9ujcNdpEySy067s1sfxhWVzKC37opSp44nnlWaE61ZBDZnkb0bAQ1a1eWi/udFLi2ZvoJ7T32MW08cyEfPfBH37HXtJjWizivbHLZYMbFi1GpcA80Sfyfd4bJz0pmtIp93bdrDgE6DmfrR38z+fj4v3fYm37z+U6njKxTHHfIo+TnCEEJcLIRYKITIFELkCiHyhBC5ZfdUHFIcpxJdJim+cNURQcoIogW+4r3aleZEa8QEXyzNwXVV5KMM/IuRcSXGngsx8t/E3A8qhqVesbkdYGlY6tKFtSFQUlaXE+ydC9cQ2ozMuAJ834L/D8gZguEpReFcoTgeOdw29+i0za8CXwPVhRAjgRnAs+XpqCLSh5mrH76UTSu28eenMwDoeH47bnr6mkMyt9fj46eJv5O1K5v257Shw7nRytNzf/mPz5//hqzdOeRl5JGf7YnS89BDseneUsq4kWoAQ5cYepEdfgnb1+7ks+e+5oahV7F+8SYevXAk/gKzHNbnz0/B7w1EIsAFeV5y9uRy9yu38MAZTxLwBZBSUrNhda4dclmpz+pKcFKvZR02LYuNKHQ8v11UaarfPpiG3+OPPIO/wM87j3/CJXf2wGJVadwKhWK/eAXoDSyR5U3dURxyRMJdyNB68IWPDTnOQiTec0jmlkY+eL9AGhkIe1eEI9qBl/6/kPkTwMgEIxtkLtFvpvGEQfeVlYr3V84gpka0vgHpmYhIvNMUBcu8jYjomOcNpAwgku4rXK+RCUlPQub14bEkWOojEm8t9VmFloS01Ad9Q+xNx5mIhP6FT+CdDNJb5Bl8kPcC0n0VpmafQqFQVBwp5cdCiPmYZSgFcJmUckV5+qrfPIcZi9XCkA/uZdCEOzAMidPtOCTz+gr8DOg0hF0bdxPwBfn6tR/p/0Jfet11PgALfl/C071fiChpVwRpSJwJDnweP0II0mqm4MkpwF8QO5bfG+Cz56dww9Cr+GvSLAJF5vMV+Pn5nT+49dk+fPvGL7w56D0sVgt2p51hXz2Mz+PDarfSultLbPZ456yiOf2KU9i0/Muo94jk9ESGfRWdDqbrBnqxSLg3z8ew3i8wfMrgUs+IKRQKRRlsAZYqJ/rIRggrIvVlpBwV/lx2ZYcDgTQKkBmXg74TCCA9HyCTH0dzmxvs0j8dmXUvhUraFcUNFAACtKpg5GIKdBXHB57/QeKdSO/30fNJL3gnQdJ9GJ4PIG80YAHhgtRxCDyAHewnI0TZthnHeVAwIfqaSEdLe61YQ53YbMt8ZPb9iLRxZc+jUCgUcRBCnAIsk1KOC39OEkJ0kVLOKauvSu0+QrA77YfMiQaY8dUc9mzZS8BnCpX4CwJMfOTDyP0pr/1UphNtd9lwJcZ/uajVuAY/+j7hl9DnvPD7sFLTOPZFtm0Oa0z6tdVmZcOSTUx46AOC/hA+j5/cjDyeufpFOp7fjvZntymXEw1w1jVdo75jh9vBxXcW1qv0FZhjn3n1adgdsWMumLqY3Zv3lmsuhUKhKIFHgB+FEI8KIQbt+znci1LERwjnIXOiATMCru/GdG4lZtS1UORMet6nbCfagekwF0eCtSGixlJEjZWItHeJqfkc1TycdSbsxL4u2pDB5ZA3BjMC7QWZCTkDwyWuTimfEw0IVy+gaJkrFyQUapFIowBpZIHjkvCzFcP/F1LfVa65FAqFIg5vAPlFPnvC18pEOdLHKQW53pjzxwFfMHK+uSyxS82qcfJ5bZm08y0uu/dCrPbC5AaH285pl3XCZrchhKB+yzo8MPFO7E5bjKNsc9rofm1XAHrc3B1XogtNE+FxHNzw5JWsX7wZrVj5qtzMfDw5BRV65gYn1GXMH8Noe9aJNGnbkBufvJKbhl+DlJIJj3zIZak3cU2d/jx3w6v0e/b6mLrRmkUjGCi5lrZCoVCUg5GYIUEnkFTkR6HALLdV7NiULBoxLuu1zQKOM6D6LHBdT7QqtgucPRDCjhACYWsOycMwz0cXH9cBrksAEO6rzPJfkTZOSLwXgitjXxaMPUijYrZZ2Joj0t8HWydTyTvxPkTCPUgpMXJHIXd3RO7uBrlDIPH+OGvVQB489XKFQnHMI4pmiYVFQcuVta1Su48iAv4gQX+QhOR4O80Vo8O5baJLQwio07Rm5OOVgy5h7s//RSLWRbnqoV70ebw37mQ3Hz3zBb9/9DeaJrDaLWgWjR59z+LGoVdF9Tnn+tNpeGI97jv1MQJ64ZiapvHAhDsAqF6vKuPnP8+kF6aQn+Wh+3XdOK1XJ5bNWkkoEP1iYXfacCe7qCgtOjVlzB/Doq5Nnzyb7974JRIZX/ffRras3E5iqhtPTgF6yMBqt1KzUXVqNa5e4TkVCoWiCOlSyh5lN1McLUgZABlAaIn7P5jjNMgr6igKsDQ09UeEQCTehsz8h7jp2O47EYn9QSQg88eC73tMp9MKWMB1BSLhjqgumrs3hrU5ZF5XbEwLInmYuQJLHajyDdLzFshchPNShLM7hv9fkMU2l0WCmeJdQYS9HaJKdBlK6f0eCj4jcuY7tAzy14FINlW70QEbWBuBpXaF51QoFIow64UQ91EYhb4bWF+ejioifRQgpeSdJz6hV9KNXFG1H/ee+hi5mXlldyyFus1rc/crNxdmdUnYtXEPr9/3Nn6vn9bdTuC5X4bStH0jhBBYbBYsNgs3PnUV/UffSEJKAt//71c+H/0teVkeAr4goaBOw9b1ufW5PggtNl1s07ItWGzRYl16SMfnKTTetRrV4P7x/Xn80wc4rZdZB33qR9Mx9MLoucVmYejng+KqhleGZbNWRq0BIOAL4CsI0LJzM2o3rUnXyzvz4rSnVc1oheIYQwjxjhBitxBiaQn3hRDiVSHEWiHEYiFEhyL3LhBCrArfG1LOKacKIZQjfQxgRkxHI3e1Re7ujJFxDdLYPwF2YW0KyUX/KknQNyFzn0VKP8LeGZH+NlhbYhpwq/mTcD9a8iCzpFTBB+B5NyxC5gd0M9KbNIh4r31CXwOiuG3zgyw83iWs9dFShqOlvoJwdjcv+qYQHT23IlJfPWA6IjIwH/AWu+ozz2hbTwJLA3Cej0j/QNWMViiOMQ6xbb4TOA3YBmwFugD9S+0RRkWkjwJmfDWHr1/5MRIxXbtwA2P6jWf4N4P3a9wtq7ZHnV0O+IN8N/4Xpn85mxenPU2b00/gjfmjycvKZ++2TGo0qIY7qXCnedrnsyIK2wBIWD13HZel3oTFZqHnbedyz2v9Ig5vzUbVY9S8rTYLCSklR9g3rdjKb+9Pi1IIF0LQ7OTGlXpmKSXBQCjqDHStxjVxuOwxZ8ID3gDNOjZhwCu3VGouheJYRhw7UlnvAa8DH5Rw/0KgWfinC+aOdZdwzclxwHmYhneuEOJbKeXyMuYbADwihPADQcJSylLK5P19EMUhxvcjFHxMxJkMLkXmPI6IEcmqIMHigZAAeD9A+n+E9E9MZ7rqt0gjxxQls9RFaAnR64pyQCWE/oPdHZBYke7rEUmPFTqflrrECJkIZzidOz4yuAq83xHtSAuwVa58p5lVGUSIwjJcwtoAiYPY6Lsf7B3QkvfvHUihOBZRtrlitjnc/iUp5bWVWWSZW3hCiHuEEGmVGVxxYFg8fQW+Ig5rKBBi+T+rKzSG3+uPqe9ss1tjIsdSQvbuXEZc83LkWlJaIo1a18ed5KIgz8tLt79B/5MeZPvanSXqlOhBnZ/emsqkMd9GrrU6tQXn39Idh9tOQoobh9vB458+UGpkOXt3TtT5azBFyXL2Vjwi/8t7f3JxQh8uSejDXSc/wv/ZO+8wJ6ouDr93JnV7o/ciCChNiiiKqCgoYsOOvX5gQcQOCCooVsACWLALCqKCIiAKIlWaCEgH6W17SZ+53x8TsskmW0C68z7PPpLJbROze+fcc87vZO3JAaDbPRdRv0WdqFN01aIQfxjh4yYmJicPUsq5QHYZTa4EPpUGi4AUIUQ1oB2wSUq5RUrpAyYE25Y3X6KUUpFSOqWUSVLKRCD5UNdt7s3HH+n7g0iD1Q/+5Yc2hnRH7c0IC9GbqwQ9C5nbt7iZkoywNkYo8Ui9AD3vafTM7qDtKmPGALi+RBZ9XHzJ2gYcPQAHiATAiUgZWbZnWc+EkmJiwmqU4zpEdNfXyH1nIvc1R8+8BqkFRT3jbgJLI6I/CwsIU1bAxORU5ljtzVJKDagkwk/xDoGKxMJUxbDmvw66ys3aP8eYanUrY3NEblgZNdIq1HfP1n3c0fhheiTdxhWJvfht4sLQe13vuhBnfLQaqZSSXRv3xLz+5CUvMOvzuWxdvZ3svbllqnEH/BpfDf8u4iHhwVF3M2Leizz9+cOMWzuCs7ufVWr/onwXmTuzogS+bHYr1epXKeOuo1m/ZBNvPfgBPo8fXZdsXbWNwde8GhrvzbkvcPvzN4SMdtWiEp8SzxXBcmAmJib/WWpglKw6yM7gtdKul4kQ4vkSrxXg88NYl7k3H2/UWkSpSCtVYzYtiQxsQz9wMXJfK+T+lujumaH3RNyNpeQZ6zHrLUupI7NvMzzEgQ2gZ5UzewCKxhaLiwqBkvwCIn0CIvl1RKUZCPv5pa9dL0DqByJCv4MLP+RcZen7E/JfxFD+1iGwDpn7UHBddkT6VxD/IMWiaRYQSYi46w9pHhMTk1OOI7k3/wPMF0IMPNRqGuWGdkspBwghBgKXAHcCbwshvgY+lFJursgkJv+O7g90Ydbnv7Fzwx4QAiGg/7jeFer7dNeh7N68F6lLvC4fr97xNvXOrE3t02uQuz+P+OQ43EWeiJBrIYhpqB7YkcmWv7bh9xqGbXjecmm48l3s3LCbWo2Lv8MNW9ajYct6odcLvl/CG/eNoTC3iGYdGjNwYj8CvgB92j6Fu8iLEKAoAl2XpFVNwZHg4Nb6fWjbrSUPvXU3dmf5ZcPWLFiPrhXfoxbQ2bB0c0jARbWo3PLstbS66EzmTV5MXKKDy+69mLSqpsPHxCQm8qSx2zKEEEvDXr8npXyv1NbRxLpRWcb18qgthHhaSvmSEMIOTAQOzY2JuTefCIj4W5CeKaBtx/BLCETysHL7SSmROXcGPcfSyPnN64+0fo+w1DMMYZFoXI/4SglQa0cPqO2EwGYMYxSiVL9jLiIPtB1gKR5PWJuCtWnote6eAfkDDSVxWxtEykiQHmTWNSA9xnpQAB2USiCcyAOdkfYLEEkDMb7e5eBfRkhMDIx/+/8qXpOwIBIfQtrPRXp+BpGIiLseoWaUP7aJyX8Rc28+nL15d/BH4RCraFQoR1pKKYUQe4G9GH/xUoFJQoifpZRPHMqEJoeOzWFj1MJhLJ+1CnehhzPPO71CBp7H5WXPln0RRrKiKqxbvJG4JCdPXfoi7sLiepRCgDPRidVmYcBXj0aNJxSB5q/ABh2GarHw6ZCJVKtfhR69LyWjeqQnfevq7Qy7eUQoP3nNwvUMvuZVMmqkkXsgP2SsqxaFTteezYKpSw1PODDjo9lsXLqFkQuGlluDO61qCqpFxe8tVgxPSI2PCl1renYjmp7d6JDu0cTE5IQmU0rZ5l/03wnUCntdE2PDtZVyvTzuBL4QQjwNdAZ+klK+WU6fmJh78/FFCCekTwLfAsPotbatmIEnC43c5vBnO6EaOdbCgcy5K2hEh9401LCxIVJGRA+HINIYrQgWZMEIpKUWIq4XQq0UOaZ/LeQ9TqhmtW8ZMudhUBKD4dtaaBzsl4F3JnDAuOSeiPSvgfTx5dfgVjIwvM1h61eiMx2ErTXC1jrquomJyUnLCbM3SymHHO4iyjWkg3LgtwOZwAfA41JKfzAcbSNgbtbHAIvVQrturUp93+fxMbL3+yycshRngoM+I++iQ482WG2WCBEtKSG9eiprF22Myo9WLCqDJj5G03Maxwz5/vCZL0t4rgUIQtcsNgtCGCHdUpcIReD3+ZkzYT6qReHHsTN57683SK9WfAiwau5aZNjDhObX+HvhBhq2rBvh8dYCOit+XYU/vByXhC1/baN3mycZvWx4mZ7p8649m6ljZrJx2RbDG6BLnvioT6ntK8q2v3ewdvEm0qqm0ObSFkdMSdzExOSEYQrwoBBiAoagSZ6Uco8Q4gBwmhCiHobS543AzaUNEq4oCowExgLzgd+EEK2llIfklTb35hMDIWxgv6DU96X0IPMGgXc2iHhE0nNGneeozDppeHV9y2O8p0DKOwhrC4QSQwCs4HWiRL8QwME99GDqn9+YB8X4t/cH8FqQrq8g44fIQwDfkrD+wb7+pWA5rcRcAfDOo9gbHryXwBpkVk9I/6Zsz7TjMnCNh8A64wEFiUh+ufT2FUT6NxqebbUS2M47YkriJiYmJwxHZG8GEELMJobXWkp5YXmLqIhHOgO4Rkq5rcTguhCiewX6mxxhsvbk8Modb7P5z3+o3qAKT3z8IF8Om8xvExfic/soyC5k2C0jeO3XwfQf15vX7n43aPQKzurSnNYXN2flnDVRCtoAZ57XBNWiout6hFGYvTeHuRMXouvFG6tiUXh07P1MH/crB3Zmceb5Tbl14LWM6fcpW1dvJ2dfLl6XsblqAZ2iPBfT3p/FrYOKa0wnpSdEGZ+OeAdndGzCxuWRuWAF2UUxP4992w7w65fz6Hb3RaFrUkoWTlnK1lXbqXFaVTpdfw6vzBrEH9NWkHcgn2bnNo4INz8c5k5ayCu3vx06kGhxQTOe//5J05g2OfWRVCyI+SRACDEeuAAjzGwn8BzBhEwp5RhgGnAZsAlwYXiUkVIGhBAPAjMAFRgnpVxTxlSvl3idAzQNXpdAuRt2Ccy9+QRDavuQeU+Afz1Y6iKSXwnWc56JUU4qD5n7CCJ9PCQNNcKmDypn2y4AW3vwzSf6l0sgbG0AgZR6RKknqe0B7y8l+iiQ9BK4x4O2H+xnQ9z9UDAMtM3GtZASdgBkPtL9DSIhrMa0kmKInoXnQYt4sLYyjN4I8mJ/IIHthoK48+ri9UoJ3p8hsMmo/2zvikj7HLxzQM8D21kIS90yPuXy0d0/QN4zYZ/tOcZBhGlMm5zqmHvz4ezNAP3D/u0ArqWCYT4VyZEeVMZ7aysyicnhs3vzXrb8tY2qdSvTsFU9NE2jf+fn2LNlP1pAIz+zgL4dBxDwa/jCPM8+t58/pi3ntsE3UO/M2qz7YxPp1dM4q0tzhBA079SUxu0asm7xRnxuH1aHjRueuJJht4xk4ZSlCEVw7SOXc8/wXggh8Lp8KKpK+PfK7rRRtV5l3pz7QuialJJGbRuw7o+N+MK9xxjG9N5t+/G4vKFQ7I7XtGfSmz+wbc0ONL+Goio8MvpeGraqx/fvTI/wSlsd1oh7LB43QGGuK+LaO4+MY8ZHs/G6fdidNuZ/9wfPfNmXDlfEjiIpynexfe0uUiolVUjITErJa3e9G+HtX/nb3yyZ/iftLzPDz0xMThaklDeV877EKFkV671pGJt5RebpXJF2QojbpZSfVGA8c28+jsjANgisB7UWwtoEKQPI7FuCec8a+HOR2TcEQ7TDyzf5wDsXJeF/SGsT8K8GtQrYzkEIgbR1AEsz4zpewA7xDxgCXN45gIKMuxuR2M8wDKXbMBgjUqmdCEstQ6jr4HqlRFrPgMAqIr3HAAEI7ERKtxGuDuDoatSi1raA1DCM8+fBUh/cXxHprbYRXaIKo40eWWFD5j9n1J+WwXtz/IqS8io4Lo79OeuFRv63koaw1IrZJqK91A0jGk/xZ+JbYPzYzy23v4mJyYnBsdqbg+2Xlbg0XwjxW0X6mnWkjwNaQGPupEVk7c6maYdGNO3QOGa7X778nTfvG4NqUdECGj16d+WKBy7hwM7sUF3lg3WRrSVKRFlsFuKSjBCwOk1rUadp5AakKAovTx/Ar1/OY//2TE5v35AFU5awZPoKw3jVYMq7M6jRqBqnta6P3xegUq109mzZZxi8isBqtzJ7/DyG3TySuEQHD7xxB3s272XCy99F1pcO4+eP5zD364UMnvw4Z3VpgcVq4c25z/Pb1wvJO5DPGec1oXGbBnhcXmx2a0TZL4CqDaqwd/O+yHu1WGh1UXHtyqw9OUx7f1ZIFM1T5GXh1KX8s2YH9c6IFmrZsGwzT3Z5AV3XCfgCXH5/F3q/WXbt6IA/ELU2pCQ7WFLLxMTE5DB5BCjXkDY58kgZAM9PoB8A61kIW4uY7XTXZMgfHPTYBpDxtyOc1xj9QmHPetBYLFEiCmsw3xmEtRFYIzU5hFAh7RPwTAFtH1ibIz0/gXe+MSY6uD5FqnXB1thYs6gMchfGQbcCOJCuycjch0EkIJIGIAMboOhDIst1heH5GumdCimjEfYORsh6+leGR1nPAVs7hLUZUi9CYiOUOx1aeI3gGsJRwHZ28eer7QH3txQb3W7wzEAG/oew1I9akvStNPLFkSD9yLheFagdfbA8ewn0fdHXTExMTAAhRLiAkwKchVEZo1yOqyEthOiKkSumAh9IKV8u8b4Ivn8Zhtv+jkPNIzvR0DSNJy95gfVLNhHwa6gWhQfeuIPu93WJaOd1e3njntERXt0p706nbdeW6IFIwS9d07m2X3e+ePEbvG4fVpuF5IxELr2zbAeIalHpclun0Ou3H/oQn7t4Po/Ly9sPjUO1KAghSKuaQotOzfhnzQ6qN6hC5doZ/PzZXHxuH9l74IXrX6dq3cqlGtFgpEB5irwMvvY1vtr1HnGJTqw2Kxf3iiy14Yiz88z4vgy9aQQWqyESdu/wW+h610VMeXc6096fxf7tWSSmJRge7DAV8MLcIixWS8iQBiPHvCg3MjR854bd7Nm6n9fuepfCsPd++uAXzu7ehtYXnVnqfVhtVmqfXoMd63ahB0PkpS45vf1ppfYxMTExqQDHPf70v7g3Gx7l28C/BsMgVZFJg1Dieka204sgfxDgK/Z4Fn2CtJ4T9NyGo0HcfVD0LoaBZwUlLSLUORZCWMB5TfGc+YOI9Pi6oeA5pAg+wilVwNoOtI2g1jUEvDxTMYzdA8icPqBWo1Qj2pgFpAuZ2xsqL0AIp2FMO6+KXJsSj0x+HfL6GwJp0g+JzyCcVyJdn4Pra9D3gpKCSHrBOCw4iJ4XPHwIuxdhifZaB7aAtssIk5dh77m+RDo6I2ztyvjsnEi1VlBJPeg1lzpYYx+KmJiYmADLKFb8DgBbgbsr0vG4GdJCCBV4B+iCoby2RAgxRUr5d1izbsBpwZ/2wOjgf09als5YyYalm/EUGRtJwAfvPjKOy+65KCK3Ni+zIEoMTLVY8BR5uajX+cz5aj6eIi/2OBtNzm7EDU9cRYtOzVj843ISUhPoeldnElMToubXdZ3Phkzk589+w+60c8/Lt4TCndOrp7Fr4x7Cyj7j9/rxB/e8fdszaXpOY4bPHAjANel3lAgn90WEOpeFEIJ92w7E9BAfpMMVbfjin3fZtXEPlWtnkFEjHYDr+1/J9f2La6sf2JnFzE/mYI+zc3b31lRvUIW4pDg8RZ7QvQghqNe8TqjP+Je/5fMXJmGxqrjyIx8udE1n+9qdZRrSAEN/fIZnLx/GjnW7sDqsPPZB7zLvx8TklOIUycM6ATmun+x/dW/GOwcCf1NsbPohfwjSeW1kbq2ehXG+EIawIoQf6bgMPDOCYzjA2sbIO7a3QXp/RyjJ4OyJUKKrq0ipGfnU7qmgxCESH0ccFDFTKhmlqiLwFecvazvB1hYl/WNjiftaE+kx9hkGb4WQoO0GS4NSWyjOLkj7bAhsA7U6QjXSoUTCfZBwX/FI2m6ke7JRX9re2ciJFk6Q4YfaKlgahl7pBW9D0VgMT35h9NoCW6AMQxpApH6IzLkXtH8AOyQPR5RxPyYmpxTm3nzISCnrld8qNsfTI90O2CSl3AIQVF27EgjfrK8EPg3GwS8SQqQIIapJKfcc++UeGfKzCqKuaQEdn8cfUcIpvVoqdqctJNYFEPD5qXdmbc7ufhbNOzVlw9LN1Gpcg8vuNYzwph0alxomfpBPBn/NN2/8EPIaD73xTV6eOZAzzj2dh96+m4c6PIu7IPapdcAXYOuq7YBhkLsKI0O7pIQ2XVsy69PfDANbCBRVCfUNx1PoIXtPLlXrVmLSG1PZvWkfLS5oxqV3do54aEnOSCI5IwlN08jclUVSeiI2hy30/oZlm+nfeXCoHnRGzXTe+eMl2l/Wip8+/JWDf1EUVQmJq+3csJvPX5iEz+3DF+NWFVWhbrPyc7Gq1KnEB6vfxOfxYbVbTSETExOTI8Hx/kPyn9yb0XOJOEUGjBBhP8Wq14BaFYQ1sjyV9IHlNENt2n420rcGYW0IzuuMfcHWJigWVjqy4A1wfQ64jajwnIch7VOErSUiaQgy6wYM538s/IbAGYZBHlk6C0AHeydwT8bwbB+s/3zwHsMX4kZqmaBUQRZ9aOR82zognFdF7HFCSQNbmuHJ1/YaOcyi+HMywrJvD74ALDUQaRPBdj54vqX4aV/loOdYBjZB0XvBNcaIbBOiTAM/1MxSC1FpOlJ6AZu5N5uYmJSJEMIK/A84GB47BxgrZfknkMfTkK4BhB+x7iT6RDtWmxrAMd2st63dyfhhk3Hlu7n41vM5v2eHwx6r2TmNQ6HAUGy0layDrFpUBn3Tn8cvHBIyAHVdZ+eGPVStW5kut3aiy62dqAg5+/Moyi2iar3K/PzJnIjQa6/bx5wJ8zjj3NOp07QWr/4yiEfOeRYtoEeNY7VbaHSWkce0d+v+6IkEtOvaiqsfuozZE+ahKArnX9eB1+9+l7WLN0ackkkpebrrizgSHPi9fgK+APMmL2bTn1t5cFRkNMWmFVt56tIXgx5mSb8P/sdFN58HwJv3jYmohb13636+e/snZn76m6EOGsTn8bHg+yVccvsF7P3nAFabJUq4zJHgCOWit+x8BhUl3LA3MTEx+ZfMP87znzR7s/RvQBaNBVmEcF6LcHQpv1Np2M4i0pVjAcvpEcYhGOWuZMooyLkzrL0Gga0IezVwXmPkS1dk/VqmEbqs1jQEuCJCrz1Iz0+GIW1tjEwbB9m3EFl6KrR4sAb3LG0bhpFcop39QkT8LUj3j4BqiInlPQGB1SVXBTm3IXESOkjwzEAG1iGSno5s6V+FzL4bpAeQyOThKM7LjPfynwUZZvgHtiNdXxq53xEPAx6jNJizBwR2BEO/SyxJxIEMQNwdCFvbUj7NaMosu2ViYmJSzGiMMJh3g69vDV67p7yOx9OQjnVEGF3zofw2RkMh7gPuA6hd+8iF1+7cuIeH2j+Np8iLlJLlv6yiMLeIy+6JrTBZHtUbVGXw5Md55fa3yM8q5LSz6jN48uMx225cugXVooa8uQGfxqje7/PpprdDbQL+ANPHzWbnxj00adeQ86/rEDp9lVLy3hOf8d1bP2GxWUhMiUe1RoakKaqCI6xmdJ2mNSMM/YNY7VbqNqvJfa/dFnqtqAqav3iztjvtpFROpvbpNbh98A2h67VOr8HG5VujvNJSygjvt8fl5YcxM7nvlVtDxqmmaTzV9UXyMvND7d68bwynt2tIjYbVyN4bWXbD7/WzeNqKGHMREmir3aRG1PvORAfDZw4ko0Y6lWqmR92/iYlJJMIMHzsshBCPAB8BBRj1n1sBT0kpZwJIKR88jsuDk2RvloEtyOzrg95XifQuQCYNQYkrO/+4NISlHqS+hcx7EvR8sDZHpLwdu7F/FYYn9eA+EkDmD0FUmlG8PukD9yRkYDvC1hLsl0bszbLgRXB9ZRiOIpmocHFUw4AMvTyNSKXsg9jA0hiR2L/4dVQdaidCTUNYGiISHwld1S31g6WsSlZ5kUR6v92GwFlifwzHzcGc8rtB5hY3y3sKaT3TUNfWMkuM6Q2qjpeYS8jia5aGhsEcQQKkfoRQqyDUCmn/mJj8pzH35sOirZQyXEjhVyHEyop0PJ6G9E4gPH62JrD7MNoAIKV8D3gPoE2bNkfsazT9w19CRjSA1+Xly6GTD9uQBmhzSQu+3vNBue3yMvOjDL5wUSxN07in2aPs3rwPKSU2h5VV89aGPLqLf1zOD2NmEvAFCPgCeF1eqtatbISMu30gjNzhlCrJodDoBd8tiVlfWuo6na47h/igEnilmum069aKpTNW4nV5sTls1DuzNo3aFCtvzv/uDz4Z/BVb/9p+CJ+OwO8LhAzpvAP5UaHmqkVly1/bqdGwGi0uaMa8yYvxe4ujL9bML1njElSLQrtgWarKtTJ4bFxvXrvrXRTFCD9/YcpTNGnfKKqfiYmJyRHmLinlSCHEpUAljNqXHwEzj++yQpwUe7N0fRUyog08UPQOHKYhDSDsnRCVF5XfUM8myiCUxYe6uh6AzG6g7wQk0mWDuBXFHl3vz+CeRCjPWXoMrzQOinObBYiU0N6Mdwaxzyp0cHRHKIYSOGoNsJ8D3oXBsRxgbQKWJsU93NOh8G3QNpR/rxEECKmQ6weCnugwhAUCG8FSC2xtDU9zeKkt/5LoIaXFCPfGCMmWSS9A/gBDyAwFkfp+qerpJiYmJkcITQjRQEq5GUAIUZ/Y4T9RHE9DeglwmhCiHrALuBG4uUSbKcCDwRyt9kDesc7B0jQ9IkQYiKhtfDRpc2lLvh01LZQnbXVYadu1Zej9d/t+xK5Ne0OvfR4/P4yZye1DbiAxNYEtf22LUP2WuiRrdw5Pf/EQw24eid8bQAtofDLwK1z5Hnas38Wcr2JHFQb8Gh8+8wV//f43D79zL1XqVGLgV/347u2fWLd4I3Wa1eL6/j1QVeNUffxLk/nkua9DXuCKYLVbaNSmAW/eO4a/5v5NWrVUHn73HiMvKgwtoFOlTgYAfcfcR35mPst/WVV8AFDiWUNRFfqMvIv0aqmha51vOJezL29N9t5cKtVMN8OzTUxMjhUH/6BdBnwkpVwpTqwkzpNibzYUskv8sZfHZm8W9k5I13iKjV472C4oblAwGPTwyHef4dFNeAihJCD960sYobphmCa/DHmPY4RUB6DwDaQsQgbWBg3pWASg8GV032JE8nMItRqkvIMs+hQCfxne6vi7EcLwUuuFb0Phu0R7ocvCBtaWyNwnkP5loFSGpMFEf/6BoDo4iORhyNw+4Fsc1q7kQYAKyYMRakboihJ3JdJxMeiZoFY1w7NNTEyOBf2B2UKILcHXdTEOucvluBnSUsqAEOJBYAZGTNM4KeUaIcQDwffHYBTTvgzYhBFnVKGbOpJc3Ot8po6eGcordsTZ6dGn6zGZu0WnZjz0zj281/9TPC4f7S9vzaPvPRB6f/b4aKP3YHmpxNQEajSsis1hDSmEAzjibXw6eGJEDrTH5eXLod8EByh9PVIaquN92j7FuHUjSEpL5Nq+3aPa6brOJ4NjG9FCESiKgpQ6uiax2CwoqkJSegJndDydzF3ZLJiyBL83QM6+PPp2HEin689hwXd/YLFZ0AIal993MY3OMgRH4hKdvDxjINvW7uDBdk9H3OtB7E4blWqmMe39WRTlu2lzaQvqnVEbZ4KTGg2dpd+wiYmJyZFnmRBiJlAPeFoIkUjsmN3jwsmyN4u4q5HurwkZs8IJ8b2Ozdz2c5BJA6HgFaOUk+NCRPLg4gbuaTF6yaDxnICw1EHiIDIn2gGF7xDpBHFD0duUL8MrwTcHmbUSMmYglCREwl3RrWQgxhwHUTDOeCTG19GK8b8/GexnG7nX3l8Bv2HkZt8I9ssM77qwBnOYb0VYDc+3UBIRaZ+i+9dC9s0llLqDCLshauaaYORT2883ws+VeDjoYTcxMTE5+qQDZ2AY0FcC5wB5ZXU4yHGtIy2lnIaxIYdfGxP2bwn0OdbrCqdBi7oMnzmQjwaMx1Xg5pLbOnHlg92O2fyX3t6ZS2+PrAeduSuL0f0+oSC7ZGkIcCY4SK9ueF7P63k2c79ZxOIfl6NaVDxFHlwFHvJXRYdaV9RzrGs6Po+PpdP/5MKg4FdJvhr+XUTudDjtLmvNM188zJdDJ7N28Uaq1qvM2oUb2PvPfuZ+vTAqP1vqkt8nLaTLbZ04u3sbqtSpRMNW0Sr11RtEHxocxGKz8Pq9Y8jdn2d44J+bwODJT9DmEjNczMTksDHzsA6Xu4GWwBYppUsIkcZxMETL4mTYm4W1GaR9iCwYYYR4O69FxJV0nB89lLjrIO66iGtS24PMG0p02SaARFCC+huO7uCZDt75wVrMLpCFoOXE6FdRz7EeFO6aB0HBr5LIwtHENqIF2C82POKF74L/L1BrgX+ZUQrLO5Xosx4dvD+BoyfC0ckog2VtGj2ypT4yKv/7IHbIfRwpc4x1FYyA1DEI+zkVvGcTE5MozL35cBgopZwohEjCKP34OhUs63hcDemThWbnNOa1XwcfsfH8Pj9jHvuE+d8uIT7ZSZ+Rd9H64uYV6luU76JPu6fJ2Zcb8/0bnrgyVI9aURQGTHiUzSv/Ye2ijYx9/FO8MQxNm9OG3+uPmRtdKqVEIi6cupQvhk6O+Z7FZqHPiDuJS4zjnpcNz8GjnQaxa9PeMsPltYDOjI/moGk6j4+L/exmtVkZPnMQz1w2lLzMfHSt+F4Kc4sozC0K3Z8h2vYen256p0K3amJiYnIE6QD8KaUsEkL0AloDI4/zmk5KhK0tIv2LIzaelD5k/lDw/gJKMiJxIMJ+dsX66vnIrGuC+dMxSPhfSGxMCAVS3oHAWqRvORS8SqR3+iAOjDJQh7I3lxQaC67PMxOKStNmsULiMyhKAiQ9AYCedT1o2yk7WEIDz9dIoaMkD429HGGHtI+Q2fcGhcnCxpN5QC7F9+ePEm0zMTExOQYcPGG8HBgjpfxeCDG4Ih1j/8U1Oaq81edDZoybTdbubLav3cWgK4ezeeU/Feq7cvYa3IWemEavzWGldZdIL6sQgoYt69GgRR1UJfJ/t1AEtU6vTtc7O2OxVexMRbUYKt/turWK+f6KX1dFlNcKR9d13nvis4hrm5ZvqVDOuZSS2ePncVPtB7i/VX+WTF8R1aZhq3p8tft9bh9yI5YwdXKpy6jPqyAnRpiZiYmJydFnNOASQrQAngC2AZ8e3yWZAMj8geD+FvT9ENiIzLkP6a+gIJdvQagMVDR2hD2ybKYQAmFtirA2jmH8KqA2AGdPQuJe5WIBEQ+2jjHfld75xDbWwfAGD4+85F9LxTIOJLi/Rd9/HnrmlcF5IhHWMxGVF0L8g0Sqk+tEfV56haIpTUxMTI4ku4QQY4HrgWnCEGeokI1sGtLHgd8mLjRUs4P4fQEW/bCsYp0FiBgbtT3OxqV3dqZxmwYxuzVsVY/E9ASEcvBEHKrVq8z7q95g05//EAhTvS6NKnUqceEt5zF6+SskpETmL2XtyeH3yYvxuryo1thfKz2gM+/bxYzp93HoWrgAWHkEfBpZu7LZsnIbQ3q+xt8L10e1EUKQWiU5qsxXODaHlTaXtqzwvCYmJjGQJ8nPiUcgGBp9JTBSSjkSSDzOazIB8MygWEAMIADe3yrYuTS9OCfE3RjKHY7CegaIpLD+AtS6iIwfwb8SQ3isHJSa4OyBSP8WoSREvCW1fUjPDEMdvNQQaw2809HzXwkbM6OUtrEIgL7P8LDn/A/dF101RgiBUNMp+2DADvbzD2FeExOTKI73nnty7s3XY+iCdJVS5gJpQOzaxCUwDenjgM0RuZGoFgVHXMWUKVtddCYJqQkhj6vVYaXpOY15ZdZzPPzOvWXMaePCm89DcLCOJWTuzmHbmp3s33YAWc6XWlEEBdmFXHpH5yjjd+3ijdx5+sO8eufb/PrlvAghsygkTBk9k8xdWQA8+dnDOBMd2JyRqtlWhxWbs/QN1+vy8ci5A7iraV+2rt4eURbsghvOIb1aWuhztsfZuOSOC0hIjcfmsNKuW2v6vf9AaUObmJiYHE0KhBBPA7cCPwohVCrudjQ5qpSs3qCCcFSw67kgEinOmLOBtQ0i7VOUpGdL7SaEExyXU2xISyMvObAZ9D2U/8SpgMxFOHsi1EoR70jfcmTmpci8p8AzjbKruUhDWTxY/1mkvB6sY13y/m1Ef07heCD7OvQDl6H7NyH1/OK3HFeAmhHW3wGOa4MHCXawd0YkDynnfk1MTEyOLFJKl5RyspRyY/D1HillhUpSmjnSx4F7ht/CW30+wOvyYbGqJKQkcPGtFTuFdcY7eGfJy3w0YDx7tuynxQXNuPHJq1AtpXtgDzLr09/Q9WIj1+f28fNnv5FSOZnMXdF5XTaHDV3TCPg1dF3iKnAz6MrhTNz3ITZ78XPfS7eMxF3giepfGhabSkF2IRk10mnS/jQ+Xj+K+d/9wZjHPsXv9aMogpRKyTw3qR+Dr3mNvMx8/L5AzOeJHet3cV/zx1AtCnWa1eLl6QNIrZLC6OWvMP3DX8nZn0ebS1rQ4oJmFV6fiYmJyVHkBoxyUndJKfcKIWoDrx7nNZkAJD4G+UMxvNIWUJLB2aNCXYWSAOmTkYVvgrYTbOcg4u/BOCcpB8/3RIZRe5GeqSDSgMwYHQ7uv36jnyxE5twPlRcjRPFjncx91BAyqyjCEsxbzkDYWkPGTCO3umB4cC4BSiVIGQG5fUDPJaJOdDjaJsi6DImKtDRGpI1DKGmQPgXcE5F6DsJ+HsLWFnip4ms0MTExOYEwDenjwKW3dyajehoLpywhMT2RK/t0JTkjqcL9Uyol8+jYsj2qRfkuZo+fj7vQEyr3pKjROdKqRaVRmwZsWrE1aoxAIIDNYSMQpsDtLvSwc/1u6jevE7q2b9uBqL5CUKaXO/dA8Sl1WtVUFny/JCR4pumSAzszGdPvUz7b8g6FuUUs//kv3rhvTKimdojgHFpAZ9uanQy7eQSv/jKYuEQn1/S9vKyPyMTE5DAR0vgxOXSCxvM3wGnBS5nAt8dxSSZBlLgbkGp1pOdXUFIR8bcilOQK9xdqBqIU0a2DSL0APD8YBq69E8LSkOiQa2FcszYDLVaOtg7YiQj7loXIwHaEtX5Ys32xVknpXm4FqWUiLA2C91MZ6Z2JYSwH++i7DXG0jDkI8pHuuVAwiMiQ+HA0CGxA5vYPGtMJEH9nqYHwJiYmh4+5Nx97zNDu48RZXVrw4Fv3cPvgG0ipVPGNuiIU5RVxf8v+jOn3MeOe/YKHzn6a5bP+4qZnrsYeDCEXQuCIs9Pt7gtpfdGZUaHliqpwfs8OUbnTUpd8/uKkcteQmJ6IoiooqkKLzs2oUreSkSMlBAG/xsAew/lk8Feh9nv/ORApCCbh70UbePO+saRUSubCm8/j+e+epMMVbVAtsb+2WkBj/dItMd8zMTExOREQQtwLTALGBi/VAL47bgsyiUDYz0NJfg4l8WGEUnENj4og9TxkZndk/kvIgjeQmdcgvYsg/n6KQ6gFCCfCeTXCfi7gLDGKEgwFL+kJllBUgUoUItUYAxWsHUCpbsyJAOmHnPvQC98tbq/tItLwlkZZrILBCCUNJf4qROq7YLuA0nOwA0ZJLRMTE5NTDNOQPgX58b1ZZO/Jwev2EfBpeF0+RvV+n8vv7cITH/fh7O5nUb95beKSnDx7+Utomk73/12CalFRVIXUKsk8MvpenvniEeq3qBM1/rpFGyNeV6tfOapNQnIcX+95n5+843ntl8G8PGMgVocVKSV+jx+vy8tXw78ne28OAM3PbxolEKZrOrM+nxuqcd364uYM+e4JOl1/Do54e8xw9rSqKYf7sZmYmJgcC/oA5wL5AMGcrOg/oianHNL1JeiZGN5bP+BB5g9Bib8Fkl8yjFG1MRCPzLkXKS0Qdz1G8KBqhFUnDUUkvwqWhtET+JZHvlaqRbdRkqHSIkSVNSjpnyDSPsDwbkuMUltuKHwXebCMl7Ut0QayBu5vkNIIRxf2jojUsWC/JJhXHSPYUTG/4iYmJqcepiF9CpJ7IB+/NxBx7aAY1/k9O3DGeU3YuXEvWbtz2LVxD8NvG0V+VgGT9n/AxH0f8NXu97nsnosRQtDxmvZY7cWbohBQqVZ6xNhPf/4IFlvkRrt/RxbvP/U5+/45wMblWziwIzOqxJbVZiEvGOL9wBu3U6tx9XLvTQjBU589zLPjH+Xe4b2od2ZtnAkO4pKcOBMdPPnpQxX/oExMTEyOPV4pZcidKIykVjMY77+AnkWUCrc0yj0pzsvB1gr0bSD3g7YV8vuB7oLKixCVF6FUno8Sd61Rj9rehUiNOgFq5B4qUt4kyqjVdkHhG6DtRPr/Rmp7QJTQuhMW0I1DbpE0ENS65d6aEAKRMgKR/DokPg5qQ8OoFgkg4hEpw8sdw8TExORkw8yRPgVp27UlU96dHsontjmstO1aXPd55sezI2o965pk1mdz2b1pL6/PGWJs0kGueugyZo+fz96t+xFCoKhKlOJ147YNaXXRmSz56c/QtYAvwO+TFjF7/HwsVhWr3YosUS864A+QXMnIDXfGO3h9zhBurHFfxCFAXJITWSLZWgjB2d3PMtb3cDf+/HU1RXkump7TmIzqaYfzkZmYmBwq0sxyPEx+E0I8AziFEF2A3sDU47wmk2OAsF+AdH1NcT6xHewXFDdwTwYZXutZB883oO2AtI8jx4q/C+n5KajsDaAikp+PbGNribS2Bf/CsKs+8PyIdH9rGMw4QEYevCM1pEg1Ar6VeEj/Arn/PCIOAUSSsb4wf4wQAhwXGVnYcbeCbxHIIrC2QqimR9rE5Jhg7s3HFNMjfQrS6sIz6TPqLhLTErA5bJx9RRseGXNf6P1YpbZ0TWfTiq1s/vOfiOsHVcIHfNWP/uN689H6kdRpWiuqf/3mdbCGKXkLReAp8uJz+3Dlu8nPLCCtakpEGz2g07/zYHzBPGypS3Q90mgO+AOsWRBdL/ogqqpyVpcWnN+zwxE3oovyXWz7eweuAnf5jU1MTEwqxlPAAWAVcD8wDRhwXFdkckwQ9o6Q+EzQCHWAowsiaVBYg5L50AA6BFZCIDKlSijxiIzvEClvIpJfRlSaGRIJi8DamMhyVSKo5O01jFyZA2pVIr3bGuTcSihwQsYomyU9ZeY9C2ExQr4dlx5xI1rqBcjAJqReeETHNTExMTlUTI/0KUq3uy6i210XhV7nZeYz5Z3puArcXHL7BWxdvQN/CSExRVWirgFYbVbadWsVdT2cm5+5lkU/LGf/9gMIIdA1PcLrLaUkc3d2hHc5ENDI3J3N6nnraH3RmQT8GoqqoIWphCuKQsBX4rT8ENB1ndXz1lGU5+L09qeRWrliwm6/T17M8FtHoVgUdE3y7Pi+dLiizWGvw8TExARAGoml7wd/TP5jKPE3QvyNoddSz0YWfYaUReDsCQWvEC0kpsS4BkLYIj3aMRAJDyG9c4MK3gKkDoSXxNKL3wsRMGpZ+/8EWzsMT7RKpEdaNcTJDhMpNUO0TC8EW0ujNFYF0N3TIO8pY350SBmFsHc67HWYmJiY/BtMQ/o/QF5mPvc1f4z87EIC/gB2h43bh9zAV8O/pTDPhdQliqoQnxzHvm0HGHjlcIryXJxx7ukMmvgYSemJ5c4Rl+jk3aXDWT1vHQFfgNwDebzV5wM8RYYxLYSgat3K7N68N6LfQaMbDKGwavWrsGPtLsPgFuCIt9Pk7EaHdd9aQOPpbkNZu3gjimI8JLz6y3M0OivGqX0YuQfyGH7rKLzu4geXoTeNYPyOMSSmJhzWWkxMTjnMrN7DQgixlRifnpSyfozmJqcwUstCZnUHPR8IAHZI6AtFo0EWYnxNVBApSP8/yOy7jeu2toiUkQglpdw5hJIIGVPAtwTQkNp+KHghLIRcAbUWBP6JtcBgk6qG11rbFlyTABEP1jMP776lH5l9JwRWG/MjIO0zhLVp2f20A4YRjSf0GyRzH4ZK842yWiYmJubefIwxQ7tPYaSUbF21jXEDxpOfVWB4diV43T5+fG8mH60fxblXtaNq3cq0uaQFj33wP16/ezT5mQVofo0189cxpOdrFZ7PZrfS+qIzadetFV1u7USzcxuH3hOqoP+4/9Hk7EbYHEYImWpRiEt00uwcw1DesGwL+7buD3mtFSG4rn8P4hJjhbuVz8+fzWXtog14Cj248t248t283GsUAPlZBQzp+Rq31u/D092Gsn9HZqjf7s37UEsIo/m9fl7qNYqc/XmHtRYTExOTIG2AtsGf84BRwOfHdUUmxxQpJdK/DlnwGuh5GJ5eCXjAPRGRMRPsF4FSE2znQdIQyH8WZC4QAN9SZO4jFZ5PCBvCfi7Cfj7CeS1YWoS9q0DiMKNmdSgE3GKEn9taGi/9q0DbQ/ETuoD4+xBK3OF9AO5vjDGlyzgYkAXIvCeMz0bPRs/pjb7/QvTse5Ba2OG79k+0MJr0InMfK1YZNzExMTmGmB7pUxRN03jh+jdYOmMlWiBAwB+Z4+Qu9JCckcRzk/qHrk14+VsCgeJ2Ab/G6nnrkFJGCJBVhJ0bdrNy9prQaz2g82z3l/ls89u8/+QXrFmwjhoNq9Fn1F04EwxD+YcxMyK8wLou+ejZ8SydsZKqdSvhSHBwyW0XUL+5UZJr3reL+XLoN2gBnasfuYyud14YsYZ92/bjCQsvB8jcnYOmaTzW+Tl2rt9NwK+xf0cmD5/zLB+vH4Ujzk6VOpWiwsl1TWfZzJU82O4pPljzJs54ByYmpbE9L5fXF87jgMvFJfUbcnuLVof8O2RyaiKlzCpxaYQQYh4wKFZ7k1MLKTVkbh/wLsQwoEsKfRUh1HSjNnMQvfBtItW+/eBbengL0DaDP7xvAHLvg4yZUPiKEc6t1kMkDUAEc7al6zOM0lihFUHBK+ie2WCpYahyO69BWI1Dcd39ExSNBSTE3YkSd1XkLWo7gRLaI9oepAwgs24Jer4D4NuDzLoBKs1ACAeoNUGWDHHXwTcXmdUTMqYZ7UxMSmHXpj18NGA8ufvzOe/a9vTo3dXcm03+FaYhfYryy+e/s2zmyog85YPYnTY6Xt0+4tr+HZl8OezbiPxkMEK2D+ePzNIZK6OM9/zMAtYu3sQj794bu1OMeXweP8tmrgy9/mHMz7z6y3MU5hTy8q2jQsrkbz80DkVVuOS2C1gy40+Wz/qLwpwi7E5bqI2iKjRsVZd9/xxgz5b9ofXpmo67wM2m5Vs4o2MT0qul0vvNO3i370f4PMUPL7qmU5hTxOp562h7actD/kxM/hvsLyqkx4TPKfT50KVk5d497C0s5KmO5x/vpR1RhBk+dlgIIVqHvVQwPNTl58+YnBq4JweN6Fgilg5wXBpxRQZ2QuEHQAnBL3F4oczSM4do4z0Loa1FJL9QSq9YzwBe8M8L2ffSNR7SPwctE/KeJKRMnv8cOipK3BVI729I7yLQcwFHcRsshkdc2wb67rD1aSDzwb/OyKNWqyETn4KCl4k07DWjXJdvBdg7HNLnYfLfIXNXFn3aPoWrwI3UJev/2ET23jzufOHG8jufRJh787HFNKRPArL25DBv8mKklHS8pn2F1Kl3bNgdyk8+iBCChLR4zrvmbHqPvDPivQ+f/gKPyxNxTVEVHhkd2+j1uLx8/er37Fi3i6bnNKZH70tR1eJa0uG1p8MpzC5dZfOKBy5h9vj5MY3/g3hdXj4ZNAG70x4ykA9en/LOdIpyXXz4zJd4XV6sDiuOODt+XwDVolK1bmWe+bIvSImuR5bi0jUZoSh++X1daHJ2I/531hOhHG4IZoeZp5cmZTB900a8gQB6MEXBHQjw2V8rTjlD2uSweZ3iGNkA8A9w3XFbjclhI7W94PkZQ9DjkgqpU8vAZqKNaAEiGRyXIRKfimxf8EqM9gokPU8spO5CFn0A2hawtkHE3YwQYVl8JUOjDxKsGx0LEdcL6ZlBseEbCzeyYBShEPWw67g/R5f7oWBk8D27oVAu/YAFLLWM+tPSGxRDi7ghEMWq40r8LejWFpB9PVEHAjENfhMTg7mTFuHz+JDB6jAel5fvRk075Qxpk2OLaUif4OzevJc+bZ/C5/Gh65IPn/6CV2Y9R5P2p5XZr/6ZdXDE20PGtKIqnN6uISPnD43Z/sDOrNAfl4PUaVaLC244N6qtFtB49PyBbP97Jz6Pn4VTl7F20Qae+aJvqM1Fvc5nVJ8PosZ8+ba3GPG/9+g14Foyd+ewY90umndqyjWPXE6jsxrwyqxBfPb8RJZO/7PUe8s9kE98UnTetNVm5cOnvwiFh/s9flRV4ZF37+Xs7meRWiUlZASffflZ/PHTcrwuHzaHlaS0eCa9PpUmHRpx5YNdUVWV+s3r0O6y1qyY9Rdetw+LzUJKpSTOPO/0UtdmYhIL84DYJIwfCCk2QfDf5wkh4qSUfx63VZkcEjKw1Qgnlj6MUOfXkGmfodjKFuAS1iZI4QwT+1LB2hol/YvYHfS9RP0FsTRBcV4a1VRKHzL7BghsxagXPRvpX4VIGV7cyNkTCoZFjSlz+yFFHMQ/ZHiFA1vAdjYi/jaErQWkfYQsfAd880q/OT27FEPdDgVvUqw87jXuO2kown4+KOkIIQx9FHtH8M4nZHAracjC95C21oi4WxBCRVibIW0dggJqHsAKSiWwlV1dxOS/jdRl1K9SeCUZE5PDwRQbO8EZN2A8rnwXPo+fgC+Ap8hL3/MGsPK3NWX2u+CGc+h8Y0esdivOBAfp1dN4+ovSxUnadm2FPay+tD3ORqeeZ8dsu2bBenas2xUKe/a6vPz+zWJyD+SRvTeH5bP+Ys6E+cQyHwK+AIU5RYx57FMmvT6VxT8u5/0nPue20x4ia28OO9fvpv1lrUhMLz1s7Z/V29mwbEvENbvTxs0DrsVfMrdZl2gBnbSqqRGe5Gcn9OXuYTdzwY3nklwpiZz9ecz5egHjnv2SoTeOCLUbNLEfPR+7ghYXNOPSOy7g7cUvYXdG1+E2MTnIJQ0aYlMtKMHvm9Ni4eYzmh/nVZmcQJwFPABUA6oD9wEXAO8LIZ44jusyOQRkwWtBZW0vRnyzC7KvR/qWld3R0QPsXQEbiDhQqiJSyhD1tHfCCIM+iBMcl8Vu61sGgW0UG6xu8ExF6vlIbT/SOx/cU0uZyA8yDwpfBNc48M2BwpeRBy5B1zKNce2dgaTS1xr4G/xrS94wJNxPdDi5RKAh1IzQ3iyEQKS8BYn9wH45iBTQD4B3GhS8jsx7vLhd6miIvxOs7cDZE5E+ESHMvdmkdM7reTZWhzX0fbPH2bnigUuO86pMTnZMj/QJTs7eXPQSXl09oDPk2teYnPlRqf2EEPR7/wFufe46XPkuqjesitVWfFIspWTyyB+Z8s50FFXlpmeu5uJe5zF93K8AdL6pIzc+fXXMsed8NT8irBpAUQTLZ/3Fm/eNRdckPk90zcuyOLA9k7ub9EULaAR80eJo4WgBHS1Q7Gmv36IOvd+8kzPPa8JZXZrz5+w1oXrYihC0vjjaQ6CqKlc/fDmnt9/Ioh+W4fcam7zX5WPRD8vI3J1NRvU0rDYrdzx/fMJ+Nq/8h21rdlC9YVVOb1d2BILJiUPVhES+veFmhs//nUxXEZfUb8i9Z7U93ss68pgH+YdLOtBaSlkIIIR4DpgEnA8sA145jmszqSh6JtG/BBoy90FE5YWldjOMxeFIrS/IIlDrIETk3ixd48D1JWCF+P+Bszu4vzUaOK9ExN8Vc2zpmUp0+LWC9P4GeQMAncjc4gqg74TMS4y6z7HE0SLQKA5DV8DSDJH0DMJ2Frrt7KBAWvDZQAC26MN6ISyI+DuQ1mVI32wiDwVmIPVshJJmKJEnPnpo93KEkP6/IbAZLHURh1kCzOTYU7lWBqMWDmPcM1+Suz+Pjte259q+3Y/3so485t58TDEN6ROcc69qy98LN0SpSBfmFuHz+LA5bKX0NKhUMx3juS2SH8bO5OMBE0Kq1qN6v88zX/bloXfuAYjIdw7H6/Yy7YNfoq5XqVuJEfe/F5WXfSi48t2HHGajazqN2zTgzPOaADDgq368cc9oVvy6mqSMRB4dez81GlYrtb/P4wvVmD6IooqQIX68+GbED3w0YDyKqqBrkqsf7sbdw245rmsyqTj1U9MY2/3K470MkxOT2hRbB2BYJ3WklG4hxOH/ATU5tti7gH81kWragJ6NlAGEKPvxSqix9yXp+hQKRhEySPMHIlJHQZIhBCZE7L1Z6kXg/i76DbVO0IiOJW5WQWQRh/50roO1JcJ2FgAi5W1k3tPgWwxKGiJ5KMJSq4w5vUQHTSoxVLuPLXrhB1A4CoQKUkfG34mS2Pe4rsmk4tRpUpMh35qBPyZHDtOQPsG5+uHL2bB0C7988XvE9bRqqeUa0WXx0we/RpSG8rp8zBg3m3N6lO05K8x1oapKhLq3alE5/7oOfDl0cpl9hRAoFgUtoMXck8szooWA2k1rsnPDntD8VruF086qH2oTl+hkwFf9Ivotnfkn08f9iivfQ4cr2nDZvRehWoyHkUZtGuBMdOIp8qJrOhabhRoNq1GlTqUy13I0yc8q4MOnvwh5yQEmj5zGpXd0pmaj6sdtXSYmJkeEL4FFQojvg6+vAMYLIeKBv4/fskwOBRF/F9K/2gg7DkepVq4RXSbuSUQavR6kazKK/YKy+8l8jEe68EN3C9gvAdfociYVgErp3ubyjGgBSgPQ/wkbwxasTR1soSQgUt+K6KV75ho1paUL7Bch4q4rPiiwtgDhMN5DB6xgaQBKlXLWcvSQWhYUjgB8xR9J0YdI57VlHwqYmJicspg50ic4Qgie+uxh7nn5Fqx2C84EB0npibw49aly++ZnFbBgyhKWz/qLgD9yg3TER+YSCQGOhPLrL6ZWSSalcnJEvrGu63zxwjdRwmIHiUtyMnL+iwyc2A+LRT3ssBN7nJ3+43pHqJZrms4PY2biK8WD/Mngr3j28pf47euFLJm+grcf+oBnuw8LqXY74x2MWjCUs7o0p2q9ypzTow2v/vocinL8fjVy9uVisUU+iFltFrJ2l66qamJyTJFGiY2T4edEQ0r5AnAvkAvkAQ9IKZ+XUhZJKc2wk5MEIRSU1BGQ0Bcj3zkeRCoidWy5faWejfT8gvQuQMoSxqsoKaQpQIkrf0FKZVCSiVSu1sD1DoYhGusmkiDta0gagWFIHy4OSBkOSkbk3EWfI0vxIOv5r0Hu/eD9CXy/QcFgZPYDob1ZKPGI9IlgOwfUWuDogkj75PhWzdAPRIupCRvo+4/PekxMSnIC7Lkn6958uJge6ZOEG564im53X0TugXyq1q1Urjd629qd9O04AF3TkbqkZuPqvDn3+ZBQ1h0v3Mgz3YYaCtfCMFJvfOqqctehKAqvzBrEwB7D2bl+NxabWmo+s8VuQVVVBk18jMbtGnJTrQdCitplIohpbGsBjVqNqkcIiukBnZ3r9zDrs7lcds9FEe0Lc4uY8NK3EeWrdF2ybOZfdI+/hVsHXcdNT19D5VoZDJv2bPnrOgqs+HUVq35fS2qVFC694wJsDhtV61WOCq3XNJ06zWoelzWamJgcWaSUyzDyoU1OcpSE3si4mwzFarUWQpS9N0v/BmT2zRjGrQ6W0yDti1A/kfAoMud+jFxnAcKJiL+n3HUIoULap8icB0D7B7ASFXYewgaoiJS3wXqG0adCudOlbM4EEJYGSBk+nwb6ZvD8AM5rIlpLPRtcHxFZG1sH/2+wvzl6Ql+UhHsQag1E2rgKrOvII73zkb7lCLUSOK8x/v+otYn2P2lgqR9rCBMTk/8ApiF9EpGUnkhSemKF2r5+97sU5RZxMFr6nzU7GNPvEy69szON2jSg+flNeX3OEGZ8MgfVotL9/i7UaVIxQ61Gw2qM+3sE65Zs5ImLno8IQT6IPc5Gv/ceoEmHRlSrV4XM3dkU5RZVaPwmZzdiy8ptUfWkk9KTmPP1gqhxfF4/ufvzosYpzC1CsagQw9D3ewN8MXSy8ZlmJJGUnsCZ5zU5pp7o79/5ifef/Byf24/NaeXH937mrUXDsDvtvDxjAM92f4mi3CJsDhvPTX6clErJx2xtJiYmJiYVQyipoKRWqK3MewpkASGD1L8Omf8yxF1tiHPZO0DaZ0j3tyCsiLibEBU01ISlHqLSDHTfn5B9O5Gp+AeJRyQ/D9ZWCEtNpLY7GD5dASytIbCGKEEzkY70/BS8r/Cb9RsHDCXR8zE84LEMfR8UvYWuJCOUJFDSjHrYx9ATrRd9BAUjAA8SO7gmQvoEhBIHqR8ic+4zFNuFE5HyrvH/38TE5D+JaUifgkgp+Wf1DsJTjv0eP9PH/cqsz+dyervTeGn6szRu25DGbRse1hxvP/whP4yZiRaIDhlTrSoX3tSRzjd1DG1+SWkJFRISU60qZ3RsQlJaAn/OXoOuaSFDPWt3Nm8/+GHUOFabhebnN4kaq1LNdJIzEjmwIyvmXF6Xl1EPfoDDacfv85NaNYW7ht7MhWHrPlpIKRn7+Gf4QyXEfOzetJeFU5Zyfs8ONG7bkIl7P6Aoz0VckvO4hpqbmJiYmPx7pJSG2nOEV9cL7glIzzdgbQWpHyBsLYzazYcxvswfDO6vifT2HsQCzh7g6F68xymplBr6XbKvrR0oTvAvA6kRMtTlXsgfSLS32gLWGLorag1QkkAvqTB+8EbckD8IKRyGuJhSBZnQD+G8/BjszUZN8GIj3wPaZvDOMcLLbS2h8mLj0EAkHt9QcxMTk+OO+XR+CvLD2JkxQ6gDfg1PkZe1izbww9ifD3v80f0+4vu3p8c0ogEsFpXp436lZ5W7WT1/Hbqus/ef/dzwxFURNfwQhuF8EKEK4pPiuLL3pbww5SlGLRhK8/ObRt1D+LxWu4U+o+7ijI7RhnRRnoszz2sSlQ8ejh7QcRW48XsD7N+Wyet3v8s7jxz9UDJd06OU2HVdUpRX7BkQQpCQEm8a0SYnJvIk+TExOUGQrs+IHUIdMIxH3/Kg2Nhhjp8/GNzjiW1EA1gMo31/B6RvBVLqyMBuiL8LsBOZXx3uZ1GMfOr4GxGpHyLSJhhGf8l7iJjXBklDYh8IyAKj/jMl88HD0YJq4X6jBFf+U8iCl8tof6TwE/PzC/O2CyEQSpJpRJucmBzvPfc/tjebHukTCE3TmDNhAXv/2U/jtg1pc8mhn0gD/Pb1woi84JJ43T52rNsVdT0/q4DX7xnNuj82UaVOJfqP603t02tEtMncnc3U0TPLnP+gEZ+fWcDjFw0xhM6kUfPZmWDn9sHXU7V+FV66ZUSE+rfUJB6Xl/taPMbQH5/hjHNPJ6NmdOmucCrVzuD8nkYtSl3XmfnxHNYv3UyNhlX5+tXvydlnhHwLRXBGxyZsWr4FTdNRFBGzVJffG+DHsT9zx/M3kpASX+bc/wbVonLGuaezdvHGCIO6eaemZfQyORX4efMm5mzbStWEBG5v0Yoke/kifyYmJscPKQNGrq+2B6zNEfZzD28gz0+U7f31IANbKWmeST0bmfs0BFYbedjJLyEs9SLbaLsMBeyyFxBsnI3M7oVh/EoMn0oCJDxsCHvlPUZk2LVuhH9nXhH0mLdEqlVKT8EGY52OLsZ0Ugf3JKR/Dah1oXAMkBNsKMDaHgIrMcLoBLFLdfnA9Rky4WGEcvT2ZiHsSGvzYGmzg3uzjO1ZNzml+H3yYpb/vJKMmmlc9dBlxCdVQOTP5D+PaUifIOi6zoDuL7N63lp8bh9Wh40bnriSWwddd8hjpVRKQigiUkU7TCPEHmePCumWUvLkpS/wz6rtBPwaOXtz6dtxAB9vGEVSWnFedkFWARabJWZedCzCjURd0ynKczPzkznc/9ptaP7oBwqf24fPDQOveJlJBz7kmkcu57evF5Ran3r3pr3c3exRRi9/lfce/5Tfv1mM1+XFYrVEKJVLXbJq7t+899drrJ63HrvTxrdv/8SWFVvRS6iNK6rCFy9OYv2SzVStX5l7X+5FapWUCt3voTDkuyd46ZZRrJ63luSMJB778H9l1rw2OfkZu+wPRixagFczDpBGLl7ISxd24bpmZx7nlZmYmMRCSh2Zczf4/sTwJtuRCb1REu4/9MGUVEoX7MLIuQ0rGWXML5HZtwdDwgOgZyKzboRKPxs5xAfRcw1F6QrXWS5hKJMPnikQ/wixLWQPSI+RH1x5ESL+TqTnZ0qtT61tQWZeBhnfIfNfAM8vxhhRImgS/IsgfRrCvwSEA1k4DrQNRH9OCrJwFNK/Ciy1EQmPI9SyD9sPB5E6Fpn7GPhXBGtev2yWtzrF+XLYN3wx9Bt8buO7+engifT/qDddenU6ziszOdExDenjiM/r56cPfmH/9gMkpCawev66kMHodXn5cug39HzsCpzxh+axuuOFG1ky4098Hj9IidVuJblSIjn78tE1jQuu70CX2yL/OOTuz2Pbmh0hBW4pJVpAY+3CDbS//KxQuxqnVcPusOEu9Bx2aMaeLfv4cljZNad9Hh+5+/Op37wOI+a9yJv3j2X9H5uiG0rI3ptL33OfZd/2zJCHu2S5r4M44h1c8cAlALS66Ez6d36O3Zv3hd5XLSoWm4Upo2fgc/v5e9EGVsxaxYd/jyAusawwtEMnMTWBYdOeOaJjmhx/ArrOnoICkh0OkuzFaQVSSt5YuAC/XhyFoUvJgNmzqJOSSrsaJ5kq+ykUmmViEo6UXnB9jdT2gkgA/0qKDUY3FI5Ext+BEKWnDcVCJPZD+haCDB4MCzuIlKAgVwAc3cFxRWQnfR8E/iHCO4of/H+BvWNxO0t9DDXuiol6xiSwDYrGlN1GukDmGgZ/+pfIvIGGpzy6Iej7kZk3gL6bYuO5FDe2koSIu8n4t60dMutWI6Q7hMUoNeX6EvCC/0+kdyFk/GSIgB1BhJJ63NTCTY4eAX+AAzuzSEpPjPA2Syn5dPBEtEDY3qzpvHHPGKrXr0qzcxofj+UePubefEwxDenDQErJ+iWbyN6bS6Oz6pNR49BPRAP+AP06DWLrqu2GB9pujRLREqqCp9BzyIZ0zUbVeX/VG/z29UKQkvOv60Ba9VT+mrMGq91Ks3MbR+X22Jy2KM+s1CX7th/g9bvfBUVwZe+uNGxVj9dmD2bwta+xZ/Ne0qulkbkrK6pv8U0Q9UsthODvhRvKvAdFVUjOMDzhDVrU5ZLbLmDzn1sJ+KJzl6QuI4zhskgPq0FdqWY6H294izXz1/FO33Ec2J5Fg5b1+HP2KnTNWLTm1yjKd7Pil1Wce1W7Cs1h8t9lc3YWt0yeSIHPR0DXeLh9By6s14Aku514izXCiD6IX9eZtWXTyWdIm5icYEgpDQNTzwTrGQi1ymGM4Udm3QCBLRgeVBvRT6bCMCgP1ZC2NISMH8Az3bjg6IYUlcC/GIQDYW0VnXcrHESHg+vIwE6k52lARcTdgrA2MdS+cx8EbQcoVQwjvNR86ViecQmBVeXdBIhk45/WZuC8ClmwjmJDP3Kd6NvKHu/gsErx3izUGlDpF6RvCeQPBX0vWJuCb1HY/QRA5oNvMTg6V2gOk/8u/6zZweMXDcFT5EHza9z2/I2069qShNR4rHZrhBF9kIAvwOIfl518hrTJMcU0pA8RKSWv3PE28yYvRlEVdE1n8OTHOavLoeUzL5+1iu1/78QXzCf2eyNPaRVVoUrtDFIqJ0dc1zQtqsZwLCrXyuC6x4yTba/byxMXDWHj8q0IAdUbVuWNOUOITy7OM4pPiuOyey5m5idz8Lq82BxWMmqmM/axTw3PNjB7/Hxenz2Yxm0b8tHakYCRV31D9XvRYxgIiiqo3rAaezbvC/2RUlRBwK9Fhp2HYbVbUS0KA77qh8VqfD19Hh+b/txaZt53RYhPcmKzWyOuCWHkTo9e+ioAHpeXq1JuI/IBQ8ZUHM/cnU3egXxqnFYNR9yhPVCZnJrcM/U7DriKQt+e1xfO550li5FScn7tuqhCoJX4LqlCkOI4stEOJib/NaSUyLzHjBBioQIapIwxykkdCt65wTrMBxWlS4ZKq0Y9YZFSYn7NqOVcDkKtAfF3B/u4IbsX+NcZtrlaD9I+RygJxe2VFKTzanBPxfCK20GpDgVDOShcJt1TIf1LhLUZopKhYSK1TOSBTpSq3q3UBH1H2PsKxTnTsbCDUBApb4XuU0oP0v83FVP9LgORjBCRj6NCCIS9HVT63phLL0Tur9hhttT2GV5+S12EMP+2msCA7i9FlEn98KnP+fz5iUhdp23XVqHn+XBUq0piakLJoUxMIjDlgA+RZT//xbzJi/EUeXHlu/EUeXnxxjcPeRx3gTvq5FlRFarUq4TdaaNx2wa8Muu5UJudG3ZzR+OH6Wa7kWsr3cWKX8s5NQ7j8xcmsX7JJrwuL54iL1v/2sbw29+OavfQ23fzyOh76X5/F+548SbSqqWEjGgIhpuXCMlOSk+kdZfmCCVavTKtairv//U6z4zvS+U6GVhsFnRNlmoQW+0W7nv1Vj7d9DbtL2sduj7slpH88sXvIS+xoirUa167wvd/kJQqybz/5Gf4vKUrpDji7JxzZTvsThsAqkXBmeCk1UWROayfPPcVtzV4kH6dBnFzrQfYtGLrIa/H5NTAr2kU+Xxous72vNyox1BPIIBX0/h9R2zPTKrDyU1nND/6Cz3CCHly/Jj8R/DOAe+vgBtkIUg3MvfRQx9HFkGU3JdiGK84wNoCkfZxaG+Wgc3oBy5G7muKvq890vdHxacqGAn+NcE1uyGwFpn3dFQ7kfQCIvk5cN4ACf2CHuFw3RA3snBsiSWnG+Wqou4FUCojKv0AyW+AUg0jb1mndO+1DRKfQmT8irCfV7z+3L7g+ZFiQ1oF9bQK3XvkDaah57+GLCO/WygJYO8EHIzQs4BIDN5jMXr+a8gDFyGzb0bu74T0rz309ZicEvh9ftxFHvw+P/u3Z0a973V58Xn8LJ35J7EE2JMzEul694XHYKVHluO95/7X9mbTkD5E9m87EHVgW5TrKjUntzSadTw9YhiLVaVhq3p8vvldfij6glELhlEpqFitaRqPXzyE3Zv2IKXhBR505XAyd8Wuj1ySjcu2RIiDSQkLpy5l5ZzIvCYhBF1u7cQjo+/jun5XxAyj9nmiN7rnvnmcGg2rRl2vWq8yFquFhJR4CrIKo8o9hWOPs/HgW3dz1YPdIoS9Av4AC6csDXnuwQhDv+6xHoxd+Rq2oMFbEXZt3Mt3b09naDkHH09/8TDd7rmIGqdV44yOp/PWomER+TSr569j4utT8Xv9uPLdFOQUMrDHsSjLYXKiMWLRApqNHkXLsW9z/aQJZXqWvYEAHWrWxmGx4LRYUIBGaelceXoT1mdFb/ImJiaHgL4bZIlDWpljKEYfCrZ2RG7yVrA2R6k8B6XqXyjpE0Ih41IGkNm3GaHUSGO+nPuQ2oGKzeVfQ6THW4J3JrpvWUQzIQTCeQ1K8gsoCXcSO8/YG90ndYzheS6JWhshbIb6tcwrZbyDOCHpeZT4WyKEvaT0GocX4fMKByLhf5D2PUY5rQqibwXXp4bAVxmIlJHguBbUOmBtA2lfRSh4S+9icH0G+IwDEZmLzOld8XWYnBJIKRk34EuuSOjF1am388TFzxOfXHoevd8boOWFZ2J32rDH21FUQb0za9P5pvP4Z/WOY7hyk5MR05A+RBq2rocM22SFgKr1K4fCkCtKRvU0Xv3lOeo0q0VCajytL27OSz89G7Nt9p5c8rMKCY8IVS0qG5dXzAvaoEXd6IsSnrr0RTYu31Jqv+4PdMEeV2yo2uNsXH5fl6hcEpvdyuMfPxjy4gLYnTZufuYaAIryikIiZiVRVIXX5gxh0v5xeAq9jO73MfO/Kz7RF4qIeVJotVmof2Ydhs8YQPUGVWIeusfC5/ax+MdluIs8pbbZ/Oc/zPhoNjl7c9mwdAsvXP8Gfl/xg8a2NcGHpjCydmcf8mGKyclJQNcZ9vtvtBr7Nm/9sZCArqNJyer9+6ifmkqc1UqizRb1lXRarFzX7Ay+v6EXL110CVUTE9mWl8uHK5Zx15TJfL2m4lEmJiYmJbA0I3IjEKDWQ4hDe8wRalVE6iegNjA8v7aOiNT3YjfW9hre74j9QIVABb2g1tNjXJSQfVvZntS4m4iswexAOG8wynSF34uwI1KGU+zFDbYNKo5LvRBkafuWCqkToPIChMxFzx+G9PwSPjoxN15hRbE1QaR9GDTiK1pr2QPenw0DvTT8a8D7rZEDH/gL8h5FyrBDgMBGosLM9d2HfphiclKiBTTG9PuYazLuZPxL36IFdLSAzvo/NlH3zNo44u3EJ8dFPVPaHFYuv/di3lr8Ev3G3k9atTR2bdzDN29O5eluL/LzZ78dnxsyOSkwc6QPkUZnNeCe4b1477FPUVSFhLQEhv4QHYpVERq3acAHq94ot11CanxUOLQW0EitklxKj0h6PXcd34z4AS0QOUbArzGq9/u8teilmP0uvuV8Ar4Ak16filAE5/Row4j7x/J8z9eoVr8qL/7wFFXrVWbcs+P546cV1GlWk8TURBzxNnr06UbrYDj06nnronLAD6JrOi/fMpKkjER2rt+Nz+Pnx/dmcf3jPbjtuetRVZUrendl+ge/4HF5sVhVElPjaRcM/W7SoRHZe3MPWaUwStAljFfueMdQJQ+yddU2po+bHVL7rtm4elT/lCoph3yYYnJy8tqCeXyx6k/cgcgHUL+usyUnm9m3383aAwdw+/08++vP+HSNgK5zcf0GdD/NEPpbsXc3OW5PqAyWJxBg2O+/cb1ZBsvE5LAQtpbIxEeh4FVABSXF8Mge1lgtEJV+Kr+hkhJtiMoAKBkVmyehL9L1GdE5xn5k/hBE+oTY08Zdi04Aij428sHtFyLzngKZh1TrGIa/Wh1Z8Cp454GlISjJIOIQcbch7O2NgXxLiM4BP4hm1JNW4pCB7YAX6foKmfAASsL/EMKGdN4A7m8xcretxudhC4Z+W1uBnsWhSwiXvjfLvCcMkbeD+Nca88ddb7y21AOhRE6pVDnkwxSTk5P3Hv+UH9+fhdcV+Z32+wLs2rCbTza+xeY//8Hj8jLi/vcI+ANofo2O155Nx2vaG0K4C9ZTkF0QSmv0unyM6fcxXW7tdDxuyeQkwHzyPwyu6tONrndeSGFOIalVUyok/vVvcMY7uHf4LYx7djxIw0t7zpXtompBl9X/rmE38+HTX0YZ5Nv+3snYxz/FYlXpeteFUXWMu955IV3vvJCsPTnc0eihUHmuPVv28vhFQ2h+flMWfL8Er9uHEOBMdHLXsJvZsHQzQkCrC89k1mdzy1xf5u5sCnOLwv5wefly6GRuefZaVItK7zfvoE6TGiyd8SeV61Si14CeoVJURlh9bG9343YNqd+8DvMmL8aV70IL6NjjbJx7dfsyxcGy9+REvPa6fBH5NS06NePy+7owdfQMrEHxsiHfPlHmPZqcOkxZvzbKiD5IlfgEKsXFU6mOEW7YsXYdNmRlkmi30yA1LXQAUxjMqQ7HHSgrvNLExKQ8lPg7kHE3gJ5n5AEfZQNKKAnIhEehcNTBK+DsBpYmFewfj0zoC4UjiDKm/RvQ818GYUU4r0NYInVBlLgbIO4GpLYXeeBSQuW5tG1GuLmlJfjmYIimCRAJRn61fyUSDGPaM6XsBeq7QHdSHL7thsK3kPH3I4SCSBqEtDQE3wJQayISeheXotLzou/pIJaWYDkNvDODHn0NcICzG0KUka6ll0yB8SC1fSHTW9jPRTp7gutrEFZAIFKj9WBMTk3mfLUgyog+SHqNNNKqppLWNRWAs7q04J/V20lMS6BW4xqhdkV50c+UnqKK1mY3+S9iGtKHiSPOfkyVmq95pDtNOzRm4/KtVK1biTaXtizTq1qS6/tfyf5tmUwZPSNCMdtd6Al5nL9/ezpvLX6JOk2ic6o2rdiKaik+MJASCnOL+G3igpAImJTgynfz7iMfIYTAYrPQa+C1KDGEyMKJT4qLCheXUuL3BVAtKkIIut9/Cd3vvySqb2JaAgnJceQeyI96r/bpNej33gPcNfQmPh44gT1b9tGy8xlc//iVZa6nSfvT+HP26tAfU3ucnTPOjSx/8MDrt3Nln67k7MulTtOaEQroJqc2Tqs16ppFCOwWK8O7dI24Hm+z0apa9aj2HWvX4bWF80LPmTZV5fw6dY/Gck1M/lMI4QT12Ck1Kwn3IG1tjHButRbYzj2kvVnE348M7ALPRCINz0JwjQMUpOtzSJ+MsNSLHsC/2vBKh7Z1CXoO+GaGjSdBFkDBi0gEYEEm9qXc7D6RBFECYDqGurfNMKbje0F8r+i+SioIZ3HN7HCsjVCSX0Rq/ZCFb4C2C2znIIJq5qViPRN8SykuteVA2FpGTps0EBl3u+ENtzREKIllj2lyymCP8UxusanYHDYe++B/EdfjEp007RBd1qrNpS35dMjXaMHnP5vDSrvLWh2dBZucEpjxLicRp7c7jSseuIS2XWPUmqwAfUbdVWo9PKlLPEWGJzgWqVWSo4xdLaAjlOivkK7paAENr8vLJ4O+4ppHu2OPN/7ACUVgsalYHVbik+OIS3LSoUebkKcbjLzpph0aVeigQgjBsJ+exeqING7scfaQ8ndKpWT6jrmf4TMHcdPT10QcCMTiqc8fpn7zOqgWFdWicuOTV9L+8rOi2lWrX4WmHRqbRvR/jGtObxp17eomTZl1652cWbn0urV5Hg8FXuN73ig9g7Hdr6RWUjJJdjsX12vAm5dcdtTWbGJicvQQtpaIuJsQ9o6HvDcLIRDJz4OltLQOHaQLWTQ29ttKBsiSUVk6sUOkNQwj1AMFr0H8XYaxa6wEQ73bbqhhi0SwXUBxGTAAFaxty/Yah+5LRaR9EBwzHCfCfr7RRk1HSR6KkvYxSsJ95ZYPE8lvGp5sLMZPQu8IFfFQO0tthK2VaUT/x7ioV/R34dI7OvPRupE0bBnjEArDaZOfXUBRvpEyUL95HQZN7E/VupVISI3nnKva8cQnDx7VdZuc3Jge6f8QQghaXXQmfy/cELMElZSSHet3xex7Wuv6dLz2bOZ9s8jwaAvBHS/cSO7+PL4a/l3pcyqCrnd1JqNGGnO+mk9SeiK9BvYEIGdfHo54O4+cMyBqHU9++lCF7+u01vWZtO8DXrxpBMtmrMRis3DT01fT6fpzKjxGOMkZSbyzZDhF+S7sTpuZ+2wSweoD+6KubcjKokpC7HqTbr+f+374jj927UQClzVsxOuXdOO82nX57Y57jvJqjyKnUPkKE5PjiRACaT8HAquIHQ4twV+KMKi1BTguBu8vxarliY+DthNcH5U1KzhvAqUyeKaDkoZI6ANooGcjsUP2zdHrSH6l4vdlbY6svAhyHwHfQsAKCX0QjujosgqNp6YjMr43RNKEHSGio4NM/rtsXBb9O7J19Q7SqqbGbO8u8jDwipdZM389EknnG8+l/7jetOvWis+2vHu0l3v0MPfmY4ppIZxA7N+RybT3Z+F1+7jg+nMqnAN9KHS960Imj/gRd4EbXY/+bdv61za8bi92Z6Q3WAjBEx/14cKbOrJ3634atqpHk/anIaVkyrvTcRdEq2ArqkKVOpVIqZRMl1s7RYk11GhYjZVz1mC1WyLKajniHREe6ooQlxjHsB+eQQalzQ/HYx89ppOpo2fw/TvTsVgt9Bp0HeddY4i0SCnZtGIrBTlFnNa6HompsY0ok1MPNUbepVLG923o73NYvHMHgeB3c+bmjXy4ojL3ndX2aC3RxMTkCCK1XUjX1yB9COflCOsZR3wOEXe9ITwmXcQ0pgOrkdIX5Q0WQkDya+D7HbTdYG1qGLBSIl0TCOVOR6AaJbCUZETctRB3bYn364F3PlJYQYbt7cKBoPSKF7FQlERIG3dE92ZEPNL1GdI1HoQFkfAIwnExYOzNBFaDXgjWZggl6d/PZ3JSoMTQK1ItpQfevtv3I1bPWxeKtpw7aSGNzqrP1Q9fftTWaHLqYRrSJwj7tx/g/paP4y5wo2k6U9+dweBvn6DNJS3+3bg7Mlm3eCPJGUk079SUyrUyGLPiVSa+PoV/Vu9gzfx1EWreqkUlZ18eVetWjhpLCEHbS1tGXXv8owcZfusoNE1DURS0oLe7Ycu6DJrUv8yNs9bp1aOEHQRQpW6lw7rfQ92kpZQIIdB1nbH9P2Xa+7NQFIVrHr2ctGqpvPfE53hdhlE//LZROOIf56wuzRnS8zWW//yXESYu4PXZQ2KXGTM55dBl5AGUAPyazsd/Lue2Fq1CRrVP08hyFfHN2jUhIxrAo2ks2LHNNKRNTE4CZGAHMuuqoIGrIV1fQOpYhL3DvxtX2w3+v0BJB2sbhFoD0r9DFo0D/wYIrMAIxT6ICno2qFWjxhJCQDBcOvyaTH4J8p7CCOdWg+MJw8BMGVX2fmlpALKkAKICarWYzcvjcPdmKTVkwTBwTzLmj78HSISi10EahwQytx+kjgFbe2Rub/AuAmEBBKR9gbDGTmkzObWQJfdmIfC6vHz/zk/06N019B30+/zk7s9j1udzI1IWfW4/K2avNg1pk0PCNKRPEL4Z8SOuAnco5Nrr9vH+k5/9K0P6z9mrGdjjZRRVQdclLTo15fnvn6Rq3co89NY97P1nP/c0exQtUOwN9rp9/Prl79z8TMkT6tI575r2VK37An/+uprEtAQ633QudqednP15fDJoAvu2ZdK6y5lc27c7SjCnWtd1Jr42hd++Xkj1BlXYtXEPQlFQLQrPf/8kznhHObOWja7rZO/JIT4lPuZY0z/6ldGPfozX5aXlhWfS5OzT+PG9WSGjeeJrU0lMiw+9BkO9+6cPfqEgu5DlP/8V4TUfeuObjFs78l+t2eTEZ0tONr9s3RxxTWKEe2/IzmT86pV0qFmbJLud0Uv/QJOxY6y8gdhK8yXRdJ1Ja9ewKTuLphmVuer0JkfGo2NiYlIhZNE4kEUUe4k9yIJXEfbYeiIVGtM7H5nT2xAJQwfbuZDylpHbmzwYGdiGzLyCSEPai3T/gEioeDqI4rwMaakFvj9ApICzO0LYkdoBZOEow5i3n2eUxApG2kipI4veB89PoNYBbSugGp7f1LEI8e/2Zik10A+AkmwIw5VAd30NBS+B9CBt54K1KbgmEfKsF75n5G/LcE+7B+mehND3GUY07lB4q8x7DJHxw79as8mJz7a/d7B0xp8R16SUbFi6hX9W72Dq2J9p1fkMHAkOvn7l+5jpjQA+d8UUurWAxoyPZrN9/W5Oa1WPC28+dH0Ek1MD05A+QXDluaJ+sWOFSx8Kw24eGWHsrZzzN/O/WxIKT65atzJ9x97H8Nsiy0N8OexbWl54Jk3PbhR7rQVuHPH2kFEMUO/M2iz7eSWLflzGvm0H6NH7Enq3eYqcfXloAY1Vv69l5/o9PDr2fgA+GjiBb0dOCxmq9jgbL/7wNM3OaYTV9u/ynnZt2sMTFz9P7oF8dE3n7mE307PfFaH3V89by9sPfRgqk7ByzhrWLd5Ywmj2xgwJsjlt7N60N6rEwv4dJctymJxqZLpc3PjNV/j1UjZgTWNjdjYbs7MrMFq0gZ3lcvHFqpXkez10qd+QdjVq8sCPU1iwYxvuQACnxcK8Hdt4/ZJu//JOjgAShJmHZfJfQBYSFWoti/7dkLn9CDf28M4H72xwXASAsNRBJj0H+U9Hdix8C2lvj7BGC5NJKY11ifjIB3pLY6R3Pvh+BW03Mu4myLrKUPYmAL6lyMA2RPJzxjgFr4DrS4pFxpyQ+oFRW7sCImNl3ndgKzL79uDcOjLxSZT424rf9y6G/BeL5/YtAv8KIsPT3Rje9XAECEew3nWJUHYttu6LyalD9t4cHus8mIAvdllKn8fPttU72LZmR7n5w7GM4Zx9uUwdO5OiXBcdr27PGR1PZ9CVw1n52994XV4c8Xb+nL06Shn8uGDuzccc05A+Qeh8U0dmfzU/ZKDZ4+xcdEu0AmFpLJ25krH9P8GV7+a8nmdzzSOXk3sgL6KNFghwYHukwde++1lGbGrEL55ky8ptIUNaSomu6ezcuIdnug0la3c2VpuVpz5/mHOvaoeUkueufoWVs9fgdftY8tMKfh0/j6I8VyhsxuvyMn3crzz09t1YrBamvjsjwnD1e/z8vWAdLS9oVvEPrRQGXTmcAzuyQmE+Hw/6iqYdGoVKHayYvTpUsxog4AugazpCGCW8ABRF0LhtQ/5esD5UI9seZ+f6/j3Yt+0A9jhb6JBCUQR1mtb61+s2ObHpO/1HMl2uIzLW4t27uHHSBHI8HuqmpPJI+w7c8f035Ho8BHSdT1auoEl6JTbkZOHTjN8hdyDAtI3r6dfhXGokmnl/JibHAuHsjvTMIMKwdJZdQjEc6Z2LzH/ZCA13XA7OG0HmlGilgbYn8pK9M0ZhlZL1pdcbZaA4GMqqQWArMuduw9Mr7JD8JsLR2ciTzrkffMuM9Xvngmcq6EUUl5Byg3sCMmmAoZrtmkCkUrcPEViJsP/7VBSZcz/o+wg9cBS8jrS2QNiMyDvpWxA1t6FIHv6QooC1ZbAM1sEa2U5E3J2gbUUKZ5i3WgFLbIeAyanDCze8SV6MEqhRVMDAXDZzJf06DSI/q4CajavTa2BPnr70RQpyitACGt+//RMNWtRl65od+IPPkZ4iL7988Tt3vHAj6dViC5uZnLqYhvQJQuuLm9Pv/f/x0YDx+L1+utx+Ab0G9axQ343LtzD4mldCRvi3I6cxecSPUX80FFWhcTtDwExKyZjHPuH7t6dHtRNCULVeZca/NJlvR/1E7v5cwChb5fcam68W8PJSr5G8/9cbKKrCn78WG6c+j58DO7JQ1MiTPV3X2bN1P9UbVMFV4C7xnsTrLpmPdejous6O9bsjcmWkrrNh2ZaQIZ1SKRmb3Yo3LITH7rThcXkRgGpVccTZefS9+8nalc30cb9isVm48sFu1DujNvXOrE33By7hu7d+wmJVSUpPZODX/f712k1ObJbs3nlEx/tjt+Ep2ZSdxfwd2/BrGoGgt1uTktWZ+6P6qIqCy/fvf09MTEwqhrB3Qia9AIUjAR84eyLiH6hQX+lbicx5kJBx6PrQ+Ik6vRYRxrHMfwHc44kyogVItSay8F0o+gzkwegXCxD8uyBdyNxHoNJPIAPFRjQA3qCHtqRHV0dqu0CtTrQ4mYaU3pjFtA4FKQOgbSPyvqVRfztoSAsl3VALJ1xs1BG2JguIOETyi6DtQronAXZE/G0IS0OkpSE4rw961C2gpiNS3vyXKzc50Vm7aMMRG0tKWPX7WgC2r9vFsp//wu/1h5xCWsB4niyJalFwF7jBNKT/c5iG9AnEhTd15MKbOh5yv3nfLo4wCiNCxIVhGKuqwl1DbwrVkZ7z1QKmvTcrQmhBtahYbCoX3XIeK+es5ps3fwgZziDD/m3gdfn48f1ZdLv7wqh60hariqIq+BS/US7LGIK7Tn+EemfWRlEVND0yT7Rmo9JFTApzi7A5rKhWld8nLSJrdw5Nzj4tZBwfRFEUkjOSyN1f7I0/qB5+kC63deL7d6az75/9oZrXAb9WvE4kQ75/gmr1qlCtXhXO6NgkYg4hBPe/ehs3PXU1RXkuKtfOKLc2tcnJjabrMVXuo4I5DgMJEUZ0aahCkOJwUCcl5V/OeIQww8dM/iMocVdCXMW90AeJ9GRDtBq3AqiQ+ETIK4vne3B/Q2R+dLBusvNa8P4Grs+A8PSikodrHqRrEsJ5OUaoVfh7VhBKVBQamRcjlabGeigRIqvWLf0e9bxgLWrFKKOlHwBr6+L7CSKEBSmSQeaGXVSCxnsQZ0/DCNb2BO9fC95b2OeW+j5CrQ5qdYQt0ksuhEAkPYtM+J+h2q1WRwjzMfdURtO0mPnOQhFhz3SHh9QlAa8fzV+2pomiKqRWSaFa/Sr/ar4jhrk3H1PMvzAnOMt+XsnnL0zC7wtwZZ+uUSWkwCgXpVrU2L/s0lDGHrPi1Yjc4zXz1+JxRZaYUiwKoxYMo37zOvSscneU4RyLb974gQtv7kj1BlXYsX43AV8A1WJ4aYf99Az3t3w8Km9l66rtlDzettgs1GxUvKHu336AcQMmsG/rfvZtP0DO3lykhLRqKeQeyEfza6gWhd4j7qT7/ZE1KQdMeJQBV7yEoqpogQDNOzWlTrNaIRVQR5ydd5e8zG8TF1KU6+KT576iMLc4503XJCtnr6H5eU3LvPek9ESS0hPL/YxMTn76/zwdGWN3Kmu/qhqfwN6iwgoZ26qiIBD49OjfYVUIEm12GqVn8Mal3bDFKPFhYmJybJHeuYZnWGoQfzuKs3t0IxGP8ZhVyl5qOQ2R/k1E7rH0LSPaK2yB9Iko1sbo+9oSaUSXQtF7SPvloFQHbTuGQWp4aUkZC1k9otel/03U5ow1wpCWgZ3IwjchsBv0naBnBe81I+gh1wAFmTQEJS4yqk6kjEDm/g9QDW+5tQNSrQfBvVkocZDxnSF0phca88jC8AUifIvB1rLMWxdKGihp5X9GJic9L90yklg7bGlGtFAE6dVTydyZXfxVL2ODVq0qQhExn4dVq0pcopP6zevw5KcPmQ6V/yimIX0C89fcv3nuqldC3uaRq99H13Uuvb1zRLuud3Zm0htTKcotiihlBYaXuW6zWlECXtUbVMNqt0T8cQj4AvzyxVwq1bo6Ioe4LHRd56H2T+Pz+nHE2cmokUaDFnV46J17cSY4CPhLeYCQkSeGWkBjYI+XSExNpN1lrfj5s98oyo0WYDuwI6t4bk1nVJ8P6HbPRahhxkVGzTQatKzLro17CPgFf/66mnvPeJS0qimce0172nVrTeuLzgwdSnwx7JuIOYQou/ZgeUgpmTD8O6a9PwurzcLtz99Ip+v+XakUk+NHjtvNtI3rY/qSyvIh7y0yHgArcjic5nAy6PwLeH7uHHYXFoSuOy0Wbj6jBc+ef8EhrtrExORoIb0LI0O2855BlxIl7oqIdiLuOqTrE5AFRHqYASxgaRQt4KXWBmxEGss+8ExDqlVAVkxVGHTIvgrDgHaCUsWoMZ002BDmKs24RxIZa6NB9t3oarKRt+3+Jng/JQXY9oa90CB/ANJ5baR4k1oNLKdDYLvhjfbNg8zLkEplpOMShL0Twn42OK82hix8q8TalKDS+eFhKJKPMVTAhQ2R2A/huKT8jiYnJNl7c1jw/RJkia+iooiYEWRgGNiZO4MpEeUKj0FqlRTue/VWRj/6ccTzpz3OzlUPduWel3v9m1swOQU4fGvB5KgzdfTMiJBtr8vLtyOnRbVLrZLCeytf57r+Peh694VUrVcZZ4KDuEQn6dVT6TPqrqg+3f93SZQogtQlX786hWsr34W7sOSJeGx0TTeMbgkelxfNrzFoUn/Sq6Uy/7s/IpS9SyKU4g1W6pK8AwXs3LCbKe/OoCi3qNTyBCXXvGtT8QZekFPIwx2e5e+FG8jdn09hThE+jx+fx8/efw7wzRs/MOjKl5k6Zkaoz41PXoU9zh5akz3OzsW9zo+aq6J8/doUvnzxG/Zu3c+O9bt59c63WfbzysMez+T4sSk7i8d/nh4z7Lr8b2f5CMCiKGR73Ixfs4qZve5gSKcLqZuSQq2kZO5s2ZqnOh7+d/GoIk+SHxOTI4yMULXG+Lfr46h2Qq2MyJgC8XeDo6fhHRbxxo9aFZH4THSf+FuN2tIR6FA0Grm/Q4l5y0LDMMYlhodbIlLeQqgZ4JlB2Y9/4caqDmQbZbBcn8U2omOiI8ME1KSejcy6Hvx/gswCmY+RC+0FfQe4PkTm3Ifumlg8RPy9wMESWQoIBzhieP4riCwaC0VjDU+6tgWZ2x/pXXTY45kcP/5Zs4PX7xlNIEYkZmlG9CEhDEdU9t5cZnw8h3FrR/C/EXdSo2FVqtarTM/HunPn0Jv+/TxHg+O95/7H9mbTI30CE8srqqixN7/0aqncPewWAAL+AOsWb0QL6DRu1xBH0EgMx2a3cl3/Hozp9wn+EqHXUjvMb7iE3AN55O7PI61qKqvnrS3TGFaEgh5jQy6thEEshCLwhZWiWvX7WgL+QJm5MV6Xj/ef+JwrHrgUgGv7die5UhJzJswnMS2BXgN7Url2pVL7l8eMj2ZHhM17XT5mfTaXs7q0KKOXyYnG9rxcrv7qS1x+31H9mx/QdQK6zuJdO7ngkw9xB4xokGoJidzbui1qGYdRJiYmx4FYXtFSPKVCrYpI7A+AlD7wrwSpg61FzJrMQjiQ8XdCwatE5z5XrP58NBL0/SBzkaQgfUs4vKPAQxE6VBDhYdm+JRih5GX9NfVAwcsQdx0AIv4epFIJPNNASUUk9EGoVQ9j3UHc3xBVf9ozxfCCm5w07Nq0h4c7PIOnyIM8SpuzAMNI92us+GUVt9Z/EK/bCxKq1K3Edf2uiIiENPnvYj6hncBc0/fykKcUDGVpZ4KDbo6buCKxF+Nfmhyzn8VqocnZjVj52xr6nT+IAVe8xI710bUUz7mqHTan7ZCKyCuqQkbNdLre1RmLLfqPiBbQSUhNYEz/T/jpg19LHcdis0SJjR0OcUlOaoSJlNkctgjF7tLweXwR7S6+5XxenPo0T37yEDUali56VhEccZGhekIIHAnRD0wmJxYBXWfArz/T5J2RNHt3JE/OmoEn4D+qRnT42J5AgGy3iyK/nyK/n215ubw8f+5RnN3ExORwEHF3YqhJH8QBWNH3NkPf1xK98IPY/YQNrK2QvkXIrJvQs+9HBrZFt3NcapSxOiStbMXweDt7Eq3KDaCDSEDmvwieb8sYx8YRibcRiWCpXWLcCiCLPe5CCJS4q1DS3kNJGY6IGO9w1uQscUEBEffvxjQ56gT8Ad64bwyXx93MFYm9eOOe0Xhd3qNmRAMRY/vcPvIy83EXeHAXeti1YQ/jnh1/9CY3OakwDekTmEZnNeD1OUM4/7oOdOjRhjaXtmD9H5sI+AJ4irx8MXQysyfMj9l31IMf8PWr37Nx+Rb+mLaCh85+hszd2RFtMqqn8daiYbS7rBVWW+zgBKvdQpW6lbA5rDgTHaRXS+XNuc/z2Ae9sZTIuwY496p2uAvcfP/WT6UbtAKc8XbqNKlY7WXVonL94z2w2q3Y42yhZ4vKtTN47dfBOOOLH2haXNCUKnUqYbUbaxNCoJTw7FvtVs66pEXMAwS9HOXkinDn0JuNdQbndyY4uPbRww9HMzk2vPXHQiav+xuvFsAdCLBs9y70o7hTpzvjUMO+g4LIx1e/rrMhKzOqn4mJyfFF2Fog0j4D+6VgvwhsHcD/F+AH6YLCt4KK3dHI/IFQ9CEE1oDvN2TWtUgt8vdcqNUQ6V+D7Xwgep81sIFSE7AboeJKVUT6eJTkYcQMNrR3Az0X3BMo3SssDMOyDJXuSCwQd7exFhyENmelJiLts0iPu/0cUKpSbFALog1+G9g7xZxJlkyEPQxEQj+KD0AMI1rE3favxzU5unwy6Ct+/fJ3fB4/niIvaxasP6p7c0rlpIjoz5IK4H5fgK2rtx+1+U1OLszQ7hOcxm0aMPAro0bx7Y0eisqZXvTDUjrfeG5EHyklMz+eEwqRllLi8/iZ8s4MbhlwDXZnsZe7VuMavDj1aeZ/9wcv3TISr9sX/AMiSUiJp0OPtjz09t3k7s/HVeCmxmnVsAWN1Jadm7Fo6rLQWFa7BU3T6FW/d8y8lYNYLCrvLnuFKaNn8E+MP0aKqkSEhOuaxsblW/l4/UjW/bGJ5EpJnNHx9JhhNVablVELhvL1a1OY/+0f7NmyF6vNSu1mtVi3aANaQCcxLZ6+o++L6Ld7814G9niZHet2k5iWwLPj+9L64ual3kNZtL20Ja/8PIifP5uLzWHlyj5dqd7gX4SjmRwTZm3ZjCcQJr53lDZqRQg+uOJqmlaqxHUTJ5DtdqFLSZozjgNFRSHlbruq0qLKv4uOOFoIQJxCOU4mJoeKsLVA2AwxLH1/ZyJrH7uR3tmGZzkMKXVwf0+xWrYO0ot0fQEJ90cYnsLSEJH2Prr7J8h7EiM3WgUkiGRwXIxIGgTaAcN4t9QtFi6ztQdfeDSLzVjTgS6UHZ5tRWR8hyz6CFzRtXKN+cP3dg0CGxGVZoB/FSjpSEtrFCV6bxbCDukTkUUfgGcWaDuNdVkbgn+FMZaSCkmDIz+zwD/InAdA24oUqYiUEYcdii0cnSFtHNI9BYQTEXfLv/dymxx1Fk5dijcsha+kqO6RQlEVhk57hjpNatK34wAKcgrRNZ2USslk7c0hEBTntTmsNGl32lFZw7/F3JuPPaYhfRKRUjmJ3WHCWqpVJa1qSsy2Jb2tfq+fb96cyrT3f+a12UOo2yzSG3zOlW0Z+HU/lv28ksS0RC6/72LSqhaLkYXXYZZSsnH5FlbMWhU2H6hWCwu+W1Lufdjj7VStW5mr+nRlyjvTQ38gLVaVjte0Z/W8dWTuKvaeSwkrZ68mtWoK5/csX/3ameAkMTWePZv34XH58BT5WDNvXej9gqxCXrnjHV795bnQ/Txx8fPs35GJlJL8rAKeu/oVPvx7BJVrZZQ7XyyadmgcVePa5MQmPe7YhPhJKTm3Vm2sqsqPN9/GHzt3UDkhgfopqdw5ZTKr9u8DoFmlyjx+zqHXlTcxMTnGKGmgh6dPWUCJpbMhiA7X9kLRB0j3BEj7HGFpENnD0RUp7OBbACIFEXcTQg0TI7PUDP1TSon0rwLfHyXmtID3l/LvQziNGs1xtyNdEyg+HLCCoxv4Fhp1ootnBN98UKogHDVCs5U6vJKAFAmGuBhuwAX+pcUN9BzIewrSxgXvR0Nm3wb6PmMumY3MvR8yZiLUw6vZK2xtELY2h9XX5PiQUjmZbX/vPOrz6LpOqwvPQFVV3vvrdVb/vpb0GmlUb1iVp7sOZfOKrQA0atuQ24Zcf9TXY3JyYBrSJxF9Rt5F/86D0QIaQhHEJ8Vx/RNXRbUTQnD1Q92Y8u6MCNErn8eP3+tnSM/X+GjtyND1zN3ZPNnleXZv3oeUktueuy7CiA5nxsezGdX7fXzeyFNtKcFTWDE10QtvMoyDyrUrMWrBMN55ZBw5+/Jo160Vd790M6Mf/Zipo2dG3pMiSq3R5/P6GdX7feZNXozdaePeV3rxyxfzoupkH8TvC/DX3L/RNA1VVck9kE/23tyI0B1FVVi/ZPNhG9ImJx/PnncBV0/4Ao9WcbG7w6F6YhJWVWXp7l3cPeVbArqGLuHVLl2ZcO0N7MzPRyKplZR8SPoFJiYmxweRNAiZc5shIoYAJRkRH10tQwiBjLsFXF8RWSvaC7oPmfMwotKPoatS24vMvh20XYAOCf0ijegwdNfXkP8CxUrdoVEAV8VuxH6lsU5LTUj/ysin1rPBfiEi8VFk3mDwTCzRSSF2TjZI6UXmDQLvz0Z+cuLT4JlaQvArHB/4FiKDdaXRDxjh6BH3o4J/DRymIW1y8vG/N+/g4Q7PVLgs6+FSrV4VVFXlr7l/M+jK4Wh+DSklT372MCN+f4G9W/eDgKp1K5t7s0kI05A+iWh0VgPGrnyNP6atwGqzcF7Ps0lMTWD1/HW81ecD8rMKaH95a3qPuJN7hveiSt1KfDtqGrs27Q0ZiVLCns37IsYdesOb7NywJxROPX7YtzRu2zBKZXr9kk281eeDf/fHTMCmFf/gcXlxxNmp37wOr88eEtFk6Yw/o7qlVElh0JXDady2ITc+dVVEXezRfT9i9oT5+Nw+ivJcjLj/PWo3qRk1RjgWmyVUmis+OS4qn1vXdFIrJx3mTZqcjDROz+C9Hldx+7eTjprAWJrTyXuXX8n0TRt5dMaPeLXiMMknZk2nVbVq1EpOPkqzH2HM8DETE8AI8yZ9Knh/M0TCHN0QSiLStwSZ/7xhDNovRCQ9i0h8CqnWNEpJadsp/kWSoEUKj8nch4LXgqGsRW8hrWdEhTZL35+Q/yKR4eWHgbYGKT0I4UBYmyLSvywxz7wYN5+BzLkfaWuJiL8XIYr3Zpk/xFDcxguyEPKeAbVeOYuwFxspIokopXKpxSgPZnIq06BFXZ775nGe7T7sqO07qVWSGfLdE/w2cQEv3/ZWKIwbYPhto2iy4S2q1T9JDm/MvfmYYoqNYSg4f//OdD585kv++GnF8V5OmVSrV4Ur+3TlsnsvJjE1gZ0bdvP0pS+y5a9tZO7K5ufP5vLa3aMRQtCjd1fuf+127M5ItcwqdSNDzjYu3xKRk+x1G0JmPSvfzQ3V72XKu9MBDIGHGGWlVIuKxVrBMgASNv+5lY8GlK54GCv/JWdvDot/XM5Xw79jYI/hEYbv/O+X4AvPHXf7qNm4Oo54O0IRRr1qAUItPkFUVYUd63cDRimw+1+7DXucDZvThiPBQdturWh27ukVuyeTU4aOtepwesbhlz4rj7OqVafnpPH0njYlwogGsCoKm7KyjtrcJiYnG1J6kEWfoRe8jvT+fryXUybCUhsRfysi7nrDiA5sQmbfA4H1Rmiy+1tk3gCEUFDib0MkPl5CRVqAWkKA07+WCAlC6UMWvo2+rz36/nPRi4L7qH8ZxXnX4Vg4JH+JfzWy4K0yGsTQPpH7wDcHCscgc3pHHkp7fiHSuPeC9TSM2tAKxY+gYY+iQkEGtgb/GQeJ/TEEwhyGEJrjIrAenn6JyclL264tqdu0YgK1h0PTcxrx4NlP8+INb0YY0WBUwtm+NrryjYkJmB5p/D4/j5w7gB3rduF1+/h21DRuHdSTG2KETJ+I/DFtBVrYA7nP7WP+t4tDr9tf3pqLep3Hz5/OxWJVUS0qz03qHzFGWrUU9mzZH3qtWFTWLtoQEit774nPWTlnDYt/XI6/REi3I87OaWfVY90fmyq8Zp/Hz4alm0t9//L7Lmb8sG8jQrP1YG1rr9vHqt/Xsm/bAarWrQxAfFIcOXtzQ20tVpXaTWpwy4BrmT1hHqqqkpgWz3v9P8MfDNv1FHl44brXeX/VGwBc9WA3Tm/XkPVLNqMHNCx2K4t+WEb7y1uHPNcm/w0mX38z100cz+oD+8tvfIj8vKX0771f16mZZEZBmJiAUXNZZl0HgW2AB1n0KTKxL0r8ncd7aRXDO4dIYS8PeGYArxgv7V3AcRm4p4KwAhZEysjIMZR00PeEXRBBYS6/4XUqeAnduxB8s4k2pOPB2hj8qw9l0YZoWGnE3QBFH5QIzT5o6HuCOdT74GCtZyUBtJywthaEpTGk34/0TMPIJY8P1swOjiOLkLl9ERnfG0PE34m0toLAGqT0AzbwzkHaLzDDa/9DCCF4e8nLPNLhGTavjC4Z92+Z/23p+j5+X4Aqdcw0P5PY/OcN6SU//cmujXtCathel5ePB07guv49TgoDyh5ni5DpB0Kln8D449N39P1c91gP8rMKUVTBpDensur3deQdyCM+KY5u91zEpNenIhQR8jiH5zt7XV7mTf4jZmmo6qdVY8Oyrfi9Fc8rVS0q1RtU5fGLh7Bx2RYyaqbz1KcP0bCVEfJ109PXYLVb+fmT35BSsnvLvgiPsxCgBYoPD3qPvJMh176K3xtAtagkpiXQ43+XkpSeyB1DbgRg/EvfooV53aU0lLrDOb3daWz7eydvPWjUABWKQsvOzXj+uyfNDfs/hN1i4fsbezF/53YemjaVPO+/DJesAAK4sdmZ1E9NO+pzmZicFHh/hcAODLVqADcUvI6Mu+Mk+XvswMgdDtsbRXF0mBACkTwMGX8f6HlIBLLofaRvGcgcow6z8zpwfYjhsdWDxW3DjVgP+H4mpqdYrQuBtRg50xXFApZa6Fm9jL5qNUTyqwhrE2PN8X2QOMD9ndFcC///g7FOWXy/InEAMveR4BqsoKRA3PUIJRlhfQQAWfg2MuIQQIL2T8SqhK0lemA9FAw3WggFbB0h5a2T5LtgciSwO2yMXv4qy2f9xQvXv0FRXgVz//8FQhH0+N8lZuUVk1L5zxvSRfmuqHQCXZcEfAFsDlvMPicSF9xwDp+/+A2aP5eAX8MeZ+P2ITdEtavRsBpS303vNk/iDjOS3QUevn7le5745EGEopCYGs+nQ75m1dy1Ef1Lq6+8d+s+Su5jqlUlLtFJQXZhzD6pVZNZPX8tuzfvAwlFeS76XziYj/7P3nmHV1F0cfid3dvTQwi9I10EAQFRFJWmICp2xK6IoqB+KiqoiIpgRUXF3lAUFQuKIIIKSO+9957eblTVRHgAAQAASURBVN2d748NN7m5NxCUNNj3efLA3Z2Znb1PsrNnzjm/s+kNEpINgaVrHr6cax6+HJ/Xz50tH+TInhQCfg2r3UKdprVCclU69GzD63OfY+Evy3BFO7nk5q7EJsaEXLNOs5rYHFY8uYZRJARh+S6apjF+8PshXvdVc9ax4o81/7oUlknlwhsIMHHZEjamHKF1teq8dEkv7v7lx1K/rgS+WLOKDSlH+LjfVTgsxdWOrSBIs8SGSSmj5xCe7BfI/6ngfx8Azr6Q+64h1kUAcED0g2HNhKU+MrAVUq82ylgdReZC7vsQN84wFkU8MucV8K8sMkIxpSb1SHVuFRDRILMi9xHJ4F0Aer5CciAbmXYTVJ2FUBIQQkFE3wXRdxlh9ym9QTuUf382sJwBas2C4RzdoMqXSM9fCCUKnFcilCIaEJZGxncT3CAQoNYLaSKlH7KeJejhl4BvnqFObu8Y+V5MTim8bi9fj/uRHWt207zjGTz43iCeu+61Ur+u1CU/vDmdbSt38twvTwTLv1ZYzLW5zDntDemzLmiRv8trYLFZaNq+UaUwogGi4qKYuPIlfnhjOumHMuh4WTtyMnK4rflQdE3nyvt7029Ib4QQ/PzuTNy54craXrePDx6fxMivH+KMsxtic9p4rPuzRk1pRRyzZp/FZiErJTvkWHR8FA+8cxfPXfNqmIgXQExiNDtWhy7yPq+PDQs3c+7lHUKO2+xWxv/zPBOGfsSutXto0r4R975+a1i0QOO2DYIe7b1bDrB1+Q7qNq9FUi1DlKTLFefQ7fou/PHlPCxWFavNwsgpD4d+D3k+9CJ5qwhIP5RZ7P2bnDpous6AqVNYd/gQXk3jz107aFW17MRFArrO8gP7eWPRQh7tcn6ZXdfEpEJi62iEagSXECtY24aIWVVkhBIHST8hcz8HPQ3h6IbUUtGP9AR0cN2KEjUAAJk7qRglaw9kvwoJryOsLUA8hky7HSPvWCFyXvRRrCBD12aURIh+ErIeIrIiUSzoG0MPSS/4V4P9gtD7Ew5I/AaZNRoC28DWGhHzJEKErs3C2gphbWUMFdiB9K8FS+OC8lX2XuD8E9y/GiHuwo6If73IHHIjzFWAnnKM+zc5VdA0jf91e4btq3fh8/hZ8tsKzmjX6PgdTxIBv8ba+Rv58oXvglGOJiZHOe0N6eS6VRk7cyQv3f42GYczadmlGY9+cl95TyuEAzsOsWvdXqo3SA6r/wwQmxjDzc8YNe3mTV3E6/e8F6zN/MHjX2J1WLnsru74fYFi1fwObDvEQ12f4vX5z9GiUxPeWjSGP7/5Bynhy+e/CykNdRRFVcjLCg+teXzSA7wz7JOIRjQQZkQD+L0BomIj1/FNSI5jxFfhO/mR+HLM90x67jusNgsBX4DHPruf8/t3QgjBQ+8P5vrhV5Kdnkvd5rVwRjlC+rpinNRoWJ39Ww8EQ9x1TadZx8YlurZJ5WZjyhE2phwJioB5AgFWHNhfKtcyHryCQJE/SL+us/LQgUhdTExOK4SlDiR8iMx8EvRUsLVHxI0r72mFIAO7DSPSUgdhCV8nhJKIiDFCmHX3dMgaRTAUOnscunCguPpjeFqLWZz1nci0GyDxW4StHVSZgvRMN9rnvkuIGFkQNdyIBoh7HbJGFH8tuTHCQb/hxY6AUKsiEt6IPFbR28h+0/CwCytIPzLuVRTnJfkh7mORUfcZnnJLI0SICBsg4oy866NlwMBQ7zZFx04Ltizbzs71e4MVY7x5Ptb/E+l39b+jWhWkLoO6PEfxewNsXFRyLSCT04eKnwRcBrTo3JSPN4xnauonPPfT8LCw4PJk1hd/cVerhxhz03iGdBzOp09/fcz2Mz6eEzSiwchv/vX9PwDocfMF2F3Fe9o9eV4+H2XUiKzXog63PHMdVw27LKIRDUaus2oJ3YtxxjiIqxLL3s0naIBI+GrM9xzZ++9Vi3dt2MuXz30XLIPldfsYe/Ob7Nu6nx/ems6PE37DGe2gaftGYUb0UV6cMYK6LWojhCAqzsWIyQ9Rq3GNfz0nk8qDX9cRhOYpyFKqI2GzWIlxhP8OqkLQNLGSiJrISvJjUmkRtvYoVWegVFuKkvAuQqk4Ynx63vfIlD7IzIeRKVeh50w4dgf3FELzid3g/gYA4eyPEd5cDNKNzH3LaGttghIzFFwDiWxEg5GbXdRP4jIMUu1EhZokMudtpHbo+E2LG8G/yTCi8eQb+B7IfBg9sMsQkcubBCLK8F4XNaLJzydP+CS/dJYAEYdIeNPYbDE55Qn4AihFcgiLey/9r1jtVlyxUWHHVatKgzPrlso1TzrlveaeZmuzaUhXYNy5Hl67eyJet4+8LDfePB9TXv6JXev3FNvHHmUPO+aIsqPrOst+X01UXBRWu4XYpJiIbRf8vJSlM1cFPx/acRhRzG+Jrmlo/tBQaCmhRsNkqtQ8cdGkFbPXMrTLk3jdxxZ3OrI3lUcufoarq93BsPNGcGC7scAf3HEYiy305UFKyeCzH+P9Rz/nvUc+446WD3JwZ/FqzNXqVeX91a8y3fcVP6R/Sqc+7U74PkwqJ82TqpLodGLJX7AFxb+m/lcCUmdw+3NwqGrQdFeEoHFiFR7q3KWUrmpiYnIykHoOZD2NYRjmGP/mTEQGdhbfKYKBiHAhpYb0zQclBrCBSCCiUe2ZifQuKOiq7QWKE9rSCQv7FgJhqQ1K8jHurBh8/yBTr0fKYwuXSW0/euoA9EOd0FNvRAbyc621PSCKGvYapPZDZr+EzHoRmdIbqRUfjSMsdVCqTkdUW49SbQmiSKi5yanLGe0aEp0QhWoxXkaFIigm4PE/o/k1Bjx5FTanLaj/IxRB/RZ1uPnpa0rnoiaVGtOQriB43V7mfr+IWV/8TeqBdAAyDmWGKXJbbBYO7So+L+jGx6/CUchAtrts3Prs9Xw8cjJfjP6WtAPp+L0BslKyqdEgOfhgOoqu6Xww/AsAfnjzV4Z0fBxZjDVhtVu5ZdS1OKLsOFx2nNEORn3/CFFxUYz85iFcsU5cMU6jjnMJ0DWd3Mw8tkcI/T5KwB/gwa4jWf33BjKPZLFh4WaGnjcCT56Xus1rBUt2HUULaHhyvfg8fnweP7kZucf16gOoagnrYptUevZnZ/HHjm1sSUvl22tuoFuDRtSPiy/VDVOX1crA1m34dcAtPNvtEv7X+Twm97+On66/iRh7+AaXiYlJ+SClG+mZgXT/hNSOGAf1IyCKrBHCmh96HBkRfV++MX10PXQgou9HZr8MOe8YY+IDmZ4vtlV0DdIMsTFAz/kYmXYdxbt1rBD1AEbtZafh7Y1/B6FEIeLfABEFRFHyV0ANZAYENhfbwihXdgP4l4NMA/9yZNoNSOkBS2MKq3kXjOnGyPf2gsxC5hw/TFwU/d5NTlkO7z7Cgp+XsmfTfsb/8zznXHo2tc6oXmreaABXrIt+Q3oxceXLPPD2Xdz+wo289vezTFjyIs7oCJthJqc9p32OdEUgL9vNfR2Gk7o/DQkoiuDVv56lbvNaWKwWjIXGIOAPUL9l7WLHati6Hm8uHMO0ib+jBTR63X4RTds3YtTVL4cZmXs27qNO81rsXBPq4fbmeVkzdwNvD/u42F0/oQiufbQf1w+/kquGXUbawQwSayQEFQ2bnXMGn255k/s7PYHX40PTi1EWLYKu6didxYef79tygKyUbPT8Ula6LvHmedm+ehctOjVh6Lt38/qgiSgWFUURVKmZyJ6NBS83ui5Dak6bnN7M3rGd+6f/jEVRCOg6VzRtwVMXdMMiFDp/NLHUruv2B3hn6SKGdepC/fiEUrtOqXIKhWaZmERC6tnI1CsNUSuJYTwnfgWWuoQZodKfr0AdGWFtYYhz5U0GJMJ1DcLaEpk+iNB604C21ShfpRWpO6/nIb0LIedFiv8DVCD6XpToQcjoW0E7AmoyIr/0lrC1RSbNhNRrQA8XHy0WqYE4Rvh5YJuR4xxUEdcNb31gC8J6JjL2Kch6Jt8zrRo1skPKXOmgmeJhJgb//LiEFwaMR7WoaIEAPW7txpA3bkfTdG5uNKTUruvO8fDNSz8x4Mn+1D6jkqb1mWtzmWIa0hWA71//hUO7DofUYn5t0ETeWjiG5395nCcvG4Pf50dKeOSTISTXrXrM8eq3rMOQN24POVbUsw1GneS2F7Vm19o9QYNZURW6XNmRhb8sK9aIttotDHz6Wm4YfiUANoeN6vULwsX2bt7Pt69OI+1AOqn708LCv4vD7rTRrOMZ1G9VfN6TI8oRUkMaQAvoOKONBb77wAvocsU5pB1Ip2qdKnz/+i9Mev57vHne4P2tmLOWK6vcyl1jb+LSOy8p0dxMTj10KXngt2m4AwV/d1+tW813G9dhKS6f4STh1QIs2V+898rExKT8kbkfgnaAgrJLApn1FEqVyZDwPjL9bsOABoh7BaEeu9assDZFxD1d5GikZ40K9vMgbzsFb8Uq2HsgPX9Q/JuyHaKHoUTfYVxP2MFSsPEuA9uQuZ+Afjhf8bpkazM4wNYe1GMoJQtXuNdZasZxQHFdjXT0Mjzvak1k7nuQk583bbQA3zz0Qx0gZni+CJvJ6YimabwwYHzwvQ3g57dn8NuHf+Q7l0oPn9vH2nkbjt/QxCQf05CuABzafSTEiAZI22+Ed7fo3JQphz4g7UA68clx/7os18CnruaN+z4IWX8VRWH5rNUhS7Ku6Xw//hfOuqBlxHEUVSEuKZY+g7qzZcV2vnzue7xuH30H96Bz3/bs23qA+zoMJy/HXaJdMSNfO5a23VrRqE19+g3pFVbaqjDV6lWl42VnM+/7xUFV8KhYJ3Wa1Qq2ccUYIeUA1z7aj7RDmUz/YBYBXwApJXpAkpOey9vDPqZavaq0637W8SdqcsqR4/PhK1ruDPBpGr4Sv2D+e6pHVxxRQxMTkwho+wn1FkvQDI0NYWsHyQsMg1SpYhit/4ao+yDnuSIHFfD8TegiqkHeh2BtX8xAKiiJCNe16L61kPs2SB+4bkJxXIgMbEem9s8Ppy6Jy8oGItGo02xtiXANMOpZF4daF2xdwDenYHwlDqnUDwazCyUalHwF8Kh7kVoquL+n4DvWQGZC1iikWhth1og+LcnNyAtzmIChnF30Xbk0SK5bSQQ/TSoEpiFdATj74tbM+Wp+cPfNardy1oUFhqzFainWC61pGvO+X0zagXRanNuUpu0j7xj3vadnfv7zJDy5XpwxDp786kFG9B0Ttqb6PX6WzlgZcRyLTWXMbyPYuXY3/+v2TLBM1JLfVnD78zeQmZKNO8cTMqYQIqwUlqIqNDunMV2v7kyfe7pjdx7/JUTXdbJSs9F1aYhN5JcnyM3KY9q7M7liSO+wPqqqct/rt3Hf67dxTfU7yDicFTznzfOx5LcVIYZ06oF09m05QI2G1ahau8px52RSeYmx2Yix2Uj3nEB440mkpOkOJiYm5YStM3hmAEdrPNvB3il4WggbqDUjdpUyYPTVU8F2drCWclGU6JvR0SHntfzrREP865BxZ4TWXvDPL2ayVkj4yKjTnH4bQalE39/o0Y+BtjeCES0IN6pVsLZBOHqC64YSbRBImW8AG/HvBWPqWYZaeVR47V0hVETcMxD3DPqhc4wc7EL3KX1zQwxpqR0CbTeodY7r+Tep3MQkRuOIspPjK32jORKBEkZRmpiAaUiXCj6Pj3ce+pTls1ZTpUYC90+4kwatipfNv/C6c9mxdhffjPsJKSWtuzbngbcjLaKhaJrG8B7PsXHxFrSAjqIIhrx1B71uuyhi+3739abffb3x+/xYbUYus9VmOaEdPs2n8funf7Lwl2VBI/ooH4+czGV3XxJmNMckRlG9QTLbV+0i4NdQFIErxsmIrx8KM1allKQfysBqtxKTUFC7cv2CTYzoMwZPno9Afpj7Ubx5PjYu2gIRDGmfx8dHT3zJitlr8eSGq4HnZLqD///1wz94874PsFhUNF3n3tdupc+gHiX+bkwqF0IIasfGlZsh/dPmTbzS41LUY0RgVGSEmYdlUsmQ0oPMeh58C0FJRsSNilj/+SjCeQUysAXyPgYk2DoiYkaU4DoBZNrN4F+PoZ6tIGNHo7j6RWyvRN8K0bcipQ8hbEgpkVgIU94+Jn7w/Aie6YTVG8h5GRxXEGY0iwRQaoC2KThPQ5hsPEINVfeWUuaLrNkRSlzBcd9SI89begmvh+2GwCog3JCW0oPMfgl8i/P7hpw1jPB89NzJkP0sYAU0ZOzTKC5TQflURQhBct0kctJzy+X6Mz/5k/99eO+xIzAqMObaXLaYhnQp8MKA8Sz5bQU+t58D2w4y7LwRfLj+dZKKKQklhOD2527kllHXoQX0oGDX8VgyfSUbl2wNMRDfuO8Det7a7ZgPgKNGNBih46v+XFfCOwNN00nZn0ZeljvsnNQlNRvVwGJVgzt6NoeVq4b1YcCT/fnz6/n8+c0/xCRGc+MTV4UZ0TkZuQzv+RzbVu9ED2g063gGo6Y+iiPKwROXvkBuZl7EOdmcVuq1KMgD87q9LJ+1hqzUbL556Uf2bTmIFtAiqofP+Woe/YddBsBrd70LEBRle3vYx3S8rJ3pmT5F8QYCbEkLr1uuCoFWWrU1ivDnrh1c3OAYeYcmJiYnDZkxFLz/AF7QdiNTr4OkGQg1ciinEAIR+ygy5mFACwp2HRfvHAisBwqtWVlPIZ2XH3NtDgqCCYG0nAmBFSW7HgCaISwmI62TGlgaQohxboeo21Gi70Z3TzMMcCUREX1PuBGtZyDTbstX7daR1rYQPwEhrMj0u0AWZ/A4QC3YqJDSA975SD0dct4DfY8xt0h54u4fkFE3I6UXsp/KP5g/96xRSPuFCPXYejEmlROfx8feTfvDjqsWBS1QWkUpQ1k6cxUderYpk2uZVG4qpyukAqMFNBb8tBSf28j5kdLIO15WqDZzcaiqWmIjGiDjSBZFFcE0XwC/119Mj1C8bi+Hd5+4Sub8H5ZwVrfwHGpnjIPPngktLaXrkh8n/MaeTfu48LouPPPdIzz8/mBqNKgW1v+N+z5g64rtBLwBdE2y/p/NDGx4H+sXbELXQx+eQgjsLjuOaAeN2zSg/4N90HWdAzsOMajtI7xw43hevuNtdm/YF8y1iVQyQfNrLJm+greHfhx2TkqjNrXJqcn8PbvDfq8Abm7dpszmsCXVVKk1MSkLpPSB9y8KqmBIQwzLV1yodAFCqCU3ogH0tLC12bhuyTzMUrpBP1Ty6x3F8ytYI+UVR0PuW0UnCXmfIQM7UZx9UBImoMSNRqi1wnrLzJEQ2IjhcdbAvxSOXIT0ryK8lrUAnIbImLUlImogUurogd3II32QGQ9D1hOg7yRE4TsMDbxzIato/jgYueqmWOOpypLfVoZFPAJc+cClZTaHnev2HL+RiQmmIX3SEYoI83wKIbDaTr7zv1WXpiFh1IqqUL9V3RILkv0ycRap+9NCjrlinQz//H4cUXYsVpWE6vE07RDqMfPmeflryoKgUjZAYs0EAr4AnlxvSH5JwBcg41AGT10xLuIcDmw/xFNXjGVwu0dZOG1Z2G6jJ9fL9A9mh5XustgtPPT+Pbw06yle/ftZdqzZzTXV7+TWJg+wb/MBPLmesCi2SFisKo4oB2mHMsLO6QGNmo3NXKxTFU/Aj1UN/bsUQI9GZ5TZg3Hx/n08P/dPlh2ohC+FspL8mJgAxutOEaNPACdiIJcUWztCf/lUsLRAiJJtlMvcL4zc6sKIWIh9CXACFlCSwVJ0Q9sN3pmAq1C/ahj1qd2EGvJ+0I8g0++LPIfALvS0QegpVxgGbZgAYy64fzAEzUKwQtwLiMTPEIlfgH8D8nAnSOkB+m5CvPTHRDWM8aLfAxhzsRSfLmdSufHmebFYw+uFd7q8PWUVbb367/W8+79P2bBoS9lc8GRS3mvuabY2m4b0SUZRFK55uC92lyHQYbFZiKkSTae+xSltGkgpSdmXSlZadtg5XdfZvnoXm5dtw+8r8DbXblKTkV8/RGyVGBRVoXHbBjz/6xMlnuv+7YfweUK91zaHjYsHdOXHzM+YcuhDvt73Hm26hYukBLwB3DkeHFF2bn/hRp794bFj3JtR/7lo7nRmShZDOg5n0bRlbF2xA09O5FzVjYs3h+RxW+0WLrmpK+5sN9npuQT8Go/3fj6kvnRJiU2K4eIB59H6/OZhD+4Lru9ClRqVtMavyXE5p1adkN9Jq6KgCsFtP31fZs/4P3fu4MMVyxg49Vv+2L7t+B1MTEz+FUJYwHUzhiEKYAUlEWwXHLOflDpSO4jUMyOc05D+jUj/OqQsWEuFpTEi/jUQ8YAC1laIhBOoS6/tpsBzfnRQB4qrH6LaCkTyIkTVuWA7J0JnH4ax6oToxxAJb1D8W6sEbUf4US3VUPj2/ZUfoh6eygWAd3n+9Y5iA+dVCJkNehZS+pDpd2AIiZ1gSK5aBRyXGWW3imYhOvohlMipciaVnzYXtQpZmy1WC6pF4YneLxRblvVks/CnpXz36jQeuegZFk8/kRQLk9MNM0e6FLj9+Rup3bQmS39bSXLdJK577IpgOaZIZKZk8eglz7J38350XdLjlgsY9u4ghBD4PD4e7f4s21buRCiCxOoJvD5vNPFVDbGPjpe147sjHyGlDMm9ykrLxp3tIal2IqoavrMHcOb5zZnx8exgjrXFZqFF5yaAsSEQHR8FQLOOZ+CIskcU6/Lkevnto9ks+W3FMUXLqtRICM4vKy2bGR//ybr5G/Hm+YIhPEUN7aMc3HEk5LPfF+CPSXOZ/eVchFBoe1FLfJ6iu+JFiCBOWqNRNSYsfpGouCjufvlm9m4+wNr5G5G6TufLO/DYp0OOPaZJpWJjyhEemjmd/dlZtEiqSpLLhTtQ6OUX8EtJIFD2SqGeQIAX5v3FxQ3NfGkTk9JCxAxHWs4wwrnVmoiouxGKq9j2UktFpt8Mgd2AjnReg4h9Or8ShRuZdkt+3jCgVIMqkxGKsfkqHBcjHIvD1mappxveYaU6oph69cJ2DtL9EwUGrBWsZxvnhAIiv3Se9SwkTiIbum7Im4L0zCC0hFcRlII0K6mngXsq0rs0XwDsqPFbjPUii4a/+o3cZvcPgAD7uYTVlg4jwuKs1EdU+dYolxXzJDKwE/yrjPnYeyDiXjjOmCaViW2rdjL25jc5vCeFM85uSHRCVKiTRwHNq6MFjvOeVwp43T7ee/QzzundtsyvbVI5MA3pUkAIQc9butHzlm4lav/KHe+we8PeYEj0H5Pm0fLcZvS45UImj/2BLcu2Bx8qB/IOMfraVxkz/cmQEO6jC7WUkreHfcy0ib+jWhSSalXh5TnPRBQ663p1J7Ys28a3r05DCGjcpj4Pfzg4rF2XK87h8nt78t3rvyB1Geb1zctys3/bwYj3ZnfZUFWVkVMeBiArNZu7z3qYrNTsEqmFR8W5wkXGJPjcBQ/U5X+sjVyuQBh551a7hfP7d2L3hn3s3rAXoRj51eN+fyqoDO6McjBu1lNkHMlk5id/snPtHr57bRpX3H/pCeWtm1RMMjxurv/ua7K8xmbQon17w14NfRHypcuSPH/JtA1MTEz+HUIIhOtqcF1dovYy8zEI7CAYEu2eaoRtO/sic94G/waCnmNtNzL9QUh8LySfuvDaLLNGGeWgUEGtAYlfRBbMcvQB/1rI+wwQRq5xXIRcYUdvw8DM+xzD6C3yDJNZ+fOPhBOEikgYbzTV05ApfUHP4JiGd/DGYo3xQy8IFIos884ncl64AFQMD3Zv8G0EfQeGargLUeUThBJrtFSiIHESUk8xak4HtiJzP4GogSeWt25SIclMyeLhC58Ovuet+nNdmJ5NoAxqRx8LdzHRkiYmYBrSFYJNS7eFGILePC/rF2yixy0Xsm3VzpCdOV3TWfP3Bu5q/TBvLnyB2MSYkLHmfreQ3z4ycooDPiMHecyA8bwyZ1TYdYUQ3PniTdz8zLX4PP6gBzpSu7vGDuSmkVezY+0ehvcYjSfXi5QSq82CPcoGETS5hCIYMOJqLrvrEqwOK4t+Xc5fUxaQmZIdlvMMYHfZOf+qc5AIDu08TLseZyE1nc9GTTn2Fyglbbq1ZO3cjagWFU3T6XtPd25+5lqc0QWRAFpAY+Pirfg8Ppp2aBwxSmD84PdZOmMl3jwfdqeNhT8v4+U5z6BU0hJFJgarDx0KiXioaOk5ihD0bdK0vKdRck6xHCcTk4gE1hFqCLqRvpUIZ1/wbyQ0/FoD/wLDGK0yJWgIBvH8Yhji+I0fbQ8y8xFE4idhlzXUwh9HxjwE0hs+VtF20Q8gAxsh7XYMQ1YCNhD2CKJnAAKihyBc1wBWpPdPpHsa6OlENnyd4LgU8IF2AOxdQc+FvBKEq1s7GeJkQgWpgetmRPRgw0DOR8qAsSEg/WA9M+RckKyR+YrrHmAG0vsXJH5SrFffpHKwcdGW0LU5gshYeaKoChfdcF55T6PkmGtzmWMa0hWAGg2SST+YEXyY2Jw2ajetCcAZZzdi2YxVeAt5YKWUHN6dwodPfMmD7w4KGWvLsu0hIdi6prNt5c5jXt/msJVIoGztvI1899o06raojd1pY+uKHWgBjZQ9acX2+XzUFLYs286CaUuL3VW02q2c0a4hh3Yd5s8pC1CEoGaj6rS96EzqNK3JlFen4c4uCF2zu2z43L7g+4HX7WPt/E04Y53c+ux1NG7bkKbtw0NkVYtKy3OLN1aO7ElhyfQVwY0Lr9vHluXb2bZyJ2ec3fC4349JxSXaZiuzklb/hu4NGvNol67lPQ0TE5PCqLUMBe7gm6kDYalv/NfayqhHHWJMS9D2IrNfQ8Q9HTKU9K8hNAQ7kF9nuniEsBvG8HGQviWQ9wlYzgAcoK0zjFY9cqQYCMgZb8zJ+wfFe6DtYG0BgX3g+dnoZ6mHsHUGSx2k+3NCy205ML6Po9+XB/zLQERDzDCEtSXCGl7xQwhLvkBbMWh7ChnR+eMGVhlh9dZmxfczqfC4Yl0RFborCl2v7sSto8ProJuYHMXcyqsA/O+je4lJjMYV68QZ7aBxm/pcfm8vAK595HJadG4SpgQe8AXYsyFc6bdm4+pBoTMAIaBavdDQMZ/Hx+RxPzD21rf48e3f0LQIYdFF+P3zvxhx+Yss+301mxZvZfVf63Fnu/Hm+YLlpYrWx5S6xO/1M/e7hcUa0TaHlTO7Nmfj4i2k7ksn4A3g8/jZuW4Pw3uOJjs9h083v8Gld11Cu+6tefC9Qby7/CVqNgpV0/bmeslOzWHjwi0RjeiS4PP4UdTQPwlFVcIE2UwqH22q16Bt9Ro4LRVv7/CFi7rzTp/LsZhRDyYmFQoR9yKIOMMQzC/nhOs641z0PWA9i/DyT37QtoePZamPYWgGj4BaO6SNlB70nHfRMx5Fz52MlMdPN9HzvoWMweD7BwKrIbA437j1UKC0XXSOOuAD728c04i2nQP+1SAPG+3xQmAzMv0W0HMQSTPBcQ3YzoPYFxBJU0GtU2QctyE25l8X0YguEdILYZ5nJT+P26Qy07JLU5q2bxTy3lpReOTj+3jyqweL1RkyMQHTI10hqN2kJp9ueZONi7ficNlo3rlJ8A/XZrcy9veneOXOd/jjy7lBg9TmtNGyS7h3tcctF/LXlAWsm78J1aIgFMHwLx4g7WA63jwfVWon8sjFo9i6cic+t4+53y5k3fyNPDFp2DHn+MHwSehFSlMVdfDValLDUOcu4e6iM9ZJwOtn5ey1EdW2tYDGkukrqVa/Kod2HcHqsFK3eW1qN6nJJ5vfZEjHx9m0ZGtI+wP/oe5zjUbVSK6bxL6tB9H8Goqq4Ip10rht/X89pknFQBGCj/v157sN63hz0QL254Sr45cHj557Pte3ah38fDg3B5+mUTMmFqWs6nz8S0TFdSKYmJwUhKUxVP3dMCaFC6xtEMJYm4WwQ+LnyMxHjfrNQYPUERQGC8F5NbinG8YuCmBBxI9DakdAupFKNUi7CQKbAC94ZiD9yxHxkUtHBsl+mfDSVEXFuxqBvi38eLFEA778GtsRjPmj9beVJNAPgLAZSuWWRoiqs9CP9ANtQ6EOAcOr/G+xNDDKfWl7jbFQjQ0O0xtd6VEUhRdnjGDmJ3/y+egppOwtPsKxLLn7pZvpccuFwc8p+9PQ/BrJdZPCnEYVDXNtLltMQ7qCEB0fRfseZ0U8J4Tg/rfu4PCeFNbO3QhIWp/fnIFPXxvWVrWovPDrE2xcvBV3tpvGZzfg/Uc+548v56FaFOKSYslKyQ6KdXnzvMz7fjFpB9NJrF58qafjqWLbnDYUVSmxEW21W6hSPZ69mw8U20ZRFXZt2MMHj3+BN8+4/opZaxj3x9O06NSEtpecyc61u4Nh73aXjTYXhZfqKimqqvLKn6N4fdBEtqzYQZ2mtXjo/XuwOyveTqnJiWNRFBQhOJybU95TASDe4eBIXi5H8nJJcDh5YPo0Zu/cjiIEjRISmXTVNcTaHccfyMTEpNQQShzYz498TgiIexapHQR/fokcW0dEdLhopxBWSPwkPxc4D2lpicx+Djy/AQooVfLDyI96Wd3g+QWpDz9OqafjKRk78t+sS/p2bQc14TiGr4L0bwL3GI6GW0vvP1BlEsJ6Jtg7Q94OCkKxHWDrVMLrhyOEBRK/RGaNMHLTLY0Rcc8ZmxkmlR6L1YIuJekHM8p7KgDEVY0ldX8aGUcyiY6PYvS1r7Lkt5UIRVC/ZR3G/T6SqLjImkImpx+mIV1JsDvtjJ0xkvRDGQAkVIsvdldMURRadDLKWM34ZA5/frMgKD6Wsi98t09RRUgOdiS6XNGBGR//GeFaAovNQpN2jdiwaHPkzhGqWwT8x/EeC4hLimXjoq1BIxqMvOUf3pxOi05NuPnpa9i3+QD//LgYKQ118RuGX3nM+zge8VXjeOb7R//TGCYVl/EL/yFQQXKlMzwePl21gp83beTalq34c9cOfPlpFptTUxg55w/G97qsnGdpYmJyLIRwQuJnoB8BFISadIy2Ctjyy+jkfY30/E7QEI6Yz6yAPI6hbLsIvD9F7osVrK0LjPzwGRFuYPtBC08bC+mjVgHfUkIUuvEgc79AxI9FxDyE1HaDd45xytELEXXHse/jOAg1CZHw7n8aw6Ti8vmoKWiB8q2ccZTMI1lMfeNX5kyeT4+bu7Ls91X4vUbEyY7Vu5gw9GMe/cQsj2piYBrSlQghxDG9xpHYtHQb3rxQ8TGhCBRVQdd0VIuC3Wnjt49m03dwz5AyWT6PjzmT57Nz3V7+/PqfiOPXalKDF2eMxGKzcGPde8LOR8e7uO25G3jrgY9CvNVSSmITo0k/lBl+n4qg7709uXXUdTzWY3TYeT2/TJHVZuWpKQ/jyfMiBKbn2OS4+Mu5xFVRdClJcefx9tLFIcf9us7qQ8UJBVUQKsZ+hIlJuSOEADX5hPpI/2pCxcc0DMNWwQinVkFEIfO+AdcNIWWypPSAexoysAW8MyJfQG2ISPwQKQWkXBxh0nEQdT/kPE/oH7MEkQAyUoitAs6bEDEPINMGRDhvPF+FsCES3kZKNyAQwoysMTk2mr98S1wVRdd00g6kM3nsjyHH/b5ASEphhcRcm8sUU92mnMlKzeapK8Zyfe27GXbeCPZu3n9Sx6/brBZ2Z6GaloqgcdsGtOnWkrikGKSErNQcvh77A4POepiU/cbi6fP4uL/TE7x1/4d8++pPIV7ho1jtFlp1aUZynST+nDw/Yp6zzxsAIbBYi+zZSMMrHVvFEFkTiggKqimqwj8/LEG1qFzz8OXYXQXztzms5Gbk8ViPZ/nhrelIKXG47KYRbVIiejc+o7ynUCJUIWiYcGKbZiYmJicPqaehpw1CP3weeuqNyMCuk3sBtRGh4mMKWFobAl/EA9IwZnPfRab0QWopxrykB5lyFTJrtKHUTSTBLUMoTKg1wDONiCWtpBeEjXB/Sv5buIg3RNZQKHhVVME7y+jjurPI/O2gp6Gn3YaeOwkpJUI4TSPapEScd2XH8p5CiVAtCnXyq+qYmIBpSJcrUkoeveRZlkxfQer+dNYv2MzQLiPIycg9adfoM6g7zTqdgSPKTlSsk9gqMTz51TDGznyK6ITooPGrBXRyM/OYNnEmAHMmz2f/toNGKa0Iu1tCETQ6qz73vHorAX+A9x/9PGJ+tK7prJyzlmbnNA47l5uRy+ifH2fszJEIIYL9Nb9GTnoOo/q/xN/fLqD3HRdzZtfmnNm1ORabheWzVrN81ho+GD6J9x/7/KR9VyanPlc2b1mhH3oCo1RXkiuK57p1L+/pmJiclkipI9MGgm8u6IfBvxyZeh1SP3n6CiLqJqOElnAZBquSiIh/BSXxM1CjKRD5CoDMNjzTAO4f80Ov3UR2PSlgbYGIeQQpvZDzajHtdPAvAOuZ4adkOiR8aPwcbQuAH2Q6MmMIeH8H5zVgbQ/WDoDFECDzzYfsccjsV//tV2NyGtL9lgsRasUV8RICXLFOEmskMOStO8t7OiYVCDO0uxxJPZDOnk37CPiNvEgpJQG/xoZFW+jQs81JuYbFamHc70+xeek2PLlemrRvhCvGCRBSbxoMY9qdZYSaZaflBOdVFLvTxk0jr+a6x65ACEFORm6xkSQBf4D5PywOU/wG0HXJ8J6jGf/P82HnPLleVvyxFikldpedgU9dTUxCNJuXbgsa/948Lz+8+Rt3jR1YJiqKK+es5bVBE8lKzabtRWfy8IeDiYp1lfp1TU4eZyRWQVWUYHpARUIATaok8fQFF9G6WnVcVmt5T8nE5PREPwCBPRR4cvPLRfnXGEJaJwEhbJD4OfjXgvSAtRVCyRcwku4irQMg8414PZPiS1Y5IHooIur2/M3pNMJLXx3FB56ZhCt+A0hIuwWqTA7vL935at4ScBr1oYUtP1T96HPVDe7PIPbh4r+Ak4j0zkdmPW18N7ZzEXEvFHyXJpWCBmfWRVGUEpVjLWuEEDRsU4/Br9xK03Ma46iApbpMyo+K7Jw55bE7bWHh0FLXT/ofqaIoNDvnDNp0axU0ogG63dAlJGza7rJx/tXGS0Kbbq1QC9VUPhp6bXfa6P9gn6ARDRAV58IZFSF8SxgPoEhG9FHcOR6+euF7zu3XIRiCfnRcmS8K5c3zMvnFH9A0Pazkliwj4ai9m/czou+L7N96kJz0XBZOW8rzN7xeJtc2OXm4rFb6N/+XtUxPMgJoWiWJKKuVaKuNGLudN3v3oVPtOpXCiBaycvyYmJwwwkm4gannHz+JlxEqwnYWwt4x1PBz9CE0bNqBcPQw/mvvRKgPRMF4mjgg6s6gEW1cIAEiKluL/J9jGS25kPsh2C8sNJejRvXRPyw35LwDUifM612CGtgnAxnYikwfDNpukJng/QOZWTYGvMnJwxXj5OIbI6vjlzWKRaFei9o4Yxw4YxxEJ0Tx5JfDOOvClpXCiC7vNfd0W5tNj3Q5EpMQTY9bL2T2l/Pw5HqxOW3Ub1WHFp2blMn17xxjiIXM+Woedpedu8cNpFUXoy5j47YNeOyz+xk/+H3ysvM464KWPDn5QaLjw3d5hRA0ad+Q5bPWhB0/bjksCX9+/Q+tL2jBpXddzKq/1hPwaezdvD9kk8GT56Xz5e358PFJ+L1+pG54qi8Z2LXUvNFH9qaSfiiD2k1qsnzWGmShFwO/N8Cymavy88AqbjiSSTiNEhIjatWWNUIIpl43gEV79+AOBDinVi0SnWaEg4lJeSOURKSzr1H3GTfgAEvzyGHQpXH9mMeQCKM+tXAhYoYjbG2Mc9bWyLgXIWsUyFywdULEv4ZQYsLHEQJpaQ7+JUXPELE+dAgSPD+A9VwjhNu/BKQftO2EPD2lGxzdIec14/xRT7Xr6n97+8dFagdATwW1PniL1rr2gXduqV3bpPSo27wWFWJxljBh6VhWzVmHz+OjddcWxFYJ//syMQHTkC53hr07iJbnNmP9gk3UblqTy+/thWpRy+TaqkVl0Es3M+ilm0OOu3M9ZB7JovPl7Tm/v1H7MeNIJgd3HKZGw2TsLjsfPvElC35eSlxSDPe+fjtN2jWKaEgLSwSPdJEHpdQlGxZspkGrukxc8TK7N+7jjhbDQrrouo7P7eOtRWOY+L/PSDuYQac+7bjxyatO1tcRwqfPfM03437EYrMghODKoZehKKEBHDaHzTSiKxl5fj8vLZhX7us0QJ2YWBwWCxfUb1DeUzExMSmCiH0BrB2Q/pWGAnbUAIQom7VZCAsi9gmIfSLkuNTzQE9DOLojnJcax7RU0PYgqQPCjsx+2Sg7pVRBxD4FlpYRDGkAlXCPdFErRoJ/KViboiT9hO7fBKl9i/QJgAwgqkxBZo01DFzHJYiou//bl1AMevYrkPsJCKsxX9fA/HspfBsV32toEkpuVh6fPv11+RvRQK0zqmN32Dind9vynopJJcA0pMsZIQQ9brmQ7jdfQHZ6DqqlfKPtZ3w6h/GD30dVFKwOK2N+G8G2lTuY8MBHWGwWdE2nZZdmrJ27Aa/bx77NB3jogqd4cOLdWGwWAr4CdVBFEdzw+JV8Mfq7YAi23Wmjc78OzPt+UUhbn8fP2nkb2bR0GyP7jgmbl8NlZ9f6vXTu257RPw3/d/f2yRzef+wLfG4f513VkTvG3Ig7x0u1eklYbQWhtOsXbmbKyz/j8/jxeYxctJ/f/o2qdZI4tPMwfq8fm9PGXeNu+lfzMCk/MjzusPSA8qJufDx+TcOqls3L+UmngnyPJwMhRC9gPMYb+QdSyheLnH8EOFrvxwI0B6pKKdOEEDuBbAyrJCClbF9mEzcpNYRQwNUf5FVGyHBRY62M0fOmGF5ooQIOSPwI6VsF2WPyjUodrG3AtxzwgLYLmXo9xDwDWAnNq1Yg6i7IfZeCP2QH2C8yRMRC2nrBt8y4Vnp4iUuEE7RtCPsFiMT3/uW9fQ3ZrwI+cPSC6AcRMg/UWghRsDZL31LI+8yYk8zXeMmbYpQe0w4a/bFDzL97RzApP7JSsst7CkFqNKyOFtDKzKl10jHX5jJdm01DugKwY+1uHu/1HJkp2SiqwvDP7g96gsuSvVsO8Oa9H+D3+PFjhFMP7zEan8cXYlQum7kqpJ/P7eOVO9+ldpMa7N92CJ/bh91lp/vNF3DzM9fR/6G+zPr8b3Iz82jf8yyatGvEm/d/wK/v/xE0plWLQrX6VRneY3RE1XLNr1GzUbXg57XzNzJ+8PtkpWTRrsdZPPD2XcfMXVk+azVvDvkgWMZr9pfzmPXF39hddpxRdl6a/Qz1mtcGYPeGfRR1NGen5/LButeY/eU80g9l0vbiMzn74rIJ8zP596w6dJCPVixD03UGtm5Du5q1sKoKfr38BU0W7t3LwB++ZdKV16AqplxFeSEMN+MEoDuwF1gihPhJSrn+aBsp5UvAS/nt+wIPShlSaLeblDKlDKdtUgZI/0Zk+u35Al8WZNzLKM6yV9OXga2QNRrw5b8ku5Fpt+WLkhUyKn3/FOnpgeynQK0L2l6jbX7YtRLzIDLqTnD/YAiZ2S9AWFugZ44E9/cUGNMWUGsa34OMYOzIAKh1Cj76liCzngE9A+xdEbFPH7MElvT+DVnPG3MFYz7u75HCCcIFiV8gLA2Nc4Ft4UaCTIHERQjPVKSehrB1QdjL/v3J5MRYv3AzU8f/ipSSfvf1olnHxihqxVgHV/yxmuG9nmPszJFhkYgmZUdlWZtNQ7qc0XWd4T1Gk3YwI3hs7M1v0rhtA2o0rFZ8x1Jgx+pdqFbVSAnLx5PnxWq3gqc4lVCDgC/AwZ2HueWZazm06wjNOzXh4gGGcERUrIt+9/UKaX/rs9ezbMYq0g5lIBC4Yp30vuNiVvyxJmxsq93CjU9eRb0WxmK9b+sBHu/1XFB1/K9v/iE3K49R3z9a7PwWTFsWUgtbCxiGlCfHgzfXw1OXj+XTLW8CULdZzTCvZUxiNHFJsVw19LJjfg8mFYdVBw9w4/ff4A4YmzWzd25n4mX9eLTz+Tzz9+xynh34dY11hw8xf89uutarX97TOZ05B9gqpdwOIISYDPQD1hfT/gbgqzKam0k5IaWGTL/NCFUGwA+ZDyNt0xFqrbKdjH+T4YkOibrOAexEriNdGJ/hrY0eCto+hO3sfDEzjLzqqIEhrUXMQ0jfP6Dnv4uKWHD2M0qBhWGD6PuDhq4MbEem3UnwJcI9DannIhLeKHZ20jOLoBENBMPNZR5INzL9XkTV34xjRw3qwihJKGo8RN1WrD65ScVi3T+beKzHs8F3soXTljL6p+HcPOo63n+k/Eua+r0BNi3eyqo/19H2ItNhUo5UirXZNKTLmcwjWWQX8cCqVpWtK3aUuSFdvUFy0MA8iqIIAv5AMT1CEULQoXdbGrSqe9y2MQnRvLf6FVb/vQGp67Q6rxlZqTkh4d4AFqvKizNG0LprgdLy0hmrQoTIfB4/i6Ytjyj8lX44k13r9iDyx4pU0ktKOLD9ILquoygKLTo35eqH+jDl5Z9QLSpaQOP8/p3Yt+UAtZvULNF3YVL+vLd8adCIBvAEAry1ZCGTrrymQhjSAAJBltdz/IYmpUktYE+hz3uBjpEaCiFcQC9gSKHDEpgphJDARCnlv4tvNalY6EdALxIdJSzg3whlbUirtSOoYKsUlOc6DkIiHBcVeHaP1VRJgKRfwLcUI1y8PegpSFl0M90CiZ+j2ArlkXrnEpp37QVv5Get1FIhsAVDddxSzL1I0HYG13Zh64B0DYS8TwnmeDt6IAO7EJZ6x703k4rB1+N+CHFsePN8fPn89zz3y+MVwpAGEIogJyOvvKdxulMp1mYzZqGciU6ICgtV0gI6SbWrlPlczji7IZff2wu7y0ZUnAu7y87jk4Zy97ibsDmsxw27Cfg1kmolHrONrusc3n2ErLRsbA4b7XucRYdebXFGO6lWryr9hvQ2ymDl28OarnN4d2hUhiPKHjYXq90SZkQv/2MNNze6j2eueolp7/2OxW7Nv4/wfWuhKMHQdTA85i/NfsYo36XpTP/gDwa3e5RNS7Ye8/5MKg7+CPUoA7rOtxvWVRjPhY7k7BqVcHNGVqIfSBJCLC30U1QFKdKvQ3FZZn2B+UVCx7pIKc8GegP3CSG6FtPXpDKhJBCmbC01UKuX+VSE7SxwXQ84QEQDTkT8eIh5GMMrfZxXOamBknzsJlJDavuReiZCOBD28xD2rgjFhbDULbh+QY/8cPHCE3USLvxloyjSOw+ZchEy4z5wfwfYjnEfgsJedyX2f5D4CUb+lQZ5k5Gp/ZD+4pxUJhUNvy980yTgDzDj4zmRn8blgNQlzTudUd7TOHHKe709Dddm05AuZ6w2Kw99cA92pw1njANHlJ2LB5xP847l8wd897iBvLngBR7/4gE+Wv8a513ZkSuGXMqnW96kfgRPs6IIouJc2BxW6reow6A2/+Phbk+zb+uBsLapB9K5o8Uwbm8+jOtq3MWEoR+F1YG+e9xAogptLkhN8vqg99ixdnewTderOxGfHIfVZgRU2F12bh19fcg4UkpG9X8JT66X3Mw8/B4/uqbTd3BPbhl1Xdifp8Wq8s8Pi0OOzfxkDp5cDwG/hhbQ8OR6mfi/z0r8XZqULze1boPDUhB047BYuLl1Gz5YvrTCaHGcXb0GNWNiy3sapzopUsr2hX6K7krvBeoU+lwb2F/MWNdTJHRMSrk//9/DwFSMcDSTSo4QdogdhWE8RhlGovMqhLV86tArsY8jqnyDiH8VUfU3hOMilKhbEVV/B7VRpB4gYgA7qI2RKZehpw1EBnaHtZTaQWRKL+SRXsjD56JnjQlbm0XMEyAKl7/UIPNJZGBbwSHHpfkbEEcFwhwQ/VDotaSGzLjfyO+W2RhGsgaumyBqWIT7sBgq5IVxf5ufHx4w+so8ZPbYCH1NKiJX3Gc4bI5id9m4Ykhvvn3l5+LNpDLmzK4tSKp5bMeQyX/mlFibTUO6AnDJgK68vWwcw94dxJjfRvDgxEHlOp8GZ9aj42XtSK5bNXgsqVYVbht9veEtzsfutPHwR/fy+BcPUKNRNXas3c2RPamsmbuBoec+SW5maFjcizeN58D2Q3jdPgJ+jd8+ms3c7xaGtPHkeck4lBlyTCiCzUsLFmtntJN3l4/jpqeupt+Q3oz8+kH6D+sT0icvKw+v2xdyTFUVGrdtwHWPXREmICEUEcy5PkrGkSz0InWws9NyIn5nJhWPrvXq80avy2hdrTotqybz/EXd6desRYUqWTZ/z272ZGaU9zROd5YAZwghGgghbBgL8k9FGwkh4oALgB8LHYsSQsQc/T/QA1hbJrM2KXUUV39E0veIuNGIhE9Q4p4u1/kIazOE/UKEWqPgmFodETOMUG+xA+LGQtzLRhi6thn0A+Bbgky7DqmHrmMy40HQ9mDkKvvBPRm8s0IvLnMw1MsLT0gF/7qCj0o0IukniL4PnAMRCW+iRBWpbiEzoWiYuLAgrK0Q0XcQtsstVNCLhNjqaYRFC+gZmFQOOl7WjuGfP0CT9o04o11DHnp/MBdce26FWpuXzFjBwV2Hy3sapzuVYm02c6QrCHWb1aJuszLOuypEXo6bNXM3ovkCtDq/GbGJBcXn3bkeUvamctaFLRg55WGmjv8FoQiufaQfbS86k5T9aRzYdiiY3yx1id8XYP2CzbS5qBWHd6cQnxzH1pU70QrVlPbketm8dBtdr+4cPGZ32rA5rGFGbdVCoe6ZKVks+HkZidUT6H3nJSQkx4XdjyvWRXR8FJlHsoLHdF2nwZl1UVWVdj3OYuXstfi9xoIuhKDtJaGiEhdccy5LZ6zCm2fMxe6yc/7VphpoZeKSho25pGHj4Oc8v58BZ57FuPl/44kQ+l3WSKDHF59w45lnMbJrt/KeTokRVJgIvP+MlDIghBgCzMCIS/1ISrlOCHFP/vl385teCcyUUhbeIawGTM1/AbQAX0opfyu72ZuUNsLSGCyNj9+wlND1XPAtQRAAWweEUrDeST0X9ENg64KIH4/M+xSwIKLvRtjOMUK1tf0UKHDrIL3gX420tQftAChVILCREMNUupH+dQhHIYVyEUV4LrMEpUDLRepp4JmNUKqB63qEEsGjJ+INNW5ZaKNbamA5AyGsSFvn/PzsQuftnUPHsF8K3oUUKKM6wdH7mN+jScXivCs7ct6VBemu7hw3fQZ355ORk/G5jy1uWxZITXJH82H0G9Kbu8cNPH6HCoK5Ngcps7XZNKRPc9w5bp6+8qWgWrbFZsEZ7eCJSUPJSs3m4M7DfPnCVBRFoOs6T3w5jBdnjCTgD7DijzXM/W4hQoiQ/GIwjOnDe1K4vtbd+LwBNH+A2KRYcjNyg4rYdpedmo1rhPQTQvDYZ/fz4k1voFgUpC7p1KcdbS8+Eykl//y4mHG3TCAQ0FCE4L1HP2fCkhep0aBa2DjPT3uc4b2eQwtoBHwBbnvuBhqdVR+AkV8/yGuD3mPFH2uIT47lwYmDwsbodn0X0g6k8+WY79H8Gj1v68aAEf1L9L1mp+eQuj+davWr4owqvvSHSdkgpWTMvL/4ZNUKFCFIdDhJ97gJ6Dq6lOUaTebVNL5eu4YL6jUw1bvLCSnlr8CvRY69W+TzJ8AnRY5tB84q5emZnIZIPQeZPhj8i4zPWEFEI+NfQehpyMBeow60UACJiB+PkvgJUvrAtwDpmYGUGqGK2AA6UtsHh4cCfpABEHFA4XdQJ0INTeUSQkHGjYPMRwEVhA727mA7Bykl0jMDsh43jGIEZI+DpKkItWbYOCS8h0y/EyMs2w8xjyCsTYzz8W8hs0aAbxEoSYjY58LHcF6O1I9A7nvGGM7rEFFF0yuL+14zQDti1KhWXCXqY1J6SCl5e9jH/PzuTBRFEF811ogG1HQ0TS/XUG+fx8/P78ygQ682pnp3OVEZ1mbTkD7NGX/v+6ycUxDtEPAFyE7L4YnLXsDusuHJCfUMv3DD63y86Q2evnIcezftRwhBXo676LBEJ0bx7sOf4ckpWMSzU7NxxjgRQqAFNJp3akLPWy8M6+v3Bmje6QwCAY3L7u7OxTcaZbTGDBjPX1MWhCp2e/2898jnXDGkN4unLycuKZZL77qE6PgomnZozOS9Ezm48wgJyXHEVinwsjujnTwxaehxv5/+D/ah/4N9jtuuMNM/+oM3h3yIxWqIroz+cThnXVg+eXUmBr9u2cykNasJ6MbvzsHc8gnRP7t6dWyqhYX7QkV6AlJnS1qqaUibmJgAGMakv7Buhx9kOqTfgcQJ5Ic7H9UTSR+KrDoT0u8GbRcgQBZRHQcQifk1qQsZ2DITcOUb5Zqh1O3sF2FSXrCeZbRx3YhwGOUgZcZQ8P5OiGK39CKzXwbnNUjvXIRaxTB4lWiErQ0kzzPEypQkhBJfMD0lGhH/+jG/GyEEIvpOiL7zmO2Koud+BdnPg7ACAhImImwdTmgMk5PL7C/n8dtHs9H8GhpwZG/acfuUBq3Ob4YQgjV/bwg5rms6u9bvNQ1pk2IxDenTnPlTlyD18C0/qcswIxoMw/XrcT+wa/1efEVykI8ihCDjUCZ+b6gyo2pVufulgSTXrUpUrJNmHc8Iy1X+ccJ03n9sEt48L0IRbFm6nQn3f0RettvY9S4yV13T2bZyB0/2eQFvng+r3cKPE37jvdWvEBXrYv2CzWxftYsajarRuW/7Us/B2b/tIBPu/wi/x48/30v/1BVj+fbwh1ht1uP0Niktlh/cjztQvuFiihBsT8/g/cuv4KEZ09mTVZBvaFEUGiVUMmGTCiIKY2JySuKZTeQ/MknQiA7BCznvQmA7xdeWFqAfJiRsGgxl7ZgnEGo1Q6DM2trwHBdCz/0Ysl/HCKdWIHMtMvMZDE+2JCxnGR18a4J1oiU2yJsEVX5CKNHgWwaBzaDWR9ovLPW1WQa2Q/YYwBcMK5fp90DyIoQwX4XLi7XzN4al8pU1iiLYvWEfo38azvPXvxZSKUZRlXJNu/xXmGtzmWI+PU5jDu9JCeb/lhSpS/Zs2l+sEQ1GqE5RIxpA1yQNW9dH8wd456FPyc3M48LrzuXSOy/m1w//wJ3tYeYnc4JzkrrE6/aFiYYVxu6ykXYwI1iT0O8NkHYwgxdufB3VorJ81mr0gI5qVTnvqo48+smQUl2w92zch8VmCZmzFtBJ3Z9O9frHLj9iUnrUjYvDYbHgCUSqVVo26FKS4fVw24/f82HfK7l72o9oUsevafRv3pILTG+0iYkJIAN7KN4YLg4dAjuO008SZkQDSA1hbZavfv0c6LlIZ19wXAnuKSDzDKXsYE6yjuHRLho2XhgH6AcLzccH2mFkxsNIJPgWGuMICzguRcS9cIL3e4IEthnXKmxkSD/oKeVS0szEoGbj6tgc1rD0wLJE1yVZKdk80ft5Rv88nKf6jUXXdAK+AJfedQlnX9K63OZmUvExDenTmPRDGUb4dpHdQNWqovkjCzFZ7Baq1q6C1WENelwVRUHXC3ajhRBhpTOsdgt97+mOw2Xj/s6jgsby5DFTmfziVHRNogVOXPzpohvPZ/aXc0OOBXwBFv+6IuSY3xdg7neLuObhy2nYut4JX6ek1GhUPSi6VpjE6vGldk2T43N9y9b8tGkjKw8eqBCbtTaLhXm33cXWtFQSnE7qxsWX95RMTEwqCFJPwVDhLpo2VVTsqzA2wyD02ygwlhVCPcWCcHeVzSg9hYJMu5OgcZzztvGDfoxrHgPnlfk1ogvjA1+RUlbSB+5pyKjbDWG30kKtZ+SDF0YIiCSIZlJm9Lu3J399PZ/NS7eHvTeWNVJKnNEOJu18h90b9hJXNTZMO8fEpChm+atKxNzvF/Hq3e/y2ahvyMmIkPuEIR7mdR9/J/ubl39iaJcRYUa0K9bJW4vGUL1BMool/NdDIJj91bxgiLVqUcIkAiM9DM/u3ppBL9/CX98uCPGC+30B/N7ACRnRNoeVpNqJfLjhdR567x46922PzXH8sGmLVSUzJeu47f4LdZvVYuDT12Bz2oiKc2F32Xniy6HYHLbjdzYpNewWC19ffT1PX1D+ythuv58qThdRNhtnVa9hGtEmJpUc6ZmOnjkCPfstpJ4duY2ei5TH8uAa6DkTIW0AYUa0iIUq34JSk2Jf3Ty/UGAoq5FmEX7IdgFK7CNIz6+Eeph9+T8nYkTbQdSEKjNR4kaBvZtx7HgIK+jpJ3CdE0dYm0D04Pw5xoBwIuLHY1TVMSkvbA4br897jntevaW8p4In10t8chyuGCfNzjnDNKJNSoRpSFcSvnpxKmNvfpPpH/zBV2OmMvjsR3EXEvnyeXw82XcM/eJupk/UTfS0XsdbD3yIFqHEz+LpK/jsmW/CvM5JtRIZN+tpGrdpwGdb3+Kyuy7Bai9koArQNA2/xx/0utqcthDxLyBi6PS+LQf56Z3fmDzmhxO676g4F44oO1a7BbvTxqOfDuHz7ROYtPMd6jY18lb+99G9dL32XKIToo6p+y+lDKp2lybXPXoFH6x9lVE/PMrn297i3MtNMZOKgEVRuKHVWeVeGkKTkveXLz5+wwqOkJXjx8SkNNFz3kJmDAf3N5D7DjL1SmShusdSetBT70Aebos81Br9YHP0zBeQsmhOMUjPH5D7NmHGq1IDkfgZirUFouoccFwNFDYABYbQl5eCUldRhBvOEZ5+2k703E8h98MTvHPDGDXm4YDYVxBVZyOSZ6NY6xtXix8Hjp7GJsDxsDQ9weufOEr0YETSL4iEdxFJsxH2C0v9mibHx2K10GdQd4RSvquzrul889KPx29YwSnvNfd0W5vN0O5KgJSSL56dEswhCfgCZBzJZN7UxXQfeAEAHz4+iWUzVgZLS+mazi8TfyehWjwDngwt2bT6r3VhudHRCVF8tWdi8LMQgh1rdgfrLBsTIUzsy50dvsOuqApCgYDPMNRVi4Irxsmb953YQm21W7lq6KXUOqMmmUeyOLNrc844u2FYO7vTzmOfDEHXdW5rNpSDOw4HjfujD+aqtasw8puHQpS7S5MaDaqZu5kVEKuqEmO3k+UtX3GTL9es5qmuF6Eq5l6miUllRUoJOe9QYLzm59x6Z4PTqPYgs8aC/59CvTRwT0KqyYbydOHxfAtBFg3nTkBJ/iv4SQiB1DYRmuscSewrUvTVUS/1UUPdAsJlKFmfEHaIuhNhqQF6BtjOQVhbhLUSwomIfxkpNWRKd9D2F5pn/rNPqYFIeBOhlMDYPgkIS12g7nHbmZQtVrsVZ5SDvOzwKjBlyU9vz2Dwq7eWuvidyamD+RZXCZBSEijiPZZShgh+rZyzDi0QupAG/Br//BDu+apSMxGbMzQUOqFafFi7hq3rYbUX7LUcLedUHEIRWGwW7hw3gAat6uKMduCKdZJYI4HstJKVG7LarThjnDhjHNRuUoNrHunHxQPO56phl0U0ogujKAovz36GZh0b44iyU6dpTSYsfpGZgW+YtPMdmp1zRonmYHJq80avPhXiwXcKbciamJymaISUfAKQ0igTdRTfovA2+ME7I3w4pTphodCWpPB2lqZA4TX8eD4RxWgfPRwsjQ3jWUSBkmwY/iXCZvQRLrA0QETfinBegYi6NaIRXRghVETiF2A90/Biq40QVaaiVN+IkjwHYW1VwjmYnKoIIXjiy6EItZwNWBk5PdHEpDhMj3QlQFEUOvVtx9LfVga90t48H+8+/CmHdh3htuduoEbDZLav3hXWN75aXNix3ndezPQP/+DgjsPBB8bDHwxmyYyV/PbRbBwuO1c/3Jfrh1/J0hmrSD2QhqIoSCnRPX5DcTMCNRpW44O1r2K1WblyyKVsWrIVvy9A0w6NueWM+495j0IRDHr5Zi65qSur/96A3Wmj7cWtTrhkVNXaVRg/70R3101OJ3QpDZGZclos7apKr8ZNsFR2b7T5rmFymiOEBWk/H7wLKVCndiOzRyO1fYjo+0GtDdrW8M5KuIEsXDcg3d+Bvh/jD0wgYl9Aev9E5n0PihMRdRdE3Qu+f0BLAaHk/y16CTfY81EbIJJ+QggrMuoG8K8x2lrPRB4+nm6EgJiRCOel4FtiGMK2TiecWyzUmogqU06oj8npha5LhCy/pcXmtNLtui5hZVkrHebaXKaYhnQl4fEvhvLWAx8y77tFRk1lXeLJ9fL9+F9JrJHAva/fxpq5G8hKLfD8OqMd3DV2YNhYDpedtxa/yMKfl+LO8XDWhS3ZvHQb4255C6/bhxDw59fzUa0WhDDCxM88vzmr/94Qlg99lKO19o4avqpFpUXngpynTn3b8ev7s4r9A1cUhauGXoYQgvOv6vgfvikTk2Mz+u85hjFdDlSLiqJ/81YM7di5XK5vYmJychFx45FZz4JnJsGayjIPcj9EKsmI2JHIlOWEhFqLKETMI+FjKS5ImgreOaDngb0T0rcCMh/HEAITSPevICwY+c46WM8B32KKNaJRwdIYIYy1WQgr2M4OnpX2C8AzleLfvi0I1wAj1NXR88S+HBOTE+DtYR+j6+WzNifVTqTHrd24+alryuX6JpUX05CuJDhcdv73wb3s2bCP9Qs2B49787zM+34RVwzpzadb3mLud4vYuHgLNRtXp9t152K1W9mxdjc1G1XD7iwIGbPZrXS9uuBlfmTfF4O1j6XE8HwXquu3+u8Nx/Tg2RxWrhp6GXMmz6d6g2SadwwNo773tVs5tPMwy2etQeoSRVVCjHKpS3RNR7UcO3zcxOS/cjAnsqpuWZDqdjOs07mV3xttYmICGMaviH8RPWULBNYUOuMG70xE1PWQ/AfSMwP8q8FSH+HoA1iQ/s1gqYsQjoLxhB0cvYKfZc7tFKhpS8AbIXT8GOGwwgGuG5Huaca1rKE1cUXsU0htP/gX5Y9ftGSWzlHvuIlJaZJ2oHSV249FxuEsbnnm2srvjTYpc0xDupIRnxwXUqdZUQQJ+eHb0fFR9L7jInrfcREAk57/jknPfYvFZsViVRn3+1M0btsg4rgB/7FLXEhdD4qHRaJx2/qMvPxFFIuCrkn6DOrOPa8Y5QyyUrOZM3k+7bq34a4Xb8LqsHJfh+HB0luqVaVh63p43T5cMc4T+0Ly8eR5efn2CSycthxHlJ3Br97KxQPOL7Z92sF0Pnnqaw7vOkK7HmfR/8E+5gP0NMGqqrgD/6Iu6knCEwgQbTNLrpiYnFIoiRBSp1kJhm8LJQ7huha4FgA9ezzkvg/CClgh8VOEtXkxA/uLOV6YY4gnqs0hfRASFdCRrptQYg1vuNTTwP0LwnEhMuZxYz5p/QsJnlnA0sL4LKJKMI9wpJ6LzBwO3r9AiYKYESjOy4pvrx1G5rwG2kGwd0W4bkEIc20+HbBYLcH0xbJG13T8Xn+Iw8nEpCSUiyEthHgJ6IshO7kNuE1KmRGh3U4gGyNmKSClbF+G06yQ3PniAFbOWYvfG0AIowbfbc/dENZuzdz1fDH6WwL5dZoBRvR9kcl7DWXuHWt28dGTX5GdnkO367vQ554efDJiMp6jat6F3wcwPMZCEUgt3Cttc1jZuGhriCDatIkz6XlbN+KrxjKozSPkZuaiazqfWlUe+mAwI75+kPce/YJ9m/eDLtm7eT+3NrmfNxeOoVq9qgDs33aQPybNRUrJRTecR+0mNYv9Xl67+13++Wkpfo8fb56X1+5+l2r1kmh1XvjLSW5mLoPbPUbmkSy0gMba+ZvYu/kAD04cdNzv36Ty0yQxiaUH9pX5dVUhaFIl6dQxos08rFMOc23+94jYx5CpS0H6AQHCjoh+IKyd7l0Eue8BfpD5UWDpgxHJfxr/969HZr8OMhscl4PjBsh9k7C60kE0whbsIHYIrCLEGM/7HOm6CkQMMuVykLkYXmcV4sZA3GuQ/RJoO40xA9uQKT2hyhSEWsOYY2An0v0zIBDOvghLvWK/F5n5uBGqjg90D2Q+jlRrImxtw9vqmcjUK/JrSmvgW44M7EbEPV3s+CanDnWb12Lj4gh6AqWMalFp3Lb+qWNEm2tzmVJeHunfgcellAEhxFjgceCxYtp2k1KWVFbylKdO01q8v+ZV5n2/yMgnvroTSTUT0TSNqeN/Zc28DdRqXIOF05YFaz0fJe1AOj6vnyN7UhjaZQSeXA9SwrYVO7l++BXcNe4mfnlvFjanjZ63XsjHIyYbhrgvQIPWddm8ZFvIeIqq0LhNffrd35s37/sgxJC2WC2k7E1l1md/kZWaFVQUD/g1XrzpDSxWlSbtG6FaVHweP+5sD948H68NmshdY2/iqzHfM2/qYqSug4QpL//Ea3NH07hNZI/64ukr8BfayfR6fCyZsTKiIb3kt5W4s91oAWO+3jwvv300mwcm3GmGlp/iTF67mm1pqWV6zQSHA6+m0bJqMokOJxd++iH14+J5/qLu1Iotm5IvJiYlxFyb/yXC0hiSfsnPlVbA0RuhVkXKADL3E/AvB7Vhvlp3Ea+bfgApNdB2IdNuKPAIB9ZD1H0Q8xC4vzWEvhxXQc4rQMAw2i1NILC2yGxUsLYA5wDIfjbfuD86UStoh5DeySAzKcit9kPmw4DFUNfWVIz9lFzQPcjMpyFmGDLnXfDO4mj4t8z7ABK/RliLqQPtm0toqS4f0jsvoiGN908jNzw4Jze4v0bGjkAIc20+lZk2cSb7tx0s02vGJsXgc/to0q4R0QnR3HLGEGo3qcnQd+8muU4EtXwTkwiUiyEtpZxZ6ONC4OrymEdlJblOElcNDQ2NGnfLW8z/YTHePF+xm9PRCVHY7FbmTJ6P1+0Lpjx78rxMfWM63x7+kMvvLcjN6n7zBezbcpDYpBj2btrPiL5jjPEBq93COZedzROThiEETHz402CoNhih4puXbmfxbyvCynJJXeL3Bli/YHNIXWpd09m+ehfDuowo8Izn48n18vGIr3h+2hMRv5OoWBc56bnBzza7ldjEyDWjixNMM0senNr8uGkDz/49B08Zh3V/1K8/rZOrceU3XzJ75w78usa+rEyu+uZL/rj59lPHQ21S6THX5v+GUGtC1K0hx2TGQ4aBGMxzjtQxESFUdPfPofnP0g15n6Ikz4eoWwoOu/pBYKcRTh7Ygky/t9D4NrBfjIh/CZDI7BdCryUDSN9K8M4nXKBMB3yG0R/yEqGBfwMy9QbCPOPSjcwZj0h4u5h7i873eh/FilDCq4kErxP28mKuy6c6Mz6dw7sPf4Y37xgpCqXA2Jkjadi6Hvd1GM76hZsJ+AIc3HmEBzo/wceb3sAZ5Tj+ICanPRUh8eR2YHox5yQwUwixTAhxdxnOqVKRnZ7D31MWBI3c4tadYfmhy0KIMNmQorXn/T4/KfvSqFYviaSaibTp1or7J9xJXFIMqlUl4NdYMn0FVyffzuq/1vPijJHEJ8disVlwRNmJqxLDl2O+Y+faPcXOW0ZQZ0w/lBFmRB/lqKGcfjiT1wa9y6Pdn+WrMd+jBTTun3AndqcN1aJid9pIqB5Pr/xccYAZn8zhtuZDua3ZA6QdysBqt6Koxq+/3Wmj6zWdsVhNyYBTmclrV5e5EQ3QtEoVDuXmsCnlCH7deHHVpMQd8LPy4IEyn89JQYKoJD8m/xpzbf6PSD0NvH9wTCMaIO5YJRtDF2cpfaAdArU2Qq2GsJ8HsSNAxGP4RgLgnY081AnpW45I/BhEAmA1akArsZD7TuSSXAVXiXDoMJHDyyXomcb/tCPomU+ip92KnvM+UmqI2KcBB6Aa/6rVwHlVsLee9w36kZ7oR3oi9WwQNgpeTR3g6GN6o09xfn3/jzI3ooUQ1G1em8O7U9izcV8wglPXdNw5HjYv3XacESooFWDNPd3W5lKzHIQQs4DqEU49KaX8Mb/Nk0AAmFTMMF2klPuFEMnA70KIjVLKv4u53t3A3QB169b9z/OvTAT8GkI5tqJmbFIMXa7oAMBFN5zH1+N+xJPjRkpDEfyqB/sE225dsYPHeozG5/ER8AU4v38nut1wHpfc1JUmZzfk/s5P4PVr+Nx+wM/wns8xduZIvjnwAdnpOSz5dQWvD34v/3whikvjKkwx5+0uOxcPOB93jpv7OjxG2sEMNL/G+gWb2LVhH8M/u5+XZj/NTxNmoFoUrn/8KqJiXQD89c0/vDnkw+CD+pORX3Pr6OtYO3cDh3en0q5Ha64ffiUv3T6BhT8vIyrexf1v3kGHXhFCz0wqLU7LidUk/68owA1nnoXDYsWm+sNKbkkpsanmC6JJ2WKuzWWI9HNcf4VSBWG/EADhvAKZ93F+aLcEnBB1e6Hh1iDTbudofrW090Y4+yCcV4O1FTL1egyj3Wv8pN+KTPgMkbwQZCbSMwuyRnNMcbLib6aY405wXo7Uc5CpV4KeBgSM/GZtO0rcGGTiJ5D3FWCB6HsQSjQAet5PkPU8QQM9+xWIfhj8C4NiY0TdgZ7xCHj/BiUGETsKYe/yL+ZvUlGxu8o2Kksogivu74XNbsVqt6LroVGKui6x2kzHiknJKLXfFCnlJcc6L4S4BegDXCyLiamVUu7P//ewEGIqcA4QcbGWUr4HvAfQvn37U2iv4/jEV42laYfGrF+wOWLYslAE1zx8OWr+S3uNhtV4c8HzfPLU12Sn5XDRjefR+46LAePl/olLnycrtaBE0JzJ8/nnxyW07NKM7rdcEHE5HXX1y/yQ/imxiTHkZrvx+8I9f/Vb1GHXhr0RPdHHwhXr5LpH+9Hnnh78/umf5KTnovmP5jf7mPPVPAa/dguv3PEOh3cbKXtzv1vEK3+NonGbBvz6wayQ3U5vnpf5Uxfz2t+jg8fG3PQG86YuxOf2k5WazairX+b1ec8Vm5NtUvm4/5xOzN29E60MQvgtQmFE1wsZ2LoNAIlOF70aN2HW9q24AwHsqkr9+ATaVq9R6nMxMSmMuTaXIUoyWJuDfw2R6zwr4LorqEotLPUg8WtkzhugZ4PzcoSzP2CszTLtrvy85ny8PyO9v4PtHHD0JmJYdMYQSF6MUOKRei6h+cr5qE1A2xKh/3EQMRA1CBzXIN1TQM/B2H8B8IB7Knr0o0YdbO1Q/pxnIBO/MnKq3V8T6uX2gPcPlCqfBY/o6UPBOxvwgpaOTB9sCJ8Vl5NtUum4+elrWTVnXbFpdycTi03l3tdvo8+gHgBUqZFApz7tWTx9Od48HzaHlXrNa9G0Q+NSn4vJqUF5qXb3whAwuUBKmVdMmyhAkVJm5/+/B/BsGU6zwpOVms03L/1Iyr40etxyIfFV45j/w+KwXN+oOBc9b70w5Fi9FnV4+tv/hY2Zl+0mKzUn7LjX7WPt/I2069EaPRD+sPPkenHneHDFONm+amfQ0C3MznXFh3kXxmq3Ur1BVUDQ/8HLuOyu7mSn5zCk43C2rtiBjPCs/WnCDPZvO4TfW+AFf+3ud5mweCx2V7gSozs7NNTun5+WhHjQ/d4AS6avNA3pU4h0jweroqJppR/eLQT0adIUUShn4tUevfl89UqWHdhH48Qq3H12B6yV2SN9eplEpwXm2nxykHoaMvdDw3h0XgeiCvhmE/ZHI2IRritCD1mbIhImRBg0w1DyDsMDvsVg60Ro/eej/bIxjGc7BDYS0aDXNpfgrjDGUGoZ0WVRd6K4rkbq6YYnWttIxIdC7meg7SNowEuBzBqJqPKNIZ4WNt/c0M/eOYR60APgmwemIX3KkHkkC4vNgs8dYZPnJCN16Hb9eSFr85OTh/HDm9PZsHAL9VrU5tpHLq/cwrPm2lymlFfswluAHSMkDGChlPIeIURN4AMp5aVANWBq/nkL8KWU8rdymm+FIzcrj8HtHiXtYAYBX4D5UxdzzSOXc/l9PXnj3vdJ2ZeGI8pOq/Oac/e4gSAEC6ctIzohipbnhr7gF8YV48TutJGXHZ4L5XP70AIaF157LrO+CHU+xCXF4Ix2oOs6v30854TuRVGEEWIebUfqkqe/e4T2Pc4KafPqXe+yZfmOsAeEzWGlQ++2pB1IDzGiAVL3pwMwYMTVLJy2LMQTvnvjXnas2UWDM+sB4HDZ8OQUGNcWq4ozxhSaOJXYkZGOXkYrjCIEcfbQ3x9VUbi1zdnc2ubskONrDx9i7u6dxNodXNG0OVGm+JhJ+WGuzf8RqWcjU/qBngoEwPO7Ec4cdRMy8xnQD4PiAmsHROxjIHWkZw4ocWBtW+zajIg1FLelP8JJD6CCvQd4fwk9pVRFCLuhCu754QTvRsFYdF0gJCL+HYS9c+j9Zgwvxoi2g/1ikAcJ9YLLoHdaRN+PTJsb2jewCRnYaqigAwg7yMIb3xYj19vklGHflgPBKiqljcWm4ooN3cBRVZX+w/qEtd20dBsrZq0mOiGai2863xQfM4lIeal2R4yZyA8XuzT//9uBsyK1M4F/flxCVmp2UCDBk+dl8otTGfjUNXy88Y2QthsXb+Gesx8BDCGF1l1b8OxPjwVDvfOy3aQdSKdqnSrYnXZGTnmYZ64chzfC7uDudXt57PMHqFIrkW9f/RmrzYLVYeX5X55ACIGu6SUK3RZCcEa7hlzzcF/aXNSKzUu3MWvSXBKrxVO7SWi4a8aRTBb8vDTiLluLzk148qth/PPDEmZ9/ndQqMxqt3Dm+S0AaNy2fticFEVh7fxNQUN60Ms38/o97+HN82G1WYirGkv3gV2Pex8mlYfGiYkE9NIPHQO4uEEjVOX4Wo6/b9vK0Bm/4Nc0rKrKB8uXMu2GgaYxbVIumGvzScAzA/QsCkKc3ZDzDqL6akTy7yFNpW8FMv12DBevBrbOEP92MNRb6jmgHwG1BkI4IH48Mn0IEXOcA1tQEl5Dz6oGeZ9hiIs5EAnv5TeIpIgdCQGWVhB1J8LeEeldBZ6fQU0GS2iOu9RSwPd35HGt7RDx48AzA+n+lYIQbhvYOua3aRHh+ir4VsBRQzpmOGSNwtgssIFaBRx9S3AfJpWFus1rlUlYN0CXKzqilGBt/mvKAl669S0C/gAWm4XvXpvG28vGmsa0SRhmNn0lxe/xh4Vw65qOlDJsR3vMTW+Ql1XgYV7993r+nPwPFw84n9mT5/HKHe+gqgoIePaHx2jf4yxe+WsUQ855POy6UQmGSMidYwZw3aP9yDySRXK9qtjshpCTalHp1LcdS6evxOeNtHNuEJMYxYTFLwKw6q91PHvNK3jzfCiqwvQP/+DtpWOp1dgwqF+6bULE3UpFEXTo1RarzUrXazqzbfVOvhn3E1JKWpzblGETDTFZVVVxxThDvOxCVYivWlDD95KbLqBqnSQW/7qc2CqxXHrXxUTFRRU7f5PKR6bHg0LE4MeTzp+7dpSo3VN/zgoqiWuBAAdzcvhuwzpuPssUujMxqZx4CX/KBCKuzTLjodBQZt9C8PwGzkvR836ErBEgVECBhIkI+wXIxE8h7frwyypGuUcldjgyerAh+qXWQghjU04IG9LeFbz/EDFP+igiESXpO2N+3n8gcyiGEasYedBVfkBY6hjnMx8hcu63inBcYFzT0Qf8GyHvI+OUrX2+kjcYr6AOQvKkhTDKeh29LVd/pFoT6f0boVYB53VBsTKTU4PstFwURaCdoH7Ov2HhtGUlavfW/R8GnUlawMeRvSnMnjSXy+7uXprTM6mEmIZ0JaV9rzYo/yvI4bA5rHS8rF3EnbbUfWkhn30eP4d2HeHI3lReveOdkLyUp64Yy5SDH9CkXSMSq8eTdjAjeE4IQb8hBXWmYxKiiUkoWNB2b9zHhKEfcWRPKrWa1iAnLZe87DwUVcGd40XqEi2gYXfZuPrhvjx33asc2nWEXev3Bkt36ZqOO9vDlJd/Yti7RrmuTUu2RdzwtrnsnH91p+Dcbn/uRm555joC/gB2px2f18+B7YeIrxbHg+8N4uXb30YCqqrQuG0Dzu3XIWS8sy5oyVkXtDzON29SWTmSl2f8fWilH0KmldDzneMLfaH1axpZ3rItA/JvOZXKV5iYnDRsF4B4qdCa5QDHxZFDtvXDoZ+lD/T9yMBeyBoJeIPjyPRBkLwQYW2DFIkgC6/rAlwDCj4pcUao+NFh/VuQ2c9D4CCoDQzBMj3X6MdRhfCAMdeo29HTHwBtPwS2UlC6SweZi8z9GBH3lHHIvzbydyAc4DDEnIQQiNhHkDEPAgGEcCClFxnYDWpViH02/16lsWlgPQvyVcyDw9k7h4WUm5w6pB3MoAw0QAFKHELuLpLeGPBpZKeF6wdVRMy1uWwxDelKSnKdJF77+1neuO990g5k0L5nGwa/ekvEtg1a12Pz0m3B0Bmbw8oZ7Rqye8NeLDZLaAi3hCN7UqndpCYfbnidxy55lp3r9xId5+KJr4ZRp0nNiNdIO5jOA52fIC/LjZQSu9NGp77tGTH5QcDI6f7tw9lkHMmiUZt6vHbXRNw5njCvOhjqpDkZBTo3yXWTyErJKnjQCqjTtCYjJj9EjQbVQvqqFhXVorL67/WMvPxFdE1H13Qe/XQI4/95nrXzNhKfHMd5V55TucUkTE6Y9jVqohSXf3iS6dn4jBK161qvPn/s2I4v37i3WVTOq1uvNKdmYmJSighLbUichMwaZeRJ2y9AxAyP3NjSBAIbKPBgW8HSArRt+fnQhXODNdAOISx1kEkzIP1Ww9AVsZDwBkqRsOujSO0gMu26fM+3xDDse6LEv2Sc17PB/Q1SzwRLU8MLLvOIHAauhwqeqTUgUEhFHAFqI0T8eIRaK/R7ERbAgvQuRGYMNlSfkBD3CqLKZPAtNwxr+yVm3ejTjFbnNcNqtwQdKqXJBdeeW6J2Z3dvzdIZK/F7jYgxi1Xl7O6tS3NqJpWU4ycKmFRYGp1Vn/HznufzbRMY+vZd2ByR8ypHfvMQ1RskY3NYUa0qVz98OR16tqF6g+SwMlWappNYIwGA6LgoJiwZyy+5k/h6//vH9NYunr4SLaAFDWOv28fc7xai5RsIUbEu+j/YhzteuJED2w/jdXsjGtFg1BS85KaC/ORHPxlCVHwUrlgnjig7UbFOMo9k8fo977F3y4Gw/l63l5GXv0helhtPrhefx89Lt04gtkoM/e7rxQXXdDaN6FOUz1at4LyP36PLR+/x4fKlIb9jtWLjuLxJ6Su9JruiGHdxzxK1HXdJL7rVb4DTYiHJ6eKlS3rRxiyJZWJSqRHWlihVvkGp+gdK7FPB8OqwdglvgVoTQ9/NAtGDEPZzQa0dLiomJahJAChqHErSVJTqa1CqzUextSt+Mt6/QAYoMIw94PkFmV/+QigxiKg7UGIegsCOfOO9OJeWA+EsyE8WceOMElgiGnAa/2opyKwRhse5CFLPyzeiczE84R7IfBiUJETUTQhHT9OIPgWRUvL9+F+4sd49DKg/mB/e/DXkfM1G1Ups4P4XkmpX4cH37i5R2+GfP0D7nm2wu2wkVIvjsc8foEm7RqU8Q5PKiOmRPg1IrpPExxvHk3YwA1eME1eMoVhYq3ENbhl1LZ8+/Q1Wm4WAL8DDH90bPH8iWKzhi58QImI4m2HcRPYMWmwW7p9wJ536FLwY1G9Zh083v8naeRt4474PSD+Uga5JstO3MOy8EXy29a2QOR/ZkxomLmaxWdi9YS9Va1c54XszqRxM3biesfP/xp2fc/zqwvlE2Wxc36o1uzIyuOLrSfhLMaxbEYIutesy4bLLsVlK9miNstl457J+pTanUsUMHzMx+U8ItRYkzTJCvEUMQjF0OYSlETL6Xsh5G4TFMITjxiIilYs6LlbC11slwjEw/qiL+8O2QexohL1gk1tYm0HV35G+ZZD1TL5SuQ7+Vci06yFpFkIppLCt7w8fVlgNA15NLvktmVQqfvt4Nh89+RXefDHYDx7/Emesk563dGPv5v3c3+kJAv7SK0spFEGHXm0Y8fVDWEq4NrtinDz7w2OlNqdSxVybyxTTI32aoCgKSTUTCfgDfPfaND4fPYUty7dz7f/68f7qV3hqysN8vOkNul3XJaSfz+Pj9XsmMqD+YO7r8BgbF2+JOH7ny9sTHR+Fmm9Q25w2Lrj2XA7vTglre+G152JzWMPWcbvLzi2jrgUJc79fFCJWFlslhnot65CbmYeuGU8JqUv8Xj9bV4QKOyXWSAjLgwn4AlSrby7UpzLfbVgXNKIB3IEA321YB8Djf8wk0+shLxAugHeygr07167DJ1f0J9pU3DYxMSkhQigItTrgReZ+iJ79FtK/HiX6HkTST4j4NxFVZ6I4e4f0k9KDnvkk+uEL0FP6I4vLV3ZcAko0BX4TB9gvjWjUCmcfI785fBCIfgiBhvTMQMqCEFyhJCIsDfK9zEdD1HXDsx3YGDqMkpzvHS98I758r7zJqcrvn/0VNKIBvHlefv/0LwBevuNtcjJy8eRG0AY5SYtzh95teX7aE6bitkmpYHqkKymePC+vD5rIwl+W4YpxMeTN2zn38g7H7JOVms1dZz5ExpEsdE1n0uhveXLyg5x/VSdqNqoesc/YW95i4bSl+Nx+Du9O4ZFLnuW9lS9To2FobnJUrIu3l43jy+e+Y/vaXWxavJWF05Yy7/uFXH5vTwa9XJC/XbNRdZ75/hHe/d9nZBzKQEpJVHwUnfu2Y9Jz3wOGumn1BskMfOoaPHleWp3XDEeUAy0QKuKkazrO6NCHoyvGyYPvDeL1Qe9hsan4fRoDRvSn9hlmyOypTCQDNtpmI8fnY8n+vRH7WBWVK5o256fNG/D+R2/1or17eGL2TNLcHno0asxVzVoUXxPWxMTklETqecisJ8H7t+FljnsGUUQ8K6yPlopM7QN6OqAjcycg499CcVwMlvqR+2Q8BN65gBf0A8i0myDpl/DcZCUWqvyIzHkbApvAvwZ8s5BHpiNdN6PEPlLQ1tIAGf8GZI8zVL913RAtc1wEOeORR59naj1k1L0I3GBtb9R1DjOQtbB6z0KJRcaOMrzXRz3t0Q8EVcBNTk2iYsPrfkfFucjNzGXDws0R+1jtFi6+qSuzJ83F5ym+AkxJWDZzFa/e/Q6ZKdmc378TlwwwS5uanDxMQ7qS8sqd7/DPD4vxefzkZuTxwo2v8+pfz4blcHjyvEz/4A/SDqSTeiCd9EMF6ohaQOeFG8czblYcP7w5HT2g0W9Ib9p0awUYIdjzpy4O8e7qAY0lv63k8nvDc0ATkuO4743bubHePSGiEdMm/s45l55N24vOBGDbqp2M6v8yuq6DEMQnxfLmghcY1OZ/eHILxFV2rtvDCwPGoygCqUse+WQIF93Qhb+mLMCT68XustHy3KY0alM/bC6X3HQBrc5rzu4N+6jRMJk6TWuFtTE5tRja8Vzm7d6F228sug6LlQc7dWHtoYMR2zstFr6++no2phzBZlGZsm4Nvv9QZzogJd+uX4cmJfN27+JgTjb3dej0r8czMTGpfMjMx8D7J4bidjYy/QGo8jXC2jy0nZ4H7ilI/QgEDuWHRR9Fg4yh6AkfQ97ngERE3YywGZvlUurgnUNI6Smpg3ceuK4Lm5NQkxBxT6EfPg/wFIR+5n2BdFxYMK5/HWQMNcYSwsjJTpwCqZcC7oJ+gY2Q+RDyaEHB+FfA0Qs8vxvthBOs5xjiZUVQXFchbR1A2w5qXcObbXJKc/Mz17Jyzlo8+V5ph8vOwKevYePirRhu59BYZGeMg1fmPMP21btRVYUZn/5JwPvvQ781v8aMj/9E13SWzVxN2oF0rv1fJU2pMqlwmIZ0JWXRtGUhu3R+b4Alv60MMaR9Hh/3d3qc/dsO4nP7UVQlrMRAwBfgse6j8eeHUS/5bSVPf/8IHXq2AYzc58KGtKIq2JzFh67quk7K3tByW7om2b1hX9CQfuPe90NqOqf6Ajxy8SiO7EkN6Sd1SaCQGNoLA15n3O9PcVa3Vmxetp26zWpx6Z0XRyz5BVC9fjLVzXDu04bmSVX58boBfLthHVJKrmrekkYJifSb/AVaBGE7dyDA1VO+QhEiWMu5JNhVFb+mhVWKFRC8jjvgZ+KyJae0IW2W2DAxiYD3L4xa0kcJGAZuIUNaSg8y9SrQ9uW3jbSG+SD9No7WfJbevyDhXUOMDAGohNZwVooJyz56TT/oR4oehcA2OGpIZz5VUNdaYpTASh8YXqYLCRTyEmYMhYTPEPZzkf71CEtjcF5TbESOsNQB0wt92nDG2Q15a9EYZn76J0IIut9yIbXPqME97R4NVpMpjDvbw9AuI1AUJbSqzHGwOawE/IFg+l8QQfA63jwvX42Zekob0ubaXLaYhnQFxuv2MvaWt/jnxyVYbVZuHX0d/Yf1AcARZcedU+C9tdgsYeEzC35aysGdR/C5jQUv0gMLCBrRxjV9fPXC93To2QYhBAOfvobPn/0Wb54Xi1UlJjGa8/t3BGDZ76vYvno3tRpXp/Pl7RFCoCgKVetUCcmNVlRBvRa1g5/TDmSEXt8XYMeacIXPMCS8OPBNvt73Ht0HXnD89ianHY0Sq/BYl4KwrWUH9rE9Pb3Y9r5/Ec7t1TQE4LBY0HRJQNdIjooize3GX8ijXdJa0iYmJpULKd3IjP8ZXmFhg+iHUaIGGieFs0jZKkt+jnIhPDNBP0CBwV3cs6KwEeFB5k5E2M9FCJEvRjYRQ/3aCmoC2C8x5uf9GwJbjJrR9m75wp9WpFK1iFEswFIoik0vqmkSgEDk0NtQJGQ+ikj+C+G8qgTtTU436rWow11jBwY/r/57PQe2RY4WA4Jlp04En8ePEEblFy2goQV0qtSIJ/1QZkhaYHHvwiYm/wbTkK7AvHX/RyyatgzNr6H5NT4eMZmajarTuW97Br92G6/c8TZejw+rzUp8cizdbw7N+8jNcoepVxdGKGC12/AV2fHz+/x8NuobNi7aQv1WdXlw4iBWzllLlZoJXHTDebx297usmrOO7PRchAIWq4Xzr+7Eox8PAWDU1Ed55JJR6JpOwBeg7+CetOnWirSD6ezesI+m5zQm7WB60KNusVtQI+w8CiHCSmRlHsn619+nyenHtrQ0PNrJVwOVgF/TaFO9Bt9cfT17s7Lo/eWnQUPaabHQv3nx5eJMTEwqLzLzaSMHmoCR55v9EtJSz1C0jnkCskZiGMk2ozayo2+RAXIICw8LQWCUxPKEHtZ96NnjjTxna1OIGw2+BaBUB8dlyMzhSN8SkFnGGMIKjssQcc8boya8g0y7DUMMzA+ugQhbB6R2GALbwdoavGkUGPg2DG950Q3H8HDc0NB0E5Njs2v93lKpGy0lBHwarc5rxkt/PM3+bQe5p+0jaAHjd9rustPj1m4n/bompy+mIV2BWfLbipDwbW+el8XTV9C5b3u6Xd+F5LpJLPltBTEJ0fS6vRtRcVEh/dte1IrCkVVWm4Vmnc6gbvNabFq8jfot69CpTzteun1C8IFmc1rxun18M+5HvG4fq/5cR93mtXlr0Rj8vgB3tBhGyr60kB29gE/j7ykLuPZ//ajfsg6N2zbgy13vsGfTfuKrxrJ/2yFuaz6UfZsPYLFbkFJSo0E19m05gKIodB94IbM+/zNk7vHJsXS7vgtT35gePKaoCg3PqnfyvmCTU57Ja1eX2tialKw5fAghBHXi4vjm6ut5bu6fpLnd9GjYmAc6di61a5c7x6qSY2JyquPLF/kK4kF65yLsXVFc/ZCWWkjvPIQSD86rEUU90raj4dnBA2BrB2od8K8FSxOwd4XMJygwpu2GgZz7oXHMtwgsTRBVvgHpQab0yg/dLuRtk35w/4yMugNhaYiwnglV/wJtByhVILAd/XB30Hcbc0A35qDtBFRwXgXu70PnLqoanm/PV4UOqmBt8W+/TZPTkOkf/lFqY2sBjY2LtyCEoFbjGrz617NM/N9nZKVkc17/jgwY0b/Url3umGtzmWMa0hWY2KQYUvcXhKVabBYSa8QHP7c8tyktzw0X8zhKjYbVeOHXJ3nlznfITMmiddcWPPrJfWEGt81p46sxU9E0jUsGdOWD4V8EDXifx8++LQfYvGw77hwPORm5EcNiLFYLmSkF3mJntJMm7RqxcfEWRvQZE/Q2+/PHPbzrCO8sG4uuS/7X7RkUVQUMz2FS7UTGTB9B/ZZ1qFY/mQ8e+wKEoEbDZEZNffTEvkST05pDubmlOn683cHPmzfiCQQ4r049vrzq2lK9nomJSQVAxAOFPbA2UJIKTtvaI2zti+9uqQ8J7yGzRoCeAbZOiLgxYQa3FHZk7nuGm81xOeS8TIFh7QVtmyH8pacWKT9V+GJW4xpHPypRoLRC+lYg0weHjgdGXnSVaUZ4evrNhORvi5qIKh8gLI3Rc+pCziuAMETD4t8s9n5NTIqSdqD4lKuTQWxSLLO/moff66ddj7N4efYzpXo9k9MX05CuwAx9+26G9xyNrukoikJs1RiuGNL7+B0Lceb5zflk0xvHbNO5b3s69zUW/f3bDvLhE5NCzgsh0DUdVVXCQq2PkpflZnjP52jUpj5Pf/s/4pNjCfgCzPr8r4hiEarVwqFdKUx44CNyM/MKjltUGrSqy/6tB6nXojb9h/Wh3329yMt2oygibBPAxORYtK9ZixnbtvyrXOhj4bQYkRUIo0a1lBJFKEzufy0tk6sdfwATE5NKi4h7Fpl2J0bIswpqFYTrxhMbw94RUfX3Y7dxdEc4ugMgA9uROa8UbVEwh+LcUDIHmTYQaW1pGLtKAkg/0v09YaHjAMKK0PchM0YYIehBLGA9AwK7wdIYJfoOZNRAQ30cBZSYEt23iQkYjqAFPy3F7zu5qVeOKDtSGkK1rw2aCFKiqAqv/T2ahq3NiEaTk49pSFdgWp7blHdXvMSS31bicNnpek1nXDHOUr1m9QbJ1GtRhx1rduH3BlCtKnFVYznj7AYgBFVrV2H/tkMEfAGEKEjzOvrg2rJ0G3ef9TC5WXkoQhBfLT5irrPmD5CdnsOhXaEqolp+ea01czdw+b09uWvsQDYu3spTl79IXo4HV7SDZ398jFbnhZYSMTGJxHPdLuFgTjbLD+xHk0axFiFERBXvkuJQVW5q3QafpjFpzSoChUTFRsyZxdTrBpyEmVcCzPAxk9MUYesAST8YatzCBY5ehqe3NFHrGTWlA9swRMgsoFQFSzNAGv/XfBhq2oVzmPMVtv2rkSl9QGYb50USEXOdpR+ppYA8VGQCAfD9hfQtRkbdihLzIPhXQfo9IN1IEQ0JExG2tqX2FZicOjz43j2k7H+BjYu3ogd0hGKI1RauEnOi2J02rri/N7mZefz6wR9o/oKx3rjvfV6f+9zJmHrFx1ybyxTTkK7g1Gpcg1pDaoQc8/v8KIqCalFP+vUURWHcrKd496FP2bRkK/Va1uG+8bdhcxglr97453k+e2YKuzbsJSc9l22rdoaUqNJ1SU66EU6rIck8nImiCnSNoDGtWBTue/N2vnnpp2Ln4cn18v3rv3DFkN48edkL5GUZ5bKy03N5ss8Yvtz9bphKuYlJUWLsdt7o1YfdmRm4rFbm79nN9K2bWVVMbekSIQT9mjTjtp++DzGiAQ6Xcii5iYlJxUBYGkCRGshS+gAFIU7+q5UQKiR+gcx6HgLrjPzo2CcRIr8cZZVvkTnjIbAT9HQIbCKkRBU6yMxCk00jXEjMArHPQO7EY8zEDbnvo7tugPS7C5XLykCm3wlV/y79TQWTSk90fBQjv36IAzsO4YhysHzWGv6e8g+bl27/T+N2u+E8Hus+OsSIBkLSJE1MTiamIV2J8Pv8vHjTm8ybuggE9L7jYh6YcGexdZT/LVGxLh7+YHDkc3FRDH7tVvw+P32ibjpuGYGAXyM+OY6Ol51NTkYu7S5pzYXXdyEmIZpJz313zL6KRWX76l0Rz21YuJmlM1eRui+NTn3ac9GN5xVbs9Lk9OXVBfN5b/kSbKqKLiUN4hPYmFK0luqxsSsKFlUloOv4NI2AptF38hdh7QTQpU7dkzRzExOTyoKUXmTGQ+D9AxBI5w2I2BEIcXLXZqHEIOJfLOZcLCJ2pFGj+lBbwpW2i+I3hMMc54GeA/bzEY5LEUoses7rx+mrgH8joYJpABLpX4X0/mkIn9kvQXFeVpJbMznN+PCJSXz32i9Y7RakLql1Rg12rIn8vlccNqcVVVXRAhp+b4CAP8A9bR8Ji4AUiqBd99Ync/omJkFMQ7oS8fGIr1j0y7Kg8Trr87+p07RmsLZ0WVLSOnxCGOHi//vw3rBzl9x0Pl++MDViiS7VopBcN4n6Z9YN8XgD5GW7efKyMUgpkbpk4c/LOLD9IDeNvObf3YzJKcnS/fv4cMVSfJoWzJFed+TwcXqFogDVY2L5+fqbuOeXH1m0by+BYsLCrarKMxde/F+nbWJiUsmQ2S+Ddy5BsS/3d0hLQ0TUTeUwmZKGxgqw1EWJGxt+ytEX8j4kcn1rC1jqgaWxoQoecu0cSL8jv58Ez2x0bQ9K9D0ndAsmpzar/lzHD29Ox+/14/cav0NbV+w4oTEUVZBctypvL3mRJy8bw7oFm0JqRRfGarcw+LVb/+u0TUwicnK3S01KleW/rwkR7vLmeVk2c9UJj7Nv6wHuO2c4V1a5laHnPcmeTftIP5SBrh/bOJZS4st/6NmddtpcdOw6uc4YJ65YFw+9Nyji+YFPX0ufQd2x2q1YHVY69jmbei1q44x2EJ0Qjd1pY9q7M7n2sX7YXXas9vx9H2kY8kcNcE+el69e/KFYITST05MtaSWra1pcHEOS08ld7Trw4/UDiLbb2ZSaWmxutSoEXerUxWW1/svZVi4EIGTl+DExKXW8/xAq3OUG3/wTHkb370BPuRL9UAf01BvQAzuRWipSHn9tNsLK81W5Le2OfSERBSIGETc68umYB8F5DUZJLBvYLga1UX6/WJBWcE+BqNsBR367o2gUJGm6Iffd49+4yWnFrvV70SM4UAojBBQXZJhYM4FrH+nHW4vG4Ix2snPdHvRijGjFotChZxvsTvt/nXalwFybyx7TI12JqFqnCjvW7Ao+gFSrSrV6VY/bb90/mzi06wiN2tTHm+dlSMfHg0bo+gWbub35MCw2C3FJMYydOZJ6LeqEjbHol2W8MGA87hwPNRpW46lvHuLInuINFSEEQyfcydndW5NQLT5iG1VVeWDCXTww4a7gsdzMXG5rNpTMlGwyj2Sxd9N+zrn0bF75cxQv3z6BnWv3RBzrvwhUmJyaNEpIPOZ5i6JgFQpuLbJq6NMXXMxlTQrKy9WKiSXNnRd8RVSEQBECq6JSPTqaFy/pebKmbmJiUplQqxulqIIeXCuoNY/ZRUoJ/mWgHQRrC6SeBWnXETRC/cshpQcSq1HzOfFjhKVR+DieP5CZ/zMEv9S6EDce9KJCYUWIeRZhPxehVol4WgiLYWQXMrSlnok80hNkBmhpkLsdHJcgqnyBzHgs//4j3ejJVWU2qfzUbloTRSk+Fc9iVVFtKt7c8IovAEPeuIPzr+oY/JxcN4nstAKFeUURCEXBareQXDeJYRMjO3NMTE4GpiFdibj39dtYv2ATfq+xMEXFubh51HXH7DN+8HvM+uJvhCIMb7YkNJQ6/78BX4DU/ekM7/UcX+56NyTf+MCOQ4y+7jW8eUadyQPbDvFg16eCtaYjEZcUw8U3dT3he1w+aw2ePG8wdNzr9jH/h8U89tkQajSsFtGQtjltnHflOWaOtEkI59SqzU1ntuGz1SuMaIpCERd2VaVbvYbM3hn55c8iRNjv00vde3Htt5PRpI4uJc2SqvJK995oUqduXDyWk6xVYGJiUjkQsSORqdcYoc4CEHGI6CHFtpdSIrOeBPcvIBSjZrNxpnCr/H/9oB9Cpt2JSJ4TOk5gFzLjQYLecG0XpN9YaLwIKMkorr4neIcYCuV4Kdgs8IDnV4h7EdRaxRjSDnCcWMlOk1Ofsy8+k953XswvE39Hl5KAt2Czxeaw0qF3Wxb/uiJiX9Wioqqha+1jnw7hwQueQuogdZ1GbRvwyEf3oms6NRpVQ1VPvjCviclRTEO6ElGjYTU+2jCeZTNXoagKHXq3PaZy9aYlW/n987+DBnBJSD+YSV5WXki95i3LtqNaCh5cUko8uR4iRblabBZsDiujfvg/e/cdHkXxBnD8O7vXU0lC771XAQVRROy9V+xdsfxUsGDBioIVe2+AYkVFEVEBQXoHadJ7Tc/13fn9seGSSy4hISGhzOd58sjtzc7OnoG5d2fmncFlvmaU/D2rCzMNkzcGfsSlD5zHgj+WRu5HaILUeimccNGx3Pxi1axF++mdiXzz0k9IKbn0gXM5/y71JeFQ9sgJfRnQqQu783KZsWUzP61egdtm58Fefbj/9wlRwXVhiU4XDl1n9pbNdKlTF6fNRsvUVCZfdyMLd2wnzu7gmLr10I/m4PkImpqlKBUhbE2g5kQI/APo4DwRocWXfEJokRVE4yvj3yMJ5nak6UVohfr80FIQeqE6ZEEW7WLsIFyI5LfKcsEYBBSbYm4is56GuFshOIeC6e0CtNrgOhOR8MABXq/spJRI7xeQ94l17bib0eLKt6+3UrXufPUGLrz7LNJ3ZrLgjyVMGTsDd5yTG5+/mmcvfyWydrqoxNR4NJvG4qn/0q5XK+wOO007Nubz/95kxez/cMe7aH9866M7eFZ9c5VSgfRhJiktkZOvOqFMZXdv2RsVAJeJsNY2F5ZSJ7l4cjEh0G0CI2QdF5qgU9923PjslTRu1yAqEC+PdYs3RK0D32fyV/9ghA1e/ftpfnpnItIwOef202jTs+UBXedA/DFqKu8P+iISyH/w0GhccS5Ov75flbVBKb+GSUk0TEqiW736DOx5XOS4LKG36VanLttycvjfxF8BSZ34BL677CoSnU6SXW76NWlWRS1XFOVwIbQUcJdxpNfYnj8SXZ4r6CCi+2a0NIpXomENixsFr+29EAn3ga156QF+KWRoOeAr/ob/JxAmInU00jsGAOG5GmHvcEDXOaC2+b6DnJcL2pfzAqaIQ/OcX2VtUMqvbrPa1G1Wm/a9WnNN4WSxJeQiad+nNTvX72bYVa8jpaRW45q8/s+zxCV6SExN4NizulVRyxWlwFE8nHLka96lSalrhzVdoNujn9oJIZg3MTqBWfvj29Dr3O644py44pw4PQ5ue/k6ajeuhTvBhTveRZP2DXnqh8G069X6gIPo7et3Mnb4uJhfLoK+INO/n03Lbs144IM7ePDju6o0iAaY+MmUqNH9gDfAxE8nl3KGcii7rlNXbEWmb/dp2JgGCYns8XnJCwXJC4XYnJ3FKzOnV1MrFUU54tjb7ye7tgYUHVETEJwRfchxLDhOAOEB3IAL4h+11meLOOu4rRWixpsIR+cDD6LD68H7aQnv+sH/G8LeES1pGFrSsCoNogHwfUd0kO8H/w9V2wal0px31xnFvpv2PKsrqXVqkLEzC2+OD1+un21rtvPF099UUysVxaJGpI9gdZvW5uEv7uGFASOjRnl1u05KnWQe/uIeHj3ruaiN642Qwaq5a+h5ZtfIMSEEj4y+l/mTlrB78x5adW9O885NOPf20/hv/jqEJmh1TDNs9or9Ou3evJdwqOQvFw6Xo8T3qoI7wVXsmKfI6L1y+LilW3dGzpkZdWzBjm3UjosjXGjKd9AwWJORXtXNUxTlCCVsjZFJwyFrENa6431s1pTopBGQcT3Re0Eb1lRu5/EF9QgBySMhOD0/aVlHhL0NMu5yCC0DdLC3R4gK7iZgbAdKzomCqOaMyCLGw/tYx5TDwmWDz+fLYdEPQpZMXU5K3RpRg0OhQJhNy7dUdfMUJYoKpI9wfS48lh+zP2fTiq188NAotq7eRsvuzbnnrZtJTEkgrX4qW//bHilvc+h4Et3M/nUBuzZZQXPr7s0RQtD9tM5RdTucdtr3bl30kgesYZv6MfeUBrA5bdw0rHrXPF375GUs/HMp/jzri48rzsk1T15WrW1SDlxOKIhN0zCMgo5ZE4LGSclsy8khkH/cZbPRvW7pGXiPRkJtN6coB0xzn4F0nYoMr4Hs4WBuBHsnROJQhJaIqdcGo3ByTR1JPPgng7nDKmtvbwXTzujlXkI4wbGfLbDKw9aCkueh2yH+AHOiVBKRcA9y71wio9LCjYi/q1rbpBy4vEwvdoctegDIplGveW12b94bWT/t9Dhof3yb6mrmIUv1zVVLBdJHAV3XadqhEc//8mix9x4ZdQ8P9n+KgDeANCXhkMEHg0dhKzSt5vZXruOc204r07WklKyau4acjDxaHdOMpLTEMrezRq0k6jSrxY51u4q9JxDkZXtLPHfv9gyeuexl/pu/nhp1knj4i3voUMn/wLbo2pQ3Zg3jt0/+QpqSM248maYdGlXqNZTKY5gmo5cuZsH2bTSvkcLN3brjLrTPc5rbQ5onjm052ZGviIZpMuTEfgz5axKLd2xHAsc1aMidPY6LeQ1FUZQDJYSOsLeG1I+Kv5f0MjL9OgoyZYcg9zlrO6x8MvExNE/ZHuZa220tAZkN9g4IrUbZ26nXQoq6ILfHehdkTsnXNXYgM++B0ArQayGSXkY4upT52mVqn70TpH5trZVGIDyXImwtKvUaSuUxDIOf3vqNlXPW0LhdAy65/9yoGYcpdZNJSI0nuDXD+r0FjLDJXSNv5KUb3+a/+euQErr278Tlg9U6eKV6CXkEPrno3r27nDdvXnU3o8rMnbiI7175GYTgskHn061/x3Kd/8XTXzPmuR8Ih2Lv92hz2Pgx63McztKnh5mmydOXvMT8SUvQdA0pJYM/HUiPM7rgdJc89StzdxZTv55JOBRm7oSFzJ+0JGY5h9vBGzOfZ/PKrdRvWZcWXZsC1heEWzrdz+aV2yJJ0RwuOxfecxbterWm13nd1dZYR6H/TfyV39f+hy8cxqnrtEpN47vLrorapmpjZia3/PwDazPSSXa5GXnm2RzfsDFSSnbm5aILjQSng7lbt2JISY969YlzVO8Sg/ISQsyXUnavzDrjajaUbc//X2VWedDM/+iBSr9/5cAcbX2zDExB5n0K6Ii4WxDO8j2QM7NfBe8HQEl7MdsRtRcjROljIlIayMw7ITgLsFnJnJKHI5wnWKPXJZ1n7AX/r0gM8P8JodmxCwoPIuUrCK8DW1OEvW3+dSVyz+lgbKJg2ywHeK5HOLqBs5/qm49Cz17xCrPGzyfgDeJw2WnWuQmvTX8mKtP2lv+288R5L7Bl9XYS0xJ4fOz9dD6pPVJK9m5LR9M1PIkelk5bAVLS4YS2uOOKL787lKm++cjom9WI9GFuzoSFPH3JS5EpMMumreDpHx+i2ymdosqtmruGscPHEQqEOef206KyG2btzi4xiAZrHVZelhdHraRS2/L3NzOZP2lJZOozwNOXvIQrzsWT3z3IMad2LnbOnq17ua3rIPy5AUzDKHWNdNAf5J5ej6LbdAzD4PLBF3DNE5eSk5HL1v92RGUWD/pDfP3STzjdDk4ZcCL3vnNrqW1Xjix7vV5+/W8Vofy1zgHDYF1GOgu2b6Nn/QaRco2Tk/n9mhswpUQr9IVOCEGd+ASy/H7OHP05e7x5CARxDgfjLr+a2vEHlrTniCFRW2woSimk/y9k5n3s2xJKBudCyocIR8/ocsHFyLwPgZCV7brwNG2ZTslB9L4yeSBK75vx/wKBWUQl5Mq8Cyk8kPxOzABfGtuQey4A6cNaq11KO6QPufey/K24DGT8nWjxt4O5F4xtFATRAEHwfoD0ucB9CSLx8dLbrhxR0ndkMOPHeZHp2UF/iI3/bmbV3LW0O65VpFyDlnX5eMXrmKaJVujhtxCCtPqpZO/N4ZaO95O9J8fa8SzJw1tzXqBG7eSqvqVDi+qbq5zK2n2Y++bln6LWkQR8Qb59dXxUmdXz1/JAv6FM+242s8bP55nLXmba9wVPljue2B6nJ/ZTaSEEKXWSSa65/ynaO9bvKrb3n5Tgy/Uz9OKX8Ob48tsY4IeRv/Lhw6N49db3yM3II+gPlhpEF74/b46PgDfIVy/8wI4Nu3DFuYg1s0KaEn9egImfTWHXpt37rVs5cgQNIyowBut3OWjE/h0rWnafV2b9w7acbPJCIXJDQfZ483h2msrUrihK6azg2F/oiB+Z93F0meBiZPo1EJgIgb+QGXch/X9G3reC7pISWmqg1wVRhuVTxmaik5rBvj2nZeYdSNNaNiWlD5n3GWb2CGTW49Y0cALsN5jPvz9rD2s/5L6FNHaAFkd0EF342j7wjkUaO8tQt3KkCPpDaFqRvlkTJe4bXTiILuyjR0ezZ8tevDk+vNk+0ndk8t6Dn1d6exVlf1QgfZiLGUAWOTbujQlFtm0KMua57yKvT7zkOHqc3tnaelJAnWa1iUv2IAQ0aFWX4X88UabpVy26NcNewvRvTQi2r9tJMBDinl5D+PCR0Ywd/iPzJi4uvkd1CYrWbXfa2bM1HYfTznVPXYbNEXuChd1uIycjr0zXUI4MdeLjaZGSij2/E9aFwGWz0aVO3XLVsz4jIzKqDWBIycbMzMpsqqIoR6RYw0LRx6T3U4oF27nvFLx0nQOOXvkvBGiNQCRYf9abIWp8Urap0bZ2QElTuCWY25AygNx7CTLnJWs6efAfYgfBsRRZ7iLsYOxECDfE3QWUsCxM2MDMLuM1lCNBrUZp1G9VN/J9TdM13PEuWnVvXq56tqzeHjX4YoQMtq7ZUaltVZSyUIH0Ye7SB87D6S7oxJxuB5f875yoMrH2ki4cvP72yV/MnbgIpDVql7M3h/cXv8yEwFd8vOJ16jWvU6a2dD+tMxfff06x/f8AwqEwNRukMnv8fCugzh9FN83ojtrutBHze4EAWSTgNgyTRm3qA7B51baYXyiEEDg9Dhq2Lsi6bIQNfv3wTz56dAzTf5gd82GEcngTQjDqwks5vXlLGiYm0athI76/7Criy7m+uWf9BrhsBQ9onLpO93oNSjnj6CHk4fGjKNVBxN0EFF6z6UJ4boguFHMv6YJj0vsVBPdt0SdAZiLSfkHU/het5q8IW8OytcXVDzzXEHM1nzRAqwX+P8DYSsHIddEg2mG1oXjtRG/TBSDB1jT/dtaVfJ6IB1vjgrNkCOkdi5nzMtL/x37vSzn8aJrGiD+f5Pjze1CnaS26ndKRkTOeK/f65k4ntov67utw2+nQR2Xwhurvc4+2vlkF0oe5Y8/qxuPfPECXkzvQtX9Hhv4wuNha5HNvPw2np1Cw7XFw0f/Ojrz+4qlvCHitwNaaDu1n4ieT0W3FA+L9uf6pK/h250cMePwSHG4HcUkenG4HA9+8icTUBLw5vpiBqzvBhdPt4LTrTuLVac9E/QOp6Rqd+7ZHFJnic8JFx5KYmsDe7RlM+eqfqKlBQgjsThtNOjTk5SlPRTJCmqbJw2c8y9v3fcJXL/zAi9e+wfuDvyj3fSqHviSXi5FnnsPU62/m8wsuoUHiftYRxnDbMT3o16Qpdk3DpmnEOxws3LGNd+bOxjDLOlqjKMrRRrhOQSS/BvZjwdEbUaP4WmThuZqiwTaFg+28NylY12yC9ILvx/0mF4tFS3wQUWsWxN0GOK0gFhckPo3QEkHmgozxb5rwWOXcl0KNMUSPbOtg70mxr5LOsxFaItLYDv7fgWChNwXgAFsbRMoohLD6ZikNZPr1yOznIe89ZOYDmNkvl/s+lUNfYkoCj429ny/WvsWwCY9Rq1HNctdx1ZCLOOa0ztjsOrpdx5PgZtn0FYwd8WOxARpFOZhUsrEjwLFndYtKHlZYdnoOv7z/BzVqJ+PP81OzYRoX3XsWpwzoGykTDkavfzIMs8T1KmURnxzHdU9dzinXnMi2NTto0LoedZvWBqBLvw5RZe0OG22Pa8XLU56KOv7cL4/yyeNf4sv1c8YNJzP9h9nF2rRl9TYAAt4Amq5TeB2XO8HF0+MeovNJ7aPOWT5zNSvnrIlMdffnBRg38lcGPHYxcUlxB3zPypHJruu8ddZ5rEtP54KvR5Ph97PX52P13j3szMtl6En9q7uJiqIcooTrZITr5JjvSTMd6fsatDRrvbBeF+JuRHMXmlEmi65NNpEyGHN8t0zt0RIRCQ8g3RdbmbT1Zghb/gwbRy8QotDscwc4jkFL+Sy63TXeQ+a+DtJvBde+n4kOlMkfhca6L6FHz2gXcYgaHyCK7nMdnAfhfyl4cOAD70fI+DsQmucA71g5Utkddp76YTAb/t3Evb0fI2tPDpm7slm/dDPp2zO445Xrq7uJylFCBdJHsHAozP0nPsHWNTsIB8PYHDaSaobod0WfSJmJn03Gm+OPOs/pdtD3st7F6jMMgz1b0nHFOWPuD20YBptXbkNogoat61G/RV3qt4hek1q7cU1emPg4L930Npm7suh4QlsGfzqwWF2dT2rPa9OejbxePX8tmq5FpqRrukZa/VSrziY1qdkwle1rd2KEDYQmcLgctDymWbF6vdk+dD36a4hm0/Hl+lUgrZRo1tbNhA0TM382hS8c5qt/l/Jk35PV9i2KopSLlEHk3ivB2AKEsNYQ10S4zoyUMb3f5GfMLsyJcJ0eoz4DjO2gxcXcH1rKsLU1ldBBb4qwNQFbk6gywtYIanyEzBoCZjo4eiKSXihWl3D2RjgLvh+YoXkQXkzBVHAN9PzlYHoj60GBsRVr+rcGwgW2tjE+lFyKT5LUrFF4VCCtxLZo8r+EQ2GkafXNAW+AX96fpAJppcqoQPoIEQ6FyUnPJalmYiTL4cblW9i1aU9kxDkcDLNz4242rdhC046NmT9pMW/c9WFkWrcQkFwricfG3k/zzk2i6t+7PYMHTx7K7k17MAyTM286mbvfvDkSRORm5vHASU+ybe0OpIQWXZvw4u+Px9w/un3v1nyy4vVy3d+Nz13F3N8WRUaS7U47twwfAICu67w8eSgjbnibtYs2UK95bQZ9eheehOLZTtv0bEHhRdi6TaN245qk1C3+5UNR9hFCxF7mdzQ7gtY4KcrBImUIzCzQUhAiP1AMrwJzF1YQjfVfYyMY68HWAhmYAtnPUJCITICWhkgeibC3iq7f2GFl/jZ2AgbScwUi4bFI3yzNTGT61VYwKyXYO0DKxzH3jxaO7oiaE8t1fyJhEDIw0xqhBhAuRMKD1h+FDVJGI7Metu5Zb4JIeiH2CLO9C9H/yNqs9dNaarnaoxxdYubGOdo7a9U3VykVSB8Bpn0/mxevGYkpJZ54F098+yDLZ65i3ZJNxfaHlqZE063OfPoPcyJBNFh9rM1uo9OJ7YpdY/h1b7J97Q6MsPXUedLnU+nQpy0nX2mNbr/7wGdsXrmVUH7Q/t/8dYx65jtuev6qSrnHmg1S+Xj5a8waPx8pJcee3Y3kmgVrXlPq1GDYhCH7rScxNYFXpjzNC9eMZNemPbTo2pRHRt9b4hYLigJwarMWjPhnGsGwgYnEbbNxVcfOajRaUZQSmb4JkDXYeiHikMlvQGi+FVQWnbYtJWDlJZH+iURn85aAs/h0aEBmPpA/sp2f8Mv7LTh6gOsM6/3sZyG8gUjQHlqKzH0PkXBPpdyj0OtDzQngn2LFwc6TEFpKofdrI1I+KUM9qZDyBTJzEJg7wN4ekfSK+jdWKVWfi47l0ye+IhwMY5oSp8fJeQPPqO5mKUcRFUgf5nZu3M2L146M7CWd5Q/x4MlDsdl1QoEwQhORKdEOt4OW3ZrSMD/TdUJKPLpNiwTHAJ6k2FOo1ixcH1XOnxdg9bw1kUB6zcL1kSAarL0C/1uwrkL3tmnlVl65+R12btxN+96tue+92zjtupMqVCdAs06NeX+xSmKilF2ax8NPVw7gpRnT2eXNo3/T5tzQJXZeAkVRFBneBFkPEcmCLQOQsS9zdhAr6tSxAmAX2DuD3sQqK5ILvZdPS4h9ofDK6HL4kKFliPxAmtAKCka+AfwQWlaBOwMZ+g+ZPcSaTu7ojkh8BuG5qEJ1Agh7O0TNXypcj3L0SK1bg7fnvsjHj31Jxo5Mjr+gJxfcfeb+T1SUSqIC6cPc+qWbsNl1AoWOSVMSCoQjfxa6oGv/DuzZms66xRsZ0PRO7n37Fi68+0wmfPgHuZlezLCB3WnnztduiHmdOk1rkZOew76E206Pg/otrS2l8rK92By2qDXMABv/3cy2tTvKvH1WYdl7c7j3+CHkZXqRUjLjx7ns2ryHkTOeL3ddilIZGiQm8doZZ++/4FHiSNq+QlEqXXglCFuRaZYmBYm5JCDA3hvM7RBehtx9EiQ9g4i7Aen7Pn/dsAE4EAmPxr6OXt8a4Y5cyI3QrS2lpJkDwoG19rhQJuPwKmR4c5m3zypMGnuR6Vfkt02CfxLS2IlIHVPuuhSlMtRtVpshY+6r7mYcMlTfXLXUfNbDXM2GqVGb0pfEFedix/rdeHN87N68l2cue4X0HZl8sPQVbnzuKgY8cSmv/fMs3fp3jHn+4M8GEl8jnrhED+54F+2Oa8WZN51MXraX27sOYt3iDVFBNMCebence/xjvPvgZ1xa5yauaHAr49+fVKb7WjptBWbYjGyVFQqGWTV3LcOvf5O/v525n7MVRVEUpRrp9WJk3S5KAjZrarbMA3M7MmMgmPn7RSfcD3EDEalfI5zHxqxBJL0EItHazkp4wNEN3BcizWzknnMh/B/F9oQ2dyDTL8fMeg5z53GYu06wkpuVRWhOfn37vq0HIbQAM/Ph/CnpiqIoRw81In2Ya965Cefefho/vzsJ3aYRDoSRENkqyu6007V/B+b/vjhq+ygjbLBg0hIuvv8czr71lGKJuSZ+Opn3HvycgDfIsed0Y/CnA/l8zZusnrcWV7yLNj1boGkaP7/zO+nbMyIj4FEk5GXl8fNbEwnmX/vd+z8juWYifS6M/aVgH6fHiSySMcE0TCZ9PpVp385iw7+bufbJy/b7+aTvyMCfF6B2k5roevn3xVYURVGU8hL2DkjPpdaaZaGD3DcSve+/TnCeAIGpRE+9NiE4EzzXgPtyNC0+ql7TOxZyXrKmirtOtpJ31fzDmq4t4sHeESE0pPdbMPdQbGsqACSY2eD70npfAtnPILU0hKvffu7MFeOYCf7vkf4JyPh1aPF37PfzkcYuK0GZXh8hVN+sKMrhSQXSR4DbXrqOk67ow84Nu2jWqTHZ6bm8dvt7ZO7Mpmv/Dtz37q0MaHoXQX9BZ63bdTav3sa5CddghMLUbJjGsN8eo0HLuiyavIw3BhZk8541fj6v3fYeD39xD91O6RR17dzMvKi10UWFg0ZkVBmsrQk+fvRLlk5bwfKZq7A77Vz16MV0P61z1HmdT2pHveZ12Lxya1S7AfzeAF8+/z0DHr+kxCRhUkpeueVd/hz9N7quk1KvBi9PeYq0eikxyyuKoihKZdISH0e6z7fWEttag7kXmf0kmBngOB6ROBS5+wSQhfs4HRlaAzs7A2GkXh9R42OErREy8A9kP0ckEZn/T6R4Ci1pGDiPj7q2NLOIDtCLChE979yPzBmBDMyA8CLAgYi/K2qrK8C6jl4fwhshalEZgA9y30LG3V5ikjApTWTWI+D/BdCtrbJSRiH0mqW0VVEU5dCkpnYfIVp3b86Jl/SiQat6tDuuFe8vepmvt3/AI6PuxR3v5o7XrsfpcVh7LLsdJNdM4s9RfxP0BTHCJjs37OKRM6x9m+f+tjAqm3fIH2LubwtjXrf76V1wOO2R1/uSm4G1H7U7ofjT682rtvL9a7+wcvYalv69gqEXDmfx1H+jytgddl6b/iwDnriEDn3aYHdEP/MxTVlsKnlhf46expSx/xAKhPF7A+zcsIvh1725n09RUZQyk4fJj6JUI2HvhHCdjrA1QTiOQUsbj1brH7Tk4dY2UAlDsEZ5hfVfLRX847CCVAOMzciMmwGQgalEZ/MOQGBK7Os6+wKFt7jS2JcV3LpejMSixhrwfQahxRCai8y4HRmcH12vcCBSvob4u8DeDWsP7KhKKDaVvDDfOPD/hjVS7rPuL+vhkssrilI+1d3nHmV9sxqRPkqccvWJ1G1amwV/LCEhJR6n28E7//uUfU+spYTdm/fgzfGRXDMJu9MWNV07LjkuZr1tj23J4M8G8ta9n+DL9dPzzC506deBtYs20KhdA5p1asyQs4dF9n+OJeAL8tPbE+nctz0AwUCIvdvSqVE7mSsfvohTBvTlpvb3RUa+7U47Xfq1x2Yv+df3v/lr8ecVXNMIm6xdtKGMn5aiKIqiHHya5yKkrREyMBOh1UBig9wXCn3RlGBsQkp//p7KdqJGmkVS8UoB4eiGTBoGOc+D9IKjHzi7Q2glwtYKaWsOGbcRHZgX5Ud6x0S23ZIyaO1XrddEi78d6T4XuefsQiPqTnD2LnWqtgwtBnyFjoQhvKK0j0hRFOWQpQLpQ4yUkiV/L2fPlnRaHtOMRvlbVRU146e5/PTWb+h2G1c8dAEdT2i737rb925N+96tAVg0eVnUlGsA3W7DFefkrFv689PbE8nYlYkRNtB1nXvfvqXEek+8pBcnXtKrxPffmPkco5//nhnj5sReSw3oNh0pJYun/suTFwzHCBtIaSU563tJL16Z8jSv3vYu6dsz6XJyB+556+ZS77VB6/o4Pc5IAC+EoG7z2qWeoyiKoiixSCkhOAfMXdYex7Zmscv5JyG9o7GmRt+OcOx/mzzh6I5wdLdeBKYXH6wRTsCJ8FyJ9I6xpoZjADoicWiJ9Wrus8Ede6cBAcjUscjcdyDwF7HXUgPYkFIig7Mg806QVnJTmfQymvtUa+/nrCfA3AuO3oikJ0u/V1sLJC4KAngN8rOMK4qiHG5UIH0IkVIy/Ia3mP7dLIQmMA2T+z+8g5Ov6BNVbtp3s3jxujci068XT1nGi78/EQmSy6LzSe057pxjmDV+vnWtsMmgT+5C0zTikuJ4b/FL/DVmOr5cP91P70zTDo0O+L7qNK3FHa9cx7yJi2IG0k6Pg9R6NTg77mpCRdZDv3jNSNod14oWXZvy1pwXY9a/au4aFv65lISUePoPOBGXx8lZN/fnn3Fz+PeflWi6ht1h4+HP7z7ge1AUpRCptthQjh5SSmTWA/kBpwBpIJNeRHNH71dr+n6BrEfYFyTK9FmQ8gXC0bl4pSVxHA+OEyAwDYR1LRKHW2uORSKk/QL+8VaWb2dfhK3Fgd+Y3hASh8Ce6YWSoRXmBq0GcmdHigXaWf9DOiYj7B0RaT/ErF4GF0NwFmjJ4D4fIVzguQL8kyC8BNBAOBFJsft2RVHKSfXNVU4F0oeQZdNXMv27WVFTkl++8W36XtorKuP0V8PHRa1hDniD/DDy13IF0kIIHh1zH4un/MvebRnFRr89CW7Oue3UCt1P1p5sHj3r+ciU6pOv6sOiyf+Sm5FL3ea1qVErGU+ii0592/Phw6OKBdEAoUCYpdNXFHuYsM+Usf/w0o1vEwqGsTttfPfaL7w970VcHifP//ooaxaux5frp2W3ZsUyk1eW9B0Z7N2WQb0WdfAkuEnfkYmUktS6NUpMuKIoiqIcJoKzrCBaeguOZT2EdJ2OEIVSzeR9QPRUaT/SO6pcgbQQApJHWtc0d1tZuG1NC97X4q1gtAKksReZcVP+/tMCXOdBcAbIbGt0WEsBkQCO7laG8Jij1UFkcBHCHft7gun9EbIfx5qG7gDv55D6PUI4IeVTCP8L0ge2dtY9HQTS2GV9hnpjEHHWbAIEaDVV36woSqVQgfQhZM/WdIQW/Y+7aUq82T4SahTqaGI8bSo6TbsshBB06dehTGUzd2fxxxd/4/cG6H1eD5p1ij0Va+rXM/j21fEIIQgFgmxYthkjbE0Fm/T5VBwuO7pNx5Pg5tnxD2Oz2/j4sTFRDwaKihVg7/Pm3R8R8FnnBrxBdm3aw19jpnPWzf1Z+OdS/luwnrpNa+GKc5ZYR0V88/JPfPLYV9idNqQpadimPuuXbgIBHXq35pmfH8bpPjjXVhRFUaqAuRNrMnRhISsQFIXzh8Tqhw+sb8ZZ8nKpqNqNveAfhzQDCNcpCHurmOVM33jI+zR/Ky4fhNdgTQ8H/N8DLhAaiEREjQ8QwoaZ/SKlrqGWpbyX80yhc30Q3mJl6nZfBMF/ILQCbI2sva8PAjP3Pch9A4TDSgJja5K/pzbg6AE13rWCekVRlApQgfQhpOUxzTDDBdkuhYAatZOIL5Lo67JB5zPihjcjwafT7eDCu6OnmFWmjJ2Z3Nr5QfKy8jDCJl+98APP/vxIsSB86jczGXHjW6UGxdZWViHWLFzPn6Oncfr1/UipUwOH20HQV/w8IaB1j5KnrvlyoztyIxQmLzOPz4aO5duXfyYYCKEJwRdPf8OLkx7HCJtsX7uTtAYphINhkmomklwzdrKW/Vm3ZCOfPTmWUCAU2aN79by1kff/nbmaT58Yy20jrj2g+hXlkKamjylHC3uHyNpgiwC9LkIrkoTTczNkD6EggHQhPAMOWrOksQu55zyQuYCBzHsXUj5COHpElTN94yHrUfaXWAwJhJaC/1dwn4fQayFxUnybKwAB9o6lNM5b5IABZjZmzivg/Sx/KrkGtmbI5I8RIgThzUi9DoIQaCkI7cC2q5Sh5ZD7FtYe2fnfK8KFdgYJzkfmvIFIfPCA6leUQ5rqm6uUCqQPIQ1a1mXQpwMZfv2bGGGD1Lo1GPbbY8WmIPW9tBe6TWPcGxOwOWxc+fCFdOiz/2Rj+/w7YxUjrn+T9J2ZNO3QiKd/fIiktMQSy//wxgRy0nMw8oP8gDfI2/d9wvuLX44uN/LXUoPowoK+IHu2pgNwxo0n88v7k9ixflfUtHYATdcY8/x3PDr6PgBM04zaO7pr/44s+GNJZO21btNpc2xLBp/6NOH8LN8msHH5Fq5tPhCZX2cgL4DdZUeakj4X9qRR2wY07diI4y/oWeYpX5tXbo2ach/rHpfPWFWmuhRFUZRDk7C1QCY9n7/+2QCtNqLGx8XKaZ5zMYUNvKNBOBDxdyAcXcp8HRmca+2xbO4FWxuo8S6aVvKDXpn3CcgsIiPLGMjs5xBp46IL5n1K6UF0YfmZuQHcl4P3azC3WaPYUTTIexuSh1ttkWb0NHfHcRCcTUGGcQ1paw8Z1xc6ZljTy/f0R2Jibc/lyw/eTaTzdIS9mfVZOPuXfTp2eE3+yHtJBfwQir2lp6IoSnmoQPoQ0/fSXpxw8bH4cnx4Ej0ldhx9LjyWPhceW+76t6/byaBTnopMl14+czXXNL+Lb3Z8WOIU5Jy9BUH0PrmZecXK6bayb0tudzlo18uagubyOHlrzgsMvWgE839fjGkW9H5G2GT6d7P5+YSJfDB4FH5vgDY9W/LUuMHUqJXEI6Pv5YVr3mDhn0vwJHq49+1bqN04DV3XKJrWLFhkivi+z2DK2BnWMjGPk1Ov7cs9b5Wcobyw+q3qYhhGie/b7DoNS8i6riiKohw+NPc5SNeZ1kiriC+xb9bcZ4K7/DPEZHgDMv0GIuuRQ/Nhdz9krZklT0GW+7J3Fz6WU7ycKM9XPRvkB/9C80DaD8j02yA0m+j9oQ3w/4KZ1wVyh4P0I+1dEDXeRmgpiOTXkZkP5CcbS0AkPgN6bWt7L4ou1yoa5Oc/UA+MRwYECBe4L0MkDinjLTQtMoOgKDvYmpetLkVRlFKUPfJRqsy+zNkHIxnG/ElLItOQ9/Hl+Jn4yZQSz+l9QU+cHkfktdPt4ISLigfxVz5yEU53QbmY7Reg23Wuf+Zyup5cMC3M4bLOKxxE7yOBd+//DF+uH2lKVs9by1MXjwAgLtHDMz8+xPjc0Xy97QOOv6AnqfVTSK5VzunaEvx5AX77eDJ7tu4t0yktujTlqkcvwuGy40ny4Ipzklo/BXeCG3eCi1qN0rh1+DXla4eiKIpySBJCR2gJBydRVWAaxZJ6yVyk98eS2+M8HXAVOuIC52nFy8XfXqRcSe23Q8KDUVPDhXDlFzdjlJeQMyx/GrcJoSXIjHut87QEtJT30eosQav1D8J1Muj1oJQR9tikNRru/dJaD14Gwt4R4m4BnCDiAQ9otaz17CIO9PqIhAfK2Q5FUZTi1Ij0UcYV54w53SlzT1aJ5/Q4vQt3jbyRT4Z8SdAf4qQrenNLjACx+2mdeXb8I4x7cwKartH22JZ89sRYAr4gQgicHicj/nqSll2botuKT4nueEJbFk/9l6CvINDXNEFyrUSydhc8ZTfCBitm/Vdie3Vd56XJQ7mn96Nk7Cj5vmKx2XXysryk1U8tU/mrHr2YUwacyJ5tGTRsXQ+n2xFpW9vjWkYeECjKkUSgtthQlEpVQtItITNKPsXVD5nwKOS9bq0Fdp2HSLi/eDnnSVDjnfz9rW1g7wS5I7FGggUIN9QYhbC3QcQavXZ0h+ACotdKa6DVtLJiR4QhtKDk9gobpIxC7r0MZHqJ5WKfbMsfbS9b36wl3I30XATGbmuEWrgguCj/froihOqblSOP6purngqkjzLHX9gTp8dJwFvQIep2ja79SkkaApx5Y3/OvLH/fuvv0q8DXfp1IDs9h4V/LOWKhy9k86qtuOPdXHjvWTRu26DEcy8bdD7zf1/C4qkFSUHikjxc9ehFvD/oC0KF+vC4pNIzfdZpUosvN73H05e+zIwf5+633QBCE3iSPNRrUadM5fep1agmtRrVjLzufFL7cp2vKIqiHOVcZ0D2UKKDVRs4epZ6mhZ3BcTtfzss4Twe4TweaWZAYAYy7hYwNljT1OOuQ9ialXxu3O3IwAxrunnkYKI16ps7AmShhVRayflWAIStEdSajsy4E4JT9tvu/EpBJIFevqVSQq8ffY6z/MvhFEVRSqMC6aOMO87Fx8tf48H+T7J97S4cLjsD37iJjieUPVnZ/uzYsIuBPR8mGAiBhISUeN6e92KpCc3AShS2c9PuqGPBQBgQNOvUmHVLNiFNa3rZgx/dud926Dad7et3lvi+zW7jlGtOYOXsNWxfv4tGberz2Nj/YXfY93+TiqIoilJJhBaHTJsA6deCuQVwQuJTCEfXSruGDG9C7r0Ea42ytDJjp36P0JJLb5uwI41tRY4GrK2l9BYQXsu+qd8i8fn9tkMIG9LYXEoJO7gvhOB8MLaBrQUi+XWEUH2zoiiHFhVIHyVM0+SLp75h/Hu/o2kaVw25iPPuPOOgrPV6+75PyMnIwzSsjjUUCPHZk2OjknhN/HQyY577HtM0ueDuM7no3rMRQpC5OzuqrqAvyKblW7jh2SvZsWEXIX+IDie0pWmHRmVqiz831rYdlksePJebnrvqAO5QURQOYO96RVGiSWkic14F3zfW9OW4uxCeKw5K3yyznwaZTWS9sxFC5r4VlcTL9H4Nee9ZLzzXIzwDrLaYRaaYy6CVHTvhQTC2IgiCoyfCVvJ2ldHnF90eqxDPbWiJ95T9xhRFKaD65iqlko0dJb59ZTzfvvwzmbuySd+RyQcPjWbq1zMOyrV2bdwTCaIBwiGDHet3RV5P+24Wbwz8iG1rd7Bj/S4+ffwrfnl/EgDtjmuFbi9YPy10wS/vT2LoRSN453+f0qxzkzIH0QD9rz4Bpyd2xtMfXv+FrD3ZMd9TFEVRlINN5r0P3s+tNcPmLsh5AemfdHAuZmwnOmlYCIwtkVem7xfIfg6MzdZPzktI37fWm/ZOFBt78Y6BzIGQ8zzY2pc9iAZwnQu4Y7/n/RBpli+/iaIoSnVQgfRR4q8x0/AXWhcd8Ab468vpAKyau4bvX/uFv76cjhEubcuIsunSvwOOQtm7XR4n3U7pFHk98dPJUWu0rWzZfwHwyOh7aNGlCZquodk0NE0jFAyTl+XFm+2LZOsujSz0NG7AE5dw0X1nkZSWSNEH/LpNZ/u66Knfedlevn/9Fz5/6muWz1pdrvtWFEVRlHLx/QwU3qPZB/6fAZDBxci8T5G+8UhZdEPHA+A8Dij8YNkNjt6FLv1t8bbkB9Ii+XVrP2c0rP2eNSBoJQCTucjMgfu9fOG+WST8DzwDQNSgWBZxYQNja/S5ZjYy71PMnDeQwcX7vZaiKEpVUFO7jxLxyXFRr4UmSKgRz8TPJvPGnR9imia6Tefndyby0l9DY2bVLqsbn7uKHet2MvNnKzHJSVcez0X3nR15353gRojo2SeuOGtrjuSaSbw5+wUCvgC/fzaF9x78nHChHUEyd2URDoWx2Yv/6q5ZuJ6hF49g16Y91G5ck6d+GEyzTo258dmruPCesxnQ5E6C/oLKwsEwtRsXJAnLy/Zye9dBpG/PIBQI8/XwHxn06UD6XtrrgD8LRVEURSmRllhkK2gNtGRM7zeQ/QzWCLINvGMh5VOEOPC+WSQMRhpbIPA3IMF9PsJzdaECcTFOshJ7Cj0VkfY9UvqR3m8gZ3h0OXMXUpoIUXx8RoaWIjPuBnM7Um+ISH4HYW+JSByEjLsOubs/UUnWZAj0ugUvzWzknnPBTAdCyLwPIPllhOvUA/4sFEVRKoMakT5K3PzC1bjinAhNoOsa7ngXVz5yIW/c9SEBX5BQIIw/L8DaRRuY+fO8Cl3L4bQz9PvB/JT9OT/njuKBD+5A0wp+1a565EJrunX+Q2inx8H1T18eVYfT7aRZpyYUfVKd1iA1ZhDtzfEx6JSn2LlhN9KU7Fi/iwf7D8WX5wcgNyOXph0bIjSBw+3A6XZwz1u3UKN2cqSOSZ9PJX17BkF/CCklAV+Qt+/9uEKfhaIcqYQ8PH4U5VAmEgZhTXEWgG4Fs56bIfsprO2pgoAXwkvzA+AKXEs40Wq8h6i9EFF7CVrS01GBr4i/09oKK8KNiL+3SB0uhL01xb4+6g1iB9FmDjL9ejC3ARKMTcj0AUiZHzjLbNBb5tfnsn4Sn0FoNQoq8X2fH0QHsB4s+JHZzxzgp6AoR7bq7nOPtr5ZjUgfJdr0bMmbs4cxeew/2Gw6p157Eqn1ahD0h6LKmaYke29upVzT6Y69Nrlpx8a8NfdFfnl/EkbY5Iwb+tGia9Ni5dr3bs3lD53Pl89/j81hw+aw8cxPD8esc+PyLVHrsgGMkMHW1dtJSIlnYM9H8OX6rallUnLBvWdz+g39osrnZXkJh6Kntudk5OH3BnCVsM5aURRFUQ6UcHSD1G+Q/gmAHeG5ELQUJDGmcpeyp3S5rilcsY/b20Hqd0jvWJAS4bkYYS++o4dw9ETG3Qh5H4CwAw5E8tuxLxZeDRT91hyE8EakcCH3XpqfeEwCJsTdjOa5IKq0NLOtcwozM5EygBCqb1YUpfqoQPoo0rhdQ65/qmC/yVnj52Oz64QChTpsKenQp81Bb0ujNvW545Xr91vumscv5ZzbTiNrdzb1mtfG4bLWXvtyfbx5zycsm7ac2k1qctUjFxMORn/xCAXCJKYl8Meovwn4ApH1WUF/iAkf/cnNw66OKt/99C58+fz3BHwFHbYRNriz+0O8NfcF3HGxv3woiqIoyoES9lYIe6vIa+n/A2sdcqGHw9IEe7eD3xZbi6gs3iXREu5Feq62snnbGkUCWmnmWqPFofmgN7T2mpbRD+yRIdCSkd6vQfopCLSD4PsaEu6LbpPzRGTeh1gj9PuEkHsvgtTvSnwwoCiKcrCpqd2HCcMw2LZ2B3u27q2U+lbNXcOzl78SFUTrdp2zbzsVu/PQer6SlJbA/EmLGXL2MF649g12bdrNY+e+wOQvp7Nt7U4WTf6XZy5/mf4DTsAV58TutOOKc3LeXadTq2GatRi76APxGNNKWndvzqNj7kPTC/5amIbJro27+f3TKQf1HhXlsCIPox9FOYikNJDhjUhj5/4Ll6W+4EJk5v1Yez3vYwPPlRxyYx9aCjL4NzL9FszMwZjh7ciMm8H/CxibIDgTMv8HrrOxpq87rP96rkPotYj9l7T4X1rh6AJJw4n+ympAeDP4xh2UW1OUw1J197dHYd98iP2rrMSStSebB/oNZcf6XZimSe/zuvPI6HvR9QNPOjLz53kE/NFTpYyQwa8f/smv7//Bs+MfofNJ7Sva9BIZhsHiyf+Sl+2jfe9WpNSpUWLZ9x78nF/e/4OAN4Cma8z5dQF52V7MsPW0XpqScNCg55ndOOHiXmxeuZXG7RpwzKmdATjxkl58OewHjDxrTda+IDuW3uf3wOlx4sspyFwaDITI3ptTKff86/t/sHreWpp2bsx5d5wec723oiiKcuiTxl5k+tX520oZSNdpiKSXYq4VLnOd/klEJd4CIAy+sUjfV1DjQ4SjR0WaXfr1ZRiCs0Hmgv0YhJ5WctnsZ8H3HeCDkA6BKdZ5kWnpJhAC1+kI95kQ3gC2lghnfqZw15nW9PDISLMbPNfEvJbmPgMzy0l0VvEQmJkHfK+R+5BhpPcrCP8LtnYIz5UIofpmRVH2T/1LcRh49dZ32bp6W2T97qzxCxj/3iTOv/OMA67THe/GZrcVmw7tz7U6tOE3vMno9e8ccP1+b4ANyzbhSfTQsHU9RKG9p0LBEIP6P8W6xRsRQiCBEX8+SevuzYvVI6Xk53cmRkbOTcMk6AsizejHWRKJ3Wmnx+ld6HF6l8jxcW/8ynuDvsA0TDyJbuq3qMMp1/blwrvPKrHt3fp3ZM6EBZFrOlx2up7c4YA/i3338cxlrzBv4iIC3iBOt4PZ4xcw7LchUYnYFEVRlMODzHrEGnndFzj6/wTHN+C5vNTzSqUlYE3rLrJGWnoj1xQ1/zjg6qXphfB/1nX0plF9s5RBZPqA/HXNwvpJGWWtnS5ajzTB91Whdhog9yUDiyqJEA6E83hw9o0cNfM+gZyXrPNEPOhNwH1RdBbxohzHQnAGBeul7eA4rpyfQNH7kNbWXYEZWAH9L8jAVKjxQdRnoyiKEov6Bn8Y+G/h+qgkWAFvgJVz1sQsu3LOf9xxzGCubHgbL938dtTe0YWdcWM/EmrEY7PHHtXO2n3gI7Bb/tvOtc3v4qHTnuHOYwbz7BWvYpoFnevvn05hzcL1+HL9eHN8+HJ8DL/ujRLrk0WngAgrEdm+BGB2p420+qnFgt0lfy/nw0fGEA6GMQ3TCmDjXFx0z9mldpCDPr2Lrv07YrPbiEv2cM/bt9ChT/GEK+Wxc+Nu5k5YSMBrfQEI+IIsn7mKDcs2V6heRakuwjw8fhTloAmvIDrg9SFDS2IWlcGFmHvOx9x1ImbWEKT0xywn3JeBSKTEcQ4z/YCbK8NrkbtPRmbcgNxzATLrwai9nfF+DaGVVtAu80DmIrMeKvsFBGDvijWNG8ABen0oMoIuAzMh5zWs6eumtU5ai0eLG1Bq3yySX7aCaezWZ5T4rDXtuyKMjYWCaKz/BueAsbZi9SpKNanuPvdo65vViPRhoEGreuzZkh7JSu1wO2jSvkGxctvX72RQ/6fw509hnjxmOrkZeQz9blCxskv+XsFx53Rj1+a9uONdzP5lAaGAtSZLt+u0Pa7lAbd32FWvkbkrO9JBz/l1AX+Nmc4pA04EYMfG3ZGAcp+92zKQUhbrRIUQnHHjyUz6fCoBbwChCewOO0O++h8zf5rLkqnLqdu8Dlc8dEEkEdk+y2esIhwsWGdmhA1Wz439AKKwuEQPz41/9IDuvSQBbwDNplN43Zuma1GJzRRFUZTDiN4YzN0UjMI6QW9RrJgMb0RmXA8yf1qy7yekmYOoMTK6nJQQmgvOk8HYCcIFwalEjcDaux5wc2Xm/7Ayf+cHz4E/rPXM7nOs942tRCf0AoydJfTNGtJ9AfjG55+jAQ5IHgn+iRCaB3oTRNwtCBHdNxNaSPT09TCEFu+3/UJLQKR8VOb7LRPpA6FHr9kUuhXcK4qi7IcKpA8DD3xwO/f0HoIv149pSJp3acyF95xdrNy8iYsxC015DvpDzPp5XlQnaJomnz4xlu9f+4WAN4DdZad+izrc+NyVfPToGEzDpGXXpgz58r4Dbu/WNTuinnL78wJsXLEl8rp9L2s0ufBoeV6Wl/OSruXet2/mlAF9o+ob+MaNpNVPYdb4+aTWTeaW4deQVi+Fc28/nXNvj73WGSC1Xgp2px0jXHCdpLTEA76vimjQqh4pdZLZuWE3RthA0zU8CW6adWpULe1RFEVRKkYkDUOmX54fdJlg64CIizE1OTAVZOGtFQMQ+DOqiJQmMucl8I3OD7idYGsK8fdC7muAAfYOiOSXDrzBxiaiIkbpR4bXsS9EFo6uSK+bqHXIMhO5qxsy8Vk0d/T3DpH4NFKvB/6poNdGJAxG6DUhbgAwoOR2aDWt+yt8HS31wO+rImzNQasBhh8wsPbyTgJbq/2dqSiKogLpw0GtRjX5ZNVI/pu/DofLTstjmsVMNObyONG06KfGeqFkVn+M/ptXbn4nKlN3yB9i54bd1Glai1+8owkHw8VGdsurYZv6rJ67JhLUu+KcNO1QEDB2PLEtJ1/dh4mfTME0jMjUbX+un9due5+GbRpErZfWdZ2rh1zM1UMuLlc7+l15PL9++AdrF20ArKRkgz8bWKF7O1C6TefVv5/m5ZveYd2SjTRsU58HP76zxL22FUVRlEObsDWEtEkQXm6NHtvax040JtxY654LH7NH/mh6v4fsx4nO1B0AYzPC1gJqLwVCFd8zWW8C4ZUUjKC7EPZCs88cvcF9Jvh+zC+T3znLPMh6BGlrGrVeWggbIn4gxJezX3WfD75v8tdiA0hE0osHdEsVJYQDUr5EZj1qtcfWApE0rPgouqIoSgwqkD5MuONcdDqxeMKPwo49pxv2++0E8pNxOT1OBjx+CUII1i/dyGu3vhe9Z3Qh/rwAmqZFgujt63cy8s4P2L5uF+17t+aukTfiSXDHPLeoR8fcy/9OfAJvthcjZNDnomPpd8XxACyfuYpHznwOAE0XGEWaY5qSf6evjJl4rLxsdhsv/TWUeRMXkZ2eS4c+bajbtHaF6z1QKXVq8NwvlTtlXFGqzRG0fYWiHCihxRVbA1yUdPYH8WKhZFxuiL/Hei+0HLKHEh1EFz7Zmx+c5+/THN6EzH4SjC3g6IFIGGK1oSxtTX4dmX5V/hroMLjPBqeVtFQG5yEzbiGSZCzWX/DgAoiReKy8rOB1DASmgcy2soPbii9XqypCr135U8YVpbqovrlKqUD6CGEYBk9d/BIBbwBpSnRdo/3xrbnioQsAWDF7DZSUxENAl34FW13lZeVx93GPkrM3B9OU7Nq0h21rd/DK1KfLlMWybtPafL7mTTav3Ion0R0JXqWUPH7ei3izfSWeq9s1kmsnlf3G90O36Rx79jGVVp+iKIqilJWUBmTeWSiI1sHRAy3uRqtAqWuDRVSQLs1M5N5LQWZZdfm2I8NbEKmfl6ktwtYYav4F4XUgEiLBq5QSmXG7NfJc4skalLIVVnkJYQNXv0qrT1EUpTqoQPoIsWrOGlbPX0fQbz3VNgyTJVOXk7Unm6S0RFLr1SgeRwto1qkxD3x4B2n1C9YnLZ22klAgFJmaHQqEWDlnDTnpuSSmJpSpPQ6nneadm0Qd8+X6ycuK7qgdLjumKdFtGpqm0axTY068pGLbWSiKoijKISG0IH869b5cHQYEZyLNbISWCFotim+gIsDWxppirNcqOBycg5V4bN/U7CCE5lmJy7Sy9c1COMFeZBcKmV2QCC3CgTW0pVtBtK09OE8p0zUURVGOFiqQPkL48wLoRfYj1nUNf16ApDTocUYXuvbvyMK/liGwko49/MU99Lnw2GJ12Z226C0xsJ5Y6yVslVVW7ngXnkQPOem5kWNC0xj88e3kZflISkug9/k90G0Vu87B5Mv18c79n7F8xirqt6zLwDduomaDakqSoijVSKjpY4qyf9JL8UBZyw9cE8HZzxp1Ds0FBEgDkfw6ItZobcx1u/nBbkWIBGuNtyw8vVyDpBcRMstKxuXsb40iH6KkmYvMeR6Ci8DWFJH4BEKvvqVcilJdVN9ctQ7dfxWVcmndozm6XUcIEQl6azetRc2GVpCnaRpP/TCYBX8sIX1HJm2PbUmDVvVi1tXxxHbUalSTbWt2EAqEcHqc9L20F3GJngq1UQjB0z8+xJCznwcgHAxz6YPn0e+KPgAE/UGMsHHIBtJSSoacPYyVc9YQCoTYvGobq+au4ZOVr+OOL9v6cUVRFOUoYu+C9VVr37pjG9ia5I9EW9tIUeM9CM4Acw/YuyBsTWLX5egFWm1rfTRBwA3ucxFaRftmDWq8i8y41WqnDEH8HWjuMwGQkWnphyZravqNEFoOBMFYj9y7FNJ+q/BnoyiKUhoVSB8h4pLieG36M4y44W22r9tJy27NGPTJnWiFRqmFEBxzauf91uVw2hk54znGDh/H1v920KFPG867s+Rtpsqjw/FtGLPxHbas3k6NOsnUapiGETYYfv2bTBk7A4ATL+3FQ58NxGY/tH49M3dlsXLOf5GEbaZh4sv18++M1XQ/bf+fq6IoinJ0EVoSpI5BZj0MxlawdUQkvxCVb0QIDZx99l+XcELqt8i898DYDPaeCM8VldNORw+o+TcY60GrhdDrIGUImfkgBCYCIF3nIJJeOPRGps2dEFpBwX7bBsgca/25s1d1tkxRlCPcIfavoVIRDVvXZ+SM5yqlLk+CmxueubJS6ioqLimO1j1aRF6Pef57/hk3B9OwnnjP/Gkuo5/7nuuGXlauendv2cvKOWtITI2n04ntypQYrTx0u06RGe/W6L8txnYniqIoigIIWwtE6reVU5cWj0h4oFLqKl53AmidIq9l7psQmExkNNr/O9LWDBF/Z7nqlcZ2CC0BLQXs3Su9b7a+ysaYz3qoBfyKohxx1L8ySqnCoTAzxs1hybSV1Gteh35XHk+NWuXLqr1jwy5evOYNNq/aSqO2DXj4i7up1ahm5P2Ffy4l4A1GXge8QRb8saRcgfTiqf/y2DnD0HQN05R07tuOp398KGpEvqISU6w13LN/WUDAG8DutFGrYRod+rSptGsoymFBQrGnSoqiVBkpQ0j/7xCcD7YmCPc5CC2lfHWENyGzBkF4A9haIpJHIPS6BQWCMwB/oTP8EJgB5QikZWCmlRFc6IBp7VWd/Gbs/bYPkNDTkM4TITA9v70O0BvkT6tXlKOI6purnAqklRKFgiHu7T2ENQvXR/5efvrEl7w15wUatq5fpjoCvgD39XmMjB2Z1h7RM1ZxX5/H+fS/N3A47ZimiaZrCE0g87OE6zYNp8vO1U3uIGtPDu17t2bIl/eVmjF82NWv488LRF4vnvIv076bTd9LK3da16Oj7+W7V8ezbPpKGrSux9WPXYzdYa/UayiKoihKSaQMWNtghVexbyRW5rwKaeOsLa7KVIcPmX4FmOmACaH5yL1XQc3fEcJubduFneg9pW0g7Ji7+oKZCY7uiOSXEVpyydfJuh/wFVQRmAGBP8F16gHceclE8khk3kcQWgi25oi4OxFC9c2Kohxcak6qUqJJn01l3ZJNUQ+3fDl+3rz7ozLXsXH5Fnw5/shWWqZhkpuVx+aVWzFNkyFnPc/KOWsiQbTdaSMuOY5/Z6xm16Y9BLwBlkz9lyfOf7HU62Tuyop6HQ4Z7Nq0p8ztLCvdpnPZoPN5+seHuHX4NRVOwKYoiqIo5eL7FsL/ET2dOQ+Z/UzZ6witAumnIImYATIDwhuQ0shP3vVvoWs4QEuC4DwwtwM+CM5CZtxV4iWklGBmFDlqgLG97O0sIyFsaPG3odV4Fy1hEEKLq/RrKIqiFKUCaaVEe7alY4SNYsd3b0kvcx2uOFexOoywiTvexdwJC1k2YxUBbyDq/QGPXYymFayhCocMVsxaTSgYoiRNOzVG0wt+nXWbTpueLUosryhKxQh5ePyU6V6EOEMIsUoIsUYI8XCM908SQmQJIRbl/zxR1nMVpbJJYwdQvG8uV4Aq3CCL1CEN0OIg8JeVqIvCe0sLiLvN+m9EyBrJLlrPvjOEAFsLor9qCrB3LHs7FUUpl+ruc4+2vlkF0kqJ2vdujc0RPftfCEHX/h3KXEfD1vXofkYXXB4nAK44J8edcwx1m9UmY2dWsbUc4ZBBcu1k0KKTkegOW6lZvJ/6fhB1m9XC7rRhs+tc/8zldDyhbZnauHd7BlO/nsHsXxcQDoXLfG+Kohz+hBA68BZwJtAOuFII0S5G0WlSyi75P0+X81xFqTTCcQzWtOvCNHAeX/ZKbK3yM1rv27rRDa7TEHo9MPeCLLrdVRBEGsW/NjpjHCvU1uR3QK8POKw2JzyIcHQtUxOlsRPp+wUZmIqUqm9WlKPJ4dI3qzXSSomOObUzNzx7BR8+PDoy9fqY0zpx24hri5XNychl58bd1G5ck4Qa8ZHjQgge//p+fv90ChuWbaJppyacdl1fhBC0Pa5lpF4ATddo1LY+fS7sybcv/8ym5VsI+oPYXQ5uHXFNqZk+azWqyScrR5K9Nwd3ghuHs2xro/5bsI4H+w0FrGloDVrX47Vpz+BwOcp0flllp+eQtTub2k1qlbltiqJUiZ7AGinlOgAhxFfA+cDyg3yuohwQ4TwJGX835L5KZOq140REwoPFykozE4xtoNe3tuLaV4cQkPwW+L5Fhtcg7G3BdYH1pr1ooKuBrQ3CfRrS+4GVnIwA4IDER0vtm4WtIaT9YU0bF/EIUba+VQYXIzOu3/cKbC0hZXSZzy8raWZY08/1BpVet6IoFXJY9M0qkFZKddmD53Px/87BnxfA7rTHDAKnfjuTEde9iW7XMUIGgz4bSN9LCpJ86brOmTf1L3Ze43YNeejzuxlxw1v48wI0ad+QZ35+GLvDzqvTnuGPL/4mY0cmHU5oQ+e+7ffbViEESWmJ5bq/ETe+hTenYPraxuVb+OX9P7jwnrPKVU9pxg4fx2dPjsVmt+Fw2Rn+x5M061S2hDCKcsg6fBKDpgkh5hV6/b6U8v1Cr+sDmwu93gIcG6OeXkKIxcA24EEp5b/lOFdRKpUWfzsy7hak9CKEM2YQaPp+gaxHrG2gZBiZ9DKauyDJlxA6eC6naBgs7K2RScMgewhIH9haI2q8a10j9WvwjbNGrR09rP2n90MIAaKcGcWzHgaZV3AgtMpaG+65qlz1lMbMfRty37Y+H1yQ8gXC3rLS6leUaqH65irtm1UgreyXruslJtXK3pvDiOveJOALRpZTjbjuTbqc1L5MQe0JFx9Hn4uOxQgbUVO3HU47Z91cPPguLBwK8+FDo5j2w2wSkuO447UbyhRwF7Z3a3QilKAvyM5KTFK2YvZ/fPH0N4QCYUKBML5cP4+dO4wxG9+ttGsoilKqPVLK7qW8H2s4rehXkQVAYyllrhDiLGAc0LKM5yrKQSGEjhCxd7OQxh4riMZf8BuZ9QDSOS1qZLokmvtspOssIByV/VoIJ3guL/VcKYPInBfB/ydoSYjExxGO0v4KxmDuKnLAjzS2x/wLdyBkcD7kvgcEQQYBLzLzdkTNPyvpCoqi7McR0TerNdJKhWxftxPdrkcd0+0629ftjFl+0hdTuanD/7ip/X1M+MjqsIQQpa5/Lskbd3/E+PcmsWvjHtYu3siQs4ex4d/N+z+xkHa9WkWtA3fGOelYiftCr1+yEVHk7/OeLemlJk5TFKVKbQEaFnrdAOvJdoSUMltKmZv/518BuxAirSznKkq1MDbnj7QWImxgbI1Z3PR+h7n7TMzdZ2F6f7CKC3FAW0jJ7CfB+w2Y2yC8Apl+EzK8tnyV2LsQNdYj3Ah7t3K3pUSFtg6LMLaUmDhNUZQqd1j0zWpEWqmQ2k1qEg5FdzzhoEHtJrWKlZ36zUxev+N9At4gAG/d+zF2l51Trj4xUmb7+p389PZE/HkB+l/Vhw592kaOf/bkWGb9NA+hCc665RSmfPWPNRIeuW6ImT/No0n7hpTVoE/vYsjZw/hv/joALvnfORx/Qc+yfwD7Ua9FnWLPxRJS49Xe04py6JgLtBRCNAW2AlcAUfNHhRB1gJ1SSimE6In1EHovkLm/cxWlWuj1QRZ5YCtDoNctVtT0/QzZTwF+60D2k5jCieYuWOIkw5uQ3tEg/Qj3+QiHFdSaoU2Q+xoEpgAaxF0Fvl8L6gIgZL1va17m5ovkEcj0WyC8wjoQdyvC1a/M5++X3hiEFh1La6nWdHdFUQ4Fh0XfrAJppUKSayZx37u38trt72N32AgFw9z37q3UqFV86tivH0yKBNEAAW+Qz58cy2dPjEXTNM68pT9fPv89vlw/0pRM/GQyfS7siW63MWXsdMLBgoB93Ju/RW2RBaDpOk53+ZKFJKYk8MbM5/Hm+LA7bZUe4Hbp14HTrj+JiR9PxuawYZomT35bPCGMohxOBGXfvuJQJ6UMCyEGAhMBHfhYSvmvEOL2/PffBS4B7hBChLEWsVwhpZRAzHOr5UYUpRCh10ImDoXsoSDsIMOQ9CxCq1G8sHcs0YGvH3Jexcx5CYQO7ssg721rvTQm0vcd0nm6FYj6fwEKZdTO+zRGa3Ss7N7laL+Wgkj7DmnmgnAe0Mh4qRy9wXUu+H60Ph9MRPIblXsNRaliqm+u+r5ZSHmEfOKFdO/eXc6bN2//BZVKs3d7BtvX7aRus9qk1o3RUQNPXPAiM38q+f+LZtMwDbPMqxjS6qeQk5FLwBtEt2kkpMTzwdJXSK65//VfVW3j8s2k78ikacdGh2T7lCOXEGL+ftYhlVtCjYayy0n3VmaVB830cYMq/f6VA6P65qonjV3WNG+9EUKvGbOMmX4zBP8upRadmPtWl0TUAZmJFZzbQEtGpP2K0JLLXkcVkaHVVuI0e2uEVr6EaIpSEapvPjL6ZjUirVSK1Lo1Sgyg97l6yMUs+GMpAW8g5vtmuOi+lfshILVeCkhJ99O7MODxSw7ZILVxu4Y0blf2KeeKoiiKUlFCrwV68aVWUWXiByLT5xA9Kl1YOdcNC0DUBiQ4T0QkDDwkg2gAYW9V3U1QFOUwpgJp5YBIKRn/3u+Me2MCmq4x4LFL6HtZ71LPcXqcOFz2EgNpsPaSNo0yBNQCMndlEw5aU8p+ensiG5dv5qkfBhOXFFeue1EUpZyktH4URTmkSCmttczeUSBsiPi7Ea7TSz9JuAAHJQfSUPZRaWGN8JK/Pts3yko0VuMthBZflltQFOVAqb65yqms3coBmfDRn7z34BdsWrGVDcs2M+LGt5j9y/wSy+/atJtB/Z8iJz23xDKuOCe3vXQtdZqW/PRc0zW6ndIJm90WCaL3WTp9JS/d9E75b0ZRFEVRjgDSOwZyRoCxDsKrkZmDkIFpJZc3tiLTrwWyS65UeCB+MGj1S7myDrbegJ1IEL1PaC4y+7Fy3IWiKMrhQQXSSqkWT/2X4Te8yet3vM/GFVsix395b1LUyHLAG+TXj2Lvvzh57D/c0PY+MndlxXxft+mccu2JvDX3RS6692w+Wv4aqfWjp4m74l18veMDfvWP4eFR9yBi7BBnhk0WT1F5fhRFUZQjmwzMwswcjJn1JDK8ruAN31isnDv7+JG+b2PWYXp/Qu4+M389cyw2cF2ESP0BLf4GRM0JINKKlImHWrMRtZcharxQQj1hCM4u030piqIcTtTUbqVEs39dwDOXvkzAF0QIwZ+jp/HGrOdp3K4hjhjZsZ1uKyvnqnlrWT13DTUbptG5X3teuuEtgv4Y+yYLqN+iDg98eCcdT7C2uZo1fj6v3vouuRl5xCfHIaWkYet6PDzqHmrUSgagRq0kup3SiXm/L8YosvVWUs3Eyv0QFEVRFOUQIv1/IjP/hzUVWyD9P0Lq9whbMxBFs2OL/KnbIENLILQMtLpIe3fIHgLEWmolQG+CSHoe4Tgm/5qTrP2hZTaIRECCrTki6eVIJnCp1QZHj/ygOXrGGCqRl6IoRyAVSB8hpJSYpomuV94eiJ8+/lVkn2YpJf48P9+9Op77P7iDa4dexuPnvpAfZFvrny8ffD7j35/Eu/d/ChKErtG+d2s0rfjEB5vTxmnXnsR9796KyB9eXrdkI89e/krUNTv3a8+wCcWnhD353YN89uTXjHtjAuFgGJtDRwjBAx/eUWn3ryhKyY6ULTYU5WCydkYxK3V/Ypn7GgXrmSVIHzLvc0TSUET8vciMO9kXZCNcCM9NmHmjIedF6xShga27tbVVsb/HdnBfipY0tOB6oX+RmQ8UXFNKcByPlvJ+1JlCCKjxHjLnVfCOxgqmbSAEIvG5Srt/RVFKpvrmqqUC6SPA2BE/8tmTYzFCBsec1pnHx/4Pd7y7wvWGAtGjyFISGVnuenJHhv/xBBM+/BPdrnP+XWfQsE19Bh77SNTa5WX/rCw2DdvutDH0+8H0PLNr1PFFfy3DNAsSjYWCYRb9tSxm2+wOOzcPu5prn7yUGT/OxZfrp0u/DtRtVrsit6woiqIolcLMfQ9y3wAMpPNERNKrCM1T8YplsOgB9o0sC2cfSPkkfzq3HeG5BmyNYO+FRNYuSyA0Byu9dmEOSH4XzdUn+nBwJtEjzKH8Y8UJ4UAkPoRMuBf8f4L0gqMXwtbgAG5UURTl0KYC6cPczJ/n8cVT3xDKD3AX/bWM125/n0dGVXwfuXNuO5WPHhmDP38ttNPt4PQb+kXeb9erNe16tY683rlxV7GM27quccn95/Ldq+MxwgamYfLAx3cWC6IB4mvEodt0QoGCDtsV7yq1jQ6Xg5MuP/6A7k9RFEVRDgbp/x1y3wbyg97ADGT2U4jkFyteuecyyBlJwVpoF8J9UeRt4TgmMiUbwAxtoNjQs7BB3E2Q9xFIw3o/6YXiQTTkT+W2ExVMi9IfCAjhAvfZZb8nRVGUw5AKpA9z8yctiUr6FQqEWPDn0kqp+/yBZ2Kakl/en4TdYePapy6n04nt+OvL6WTsyKT98a1p07MlAFl7svnfiU8gzehAOuANsmvTHh776n/Ua1GHGnWSccfFDo5Purw337z8E9vX7SIUCGF32Lhr5I2Vci+KolQyNX1MUUokA9OJTvoVgOCMSqlbeG5EIsD7DQgHIv4+sHdB+n6ytp5ydEfYO1rtMPZCxgCKbV0l/WBsh+SRCL0RaGklj5a7z4W8j8HYhjWqbYfEJyrlXhRFqWSqb65SKpA+zNVskILdaY+ahl2jVlKl1C2E4KJ7z+aie62nykbY4MGTh7Jm4XqMkIGma9z91s2cfn0/xjz/PRk7MmNuX/fbx38x+avp3PvOrZx6Td8Sr+dwOXhz9jD+HDWNrD05dDm5A22PbVkp96IoiqIoVUarTbGtoLTUSqlaCIGIuxHirAfNUoaQ6VdDaHX+9XRk4jNonvORuW+CmU7xb9cSfF+D7ydk0vNo7nNKuZ4b0n4A349gZoGzF8LeqVLuRVEU5XCmAulDmDfHxz/j5hDyh+h+emdqNapZrMy5d5zOhI/+Yu+2dKQEIeC+d289KO2ZNX4+axZtwJ9XMAL+xsAPOe26k9i9eS/hIhm0EVbwDdbI9PuDvig1kAYr8/dZt5wSeb1q3lp+fvs3pIRz7zgtMgKuKIqiKNVBmrkQmGStVXaeiNDrFisj4q5F+r+3RoilCUJDJD19cBoU+CM/iPbmHwhBzlDwnA/mdopl0AYKRqj9VhKyUgJpyA+mPVdEXsvgYqRvDCAQnqsjI+CKoihHExVIH6JyMnK5vdsgsvfkICVomuCVqU/TomvTqHKeBDfvLhzBjB/n4s/10/WUjtRtenASbmXtyaHokHPQH8IIG/Q4owtzJiyMTDPXbXokiN5nXzbuslo+azWDT3k6UufUr2fwwsTH6NCnbQXuIlrAF+DF695k5k/zsDtt3PjcVVww8MxKq19RjlQqM6hyNJJmBnLP+dbILIB4AVK+RNjbRJUTWgKk/gyBP0H6wHk8Qq9/cBplZgDRy6qQPqQ0wHGClRhM7ptmbqNYYC19lIcMzkOm38i+LN7S9yukfI5wdDmAxpdwDdOLzBoMgcnWll7xD6LFXVVp9SvKkUr1zVWr+L5EyiHh25d/Jn17Jv68AAFvAF+un9fv/CBmWZfHyclX9uGsW045aEE0QIc+bZBmwd9Q3abTvHMTXhgwkvcHfYHNrqNpGpqu0alvOxxue6SszWGj17nHxKq2RGOe+y5q/XfAF2TUs9/t97zt63fy9KUvc3evR/ni6W+KBfSFvTHwI2aPn084GMaX4+fDh0cx+9cF5WqnoiiKcnSQeR+AuQdr/bMPZB4ye2jMskLzINznIjyXHbwgGsDeo8gBG9g6IDPvg9xXrddogA6OY4HCe03bwXkK5SFz36Zg+y0APzL3nf2fF96EmXEX5p5LMXPftgL9kspmPwmBqUAIZC7kvIAM/FOudiqKohxsKpA+RO3eujdqGymAjB2Z1dOYfI3a1Ofxbx4gqWYiuk2jdY/mJNdMZMZP88jNzCMvy4vdZeOd+cMZPukJ7hp5E0KztteQpmTl7P/Iy8or8/X2bbUVfcwa1TbCBh88PIrrWg7krp4Ps+yflYCV9Gxgz4f5Z9wcVs7+j7HDx/Hqre+WeI25vy2Kuk7AG2TuBBVIK4qiKDEYMaZKm3uqpSn7CHtLRPKrIJIBHeydrazagckgs0HmAA5I/Rkt5RNIfISCra8khBZa09XLSgZiHLSOSRnCzH4Bc/cpmHsvQQYXWceNPci9F1kj9OHFkPteiQ8gAAhOi9Rp8SMDf5e9jYqiKFVABdKHqJ5ndMXlKXhq7HDZOea0ztXYIsuxZ3Xj250f8VtwLK//8xyLJv8blejMNCSLp/wLwOQx0yMj2EbYYNvanbz7wOdlvta5t5+G0+OIvHZ6HJx7++kAvHXfJ/z45gS2rd3J6nlrefj0Z9m4Yguzf1lA0B+KbMMV8Ab5Y9TfGEbsJ9+JKfFRr20OG8m1k8vcRkVRFOUo4jgJcBc64LSmT1cz4eqPVnsOWp0ViJQxEJpLZOstACQiNNv6o+9nCpKPhcFYj8wZUfaLea4CCu++4QL3ldZVsp8C7xgwNkFoCTL9OmR4fX5QH6JgCroPfN8hY2UohfyHAoU5Ki1Zm6IoSmVRgfQhqu9lvbn84QuwO+3oNo0eZ3blzteur+5mFVM40AXQbRruBOtLxs5Nu4uV/2PU3+Rle4sdj+WEi4/j/vdvp2nHRjTp0JB73r6FfldYe0b/OepvAt6CLwnhQIiZP86NjIAXJUTs4/e8fQsujxO7047T4ySlbrJaI60o+yMBUx4eP4pSiYT7vPxs2Q5AB2c/ROLD1d2sKEIIa11x1EENRP6D4/CO4if5vkWaZZsxprnPhsSnQG8JtlaQ+Bya23rIjf9noqd9hyHwFyAKBsELGlXyPSQ+hfXAwmH9V6+F8FxZpvYpylFL9c1VTiUbO0QJIRjw2CVcPeRipJRo2qH5zOPWEdfw9n2fEPAGsbvspNZLoe9lvQBo3qUJ29fujCqv6Rrrl2wsc8Kwk686gZOvKv603+aI/tXVbBp2p51jz+6Gy+OMjEo7PU5OvebEEj+/jie05Z0Fw5kzYSGuOBd9L+tFXGIJe2kqiqIoRzUhBCLhXmT8PYBEiEOzbyZ+MOS8gBXUOkGrC678YNfeGoJbi5ygQXgNOMo2803zXAieC2O8Yyd6/2wNcIDrZMgZgTVd2wTc4LmkxIfcwnkspH0PgenWNHXXWQgtrkxtUxRFqSoqkD7ECSFK7GgOBWfdfAr1W9Rl/qTFJNdM4sybT8YdZ035uvmFAfzzw5yoBGVCQEKR6dQH4rqhl/H+4FEEvAF0m44n0cPJV59AYkoC7ywYzkdDvmT3pj30OLMrlz5wbql1NWhVjwat6lW4TYqiKMrRweqXD92+WYu7CmlrggzOQmhp4L4EIfKnYyc8CHsnE723tAAtseIXjh8IOa9gBfA2axTcfTZCS4G0ccicV8DYAa5+CM/1pVYlbM3B1rzibVIURTlIVCCtVFjnk9rT+aT2kdd52V4rE3bI4IwbT2bymOkEAyEcLjvHX9CTRm0bVPia5915Bmn1U5n2w2yS0xK4+P5zqVErCYC0+qk89OnACl9DUZRSHDkzsxTliCScvRHO3pHX0syBwGQEBtJ1IfgnYK2jdoL7DIStaYl1lZUWdz1Sr4f0TwItDRF3oxVEA0Kvi0gux1psRVHKT/XNVUoF0kqlytydxR3dBpOblQfS2iLr1peuJTcjjwat6tLnomMjI+y+XB8fP/YV6xZvoGW3Zlz/zBVRCdb2p/f5Peh9ftFtPyouFAwx8s4Pmfr1DBwuOzc8dyVn33JqpV9HURRFUaqClTX7AjBzsb5p2yDhYYTMAlszcBb0cdLMtUaOw6vB3hGRcG/BaHYZCNdpCNdplX8PMojMfhz8vwNOSBiE5rm40q+jKIpSViqQVirV6Ge+I2NXFkbIypIthOCfcXN44bfHosoZhsEDJz3Jhn+3EAqEWDn7P5bPXMVr05+t9vXg7z34OZO/nE7AF8SX6+ed/31KrYZp9Dija7W2S1EURVEOhMx9A8x0Crbu0iDwFyLlg+hyMoxMvxLC64EghBYjQ4sgZUy1LzOT2c+AbwLWtPE8yH4KqddBOI+v1nYpinL0OkSzZCjlsW3tDv6dsYrczLLv0Xyw7NqyJxJEA0gpWTl7Ne8++BnpOzIix9cv3cSW1dsjW2cF/SHWLbGOVbcZ4+YS8BVkBA94g8z4aW41tkhRFEU53MjwRmRwgTWluroZ24je/9qE0ELM7BeRxt6Cw+EVYGymYOusAIT+tbazqm6Bv4jOCO5HBiZXV2sURVGqJ5AWQgwVQmwVQizK/zmrhHJnCCFWCSHWCCEOrf0lDhHv3v8pt3S8n0fPep6rm9zB8pmrqrU9PU7vUmx6dl6Wj3EjJ3Bbl0Fk783/QhFjDYcQIE2z+BtFmKbJyjn/seCPJQfl4UF8jejMoDa7TlJaJSRhUZQjiJCHx49Sdqpvrjxm9tPIPecgM25B7j4JGVxcvQ1y9iV6/2tAZoP3M+Te85BmVv4xk9hJ1Pb/l0lKExlcjAzMQJrZFW1xcSKhyAE7iBqVfx1FOYxVd597tPXN1Tki/aqUskv+z69F3xRC6MBbwJlAO+BKIUS7qm7koWzxlH/55YM/CPpDeLO9eLN9DL2oehN5nH3rqZx926noNj3quBE28OZ4mTJ2BgBNOzaiTtNa2J3W6gK7007DNvVp2KZ+5JyFfy3lh5G/Mve3hUgpI/UMOXsYg/o/xdOXvMy1zQey4d/NUdcK+oOR8gfirtdvxOlxoNs0HC47CSkJXHC32ltaUZSjguqbK0gGZoDvOyAAMgdkDjKzehNgCs9V4LmE4iv6wmDm5CceA+ztQKuDtY0VgAPsrUBvFDlDBv5B5n2ODEyP9LVShpAZNyAzrkNm3o3cfQoyvDbqSlIGKtQ3i8THARegY23pVQMRd9UB16coilJRh/Ia6Z7AGinlOgAhxFfA+cDyam3VIWTL6m3FOqXMXVmEQ2Fs9sr9X5udnsPoZ79jx4ZddOvfkXPvOD3mWmYhBLe/fB23jriG8xKvIeAtmCJtGjIylVu36bz699O8/9Ao1i3eSMtuTbn5hQGROj8eMoYfRv6KETbRbRqnDDiRe9+5ld8/m8LSaSsIeAP514NhA17nvYUvsWvTbh4963k2r9yK3WXn/g/v4OQr+hRc3zQxDXO/n03nk9rzxqxhzB4/H4fbwSkDTiQxteiTcEVRlKOS6pv3x1ifP7JbiLkLKc1K33damhnI3LfB2AqOPgjPlTHXMguhIRIfRyYMQe7sRMHUbQATZDC/nB1Sv0LmDIfQvmRjD0TabWa/CL4xIA0QOrgvRiQ+YT04CC6kYOq1QGYOQqR9jwxvQWbcDMYGwIlMegHNXfBwWkoTMKxrl0I4j4fUryEwxdpb2n0eQks+sA9OURSlElRnID1QCHEtMA94QEqZUeT9+kDhocYtwLFV1bjDQeP2DSk6BSu1XkqlB9G+PD939XiYPVvTCQfDzP99CeuXbea+d24t8RxN0+h3RR/++nI6wfz1xja7zrHnHBMpE5cUx//eva3Yuek7Mvj2lfGRoDsUgN8+mczqeWtJ35EZCaIBpISdG3YDMOScYWxeuRXTlAS8QV656R2atm9Ikw6N+OTxL/l6xE9IU9LjjC48Nvb+UjOEN+3QiKYdGpX4vqIc9SowsqQc0lTfXFG2lhSb8KfVOwhBdC5yz4Vg7gLCEPgHaazNH7mNTQgN6ToL/L8RCXqFDZwnFZTRkhBJzxW/nrEDvF8QCcIl4B2LGVwExm6i1y9LMLZYf4oE0Sbgg6yHkPaWoDdH5owA76eAiXSejEh+pdQM4cLeBuxtSv9gFOVopvrmKnXQAmkhxB9AnRhvDQHeAZ7B+mf4GeBl4MaiVcQ4t8TfDiHErcCtAI0aHR0BUIfj23Dpg+cx9sVx2B02dLvOMz9V/nK1+b8vJmtPNuGglagk4A0w4cM/uev1G7A7Sn6CfO87txBfI44ZP84lKTWBO1+/gQYt60aV8XsDzBo/jzULNtC4XX12btzN3ImLMYuslQ4Hw6yev67YNTRdo1nnxoSCITYu34I0C/2KCMGK2WtYt2QTP7z+ayQJ2sI/l/L2fZ9w//u3H+hHoiiKclhSffPBJxw9kXHXQd7HIByADVHjncq/UOBvkJkUJBHzgXcMMuERhCj5651IehapJVkju1oNROLjCFv0/xtpepGBv6zkY3pLKwFZYBpWMFxYCMLLYlxFB3tbpPQVCqL3NUCD4BIki8E7uqD9gWnI7GGIpKfK/hkoiqJUo4MWSEspTylLOSHEB8D4GG9tARoWet0A2FbK9d4H3gfo3r37UfM45rqhl3Hu7aeSuSubei3qlGsf5rIqnIW7MNMoPTGYzW7jthHXctuIa2O+n7Ezkzu6DWbv9kIDHoIybSYvBDjcDlLrpfDo6Hux2W24PE58uQVPxDVNkFo3mSnfzMSfVzCKHfSHWPjH0v1fRFEU5Qij+uaqoSXcj/QMsLacsjUp1z7MZReO0V9Kige70YRwIBKHYD07KU4au/L3nN5T+CzK1DkjACfodRFJI7DWNDuIHq0G9Jr568h9hQ4GIDijDNdQFEU5NFRX1u7Cw5IXArEeZ84FWgohmgohHMAVwE9V0b7DTUqdGjTr1PigBNEAXft3xOawITRrIMLhstPjjC443SVfLxwK8/GQMdzedRBDzhnGltXFv2e9+8Bn0UE0RPXTQggQ1vWKqtO0Fide0otbhl9DWv1UhBAM+uQunG4HrjgnrngXHU9oS48zu1KrYSo2h61QvZBST2X6VJSKqO6Mn0dbZtCqoPrmyiX0Wgh7m4MURAOO461p2ZGvci5wnoz1vyU2KYOY2SMw95yPmX4rMryxeJnsZ4sE0RAdRO+blBDjO4DWCFxnQvxg6/6FgKRhVtuEx/px9AZHH9DrUZDULL9erdb+7lpRlFJUd597tPXN1bVGergQogvWv8wbgNsAhBD1gA+llGdJKcNCiIHARKwUjR9LKf+tpvYe1RJTE3hz1jDeGPghuzbvpUu/9tw6/JpSz3nllnf5+5uZBHxB1i3dyL//rOTjFa+RUqcggN2yqsRBDADc8U4GfTqQxNQEHj3zuai9nbev28X2dbuY9PlUTr2uL4M/GcgJFx9Ho3YNWDHrP1LqJNP99M5omsalD5zH5C//IXNXFlJKNF3j3rdvqdiHoiiKcuRRffNhROipkPotMvtpMLaDszciYXCp58ish8H/B9YI8Srk3gWQNtGqax9jw34u7IEkay2zzLiNqNFmcyP4N4L/B8zApWjJz6G5z0baWkFoiTUS7TjBCrDjbkX6J4C574G6jkgcWu7PQVEUpbpUSyAtpYwZhUkptwFnFXr9K1Bs+w2l/KSU/PrhH0z5agYJKfFc9/TlNG7boMzn12teh2ETHitTWdM0+WvMNIywNb1MmpJwyGD2Lws486b+kXLterdmzaINMaeIa7qG0+Ok68kdiEuK4/kJQ/j2lZ/ZvHJbsdHtPz7/m2ufvIw6TWrRuG2DYvcVnxzHe4tfYvb4+QT9Ibqd2om0eillvndFUZSjgeqbq56UEun90tp+SquBSLgPYWtW5vOFrQki5eMyXsvI3+Zq33ItE2QYgn+D+8KCgvYuEF5N7CniOog4hKMHQouHGu8jvZ9AaD2YG6KL+r9FGgMRel2EvSXYW0a3XUuG1PEQmAyEwHE8Qlcj0oqiHD4O5e2vlEr01Qs/MPq57wl4AwghmP/7Yt5b/BJ1mlR+pyWEKJY0UAgrOC7spmFXs3bRBpb9szKSJKxl92ZIQ1KnaS3uePV64pLiAOh0Yjs6ndiOYQNeLxZISynJ3JVV6r2441ycdPnxlXB3iqIoilI5ZN6bkPsh1lphgQxOh7TxCL3ewbpijGN61CuR8DAyvBpCCwvK2zoABuiNEYmPWkE0IJzHIZzHYWYMhMCG4tcy00GvS0mEFgfucw70ZhRFUaqVCqSPEt+9+ktk2ygpJQFfgMlf/sOVj1y4nzPLb/r3sym6jaVu1/nh9V949db3qFE7iYdH3UPnvu15ecpTZOzMxAgbpNStga5bHXrQH+T9wV+wePK/1GqUxsA3bqJus9p0O6Uzf42ZHl23TaNROUbXFUWpIEnZ8g4pilK6vM8oSLglQfrB/yvE3Vzpl5L+3yiWdF04kLkfWFO+tTRr+ylHd0j5EszdSAyEVjuydZeUfmT2C8jgHNAbIBKfQNgagLMPBH4vckUb6E0r/T4URSmB6purXLUkG1OqnimLTNGSIIseqySfPTk2Mq07cjnTZP2yzRhhgz1b03nsnGHs3rIXIQQpdWpQs0FaJIgGePrSl5nw4V9s+Hcz8yYuYuCxD5O9N4fTrutL30t7RcrpNp1nxz+CJ8F9UO5FURRFUQ6aqtzzNXckBdO6910/BMZ/QBjMHciMm5HGLoQQCL0Wml43av9rmXGnlW3bWAPBv5F7L0GaWQj35eAsnBDeBjU+QmieqrgzRVGUaqFGpI8CuzbvQRrRnbXdZT9oU53DMbbL8uUGovZ41nSNlbP/o2aD1GJl/d4Ac39bFFk7bZqSUDDMwr+W0ffSXjw29n7ueScHb46PWg3T0DQtv5yJETZK3dtaURRFUQ4F0tgaY1cpBzjPOEgXDMU46CN6LbQGoaWg9y9WUpq5EJxJ1BprAhCcg3CdiqjxNtLMQJpea110ZBTbBMKlZhNXFEU5HKlA+igwbMDreHMK9mrUdI1rnriUes3rHJTrnXP7qXz2xNjI3s1Ot4NwMIxR6NuCaUoSUxNinl90LfU+uq3geGJKAokpCWxbu4MlU5ezaMoypoydgTRMOp7QlqE/DCY+Oa4S70pRlH0EIKpyJE1RjkAy838g8wod0SDhf9ZU6YPBcyXkvknBVHIXUDS4NkFLjn2+0GMfL/RVUmg1EFoNZHgDMjgPGZyZn+DMRDp6IpLfjqyvVhSlcqm+ueqpQPoosH7ppqjM2KZhkr0356Bd7+L7zkHXdX794A8cbgc3PHslG5Zt4tMnxmKEw9jsdjqd0JaOJ7aNeb7DaefMm07mj1HTCHgD2Bw2ktISOea0zlHlFk1exmPnvoBpmoT8BV8Gls9czUs3vsXQ70vfBkRRFEVRqk34P6JHg00wMw/a5UTczUihg/c70NyI+PuRoWWQ95aVvVvYwXEc2LvFPl+4ke7zwTcBKxi3g5YKzl5R5WTgH2TGHdb9ULBtJcH5yKwhiBqvH6xbVBRFqVIqkD4K1G1am7WL1keWYjk9Thq0OlgZQa2s3RfecxYX3hPZLYXup3WmVffmrJq7lloNU+lz8bGRKdmx3PP2LTRu35BFfy6jTrNaXP3YxbjjXFFlRtz4ViSBWmGhYJil01ZU3g0piqIoSmXTG+RvM7VvBMmNsDU+aJcTQiDiboS4GwuOOXsj7Z0hvAz0euA83drjuaQ6Ep9D2tpAcDboDRHxdyFEdN8ssx4mam/piBCE5lTS3SiKolQ/FUgfBR4edQ/3n/gERtjACBt0Pqk9p17Xt8quv27JRl6++W12bdpL++Nbc8aHd0QlFotF0zQuvPssLrz7rBLLZO8peVQ9uVbSAbdXURRFUQ42kfQyMn0AEAYMcBwPrvOq7PoytByZ9SiYu8B+DCLp0qjEYrEIoSPiroe460suVNqoupZ2IE1VFEU5JKlA+ijQuG0DPl/7JmsWricu0UPzLk1KfeJcmTJ2ZXF/3yfIy/ICMPuXBQw5+3lGzni+wnW3792axVP+jUpuZnfZ0W06D3x0Z4XrVxSlFAcn6b+iHDWEvRXU/BNCy0FLAFvbKuubpbHLCuJlrnUg8Bcy4zZE6pcVr9zeBULzsR4Q7OMEoSOSnqt4/YqilEz1zVVKBdJHibhED537tq/y6y6btiIqW3c4GGb1/HXkZeURl1SxZGCPjrmPJ85/kRWzVqPbdU4ZcCId+rSl80ntqd24ZkWbriiKoigHldASwHls1V84OKfI1lshCC2yMm5XcMsqUeN1ZMZtVvZvbOC+EOHoCo7jEPrBW1amKIpS1VQgrRxUrjgnsuju8BLszopvUZWYmsBr058lFAxhs9uinuTv2bqX9Us3kdYglaYdGlX4WoqiKIpyxBCeGFtvYSUcq2jVWgoi9RukDAL2qL5ZGjusdeFaXYS9ZYWvpSiKUp1UIK2USEpJ9t4c4pPj0G2lr2kuSdf+Hanfsi6blm8h6A/hinNy3h2n43BV3n6SRfeNnjV+Ps9e8Qo2u41wKMx5d5zOrSOurbTrKYqitthQlOoipQSZASIRIQ7wa5yzT36ysw1AAIQbPNchKiGQ3qfovtGmbxJkPQjCBjKE9FyLlvhgpV1PURTVN1c1FUgrMW1cvpmHTnuG7L05CCF44OM7OfmKPuWux2a38dq0Z/jpnd/ZuX4nHfq0pe9lvYuVM8IGk774m+3rdtLqmGb0Pr/HAa0VMwyD5658lYA3SCB/242f3vmdvpf1pnWPFuWuT1EURVEOFTK0CplxI5hZgIZMehHNfWa56xHCAalfI/PGgLEF4TwWnKcXv54Mg28c0tiCsHdEuPofWLtlyAqi8RWMgns/R7rPQtjbHVCdiqIo1U0F0koxUkoeOv1Z9m7LiBx75aZ3aNWt2QFtm+V0O7n0/nNLfN80TR47ZxjL/lmJPy+AK87JObefxm0HMIqcm5GHETaijum6xvZ1O1UgrSiKohy2pDSRGTeAuafgYNZDSHt7hK38S5iEcCPib9rP9W6C0CKQPiRupOeaAxtFNjMplgVJ2MDYDCqQVhTlMFX6PgfKUSknI5es3dlRxzSbxn8L1h+U662c/R/L/lmFP8/aE9qfF2DcGxPIycgtd10JKfF4EqMTpRhhg6Yd1TppRak08jD6UZQjhZkOZnTfjLBBeMXBuV5oPoQWg/TlH/CB92OkWf6+GS3Fmj5emAyDrVWFm6koSr7q7m+Pwr5ZBdJKMXFJHjQ9+ldDmpKaDVMPyvXysn3FrqfrGr4cXwlnlEzTNJ7/9VESU+NxxTmxO23cNfJGGrdrWFnNVRRFUZSqpyVhZQgrzACtzsG5nplL8a+JOkhvuasSQkekfAgiKT+gdkDikwhb08poqaIoSrVQU7uVYnRdZ/AndzHixrfQdR3TNDnp8uNp37v1Qble6x7NEYX6ak3XSK2fQlqDAwvcWx3TnK+2vs+erekk10zEHe/e/0mKoiiKcggTwo5Meh6yhoDQQZrgOh/h6HxwLlisXh30+qAd2PaSwt4Jav0Dxg7QUhFaxbbAVBRFqW4qkFZi6ntZb5p3bcrahetJa5BKu16typ38a/ms1Uz9egbuOBdn33YqNUsIjBNTEnh58lMMGzCSXZv20LxzY4Z8eR+aduATJuwOO3Wb1j7g8xVFURTlUKO5z0XaO0BoOej1rP2Zy0kGFyD9v4HwIDxXIvTYfaXQUiBlFDLzATB3gq0tIvnVA0oEGqlTOOAA1nMriqIcilQgrRQz97eFjHrmW8KhMOcPPPOARqLnTFjI05e8RMAXRNM1fnzrN95bNIJajWI/yW7euQkfLn2lok1XFKVKSFBbbChKlZL+yci8d0Aa4LkO7UCCaP9fyMz7AD+gI72jIe1nhB57eriwt0PUnFChdiuKUlVU31zV1BppJcqiyct46uKXWD5zNavnrWPknR8w8bPJUWUCvgBTv5nJ759NYfeWvTHr+WDwFwR81vZTpmHizfEx7k3VGSuKoihKecnAP8jMe60M2uGlkP0Ypvfn6DLSh/RPQPq+Rxo7YteT8yJWEA1ggMxFescc1LYriqIcqdSItBJl/HuTIgEwQMAb5IfXf+X06/oB4Mv1cVfPR9izZS9SSoQQvDR5KK2OaR5Vz74M3PuYhok3u/zJwxRFURTlaCe9oykIgLH+7P0MPNbWktLMRe69CMxdWClxNUgZXXyPZlm0HzbAzDt4DVcURTmCqRFpJYpuK/4rYbMXPG8Z9+Zv7Fi/C1+uH39eAF+un1dvfbfYOSdf3Qenxxl57XQ7OOny4w9OoxVFqXJCHh4/inJkiDHuIfTIH2Xep2BstTJqSx/IPGTW48XPcZ0LFE7A6UK4z6jsxiqKUk2qu8892vpmNSKtRLn4f+fwz7i5BLzWiLLT4+Dqxy6OvL97y15CgVDUOek7sorVc+3QyzANk0mf/43TbefG56+mS78OldbO5bNWs2bBemo3qUnPM7tWKPmJoiiKohzKRNxNyMAUCkalXYj4OwsKmNuB6L4Zc3fxehLuRyLB/zMIFyJhEMLRo9LaKYMLrH2t9QbgOFH1zYqiHNFUIK1EaXVMc16e8hTfvvIz4WCYc247lWNOLdgCo+vJHfn90ymRQNvutNP5pPbF6tF1nZuev5qbnr+6UtsnpWT49W/y15jpIKzr9z6vB4+Mukd12IqiKMoRSTg6Q8oXSO8nIMMIz9UIZ69C7/dG+scXmrrtBMdxxesROiJxMCQOrtT2SSmt7N6BCVh7XdvBdTokvaj6ZkVRjlgqkFaKad29OUPG3BfzvRMuOpYNyzYx5rnvMA2Tjie05b53b62ytr113yf88cXfkdeBcIAZP85h5Zw1tD22ZZW1Q1EURVGqknB0Rjhei/2m6ywI/wd57wMmOHoiEp+ssrbJ7CchML7QkTD4f4O4a8FeebPRFEVRDiUqkFbK7ZonLuXqxy7GCBvYHfZKq/eHkb8ydvg4pIQLBp7BFQ9fGPUk2+8NMP6diTHOFGTuKj69XFGUg0htsaEohwwhBCLhPmT8PYCBEJXTN0spkd6PIe8TQILnBkTcTVF9szRzwfdNrFaBGXtnD0VRDhLVN1cpFUgrB0TTNDRH2XLVmaaJppVe9o9RU/no0TGRKeOjn/2OpdNXsHnlNlxxLm55cQBtjm2B0DTAjK7fMGh5TLMDug9FURRFOVIIoVHWPLJSmvnlSynj+w5yRgL5U8ZzRyKDs5DGOhBxiISHwNYG0AGjyNkm2IpkDVcURTmCqKzdCtl7c5j23Sxm/zKfoD+4/xPKaO3iDQxodidn2K/gyoa3sWrumhLL/jFqWiSIBgj4gsybuJgd63exYdkmnr7kJTav2kazzo3R7QWZShHw6Jj7SKuXUmntVhRFUZTqJs10pH8i0j8ZKSuvb5ah5Zi7TkLubIu5qy8ytKzkwr4fiQTRAPghOB2MLRBehcy4E2lsA1tzosdmBCS/htBrVlq7FUVRDjVqRPoot2X1Nu7pPQQjZCCRpNVP5Y1ZzxOX6KlQvX5vgEGnPEXO3lwA9mxN597jH6PXed25+rGLadGlaVT5+CQPQkTPSJFmwYuAL8jf38xk2IQhvHzTO6yYtZqaDVJ58JO7aNqhUYXaqihKOUkQ5v6LKYpyYGR4DXLvFURGefV6kPI1QourWL1mHjL9WpDZ1gFzO3LvZUjnKYj4OxH2NtEnaAlYycMKTxct/JffD4GJiJRPkJmPQHgpaPUQyS8gbC0q1FZFUcpJ9c1VTgXSR7nXbn+f3Iw8ZH4Eu2P9Tr556Seuf/qKCtW79b/tGMHoaV5G2GD697OZN3ERr//zHM06NY68d82TlzJnwkIC3gBSYm3PUajf1nQNd5yLxJQEnvqhcrONKoqiKMqhRGY9DjKHSEcY3oj0foqIv6tiFRvrKbo8CsIQ+A0ZnAop3yLsBYk7Rfy9yOAMkPu23ZJEB9U2wIPQUhAp71WsbYqiKIcZNbX7KLdr055IEA0QCoTZvm5nhetNqplIKBiO+Z4/L8C4NydEHWvcriHvLBjOlY9exJWPXMhtL12L0+MArCDak+DmrFtPqXC7FEVRFOWQZ2wjOmANgrG54vVqKSBDsd+TPqR3dNQhYW+NSP0B4m6HuNsgfjDgyn9Xt9ZJey6peLsURVEOQ2pE+ijXqW879mxNJxSwOlanxxlzX+jySquXwiX3n8MPI3/F7w1Efx8AzHDRpCRQv0XdqJHw5p2bMGXsP3gSPVx495nUaphW4XYpilJJVGZQRTl4HD2s7aPYtzbajXAcW+FqhV4P6bkGvKOJXvu8T/G+WdiaIhLui7yW9jZI/wQQCYi46xB67Qq3S1GUSqL65iqlAumj3F2v38DODbtZOm0FUkpOv/4kzrypf7FyiyYvY8xz3xEKhjn/rjM46fLjY9aXl5XH+w+NYu3CDTTv2oQhX93Hn6Om8c+4uQXButvBmTfvf3S568kd6Xpyx4rdoKIoiqIcZkTiUKSxA0ILsLadugxcFxQrJwMzkLnvAmHwXIvmPiNmfdLMRua8CKFVYG8Pya+CbxwE/qIgWHch3PsfXRbO4xHO2N8BFEVRjiYqkD7KuePdjPjzSbw5Pmx2HYfLUazMsn9W8tg5wwj4rM529by1GGGT/lefEFXOMAzuP+lJNq/cRigQYt2Sjayc/R9vzX2B3z+dwi/vTcLusnPt0Mtp37t1ldyfoiiKohxuhBaPSB1l7dEs7AjhLFZGBucgM24H8tcvZy3FxERznxVdToaQ6VdCeAMQgvBKCC2FlG/A97X1I1yI+PsQjs4H/d4URVGOFCqQVgDwJLhLfO+ntydGgmiAoD/E+4M+KxZIb1q+hW1rdkRGnkOBENvW7GDziq2cdfMpnFWGUWhFURRFUSxCiy/xPZn3BZEgGoAAZA+DIoE04dVgbAX2rY0OQngtwlyPiLsS4q6s5FYriqIcHVSyMaUMiq+3yNiVzap5a6MPChH79JKOK4py+JKHyY+iHKlkjL5V7kKGlhc5WFIfrPpmRTniVHefe5T1zSqQVvbrjBhrpu0OG5tXbo061qhtfRq3a4DdZQfA4bLTuF0DGrWtXyXtVBRFUZSjhufiGAcdEF4ffcjWCvQm1nsAOMHeBvSmB7d9iqIoRzg1tVvZr679OuBJdOPNLsjwKTRRLEDWdZ0Rfw3lsyfG8t+CdbTs1ozrnr4cXderusmKoiiKckQTzhOQwgPSW/go2JpFlxM2SBmNzH0NQivA3h6RcB9CqLEURVGUilCBtLJfQgie/3UIj571HAChYJirHr2IVsc0L1bWHefi9pevq+omKopSxYTaYkNRqpUQGtT4AJlxKyCs/aHj70bY2xYvq8UhEodUfSMVRalSqm+uWiqQVsqkfe/WjNn0Llv/205KnWTS6qdWd5MURVEU5agmHD2g5jQwNoBWU+3prCiKUoVUIK2UWVyiJ+YotKIoiqIo1UNo8aB1qO5mKIqiHHXUAhlFURRFURRFURRFKQc1Iq1UmrxsL5M+m0pOZi49Tu9Cm54tq7tJiqIcLGodlqIcFqSZA74fkGYOwnUiwt6xupukKMrBovrmKqUCaaVS5GV7ub3rINK3ZxAOhhn7wjgeHnUPfS48trqbpiiKoihHJWnmIPecC+ZeIITMew+SX0W4im9rqSiKopSPmtqtVIpJn00lfXsGQX8I05QEfEFGXP8Wb97zMbN/mV/dzVMURVGUo4/vWzD3AAHABPzIrMGY2c8gA1OruXGKoiiHNxVI/7+9O4+zoywTPf57utNbNpKwBmSNnM22AAAbIklEQVRzjApu7IuIIihLRkVgRJARBnEQr1wYRx1RnBEvLrjgdVCRQYRxFIzOZVBGkYDKjHIZkEVkEZAMIIQAIZB963SfZ/44J7HTdiddTfepPn1+38/nfPpU1VtVT7/d6SfPed+q0ohYvmQFPd09G61btXw1P/raTzn/nf+Xq7/y45IikzTikur/yRvhJTWxrCwF1vVbuRxWfYdc/L+prPxuKXFJGgXm5rqzkNaI2PeIPWjraBtw29pVa7niE3PqHJEkSc0tOl4PdAyydQ2suLCe4UjSuGIhrRHx8v1m8dHvnMWMmdNp62gjWmKj7T3d60hvgCBJUt1E+16wxQXQsjXQDmycm8nuMsKSpHHBm41pxBx87P4cfOz+PDnvKc7Y8yOsWbkWgPbONvY+/DVExGaOIKkRBEn4wZjUEFq6ZkPXbLLnEXLRMcDq2pYO6DikxMgkjSRzc/05Iq0Rt8NLZvK56z/BLq/YkenbbsHBf3EAH7vy7LLDkiSpacWEFxMzLoPWP4OWraBzNjHtC2WHJUkNyxFpjYpXHvRyvnnvl8sOQ5Ik1UT7vsTWPy07DEkaFxyRliRJkiSpAEektUmP3vc4F572DZ59YhG7HfhSPnTZ+5kyfXLZYUkqm9dhSaXJdQ+QS8+FyjPQthexxWeIlqllhyWpbObmunJEWoNa8uxSPnjw3/P7O+bx/NNLuO0nd/Hx2Z8d9fMuWvA899/yEIufWTLq55IkqZFk77Pk8ydBz31QeRbW/oJc/L46nPdpsvsusve5UT+XJDUCR6Q1qHt/9SBZyQ0fbvV09zDvrkdYsWQlk6dNGpVzXnfZz/j62VcwoW0Cvet6+PAV/4tDjj9oVM4lSVLD6f410HfUaR2su5usrCRaRic3V1ZeBcs/B9EG2UNu8QVauo4clXNJUqNwRFqD6pzYTrLxFJFMaOsYnc9fFj35HF8/63K6V3ezatkq1q7u5kunXsyKJStH5XySXoDMxnhJ401MBAb43Y62UTld9j5ZLaJZC7kCWANL/46srBiV80l6AcrOuU2Wmy2kNag9D3sVO8yaSXtnNTl3TuzgmLNm09HVMSrne+qRhbR1bPwfgdYJrSx8fNGonE+SpIbTcRC07gjUcnF0wcTTiGgfnfP1PAH9jx2tUHl6dM4nSQ3Cqd0a1IS2CXzlV+dz7cVzeerRhbzqdbtxyDtfO2rn2/4l27Guu2ejdb29FbbdeatCx+nt7eW751/Nf8y5mUlbTOT0L57Mq1+/+0iGKklSKSLaYcsfkCuvhN75RPt+0HnU6J1wwi6Q6/qtrEDLzEKHyewlV/wjrLkeWqYSUz5GtO89YmFKUr1ZSGuTOro6eMeH3laXc205czp/+80z+PJfX8KEtlZ6eyp8/KqzmbRFsWu+vvWxq7j24rmsXbUWgI/P/iwX3fIZXvzqnUcjbKn5JFApOwipeUV0EZPfW59ztW5HTj0Pln2yNn28F7b4x8LXY+fyC2DV94E10Av5/Kmw5dVE26zRCFtqPubmurOQ1phy2LsOZt8j92Dh44vYbpdtNnlTs0qlwnc+9a/MveIm2jrbOPX8EzjknQdxwz/ftKGIBuhe3c0vr/4vC2lJkoahZeKxZOcbofcpaN2RaJkyaNsNI8+rr4HoJKZ8mOg8orrMmj4tu8k1N1pIS2pYFtIac6bOmMLUGYMn6fWu/PTV/OuF/76haP7SaRczdcsptLZt/Gvd0tpCe8fo3IRFkqRmEC3ToWX6Ztvliq/Cym8Dq6vLSz4C06fV7vjdt2Ur0TJK13VLUh14szENy/yHn+K+///giNxRe+XSldz64zu5fe7ddK/pHvJ+P/vOf2408rx2VTc3fe9mTvnU8XRMrCbnltYWuqZ0cvgph7zgOCVJGsuy51Gy+06ysvyFH6uyjFzzC3LtzWQOPTez+kesL6Kr1pBrroNJZwKdtXWt1buPdx79guOUpLI4Iq3CvnbWt7j+W79gQnv11+eCuZ/g5fsNb2rWM394ljP3/xjda7rJTLbafgZfve1zTJo6cbP7dk7q3Gi5pSXomtLF7Pe+ienbTuM/f3ALk6dP4vgPv42tdthyWPFJGliMo8dXSI0uM8lln6xNp24DAmb8M9H2quEdr+dx8rl3AOuArN5YbMsfEC2TN79zdPVb0QIxiZZJJ5Gt25BrroeYRkz+a6J162HFJ2lg5ub6ckRahdz183uZe8VNrF3dzcqlq1i5dBXnHfPFYR/vog9cxrLnlrNq2WpWL1/D048t5MpPXz2kfd/7+b/sN/LcxTFnzwbgwLfuwznfOYszLzqNbXYyUUuSxrHuX9VGgmvPes7l5OIzh324XHYe5NLasVZC7+Pkym8Oad+Y8hE2HnmeTEz6y+q2zjfTMu1CWrb4e6J1u2HHJ0ljgSPSKuTJ3y+gUtn4loDPP72E3t5eWltbCx/v6UefodL7x+OtW9vDkw8/NaR99z1iD7748/O4ac7NdE7s4M9PfzPb7mzRLElqMj2PAb0br6s8TWYSEcWP1/sEG9/+t7t2js2LzjfCjG+Tq38CLROJiScSrcUelSVJjcBCWoXs/Iodidh4IsPWO201rCIa4JWv242nHlnIurXVZ1R2TOwo9Mzn3fafxW77e8dPqe6cPiaNHRNmAf3ycOuOwyuiAdr2rt6hm/XXRndB+75D3j3a9yTa9xzeuSUNn7m5rpzarY387r8e4mtnXc5l53yXpx9b+CfbX/363Tnug39OW0cbXVO6mLrlZM7/0UeHfb4zvnwKux/4Uia0T6C1rZXXHbs/bz/rqBfyLUiSNK5k9x1Uln6KyvIvkb0L/mR7dBwIE98NtENMgphOTLt42OeLqZ+AtlcDbcAE6JpNTHzXsI8nSeORI9La4Pbrf8OnjvsSa1d309IS/PslN3DJb77IzF233ajdqeefyNEfOJKlzy5j+5dsR0dXx7DP2TWpky/94jyWPb+c1gmtQ7rJmCRJzSLX3EQuOZvqM5hbyFVzYKtridbtN2rXMvXD5KSTobIEJuxMxPBzc7RMhhlXVq+TZsLQbjImSU3GEWlt8M2Pfpe1q6vTuCqVZM2KNVxz0XUDtp2x3XR2fdXOL6iI7mvqjCkW0ZJKERFHRsRDETEvIs4ZYPtJEXFP7XVLRLymz7bHIuLeiLg7Iu6ob+RqBrn8C1SLaIAK5Apy5XcHbBut2xBtL31BRfSGY0UQLdMsoiWVohFysyPS2qDvM5mhWkyvXr5mkNaSmleOm+uwIqIV+DrwZmA+cHtEXJuZv+vT7FHgDZm5OCKOAi4F9u+z/Y2ZuahuQau55Op+KyrVO2lL0kbMzdQ5NzsirQ3efPIb6Jj4x0+xO7raOfRdrysxIkkadfsB8zLzkczsBuYAR/dtkJm3ZObi2uKtwIvqHKOaWdcxQN9nM3cSXW8pKxpJqoeGyM2OSGuDd517HJVKMveKm2jvbOPUT5/Inoe+quywJGk07QA80Wd5Pht/ot3facBP+ywncENEJPBPmXnpyIeoZhaTzySpwOofQnQSUz5EFLiDtiQ1oIbIzRbS2qClpYWTP3k8J3/y+LJDkTSWJY00fWyrftdHXdovoQ70fKABv7mIeCPVZN13qs5BmbkgIrYBboyIBzPzly84aqkmopWY8kGY8sGyQ5E0lpmb656bLaQlSePZoszcZxPb5wM79ll+EfAnzxeKiFcDlwFHZeZz69dn5oLa14URcQ3V6WgW0pIkDW5c5GavkZYkNbPbgVkRsWtEtAMnANf2bRAROwH/Brw7M3/fZ/2kiJiy/j1wOHBf3SKXJGl8aojc7Ii0JKm4StkBjIzM7ImIM4G5QCtweWbeHxFn1LZfAvwDsCVwcUQA9NQ+Sd8WuKa2bgJwVWZeX8K3IUmSubnOudlCWpLU1DLzOuC6fusu6fP+vcB7B9jvEeA1/ddLkqQXphFys1O7pVGQmTz/9GJWLPFZn5IkjQWZSfY+S1aWlx2KpHHAEWlphC1fvIJzjjifR+99gqxUOPyvDuFvLnkftSkmkiSpzrKymHz+VOj5b6CX7HoHMfU8c7OkYbOQlkbYV973Tzxyz+P0dPcA8PMrb+bl+83iqNMOKzkyaeRE4zxiQ5LIpedCz8PAuuqKNT+E9j2h6+0lRiWNLHNzfTm1WxphD9z28IYiGmDtqrX87paHSoxIkqQmt+63bCiiAXI12X1XaeFIanwW0tII226XbYiWP04Va+9sY4eXziwxIkmSmlzrDkDfadwd0LpLScFIGg8spKUR9reXvZ8p0yczcWoXXZM72fkVO3LMWbPLDksaWZmN8ZIkILb4HMQWEJMhJkLby4hJJ5UdljSyys65TZabvUZaGmEvmjWTbz/8Ve6/5SE6utp55etezoQ2/6lJklSWmPBnsPWNsO43QBe0702EuVnS8PkXRBoFk6dNYv/Ze5UdhiRJqomWLaDjkLLDkDROOLVbkiRJkqQCHJGWJBWTQGX8XOMkSVLDMzfXnSPSkiRJkiQVYCEtSZIkSVIBTu2WJBU0vh5fIUlS4zM315sj0pIkSZIkFWAhLUmSJElSAU7tliQV5/QxSZLGFnNzXTkiLUmSJElSARbSkiRJkiQVYCEtSZIkSVIBXiMtSSrO67AkSRpbzM115Yi0JEmSJEkFWEhLkiRJklSAU7slScUkUHH6mCRJY4a5ue4ckZYkSZIkqQALaUmSJEmSCrCQliRJkiSpAK+RliQVlJCVsoOQJEkbmJvrzRFpSZIkSZIKsJCWJEmSJKkAp3ZLkopLH7EhSdKYYm6uK0ekJUmSJEkqwEJakiRJkqQCnNotSSomgYrTxyRJGjPMzXXniLQkSZIkSQWUMiIdEd8HXlZbnAYsycw9Bmj3GLAc6AV6MnOfOoUoSVJTMTdLkjR0pRTSmfnO9e8j4kJg6SaavzEzF41+VJIkNS9zsyRJQ1fqNdIREcDxwKFlxiFJKshHbIxb5mZJalDm5roq+xrpg4FnMvPhQbYncENE3BkRp9cxLkmSmpW5WZKkzRi1EemI+Bmw3QCbzs3MH9Xenwh8bxOHOSgzF0TENsCNEfFgZv5ykPOdDpwOsNNOO72AyCVJGp/MzZIkjYxRK6Qz802b2h4RE4Bjgb03cYwFta8LI+IaYD9gwGSdmZcClwLss88+zmuQpNHk9LGGZG6WpHHM3FxXZU7tfhPwYGbOH2hjREyKiCnr3wOHA/fVMT5JkpqNuVmSpCEos5A+gX5TxyJi+4i4rra4LXBzRPwW+DXwk8y8vs4xSpLUTMzNkiQNQWl37c7Mvxpg3QJgdu39I8Br6hyWJElNy9wsSdLQlPr4K0lSI0qvw5IkaUwxN9db2Y+/kiRJkiSpoVhIS5IkSZJUgFO7JUnFJFCplB2FJElaz9xcd45IS5IkSZJUgIW0JEmSJEkFOLVbklScdwaVJGlsMTfXlSPSkiRJkiQVYCEtSZIkSVIBFtKSJEmSJBXgNdKSpOK8DkuSpLHF3FxXjkhLkiRJklSAhbQkSZIkSQU4tVuSVFBCxeljkiSNHebmenNEWpIkSZKkAiykJUmSJEkqwEJakiRJkqQCvEZaklRMQmal7CgkSdJ65ua6s5BuQsueX87NV9/Guu4eDnjL3my789ZlhyRJUlPLymJYMxeyBzoPJVq3LzskSdImWEg3meefXswZe/4dq5avIivJtz52JV/+5f/hJXvsWnZokiQ1pex9hlx0NOQqIGHFhTBjDtH2srJDkyQNwmukm8ycC65h2XPLWbuqm+4161i9Yg1fP/uKssOS1Ggq2RgvqQHkioshlwJrgLWQq8jlny07LEmNpuyc22S52UK6yTz31BJ6e3o3Wrd04dKSopEkSVQWAn1zc0LvorKikSQNgYV0kznwrfvQObFjw3JHVzsHvHXvEiOSJKnJdRwGdPVZ0Qkdh5YVjSRpCLxGuskcdtLBPPOHZ5lzwTX09vTyhuNfy3s+866yw5LUaHL8TM2SyhZdx5G9C2DlZUAFut5KTDm77LAkNRpzc11ZSDeZiOCkc4/jpHOPKzsUSZJENTfHlLNgylllhyJJGiKndkuSJEmSVICFtCRJkiRJBTi1W5JUTCZUKmVHIUmS1jM3150j0pIkSZIkFWAhLUmSJElSAU7tliQV5yM2JEkaW8zNdeWItCRJkiRJBVhIS5IkSZJUgIW0JEmSJEkFeI20JKmw9BEbkiSNKebm+nJEWpIkSZKkAiykJUmSJEkqwKndkqSC0kdsSJI0ppib680RaUmSJEmSCrCQliRJkiSpAKd2S5KKSaDi9DFJksYMc3PdOSItSZIkSVIBFtKSJEmSJBVgIS1JkiRJUgFeIy1JKi4rZUcgSZL6MjfXlSPSkiRJkiQVYCEtSZIkSVIBTu2WJBWSQPqIDUmSxgxzc/05Ii1JkiRJUgEW0pIkSZIkFWAhLUmSJElSAV4jLUkqJtNHbEiSNJaYm+vOEWlJkiRJkgqwkJYkSZIkqQCndkuSCvMRG5IkjS3m5vpyRFqSJEmSpAIspCVJkiRJKsBCWpJUXFYa4zUEEXFkRDwUEfMi4pwBtkdEXFTbfk9E7DXUfSVJqpuyc26T5WYLaUlS04qIVuDrwFHA7sCJEbF7v2ZHAbNqr9OBbxTYV5IkFdAoudlCWpLUzPYD5mXmI5nZDcwBju7X5mjgX7LqVmBaRMwc4r6SJKmYhsjNFtKSpGa2A/BEn+X5tXVDaTOUfSVJUjENkZvH5eOv7rzzzkUR8Ydh7LoVsGik4xlljRZzo8ULxlwPjRYvNE7MO4/0AZezeO7P8v9tNdLHHSWdEXFHn+VLM/PSPssxwD79nx8yWJuh7Ksac/OY1mjxgjHXQ6PFC40Ts7l5HOTmcVlIZ+bWw9kvIu7IzH1GOp7R1GgxN1q8YMz10GjxQmPGPFIy88iyYxhB84Ed+yy/CFgwxDbtQ9hXNebmsavR4gVjrodGixcaM+aRYm6uf252arckqZndDsyKiF0joh04Abi2X5trgZNrdwg9AFiamU8NcV9JklRMQ+TmcTkiLUnSUGRmT0ScCcwFWoHLM/P+iDijtv0S4DpgNjAPWAWcuql9S/g2JEkaNxolN1tIb+zSzTcZcxot5kaLF4y5HhotXmjMmDWAzLyOakLuu+6SPu8T+MBQ99WIa8R/a40Wc6PFC8ZcD40WLzRmzBpAI+TmqMYgSZIkSZKGwmukJUmSJEkqoOkK6Yh4R0TcHxGViNin37aPRcS8iHgoIo4YZP8ZEXFjRDxc+zq9PpFvOP/3I+Lu2uuxiLh7kHaPRcS9tXZ3DNSmHiLivIh4sk/Mswdpd2St3+dFxDn1jrNfLF+MiAcj4p6IuCYipg3SrtQ+3lyf1W6+cFFt+z0RsVe9Y+wXz44RcVNEPFD7N3j2AG0OiYilfX5f/qGMWPvFtMmf81jrZ6kRmZvry9w8eszN9WFu1piQmU31AnYDXgb8B7BPn/W7A78FOoBdgf8GWgfY/wvAObX35wCfL/F7uRD4h0G2PQZsNQb6+zzgw5tp01rr7xdTvWX9b4HdS4z5cGBC7f3nB/sZl9nHQ+kzqjdg+CnV5+kdANxW8u/CTGCv2vspwO8HiPkQ4Mdlxln05zzW+tmXr0Z8mZvrHqO5eXRiNDfXL25zs6/SX003Ip2ZD2TmQwNsOhqYk5lrM/NRqneA22+Qdt+uvf828PZRCXQzIiKA44HvlXH+EbYfMC8zH8nMbmAO1X4uRWbekJk9tcVbqT5/bqwZSp8dDfxLVt0KTIuImfUOdL3MfCoz76q9Xw48AOxQVjwjaEz1s9SIzM1jkrm5OHPz2DGm+lnjU9MV0puwA/BEn+X5DPyHZNusPqOM2tdt6hDbQA4GnsnMhwfZnsANEXFnRJxex7gGcmZtWs3lg0y3G2rfl+E9VD/RHEiZfTyUPhuz/RoRuwB7ArcNsPnAiPhtRPw0Il5R38gGtLmf85jtZ2kcMDePHnPzyDM314+5WaUbl4+/ioifAdsNsOnczPzRYLsNsK6UW5oPMf4T2fQn3gdl5oKI2Aa4MSIezMxfjnSssOl4gW8A51Pty/OpTnl7T/9DDLDvqPb9UPo4Is4FeoArBzlM3fp4AEPpszHzO91XREwGrgb+JjOX9dt8F7BzZq6oXbP3Q2BWnUPsb3M/5zHZz9JYY24GzM2bZG4uj7lZKm5cFtKZ+aZh7DYf2LHP8ouABQO0eyYiZmbmU7UpIguHE+OmbC7+iJgAHAvsvYljLKh9XRgR11CdbjQqiWSo/R0R3wR+PMCmofb9iBlCH58CvAU4LDMH/MNbzz4ewFD6rO79ujkR0UY1UV+Zmf/Wf3vf5J2Z10XExRGxVWYuqmec/WLa3M95zPWzNBaZm83Nm2NuLoe5WRoep3b/0bXACRHRERG7Uv2k7deDtDul9v4UYLBP0UfTm4AHM3P+QBsjYlJETFn/nuoNOu6rY3x9Y+l7Pcoxg8RxOzArInaNiHbgBKr9XIqIOBL4KPC2zFw1SJuy+3gofXYtcHLtzpUHAEvXT30sQ+3awW8BD2Tmlwdps12tHRGxH9W/Uc/VL8o/iWcoP+cx1c/SOGNuHgXm5lFjbq4Dc7PGinE5Ir0pEXEM8FVga+AnEXF3Zh6RmfdHxA+A31GdMvSBzOyt7XMZcElm3gFcAPwgIk4DHgfeUcK3cQL9po5FxPbAZZk5G9gWuKb2N28CcFVmXl/3KKu+EBF7UJ1O8xjwPtg43szsiYgzgblU73h5eWbeX1K8AF+jeofYG2t9eGtmnjGW+niwPouIM2rbLwGuo3rXynnAKuDUesU3iIOAdwP3xh8fDfNxYCfYEPNfAO+PiB5gNXDCYKMOdTLgz3mM97PUcMzNdWduHgXm5roxN2tMiHL/HUiSJEmS1Fic2i1JkiRJUgEW0pIkSZIkFWAhLUmSJElSARbSkiRJkiQVYCEtSZIkSVIBFtKSJEmSJBVgIS1JkiRJUgEW0tIIioh9I+KeiOiMiEkRcX9EvLLsuCRJalbmZkmjITKz7BikcSUiPg10Al3A/Mz8XMkhSZLU1MzNkkaahbQ0wiKiHbgdWAO8NjN7Sw5JkqSmZm6WNNKc2i2NvBnAZGAK1U+/JUlSuczNkkaUI9LSCIuIa4E5wK7AzMw8s+SQJElqauZmSSNtQtkBSONJRJwM9GTmVRHRCtwSEYdm5i/Kjk2SpGZkbpY0GhyRliRJkiSpAK+RliRJkiSpAAtpSZIkSZIKsJCWJEmSJKkAC2lJkiRJkgqwkJYkSZIkqQALaUmSJEmSCrCQliRJkiSpAAtpSZIkSZIK+B/aGoe5FGUW4wAAAABJRU5ErkJggg==\n", + "text/html": [ + "<img src=\"\" width=\"1000\">" + ], "text/plain": [ - "<Figure size 1152x1152 with 4 Axes>" + "<IPython.core.display.HTML object>" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "fig, ax = plt.subplots(figsize=(16, 16), ncols=2)\n", + "fig, ax = plt.subplots(figsize=(10, 10), ncols=2)\n", "data.plot.scatter(x=\"x\", y=\"y\", c=\"guess_kmeans\", colormap='viridis', ax=ax[0])\n", "data.plot.scatter(x=\"x\", y=\"y\", c=\"source\", colormap='viridis', ax=ax[1])\n", "ax[0].set(xlabel=\"x\", ylabel=r\"y\", title=\"Guessed source using K-Means\")\n", @@ -604,7 +3479,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 18, "id": "0a8642bd", "metadata": {}, "outputs": [], @@ -616,25 +3491,983 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 19, "id": "ccbf4019", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9IAAAOjCAYAAABX7Ty6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddZyc1dXA8d95Rtc3G09IiBEICQR3CxogaHAo0tJSo6VGjbcFarTUkHpLgQLB3S24JkhCgkSI+7qMP+f945ndndmdtWSzkpzv57OQffTMZLN3znPvPVdUFWOMMcYYY4wxxnSO09sBGGOMMcYYY4wx/Ykl0sYYY4wxxhhjTBdYIm2MMcYYY4wxxnSBJdLGGGOMMcYYY0wXWCJtjDHGGGOMMcZ0gSXSxhhjjDHGGGNMF1givZ0QkSNEZFVvx9GbRORQEfm0t+PoDBFZICJHbOa5feJ1isjBIrJIROpE5NTejscYY4zZEiJyvog8uwXnPyUiF3VnTMaY3mOJdBeIyDki8raI1IvIhvSfvy4i0tuxmY6p6ququnN3X1dE/iEit+fYvruIxESkrKvXVNXJqvpSJ++vIjIh49yt9TrHpO/l7+Qp1wI3q2qhqj7c3fH0lI7+3YvIren35eQW5/05vf3i9PcXp7//Y4vjTk1vv7WnXpMxxmyO9IPRxi9XRCIZ35/f2/Ftbap6p6oe25ljReRqEbmjxfnHq+ptWyc6Y0xPs0S6k0Tke8ANwPXAMGAo8FXgYCDYi6H1C+LZVn/ebgVOF5GCFtsvBB5X1YrOXqgLSWp/sCOwYHNO7CvvQxf+3X8GXJRxnh84E1jS4pJLgLNbvL4L0+cbY0yfln4wWqiqhcAK4KSMbXc2HtdXfocbY8zWtK0mNt1KRErwete+rqr3q2qtet5X1fNVNZY+7iURuTTjvItF5LWM73cRkedEpEJEPhWRszL2nSAiC0WkVkRWi8j309sHicjjIlKVPu/VxoRUREaIyAMislFEPheRb2VcLy/dU1YpIguBfdt5fSIif0r3tlWLyDwRmdL42kXk9vQ9lovIVRn3z3ra2rLHMv1+/EpEXgcagHEiMjnjPVgvIj9JH+uIyI9EZImIlIvIvW315LZ8X9Pbmnpl23kvs4a3i8gyEfl++vVWi8g9IhLO2H+liKwVkTUicqm06PltpKpvAquBmRnn+oDzgNtEZLyIvJh+XZtE5E4RKW0Rxw9FZB5QLyL+9Laj0/v3E5E30z8Da0XkZhEJpve9kr7Mh+L1CJyd43VOSv9dVIk3ZPzkjH23ishfROSJ9Pv1toiMz/W+5/h7aPNcEVkCjAMeS8cVSv8s/Sf9GlaLyC/T71Pj3+nr6Z/DCuDq9Dm/F5EV6Z+Vv4tIXubfpYh8L/1zu1ZELsmILU9E/pD+ma0Wkdcyzj1ARN5Ivx8fShtD6KWT/+7THgMOFpEB6e+nA/OAdS0uuw6YDxyXvkcZcBDwaGfec2OM6Ysyfif/UETWAf/tRFvd5u/4HNfvqB39YbpdqRXv89VR6e37icgcEalJ3+OPGeecnG4Tq9Jt5KSMfaNE5EHxPvuUi8jN6e0tP9fdICIr09efKyKHprdPB36C9+C0TkQ+TG9v+pwo3ueeq9Lt1AbxPmuVpPc1fp66KP3+bBKRn27J35ExpvtZIt05BwIh4JHNvYB4vZXPAXcBQ4Bzgb+KyOT0If8BLlPVImAK8GJ6+/eAVcBgvN6wnwAqXjL7GPAhMBI4CrhCRI5Ln/dzYHz66zgyestyOBY4DJgIlAJnA+XpfTcBJXhJ0eF4vWeXtL5Em74AfAUoAtYDzwNPAyOACcAL6eO+BZyavscIoBL4Sxfuk6mt9zKXs/CSnrHA7sDF0NQIfhc4Oh3n4R3c83a896bR0UAAeAoQ4Dd4r2sSMAq4usX55wInAqWqmmyxLwV8BxiE97N4FPB1AFU9LH3M1HSPwD2ZJ4pIAO/n5Fm8n7vLgTtFJHPo97nANcAAYDHwqw5ea8u4W52rquPJ7q2IAbcBSbz3c0+8n7tLM661P7A0HeevgN/i/UzukT5nJPCzjOOH4f1sjgS+BPwlI5H9PbA3XpJaBlwJuCIyEngC+GV6+/eBB0RkcI7X1pV/91G8ZPic9PcX4v1M5JL5s3JO+vqxNo41xpj+Yhje79Ud8dr9jnT0Oz5Tm+1ouj37JrBvut0/DliWPu8G4AZVLcb7PHRv+pyJwCzgCrzPV0/iPfgNph/wPg4sB8ak47q7jbjeTcdfhvf57j4RCavq08CvgXvSbeDUHOdenP6ahvcZqxC4ucUxhwA747X7P8tM9o0xvc8S6c4ZBGzKTHAyerQiInJYO+c2mgEsU9X/qmpSVd8DHgDOSO9PALuKSLGqVqb3N24fDuyoqon0/FfF62EerKrXqmpcVZcC/6L5g/xZwK9UtUJVVwI3thNbAi/R3QUQVf1YVdemG5OzgR+ne+OWAX/AS44761ZVXZB+72YA61T1D6oaTV/z7fRxlwE/VdVV6aTrauAM2bzhYW29l7ncqKpr0sOvH8NrEMF7//6bjr0BL1lsz/+Aw0Vkh/T3FwJ3pf/OFqvqc6oaU9WNwB9pnZjfqKorVTXS8sKqOldV30r/3CwD/pHj/LYcgNc4X5f+OXkR7wPCuRnHPKiq76T/ju7MeA86o1PnishQ4HjgClWtV9UNwJ9o/nkFWKOqN6WvFQW+DHwn/TNci/ehJPP4BHBt+j1+EqgDdk4/ZPoi8G1VXa2qKVV9I/1zdQHwpKo+qaquqj4HzAFOyBF2V//d3w5cmO5ROBx4uI337CHgiPRx7SXcxhjTn7jAz9NtXau2LJOICB3/jm/SQTuawnvouauIBFR1mao2TqtJABNEZJCq1qnqW+ntZwNPpK+ZwHv4mof38HU/vIT9B+n2KqqqWT3rGXHdoarl6fb5D+k4Oluj5Hzgj6q6VFXrgB8D57T43HONqkZU9UO8jpNcCbkxppdYIt055cCgzF9uqnqQqpam93XmfdwR2D/9IbxKRKrwfokOS++fifdhfrmIvCwiB6a3X4/X0/esiCwVkR9lXG9Ei+v9BK/XGrxGYGXG/Ze3FVg6uboZrwd4vYj8U0SK8RKJYItzl+M9ne2szBhG0XrOaKMdgYcyXsvHeI3j0DaOb09b72UumUNvG/CSTmj9/mX+uRVVXQG8AlwgIoV4veu3AYjIEBG5Oz3srAa4A++9zdTm9UVkonjD+9elz/91jvPbMgJYqapuxraWf4dtvQed0dlzd8TroV+b8Xf8D7ze50aZ78FgIB+Ym3H80+ntjcpb9N433n8QECb3z9qOwJkt/t0cgvewqqUu/btPf9AaDFyFNzc+5wfJ9PYn0scNUtXXcx1njDH9zEZVjXby2M78jm/SXjuqqovxepavBjakjxuRPvVLeL3en4jIuyIyI719BBmfbdJt5Eq8tnEUsDzH6LBccX1PRD4WbwpRFd4oqa60zy0/X/nJ/tyzJe2zMWYrs0S6c97EG3p5SgfH1eM1DI2GZfx5JfCyqpZmfBWq6tcAVPVdVT0FL7F4mPTwo3Sv7fdUdRxwEvBd8eb+rAQ+b3G9IlVt7Flbi9cYNBrdXuCqeqOq7g1Mxmt0fgBswnuau2OL66zuxOttunSL96Ct+bcrgeNbvJ6wqq7OcWzWfUUk675tvZddtBbYIeP7UW0dmOE2vB7GmXh/N4094b/Bex92V2942QV4w9Sywm7nun8DPgF2Sp//kxznt2UNMEqyC71l/h32lJV4/4YGZfz9Fqvq5IxjMt+DTUAEmJxxfIl6BW46sgmvRzvXz9pK4H8tfs4KVPW6HMd29t99pjvwpmN01Mt8e/q4/3Xh2sYY05e1bMfaa6u7+ju+3XZUVe9S1UPwPq8o3rBxVHWRqp6L93ngt8D96al2a8j4bJPuIR+F1zauBEZ3NCIuPR/6h3gj2AakH7JWZ8TVXrtOyxjw2uYk3jQ4Y0w/YIl0J6hqFd7Q3r+KyBkiUpguErEHkFmp+QO86s354hXT+FLGvseBiSLyBREJpL/2Fa8QVFC8tQlL0kOMavB6YxGRGSIyIf1LvnF7CngHqBGvwEaeiPhEZIqINBYVuxf4sYgMSA83vryt15eOY//0fNp6vCQkpaqp9HV+JSJFIrIj3rzhxgJjHwCHicjo9DDVH3fwVj4ODBORK8QrMlIkIvun9/09fZ8d0zENFpG2EpgPgckisod4xcGuzngtbb6XXXQvcEn67yeftudtZXoAryG+hnRvdFoR3rDjKvHm6P6gi7EU4b2OOhHZBfhai/3r8eZX5fI23t/plemfuSPwHsi0Nd9rq1DVtXjztP8gIsXpfz/jRSTnEPV078C/gD+JyBAAERkpzTUA2ruXC9wC/FG8gnw+ETlQREJ4P7snichx6e1h8Yrk7JDjOlV07t99phuBY/BGJ7Tn5fRxN3X0eowxpp9qs63ejN/xbbajIrKziByZ/h0fxUvQGz9DXSAig9P3q0qf0vjZ5kQROSr92ed7eA9O38D7fLUWuE5ECtLtxMFtxJQENgJ+EfkZUJyxfz0wRtpesWQW8B0RGSveSLbGOdUd9oQbY/oGS6Q7SVV/h5dEXglswPsF+Q+8p5FvpA/7ExBP77sNb85o4/m1eMWVzsF7CrkO7+loKH3IF4Bl6SFLX8V72gqwE16Brjq8HrK/qupL6ST3JLw5qZ/jPd39N96wIvASgOXpfc/Sfs9XMV6DVpk+pxxvvhB4CXg9XhGo1/CKadySfk3PAffgVSeei5cotyn9HhyTjnsdsAivyAZ4BUEexRvCXgu8hVd8Ktd1PsOrpvx8+hot5y619V52mqo+hZcUzcYbWv9melebRaFUtZ7mZPrOjF3XAHvhPal+Aniwi+F8H68CeC3e39M9LfZfjVcdvEoyKsGnY4oDJ+PNT94E/BW4UFU/6WIM3eFCvKkCC/F+1u4n95DqRj/Ee+/fSv9dPk/n5559H6869rtABd6/NUe9egGn4PXqb8TrefgBbfwu7OS/+8zjK1T1BVVttydCPS9oF5ZGM8aY/qQTbXVXfse3146GgOvw2rh1eL3PP0nvmw4sEJE6vM8Z56TnPH+K99ngpvR5J+EVx4xnfL6agFc0cxXenOqWnsErKPoZ3menKNlTlO5L/79cRHLVarkF77PZK3if1aK00+lhjOl7pIPPe8YYvCWkgI+AkD0tNsYYY4wxZvtmPdLGtEFETksPFR+A16P5mCXRxhhjjDHGGEukjWnbZXjDf5fgzalqOTfZGNPPicgoEZmdrry7QES+neMYEZEbRWSxiMwTkb0y9k0XkU/T+37U8lxjjDHGdE1/aZttaLcxxpjtlogMB4ar6nsiUoRX7+FUVV2YccwJeHMXT8Cr3XCDqu4vIj68+ZHH4M2jfBc4N/NcY4wxxnRNf2mbrUfaGGPMdktV1zYuVZcuiPgx2eusg1eg7vZ0kbi3gNJ0I78fsFhVl6YL+91N15ZLM8YYY0wL/aVttkTaGGOMAURkDLAn3rJxmUaSXY13VXpbW9uNMcYY0w36ctvc7mLz/dWgQYN0zJgxvR2GMcb0urlz525S1cHdec3jphVoecXmLM/e8+bOiy3AW1am0T9V9Z8tj0uv4/oAcIWq1rTcnePS2s52k4O1zcYY47G2edtom7fJRHrMmDHMmTOnt8MwxpheJyLLu/ua5RUp3nlmdHdfdqvwDV8UVdV92jtGRAJ4DfWdqpprnfdVeOvDN9oBWIO3Lnqu7SYHa5uNMcZjbfO20Tbb0G5jjDHbLRER4D/Ax6r6xzYOexS4MF0h9ACgWlXX4hUw2UlExopIEDgnfawxxhhjNlN/aZu3yR5pY4wxW48CLm5vh9FdDga+AMwXkQ/S234CjAZQ1b8DT+JVBV0MNACXpPclReSbwDOAD7hFVRf0aPTGGGMM1jbTC22zJdLGGGO2W6r6GrnnU2Ueo8A32tj3JF5jbowxxphu0F/aZhvabYwxxhhjjDHGdIEl0sYYY4wxxhhjTBfY0G5jjDFdpKR0m5mHZYwxxmwDrG3uadYjbYwxxhhjjDHGdIEl0sYYY4wxxhhjTBfY0G5jjDFd4i2xob0dhjHGGGPSrG3uedYjbYwxxhhjjDHGdIEl0sYYY4wxxhhjTBdYIm2MMcYYY4wxxnSBzZE2xhjTZS62xIYxxhjTl1jb3LOsR9oYY4wxxhhjjOkCS6SNMcYYY4wxxpgusKHdxhhjukRRUmpLbBhjjDF9hbXNPc96pI0xxhhjjDHGmC6wRNoYY4wxxhhjjOkCG9ptjDGmy1xs+JgxxhjTl1jb3LOsR9oYY4wxxhhjjOkCS6SNMcYYY4wxxpgusETaGGOMMcYYY4zpApsjbYwxpksUSNk8LGOMMabPsLa551mPtDHGGGOMMcYY0wWWSBtjjDHGGGOMMV1gQ7uNMcZ0mS2xYYwxxvQt1jb3LOuRNsYYY4wxxhhjusASaWOMMcYYY4wxpgsskTbGGGOMMcYYY7rA5kgbY4zpEgVSavOwjDHGmL7C2uaeZz3SxhhjjDHGGGNMF1gibYwxxhhjjDHGdIEN7TbGGNNlbm8HYIwxxpgs1jb3LOuRNsYYY4wxxhhjusASaWNMl6hbgyZXoZrq7VCMMcYYA1RHo6yqqSblWp+kMT3FhnYbYzrNrf0z1P8L8INTCmV3IP5RvRyV6WmKksIqgxpjTF/wu9df5T/vz8HvOAzMz2fW6Wczsri4t8MyPcza5p5nPdLGmE7R2OvQ8F8gAUTAXY9WfbO3wzLGGGO2W7OXLeW2D98n4bpEkknW1NbyjScf7e2wjNkuWCJtjOmcxALQRMYGF5KLey0cY4wxZnu3cOMGYslk0/euKp9VlPdiRMZsP2xotzGmc/yjQIKgzQ02vqG9F89m0OQKtPYP4G6C8DFI/kWISG+HZYwxxmyWUcUlhAN+GhLND7qHFxb1YkRdt7Sygj+8+RrlkQjHT9iJC3ff09pm0y9YIm2M6ZzQcRB8AuKvAj4ApPTPvRpSV2hqPVp+OmgdXm/6R2hqA1J8ZW+H1v8opGwaljHG9LoZE3fh8c8+5Y2VK/A5XvJ5w/QTezmqzltTW8Op99xJQyKBq8r89evYVN/A9w46pLdD63+sbe5xlkgbYzpFxIHSmyD5EbjVENgVccp6O6zOiz4LGqNplUWNQOROsETaGGNMP+WI8I8ZpzBvw3pqYlGmDB7KgLy83g6r055avIhYMoWrXgYYSSa5bd77lkibfsESaWNMp4kIBHbr7TA2k6a/jDHGmG2HiDB16LDeDmOzqLZul3NsMqZPsmJjxpjtQ/hYkBDNv/byIO/c3oyo31K8fv3+8GWMMabvOn6niYT8PhpnROf5/Xxh9z16M6R+y9rmnmc90saY7YL4hsHAB9Da32cUG7ukt8Myxhhjtlsji4p56Kzz+N0br1EZaWD6hIlcssdevR2WMZ1iibQxZqtStxIiD6BuHRKahgSn9los4h+DDLi51+5vjDHG9AXlDQ3c//FH1MfjHD1uArv34tDw8WUD+ceMU3rt/sZsLkukjTFbjboV6KaTwK0Ckmj9LVD6ZyR8ZG+HZowxxmyXNjU0cPydt1ETi5F0U/z7/bn89YSTOWLM2N4OzZh+xRJpY8xWow33pZPoxvUto2jtryyR7veEFLbGpzHG9Ed3zv+A6liUpOvNVo0mk/zildmWSPd71jb3NCs2ZozZetxqmpPoNG3olVCMMcYYQ7onOrvkU3083kvRGNN/WSJtjNlqJHwUEM7YEoLQMb0VjjHGGLPdO3bcBML+5kGpYb+f6RN26sWIjOmfLJE2xmw1EtwbSn4LznCQUsg7BSm+qrfDMltIAVf7x5cxxphs++8wit8edRzDCwspDYeZuctkfnLoEb0dltlC1jb3PJsjbYzZqpy84yHv+N4OwxhjjDFpJ+28CyftvEtvh2FMv2Y90sYYY4wxxhhjTBdYj7Qxpttp8nO0+kpIroTALkjJ7xDfkN4Oy3QjqwxqjDH9y5KKcr7/3NOsrKlm8uCh/P7Y6QzOL+jtsEw3sra5Z1mPtDGmW6lbh5afA4l5oBUQfxutuADVVG+HZowxxmyXamJRzrz/buatX0dFJMKbq1Zw/oP34eo2NGHVmB5mibQxpnslFuAtedXYOKcgtR5Sq3sxKGOMMWb79eH6dSRdt6llTrouq2qqWVdX26txGdOfWSJtjOleTh7Qsvc5CZLfG9EYY4wx2738QKBV73PKdckPBHopImP6P5sjbYzpXv4pENgD4u8DUZA8CJ+I+Ab1dmSbTd16iD4OWgfBQ5DAzr0dUq9SbB6WMcb0J3sMHc5uQ4by4fp1RJNJ8vx+TttlV0rDeb0d2mari8d59NOPaUgkOGzHMUwc2H8/Z3QHa5t7niXSxphuJeLAgH9D5D40uQQJ7AbhU3o7rM3mzfk+BVIbgSRwAwy4GQkd1tuhGWOMMZ3icxxuP/UMZn00j8+rKpk6dDin9OPlr2piMWbcdTubIg2kXJc/vvU6/5xxKoeM3rG3QzPbEUukjTHdTiQA+edtG89FI/dDagMQS29IojU/RwbP7s2ojDHGmC4J+HxcOHXP3g6jW9z90Tw2NNQTT3lTyRKuy//Nfp7ZF32plyMz2xNLpI0xph3qVtKcRKe5VpzF1W3iMYkxxph+qDzS0JREN6qJRXspmr7D2uaeZcXGjDGmHRI6BAhnbAlC6JDeCscYY4zZ7h2+41jC/ub+wJDPx+FjxvZiRGZ7ZIm0Mca0Q4L7QvG1ICVACEKHI8W/7u2wjDHGmO3WQaNG8/PDjqQkFCLk83Pk2PH8atoxvR2W2c7Y0G5jjOmAk38q5J/a22EYY4wxJu3sKbtx9pTdejsMsx2zRNoYY0yX2BIbxhhjTN9ibXPPs6HdxhhjjDHGGGNMF1gibYwxxhhjjDHGdIEN7TbGGNMlipCy57DGGGNMn2Ftc8+zd9sYY4wxxhhjjOkCS6SNMcYYY4wxxpgusKHdxhhjusxVqwxqjDHG9CXWNvcs65E2xhhjjDHGGGO6wBJpY4wxxhhjjDGmCyyRNsYYY4wxxhhjusDmSBtjjOkSBVLYPCxjjDGmr7C2uedZj7QxxhhjjDHGGNMFlkgbY4wxxhhjjDFdYEO7jTHGdJGQUnsOa4wxxvQd1jb3NHu3jTF9hqr2dgjGGGOMyWBtszG5WY+0MabXqVuLVn0b4m+iEoLCH+EUnNPbYRljjDHbrZpYlG88+RhvrlpJnt/PVYdO4+wpu/V2WMb0GdYjbYzpdVr9Q4i/A6RAG6D212jsrd4OyxhjjNlufeeZJ3ln9WpcVeoTCa555UXeWb2qt8Myps+wHmljTO+Lvw3EMzbE0PhbSOiA3orItEMB157DGmPMNu3t1atIuKmm7+PJFO+sXsV+I3foxahMW6xt7nm99m6LyM4i8kHGV42IXNHimCNEpDrjmJ/1UrjGmK3JKWmxIYQ4A3slFGO2Z9Y2G2MalYTCWd+H/D7K8vJ6KRpj+p5e65FW1U+BPQBExAesBh7KceirqjqjB0MzxrRD3Rq0+ieQmAvOEKTkN0hg1y26phT/Eq38KqAgPnBGQP4Z3ROwMabTrG02pn+qjka58vlneG/tGoYVFvK7Y6YzadDgLbrmdUcdy2VPPIKq4hOHUSUlnD5py9p7Y7YlfWVo91HAElVd3tuBGGPap5WXQWIekAC3HK24AAY9jfiGdO781Fq04SEggYRPQAI7IaGDYNDDEH8TpAjCxyIS7uhSphelkN4OwWx91jYb009c8sgDLNi4gYTrUh5p4Jz77+b5C7/I4PyCTp2/uqaGBz9ZQMp1mTFxFyaUDeTQHcfw6DkX8OaqlRSHQkwfvxMhf19JHUwu1jb3rL7yr+EcYFYb+w4UkQ+BNcD3VXVBroNE5CvAVwBGjx69VYI0ZnunbgMkPgBSGRvVKxSW13HnlCZXoOWneQXFULT+Fii7FQnuifjHgX/c1grdGNN11jYb0w/UxGJ8tHEDSddt2qbAnDWrOX7CxA7P/7yqklPuvoNIIoGq8q/35nLXzLOYOnQYE8oGMqHMploZk0uvz0gXkSBwMnBfjt3vATuq6lTgJuDhtq6jqv9U1X1UdZ/Bg7dsKIsxpg0SyLENkPxOna71/wStx0vEXSCC1l7fjQEaY7qDtc3G9B8hn4+WSz2rKvn+HG12Dn955y0aEglSql7LnEzw29df6f5AjdnG9HoiDRwPvKeq61vuUNUaVa1L//lJICAig3o6QGOMRyQABV8BaSw2EgLfKAgd0rkLuFV4CXQGrenGCE1PUBVS6vSLL7PZrG02pp8I+f18ac+9yUsPuw75/IwpHcBBozo3CqQqGsVtkYnXxmLdHqfZuqxt7nl9YWj3ubQxdExEhgHrVVVFZD+8xL+8J4MzxmSTwisgMAmNvQu+kUjBeXidV50QngGxV4BoekOet80Y09dY22xMP/LDgw9ltyFDmbN2NTsUl3DBblMJ+HydOveUnSfx5qoVRJJJAPL8fk6auMvWDNeYbUKvJtIikg8cA1yWse2rAKr6d+AM4GsikgQiwDmqLQevGGN6kohAeDoSnt7lc5286bhuOdT/FTQFeWcgBV/ZClEaYzaXtc3G9D8iwokTd+bEiTt3+dyTdt6F8kgDf5vzNilVzpsylUv32mcrRGnMtqVXE2lVbQAGttj294w/3wzc3NNxGWO2HqfgfCg4v7fDMMa0wdpmY7Y/F++xFxfvsVdvh2FMv9IXhnYbY4zpZ1xbYsMYY4zpU6xt7lnbzmxvY4wxxhhjjDGmB1iPtDFmq1FVNHI/xF4G3zCk4GuIz9ajNMYYY3qLqnLPgvm8snwZwwuL+MZ++1OW17llLI0xzSyRNsZ0O018BLFX0dg7kJiLV6Xbj0afhkFPIU5Rb4dotoACKRvQZIwx/cqH69fx2orlvLlyBe+tXU00lSLgODy9ZBHPXHAxhcFOrsBh+iRrm3ueJdLGmG6l0efRqu8CCSCVsScJbi3Enoe807p+3eRStP4uII7knYYE9+ymiI0xxpht21OLPuV7zz1NIpUilVFkP+G6VMeivPj5Ek7eeVKXr7ukopw75n9IIpXizF2nMHXY8O4M25g+zRJpY0ynqFsD0eeABIQOR3y5G0utuYbmdaJbiqLVP0Xr/oKU/hEJ7N65eyeXoOUzQSOAopGHYcDfkNDBm/FKjDHGmG1DVTTCs0sWk3Rdpo0Zx/Ci3CO+fv7yi0TT60S3FE0k+f6zT/Pnt97gxuNnMGXI0E7d+7PyTZx+711EEgkUePCThfznpNM4cNTozX05xvQr1v9vjOmQpsrRTSegNdeiNb/2/pz4pI2D69q7EpCE1Aq04mLUrejc/etvaUqiPVG07k9deAXGGGPMtmVjfT3H3nEr17z8Ir989SWOu/NWPivflPPY+ni8zeu4KEl1WVZdxfkP3ktlJNKp+/9j7rtNSTRANJnkj2+93sVXYUz/ZYm0MaaJqqKJz9DEPFRjzdvr/w5uBRABoqANaM0vc18keCgQytjgA2cY5FqSITGvk4HV05xEp7mda+jN1iCk1OkXX8YY09+5qnxavol569cRy+hVvumdN6mMRIgkk0STSerjcX7xyuyc1zh09BiCPl/T9z4RhhUU5EwEPtq4vlNxZSbRTdva6PU2PcHa5p627bwSY8wWUU2glV9Ey89EKy5CNx6HptZ5O1PrgczGUcHNfuqtbi2a2gjFv4HQNJA8cAZByR+g7B5a/7pJgRR3KjbJmwmEM7bkQf4ZXXuBxhhjTD8TT6W48KH7Of2eOzn/wXs55o7/sqHeG/m1rr4ua76z4vVSZ6qJRdnYUM/1x0xn2pix5PsDDM4v4OYTTuLeM85FJPshd9JVikNhOuOMXacQ9jfPEs3z+zl78pTNfKXG9D82R9oYA4A23AnxdIVtBTSKVv8EKbvFS4xjL+P1SAOEIXSYd54qWvMziDwAOODfCSm7FXFKvP2JBWj5DMBHc/GxMAT3h0DnCoZJ6FC05DqouxFIQN55SP7F3fTKjTHGmL7p1g/e4711a5rmN0eTSX7ywnP8++TTOHLMOF5fsbypFzjs93PEmHGA14v9o+ef4ZFPP0ZEmDRoMLedOrMpSf5w/TpOnHU7PnFIqdc25/n8HDJ6R3bv5BzpI8eO47qjjuXGd94k6SoX7r4HF+y2Rze/A8b0XZZIG2M8yU/ILhKWguRiACTvVDS1Aur/BbgQPgYp+r53WORBiDxKU4918jO0+ipkwE0AaNXloLUZ1w1A/vlI0fdbPQlvj5N3AuSdsLmvznQjBVwb0GSMMVvdwo0bsoqEpVT5rMIbEXb25N1YWVPNf96fi6vK8RMm8r0DvSKcd380jycWfUrCddPX2chVLz7PjcfPAODrTzxKbca86YDjcNEee/H9gw7pUtt88s6TNqvat+l+1jb3PEukjTEe/2TgSZqTaT/4JwIgIkjRt9HCbzV930gTc2juqQZIQOLD5m9Ta1vcSBDfYER8GGOMMaZtU4YM5dmli5uSab/jMGnQYMBri39w0KF8/8BDmr5v9O6a1VnzlRNuig/We+2xqrKuLvMBNzgiDC0swOlCEm3M9s4eWxhjAJD8cyF0EBAGyQffCKTk19nHiLR+Uu0bS3ZxMQd8O2Tsb7kMhgP+nbsxcmOMMWbbdNHUPTlgh1GE/X7yAwF2KC7ml0cek3VMrrZ5XOkAQhnFxRwRRhWXNB0/qqQk+xrAxLJBW+dFGLONsh5pYwwAIn4o/RukVoBGwT8OkUDH5xVciEafhtTneE1xACn5VfMBxddA5UU0Vd2Wgk7PjW6kGvWGmUsh+Hbs0rAzs3WkdNv4OxCRW4AZwAZVbVUlR0R+AJyf/tYPTAIGq2qFiCwDavEm/ydVdZ+eidoYs70I+Hz856TTWF5dRSyVYlzpAAK+jkd0XbrXPjyzdBHLq6oQEYI+H78+8tim/dcecTSXPPJAU9Xt4lCYPYcP71JskUSCxZUVFAWDjCkd0KVzzdZhbXPPts2WSBtjmogI+Hfs4jlhGHhvc6GywJ6Ik1GNu/4WvMEv6UJjWofW/xNCh6N1fwfiSP75SPjonNfX5Aq04lxvHWlNQvhoKPk9IjagxnSLW4Gbgdtz7VTV64HrAUTkJOA7qpq5APo0Vc29cKsxxnQDEelyopoXCPDQWeczZ81qYqkUew0fQXGoefTYLe/PRUTQdNXv6liUf82dw4GjRvP3Oe8Qd1NcNHVPjho7Puf1l1ZWcM4D9xBNJkmmXI7faSK/P2a6Peg23eVW+kHbbIm0MWaLifghtH/unallNFfrBohBfC5afwuN87E1Phct+Q1O3omtTteq74BbDrjp01+A6GOQd0o3vgKzvVLVV0RkTCcPPxeYtRXDMcaYbhPw+ThwVMvpVZ7PqypxM5bOiqVSvLtmFX+b+07TfOw5a1bzx2NPYPqEnVqd/62nn6C8oaGpR/uZxYuYNmYsMybu0u2vw2x/+kvbbF06xpjNpppAI4+i9begiXmt97u13lDurF81YXDryK4QHoX6f+a+SWoZTUk0gEbQ5KItjt2YrhCRfGA68EDGZgWeFZG5IvKV3onMGGOyxVMpHv5kIf95fy7zN6xvtb8mFqUwGMwqLJbn91MZiWZVCI8mk/x9zts577G8qhLN+D6STLC4orzbXoMxndHbbbP1SBtjNotqAq04HxKf4i195UOLr8XJP9Xb79aim04CdyPNibAfQocDQUgtaHHBGG71NUAEyTsdCe7nbfeNheRHzdeQPMTf+um46TmKkOo/z2EHicicjO//qaptPLVp10nA6y2Gjh2sqmtEZAjwnIh8oqqvbFG0xhizBeKpFGfdfzeLy8tJuC4+R7juqGOblqiqiUU5/s7b2dRQ39Qj7ReHo8aNx3VdFmzakHW9aDLJz2a/QDSZ4Ixdp7DfSK+Y6JjSASzcuKEpmc7zB5hQNrDHXqdpzdrmJj3WNvebd9sY08fEXoDkZ3hLXyWAKNT+vGm+FZGH0kOyE83nSAnOgJuQgguAcMbFgpBaDZG7IPIgWnEpGn3BO6X0j+AMTPdshyB0NIRP6olXaLYNm1R1n4yvzWmoAc6hxdAxVV2T/v8G4CFgvy0L1RhjtszTiz9jcUU5DckECTdFNJnk/2Y/37T/3gUfUR5paFpfGqAsL48bp8/goj32Iuxv7mML+Xwsr67izvkfcP/HC7j4kQeYvWwpADceP4OB+fkUBoOEfH6On7ATJ+5kK3KYTtsm2mbrkTbGtEsTC9CGOwBF8s5FglO9HW4VqNvi4Bhez7EPdevISqKBxuHcEtwTyv6N1v0VNA4ShvjrNFX2JorW/QkJH4X4R8PgFyC51EumfaOtmInpUSJSAhwOXJCxrQBwVLU2/edjgWt7KURjzHZm3vp13Dn/Q1SV83ffg6lDhwFQFY2ScrPb5vpEAlVFRKiNx0ikUln7oylvOPe+I3bgPyedxl/nvE3CdQk6Dq+vXNHcMieT/PHN15k2ZhxjSwfwysWXsriigqJgiB1LS7f2SzYmS19omy2RNsa0SeMfohUX4vU6g0aehLL/IMF9IdhyNQE/BKYg4i3LIeFD0fq/0zwXOgShaU1HS3A/pMx7SOhW/xiyZluRTsrTx0oYArt23wszW8zVbWNAk4jMAo7AG2a2Cvg5EABQ1b+nDzsNeFZV6zNOHQo8lH6o4wfuUtWneypuY8z26721a7jgofua5jM/vuhT/nfaGew9fCT7jdwh62FzwHHYY9jwpm1H7DiWf703p+nckM/P0RmVuQ8cNbqpQNl3n32yZctMLNU8hzrsDzBlyNCt8RLNZrK2uWfbZkukjTFt0vp/0JhEe6Jo1ZWobzj4x0DxL6H216A1EJgKJX/Grb0Bos8CPnCGgrsGcCB8LFLyS1QjgD9rjWrJOw2NPEFz0p0HeWd1LsbEp5D4EJzBEDrclsUyXaKq53bimFvxluLI3LYUmLp1ojLGmLbd/M5brYqCffeZJxlWWMS4AWX8ctrR/OrVl6mNx9hr+AhumH4iv3/jVZ5fugS/4zC0oJA1tTX4RDh+p4n88sijiSQSBHw+/E5zG3rGpCk8vXhR073y/H7O2nW3TsX48cYNzFu/jiGFhRyx41gbSWa6pL+0zZZIG2PaptHW29w14K6GxAcQfxMZMhuRPG9X9TUQeYDsitwAeRDYG634MiTmAor6dgHfaJCUlwhLHkiJ9/+8M5GCSzsMz408BtU/BQREILg/lP7NkmljjDHbrGhGr3CjVTU1rKyp4YN1a3lz1Qpe/+KXCfu9B9Y/ffFZHvrk46zkG8Dv97PviBFc+ND9vL9uLarKpMFD2LGklITr8uG6teT5/ZSGwuQFApw7ZXe+tOfeHcb34McLuGr28wjeGtgHj9qRv594siXTZptjibQx2yBNrUXr/gFuBYSPx8k7frOuI/nnovE5ZCfGjQO9kt486fi7EDrM2xR9kNZJNEAE6n7vzYduXFM6tdD7ygo8D0quwsk7rsPYVDWdREebw4q/DfHXmuMxxhhj+ojVNTX8bc47VEUjzJi4M9MnTNys65w/ZSofrFublRg3tswJ16W8IcLctWs4eNSOADz48UJiLeZFA0SSSX7z2itEkylS6UKhCzZuYMHG7MrdYb+fa6cdxdHjJnQYW8p1+emLz2Xd7/WVy3lj1YqmeIzZVlgibcxmcF2XdZ9vwB/wMXjUoD71lFVTG9FNJ4PWAi7EnsWt/hH4d0BKfoMEdu/ENdZ4SankQ/G10PBvcBPgrqApEQbQJNlzm33tXLSuE9FHoO5PaHAq4hvWwbExIN56c2pTJ+5jtoRCf1piwxiznVB1IbUKxA/O8D7VNq+rq2XGrNupjcVxUZ5esoiQz8/okhKuP2Z6p+Yar66p4a3VKykMBrnmiKP4z3tzSLouy6urmhJhgKSbIuNbfI4DORJpgNp4jna0hWgyyfVvvMbuQ4cxpKCw3WMjySRJN3tmtQAb6xs6vI/ZMtY29zxLpI3povrqen5w1DWs+GQ16ipTp03hmod+QCAY6PjknhB9FLSB5rWbXSACyUVe4bBBT7ebpGr8Q7TyovQ3eAn4wPsQycMtnwmJ+RlHx9DkWiSU/rbgK1D3V3L3SndSaqm3/vSgx9qNUySM+sZC6nOaXqu6EOz4QYExxphti7rVXhuXXAa4EDoYSm/KqsfRmx76ZCH1iQRu+uGzq0okmeDT8k2c9+C9vPCFLzK4oKDN8+euXc1FDz3gfSMwpqSUR865gKDPx0l338HCjF7keCrFmtqapu+/stc+/GPuu0SSrYeEd9biinKm33kbT513EUML206mC4NBRpUUs6K6ummd6pQqU4d19HDcmP7HHlsY00V/veJWli1YSawhTjyaYN5LC7jnd4/2dljNNEFzEt1yn0B8TvunV//ES8S1AWiA5HJouMfbKYNbnxC5r+mPUnAZFP/CW+s5dAwED6XdXuo2g6hD62/P3pT4BLfiy7jlZ+LW/9dbyqPs3+AbBzhe73nJ9Yi/46Fnxhhjti1acy0kF+MVyIxB7A20/tZejqpZIuU2JZatKLy7ZnW751/53DM0JBPeVyLB0qpK7lkwHxFhYF5ey8txz4Lmh96X73cg1x5xNMeMm8Cx4yZw2Ogd8XWxt16B2liM/837IGv7wo0buOSRBzj93ru49YP3UFVuO+UMxpYOwBGhIBDghuNOZGzpgC7dz5j+wHqkjemiT99dTCLW/FQ3Fonz6TuLejGiFsLHQv3fQCOt94l6CWcbVJPgbmyxNYam1iEATjjHNTOqb4sg+adA/ilN29z1+3hVvZuPwnuGp4ALzo7gbgIyVy9IZZ2jyRVoxTnp5B5IfIa61ThFVyCDn0Q1TnpVBNMDFCGlfWfIpDHGkPgISGRsiHqFLPuI4ydM5B9z38nZK6woBYG227Ck61LekD00OppMsq7OmzKVn+PckL/5I76IMHPXyczcdXLTtt3+dhP1ieZh3U76OMXrLR9XOoB1dXU0JJvf05QqtfHmpSmXVlZw1v1305Dwjvl000ZqYzEu3/9AnvvCJcRTKQKO9dn1FGube579dBvTRTvuugO+QHMvazAcYMyUUb0YUTbxj0MG3A6BvUEGkNUjrC7q3znneW79nej6qaDVLS6YhwS99Z6l4MtA5pPvMFJ4efsB5V+YcY54ifzAR5GBDyCDX8MZ8hwUfAHITNLDEJqONtyPW/MrtOb6rHWlIQINdzZ/m1qHbjoRXb8L7oYD0djb7cdkjDFm2+IfT/YIqBD4N6+Y19aw08CB/O+0M9lr2AgGhMNZPcKqMHHQwJzn3frBe0z+6w3UxGNZ2/P8fvYfuQMAX91nf/IyEuew38/l+x7Qbjxf2H2PpnMcEfKDQZ487yIeOvt83v7SV3n+wi9y/u5TW133uHETuOejefzildn87vVXswqeRZJJbpv3ftP3q2trOPaOW5lw0x/Z/99/553Vqzp6m4zpV6xH2pgu+uZNX+KzOUupLq8FVXbYeQTn/XRmb4eVRYJTkYGz0ORidNMpNBcIi0PVN2DQw1nHa/x9qP0t2U/zAfxQ8DUkfKR33cBkGDgLbbgNNIXkn40E920/lsLLUacMok+BMwAp+g7iH599UGg6NMxKL7cVgMLvQOQuNPY63jA9P62Hq3sfQlRdb16cuxZQcMvRqq/AoGc6UbDMGGPMtkCKf46WL0w/DFbwT0AKv9LbYWXZa/gI7j/rXD4t38TJs/7XVCAslkzw9Sce46Gzz886/p3Vq7j+jVdJuNntX8Bx+Nb+B3L4mLEATB06jLvPOIfbP3yPpKtcsPtU9h4+st1YfnDQIQwpKOCpxZ8xMC+f7x90COMGlGUdc+JOO3PPgvlEkkkCjsMPDzqUWz54jzdXrSCSTOIXx1tBI4OTbptTrsv5D97L+ro6FNjYUM8XH32Q2Rd+qd254Mb0J5ZIG9NFA4aW8p+Ff+KzuUvx+X1M3HscPv9mzAPuCfH38P6ZNybILiQ/QTWOSLD5uMQHtE6iHWToR63WZJbArkjJbwHQ5ErciksgtQICeyLFP0ecouzjRZCCC6DgAlQVjTyI1v4OnEFI4TdBCqHyooye8BQ0/APcerzK3AAth8KFoeBL6Ze0EdxysqqHawqtuAB1BiOF30JCB3bu/TKd5tqAJmNMHyK+oTD4aUgsAPwQmIJI32yb56xZjc9xmhLkFDB/w3pSrutV2E57f92a1ms/i/DxN67AaTHHebchQ7n+GG+py+VVVVzw4H2sqqlm7xEjueaIoygMBrOOFxEu3mMvLt5jL1SVexbM51evvsSQgkK+vf+B5PkDXPjQ/U094SlV/jLnbepiMaLpCuBJzU7ww34/X957HwDW1ddRFY1mreuRcl3Ovv9uBhcU8N0DDmb/HfrOaL5thbXNPcsSaWM2QzAcZMrBu/R2GB1zykAke4UqgrScT6zJFstaAUhxqyQ66xy3Dq04C9xKwIXUejS1HMrubXPJEa3/K9T9E6+X2UGjz0HJr1vc2wW3gfaLlAUh77z0ayymdW913EvuUyvQysug7FYkuFc71zPGGNPfiYQhuHdvh9Ghsry8Volwnj+QlUQDLKuqomV5suJwuNW5mWpiUU6/9y6qY1FcVdbV1bGyppp7Zp7dZtv8x7de55b35xJJJvGJ8NzSxfxq2jFoxt1dVWpj8TaX0hK84ebnTZkKQEkoTKpFT3oslWJZdRXLqqu45NEHmXX6WUwdNrzN12JMX2ePLYzZloWmgX9KusBYCAhD8bWtG9P4W63PDUxt/9qJuel5y40NZRwSC9C6G3Hrb8et/Bbu+r1wNxyMG3naO6T+33hJNN55GoHEvPR61JlckDza/BUlSST+ivdHyYOi73uvjRCNQ76bRdHIPe2/FmOMMaaHHDNuArsOHkJ+IEDI5yPs9/PrI49pddzbq1a22rb38BHtXvvd1atJuKmmCuFxN8UHa9dww9tvctuH7/O1Jx5lt7/dxIH/+QfPLvEKpTYm0eD1PDckEszfsI5ki0TYVZc8vz9nIq94y269umI54C2D9d0DDibP7yfk87VumZNJ7l04v9V1jOlPrEfamG2YiA/KboXYc5DaCMG9kMCUzp3sG9rmLm+I9rOg9S32JKH+r41Hpf9XB9VXor7h3jrP2Vfyes3DR0PsRW+OtIQg70wk/yK0+geQXApa1eq0zOHeTsElaGCql8jX3wJuy2VE7FedMcaYvsHvONx1+lk8s3gRmyL17DN8JJOHtG5zcy2WNbSgKMdWj6vKM0sWUR+PZ21PqnLjO282JbMK1CfiXPHMk9w98+ymudpN91VlSEEhR4wZx8vLPieaShL2+Tlvt905f7c9+O6zT/J5VSVV0WirGBJuc2/1Zfvsx94jRrJg43r+OXcOa+tqm/YJ4OujQ++N6Sz7dGnMNk7ED+Hj2z+o4ItQ8wugsVEMI/lnt3m41v0Zoo+Su5nPtS2Oxl6B0BFeUk8Sr4J3AAkdDfkXQexpSC4D/84QmubNrR54NwBu5Tcg9mo6PgHxQ/CQ7NcZ3AuCe6HOQKj+UcZryUPyL2j/9ZsuUYWU2oAmY4zZXH7H4cSJuVfRaPSlPffmN6+93NRbnOf3c86U3do8/vo3XuWxzz7J2QpD69a5sQd52o5jeWHZUpKuiwABx8fR48Zzwe578OSiT1leXc2kQYM5cuw4AB44y5tademjD/H6yuXEUikcEfyOj4NHjc66xz4jRrLPiJGUhvP48QvPNs35DvsDXLB7ByPfTJdY29zzLJE2xuDkn4lLECL3gISRwm8ggdyNtcZegfq/kzthbkvAKwoWexFvPrR42wb8G/F7y3e0l+xL6R+9AmWxN7ye8qL/g9QSNP46BCZnVQF38k5AJQ+N3AsSQgq+ggQmdSFWY4wxpvddsPse5AUC3LNgPvn+AN/e/0B2HTwk57EvLl3CP+e+26WWOej4WFtby0vLPyeVTqKDPh+3njqTEUXFAMyY2HY9mJtPmMFvXnuFN1auYERRET8//Eg+3bSJDQ317DZkaFYV8FN2nkRhIMjdC+aTH/Dz1X32Z+LAQV2I1pi+xxJpYwwATv4pkH9Ku8e4qSqo/CZdS6LxhmvHXqO5CjeAIvH3OlUYRiSEFP+fd5YqWv0DNPY8IF6F7pLf4OSd2Hx8eBoSntbuNTX+AVr1bXA3gG8MMuCviH9s116XMcYYsxXNnDSZmZMmt3vMpoZ6vvHUY11tmQkH/MxetpRYRvEwBd5ft5a9OpiLDV6v8jVHHOWdp8q3n36CF5ctRfDmWv/hmOkcv1Nzr/tR48Zz1LjxbVzNM3ftai5/6nE21tczbkAZ/5hxCmNKB3TxlRnTM6z/3xjTKRp7GTYeRvOQ6UxtVxD1TgbcmhYbE6hb6SXGbiWq8VxntpZ41xserg3pOdpRqP4Rqq2riLYZjluBVn4xvfZ0ClJL0YovoNpyCTCTm+D2ky9jjNmWvbB0CYf+999ZyXCjjn4DinpVvjMlUimqohFUlcpIhHiO6+byxqoVvLhsKQ2JBPWJBNFkku8993Srdabbs6mhgYsffoB1dXWkVFlcUc75D97Xqvq3aUvvt7nbW9tsPdLGmA6pW4tWfYvcSTR03EPdkGNbAIK7oZuOh9RKQNGi7+E0rg/dltR6Wj8DTHlJtRR3EEda4uMWGxTcWkitBf/onKcYY4wxfUlVNMK3nn6cWKrlyheejlrmukS8qbp3I7/jMHnwEI7+339ZVVMDKD88+DC+uGf7o8fW19W12pZIpYgkk+QHAjnOaO2jDeuzKoIrUBmNsK6ujpHFnWzfjelB1iNtjOlYaiXtr+vckRCZVbYBcIZC3X8gtQxIePtrb0Tj77T/BDswGbJ6nwWcISBtVzJtxRnQ4hp493esoTbGGNM/rKiubrX2dFeEfb5WFbtHFhVz87tvs6K6ioSbIuG6/OHN15izZnW7bfNuQ4ZlJeWSvlZnk2iAAXl5JN3se6Rcl+JQqNPXMKYnWSJtjOmYbzhs0bDnHOdKCJIf07wONUAcrbgUXb8rbvm5aKq89Wn+cVByHd660X5whiNlt7ReG7s9/knekluSDwSBPCi4DHFKu/KijDHGmF4zoqiYRCeHXucSTbUeMh32+/l008asBDuecvnCQ/cx8eY/cfb9d1MRaT3KbKeBA7nuqGMJ+Xz4HYcdikv476kzuxTP7kOGcuTYseQHAgR9PvL8fr61/4EUWSJt+igb2m3MdsRteATqbwRNQv45SMFX20xANbkU4u+CUwqhI6H4Gqi5Gq9nuuX60e0RWvVGA+SdAQ23gbsuY2Mq/QUk3kfLz4Cy2xH/qKxTnbwT0PB0b560FHQtiQbv+JLfe1XEUyvAPwkJHdCla2zPFFtiwxhjussDCxdw4ztvklKXC3bbg8v23rfNdm1xRTnvrlnNgHAeR48bzzVHHMXVL72IzxHqE51/4O0VBGudSJ81eTf+NucdNjY0t/MpdWnM1+euXcPp997Fnaed1Wq49ck7T2LGxF2oj8c3K/kVEW6cPoPnly5hRU01kwcP4YAdRnV8ogGsbe4Nlkgbs53Q6Gyo+T+a5jnX/R0lgBRe2vrY2Mto5eV4azYLOMO84dC4QCeLgjVfLcc2H1LwRQjujlZeCvhAY3gJd+PxLrir0fKToOwOJDAl6woiDkhhF2PJPF8gfNRmn2+MMcZsqeeWLOZnLz3ftFb0Te+8SdDnyzkn+YXPl3D5U48jeG3Y8MIiSsNhXJR4Ivc86bYoeAsPZwg4DhdN3ZOdBw7i0scexidCPJUi4aaaW2ZVVlRXM/3OW7n3jHOY1GI5Lkdki3qQRYRjxk/Y7PON6Un22MKY7YRGHyG7WFgEIg+h6uLW/Qu3/Dzcqu+gqdVo9Y/Tx0a8Xt/UUkjMxUuiu1o9M0T2M7sQhI5BRJDgvsigZ5CSX0PBV/CGa7cMvAGt+UUX72mMMcb0fQ9+sqApiQaIJJM8+MlCUq7LX999m7Pvv5srnn6CNbU1XPncM0STSSLJJA2JBEsqK5i7dg3xVKrrLXN6CHbz935O2GkiIsKBo0bz3Bcu5rqjj+PSvfYh7Gvd71afSHDtK7M392Ubs02wHmljeplqHJKLgCD4x3s9rVuDFOAN5sp4Au3kozXXQuRBIAoJB429nl5WqjsEofAyCOwDNdeAVkHwcKTk6uawfMPANx1CR6HxNyAxj6bh3Y3cim6Kx3SXlD2HNcZsw2LJJIsqygn5/EwoK+vyFKLOKggEW7bM5AcCXDX7eR799GMiySSOCK+tXE51NNIt9wz6fHxzvwOYOnQ4V7/0AjWxGNPGjuPaI5pHaY0oKmZEUTFHjxvPayuX89GG9a0qfG9qyLUih+lN1jb3LEukjelFmtqEVpwDbjmoC8E9YMC/EAl2/83Cp0HkAZqb6yAUfBeqvkTzHGYXiIFvJKRWkXNuc5MQSJ6XHLel4Os4hV/3/jz4qXbDEwlA2R1o1a8gdjfNPd8hCE1r91xjjDGmu6yvq+PM+2dRGYngqrLPiJH8+6TTCPi2ZPWK3M6YNIWHP/24qSJ20OfjuwccxBceur+p4JerSjSZZFRJKatrqkm2Uz077PMT8vuojsXaPOaK/Q/iq/vsB8DzF36x3fiCPh/3nnEOP5/9PPd9vKApmQ75fBw9bnyXXqsx2xp7bGFML9Kan0FqTboHOALx99H6/3b/fVTT86MzCfjH5D4h/3zwT/aOwaH1M7eQVym76LvkHI7dpPW60xp7BXfTTNxNJ+HW35m9nEZqPcQeJmv4uDMEKfp+O/cwxhhjus+PX3iWtbW11CcSRJJJ3l2zmts+fL/b76Oq/HT2c1lzlR0RxpQMyHn8xXvsya6DhzS3zC2Wvgr5fPzv9DP4zgEHE/a33VeWa93pFz9fyql338EJd93O3R/Ny2qb19XV8sinH2f1SA8vLOK7BxzcyVdqzLbJeqSN6U3Jz8ju9Y2ml4TqZlrtVafOTFAlgCQ/RPPOgMgjQASvaQ56y0Ol/kbTs7bAHpBaDgiEjkQKLkT8E9DAVG9YePIzby51Fj/iDMoOI/4uWvlNmhLs2t+hKFJwgbe/8jKgxXXcdWj8QwjuhUj39waYrlMEV7fOMEdjjOltiyo2ZS3/FE0mWbhpQ7ffZ1OkgdW1NVnzm/2Ow/wN65k5aTKPffZJ09DukM/PzgMHs7KmGp8IKOw1bDjLqqoQgaPHTeDiqXsyvmwgUwYP5cFPFrK4opyGFpW8A47DwLz8rG1vrlzBN596jGh6rvYvXpmNqnLublMB+OIjDxJtsczW6toa5m9Yx9Shw7doLWvTfaxt7nmWSBvTm/w7ez3STcl0ON0T3M0kn9bVs12QYqT456hvJMRmgzMUir4H5WeCVjYfmpgDA27HabFElEgQyu6C+Bto/a0Qn4OXJIu3TnT46KzjteE+WhU8a7gT0ok0qc9zBJ+AygtQimDg7Uhg1815B4wxxphO2XngYNbX1TUNoQ77/UwZPLTb71MYCLaad+yqUhIO86sjj2GH4hJeXv45I4qK+P6Bh3Dy3XdkDdl+Z81q7pl5NvuO3CHrGiG/n/vOOIfXVi7nlvfnMnfNGqKpJJLe13JI9qyP5jUl0eAVPPvfvA+aEullVZW0lHBdzrzvbopDYe6aeRaTBg3e0rfDmH7HHiEZ04uk+Frw7ZBOdMMQ3BspuLj77yNByDu/xcYhEDwAER9O4WU4A+/GGXAD4hR6PdgtVX0XbXgAt+Fp3E2n4W46FTf6PCJ+JHQYMuBfUPhV70FA8FAouwckH9WMp+ESxBsunhlHoPnPTlsfVBSoQcsvQnOse2mMMcZ0l98cdSwjiospCAQI+/3sP3IUF07ds9vvkxcIcO7k3bK2jSwqYp8RI/E5Dt/c7wDuO/Ncbpg+g6DPT22s9fKTlz/1OA98vIDHF33CSXf9j5Nn/Y8Xly4h4PMxbcw4/nvKTC7be1+mDB7CEWPG8uCZ5xH2+0lk9DCH/K1He2XOBx9SkHupSQWqY1G+8OB92dO0jNlOWI+02WKrFq3l4ZueJNYQ55gLD2f3w6zHsLPENxAGPQHJJV5C6RvXYWVQVYXYs5BcDoGJSOiIFvuTkFoGBME3qvl6sWeyL+SuQTcdh7rVENgTKb0OcQaAFJFz7Wfd5M3pJiMxrvoGbsmfcPJOQMSHFH4dCr+OJleilZegqbXeqUVX4RSci+RfhEYfA42m7xFGCi9vfj9K/4xWXAjEyL3MVi24lWhygVfd2xkBeScjYr/KjDEmkyaXovX/A+JI3ulIsPW6xCa3wQUFPHvBJSypKCfk9zO2dECn2uanlyxieVUVkwYN5vAxY7P2J1IpPq+qJM8fYIfiYkQEVeWZJYuzjlteXc1Rt/+HmliMvYeP5PpjplMSDlMaDqM52uYNDfX85IVnSbjNbeaXH3+Yv5xwMtMn7ITfcfj2AQfx7QMOYnlVFRc+fD/r6moREa45/CjOnrIbX9xzH55ctIhI0mvfw34/39r/wKbr3XzCSXzhofuIJZM5W+aqWJSaWIz31q1h/vr17FBczCk7T7Ih32abZ58+zRZZtWgt39jnh0Tqoqgqs2e9xlX3fJcDZliD3VkiAQjs0qljVRWtvhKiz+IltAE0/xyc4h97+1Ob0IrzILUBSEHoUCi9CYiD23J+Vzw97xmIv4puOgMKvgDB/SB0EsQezRFBosX3CrW/hbwTsrdWfjVd9Tvd5Nb+Bg1ORgK7o0VXQsMsIACF30LCzRW5JTgVhsyGxHy06oocy3AJ2nAHNNySTsbDEH0EBvx36y0bZnKyJTaM6bs0uQQtnwkaARSNPAYDbkZCh/V2aP1G0Odj0uAhnTpWVfn200/w4rKlxJNJAj4/F07dgx8e7L3fG+rrOOv+u9nU0EDKdZk2Zhw3HT+D+kSCihZLWsVTKZZXe6PCXlq2lNPuuZMLdt+DA3cYxfETJvLk4s9a3T8ziQbvMfVvXnuZ6RN2ytr+pcceZFVNdVM6fs0rLzJlyBAmDxnKlQcdyt0L5qWrhh+c9SBgr+EjePniL/PRhvV848lHs9a9Bq9A2r/em8N/P5hLNJkk7PfzyKcf899TZuJspWXDTG7WNvcse7fNFnnoxieakmiAWCTOLT+9q5ej2oallkD0GbzCYEka5xhraiMAWv1TSK3EK9gVg9gLaN0NQDg9fLwtSXBXorXXo+XnQOhICM2g1TDsXDTmFRGLPIImF3tDr1OLadmjrJHHccvPh5pfe8XJkkug7qbsod+AOGVI6HAo+CbQYrhZ4Y+h/h9NHw4hAokPIf5ux3EaY8x2Quv/m/F7EiCK1v6pN0Papn2yaSMvfL6EhkSCpCqRZIJb3n+PiohXPPMHzz3DqpoaGhIJYqkUzyxZxF/efYvCYJBgO0tqJVVZVl3Fb19/hZn3zeKkibtwwoSJnWmZiSWTvLVqJQ+ni44lUik+r6zM6tMW4JFPP+bs++7m16+9xKflm1hUUc4N77xJskVyPig/nyPGjOUb+x7gFTvLcNWhR/Cv994lkkx6LXMyydy1a3hv7ZrOvYHG9FPWI222SKw+1mpeTDzastfSdBu3EsSfPfJa/Ok5zYMhuQDIrKypUP9fKPw2UnojWvkNEB9oPH1cdhVOr8c5AbVX4wx9B9f9BWw61lvnOueALkDK0IpL8J7LKRRfC1LSYn1pFxruoHWF8iUQexVXo1D7S6/yd/AwpOQ6pOCLqDMQIvcAPij8JhKYiNb9rkUADmhNp94+Y4zZLmQl0Y3bWi9HaLpHVTTaaimqgM+hOhajLC+fjzduyCoqpsA/5r7LN/c7kJuOn8E3n3wMv+MQS6VwXbfVOtEJ1yXhulw1+3ne/fLXqI3FOOr2W6iIRloVK2tUFApxySMPIOn7/fbo4ygMhqiNNxcrS6ly24fvZ/VoR5NJPtu0kddWLKcmFuWXr7xEQzLBUWPHcd1Rx/G1ffZjcH4+9y78iKDj44oDDmJ0SSm/ee3lrPs7ItS0s5a1MdsCS6TNFjnmwiN46Z43iEW8AhjhghDHf+nIXo5qG+bfheyBJOL1NPtGe986g3IM4U6CuxEJHQKDn4HkJ6iUQc3VkFxMrrWeG4dUO04BWna3N5w8uRT8Y8GtSfc4A759IDWXrA9sNT8EZ7j3QU4CgAsao3XSDhBBq67EmxOdbnBjs9Gan+CU/hnJPxXyT20OSxV8o9JzwBuvp97yXKbHKOCqDWgypq+SvNPR6HM0/37Pg/yzezOkbdqug4eQOYLLEaEoGGKHomIAyvLz2RTJXtoxnkpRHmlg2phxPP+FL/JJ+UbKwnn8dPZzLK2szKqi3agunQQXhULcd+a5fO/ZJ1lWVcX4sjIqGhpYkq6uvd/wkby7dnXWo5QrnnmSEUVFxFNJAo4PFyWWTGYt89WoIZnkO888QTSZJJYuSvbsksX4HIc/HnsCZ07ejTMziqS5qowoKmZ5dVVWYr/70GFdeyPNFrG2uefZu222yNQjJvOTWVcwZspoRu40nPOvOoOzfnBKb4e1zRKnCCm7HXw7AgHwTUDK7vSqcgMUXpHrLHBKvD/5hiGhI3CCuyMDZyFFPwD/PmQP4fZDYC80+izuxiPRirMhMAUZ8hrOwLu9Yd8EQQog9QE5C5O567wK3UVXgX9PcifRjWpoSqLB+3Ps5ZxHighSdquXOEse+EYjA25FfLbshjHGNJLQwUjp9eDbyWsvir6F5F/U22Fts0rCYe48/UxGl5QQcBwmlg1k1syzmipff2f/g1qd44hQHAwBMLyoiGljxjF12HDuP/NcrjzoUPYaNjy7ZXYc9hu5A08u+pTDbv0XZ94/i72Gj+CtS7/KPWecw5FjxxP0+SgIBHlv/dpcLTNra2sJ+/1cffiR7DF0eM4kulF1LNaURAPEUile/HxpzmMdEe48/Uz2GDacfH+AsaUDuOO0MxmU396UMmP6P+uRNlvsoJP35aCT9+3tMLYbEtgVGfwcAJqYj1b/CHUrIXQ0UvQdNHwaRJ+ExgFdRT9CJK/1dSSEK2FIfkR2MpyExAdo1Xs0FRdruMc7InQUNHhVYL3h4W1JXy+xGBKvd/1FtnNt8Q1FBs7q+jWNMWY7IuHjkPBxvR3GdmPKkKG8dNGlAGj8Q7T2MtyNVRA6lmPGfZuTJ+7CM0sWNVXr/vnhRxLyt/4YHvYHCPp8fLxpY3bL7Lq8s3oVb61a2TQU+475H+KIw8GjRnPH/A+Jp1LEU20/uFa84dyflm/kjVUruvwac/WSNxpWWMT9Z57b5Wsa059ZIm1MP6XJ5WjFBem5cEDDHajWICXXQd6pkFoDgUlIoJ3lyOr/Sc6h3bSc1xT1knPfKNqcK90qwBhE7uvcsa2kUI3kfABgjDHG9FWaXIpWXpjRNt8OWsefjvs5b6xaweqaGnYbMrTdiuB/n/NOq8rYQFYPMXiJ7WOffcKg/PxWxcHaEk+luPujeZ1/QRkS6US9vQJpxmxPLJE2pp/R1AY08hDE34KsitdRiDyGlPwSQge2eX62TibFAOR5c6TbHaadKYU3bDsXB68ity8dg0t2ITIHCHQhNtOzhFSn6sYaY8z2YX1dHQ98vIApBY9wcFk84zdkFKKPICVXc/CoHTt1rbYHXLeW5/czdsCAnGtM55JyXWrb6LV2AJ/j4KR7zV3VrMJnPsdpVVTN9CXWNvc0S6SN6Uc0tQ7ddDJoHdmJZ5p08Z90/iVQez3eclodkBDqn5r7vjm1lXAXQP7FENgdEm97vdyRuyG5DK8nPA8KL0W6+lqMMcaYXrC6toYZd91OfSLBF8avZt8SJZTVadu19uySPfbiD2++lrNXuqWQ38few4Z3uke6rXnRhcEgX95zb3YZNJh316xhdEkJ/5v3ASuqq4ilUuT5/Xx93/1tXWhjMtgnVWP6Ea2/DbSWNpPUgkvbPjexEBLvgzMEQkch4iD556MShvq7IPVR+zdPrYC6mzc/eICSG3HypqNuBVp+VnpZLQVnNBR+E+JzvDnbDXfjug1I0fcsoTbGGNOn/fu9OdTG47iqPLJiJ7426X0ciRFwlEjST7D4a21W952/YT0frFvLsIJCjho3HkeES/bYi7xAgFnzP+SjjS1X4sj2eWUVf53zzhbF/48Zp3DMuAlsbKjnjHtnURmJ4KKMG1DGt/Y/kHdWr2LBhg38b94H1MfjfO/AQ/BZz7Qxlkgb05epxiG1DpwyxCkEraTtnt4QEmxdGRTAbXgQan6ePlfAPwEtuwfHCSP5Z+AmF0FDB4k0MUh+vPkvRvKRwE4AaM2vvDncjb3bqc8h8THE36ZpznbDXSgOUvwDNLnEWwM7tRyc4ciAG5HAlM2PxWwRW2LDGLM9iyWTrKurY1B+PgXBIFXRaNOyTxWxPGY8ewZf3uUDykJRXl63E1868ER2K259nXs+ms/VL7/QdO4ugwZz7xnnEPL7OXfK7nyycUOHiXQ0leSTTZua1ovuqnx/gJ3KBgJwzUsvsrautql3e1H5JsaWDuCd1auaesdv+/B9/I6P7x54MJ+Vb+JrTzzKiuoqRhYV85cTTmLykKGbEYXpDtY29zxLpI3pozT+IVr5pfQ86BRafDUSPh6NPEnuAmGOt6Z0y+uoCzVXkTUkO/kxbJqBDn4CEgvTlbg7EoLAFEjMo1NDwbMIqKLVP0UDkyHxSXY8xLze8qzXFYHII7gkoeEumgqguavQiotg8GzEyfHJxBhjjNlK3lu7hi8++iDJlEtKXX515DHM2GlnnlmyqKmq9YZoAb/64GAAwn4/3wq0rvmRcl1++uJzuBnp7/wN6znxrtt54rwL+XD9OmYtmN9hPCGfj92GDuXdNauJpTo79coj6f/84Lmn2W3IMD4t35Q1RDyWSjF37eqsIeaRZJIHP15AfSLGnfPnNVUJX1FTzfkP3cerF3+ZolCoS3EY01/ZYwtj+iDVFFr5ZdAavKQ1DjXXevOJi3/uDc8mgFesCyAMoQPAP6H1tdy15JzX7K5Aq69BYy/n3p/F563ZXHg5UvrnjPt2VhBIQeI9aLgH3I1kP8cLg2946+tquVfxtFUVcSD5aRdjMMYYYzZf0nX54qMPUhOL0ZBMEEuluGr280woG8jPDpvGkIICAo6DLz2POM/v57DRYxhbOqDVtZZXVWUl0Y2WVlXyy1dfYvbnSzuc9+wTYdyAMi7f7wBumH5C0307K+DzkUilmLt2DXd99CHlkQZ8GcWqwn4/wwuLWs2LXl9fx+0fftBqqS1VZVFFeZdiMKY/sx5p02WqyvP/e4VP5yxh9C4jOeHLR+EP2I9St3IrmpfOaCR+SC7CyZ8J+TO9nubIQ2hioTdkOu9MJEcjKqmNKA45K3RHH4bgEUCInMlqkxSkVoG7HglPQ8vugYqL8ZL8zlTxjtM86CwOKtnxOIOg5HdQPjNdSC2F9+vJSZ/bgibAaf3BxPQcqwxqTN/itQkPo4kFSGBCuk2wtrk7bayvb5U8+h2HRRWbOGfK7pwzZXdSrsv9Hy/gk00b2WXgIM7YdUrOtrk82tDmcOx7Fsxn2pixBB2HeDvJdEqV5VWVrK+r59jxO3HvGedy4cP3EUkkOrUmRyKVam6ZU95v9czkfmhBIdcfM51T77mT+niclCp+x0EQEm7rtj/hupSGw524s9larG3uWfYb1nTZHy79Gy/f+wbR+hih/CCvPfw21z19FY4Vnug+TimtBoxoMr2Os0fEgfyZCDPbv5ZvJN4/9RwJKUlIvAPOQHDXdBBUBK2/A3WKILkICi7y1ol225+/lQ6+xfctkna3HHE3wqDH0YZ7QBu87Q13tr6U5EH4BCRH77sxxmyvtPqHEH0WiKCRMESfhwH/zpnEmc1TlpfXalvSddmhuKTpe5/jcPbk3Tq81qjiEgI+X6vEvPGac9asoSw/n3V1de1epyGZ5I557xP2B1hcWc6X9tibuxbMY1NDQ4cxtGqZW8Syob6OykiEp867iHsWzKMhkcBV5X/zPmh1rXx/gFN2mcS4AWUd3teYbYUl0qZLKtZV8uJdr5KIeUOBYw1xPn7zMxa99zk77zO+l6PbdogE0JI/QPX3vJ5oTUDBRUhg16zjVLXDD0niG4wWX5suNpbZM9x4kUjr3u+2RDLmUsdeoGvrULcnhiY+xgnujRR9ywsruRKN3J0RbgD8OyGF34LQtG66rzHG9H+aWgfRp2l+SBmFxBxIfgKBSb0Z2jYl5Pfzx2OO57vPPUXAcUi4Ll/ecx92GTQ467jOtM3DCou45vAjufrlF4ln9Aw3qk/EqY13rnzYfz54r+nPzy9Z3KlxYp0RT6VYuGkjew4fwRUHeHO+l1VVMuuj+STSPeVBn4+dBw7i2/sfxLQxY7vpzsb0D5ZImy6J1sfw+XwkMubUOj6HaF2u4ldmSzh5R6PBZ7zeX9/wrB5YN/IE1PwMtB4N7IGU/gXxDWz7Wvmno6FD0Pg7UP0Tmot6BYDEZka4uUm0Q+sechdib0LBBU1bxD8Kyu5Aa671lskKHYEU/RCR4Gbe1xhjtlHaAOJr8ZzU1zy6x3Sb6TtNZOqw4SyqKGdkURHjy5rb3kc//ZirZj9PQyLB3sNH8LcTT6Ysr3UR0EZnT9mdI8aM481VK/nJC88QTfcIBxwnZ091Z2xuEu0AjgjJjHWmU6q8tWoF5+82tWnbmNIB3HX6mVz98otURiMcPXY8Vx58GEFfV2unGNP/WSJtumTomMEM2qGMtUvXk0q6iCMEQgEm7GVPIbcG8Q0D3zAA3IZHIfaUtyP2Gk09D4l5aNU3kYGzOrjWECRvBuobhdb+EtxqSFWw+Yn05hBvPrRvJ0i8nr0rx9JaEpiCDLy3h2IznaUqtsSGMX2Jb7Q3RScVw0ulHJAw+K03emsYXlTE8KIiVJUHP17AU4sXIcCrK5Y1DY9+f91avvHkY8yaeXa71xpaWMipu0xiVEkxv3zlJWpiMTY11JOI55qOtXUIMKSwkDElpby1elXWvgU5lt+aOmw4D519fg9FZzrL2uaeZ4m06RKfz8fvZ1/D7y6+maUfLmP4uGFceds3KShu+4nrtkg1idb/DaKzwTcEKfoR4h+z1e7n1v8Ham/EK+7VsjxJEhLvdziUTDWF1l4HDfd654ePA50Pbk0bZ4TS9+rO0QYCoekQeSBHgHW4ld+CwG4QmQVuJQT2Qkr/gDil3RiDMcZsW0T8UHanN0868Sn4xyAlv0Oc7a1tTqB1f4HYK+Ablm6bR2+1+/1j7rvc9M6bRJLJ1i2z6/Le2o5qj3jH/fKV2dy38CMATtxpZ95ds4raNhLpULrnt+V85i0hIhw3bgL3LVzQal9NNMY3n3yM3YYO5Y55H1IVjbDfyB3447EnUGKFxcx2zhJp02UDhw/gt8/8X2+H0au05ucQeQyIQtJB43Ng0FOIb3CH526Wun/SvHZzjjlTUtjhfCyt/xs0zKJpSHX0EWAQrRPzgDcvWwaml6nqSBsVwXNyIXJ7GwFWQexp76tR/C208msd9rYbY8z2TnzDkLLbejuMXqXVV0H0Kby2eSEafxcGPd3u1Kct8Y+57zStsZxrNnNn1lO+4e03uHvB/Kah3Pd/vIAh+fmtW2bHIeD4GJifx8ZOFBLrUsusym05CogBVEQjPLn4M55c/FnTttdWLOdrTz7KXaef1ck7GLNtskTamC5SVYg8RPPayy5oHGKzIX9rNSq5msMAXlMpUPzLji8RfYbWlbs3QeBwb2krEt713BVe662rWl0iJykBrW4jxi2VSPe2JxAJbIXrm82VsuFjxpg+RDUF0UdpniWcbpvjL0Pe6VvlninNTp8FbzksRxxE4DdHHtvhNZ5ZsqjVfOiNDQ0cMWYsy6urcV0XRVlZUwNuyvt/J5Tm5VEVjeJq5wqWdUXCdXln9SpSrovPVmzpU6xt7lmWSBuzWVr2/gqtlqvqTnlnppeCauyVDkPRdxACENwHCewCeEm+Rh6F+GtegbKCSxGn2DulrXWXEy971wvuC/G38RLiLiTFgX0gMRe0YvNeW4f82K8qY4wx7RN6um0+a9cpzPpoXlOvdNjv5/sHHoLPcdhv5A5N1by9udQLeX3VckYWFfPlvfalON1bPSDcekktBWYv+5w8v5+9h4/g7dWrcFW7lBQfMHIUb65aQWV06xSDDfp8OLa0mtnO2adTY7pIRND889JzjSOAL7228VFb755F30edEog+CU4JUnQlEpjS6jit/SM03J6OK4BGn4CBj3nz5PLOgvhbbdwhCvFXNyOwYij5jTcEvHwmkGu4WZDca1i3eVHAh9erEIKiH9g6qMYYY9ol4qB5Z0PkQZraZidvqy6X+ONDDqc0HOapxYsYEA7zk0OPYNfBQ1odd93rr3DHvA+IJJMEHYcnPvuUJ867kLxAgLOn7M67a1bnvH4kmeS1lSu6HFdpKMxvjjqWtbU1nH7vLBqSrYuKBh2HuNv5h+aCt0Z2ynUJ+f389NAjrG022z1LpI3ZDFL0Y9S3A8Re8oqNFX4HaavHtzvuJw5SeBkUXtbmMaouNPyH5iHnCUhtQqMvQt7R6aHd3cUHoeORkqsRpxhNzM05P4y8bwL16fWnk7mOSAt41/TtCHkzQULgbkKC+yChA7sxbmOMMdsqKf4/1D8qXWxsOFJ4BeKUbLX7+RyHb+53IN/cr+12Kum63PL+3KZh4HHXZUN9HbOXLeXIseN4OmPu8RbHIw4n7jSRX0w7mqJQiDdXVbXupAe+s9+BVMai3Dn/w6b1oHMJOA4+x2FMSSlnTd6NgOOwqaGBA3YYxf47jOq2uI3pryyRNmYziDhIwUVQcNFWv5ebqoOKcyC1CBAIn4GU/CLHk+AUrVeQjEDND9GadO9ut0lB7Am0ogIG/NqrsN2yMgpA5C/pjR08tZYiGDgLx2/LqPUHCrgd/Z0aY0wP89rmL0LBF7f6vWpiMc68bxaLK8oREc6dvDvXTjuqVducct1WQ7IbkkmueOZJXNWmKtzdIaUuj332CZWRCL85+lgqIhGvrksLf37nzc60zJSEw9x/5rmMLintthjN1mNtc8+zGenG9HUVp0PqMxp/RRK9F637a6vDRALgbz3c2ysi5uItY7U5v2B95E7CFZJvoBuPR/3jQXM91dYW/2+DVkH1D5u/Ta3Grf0Tbs11aOKjzYjZGGOM2XpOmvU/FlWUey2zKnd+9CH/mPtuq+NCfn/TXOlMyXSCHU0vndVVDt7w7JYUeHXlco6741Z2HjgoZ+vbyZaZyoYGvv9s80oaK6ur+cObr/GbV19mwYb1mxG1MdsWS6SN6cPUrYfUstY7oo96+5PL0Ppb0YZZqFsNwfaGQaebTBkFFHQuAGcIOGOBWDsHRSD2ClJ6A5v/K8WFdMKsyZXoppOh/h/QcAtafh4ae3Mzr2uMMcZ0r+polFU11a22P/zpxwAsrazgP+/P5a75H1ITi3LQqLbXsm5MZkcXFZPv79zqFEMLChk3oKzdOc71iQRvrlrJDceduNl9lClg3oZ1ACyrquTEWbfztznv8K/353Dm/Xfz9qqVm3llY7YNNrTbmL5M/OQcMy0laPwDtPIi0CTgQs0vwDee9ot7hWDwY7DxWND6ju/vbgQ2dHxc6nOk6HI0PD09F7vlEPNOkAKv6nj9LenYGj8gRNHKi1BnEFJyPRI6uOvXNt1MbIkNY8x2K9DGcOzSUJh316zi4ocfIJFKocDVL7/I+AFl7Rb3ygsEePy8Czny9ltyFgZraUN9Hes70YR/XlnB1/fdn2PHT+D5JYs3p2WmKBAE4B9z36U+Hm/6NBJNJjn3wXsZnF/An487gQPbeVhgeoq1zT3N3m1j+jCREIRPbrkVSn6B1lwDGsEbup0Ckukh4G01lSEo+Q2SeB+0tpMRdHKpjcC+3v/DZ3iVvHPqYB6Y1qLr94LIY+RcfsvdhFZ+HU3aE3BjjDG9Jz8Q4ISdJmZtcxCunXYUP5v9ApFkkqQqKVWSrstn5ZtarTndKOTzcf3RxzF37RoaEh0n0dDplpl9R+4AwFmTd6MomLtOir+DdaAroxF2/9uNPLno05z33dhQz6WPPcya2s6tb23MtsR6pI3p46Tkd6h/Z4g+AU4pFF2FExiP61blOFrx/lkL2VWyA1B6I054Ghp7i83qMc4dHfh3QfLPwG14FGp+StvDwDu6pwt09IjdgcSH4LdqocYYY3rPDdNnMHnwOzyx6DMG5uXzs8OnMW5AGdU51m1WIOD4cNTNqpLtdxz+ceKpHDZmDK+uWEayC8tRtcdBmDxkCKdPmswDCxdw1ezniKVyt8Ed3dMF6jpI8H0ifLBuHSOK2nqQbsy2yRJpY/o4EUEKL4XCS7N3hKdBw320TlwdcAaAW4E3xDsEgV2Q0OFA45Psrqzr3B6F5Hpwa6D2Fzli2RK5hrSr9zDB9CqvuI5VBjXGbL8cEb66z/58dZ/9s7ZPGzuOBxZ+1GoYtyNCSTifikiEhJsi5PMxZchQDt1xRwAEIe52z0NuF2VdbS01sSjXvPJim0n05si1QIeLMiAc7rZ7mM1jbXPPs0TamH5Kin6EurUQzRwK7fPWYC78EcSeA3ctBKYghd9FJD18K/pEN0dSgVZfBdrdw7pKvcRZqzK2hSB4UDffxxhjjOkePztsGvXxOI9/9iluOuX0iZAX8PPTQw7n2aWLWVtXy9Shw/jegYc0LZf18CcLuzWOjZEGfvrCc9TFu+vBuWdQfj7xZIrqePOD83x/wNaVNtslmyNtTD8lEsQpvR4ZuhCKfuxV7A4eAhqH2qsg9oI37Lrop4iTD3gVsYk+1f3BxF+k87O2Ovm01D+WVj3nWtsisTbGGGP6jpDfz5+nn8hnl3+HHx9yGAeNGs2ho8fQkEjy09nP8fznS9h96DCuOmwaeQGvSvfyqiqeW7q422N5tgvX7EzLLMDo4lISLZa7rIxGuj1hN6Y/sETamH5C3Qo0uQrV7CFaIg5OwSU4ZbdBciHQAFoHRCH6EMTf8M5XRSsv2Qo9x9D5JDoM/j3IHgzjQGA/kNKMbX5ILgBtaHG+DVkyxhjTd5Q3NLCqphq3RTExR4Qv77Uvd5x2JvM2rCOSTFAbjxNNJrn7o/m8lV46SlX5wkP3UbsVEtHOtsx5fj97DBuOT5rbWAc4aIdRlISah2z7RPho4/pWRdG8XvXO3s2YbYcN7Tamj1NVtObnEHkA8IFvGJTdgfiGtDguBe6mFidH0NiL3pJRWgup1T0XeC7BAyF4KNStAEkXZJEwiJOuQN4oSXaxNIAwBPdFnLIeCta0J2XPYY0x2zFV5ccvPMtDnyzE5zjsUFTMnTPPYnB+QdZx8VSKykgka1s0meCFpUs4YIdRVEYjrKuv68nQswhwyKgdOWjUaJZXVRFLeW1vfiBIwnWJZizHlVQl2WK+ddjv5+BRoykO2RzpvsDa5p5libQxvUjdBpAAIoG2D4o+DpFH8Ja5SkBqJVr9A6TstuzjUquBAUBF9vaGu9HQUSg+uq9a92aKz/a+ABgMRV+H4FGwaRptx+aHwG4Q2BspuqJn4jTGGLPdakgkCDhOm+tFAzz0yUIe++wTEq5XiXtZdRVXPvc0/z1lZtZxa2prKAmGqMqYU6zA7fPe5+hx40m6qW6r1r05FHju8yU89/kSAIbkF3D5fgdyxJgxTLv9ljZj8zsOuw8Zyn4jR3HFAVa7xGyfLJE2pheoW4NWfsVbyglBCy7DKfp27mMTHwGZT7NTkPg46xi3/g6o/R25k9EEWvc3SM7rpujbIkA+XsLfiSFquhEa7kLyZrYzIMwPwX1wym7vriCNMcaYnKqiEb706EPMW78OEeHy/Q7g8v0OzHnsh+vXEUk2j5xKui4LNmzIOuaW9+fy+zdfy5mMJlyXv8x5i7lr1nTvi2hB8Na9TqRSrSqJ57KhoZ5ZH33IKbtMavOYgONw4A6jufXUmW0eY8z2wPr/jekFWv1jSMzHS3yTUH8LGn0m57HiHwNkDpkS8O3QfK3UBqj9LRDFS2Jz3rAHpi8p+HYEyaPTc5mTiwEf5J0M5KU3Os3/dwZDeAaq3bmsltlSiuBq//gyxpjO+sFzTzN/w3pSqiRdl7/PeZcXli7Jeez4AWWE/c39UQKMLilp+n5NbQ3Xv/Eq0WSyzV7dioboVm+aFRhbOoC8QKDTVUY+3rSR/ECAEyZMJC/9Gp302Q4wtKCQE3aaSCzZcgqW6U3WNvc8S6SN6Q2J98hOeiNo/N3cx+adAcE9QfJBCkFKkNLrUbcejTyMNnTUW+tA6Bi2fqEuP6Q+9ZL2zn40kHzAjxT/Goq+DcEjIP98KP0bEAK3Cmp+jZbPRDW61SI3xhhj5q5dk5X0RpIJ3lmzKuex50zZnalDh5EfCFAUDFIazuP6Y4+nLh7nwY8XcPuHHyDttLsOcPT48Tiyddtmv+PwyaZNVMdinU7ai0IhHBH+cOzxfGv/gzhix7FcOHVP/nbCSQT9fsojDVz7ymxm3nuXJdNmu2ZDu43pDc5gcMszNoQQ34ich4oEYMB/ITEfTSyExEK0/jaIzQa3Bq8oVxs90QAUQvxNvOQ20MGxm8MBwt761V1amioIhT9KV/v0IQVfhIIvAuBuPJas4ezJFdBwLxRc2H1hG2OMMRkG5xdQFW1+aBv2+RlRVJTz2KDPx52nn8WH69aycNMGFmzYwL/fm8PzSxdTF0+QSCVJatupa0k4zBsrlqOq+B2n2+dJ+0QI+XyE/QEqopGOT0gLOg4/PfRw7xqOw2V778tle+8LwOG3/ptoRuL8eVUl93+8gPN3m9qtsRvTX1gibUwvkJLfoBUXeLmtKPhGQ/55aGq1l2D7xiFOYfPx4qAo1F5H9nzpzqiBxJz0n/0QPBriz2/hKxgMgx9GpAAS7wM+by533Z/p1PxoAARqf4Gb/AgpvjadUKe5LQqmEUXdDbb4lTHGmK3md8dM54IH7236fkzpAM6ZvDuraqopj0QYP6CMwmCwab8jQlJdfvXqy1kJZmdURqPMWevNj/Y7DseNm8AzW7iW9NCCAh4/90LCfj/vr1uL33F4b+0abnj7DRKdTNQdEf5v9gvMX7+ea444KqttrmhVfTzJxl6sOG5Mb7NE2pheIIHJMOhpiL8LUgChg9HaG6DhdpAAIFD2XySwe9M5WncjXU+iW0qm15j203p5qa7YCJFHvR5k/3hUgcQCvOHjDtCZBjs97znyKIQOhvB0wFtSBP8kSMzNiDGMBPffgnhNd3NtZpAxZhszdegwnvvCJby7ZjX5gQCHjR7Db19/lTvnf0DA58MR4Y7TzmTKkKFN5/z5rTe6nES3lHRdGpIJfCKk2unF7sj6+noe/+wTLpy6JxPKylCF99euwRHpdMscTS9v9eAnCzlk9I4cO34nwGubJw0ezAfr1jb1nof9fvYbOWqz4zXdz9rmnmWJtDG9RHxDIW8GgDc/uuEOIAbpwlpa+XVkyGvNJ2hDF67u8+YfawOtKnknF0LoOIg9T1Myuzkij6Kxl9M90o3DxV28RLoAr/hZZ5bbiqCJT5HwdFRTaNXX09XMG5v8ABR9BwkduvmxGmOMMZ0wrLCIkybuAsDrK5cz66N5xFIpYukE86tPPMJrl3yl6fiGROenS/mBvGCIhkS8VcI8f/16jh03gRc+X9Kp6tpteeiThTy5+DPmrV9HIpUCEVxVfCIU+v1EEolOtczRRJLPyss5dvxOJF2XLz/2MB+tX4ebjjvo+Ljy4EM5aNTozY7VmP7OEmlj+oLkEloV6HI3oppoXmM678z0slft9UoHIDQNKbwc3ErULYfq75H1HFprIPYEW/zP362A1FJaJ+MuXgLt0DqRzjVH2we+sd4fIw9C7C28JBxAwD8Jp+CSLYvVGGOM6aIlFRVNiWOjtbW1uKpNRcLOnrwbn5VvyloKq6WA43Dc+Al8bd8DqIpEWF9fz/effTKrh7gqFuWpJYvwb2HxsY0N9VREIk2JP+n4U6okXMVxHFItEvWA47Qa+i3iVfsGuGfBfN5evbKpt1qA3YcO5aKpe21RrMb0d5ZIG9MX+MfTqqq2M7g5iQYk73SvcnXtb2hzHnJ4JhT/HHF8AGj5hbQ9mKs7Km221aMdb+O+bTy59w0HQJOLyX5QoJBasfnhma1CFVLb0PIVxhiTy4SygTgtftWNKCrOqrR99uTdiCaTXPfaK8Td3H2950zejZ8ffiSO4w27Peu+WW23zFswtBsg6WpzEt1qXyrn0PG25k83Flr7rHxT1vB1BZZVVW1RnKb7Wdvc82wgvTF9gAT3TVekDqWXuCpGBvy9ab8mV0D8ZQjuS7sJcPRu2LA7bvWvcJOrIfHW1gta17ezsyvD0sKI611LApNoXk8awAf+nTYjOGOMMWbLHDRqNBfsvgchn4/CYJCSUJi/n3hy0/5lVZW8tPxzDhg5ipS23e79b/6HTPrrDfzqlZdYVlXZVGRsa9jYUN/mvpRqp4t25vkDrK3zColNHjykaT1p8CqCTxw4aEvCNGabYD3SxvQRTtH30Pzz0lW7xyJOAQBuwz1Q8ysQP2hnepETELmtH/XkpiCwq/fH8MkQewOiTwIOyACk9Pe9Gp0xxpjt148POZwLp+5JRSTCuNIBFKSrdv9v3gf85rWXvWHRKdcrlNmOhOtyywdzWVZd2RNht6mz/d1Jddl18GAAzth1Cm+sXMHTiz/DcRwG5eXz+2Onb70gjeknrEfamD5EfMORwJSmJFrdSqj5JRBNV9uO4v2zDXV8sfg79J1/4r62dxVcjvjHAd4yX5J/rle5XAS03CtoZvocV6VffBljzJYaWVTMbkOGNiXRGxvq+fWrLxFNJqmNx4mmkog4hH3ttHV4Sezbq1b2nZa5nfnY3z/wEMak50g7Ipy/+1QCPh+C9/pfWb6sZ4I0XdLbbe721jb3lX/LxphcUuu9nugsSQgdT8cDShIg4a0UWFc4UPZw27vdVbhVV+DW/RXXbUArvwJaDxoB4lDzazS5pKeCNcYYY9q1rq6OQIuk2VWXE3baGb/T/kfrhOsSDgTaPaYnOAhPnPuFNvd/XlXJt556nL+8+xZ1sRiXPvow9YkEkWSSWCrF1S+/yLKq3u1dN6a32dBuY/oy3w65h3PHZoME2x/q7RuBlP4ZLb8AqNtqIXZMwclre3fkQbyiZS9A9DnQaPZ+8aPxeWjdXyDxEfjHIcXXeMuHGWOMMT1sx5ISb2mpDArM/nwpAcdpWmc597ml/P7Y4zn3gXuo78LSWd1N0XYT+vsXfkQsleK5pYt5fukSEi0Kqfkdhw/WreUPb77Owo0bmFA2kF9OO5rBBQVbO3Rj+gzrkTamDxOn0Fv2qpVqaKewCQAlv0ICu0Jg0laJDQZ28rgCxDcKAnu0sT/W/P/k0ta7NQn1f4PoM5BaBrGX0fKzvArmxhhjTA8rDoU5fdLkVturYh23S78+8limDBnKzoMGb43QGJzXzoPrDEXBEKNLStl9SOuH0gJNlb9jqRSflW9qNQc86br8+a03eHbJIj6vqmT250uYed9dxNpZBsyYbY0l0sb0cRI+CmgxRNsZCoVfB4IgBSBFENgHJB+cIVD6LySwF279LJAQrZbW6hZtVwbNFkNEkLL/QfBQvIEwfgge48WfSXxQ+C0gz3tNhCHvDEito3nprJS3Fnbio+55GabLFMFVp198GWPM1nD0uPFZlazBWxrrsr33I+jzURgIUhwMsc+wEeQHAgwtKOS2U2Yyddgw7pj3Afn+wFZpmes62csdTye8d59xNgePGo1fHPyOw3HjxhNsMWzdEYfvHHAQYb+fomCQsN/POZN3Y1OkoWnprKQqlZEoH2/a2L0vyHSatc09z4Z2G9PXBQ+CvJkQeSA9X1qQ0puR4FQ07wxwN4JvR8TJB8BNfAI116BV38br7U2xZYm0n9xLbnW2RziJagLcCiTvRMg/A0JHog2PQ/z5jOPEW/orNA18o4CU16MuYTRyX4trKtD7c8yMMcZsn47YcSyn7rIrD32ykIDjIAh/PfFkdhsylHOn7M6mhnrGlA4gLz18euHGDfxs9vN87YlHiaWSXVqKKhe/SM41pyOd7BGOq0vSdSmPRDh1l105b7epHDlmHA99spBnlzbXJRGgNBzmyLHj2aG4BFeVyUOG4heHWR/Nz7qmogQ6mCNuzLbEEmlj+rwEEp6OBqaCbygSmIw4xQCIbxD4mtdydCMPQ/WVOa7R2QUvcggcCInXtuAaPjTyKNT+onmTMxRSq1pcUyB4NJSflp7/nUCLf4HknQyhQyD2Ol7yHvLWlg5M2dxXZIwxxmyReCrFSRN3Ye/hIxheVMTkwUMpDnkragwuKMiaK3zfwvn88PlnW11jC1pmDhs9lheX55gO1UmOCA9/+jFXv/SCF4jA8MIiVlRXZbfMIhw1Zhwn332Ht9SX6/Lbo49jxk47c8AOo3h79UqiySQhn59Jgwazy1Yasm5MX2SJtDF9gGoKrbsJok+DU4IU/cTrcXar0fKzwN3gHegMgIH3575Gah1U/7SDO7XVu9yOxGvgjAf3c7ze7VyCQLztffV/B21o3pT6vPVhkgfRe4AEaHredM1VEJ6GlN6E1t8KiQ/BPxEp/DIi7S8zYrau1FYZlGiMMX2HNw/4dZ5ZspjScJj/O2wauw8dRmUkwun33sWmBq9dG5Sfz4NnnZfzGqtra7jqxedz7mvkF4dkR3VPWnhp+VImDChjaWUFbZ0ZdHzE3dztdtBxuOntN2nIGAq+pLKi1XF5fj+zFswj4bpN49B++NwzHLHjWP454xT+8/5c5m1Yxy4DB3PZ3vvisx7pXmVtc8+yRNqYPkBrr4OGe4GINwW48kIY+CBaf3u65zbd0KViaM11SOnvWl8k+Qkdlz3YnCIgCu5icEaBKuiqHMe0lUQDvjJvOasOb5PAS8gz5neJH1LrkMBEpPDSLsZtjDHGbL5rX36R+z9eQDQ9XPq8B+7lsfO+wD/nvMua2pqm+cHx2iTXvf4Kvz36uFbX+Hjjhg5Tm64m0QAusLiygh1LSkm6KVbX1rY6pq0kWoAhBYVUx2I592dKuC5Bn6/ptQI4jrChvo7xZQP56j77dTl2Y7YV9tjImL4g8iAQaf5e42jl1yDyEFmJJcmcla3dyFNo5fdproC9FbgrYcDNQOcqgjbxjYbg/rQqLNbEAcJQ9HNa93i74BvR1UiNMcaYLfbQJwubkmjwEtNLH32Qhz9dmJVYJlw3Z2/uY59+wveefYp4O8thbanl1VX8c8ZphP2d7xtTYEzpAPYfuUOrwmKNHBHy/H6uPeIoUjnmYg8vKt7ckI3ZZliPtDHdSDWO1v4B4m+AMwwp/j/EP7oTZ7b8p5iC1HJaz6AKgVOMNtwNwUMQ/w5oYh5U/5DOF//afOIrQ0NHQ+zxHLG1If4WDH4TUpsg8Xbr/cHDkQE3IRLEdQq81yJ+wPWKqjmF3fkSTDdQwFUbPmaM6R9iySS/ff1V3ly1gpFFxfz88CMZVVLS4Xn+FsOUk67Lsqqq1i2zz0dRMMisj+Zx2OgxjCwu5v21a/jhC89kJeJby6CCfI4cM5YnFy/q9DmvrljGO5d+jcueeIQ5a1a32n/02PHcePwMgj4fef4AVz7/DH5HUODvJ55CfjtrUJveYW1zz7NEejuxfvlG/vOTu9i0upz9T9ybM793Eo7NY+l2WvVdiL2Cl9QuQstnwuBnEKes/RMLvw61f0ifJ3i/Dls21UFvW3wOGp8D4kDZ7RB7g+xe661HG17sWhLtnQXV34PEu4APb0Ba4/lB8I+CxDwI7oOTdwIaOgzcdeAMR5yCti9rjDH9nCZXonV/hNQGCB+J5F+CiLXN3e2bTz3GaytWEEslWVRRzvv33MkLF15Cabj9EVZf33d//vzWG0SSSRwEF23V+gUcHwq8vWoVb69ehU+EWTPP5tUVy5uWmNranl20iKe6kEQDqCqXP/04761dg08EV7Wx5hgBn4+RxcXM37COvYeP5KSdd+HwMWPZUF/HiKJiS6KNSevVRFpElgG1eOM5k6q6T4v9AtwAnAA0ABer6ns9HWd/V7Wxmq/vcyV1VQ24KZfP5ixlw/KNXH5z35xzqqqUr6nAF/AzYEjHT4z7CtU4xJ6HprIfrjfvN/YG5M1o91yn4CJcZwjEnvGKcsXeJmuoNw6EZ0D0UZrmIyto9c+R/LPxloJqqxBYN6q/uosnBEHCEH8tY5uADMF7ATXQcBfacC9a9AOcgi94PdDOhO6L2RjTJdY29wxNbULLTwetBVxIfISm1iPFP+nt0HJSVXDXAwHEN7C3w+m0aDLBS8s+bxqe7KoSTyV5Y+UKTthp53bP/fJe+zK8sIinFy8ikkjw1uqVWctLOcCMnSby2GefEM8Y/vyz2S9w6i6TCPr8RFNbP5n+v5df6NLxQRFCgQBvrFzRtM0BhhYUklSXulic/837gFkfzeOnhx7B+btNpTgUaqpKbozx9IXHntNUdY+WDXXa8cBO6a+vAH/r0ci2EW89Npd4JIGb8hK8WEOMJ/71vNco9jENtRG+fchVXLTT5Zy/41e5eub1pJI9kCB2C4dW6zUL0Mnq0k7e8Tilf0ZKbwbfcJrXSQ56F4o+TKtiYclP0MTn6ePbmoPcGT4I7AO+SVtwjTa0KjSmQH36K4b3mqJQex2q/eXv2phtnrXNW1vs+fQKBY0PXyPeg8U+2DarW4uWn4luPAbdeBhu5bf7ze9raaPUV2erS8+YuAs3n3ASfznxJIYWFjbNKQ76fIgIj3z2Sav1nOdvWMfqmhrv+C0Y/ecTYd8RI5k0cFDHB3eFODTEs0eyuUBDIkFDIkE0lSTpukSTSX7xymzcPvgzaUxf0BcS6facAtyunreAUhEZ3ttB9TeqrYci9VV//+6tLH5vKfFogkQsyZxnPuD+Pz7W22F1iogf8s6iuRiXH6QEgod28TpBZOD9UHAJhKbhNW8pyLnARQoisyB4MPgmsPn/pNWbk601m3l+W+Lk7CmXElo9dMAF3frzvE13EFx1+sWX2Sqsbd7OaM0v0itDxIAExGajDbf3dlidEvL7mTlpMnnpYlwBx6E0nMeho8d06Tphf4CHz76AS/bYiyPHjMN1XVKqOZPMlCp3zP+AI8eMY9yAss1ekEiBZVVV1MS7t5Bo3E2RyvHJsDjcusc56bokUv3joYmxtrmn9fYrUeBZEZkrIl/JsX8ksDLj+1XpbaYLDjhpH4LhAI7j/SoP5QeZfsk0vNF5fcvCNz8jEWvudY01xFnw+qe9GFEXhU+A4AHg3wXyzkQGPdSlYlnq/j975xkmRZU14PdWVafJkZxBBCQHCQLmnFhzwJyzruua11V3ddVVP3Naw65rFsSEuooJERQkKDnnPHmmY1Xd70c1M9PTPTM9OAm47/PMI111w6kR+tS5J5U5+c/2NrT0PyFSr3RCo+skCIH/grWYxMZ2Mthg7wA7vuBI4yNAywJZPXRdB6OXyolWKFoHSjc3B57DQbipehXzge+MVqmbicwnts1hEMK/tJAwDefk/fsysmNn+ublc1b/gXx01sQG5fmWhoLM3ryRnf4Kbj1oPJcPG4GvnvkB0+TVBXNZWrBzt50ZtpTs8FckbG3V2GhCkOH2EKzWV9oQgn55+XgaUBFcodiXaOl/GQdJKTcLIdoAXwohlkopv692P5E2Sfh9FFX2lwN06ZJMleR9h+w2mTwz+x/869b/snNzEaOOH8oZfz65pcVKSKfe7dm4fDOW6RiELo+LLn33jPczu+JNKPsHEHFejoQHRHrS82VkEbLw/F0fkL6TIPXqaH/lvQkJ5uJqnzVwDURkPdViEikUihiUbm4GhJ4PuZORZY+AvR08hyNSW2ftEvRuYG2gKsLIA8aeUcvitflzefjH6UQsC7du4HO5SG9Aru+CbVs5/4P3AKfN1al9D+CyIcMJW03X0qolsKVk8c4dlZ81YFC79jx7/EktJ5RC0cppUUNaSrk5+t/tQogPgAOB6sp6I9C52udOwOZa1noReBFg+PDhe0okc7PRvntb7n735pYWo16uffpSls1Zhb80gJSSdt3acO5dp7a0WPUipYSyB6gqBBYAcwWEvgHvUcmtUXRdtOhMlOAnCM/hyPQboeyJ6NrNqLhFeqw8TYWxH1ruO02/j6JRsXc7WFHR2lG6ufkQRhdEdus/RBSZ9yILTneKYSJB74JITRSs0LqwbJsHf/ieiO0cAATMCMt27uC7dWs4vHvPpNa46tMPKQtXeeM/WLqYo3r04vqRo3jq51mELatZc4jT3R7KGjnUOxF989vw3ulnN/k+isZF6ebmpcVCu4UQqUI47johRCpwFLCwxrCPgPOFwyigREq5pZlFVTQjeR1yeGXJE/x18i387ePbeXbOQ/jS6m5P0TqIEFcIDMBuQM6xXeOvtjTBWouWegnkvkPDWk4lgT6y7vueuiuNVxsIWvcE19WXuUKxp6F0syIRQm+PyPsCkfU0IvtFRO77CC2lpcWql4htYcvYA2gJlAaTM0RtKdlWXh5zzbJt1hQXcdXwkbxz6pmNXhxuVIdOdd4/oXfdlcZ34dF1umVmxV1PVjO3yhQDhaKV0ZIe6bbAB9F/qAbwppTycyHElQBSyueBqTjtNVbitNi4qIVkVTSQDcs2Ubi1mO79u5CRm3x4M4Av1cuQwwY0kWRNgxBupGsARBZRaVBLCe4RyS+id3YKfu0ymIUORm/nj8b+SDQatcWVvb6Om24IfpDkQilgr0lwPZmXCy+kXpHkPgqFohlQunkvRpqrwC4AozdCy2rQXKGlgmdM0wjWRHgNF33z8lm6c0dlZW0pJcM7JJcypglBp4xMNpSWVLum0TtaRbtffhuEEI1qTFffqyYeXeeDpYtrvV+dVMPF2pLiuOtJaWbD4KphDXh/USj2UVrMkJZSrgYGJbj+fLU/S+Ca5pRL8ft59qZX+fTFr3C5DWzb5u+f3MGAcU3QVqmVIbJfQBbfCOF5oGUjMh9EGF0bMP9ZZOF5TuVqGQHfRITnIOee0JCewyD0Zd2LaN2jBcPCdY9zVq3jXgRESpJO8KJkBtUgzcmLTj0HkWTou0KhaHqUbt57sUvuhcAkEAYgIftlhHtoS4vV5Lxy8qlc99nHzN+6lRyfj38eeQydMzOTnv/CCSczcfJ7hCyLiG1x0eChjOrkZDbomsYhXbvx9dpEh8lV9MrOZkNpKaEkql/X5QkOW1bSRdIKQw3vgpHhdjOwbTvOHzSEI3rsGTnwCkVL0tLFxhR7Gb9+v5jP/jWNcCBMOOAYc3895REm7XilhSVreoSWg8jZ/XYgwugF+d+CuQ60LITeJvZ+5v3I7TOB8oTzAbC3gvdUCL5Lvd7rOiMxZYL+z41JCJFxC8J1QBPuoWgqpARLqrA/hWJPQYZmQnAyEKw8IJXF1yDazGxRuZqDvJQU3jr1zN2e3ycvnx8uvox1JSXkeH3kp8Z2l3jwiKM57N8vUxGpvTDoprIyTut7AG8v+g2rHu/1prLaU8Ik1LnP7yVgmtwx7hD65OU32R6KpkPp5uanpdtfKfYyNq2IN87KisoJB5PxkO65SGkhAx8jy59Dhqbv9jpCeBCu3nFGNEQN9fyp4D2tjhUCYG8Ekmm51ZJ1f0SN9lcKhUKhaDKsdc5bdnXsQqRMUNtjL8KybaYsXcwzs39i+vq1u72O13Cxf25enBENkJ+Syv8mXsSpfWo/GA6YJlsrKuptmQUtrJmFIGju3X8nFIrGRHmkFY1K9wFd4nKFctpl4/a6W0iipkdKiSy+EkI/AyEQHmTqpWhp1zXyPhGILADXAAh+AiQK2xIg0kDzNGuB74bjQpbc7jxTyqmI1GsQQp3rKRQKRZNg9CYunUdrjxB772ugLSUXfTiZuVs2E7RMPLrO1SNGcs2IUY26T9iyWLBtK4PateOTFUsThm8LIM3txmsYlIdbr2PBpWn88YupRGybMw8YwNUjRqKpomMKRa2oN1dFo9LnwP04967TcHkMfOle0nPT+NvHt7W0WE1LZB6EZwMBwHY8reXPI+06QrAbiJRhZOG5yJJboezvJDaiAeFDpF0DaTcCyffJbH4qHA+JvRnK/4WseK6lBVI0EFtqe8RPfQghXhFCbBdC1KxMvev+IUKIEiHE/OjPX6rdO0YIsUwIsVIIsZd/0Sn2ZIR7KKRdDrhApILIRmQ/X++8PZnZmzYyd+tm/GYEW0oCpskTP80kaDZeaHTINDn9vbf405ef8bfvv6nViE5xubhmxEhuGjkGj6432v6NTUUkwtqSYjaVlfLcnJ948ZfZLS2SooG0tM7d13Tz3nsUqWgxzr7tDxx7yWGU7CilfY+2e7U3GgC7hPgzKQ1kOcmFWCdB8BMwl9UdDq3lQdZTTmi4qzc2Xii9HafwWGtu3xqAwAeQpmoXKVqE14CngboKHEyXUsb0gxNC6MAzwJE4fZVnCyE+klImV1JXoWhmtLRrkClng10IemeEaM2Hrb+fklAwzpuqCUF5OILXSK5gV31MWbqYlYUFBOoIh85PTeXZ406iV04uvXJySXG5uXXaF0Qsq3VrZtPk/cULuXL4gS0timLf5DX2AN2sPNKKJiErP5Ou/Trv/UY0gGsgsYaqBnpb0OLznHcba6dTybsu7CIo/XvlRyEijizNrqpdYAygQX2khbfBu0hzI9L/JtI/qVG9/4p9Cynl90Dhbkw9EFgppVwtpQwDbwMnN6pwCkUjI7QchNFrrzeiAQa3a49dLdVME4JO6Rnk+nyNtscOv59QPTnFhYEAf5v+beXnkGWiC9H8mlnTGNimbUM0c1I53TXZUFLC67/O5/3FC1t1GLuidbOn6GblkVYofidCz4Xs15AlfwRrO7j2R2Q91aCcXylDjpdAy0OIWMUlrc1IaxP1Jz1bYC5GyoizhrQdW7Y5tbWxH2gdQXjA/C3JSV5E2s0N2kZGFiILJzrPiIDyJyDvQ4SW3WCRFQ1HIrD3nMqgeUKIOdU+vyilfLGBa4wWQiwANgN/klIuAjoCG6qN2QiM/H2iKhSKxqJNahr/mXAaN30xle0VFfTLz+eZ406ss71UTUKmSUHAT5vUNAwtVqdvKi1lS3lZvWuYts2v27Zi2Ta6pmFL2exG9P65eXRKz0DTBL9u35bUHK9hcMuYcQ3aZ8HWLZw7+T0saaMJjSd+msknZ59Hprfhh+WKhqN0c/PrZmVIKxSNgHAPQuRP2625dmAqlERTOIQHsl9CuAcDIM01yIJTnd7SSVUPcwMG0lyH1PMBFxBKcm6yCEAHEpzCmyuAFckvpfdBZP61wb1MZem9IP1VF+wIsuIVRHrDDHLFPsFOKeXw3zF/LtBVSlkuhDgOmALsR+KQi9YcqalQ7HMMbd+B7y68dLfmfrxsKX/+6guEAK9u8OqEUxnUth0AqwoL+MM7bxKyzKS0q88w0DWNNcVFtE1Lx6VphGjcLwyB43VP1F5rWcFOlhXsTHqt/vltuPeQwxnSvkODZLj722n4K3PQLbZXWLw6fy43jhrToHUU+wR7hW5Wod0KRQsirc1RIzro/MgSZNGlONEoIMufjBqMybSj8EDqVcidJyN3HgVFVzgGeKJqrb9PaiC3cZbyHt5gIxoAq6DGBROs5E7ZFYqGIKUslVKWR/88FXAJIfJwTrk7VxvaCedUXKFQ7OFsKCnh1mlfELJMgqZJcSjIRVMmYdqO2fzPmT9QEQkTses3oz26ztXDR3LMG//miP+8wuUffUDEstg/N69RNTM4PbMbgyN79mqwEQ1Q4PfHfI7YNtsqVOqVovFpLbpZGdIKRUtirgBRMwcpUmUU2kXU703WnXxs33lQ8QRYS3GMXQsIg7kUx1PdmGzDKaTmAZGe5JwMYiuJexGeg3dve8+4Gmv5EJ5Ddm8thaIOhBDtRDQWVAhxII7eLABmA/sJIboLIdzAWcBHLSepQqFoLJYV7IgL5Q5aJjsqKgAoCgbrdXHpQtAuLZ3zBg7m0Zk/sLxgZ1QzS4KWxbKCnXiMxgsMlcC2igoy3G48uk66Ozm9n+H2xFQS9xoG47t23y0ZxnftFrOWzzA4pNvuraVQ1EVr0c0qtFuhaEn0jvFFxGQQWXQtZNwO3uMgPA+ntRaAC7RoITMhotVXO4AdgcC/6tioIe0+0oH6876gHFyjwTMGyh+te6jeH1LPdKpzR5aBlobIuKsyhL2hiIw7kHYJhP4H6JB2BcJ33G6tpdg97Eb3pbQMQoi3gENw8rU2Avfg5EQgpXweOA24Sghh4vxDPEtKKQFTCHEt8AVOrsMr0fwshUKxh9MxPQOrhrc5ZJpc/skU7h5/KCfstz+/bdtaWa3bJQTt0jNom5qKxDG0O6alEzBN/jXvl4R7SJwe1MmS5nJRHqlfl5eGw4zv0pVh7Tvy+E8/1jl2UNu2nNFvIJOWLGRZwU7SPR7uPfjwyhD2hnLPwYdSEgzy1ZpVGJrG9QeO5uie++3WWordQ+nm5tXNQibIpdjTGT58uJwzZ079AxX7HOFgmA3LNpOenUqbLvktLQ4AdtnjUPEqjue5eoVLL+S8CeHpUPGKcynlHETajZXFUuySv0LgXZIL/d5d6qpYlmQ1M61tVZswoSNy3ka4kleuUkqn57QMgd4Vp7tB9Do0qHjMvoYQ4pffmYcUR27ffHnMaxMac8km481R/2r051fsHko3K2pDyiCYa0DLQujtW1ocAB764Xv+/es8LNuOCeH2GgaTTj+br1av4tUFc5ESLhg0mBtGjqnURbd/9T8mLVmI2YTv2HVpX02ImIrltdEmJZXScAhNCAxN4/3Tz6ZXTvKpW1JKNpWVErYsumZmoUe9+FJKpZfrQenmvUM3K4+0Yp9hw7JN3HzIPYT8YcyIyVEXHsr1z1za4l/2WvpNSO/xyMKzQVY3pIMQ+gwt/RZIuypqNIaqjOjylyDwZhNLl+rIQW2n5km+JNjV8pclyKIrkem3INzDEXpenVOlNJHF10HoB5zWYh0h979OGxelqBUKhWKPRporkQUTgRDICDLlTET6XS3+/X7r2PGc1KcvZ773NhG7SjeHTJPPV67gptEHcd3I0UgpCVlmpbxP/zyTdxYn27Vi90hzuwlEIgkLiwFJGdEA2/0VlX8WwOUfT+GWMWMZ0bFzvfnWEcviik8/ZNaGDQgBXTKzeOvUM8jy+lr8/51C0VwoQ1rRrMz7+je+ePUbPCluTrnxBLr27dRse993+mMUby9hl3756vXvGHHMYMacNKLZZKgN4eqNFGkgq4dU6+zKA7YDn0LJ7UAYqXeFrKeh/P+aQbIQtRvRvwN7A5TchBQeZOZDCM9hcW2/diH9r0NoRlQWwFqLLLkHkf1U48ulSAoJe1KLDYVCUQ8yNAMZ+ACED5F6EcLo0Xx7F10LsojKg1n/+04djFZQ96JvXj6pbhflkSpDWtc03NE84ClLF3PH118Stix6ZGfz9LEn8tTPs5pcrmAdRvTuIoG1JcVc//mneA0Xjx11LId0646rWs5zdV6e9wuzNm4gaDkRcauLCrnn22k8ccwJjSqXInmUbm5+VLExRbPx40ezufvEfzDtjel89q+vuW7k7axfuqnZ9t+8cgvV9U44GGHtwg21T2hu0m4EdvVa1ECkIlJOR0ZWRI3oaAssax0UXYVjaDc1TRkybjkVyYuvR+44AmluTDws8ivOs1eTyVzchHIpFArFvoMMfoEsugqCH0HgXWTBqUhzTfMJYK0nNropAubK5tu/Hm4ceRC+aFEwTQhSXS5O69efJTt3cMfXXxI0TWwpWVNUxFWffhRXpKwpaMqQcUtKKiJhrpr6EYf95xU2l5UmHPfrtq0Ezap3hIhts3D79iaTS6FojShDWtFs/Psv7xAKRNs6SUmgIsgHT05ttv3bdW8T89ntddGlb8dm278+tJQ/ILKfBO/J4DsHkTvFyRWL/Eps+yrb8ehqdVXLboZgE30UjVMNXIK9DVnyx8S3jd7EVujWQe/ZCPsqFAqFQpb9H1WHlRKkH1nxRvMJoNfQw8IFevN5xOvjzP4DePLYEzh5/76cN3Awn5xzPm3T0pi/dUvMOEtK1hQXkeKqXS8aoulfu8d36YarEYx5W0q2lpfxxy8+S3i/d25eTIVuQ4gG5VcrFHsDypBWNBvhUM3q1BAJhhMPbgLufvdmMnLTScnw4fG5GX/6aA6acGCz7Z8MwnMIWtYjaJl/QRhO2LsUbmI9sgAeSLmaxP2hfU0sZRRrFrHF0cAxeH2gNbRYjF2rB0KkXgKu/s66IhW0NojM+xour0KhUCgSUPN73KnH0VyIrKdAZIKItlT0ngieQ5tt/2Q4vHtPHj/6OO45+DA6pmcA4NI0QmZs1FaK4eLaA0cm1syGQdJ1RX4H369fG9ff2msY+AwXbVPTGrSWJSXLC3YmvHfl8BH0y29DistFqstN27R07j/08N2WW6HYE1E50opm44QrjuTVu94m5HcUtMfn5qgLm09ZdjugM/9d8wxrF20kPTuVTr07NNvevwv/x8QrXwnl99YyIUyT5DUng94Gkf0qsuIVCEyi6mXM7bwchWaC3E58yLgAvUvMFSnDEFkA0obsfyGsdU4xNlcfhPCiaFlsqc5hFYq9At9ZUP40VW0WvQjfhGbbXrj6QP43YK5yqnYbXZtt79/DJ8uXxmlmS9rc+903CcdHLKtJQ7Lron1aGq+dfBrPzvmJKUsXE4q23fLoOhP69OO7tWvY6a+Ik08Tgq5ZWTHXwpbF/K1bsKXkPxNOZU1xMRHLol9+m0bti63YPZRubl7U33hFs3HKDccjhODdf35E8bZibFsy5amp7DesB77U5jGMfGk++o5s3p6G0lwP4R9AeMFzNEJLbdgCkQUJLtbmLWjhIhPWJqQEkXErMrIQzIWOTJ6jwdgPrK2gDQTfReB/DsKzQBiAC5FV1Yta2uXIwrPAiubQi0zIfQ+ht46WZQqFQrG3IFIvRQoNyl8FWQBIZMV/wNUPIZonwkloaeAe1Cx77WJtcRE/rF9HisvFMb16k+JKXPCyNuZv3Rp3LVRLX+gkG0U2GetKStCE4O7xh7Jox3aW7NiOBI7r1ZvuWVlszMlhaPsOXDxkGE/+9COzN2/C0DTcusFjRx9XuU5pKMRp777JlvIyQJDj8zH5jHPIrafCt0Kxt6IM6X2MipIK3D43LnfDFEZjIISg76jelBeWY5k2lmkz65O5/POiZ7j73ZubXZ7mQIbnI4suwKlyJkB/GnI/RNSZ31wTf0N2pOm90RpOz+tE2BB4Hal3BnM5lTnU5iIIfYXj8TAg8gvkTkXYW0GWg9En5oBBlj8F5loqQw5lCFn6N0T2E031UAqFQtFiSLsMhAchGqPuRMMQQoBrMFKW4ugPC0JfI0vuRGQ91uzyNAezN2/kwimTkNLxuj718yw+Omsi6R5P/ZOjBMzki3FKaPQq2zWpUzNLyX9/nU9uSgqrCgtwaRpCCH7dtpXPV60gYJoYmsYvWzbzxbkXsKm8DH8kTJ/cfFLdVX8nH5v5A+tLSwhHDwxClsnfpn/L49WMbYViX0IZ0vsIxTtKuP2Yv7Nm4XqQMPHuU5l49+nNLscvXy6IyZWOhCLM/iKRx3XvQJb+BWSg6oK1Del/HZF2dfKLCC/I5stX+92EfgRrLVAtJ95aXW2ACXYFIvwdwndS4jXMVcTm7Zk11lC0KFKoFhsKRSMgrZ3Ioosra0TItBvQ0q5ofjlC04mNdApB6Ptml6O5uPPrL2MM4S3lZbzx2wKuHJ583RSPoRMJt1AaVSKEgDqM9R82rGVFQSFhu0rmVcVFlX82bZvycIjp69dxfO/9E66xsqiw0ojeNWdVYUEjCK9oFJRubnZUIP0+wj8mPsmaheuxIhaWafH2Qx/y09S5zS5HWlYqLk+sNzwlfS/Od7ULa1yIgNXQ9hCJfj8aTmEvNxiDwRhE7LlYU/5Oazvz3oUkudZcdazjHkLsM7jB1bxhfwqFQtHUyJKboka06fyUPxs1apsXoWUR14VBNKww1Z5EUSC2gGfYstjhr2jQGr4E+cCaEHgNA7euM6x9Bwa2aYsuRJ1zGgu7Ho+3ZcukWnNZsnbdPLRdB7zVnsGj6wxtv4fUm1EomgBlSO8jLPlpJVak6hQx5A+x6MelzS7HURccQm77bDw+N5qu4fG5ue7pS5tdjmbDPZbY1k1ehGdc0tOlXQFyR4I7NhACLQcy7kFkP+u0EBEpzn7u0bRYvrS1jvjwcp2q34PmtDfxjK91CZF6GXhG47zYecB1ACL99iYRV6FQKFqMyG/EFl8MIsPzm18O32mg5+McYOqAF5FxT/PL0UyM7dwFd7XWTT7DYGyX5IuclQSDFAYCcddtKQmaJnkpKdx36BE8f8LJdEzPIMXlwqPrHNS5a4tVMllVVEjEjtXNuhB4dKPyz27dYFyXbrWucc2IkYzs2Am3ruPRdQa0bcefD6pdlysUezsqtHsfIbd9Fv7SqlxbT4qbNp13r3BT0fYS/n7W4yz9eSWZ+Rn8+bVrGHTwAUnNTUn38cL8R/jq9e8pL/Yz9MiB7D987+wJLK3tYHQDvTNYawA3pF2P8DagPYRwUadBbG+FoonIzCdAuqIh4DaE5wIu4tuaNAeRBNcyIeVYCM8HvR0i/XaEllPrCkK4EdkvOL9DLNDaOXl8ilaBBOyWLmynUOwNaHlgra/6LLwIvaHtAx2ktQNZfKNjnOt5iMyHEe7hSc0VWhrkfgSBKU7dCs84hCs5vb6nsbW8jF65eXTasZ21RYV4DBd/Gn0Qh3ZLvnd1dSM8EZvLyjjzvbd5+tgTcOs6oUgEG/hlyyZcmkbYri+yq/Gp2RILINvr4+he+7Fg6xbap2dw9/hDyPbVXmDOYxi8ctIpbK+owJaSdmlpSje3IpRubn6UIb2P8Od/X8ufj7wPgUBKSfcBXTj6okN2a607j3+A1QvWYZkW29ft4K4THuSl3x6jXbc2Sc33pfk48aqjd2vvPQVpbUbuPBmkH8d77Ebk/AfR0Kqk4XngGgyRX0lsoALShOJriM1vK9kdsXcDF7XKFUMxRJag5X3QoNWFntzfKYVCodgTEZmPIIsuorKus9EXfCfv1lqy6JKqMHFrI7LoUsj7LGnDXGhpkDpxt/beU9hYWsIJb71OIBLBlhKv4eKt085kQJu2DVpn3tYtDGrbjt+2b0tooAKY0ubyTz+MySkuCgYTjm1sXJpWq1zVKQwGWFVYwEdnn5f02kII2qbtvWH/CkVDUIb0PkKfA/fjlSVPsGjGMlIyfAw9fAC6kUweayxBf4hV89diW1Vf0EIIFv6wNGlDel9Alr8AsoyqPOAAsuwfiNy3kl7DrngVyh7HMVR1EFkgS4nPLW6hphoiG9zjIPRREoNtMFc0uUgKhUKxJyHcQyDvcyeKSMsA92iEaLhulnZ5tVzrytWddX3HN5q8ezpP/TyL8lAYO6o3/WaEB6d/x5unnpH0Gi/88jNP/jSTsGWhaxrZXh8lwUCcZralRLSAes7x+RjXpSsfLqs/fc+WkmUFO5tBKoVi70TlSO9D5HXI4eDTRzPi6MG7ZUQDuDwGmh7/1yYtq4G9kfd27ELiDF47eS+xlCaU/RMI4uQbh52ftOscg7oSHfDR/PnQGYg234LRK8nxAvTk888UCoViX0Ho7RC+4xCesbtlRDuLJGrbJB3jXFFJYSBQaUTvojiUvJc4ZJo8OnMGAdPEkpKwZRGyTG4cfRBZnqoCmYYQpLpciGY+6M72eplx0eV0zcxOarwmBN2ykhurUCjiUR5pRYPQdZ3LHjqXV+58i0gwgtvrpvvArow4ZnBLi9a68B4L4e+rtb7ygfeYhEOltROCnwM2eI9A6B1ABonzNEsLQj9D6lWgZYH/XTDnAxXxY5ua1HPBXA8Vz9YyQI/+2E77LtyIrH82n3yKJke12FAoWg9CuJBpN0P5k0DIMayNA8A9pqVFa1Ucv19vftywrrL1lc8wOK7XfgnH7qio4LOVy5FIjuqxH+3T0wmYkbhja8u2mb1xI9cdOIo0t4d3F/3G/G1bKAuHkU3cO7omFw0exsrCAl6cOzvhfR2Brjkpfh6XC69h8OhRxzarjIqmRenm5kUZ0ooGc8oNJ9BjYDcW/biM3A45HDFx3G57uPdWNN9x2PZ2KH8OMMF3KiLtmrhxVbnUUcO5/HHIeRfh2g9p9IyG6u3KrwpBZCZEfsH5p+uPW695EBD4GCktag9qsQDdKaST+Q+EaxBCS0XKCAQ+Bns7uIci3Mn37FQoFApF7WhplyBdfSGyALS24Dtx9z3ceykT+vRjh7+C5+f8jCUlZ/YbwNUjRsWN21BSwklvv04wanA/OnMGH5xxDj2yc+ialcWaoiKsqJEcsiymb1jHT5s24tI1KiLRuiHNbEQL4P3FC6kIhxG1RKlZSAyhkZeaykNHHM2Qdh1IcbkIWxYfLlvCjooKhnfoyIEdOzWr7ArFnooypBW7xeBD+zP40P4tLUarRku9EFIvrHOMLH8yNpdaRpxc6pyXEdkvI4tviLZHqV59O0zLVOPehQR7I/hfITYfryZhsEsQ1maEZwxSmsjC88BcAjIMuJDpf0JLPb+Z5FYoFIq9G+EZAx7lha6Ly4aO4LKhI+oc89isHygPhyuN5bBl8dCM6bx44gRen3A6V0/9iEU7tscUEgvbFmG7ZuvH5kMC60tLeHn+L5h1FBoLWRbFgSDbystJcbmIWBZnvf8Oywp2ErZM3LrO7WMPZuLAwc0mu0Kxp6JypBWKlsTaSWwutQS7AHAqVmu5b0HuFJzq2K2NuozoXYSjlcuB0HQwl0bD3S0gCGUPIWXztwFR/D4kTvjYnvCjUCgUDWWn319pRIPznbfTXwFA27Q0Jp1xDlPOPLfeNlgtQV1G9C7CllnpOf967WqWF+4kYEawpCRgmvx9+rfNHpau+P0o3dz8KI+0otVgRkxeufNNpk/6ibSsVK56/EIGju/X0mI1Ld4jITwbqJ5LfSRSBpDFt0LoS6pCu/dELKTR3Qkyk4mKre0qpOZNcE+hUCgULY2UEWTZIxD8CrRMRMZdCPewlharSTmqZy/mbtkck0t9VM/98Eci3Py/qXy1elWMob2nYUpJz2ynyFhJMBgXhR6xbSK23SoPChSK1oTySCtaDc/e+CofPfsFW9dsZ+W8Ndxx3AOsWbi+pcVqUoTvDEi9GEQK4HVyqVOvRJbcA6FptLwRLfh9XxM+xC6PtGtYjZwxA4y+CKGMaIVCoWityNJ7wf+2k9JjLkIWXow0V7a0WE3KxAGDuXDwUFIMpyDXWf0HcvmwEdw+7X98vWZ1ixvRjmbefa+ezzDwRz3STj501fMYmsbAtu2UEa1QJIEypBWthq/f/IGQvyr3NxKK8OOHiStP7i0IIdDSb0BrOx+t3a9omX9xisOEvsfpH50Mv0fZZdZzX4LnkCTW0UDvS8KvFL0jAMLojMh+AbT2gAdcQxHZ/0paUinDyIp/Y5fciwx8osLOFAqFojkIforTinEXEQh+01LSNAtCCG4ZM46FV1/P4qtv4O7xh6IJwfR1a4kkEToNTgus3SXLk6idWSyHdu9e7xhNCPrl5ceZ3BLomO60RuuWlc0LJ0ygXVoaHt1gRIeOvHTChKRlDZkmr8z7hXu+ncany5cp3azYp1Ch3YpWg8sd+9dR0zXcXncLSdPCaJlgFSY5+Pd4revrbe0Gq6j+ZfTuiPTrkcXXEZPz7R6McFUVpROeUYg231V+ljKMlBGEqDsH3ClUdi5ElgIhZGAyRBYgMu6sXzZFk7A35TgpFIq6qPn9rNfSt3rvJ8PjSbrvtPk7DMriUKjO+y5dp8Bff+eO3rl5XDtiFNd//kmMPCM7dKJvfpvKz2O7dOXHi6+o/BwyTUzbxtDq9rdFLIvT33+bFQU7CVkW7y9eyK/bt3L72IPrlU3RNCjd3Lwoj7Si1XDB/WfhSXEMZ93QSc1M4YjzxrewVC2DyPgr0BpeVMJgzktwvcYXtbUFWf4McQXI7MSKXsoQdtFVyG0DkdsGYpfeX/cpdng2mCuAXS8XAfC/gbQrknwOhUKhUOwWaddTVcfCAC0NfCe0pEQtxv2HHYGnFYQ8hy2L+du2xl2vaUJtKCnm6dmz4oz68kjizh9BM8KlH33AAc89Sd9n/o/7v/+mTt08a+MG1hQVEopWLw9EvdNBM9mIOoViz0Z5pBWthhMuP5L8jjlMnzSLzLwMTrnpBLLb1Bd6vHciPKMh7wNk4GOoeK6Bs104gVvVjVoPjqd4l/f691TKNsA1FiLfV1vHD+bi+KG1eC1k2cMQ+qFqvv99pN4LkXp24i1lgPhzPy3afzu1wU+gUCgUiuTQUici9fbI0Jeg5SJSLkJoOS0tVoswrks3PjxrIh8uXcJzv/zcoLkuTXM0c7XQcJ9uYErbybmWYLP7XmyXEIzt0o3v1q/Fjhq/FZEISwt2xo31GYmjwO7//ltmbFhXOf/thb/SOzePMw8YkHC834zE9azWhCBkWnhr2UOh2JtQhrSiVTHy+GGMPH7vrgaaCGltcgqMWeud3OGMuxBGL0T6TdiBKWBvSWIVzfnROoF7AAS/BGEAFnhOhOAH0THJtK2qZx9XZ4h4qKo2vguj2vpeRPr1iZcI/UiVdxlnnYqnsSueAb0zIvMBhFEt/8s9JCq7wDkkMMDoBfvoy1xLI9m72lcoFIq6Ed7DEd7DW1qMZmdDSQl3f/MVG0pLGN6hI38Zfyi9c/O45aBxTFq6iO0V9UdFaYCmaXTJzKRvXj7T1qzG0DQsKTmpdx8mL1mEDkR+hxENIDSNHjk5zNi4Pqa/tcApILbLgPcaBteNHJVwjZkb11d6l8HxMD8+awb/N+tHumRm8tARR9MtK7vy/rD2HRHVcsFdmkbf/DZkelUR0ZZA6ebmRxnSCkULI+1yZMHpYBcCNlibkdZayHnLUVCZj0HRedRtAEeNaIRjdEdMyH4FQQVSy4eC06i7eJkbpw1VMoTB/yaIzKinuNoaqRdHn8NC+M5AuAclXkJvD9YaYjzjdoHz2d6BLDgL8r9EaE4xFKFlQ85byJJbneczBiKyHoxR4AqFQqFQNBaloSB/ePcNioNBbCnZXFbKhpIS3jz1DACeOOY4Jk5+v84K3roQCCnRgE2lpZi2zWsnn4o/EiE3xcep775VZ/Eyj67HGLZ1EbYsXps/lzS3O8aQdus6lw0dzg6/H1tKzu4/kIFt2yVco11qOuuKi2NM+p0VFdjADn8Fp733Ft+cfwnp0WJoeSkpvHPamfz5qy/YWlbGkPbteeiIo5OSV6HYG1CGtELR0kR+iYYo71KmYYgsBFkEIgfNMwyZOxlZfD1Ya2tZxK42PwLWNoj8gki7HCILkfWGcidrRFcj/VYovSc61wV6G0TqZQgtiVDr1CshMhekjXNeHqgmv3SeITIfPFU58sK1HyJvcsPlVCgUCoWigfy8aSMh06oMcw5ZFnO2bKIkGCTT62Vkxy58eNZErpn6MetKihOuUWlkR43lreXl/Lp9G5cMGca8LZsr166NZI3o6tw57hD+8u00wqaJ2zBol5bOFcMOxOeqP9T62gNH8evHW5FRUzpompWa2ZaSsGXx6/atHNS5a+WcPnn5fHTWxAbLqVDsDShDWqFocXblNFfHQkq9MvNIuPogXQfUYUjXJAx2NC9K75ZgfagKk24oLnAPR0v5A9LogQz94HiOfackZUTbga+g5GYcD7oFrpEQmUWsx90G4dsN2RTNhf07epgqFApFa8el6dTUkbaU6NUiofrlt6FvXn6thnRNQpZFgd8JB++RnZPQkN5dzezWdUZ27MRp/frTIzuHH9avI9vn49S+ByRlRH++cjl//N9n6EIQsWxGd+rCzI3rYzzmtpS15lcrWgdKNzcvqmq3QtHSuIeD3oG4f47lj8Z8FCnnU1U5NQmCn2CXPgrCC75zatw0QB9Aw8/SBLgPhMxnnE/uQWjp1yBSz0vKiJbSjBrRAaACx/P8S7RX9S7D2QPGfuAa0kDZFAqFQqFoHEZ16ky7tHS0aoazAP4584eYcRcOHorXSF6XTlqymMdmziDN7Y4r4uUSgkFt22GIhr2eC2BMpy48e9xJAAxt34HrR47mvIGDSUnCiA5bFn/832cETZOKSISIbTN780bGd+2GL/psHt2gb14+g2oJC1co9kWUR1qhaEGkXY4sfxrIIraStgWBydhaLujdEL5jEO4hkPMysvx5CM+i7pxnHI+0/z9IIoiMu5B2CEKTqAoDj+B4wxtSfMyA8DzYMRzb6IfIfg6ht616HhmG4FcgS8A9AvQeYG8DkYbQ0kGWEt/32ga7HDxjQaSBsZ9jmAv19aRQKBSK5qc0FOTJn2aS7fWyuprX2JKStxf+RqbXS4/sHI7puR8HduzEqyedwjOzf2LWpg0xVbkTscNfwcvz5mDaFn877EhMy2by0kWVfTUito1b1zHN5LtrGJrGz5s2MuiFpxnQpi0vnjCB/NSqw+2QafLl6pWUhEKM6tiJblnZbKsoJ93tId3joTgYoKZz3JaSYMRkfNdupLnd9MnNZ+LAwej19JZWKPYl1JuqQtECSBlClj4IgfdwDNlEgVxhqHA8v7LsH9DmG4R7BCJnBNJc4+RMm8vq2SkAgSlIrS2E3qt23QZrxW5IHqHSgDcXI4uuQORNiT5T2CkSZq6KPo8ELd0xkjGRqVcg0q5zjGVZWG3NUDS02w16R0TmvYha2mYpFAqFQtFUBM0I93/3Le8vWYhpJ25GFbYtnvp5FgAPpKTw/YWXMbJTZ0Z26syqwgKumfoxywsL6twnYJpMWrKIdLeH95cuqrxuS8myBO2q6iNi25Uh2L9t28rln0zhgzPPBRwj+tT33mRNYRFSOHtkuD2UR8JYts01I0ZxzYiR+FwGIavqYD1kWczYuB63rtM1M4u/HXokngZ43hWKfQF1rKRQtACy+KaoER0hqWwoWYAsfaDqIz5I+xOQnsTcMih/MMENk1jvsIj+JIsN5mLsrf2xt49CFt4I5kKcsO0gEIrmaQedvSpegfAMRM7LILKJD1MPO97r0HcNkEHRIkiwpdgjfhQKhSJZrp36Ce8vWUikFiO6Jjv8fh6c8X3lZ5/h4rax40lzueudWxIK8UiNMHFw+kzb1bzau6GZWbBtK/s//TgjXnqOaz/7mMU7dhCwTIKmSdiy2BnwEzRNIrbNC7/8zKxNG3j15FPJ8njx6nrMemHLYnNZKd+vW9sAKRQtgtLNzY46WtrHCVQE8fjcaK04VMeMmOiGvte0OpIyAqGvodZK2jrx4c9AeB7S9iNL74fgpAbsWEfotjEQpB/sTSAj0X0bWuYk7LS8sr+qZ1wA6X8LLftZaPMD0toEO48h7vcga/amVigUin0LaftBeBENzJVtTqSMIMTeU3gqZJp8t25Nre2sdCES3pu7eROBSIQ7v/mSKUuXJL1fpI6K3IPbtac0FGJLeRlhy6o3XDzh+rZNQcDPtDWr6xwXME3e+m0BTx93Ej9deiXrS0o45o3X4p41YNaTTqZQ7IO03m9oRZOyde12LupzPROyLuDEtIlMe3N6S4sUx5Y127jkgBs5znsOf8i5kJkfz2lpkRqJaL/nOHRwDUe0XQwiQeEuaxVy+6gGGtEatRvGHkTWo2j5nyIyHwXhpnbjvpEIfYUMz0cIF5rRDdyjcXpY70KAe1TTyqBQKBStFGmux95xJHL7MOS2wdiBT1tapDgcGY9BbuuPvW0YMvRtS4vUKNR2WG9oGmM6dWHFdX+sLLxVnaUFOxn+0rMNMqI1IWrVzF7D4PGjj+d/513EI0cei1vXd6uKd0OYunIFv27bikvX6ZmTw4iOnXBrVZ5pIQSjO3VpYikUij0PZUjvo9xx3ANsWrkV27IJByM8ftnzrPltXUuLFcNtR/+NDcs2I6WkosTP389+nE0rt7S0WL8bIXRIOa9aeycBGOA9GZH9L0eZZz1L/D9PEydMOhl0nNDpOtSv1r66VLUImwb4QOuW5L71I4NTq5bPehq8x4LWFowBiJw3ELqqCNrakajwMYWiKZBFl4C1Hic6KAgltyPNlS0tViVSSmThBWCtASTIMmTR9UhzY0uL9rtx6zrnDBhYaSwLHCP61L79eOnECQA8d/zJMVW8wQnFDpjJFe00NA2vYVBX/+hOaens2qK2QLw0txufYdA9KyupfZNh6orllX9+4fiTObrXfrRLTWNQ23a8c9pZMcXLFK0TpZubHxXavQ8SDkXYuHwz0q76IheaYOnPK+k+oGsLSlZFRamfbWt3xMio6RrLfl5Jx17t65i5ZyDSb0fqPSA8A/T2iLSrEFp25X3NMxqZ/61ToTswCQjVs2I031jvBvp+EP4cCFOnIW2vRRachsyfgXCPBJEOMoRjsHvBPRqRejFo6UiRCTuPpXZD3gfCiIaHS0CA9xgITknw8FX9oYWWish6pJ5nUygUir0fKQNgbSTme1toEPkNjF4tJlcMshjs7cTKaID5GxidWkqqRuOvBx9O75w8ZmxYT8eMDK4dMYpMb1U9j/Fdu/HdhZfy3OyfmLRkEaE6wrMBvLoBAnpm5dAjJ5vPV64gUo/RvbK4iD+88yazLrmCMZ26kOZ2EzJNTCnxGgbju3bjgoFDyPL5SDVcHPPGawRrkcOr67gNg4hpYSPRhOC4XvszqVqBs11Ub5OV7vHwxDHH1ymnQqFQHul9EpfbwJtSoyqyEOR2yGkZgRLgTfWg6bF/PaWE7HZZLSNQIyOEQLiHOW2iQt8jy59zWkdVH6O3Q6ScTnJlRsJU5lWHP8MpYpZEmLYshpIbQKQgcieD70RwDYfUixHZTyM8IxGufmhGR0T200CCatpaO0i9CCdEO1pkTOvo5F/r+9UYnIpIOTOJ51EoFIp9DS9OS8IaaG2aXZJaEWkJLtqg5TW7KE2BEIKhHTpSHAzy7do1PDv7J8I1jNSO6Rmc1q9/nGc6EWHbwrJtEDB1+TIitp2oAkocBQE/N37+KekeDx+eNZET9+/LiA4duWLYCJ465gRGd+5C37x8umRl8fRxJ+GuUedGROW8ZMhwDKERsExClkWnjEwGtm1Lz+zY9700l4szDuifhGQKhaI6yiO9DyKE4JbXruWh859E0zQkMPTwAQw/elDSa9i2zacvfslv3y+hY+/2nHHLyfhSa1Zh3n10XeeG5y7jqWv/hUCAJhh25EAGH7p3fNFLayuy8EyQFYAE/2akvROR9VjMOOE6AJl6CVQ8T8ICZJVEe0NbSxsuTOh7sDYgjC6IzIdi5TTXQWQR6O2QWnsQHpAWjtdaA5ELWU9B4fk41bp3ibMKyu93vM96D9C7gN4JkXYpQu/QcBkVCoViL0cIgcz8B5Tc5niiAdzjwD0m6TWktJD+tyEyB/QezndutSig3y+jC5nxFyj9OyCc2GP3eOcAdi9gc1kpZ7z3NhUR52B7U1kpOwN+Hj3q2Jhxg9u158LBQ3lhzmzqqu9tS4ktJYt2bG+wLF+uXsnmslI6pGfE7b+6qJAlO3bQIT2dDunpeA0XthnBtG00IchPSeGpY0/gnMnvEqzmAV9RWMBfv/sar2HQMyubLllZdMnI5LJhI2iXlkQXEIVCEYMypPdRxp0ykm4HPMzSn1aS3S6LYUcOrLcqtpSSD56cyicvfEnxtmICFSHMsInb6+LHKbN5+ucHcbkbr4Ln0RceSs/B3Vg+exW5HXM48NghhAJhPn3hS7av38HAgw/goAkHNtp+zUroe5DV+0cHIfgZUv4zrkqrln4DtrkSQl80jSzChbR3QMX3IEvBfRDCPQg78BmU3ApCB2mD8DqttCplNiDtMoS9E5nQyJdORXBrKyLtWjB6Q/gXpL4d4R7cNM+iaDb2phwnhaK1oPmOQ7p6O+HcWhtwj0lKN0v/K+B/z2k5KIM4UUoeZOhryH23UatraylnIl0DHBn1do4hLQPYFW+BvRXhHoXwHt5o+zUnX69ZHVMhO2iafLJ8Kf888pi4/w+3jBnH8oKd9VbF3l1cus72igq+Wr2K0lCIcV27MahtOz5atoTbpv0PQ2hYUuIxdErDVelfLk3jymEHsqW8zPGG10DiVOreUlHOH8eMpXtWNrM3b6JrZgWD2+35qXP7Oko3Ny/KkN6H6bx/Rzrv3zHp8VOe+oxX7nyLkD82XzccjLBl9TZ+m76UoYcPaFQZew3uTq/B3Z19QhFuGHMnG5dvJhyM8OlL0zjzzydx3l/OaNQ9mwNZ6dWtTm3VvAGjK4SMBHN+LxpILxRehqQ8eu1JZMr14H8OCFXZzXFtqcJOPp/Rt549TGTwCwjdUWmUy5Qz0TLuaNQnUSgUir0BYfRqUE60rHgFyp8kJioIgJBTFCwyH9wjGlNEhKsfuPo5+8sQsuA0sDYAIaT/XWTaVWhpVzbqns2BadtxxqdWRwuyHlnZfKdpu9Weqi50IUh1uTnvg/eoiDhtp/5v1gz+NHos//fTj4Sr7VezLVXIsthcXkaPnJw6D2Es2+aT5Uv5Zu0adCGwpWTiwMHcPvbgRn0WhWJvRuVIK5Lmkxe/jDOidyE0QSTUtD0G53w+ny2rtxEOOvuE/CHe+NtkrHqKfbQ2pAxBxSvEGsUGpFwUp/RkeAF20TVQ8SqNb0QDei8QEiqNaAAb/P9HfIEzDaca+C58CNdgcA8H10Bqz+UWEJoGBKOh7AHwv42MLK9lvEKhUCiSJvAO8Ub0LjSoUX+j0Ql9A9ZmqnRGAMqfQsombqfYyATNCK/O/wWzmtyGpnHFsOFxunnuls1c/skUXlswr9GNaID9cnIJ21alEQ1OAtfDM3+IMaLBMbqr52v7DBeD2rZnTKcu9M9vU2eVla9WryJomlREIgRMk9d/nc/KwoJGfhqFYu9FeaQVSeP2JA4N0zSBy+3igDH7N+n+wYr4itFSSsywie7TE8yAwq1FWKZNXse6T2abldAPIHfWuGhB2nUxV+yKl6HsCZJveVUXLqcAmL029rK9LRqunQwSpxhOtDJ3ymngPd75veb8Bxl4D4LTQUtzQv6sNTjh39dC+bPEHAQIw9mb3r//0RTNjmTval+hUOzRCHctNzQnJceVfP2T3UL6nXPUmFThXVFX8bJJKcHegVOkrG2r0c3frl1LYSD2QMKyba4ZMSrm2rOzf+Lp2bNico93F5em0TE9g7UlxTHXt1WUUxpMTvfbUuIzXERsCwmc3X8Ax/baDyEEb516Jm8t/JUZG9aR7vYyf9tm1hYX49I0rj9wNM/M+YlINcPcpWlsqyinV07u7342RfOjdHPzowxpRdJceN+Z3H/GY4QCYYQQaLogu102Xfp04MbnryAtq2l7DA48uF+M09PlNth/ZC88vvhK0mbE5N7THuWX/y1ACOg5pDsPfXEXvrTGK7qy28hEXn0NEc0ztgOfQ8lfgOLd3MANRg+Q5Y6XQPgQmf90WmnVPDiXJfWstesrYlc+tx/wQNYjaN5jKkcJYSBSzoaUs6uWliFHFiJO6GH10HBpOTnTCoVCofhdiLQbkcV/xDl0FYAGWj4YPREZ9yO0RJW2GxH3qJoXwD0UkcDAlzKMLLoawrMcWV39IftlhJbStDImQcgy48qGiWjIM8DHy5Zy97dfURqqrx1lYty6Tq+cHEqCQbaUl5NiuHji2ON5fOaMuLFF9RjRhtBAOKHoEvCbETy6zhPHHM9RPau6Zbh0nfMHDeH8QUOqntM0ces6YcvixblzcA7HHUxb0jtn76jArlA0B8qQViTNyOOH8fepd/DFa9/g8bqZcP1xdO3bfH0j8zrm8s+v/8qjlz5H4ZYi+o/ty59evirh2Hce/pB5X/1aGW6+cu4anr/539z0QivI2fKMwgmR3nWE7wb3MISWgowsgpI/03AvtAH6ANC94BqGSLsSIdxVxmxkNpiLa5kb50qIooN3AshCCH1d7XoIKl5z+kTXgRC7DjjckPMqsugSsEtBuBBZTyD0tg18RoVCoVDURHiPgOwXkYEPQHgRqRcgjB7Nt7/ewYlKKrkD7AJwjUBkPpBwrCx/HsI/4xRDAyILkWUPIzL/2mzy1saYzl3QhValmXWdkR074TEMFmzbyq3TvmiwF9qlaQzIb4vX7WJEh45cPXwkLl2vNGZ/3LieZQU1I9QcatPMhtA444D+bCwt5fv1ayuvhyyL1+bPjTGkE+ExjMr//nvCqVz80WTKQiHcus6zx51EfmrTOkUUir0JZUgrGsSggw9g0MEHtNj+vYf15OmfHmTWx79QURqgtKCc1Mz4L/3FM5cRClTlhUVCEZbMXNGcosYhpQnBj8HaCum3Q2CS82f3CETGX5xB4VnU3eaqJiL64wZrEfiuRku7uupu1Ji1yx6j+qlzLF7Qu9ZonaWDsR8i43Zkya0JHqZheenC1Q/yf3Sqgov0uMrkij0PqcLHFIpWg/CMQnhqeoabcX/XQMid7ORL2+VgFztpPjWJzCX2oDjkFENrQSKWxYfLlrC9ooK7xx/Cu4sXsrW8jFEdO/PXQ5zq4zM3rCfSgHosAseb7dZ0Fu7czg0jR3PV8JGV93cZs//88YeY0OrqeA2DLplZMYa2LgT75+Vx29iDuf6zT+KfpYH52gPbtmP2pVdRGgqR7vEk1Rtb0bpRurl5UYa0Yo8iHAxzw0F3sWnFFifPCvj7p3cwcHy/mHFd+nZi3rTfiISc02Pd0Oncp/n6F8vwfLDWgbE/wtXH6e1ZeAFEFuIUZPFA+vVoqZfEThTZOP8sI/HXPeMg+CmxhrakKuQaKH8BGW1fFStQbYVocEK/8yYjA1Oh9C9AAPQOkPUCQkuHlHORoR+oevnxQuoFiZ87sgQZmAx2IYTnOK1Y9K6I7KcQRk8QmbXLoVAoFIo9EimDyILTwdwQTcGSkP0Kwj0sdqDR09ENuzzSGM615pIzPNepLm70Qbj2x7Rtzpn8Lot37CBkmXh0nVvGjOPCwUNj5mV5vbh1nUANj3SOz8e4zt34ZMVSLFnlP5Y4ueAV0YraT/88i3FdutG/TWwkViBSe5HWNLeHT84+jylLF3PPt9MImCadMjL41wkTSHO7OX/QEGZt2lDpJfcZBhfVkHsXi7ZvY9KSRRQFA/y8aSM7/X66Z2fz3PEn0z0rm0yvN+nfoUKhqEK5hRR7FF+89i0blm4iUB4kWBEiWBHinxc/GzfuvL+cTqfeHfCle0lJ95HbIZtrnry4WWS0Sx9EFl2ALP0rsuAM7Ir/QPhHMBfhVFa1nf+WPYqUVUpUygj4jgejC+DDMag9kP4YWtuf0LL+iUi/DafgVy0IAebK+Ovu0bXPkX5kYBKU3oZjkEvnRWPnsUgZRHgOQmQ9Aa7BYAyAjL+j+U6IXya8AFlwFvj/7Xje7S1ABKxVyMLzkE1dOVahUCgULYP/XTDXAX6n+JgMOKHeNRBpN4LeBUSq86O3Q6Q3TytEu/Q+ZOFFUd18OnbFm3y3bg1Ldu4gYEawpSRgmjz4w3eVLbCklEQsiwl9+tIpIxOfYeDSNDy6zjPHnsCcy67m8WOO45Yx4/DoiYueAmhCJKyGPapz51rnlIWCvLt4IbdP+x9+08nfXldSwpH/fY2QaXJIt+48eczxDG7XnkFt2/HQEUdz3H7xRV9/2bKJM95/m9cWzOPDZUvZUl5OxLZZUVDA2ZPeaZCnXaFQxKI80oo9isItRYSCsQZZyc7SuHEp6T6enfMQS39agWXa7H9gL7wp8UXJdhcpLWTZI054tjAg9Rq01IlIcyX43yImdK3sYWTGPZAo3EaGkKEfooViKkDrCllPQemtYC4HbAj+B+k7FKGlQspZEPgIrNXR5KmKmguC0T1+n/BvtT+M0CA0g/j2Wn4IfAopp4JnLMLohgwvAP9r2P6XIeVCtJQJVTuXP0HiFizS8Yhb6xvUG1WhUCgUewbS3k5cbQ+7MG6c0NIhbwpEFoC0wT0IIRrPG2rZNg/88B2TlyzGpWvcOHIM5wwYhIwsBf/7joy7HMdlD1AR/HfcGraUhC2LGWtXc9MXU6mIROiRlc3Tx57ITf+bWmkQv7pgHgd360GKy8X5gwbz8fKlrC0uAohpW7Vrze7ZOXF7Ldy2rdZn0TWN6evWYsrYTOnySJjPVi5nQp9+HNy1Oz2yc5i/dTMvzZ3Di7/M5pKhwzl5/76V4x+bOSPOkw7Or6E8HGZDaQk9EsimUCjqRxnSij2KAeP74fF5KvtZG26D/mP7JBxruAz6j+2b8N7vRVY8FzWYA442KnsYW8tzXhKEC2S1FwphgN7N6ddcqQ91J5zNLkQWX0OlEWuvg8IzcbzWlvMT+RVZdBXk/NvJec59B8I/OZ5kDCi5OSpUBHznIdyJQrvKE1zb9TC2Y3wnKkQqi5HmOmThRCfnrfqg0nuwEWgpJzufre117BFRYd17GXad3UkVCsW+hHAfiKx4narDVBe4RyQeK9y13vu9/N9PP/L2wl8rDce/Tf+WNqmpHN5xWwLdrDOifUplmhg4faP75OaxtaKcqz/9qNKIXV1cxGnvveloZimxpGTels1c9cmHvDbhVLyGi8lnnOOEWkdMhICbvvgMTUDYsrlkyHAGtW0XJ29ZuPZILUtKemRnJ7xXHAyyuqiQcya9S0koSKiaV/n2af9DQ3Di/s670Y6KmgfuVUQsm0yPCuvem1C6uXlRod2KPYqhhw/gkgfOweUx0DRBnwN7cdvr1ze/IIFPifW+BiE4NdrSqebJrxvhHoTIfgm0DoAXXIMR2a9Ec49rjg8Qa9XaEJmF3HkcdvAbp9WU5yCE90iE52DI+wqR/TIibypaxp+qZlll2GVPYBffDCJRT0gBuCD9BkTa1UDN9iMupGsUsvAisLcTb2kHwP86sCvvbE2CPXQQPkiZiNDzE9xXKBQKxZ6O8IyH9OsBF6CBawgi8x/NLsfUFctjvK9B0+TTFcvB2B9kTV3rpV1mL14+6RQ6pKfjNQyGte/AKyefyndr18R5gv2mGVO125KS6RvWcewb/+b7dWtx6TrjunTjyJ69OKx7T7674BJePflUvjzvQv44+qDKecXBII/O/IGbvphKm5T4YqkaTrXvP40eyzUjRuEzYn1ebs2pJn7+B++z3V8RY0Tveub//DoPgJ83bWRdjR7V4BQt8xkuLhkyjNyUlm89plDsqSiPtGKP4w/XH8eE647FMi0MVwv9FdYyaxTX1kDLdozFrGeRxdc6/aK1TET2vypP4EWbb4FoBW9rs9PrOSE6cdW7rVVQfD122vWI1EuRZY+C/xVAIj2HIrIerxwqw79A4XnEG+nVkWD0B89xYBdB3pdQfImTYy3SIOPvUPEU2BtrX0I4v39Z/gJxBdK0dojU88Ho7bxkKRQKhWKvRUu9BJlyMWAihKtFZEj3xKZw6UKQ7fUh9HaQ/SSy+AaQYdCynANo4WJUp878cNHlgFPBe3NZGaXhxC0oE2hmlhcWcMUnU7h59FguGTKMf8z4nlfnz0VKydE99+PRo46tHPvzpo1MnPwepqy9urYNDGvXnmN79aYkFGTaeRdx0UcfsKqokAy3h38ccTQP//gDm8vLal3DFc3Xfmb2rLhK3h3TMzhv4GD65uUzrmu3WtdQKBT1owxpxR6JEKLljGhApN+KLLwQx0urgUhBpDmKWHgOgjZzHSNZpCFqtJOQ5vpoqHQJiVtSGaC1B3tDgnshKH8cKXKi3uCooRyajix9AJF5L1JKZOHl1G1ERzEXwM7DnBBxVz9EzpuIaMsSGfwaGZpVx2QvIu2a6J8ThKfpnRGpl9Yvg2KPQ0qwVYsNhUJRA0fftYwRDXDnuIO5cMokQqaFpgnSXG4uGzrckc1zcFQ3VyTUzauLCjln8ruUh8JE7PgCXC5NIz8lhc3l8QfgIcvinzN/IM3t5r+/zseMGq/T1qzioRnf85eDD8OWkks++qBOI3oXv2zZzPjX/oWhCQa0bcekM84hxeX8Xr9YtYLZm2s/4PYaBteMcFpthRMUEuualcXlw5omtF7Rsijd3Pyo0G7FHs/OzYXcetT9nNnhMm4+9B62rq0jV7eREO4hiLxJkHotIu1GRN4nCL1j1X0hEFp6nKIGnJxoextOCHdNY1dAxsOQ9xGIrFp2t5xenTGh5SEIz4huUE5lO6x62ZWLHYLIImTZg9VubY/eT4QG7lEIzzhH6pSJxFYT90LKxCRlUCgUCsXehrS2YhdegL39IOzC85DW5ibfc0SHTkw+81yuHzmaP446iM8nXkD79PTK+0JotermKz/5kB0VFfjNSJwXVxOC/zv6eKaeeyGZnsSFS8OWxVerV8WElocsi+nr1wFQHAwQtpI44MYpTmZJm5Bl8du2rfzjh+8q720rL6+sKl4TDRjftSsHde4KwAUDh+CtFhruNQzOHzg4KRkUCkX9KI+0Yo/GjJj8cfxf2LZuB7ZlU7yjlBvH3sVry59q1CrdiRBGL0T6tQ2faK6mWtWxGrjBWoWweiNz3oXia8FaHj8s8hvOqf8uj7YArQ1ShpAV8VVIkyMM4fkAyNAsZOhHEnvMAWwIT0fKMEK4Ed7DkZn/gIqXnGdLuQTNd2wtcxUKhUKxNyNl2GmHaG/F0ReFzuf8L52imU3I/rl57J+b1+B5q4uLatfMmsbygp30zMlh0unncOXUj+LaWQlg6c4duDSt0hAXQNvUVIJmhH8vmFerAVwXIcti7tYtAMzYsI6ZG9dXerxrYgPTVq/GtG0MTeOY/XoTti1emjsHgCuGjeConvs1WAaFQpEYZUgr9mg2Lt9C8fYSbMtRKrZlEygPsvrXdfQb1buFpasFrW0decchqHgJWfEyeI9A5H2MLH/GyVWuVPES5BYQ2c54JKBDxl+QhRdAZCHxWVzgGN4msUa8RpXX2QCjB3bgUyi5HaeVya6glV2n9zVfM6o+a77jwHdcvY+vUCgUir0ccxXIEqr0iwWyDMwV4OrfkpLVSpvUVLYmCNsGCFoWz//yMy/Mnc2xvXrzxbkX8NjMGTw756fqmpnN5WVke72ELAspnSrgd48/lHMmv8fi7dvjYrwEzhjTtmM1sxDY0WJnhqbRMzubKUsXc8fXXxI0zfo1c7VCaSft35eT9m+aDiYKxb6OMqQVrYadmwt595EPKdlRythTRjHulJH1zvGmerDMWKPRMm18qU174v17ENn/F82vxsnVilOB0Xzj0NcQ/AyMPjj/VGt4h2XACa/2HgOeg5xWWpHf4sehg2sk4IXI9Br3o1W1AUQ6IuMuZMHZVPUDtZ29fRMh+GG1FyMveMY1uWdB0XqRKg9LodgnkNZWZMW/wC5CeI9FeI+of5LwgaxxoCutKn3TCnnm2BM5f8okNOH0V66pmXdVx/5i5QqO6tmLfvn5GNW8z7sIRCKM7dKVo3rux/iu3dhaXs6i7dvixulCMKZzFwyh8cP6tURqtOFyaRoCQabXy13jD+Xkt/9bWTXcjo65aPBQ3l20kLJwCFtKvIbB4d17VBYbU+x7KN3cvChDWtEqKNpewpWDb6G8qBzLspkxZTY7Nxbwh+vr9nC27ZrPqBOH89Oncwn5Q3hS3Awc35du/bs0k+QNR7gGQv40iCx2qneX3h/Nma7RXkoGwVoHWjsSFw4LQvh7ZGQRVLwI3mNIHIptQWQeuA9McD8Nkf200xbEPRghfEhqVis1wd4MOa9D2aNgbwH3aET6zbv3C1AoFArFHoG0diB3nuR4k7GQwa+Q6X9GSz237ol6V/CMhdAMnHoeXvCMAb1HM0i9ewxp34HvLryExTt2YFo293z7VcL2UmHLZE1REdleb8IQ66Bl8fXaNczftpUXf5nNUT17xRnR4LTPmrN5MyM6dowxogEy3R6ePPYEbCkZ0r49XsNFyIx9DzBtmy1lpbx1yhk8MnM6W8vLGdulKzePHtsIvw2FQpEMypBWtChrflvHzs1FLPlpOf4yP1Y0RDvkD/H6fe/Va0gLIbjjzRv44tVvWTF3NT0GdOG4y45IWEikNSG0bPAchACkZxzYO5BFlzphb7uCv4TH6X0ZmkbtOdU2yB1g7YjmJ4taxgZAuHAKgu0ylN3gPQjhrlG903si+N+qNg4ITYfIr4jcSQ3qBy2lRAbeddYTXkTadU5Vc4VCoVC0WmRkqaOXwr9EI6d2GZMBKH8K6jGkhRCQ9RQE3kNGliBcfcF3eqvXzTm+FMZ2cQp1fdPtUnZUVHDelPdZVVhQqVldukGfvHw+Xr60ds0sJTv9fnb6/ayL5icnImBGSDFc+AyjskiZR9cZ17UbIzt1jhl70v59eWfRbzG9rKetWc3cLVuYctZE8hrQD1pKyRu/LeCdRb/hNQz+OOogRnduvQ4IhaK1ogxpRYvx7I2vMvWlrzDcBiF/CNuOVUk1Q7ZrQ9d1jrv0cODwJpCy6RFCA70tZD2DLDgHZDFggmso0j0eIosBNwlbTMVQM/+5Ol6EewzSPQbK/+n00fSMRWT8LV6e9Fucdlj+/1JVGTwAdgRZ9hAi659JP5v0vwVlD1WuI4uugpzXEO6hSa+haI0I1WJDodhLsUvugcAHzuGrDBBfcyO5ytNC6JByFnvqN4UmBG3T0nj++JM4+/13KAmHMC2LAzt2ZHzXbszdshm3phGup4CYJWvTy+AzDMZ17cbwDh15dOYMIrbFwV27c/+h8eHzd447BJem8d/fFlQa0wHTJOKv4OEZ3/Pwkcck/Wz/XjCPR36cXmm8X/LxB7x5yhkMbtc+6TUUrRGlm5sb1f5K0SIs+nEZn708jVAgTEWJHzNiVRYMA/CkuDn83PEtKGHzI4wu4D2UygJg4blQch2kXAB6RyAFx6MsAA/x52A6JHxl0cDYDxmYDOWPg9ELcj9Hy34eocWfYAthoGXckqAgjOmEmjcE/+vEtukKOh5qhUKhULQ6ZHg2BKcAwWg4d80DWi/4JrSEaC1Gj+wcDu7e3SkABvy8aRPXTv2YS4cMo316BqkuF17DcDSzbmDU8LprtXjhNSHYPy+ft39bwJM/z6RPXh7TzruI5084GZ8rvhe3oWncMe4Q+ubFRoWZts3akuIGPdN/fp0X06YraJq8t3hhg9ZQKBTKI63YDWzb5r1/fsR3784kIzeNyx4+j56DujVojS2rt8WFeGm6Rq8h3fGX+jnoDyO56P6zGlHq1o+0djhegErPcwDCPyLsDZD3IYS+Q9oBhGcMQm+D7f8QSu/GCcE2QKRGX3xqnH7rXcDaArIQsJ2q3kXnIPOn1V0szD0y2mZrV4i3N1q0rAGIml8xAqd6uEKhUCgaEyltZMWLEPwCtBxE+p8Rrv0btoi5nvgDWQHGASDLwXsMIu36xhJ5j2BLWRkfLVtKOJorHTAjfLduDVsrypl6zvl8u24NwYjJ2C5dyU9N5b3FC7nn22kETRND00hzuykJBuPixbpnZbOhpJjCQAAJLNi2lbMmvcPX51+Cx6j99XxUp84s2bmj0ivt1Q1Gdexc6/hEGCLej+bSlG9NoWgoypBWNJhX7niTKU9/TsjvFMdaPO5unp/3CB16tkt6jR4Du2LXCIfKzM/g6Z8ebPU5VE2GLHcMT1k9hFtHmiuh9AGIzAVMpN4Nsl9ASzkZqecjg1+ClgUp50LRdWD+Um2+AZ6jIPAmVW1IbCfnzVwFrn61iiPSrkKaK6I52oBnDCK9gS9QqddAyZ+pNMaFF5EysWFrKFolqjKoQtG6kGUPgf9tnCgggSycC7kfI4xOyS/i6gOyRqiy1gYtb3JjirpHUR4O49K0SkMaHO/wsoId3P3Nl8zbuhXTtumZncNLJ07g9H79aZeWxlerV5Ht9TFx4CAu+3gKC7ZtjZl/ZI+e/Pe3BZUGti0lpaEQa0uK6+yDfcPIMawoKODbdWsAOLhbN647cFSDnunaA0dx27T/ETRNBOBzuTh3wOAGraFonSjd3LwoQ1rRYD558ctKIxogHAzz/fuzOOvWCUmv0WNgVy5/+Dyev/nf6IaO2+fmgal37LtGNIDe2ekNLYM4Rq8AqUHJPUBF1ThrLbLwfMj/xvFOe8ZU3pK5byJL74XgJ45RnnIpeA4H/39i95IRx4NdB0K4ENlPIW2nr6bQ0hr8SJrvGKTmQ/rfA+FBpF7acA+JQqFQKOon8C5VqTTSOZQN/Q+Mi5NeQrgOQKb/CcoeZld7RJH9UlNIu8fQNSuLDI+HgGliS4kAdKFx+7Qv8UeqOmGsKipk4uT3+P6iyxjXpRvjunSrvDf5jHO48+svmbpyOS5N48phBzKuSzdeWzAvZq+IZZHmctcpj1vXefHECZSFnPewdE/D21CetH9f0twe3lv8G17DxZXDD2S/3NwGr6NQ7OsoQ1rRYLQaIUFCCHS94SFBJ119DIdPHE/pzjLyOuXgcu/bIb9CGJD7BrL4RjBXgtYetEyI/BI/2C5EFl2O1Dsh0q5C6O2jawhE5l8h86+VQ6WUSM9oCH1TfQFk9IWgXrlqMaBlZBmy7O9OxXDPoYj0mxAi/v+h8ByM8BycxE4KhUKh2H0ShGTT8H7CWur5SN8pYBeC3j7h9/q+hFvXeee0s7jus09YVVRIp4wMUl1uftmyOW7sDn8FF384mc6ZmVwzYiTt0tIBRzc/cPhRPHD4UZVjpZQc2KET369fW3UNsGpGBNRCbQb04h3b+dv331IQ8HNE957cOGpMwr7Sh3XvwWHdW287MoViT0AlRCgazOm3nIQ3xfkC1zSBJ8XDoWfvXkuj1IwU2vdou88b0bsQege03HcRbWaDlgqR+SSuxB2B8A9Oa5GdJyOtnbWvKQSQRuxLlg3lD++2nNLagiw8C8I/gbUK/P9Flt612+spFAqF4neSegngi37QQHjBe+xuLSW0NITRZZ83onfRKSOTD848l7mXX4NL02PCtKsTsW2+X7+Wtxf+yglvvU5hwF/rmkII0tzuGM1sSckjP07fbTk3lpZwxvtvM2vTBlYUFvDqgrnc8+203V5PoVDUjfJIKxrMWbdOILttJtPfn0Vmfgbn/eV08jrmsmrBWl65803Kiyo47JyxnHT1MfWGapsRk7ULN6DpGl0P6ISe4NR0n8RcCuZy6m8zYjntSYJTIfX82ofZO4g1yO3otd0k9A3I6tVcgxD4BJnxj307PH8fQYJqsaFQtDJE6tVIrY1TbEzPRaReh9DbICOLkGWPO8UovScjUs6u93tayjCYKwADjP2cNo0KFm3fxqqiQswkWl75wxGmrljOxIGDax233V8Rq5mlZHtFRa3j6+Or1auwqskWNE0+WLokxhOu2HtRurn5UYa0osEIITjmosM45qLDKq9tXL6ZG8feRbDCydlZtWAd5cV+zr3z1FrXKS0s48axd7NzYwFSSrr178Ij0+6p9Hbvi0jbjyz7G4RmRHOlqyPANToa6h2qdt2mXoPbexhEFlCVP+dzcqcbKl9kGdgFSDtEfBihroxohUKhaCGEEIiU0yHl9Mpr0lyJLDwn2g8aiCxFynJE2uW1riPtQmTB2WBvAyQYfSHn33V3edjLKQ+Hue+7r/lhwzpCZqy+FcC4Lt2YuXEDEbuqIJmNrDdM+4juPVm0fVtlKyqfYXB4954Nkk1KydKCnRQG/IQtC1FDNxua0ssKRVOhDGlFo/DN2zMIB6uKboT8IaY8NbVOQ/q5G19jy6qtmBFH8axesJY3/jaJs26bwNPXvczimctp36MtNzx3Ge27t23yZ2gNyKIrITKPWEMZwAVGD0i7CopvAFn9vuUYtlLWYch6qWqrJcB7PCL1suTlkhJZeicEokXMsEF4nKJlWIAvGlaoUCgUitaCDHxc41A24BSfrMuQLr0PrA1UHtBGFiHLn4fUi51ilpEFoHdFZN6L0Ds2qfytASkll3w0mQXbtsZU7gYnf3q/nFwuHzaC37ZvpShYdd+ybYIR06lHUotu9hpG5ZoCmNCnH5cOHd4g2f705ed8vnI5hqZhSYnb0InYFpaU+AyDK4Yd2PCHVigUSaEMaUWjkEhH1OedXP3rukojGiAcjLBy3mruPP4Bls9ZRSRksnXNdq4fdQevLX+S1My6q0zv6Ui7HCJziPUu66Dlg3sEpJwDhRdR1dd5FzZUPI8kjEi/IX7d8BwoewDH4I2uaW9BiAaE0Yd/gMCnzt674tBEDvjOBns7eA5D+P6Q/HqKPRsJMlHqvkKhaIUIYlN76vFQRpYRq4dCEFmMLLzISTsiDNYGZMHpkPe/3erosCdRHAwyf+sWItVCpnUhyE9NZVSnzpzdfyAXTJlU2dd5F5aUPPnzTCK2xbUHjo5bd9bGDTw043us6JepLgRbysrQGhDZ9c3aNXyxakWlRxsgPyWVk/r3YaffzxE9evKHPrW3uVTsZSjd3OyopJe9CNu2+fmzeXz+6jesW7KxQXNXLVjLpQP+yEmZ53PjuLvYsbGgQfMPP3c83hRPpfHs8hgMO2ow/rJArXN6Du6Gy111luP2uunar1OlEQ1gWzbhUISFM5Y1SJ49EqETV1hMeBGZ96FlPQqhWVR5lWsSAP+riW+FZ9eYZ0I4QSXwurDWx8smixAZd6JlP42WcooK61YoFIoESGkjg98g/ZOQ5qqGzY0sxt5xLPa2IdgF5yKtbQ2aL3x/cIqOVRrPbnCPRdp15OG6+gHVi4x5wegO5jKqdInteLojCxokz56IoWlxJT+9hsFDRxzNY0cdx/R1a+PCvXcRME1emjsn4b2fN22IMb5NKZm9uWHvbutKiuPytQsCfu495HCePf4kTul7gNLNCkUTogzpvQTbtrn7pIe4/8zHeOb6l7lm+K1MnzQrqbmlhWXcfOg9rFu0gUBZgCWzVvCnw/6KXU8xDYCV89fwwi3/Yeq/vuKud25ixLFDMFyOp/OHD2Zxaf+bKN5RAkBFqZ87T3iAYz1n84fcC+k7qjed9u+AN9WDJ8XD/iN6csYtJyPtWJUlpYwxuPdWhPCB7xSqqq66QGsDbuckW2he6mxlUlsulpYH1OhLqWUmXsLa6hSmifaOrsToQ6wXQ4DeuWFebYVCodjHkNJCFl2KLLkJWXY/cucfkMGvkptrFyILz3M6I8gKiMxFFp6PTKI9kowsxi59EBmYBJlPgnsclUGIoc+RO49H2kXRfcqwCy/B3noA9rYR4DoQ9K4gUgAvuAZB6kU49ThidoF9oKp3usfDSb374DOc359b1+mQnsGBHToB4DVc6Frtr9N2LS7CvJRUvEbsu02215dw7JayMhZu30ZFOPYwvV9ePno1Q1kA3bKylPGsUDQTe791sgcTCoTQdC2p1lA/T53Hb98vJlheFfb7yEXPMPaUkfV+oS6fszrG2WhbNgWbCtm5sYA2XfJrnbdwxlJuO/pvhPwhhCb48OnP6TuqN7YtsSMWkZBJJGTy2t1vc+PzV/DwBU8zb9pvmBGT8iKTF27+Nw98dicZueloukan3u3RNI1Dzx7L9+/PIuQP4fK4aNu1DQPG963/F7aHIGUYWf4CRH4FV29E6jUILQUAkXE/0ujntJUyuiBSr6wq8OI9GcpfBFlKVZj2LhwjXEob7J2gZSFE1Hj2nQxlj8XmybnHx8lllz0BFS+BcAMCcl5FuAY6crmHIdOuhPKnnRcn4UNkP9+4vxiFQqHYA5AyiFNcMQkjMvQ1ROaCrGqDJEtuRXiTiAoKLyA2EsgCa7PTcUGvvW6IDP+MLLwUJw1IA/FfMPpTWZhShkGGkWVPITL/giy+2dE5RECWQNnfne9/keFESundEUJge4+G4FfRdT2gdwHXkPqfYw8hZJo8O+cnftu2jb55+Vx74Ch8Luf/8cNHHsPAtu34edNGumVlceXwkXiiRvCpfQ/gX3PnUBoOxRnNPsPgjAMGYNk2BQE/mR5vzLzHZs6ICcs+uFu3OLke+XE6r8z7BZeuownB6384nQFtnP//Izt15ophI3hm9k+4dJ1Ul5sXT5jQBL8dhUKRCGVIt0JCgRD3nf4oc75YAAJOvPIornni4joN4sKtxdg1PLlBfwgzYtZriKdk+LDMWMPMsmx86YlPRnfxyp1vEvI7Ra+kLQlWhFgxdzW2VXVqbUUstq512izNm/ZbZcg2QDgUYcF3izjv7tNj1v3TK1fTe3hPFv6wlE6923Pmn0/ea/pMSymRRZdDeC4QhPAsZGgm5L6LEAZCaIjUcyH13Li5Qs+DvA+RFa+AXQyugU4bKrsAvEeC5zDkjrFglwES6TkKzAUgLeflqDrBD5H2zQgtx5ErPA8qXgGcFyxwCp+JNj9WTtHSrkKmnO3srXeoMtQV+yR2fXmWCsVehrT9yOJrITzT+ZxyHiL99roPq+0d8dFCshwprfojerQ04r3AFoi664XIskepqqVhO0a8ubTGWhGwomHE4ZppQxFEeA4i7YqYdUXmI0jXG07nCL0nIvXSvabPtJSSiz6czLytWwhZJjM3bmDmpg28d9pZ6JqGJgTnDxrC+YPiDw7apqXxyTnn8fK8XygNBhnYth1frVlNYcDPMb3249BuPRj18guUh8OA5Oie+zFv6xYs26YsHFtY9L3Fi/jT6HFker0A/LxpI6/Nn0fIsghFi5Jd8fEUfryk6v/N9SPHcP6gIRQHg3RMz8Cl2oju0yjd3LwoQ7oV8vwf/838rxdWGqRfvPoN3fp34YTLj6x1Tt+RvWIqDGiaoEu/TkkZoH0O7EX/sX1Z+MMSghUhvKkejr/iSNKz6y4g4i+NzX+WUpKek0Y4ECYUcJSyJ8XD0CMGAJCalUKgmsfc7XGRmZsRt66maUy49lgmXHtsvbLvcVgbq4xoAEJgrQZzCbgGxA2X5jpk2YNgbQPPwYi0a9Ay7qgakDrRGSclcsd4xxu9i9AntcshXGDthKghTaK8PbsAKUMxLU+ElgVaVlKPqlAoFHsTsuxv0ZoT0YNn/ztIY39ESu3dKXANrnFBB6N3cmkxrmFOWHV4Pk7rQh+knFd/cS9ZM/9ZgsiKRiXtMty84Bnj/FFLB7t6EUt3wu95IXRE6vnA+fXLvoextqSY+dscIxogZJksL9jJ8oKd9M1vEzd+dVEhD0z/ju0V5RzWvSfXHjiKu8cfWnn/vKjBLaVk5MvPUxCoikj4aPnSWuUwNM3xXEcN6ZWFBcgaGdrbKsqJWFaMwZzl9ZFVS1i4QqFoOlSOdCtk/reLYlpJBStCzJv2W51zug/oyh9fvgpPihtNE3Tu05G/f3J7UvtpmsbfPrmNa5+6hHPuPJXbXr+eKx6JV5SlhWXM+/o3Vs5fg5SSw88dh9tX5ZX0pLi58P6zGHHsEDRdQ9M1DjlzDKfedAIANz5/BZ4UNy63gTfFQ5uu+Rx5wcFJybj3YBFXMVWGkCW3Y1f8F1ntMERaO5EFp0LoWzAXQcUryJK7Ei8ryx3PdNLoYHSu+mj0SLQoMvRjgusKhUKxDxL+idjWhAEI1/0dKVz9ION+nBaEGhg9EdkvJLWdEBoi+2VExt2QejUi6zG0jD/FjZN2ETL0IzKyxNEh3hOA6j2fvZD+J/CMxamzoYPvRESKo+dFxn1R+VyAD4xOTkrQPoRl23HVskOmyZ++/Jw3flsQo5u3V5Tzh3fe5Ju1q1m4YzsvzZ3N3d8kznsvCgYoDdVsZ1k7bk2nY3qVg6Fndk5C/+LMjRuSXlOhUDQdyiPdCsnvlMum5Vsqv7hdboN23WrPVd7FYWeN5dAzDyISiuD2NizsVtd1jr7w0FrvL5uziluPvA8AM2Ix+LADWD5nFXY0JDwlw8eVj13AoWcexKFnHkQ4GAYhcHuqPOIjjxvKUzMfYO5Xv5GamcKhZx+Ex+dJuN9ei94lWv10JVWhdBaYy6HsEaQsQ6Rd5VwOfQdEqArHC0LwI2zrNii9CyLzQWSAZzwYB+C8BCWuHOpg4HgmMhE5LzrFzaII91Ck73QI/Cd2SsmNSPd0hBYfOaDYd5GAlCp8TLGPobWLhkPvMqpckEQfZS3lZKTvJCAcE+GTDEIYkHJarcGaMrwAWXQRIECajpc5NJ9Kr7lIh/Q70XxHg+/oaH63FpOaI7yHQ+47Tsi6yALf8Q2Wc0+ne1Y2XTIyWVVUWNnmypKSJTt38MD0bykPh7li2AgApq1ZTcS2Kv8WBEyTyUsWccvosdz+9f9YsHUrGR4Ph3TrTv/8tvW2szI0DSkh2+fllZNOqcyhBicH+pQ+/Xhj4a+V1yRw1acf8dOlV5LmVilWiiqUbm5+lCHdCrn+mUu5bvQdWNEey1n5GZx1W3I9eoUQDTaik+FvZz5GRUlVaNLPU+c5hn5Uk9iWTU7brMr7tcnQfUBXug/o2ujy7SkIoUHO68iyByD4DcjCancD4P8P7DKkhRbXcQoEFF4K1lIcI3sH+FfhVPjuDvZ6EAbICI5RXa13tO9SSLsMoaUlzOkTvuORgfeBqv/PyAhy+xik8ELajWjRUHKFQqHY1xCZ9yILznLqTiBBz0ekXpbcXCGI9RI3DrL4eiciaRehr4lVHCZCrwpNFsKbWD5XX3DtPUU9G4quabx92pnc9903fLt2DYXBqtS1gGny2vxfKg1pTYi4gw0hBOdPeZ8VhQVEbJvt/gpWFhXi1jR6ZueypqQIQ9MIWxaWbcf0jr562IFcMnQ4aW53Qt184v59mbJsCRWRqkjFsGUy/KVn8RkGfx4zjrMHDGr8X4pCoagXZUi3Qjr17sCrS59g/tcLMdwGw48ejDelZU+Hd24sjPlcs0VVOBhh9a/rGXn8sOYUq14sy+KnT+dSvL2UA8b0pmu/zvVPamKElo7IfBBbexoqniG+AncUz2GgPQx2ODrGB74TIfABjhFdnQjYyyHtLoTRDvR2SDsMRZfhGMYWBP8Nwo/IiA0Pl3YhsuwRiKygKnd7F1EPtwxD2cNIvSPCW3vkgkKhUOytCKMX5H0R9dx6wDOuVsO02bBr9pWucfoqI07/Z8/YZhMpGaQ0nbQluxDcwxBGz5YWiQyPl38edSyPzvyB52b/VKPMW5WBe1SPXjzy43THKJYSn2FwSt8DeG/xwkpv9i7Cts2Sgh3ce8jhtElNpX1aOv5ImEs/mkLAjGBJyUvz5lBhRrhz3CExc3f6/Tw843uWF+yM6TcNjrfcsizClsXfpn9Lx4xMxnft1pi/DoVCkQTKkG6lZOVncsiZB7W0GJV07tOBtQs3VIabCyFicobcXhcd92vXUuIlxLIsbj/6byz5eaVj+EvJ7W/cwEETDmxp0QAQvpOQ/pejbVEkTiGZS6rua5mQOwVZ/iRYW8BzMHhPhcDk2hcNvo/I+yj658+QQlYVoZMB8L+BTL/NCRcEpAwgC04DayuO0Rz9ShCpIMtqLo4MfaMMaQUgsFX4mGIfROi54DuhpcWoQu8G1hqqDGhBjDEt3E5P6FaElCay8AKn9oeUgISsJ1qNbjml7wG8On8ugUjE0cyGweVDh1fez/b5+Pis8/i/n35kW3k5h/fowcm9+/LOotpr2by/eCEfnuVEdH24bIkTiR+9FzBN/r1gHrePPbgyDNwfiTDh7f+y3V+BadsYmoYmIdXtjqv0HTBNvlm7WhnSCpRubn5UsTFFUtwz6U/kdMjGm+rBcBscddEhpGWnkpqZgifFw+gThzPu1FEtLWYMP344hyU/rSBYHiTkDxEKhPnnxc+2tFiVCKMLIvc98BwN7tGQcTci9ZLYMXpbtMy/o+W8gpZ6AZqeBinnArVU57SrtbmSZoLQcElMC5TwL2AXUZVbbQIaZPwD9JoeAgO03AY+pUKhUCiaCpH9HGh5IFIAF/hOd/KiRTpOZe4jwXN4S4sZS/ALiCyKHiIHgCCy5NaWlqqS7lnZvH/62Rzdcz8O6tyF+w49gouGxEbbtU9P56Ejjua1Cady3sAhZHi9nN1/AD4jsX+qOFgV7WXadnzggJQxPahnbdxASSjkjI3OEQIeO+pYumVmxcx1aRq5vpTf8cQKhWJ3UR5pRVJ07NWe/65+hm3rdpCenUZGbjpX/vMCVi1YS0ZOGt36d6m7l2YzYkZMvvrvdGZ88BNmJDZsuqLUj23baFrznyFJcw0yMBUQCN9JCKMTwuiFyH4y+TXsQhDZ4B4B5gaw11S7a4B7aNVH95hovvQuD4UHPGNr9H+Os7Qd+TzDQL8PWXgpjnGtg5YRbX2iUCgUitaAMLpD/rdgbXa+o7VsZPotTji3yEK4ere0iJVIGYbAR8jgF8T2rQZkGVLKFnmPWFVYwKcrlqMLwYS+/eiYnkGfvHyePf6kpNco8PvJS0nlwA6dWF9SzJqS4sp7hqYxrEOHys/ju3RD17TK2AGPrnNotx4Y9byXCCEY0bETDxx+FJd8NBnTttGFRpbPy8SBKkdaoWgJlCGtSBrDZdCxV/vKz2lZqQw6+IAWlCgey7K45fB7WTlvDaFAOCaXW9M1eg7u1jJGdGQxsvAckE5IlvS/BLmTEAnbTtWyhl2M3HlS1IMcwakY2w+sFThtVXohMv5aOV7ouZD7HrL0vmho+BhEeo1Tf/dwp1+oFcTJwzbAPQKh5YA7B/ImO3lswgfe451w80ZCSon0vwPBj5wXwLQbEa4+jba+QqFQ7AsI4QKjKnxbaJngbh0pTLtwwrknQmQZTi2O6oe4Orj6t4gR/dv2bZz1/juELBNNCF6YO5uPzppIt6zspNcoDPg59s1/UxwMYto2Lk2jX14+KwoL0QTsn5fPXw+uigrIT01l0hlnc+93X7O1vJxxXbpy60HjY9Yc2bETGR4PwWgetaFpjO3chQyPh1GdOjPlzIl8t24NPpeLE3v3IcPTeHV0pJS88dsCPl6+lCyvlz+OHsv+uXmNtr5CsTehDGnFXsUv//uVlfPXEqyo0bdRQPf+Xbjvw5YJH5Nlj0bD2HZd8CPLn0JkPZ78IoHJYBdTVWgsAtZiJ7fMNQS0tnEvIsLojsh5tdYlhfAhvWdDxWPRKxZEViHtMqcomtETmqgIjKx4CcqfwQntE8jwLMidgjC6Ncl+isZFJgpmUCgUikSEvnfaPBKocUOA0QeR1TJpVw/N+J6A6ehUW0r8kQhP/TyLR486Nuk13lu8kJKoEQ0QsW2W7NzBs8edxKB27WibGt8po1dOLq//4fRa10x1uzm7/0Ce+MnpU27ZNssLCigLhUj3eNgvN5f9cpsm1eqZ2bN4bs7PBEwTAfy4YT2fnnM+XWqElCtaJ0o3Ny8qR1rRqqgoqWD6pFl8//5MKkoqGjy/vLgiri2FbuhM2vEKz897hLwOOY0jaEOxS2tckFGjOHmk7Se+WjdQ+neE3g5kOdL/FrLiFaS5KvmF/S9QlTctQZZA8NMGybZb+F+j6qVKggwiAx81/b4KhUKhaBDSLkUGP0cGv0Da5fVPiFugJMFFDdrMQcv7AKHn/24Zd4eSYGynCltKioM1jf26KQ+H46p1S+C+77+hXVo6paEQ//11Pv+aO4fVRYWJF0nAC7/8XNkmSwJFwQCfrVzeINl2h1fnzyMQrRIugaBp8tGypU2+r0KxJ6I80opWw87NhVwz4jYC5Y4S86Z6eXbOQw0yfvsftH9MNXHd0OnWvzMZOemNLm+D8B0PZdVP433gbVjlV+E9FFnxLFWFwaLYxdXCvosBC8qegJx/Idwj6l9Y1shVw3IqfDc5icL4WkeevUKhUCgcpLUVWXBKlV4QqZDbQOPXNbyGq8wAox+a1rK6+cTefVhdVFhpOPoMgxN7NyzF6IgevXjhl9mVHuldFAUDFAb8HP/mfygJhbBsm8dnzeA/fziNYe071rtu2Iqt8WJLGdcGqylQmlmhSB7lkVbsNusWb+De0x7h5kPv4dOXvowxYHeHl29/g5IdJQTKggTKgpTuLOWlP/+3QWu06ZLPA1PvpF23NnhSPBxw0P48+Nmdv0uuxkCkXABplzqFwrRcSLsO4TulYYsY/SDtZmJVmg6uAciK18EuwMk9iwABJzc6GbxHAtXzqwzwjK9tdOORcpGTew2AAOFF+JIv7qJoWaQUe8SPQrGvISPLsYuuwS44D9v/3u/WzbLsH05tDlnh/NiFyPJHG7SGMDojsl8ErQPgA/dwRM6Lv0uuxuDSocO5eMgwsr0+8lJSuHn0WCb06degNQa2acuNI8fEXNOFYEi79rwyby4FgQBB0yRi2wRMk79++3VS6x7RoxceXa/8rAnBuGZocXXRkKGV1ccF4DUMTtq/b5Pvq2gcWlrn7mu6WXmkFbvFltXbuG7UHQQrgkgJy+esonRnGWff3kDjsBrb1u7AMqtOdC3TZtu67Q1eZ8C4vry++pndlqMpEEIg0q6DtOsaPFeGZyOLb3AMZb0bpF4HFc8DZjS37Clk+dPEhX0nGTouMh9ECh+EvgMtC5Fxj5Mb3cSI1EuQWgYEPgYtHZF2A6JawRyFQqFQNAxprkUWnhH1HkuI/Iq0SxFpl9Q7t1asTTjFKHdhgrmxwcsIz0hEm293X44mQBOCm0eP5ebRYxs8d9bGDVz/2ScUBPz0zM7h+gNH89ycn7GkzQFt2vLkMSfwyI/TE3qqk+HRo47hnm+/5rt1a8j2+rj/0CPo3oAiaLvL1cNHkuX18cmuYmOjxtI5s/EKjSoUexPKkFbsFt+8/QPhQLgyUitYEWLS/33KoWePZceGAjr36UBWfsO+eIccPoDlv6wi5HdCjT0pboYcPrDRZF63eANLZq0gu10WI44Z3CLVuxuKtHYiiy6rKlRmrYXAO9BmLkJIhIh6kr2HIAOTcTzS4LS6OjipPYTwIDL/3tiiJ7GvQKScASlnNPveCoVCsTciAx+BrF4VOwD+V5Deo8DeCkZPpytDQ3CPqVZtG5z+1Ac1nsyR5RD5FfR8cI9DiNavm7eVl3Ppxx/gjzgH2KuKCnl/8UIWXX09lm3jiXp0j+jRk4+XL60MHfcaBod3T+6g2mu4eOiIo5vmAepACMG5AwZx7gDVUkuhqA9lSLdSzIjJWw9+wPxvFtKhZzsuefCcSsO0pfogVydRpFigLMDF/W7E7XFhmRZ3v3szBx47JOk1z7njFDYu38y37zhVKkefNIJz79x9D3d1vntvJo9c+DRCEyAEA8f15f6Pb6v39xgKhPCXBcnKz2iZPtnmImIzMCTYpQi5A6FV5VgJzyHI9Fuh/DEn59l7JCLj7mYXV6FQKPZmpIwgy5+D8M9gdEWk31xpmEpptwIjMIFytsuQO48F4QFMyHoG4UneAyvSrkWaayH0P2d971GI1MsaRVo78AmU3IGT3iPAPQqynqtX30oZBLsCtJwW0c0Lt29Dq7avBAoCAQr8ftqmpVVeP6JHL24ZM47HZ80gbNkc26s3d4xN7pBboVC0fpQh3Up54Jwn+OnTXwgHIyz6cRlzv/qVq/7vIh677DnKCyvo1r8z9390G227Nn+ly82rtpKZl47hcWEHQpVGdTjonMxGov+9/4xHmVzwKi63K6l1dUPn9v/ewM3/ugoAt9ddee+zV6bx77+8gxm2OPqiQ7j4gXPQq+UO1YWUkn9e8iyhQFVRrV+nL+HnqfMYdcKwWue988iHvHbXWwhNI79TDo9Mu4c2Xer/fUtrK7L072CtB/eBzouW8CYlaxxaLkirxkUTRLy3X0s9F1LPjZdH2hD+AexCcA1FGF1ql90uQ5beDeE5TjutzAcQrv13T3bFXouU7FU5TgpFssii6yE8HQhDZC4y/CMy/TYouQtkKdLYH5H9AkJv3/yymWtBywfcVHmPqfpztLCkLL4O2sxGiOReAYVwIbKfQMoQIBCiSjfbFW9DxdMgTfCdjki/KenDBCll1IjeJR8QnuXoK8+4WufZ5c9B+VOABnoHyPmP07miHjaXlXL/99+wobSUUR07ccuYcZWe44aS4/Nh2bGHFra0E/ZzvnDwUC4cPDTuumXbTF+/juJggKHtO9TZXqo0FOS2r/7H3K2b6ZCWzj+OOJreqrezogZKNzc/ypBuhcz+Yh7TJ82q/GxFLEoLyvj7WY9jhp3woHWLNnDrUffx6tInm+U01rIs3nloCp+9/DXb1+3A7XNjWxZtu7Vh27odSDv+FFzakpIdpeR1bFivw+oGNMCsT37hmetfqQz5/vCZL3D7PFzw1+RCgs2IScgf21da2pLCrcW1zvn1+8W8fu97mBELsNi6Zjv3nPIIz815uM69pF2OLDjVMVqxwFyNNFcjcl5OStY4jAPAewSEpjkvKuiQdg1CS6t3KoCUFrLoUgj/wq5q3zLjPrSU0xKPL7rCCbEjDPYOZOE5kPcFQlcKW6FQ7NvYwWkQnlbtiglWIRT/kcoaFeZyZOHFiPzPmkUmKU1kxfPgnwz2ZsAL2KB1AnsTCT3UMuLU0Gjg93plKlEUO/A/KHuQym4U/v8gNR8i7eokVwwCNbtGAPaOWmfI0I9QHq0RAmCtRxZfh8h9r86dSkMhJrzzBoWBALaUrC4qZF1JMS+d+IckZY1lcLv2HNq9O9+uXYNl22hCcNOog/C5knMcmLbN+VPeZ/7WLZU51A8dfjR/6Ju40NlFH05m4fbtRGyLHRUVnPH+20w772JyU1J2S36FQtE4tHQM0j7HT1Pnct2o27ly6C189vK0uPtBf4j7z3gs7rplWmhalcFs25Jta3dQUeJvUnl38ewNr/Lm3yezdc12bFsSrAgRCZkUbCrEmxJ/AgtguA2y2vz+AhXfvjOj0ogGCPlDfPvOjKTnu9wuuvbrhKZX/XW3TIsu/WpvP7Hs55VYkao2E7YtWfPr+vo3C8+O5jPv8iKHIDwTGddHum6klNEwQYHI/Cci83FE+q2InFfQ0i5PfqHQl453mSDOi4cJpXcgzTXxe9oVEJlH1YuNBGwnhFGhUCj2YmTwa+ydp2LvPBnbPzn+vl0OJTcnmGkR+yplg7UWaTePbpalf4XyF8He6OyNH+cgdBvgSzxJeEFrhKJVwU+paumI8+fAJ0lPF8LnFNCs/vuTEaReRw5x5DdijW8bIkvq3WvmxvUEIiZ2NIQuaJp8u3ZtZY5zskgpsaVECMFTx5zAE8ccz+1jD+b1P5zOpUOHJ73O1BXLmLdlM0HTxLRtTNvmT19+xrri4rixpaEgv23fRsR23iskzjvJnC2bGiS7QqFofJQh3YzM/2Yh95/xKEt/Xsmq+Wt55oZXmfqvr2LGbF+/M+EBsstjIPQa/7uEwJe2myHDDeSzl7+OCY3eheExKr3k1fGlebl3yp8xXL8/6CEtOzXGCAZIzWjYKezfP7mdjr2qQr80TfDXCY+wdW3iquBtuuZjuGNlz26XxKFArSFtyf9Ts/3vI7cPQW7rh11wLsgShPdQROp5CHftoegJsbaT6MRflr8UP1bUcpIuankZU+zT2FLsET8KRX3I0Axk8Y1g/gbmEii9F9v/QewgaxOJu+m6if9+1x1jtYmRUkJMkclqCBdxnRwASEVkP48QyaVG1YmWQdyzN7AvtMj+F2jV0400KL4SaW1OPEHvgPM7rz6l/pQrPWHknmxQf+S3F/5K/+eepPfTj3PO5HcpDYU4vHtPzh80hKHtOzRgJdheUUGoRp9oCbw8b07cWLeux7Uwk0h8RnLeb8W+RUvr3H1NNytDuhn59MUv4zyrHz3zRcyY3PZZWGbsl6umazzw6Z0MOaw/3jQvbq8bT4qba568GN1oBGWYBLVFj9uWzTl3n4rb6yI1MwWPz5Hrnc0vMujgAxpl7zP+dBIpGT50Q0MIgSfFzWUPT2zQGm265DP8mMGVxnE4GKGsqJxnrn8l4fhxp45k0CEH4E3zkpLhw5vm5Y43bqx/I/dI0HKAXQrOC56jkg/FDs+F0vuiXm0bIvOQxTclNTchrtqqbsZ7S4RwO72dK70YbtA7Nmp1VoVCoWhtSP+bxBqjAfC/HjtIb+uERMegQfar4B4BIgXwAF7I+GszFh2rRTlLG1KvcmQS6Y5c6fcg2sxAuJP3nNa5c+rlIFIBPSqHD5H+54atYXQCz2iqdGYI7GKnzkgivMeBe7jz+xZpIFIQWfX3tB7TuStZXi+uaIFRn2FwYu8+SYdi/7xpI/d9/w0B0/Fq/7J5Ezd9MTWpuYkY0r59wv9z5ZH4g2+v4eL8QUMqezt7dJ2umVmM6tR5t/dXKBSNg8qRbkZcnvgvbN0VawinZqZy/TOX8dS1/8Jw6ZgRi3PvPo0DDurDvR/8mVkf/8KOjQX0ObAX+4/o1VyiM+HaY/nw2S9ico3dXhe3vX49Y/8wkmMuPJTt63fScb/2ZOZlNOrebbrk89Kvj/LFa98SCUUYd+ooeg7q1uB1tqzaFuM9ty2bLWsSe6Q1TeP+j25j4Q9LKS0oY/8De5HXof6WIUJ4IXcSsuwJsNY5xcZSL01eyPDPxHoRzGho9u4h3IOQ7qMh/Hm1qx6E9+TE49NvAVc/ZPgn0DsjUibGFJZRKBSKvY5E33E1InSEloXM+AuU/g2E4dSsSL8BzTMI6X4RQl85EUDuQQjXgOYRWwhkyjngf5fYEGsvZD2O5j0cmXIaWFvA6IZojHDu6vsbnSHvE6T/AyCM8B67e8UprQ3E6j0rei3BnkKH7Jcg8ouT5+0ahNDb1LtFisvFh2edy//N+pF1JcWM6dSlQaHYszZuIGxWvT9EbJufNze8l/YuhrXvyBHde/LlmlWV1zy6zoT9E+dI3zXuEAa0acfszRvokpnFBYOG4E6y4KpCoWg6lCHdjJxy4/FMnzSLYIVjjHp8bs77y+lx446+6FAGHtKP9Us20b5HW7r0cXJ5NU1jzMkjGkUWy7R48pqX+Or16eiGxlm3TeDs20+ptXDZpQ9NJL9zLjM/nkN22yxOuuYYeg3pjjt6OJDXMTeuqFhpYRnPXP8KK+evpXv/zlz71CUN7i29i7yOuZx756m7NXcXgw/rz7yvf4uJCti5qYDSwjIycuLD0YQQDBjXt8H7CC0LkXnP7gmp5eKczFeLStB+X565yH7Cadfifws0D6Reh/AemnisEOA7AeE74Xftqdj7SdQCT6HYExGplyCDX1NljHoRadfEjdNSzkC6R4G5yml9ZfRw5gsNvEc1iixSRpClf3FyjYUBqVejpdXeakqk347UO0LoWyfEOWUiwtW38gBU6O2gRkVraRciS++HyFJw9UFk/GW3jWyht0ekJ1tcrBbco6vV8ohibkXapQgt/mBeCM2JAmggOb4U7jv0iN0SMS8lBY9hVPaDBsjy/r7w/edOOJknf/qRdxctxGMY3DRqDOO7dks4VgjBhD59mdCn4e8kin0LpZubF1Ez72JvYPjw4XLOnN334jUlK+evYdLjnxAORjj+8iMZenjznFzX5OXb3+CDp6ZWGpWeFA83Pn85R0wc3yjrW6bFFUNuYdOKLZhhE8Ol07ZbG1767dGk22E1NrZtc2n//2fvvMOjqLo4/N7ZvukJvXcQQUApKihiwY6KHRU/UbErYsGGIooFKyqoYO+iqNgL2CiCNOkISO+Qns3Wmfv9MZtNNrtpEBLKfZ8nj+zMbbNCzpx7zv2dO9m8qvjslcVm4bSr+kZKbtU2UgaQmZdCaD2mcAyItFcQjur5/1K5NQTNlxrpA3s3hJZaY3Mrqh8hxAIpZfXkcoZxtWkkWz5bBdG7WmTlBY9W+/Mr9o4D2TbL4DKk5x0ghHBdhnAcWyvrMPKeNDc9I06lC1KeQHOdXS3jSxlE7jm3RBTYBpZmiDpfI8rSydjPSKkj95xhZnFFsILrYrSUR2tlTaXxh0JcMPkjNuXmRATLJp5zPn2aNa+xNQR1nb+3bcEf0jmmYSNS9tGRV9QuyjYfGrZZRaRrmDZdWzLi3dtqexnM/mZ+zHnt2VPnVZsjvfnfbezcsCuSSh0K6mTtyGbDss20PbpVtcxRxo1itgABAABJREFUVTRNI7VuSpQjrQd1Nq6In0JWE8jQWmTOXaBvAWtbROoLiIxPwfczyDwzNdxacyn8UvqRmRebERckCAdkfI6wlqOiqlAoFAc5wtYJkfpsbS8D/L8Sc17bPw2qyZEmtAaMHRSnUgfB2G7+zrd1qJ45qogQFqSWVsqRDplrrSX+zdzDnT99z9a8XDrUqcu4M87my0sG8fO6teT5/RzXpCmt0io+7lVdeINBLpj8IeuzswFwWK1MvexKWqZWb7q+QqGoGrUmNiaEaCqE+E0IsVIIsVwIcUecNicJIXKFEP+Efx6ujbUeipQ+x2yxWkhrkFpt41ttcVQmDRkljmYYBp+/8A33nPIoT1/9Mrs276m2+cviiF5tsTuLd93tThsderbd7/PGw6w5PQhCq0DmQ3Cx+RkN4ToH4R5Uo040gCx43VwPQSAE0mPWllYoDlGEEG8JIXYJIZaVcf8KIcSS8M9sIUSXEvc2CCGWhu3TgRlqrSLKNtcyMSnW1kqpUlceW2zup5RmGnnko4FR8CZG5mCMnBFIfUc1zl/WsrpgirUV4QBb1/0/bxzy/D4u+/xT/t2zm/xAgIXbt3HZlE+xahrntuvAFZ271KgTDfDy33NYnZlJ0DAIGgYFgQBDv/my4o4KxUHKwWKbazMiHQLuklIuFEIkAQuEEL9IKVeUajdDSqkObFYTuzbv4fFLnmft4vUIIbDYLGgWgSvRxeX3X1Bt8zRu25AjerVjxZzVBLwB7C47rbu0oEWnYpXJV4e/y49vTMdX6EezaPz9wyLeWvFimWJlObtzCQVCZDRKL/Msd0UMfvQSVs1by6q/1yKAtse0YsgTg5DhupA1SmgF5j+DopcaHWR2ODrdombXUkRgRuw1fe8FVRSHLvLQKV/xDvAK8F4Z99cDfaWU2UKIM4GJQK8S9/tJKff/LmDNoWxzLSD1rcjs2yH0L6YCthWwgJZgqmNXF9bWYDsyXI/ZDzjB1gksxZliMu9R8H4FeCFoQfr/gLo/lnnMR+qZQAi0enttR0XScGRwGQSXA9IUEUu6vVZs85KdOzGkUWyZpWS3x8O2/HyapuybZsneMmPThphr6+PUnFYolG2OUCO2udYcaSnldmB7+M/5QoiVQGOgtLE+LNmxYRf//LoMV6KT4wZ0x+7cd+VkwzC4u98odm7cjaGb5281TXD1qEs5/Zp+1aq2LYRgzPcP8OnYr1gzfx2tu7bgsvvORwuXnpBS8u2rPxMKmqnfhm4QKAwwe+o8zrz2lKix9JDOmMtf5K9v5qNpgtbdWvLUjw/hTqp6fWOHy8Gzv45i16Y9SCnxewPcdPQ9bF27gzqN03n4s7tqLkItEokSFQNTCVYkxDSV/r9A32Cmf1ehdImUBujbQHMjtErsoIt46qeqSp7i0EVK+acQokU592eX+DgHaLLfF1WLKNtcPjK0CQJzQUsExynVUtVAyhAy80ozxTqsjQEaJN6OcF9YrWrbQmiQ/nY4+2gFWI9EJA6NlOuS0gDvZ5j7KWBu8PrA/xu4ojfbpQwic+4A/5/mBVtnSHsDocXasIrX5YL0j8x63UIgDU/kLLfUGphaIbZO+/DklSfJbkcvFbUPGQYJpfRdpJTM2ryJjbk5dKhTh2MaNq70HLphsL0gH7fNRrrLXWH7uu7Y7zR+bWyF4tDgYLHNB8QZ6fAX1Q2YG+f2cUKIxcA24G4p5fIyxhgKDAVo1qzZflppzbB89r/cd/pjZqBSE9RvVoeX5z6JK2HfhCX2bM0ia3t2xIkGsyRXy87Nqr1kFYDdYeOqkbGq5EVIZMxnKU2H/9vXf2H5rFU07dAYoQn+/mFh5Lz12oXrmDDsbe5+c++UQoUQ1G9el2AgyBXNbyJnVy5Swu7NmYzo/xjvrxsfV8W72rEeAfZjwT8HUy3WBa7zEJboND4j7zHwfh5OxxPIhOvQkio+Zy/1Pcisq8wXE3Sk63xE8uPl7+4n3gJZv1Ls4Atwnrt3z6dQHHpcC/xQ4rMEfhZCSOB1KeXE2lnW/kHZ5mhkYB4yq6icoQBrE1NDQuyj6JO+DYwsip1oQNgRto7VXrIKQAgHIun2clqUFqGVgDRFwQo/huAiM7ItdfDPBMJ6K8GlyPynECmP7eW6zO9USj/suRBklnnD2IbMuhrq/o7Q9r9t7ly/Ad0bNWbe1i14QyHcVhsXdTwyxuEd+ds0vlq1EgOJAG7u0YtbelQsUrfLU8DlUyazvSAf3TC4pGNnRvc7pVzbPOzY45mxaUPEwRfAhUfEL5WlUByG1JptrnVHWgiRCEwBhkkp80rdXgg0l1IWCCHOAr4C4oYLw1/SRDCVQfffivc/z1//aqREFsD2dTv5fuI0Lrxz37LoEpJd6CWcaDCjvQmpVd893leEEJz+v5OY/uEM/IUBNE1gc9g47txjeOaa8cyYMhd/oR+704bNYYsSRgv6Q6ycs3qf17B93S58Hn/UcTEhBOuXbKLLSUfu8/gVIYSA1AngnYrU1yGsHcF5ZlQbGVofrhFa/PcBz+tI9yCEJbrcWGlk7oiweEs4suD71iwZ4jq/zD6avSMy7U2zNIqRD87TEcn37d0DKg5ZJOJgSh+rU+qM1MS9MapCiH6YxrpPicu9pZTbhBD1gF+EEKuklH/u43oPCJRtjkXmPkBUvebQJij8DBKu2reBtSSKI8CRwSFO6af9jRAa0jUAvD9gip5pZp1tx0nI3LvBNz183RGuv11SGC0AwX/2fRGhjUTZvMj11WA/Zt/HrwBNCN449wK+WLmcDTk5dKpXnzPbRP/1Xp25hy9WrcBXohzWy3/PYVCnLqS5ys+Wu/On79mUmxNxir9YtYKeTZpwbruyxd6Oqt+AtwYM5NE/f6UgEOCcNu0Z0afmqnkoDg6UbY5QY7a5Vh1pYdZamAJ8KKX8ovT9ksZbSvm9EGKCEKLOIXYeLYacXdHvLAFfkN1bs/Z53ISUBC4afg5fvfwDfm8Ah8tOl5OO5IhetSO2dfuE66nbJIO53y8io2EqQ58ZjMVm4bdPZqEHzYhowBckGAiiaQLDMI2OZtFo0q7RPs+fnJEYiXIXEQqGSK5TA9HoMEJYwD2QMn/tGXvMlxVZ4qVC2MzoRQWOdPEZ7DDSiwwsRpTjSAMIx/GIuj+U20ahOIjYs68lNoQQRwFvAGdKKTOLrkspt4X/u0sI8SXQEzjoHWllm8vAyC51wY80dpX9+7uSCC0N6R4MhR9hOpAOsPcG6/7f0I27nuQxSK2xmbJtqY9Iug+kYVaTiKh9+0EGMI/+FG3QW8HSct8XoKWBDEZfk8E4Qmz7D6umccmRZZcn3VNYiE3TorYRbJpGts9boSO9cs/uqNRxbyjIkp07ynWkAU5o3oJpVw2p1PoVioOAQ8I215ojLcwcljeBlVLK58to0wDYKaWUQoiemL+xM+O1PZToctKRzPl2PkG/6QQ53A66nVx8NigYCLJmwToQgnbHtMJqq/z/xmufuIJOvTuwZuF6GrSsR7/Le9e8yFYYi8XClSMv5soS6d9vjfw44kQXIY3iNHBngoOE1ARuffnavZ53/dKNPDFoHDs37ia5ThIF2R4Mw8BitXDixcfRstMBlH5obUdsmp0drJVYo6VpOF2wqL9TlbFSKKqIEKIZ8AVwlZRydYnrCYAWPkecAPQHRtfSMqsNZZvLwd4jfB64yMlzIOzF2jZSBiC4DLCArWOV6jJrySOQ9p7mBqilGTjPrjXbLITVTP0ukf5t5D1F8XMXISm2L27QkhHJD+31vDK40iwHaWwHkWqWgMQwFcWd5yCstVM6Mx4d6tSJ1JMuwmG10jip4iyCpskp5Pp8kW/OZbXWuAq4QnGwc6DY5tqMSPcGrgKWCiH+CV97AGgGIKV8DbgIuEkIEcLMp7pMlq6pdAhy15s3MfqiZ/nn1+VYbBpXP3oJvc46GoC8zHzu6P0gmduzQUK95nUZN/MxElIqn57d6+xj6HX2/k+PqiozvpjDx2Nigh9RtDumFY9/ez+uxKoLjQF4cj3cddIo8rMLALN+dkrdZC699zyatGtEz/D3fKAgtBRIexOZc6sZndYaItJeRYjiMiEyuAKCS0CrD46+EdEYkfI0MvMyzJcfA6ydwX1p7TyIQnGAIoT4GDgJM81sC/AIYIOIHXoYyAAmhB2bUHgXvT7wZfiaFfhISvljjT9A9aNscxmIlKeR2bdAcB5ghaThCIeZTSiNLGTmJWBkAtJ0htM/QmiJlR/f2Q/ot1/Wvi8Yhd9C4VvlN7IdhUh7DaFVLJwVD2nkILOuNEtBAuADLQPcQxC21mA/sNKY011u3jpvILd89w2Z3kIaJycz6dwLcFiLX6uX79rJkl07aZiYRN/mLSIbI8/1P5NLPv8E3TDQpaRbg4Zc3LFmhNQUioOFg8U216Zq90woPyNKSvkKpvT5YUVCspunf34YPaSjWbSoXemJ977Pjg27IynJ29bu4O2Rn3DrS1WP0O7YsIvxt7/Fzg276dLvSK5/+spqUQffW54f+nqFbax261470QBrF22IOiduGBJvgY9jz+1O4zYN93rc/Ymwd0PUm4WUIYSI/idrFE6BvEfDDTWwHw+p4xFCIKwtoe40s8yJcJsvOkIpcCuqh0PFa5JSXl7B/euA6+JcXwd0ie1xcKNsc9kILRmR8T5ShgBLlG2WeU+YomFFx2lC65AFLyOS76/yPDK0CZn3uBmZtR+LSLo7avO0xsmrRJlwYd9rJxooLnsVQQcjH+Hsj7AemEL5PRo14e/rbyJkGFi1aNv6ybIljP7zNwSmHkrf5i155cxzEELQJj2D36++jqW7dpBgs3NU/QZoSoFbUU0o21yztrnWxcYUZWOxWmKubVi2Oepcb9AfZP3STVUeOz+7gFt73k9+dgGGbrB17Q62r9vJ499U3ehXF958b7n3HW4HJw86YZ/mSEhxY+jRqeOhoI47eR9eAGqI0k60lDrkPUJEMVUCgdkQ+Ascx5t9tKTInxUKhUKx75T+XQxAaC3RgmEBUxyrikgjG5l5UXFac2gjUt+KSJuwt8utBgoruO/a9+oO8cpBEjLLjB3glHaig7rOqD9+JVDiXeOPDeuZt20rPRubmwLJDge9mzav0XUqFIrqR4WnDjI69GyDzVl87srustOhZ5sqj/PPb8sJ+AORUlgBX4D5P/2D1+OroOf+o3OfIyi9KZtSJ4nU+imkNUjl6kcvof/VJ+3THK27tuDoU4/CmeAwKzslODjnhtNIq5eyT+PWCtJLVLkUAISZAq5QKBSKmsN2FFAyo8sJtr0IivhnEzmOA4AP/L+aJaFqC1s3YpIURIaZeq3VhaQ70dzn7eMcR4G9F+Ay5xIucF+F0FL3bdxawBMMUPqkgyYEuz2eWlqRQqHYX6iI9EHGtU9dwZqF6/jvnw1I4Ihebbn60aqfe7VYY/dQpASLRSNndy6/fTyLoD/I8ef3pEnbmkl5Hjl5OKMGPsOyWauw2iwMuOUMbnhmcLUKrggheGTK3fz60Uy2rt1O6y4t6H1+z2obvyYRWiLS0hj0zUReuqS+dy9vCkVVkBxMJTYUiv2OSLoXGVoBwdWABHs3ROLNezFQWa9lAqnvAd93QAgcpyKsNRPRFGnjw2fDFwI2cF2NSL672m0zqa+C72tkaDPC1hEcp1Tb+DVJisNJg8QktuTlRtJsdWlwVP0GtbouxWGAss01jnKkDzJcCU5enPk4OzbsQghB/eZ198qYdTulMykZyQT9IUKBEA63g5MuPZ68zHxu6HYP3gIfUjd4f/RnPPvrKNr3iB/1ztqRzbT3/8TvC9Dn/J607Lz3hj05I4nn/xiNlHK/qpVqmsapVx5YwiV7i0h7G5l9PejrQCQgUp6tsZcrhUKhUJgILRHSPzM3NoUFtEZ7Z8fsfUAkh0sehgAXuAaAkYnccx7IQkBCwcuQ/iHCFr9EltR3gXcqUvoRztMRtr0vcym0dETGx/vdNgthAdcF+1xOrLYRQvDe+Rdx7TdfsD47myS7gxfPOJumKQdh5ptCoSgX5UgfhAghaNiy/j6N4UpwMn7+U7z/6GdsX7eTbid35vzbz+S14e/iyfGgh8wIZyioc/+Zj+Pz+LG77NzwzGDOvNbcJd6zNZMbut1DYZ4XI6Tz6dNTeeL7BzjqxI77/HxV4b/FG1i7aD31m9ely0lH1lrJkNpAWJsg6v6AlMEqlVpRKBQKRfUihKhcacLyxtASoM6XyPxXQN8CjuMR7sHIvFHF56YBZBCZdQ1Sesw06KQH0NwDzVv6duSeAWGnW0d6JkH6Wwj7vlXrqKptNStKrAJrE4T94Mz82luap6Yy7aohBHUdmyVW70ahUBwaKEf6MCY5PYlbxg2JupazKzfiRBeRn+0BCUF/iPF3vEXDVvXp2q8Tn7/wLZ5sT0QF21/o59Xh7/Dq/LE19gzfTvyF14a/EzHw/S7rzfBJN9XY/AcKyolW1DiHijSoQnGAIbR0REq0UrY0MonRxJC5mLmcQcgbhbQ2Rdh7IAsmhctIFbX3IvOfQmR8tv8XH8bwvA/5z5jVJJBI5/loKY/W2PwHCsqJVtQ4yjbXKEpsTBFFnwt64XCXKrNR4h9lwBtg/s+LAbOmdclSUgCenIrUPasPv9fPhNvfwl8YwOfx4/P4mf7RTGZN/btWRdMUCoVCoahWHKdjCnGVpOQbsx/pnx2+nEuM023k7b+1lUIaHsh/GvCZUXHpBe8XGL5fkbL86hwKhUJxMKEc6YOcxX8sZ8zlL/DUVS+xesF/cdsE/EF+ee8PPn/+G9YsXFfueH0vOZ6rR19CYloCrkQn7uRow22120itm2y2veg4HO5ilVKH284JFx27j09UefKzCtAs0X+FA94AYy57kYvqXcvvk2fV2FoUCoVCoShC+v/CyBmGkXOPmeIcr430I71fID1vl9mmCM09ABJvNc9PiwTzJwo7QksDQDjPAJwl7rnAeebeP0xVMbLNc+JR+CHnduTOXhjen2puLQqFQrEfUandBzHzf17MqAvG4veadYRnfvk3z/3+KO27t460CfiDDOv9IJv/3YYe1NEsGve8fQt9Lym7tvDFwwdw8fABACyctoSHz38aPWSgWTQyGqZx1vWnAtDr7GO46YX/8e4jkwn6g5x6xQkMebzc+unVSlqDVBJS3JHnLyLoDwLw7DUT6Hhce+o1rVNja1IoFArF4Y30/47Mvh0wM6Ok72fI+NhUoi5qI/1mvWh9E8gQYIHUZxHO/mWOqyVeD4nXh+f4E5l9K2btZQ0sDcB1IQDCeRoy6T7wvGKmfbsGIhJv209PGwdLAxDucInGkoRtde49SHtXhGXftF4UCoWitlER6YOYDx77PMqJ9Bf6+eyZqVFt/vzsLzb/uw2fx08wEMLvDTDupomVnuOovh1pd0wrpJQYuoHFpkUcVYCzrz+Nydsm8WXmO9zy0rVYrGWfB8rLyufTsVN584EPWTZrVRWeND4Wi4Wx0x6mXrM6CC1WBMVqt7Jp5dZ9nkehUMQipTgofhSKmkbmv0KRE23iRXreim7k/RZCm8LOZhDwIXOjz0WXi/1YsB6Bmd5tYMZFim2zljAIrd5stPrz0JLvNxWxy1qvkY0smISR/xwysKjyaygDIayItHdAq0/c10xhg1D52XEKhWLvqG2be7jZZuVIH8SEAqGYa8Fg9LW8zPwY8bDC/MqfH/7ype9ZvWAdelAnFAixY90uxt00qcprzc8u4IYud/PuI5/wyVNfMeK00Xz1yg9IuW+qCM07NuXDDa/yydaJ2J3RglvBQIgGLeru0/gKhUKhUFSNWNtc0skFQObEuVZQ6Rmk5y0IrQzPFQR9EzJvdNWWSdiJ3nMOsuBF8LyOzBqM4fl4n22zsLVHqzcD6vwBlNZdCYCl8T6Nr1AoFAcCypE+iDn/tjOihMEcLjvn3BCdFnZU345oJaK1VpuFTn06VHqOf+f9h7+wOOodCur898/6Kq/1p7d/I3dPPkG/+YIR8AUZf/tb3H/mGIKBYAW9Kya9firD37gJh8tOQoobu8vOFQ8OpEm7Rvs8tkKhUCgUlcZ9pVmSKoIT4bo0uo29J9Gn62zha5UkuJToqHcQKjhnHZfCz8HIodip90P+I8jsoUi577ZZs9aH5NGAE0SS+d/E2xH7WCZMoVAoDgTUGemDmFOv7IthSL4c9x2axcIVD11Ij9O7RrVp07UlI967jRdvnIgnr5BOfY5g5OThlZ6jVZfm/PXNfALhFHKLVaNZx6ZVXmthXiGhYOwu/bIZK/l07FSufOiiKo9ZmlMGnUCn3h3YtHILDVrWo2l7teMNIIPLzTqiMoBwX45wnFDbS1IcAuxjwEqhOGTR3BeZmtmF7wNWROKtCEe0LomwdUamPAl5o0B6wN4DkfpC5SexdgD/n4C/6AJY21Z5rVLmERMZBwjMRXreRiQOrfKYpdHcFyDtPUBfB5amCGvLfR7zUGDxzh28sXAeIcPgis5d6dOseW0vSXEIoGxzzaIc6YOc/oNPov/gk8ptc8KFx3LChXunpn3R8HOZ/+M/rFm4Dk3TSMpIZNhrFRtWwzBYt3gjvkI/rbu2oNfZxzD5ma9jhMH83gD//r12r9YWj/rN61K/uUrnLkIGVyAzBwGm6Iv0z4TU5xHOU2t3YQqFQnEIo7kvAnf5G8Sa62xwnb1X44vEocjATAj+C0KAlo5IfqTCflIaZkq49IGtI8JxCtLzLtHRbczPwcV7tba467U2AWuTahvvYGfxzh0MmvIp3pAZYPhj4wZeOfNcTm7ZqpZXplAoqoJypBXlYnfYePa3UaxbspFQIESro5pjd9rL7RMKhnjgrCdYOWc1mkXDmeBk3KzHefCTO3li0Iv4PP5IW7vTRsvO8VO8pJR8OnYq30+ahs1h5bL7zufUK/siRNkiBf/O/49Px35F0BfknBv70+uso/fuwQ8RzBekksqpPmTBeOVIKxQKxUGMEA5I/whC/5rK3LYjEKJ82yxlAJk1xEwLFxYQCYiMTxGpzyJz7ibamXaYUe+44xhIz+vg/RywQ+JNCOe55dpmGViM9LwBBBHuKw77zKi3Fs2PONEAvlCIV+bNUY60QnGQoc5IKypE0zTadG1Jh55tK3SiAb557WdWzP4Xn8dPYZ6XnF25PHPNeI47tzvv/Teehq3q40py4Up00qJTMwY9eGHccSY/+zUfPvY529ftZNPKrYy9ejyXNh7K9nU747ZfveA/7jrpEWZ8Poc53y7gsUueY8YXc/fp2Q9+4one6DW+CoVCoVBUL0JYELaOCHuXCp1oAOl5H4JLAK8pbGbsQeY+gHD2R9SdDpYm4RrVbtMxD5faih3ndfC8Bvpm0P+D3LuRu09EhrbEbx9YjMy6Cvw/gf9XZPYtSN/0fXn0g56gYcRcC+nKNisUBxsqIq2odjYu3xyVwm3oBltWbwfA7rAy4v3byM8qIK1+Km26tcBiiV+W48e3fsVX6I+6lr0jhwfPfoK3Vo6Laf/Vyz/gL9HeXxjgozFTOGFgr+p4rIMS4b4M6fuF4kiDE9yDa3NJikMACYdU+QqF4rBAX0101FmHUFg8VDgg5VkwchGWumA9ouySWd4psTWijZ3InBsRdb6NaS4L3yk1rw9Z8CrCecreP8tBzpWdu/L7hvX4wlFpl9XK/7oe3hl0in1H2eaaRznSimqn3TGtmeaeEXFqLVYLrbs0Z+H0pTxywVg0TRAMhBg69krad29d5jiOMqLfW1ZvJxQMYbUV//U1DCNuOTD9MN/hFfYekDYBWfCKWXLEfSWae2BtL0uhUCgUNY21M/ADxU6tFWxHIP0zkDm3AhaQQWTSA2i2TmWPIxzxr4fWIKWBEMXJjlIaYKjMqNIc37QZE84awCvz5hDSdQZ36cbAI46s7WUpFIoqohxpRaVYOG0JS/5cQUbDNE6/pl+ZKd6zvvqb9x/7zFToFoA0ndlmHRoz6oKx+AqKd6XfGPEh3ft3LbNE1ZAnBjHqgrEESznI7hRXxImWUvLGiA+YMu47DN1AswgM3ZQsdLjtXHjnOdXw9AcnUt9tpt5ZO6BlfFLby1EoFApFNSP9M5GB+QhLfXBdWGaKt+H9EQpeJ/q4jw5aS2TObdER5vwnkY7eZZaoEol3mX1Kq32L1IgTLaVE5j8JhR8ABuZJwqJ0Zie4r6n6wx4i7PIUsDkvl0716vP5xZfX9nIUCsU+oBzpg4CNKzazfNa/pNRN5thzjykzFbo8tq/fyeLfV5CQ4ubYc47GZrdVuu8X477lrQc/wV/ox+Gy8/0b03nprzExY6z6ew1PXjEuRpkbCd++9gt6qTNBFpuFTau2lulI9zyzG0//8jBjr36F3Vv2YHPYkBLu/+COSJsf3/qVryf8hB40d7etditp9ZOo27QOA24+ndOu6lvp5zyUMAq/gLxHQNjNCEPy42juAbW9LMWhggRU+pjiMEcG10BwAWh1wNGv7FTo8sYIbYLAPNCSwmNU3jYbBW9AwcuAF4nTrAmd8UnMGDKwEHLvJVaZW4L3A/O/JRE20NdDWY6082Rk2luQex8YOwFzPpH6bPHIhR+D91OKHXcbiLpgbQCuwWjucyv9nIcSk5cvZdTvv2KzaAQNg7GnnsE57drX9rIUhwrKNtc4ypE+wJk9dR5PXPEiAELTaHt0K56Z9jAWa+UN9pI/V/Dg2U+YYwhB47YNGTfr8UoJhxmGwaQRH0bSpv3eAFvXbGfOtwtjzh7P/W4hAV+cepSA3xdAs0Rr24WCeplOdBGdTziC9/57hSV/riB7Rw7te7ahYcv6kft//7Ao6hx1MBDCnezm5b+eqPDZDlWkvsd0ovGDDH83eQ8inX0QWrqp3Jr/EgTng7UFIulehJZeq2tWKBSKgwnD+2PYOQWEBrYukPZWlZxp6f8LmX2jWb4KwNIaMj6unHCY1KHgeYodVZ8p/OWfAc6TS83zK7FOdBF+oNSaZRAsLcqdX3P0Qtb9FQJzwcgEWxezxFURgT9LnaMOgiUFLeOzCp/tUGVHQT6P/P4rfj2EL5zZfu+0HzmhWXNSnE78oRAvzJnNgu1baZWWxojeJ5LuctfuohUKRbkoR/oA55kh4/EXFkd41yz4j5lf/k3fi4+r9BjPDpkQVXJq879b+emd3zn3xv4V9tVDOkYo+iyTlBJPbmFM28TUBKx2K0F/HGdawLHnHM3CaUvRLBqhQIhrHr+cZh0aV7gGIQRd+sY/O1S3aQZWm4VQOCIthCCjYRrb/tvB+DveZvfmPRx9SmeGPHkFdkfld/pLs2vTbhb8sgSH28FxA7rjSnCyZ1sW0z+YQTAQ5ISBvWjeselej1+t6FvNiIIsIdQmbOZ1Ld08C+efg1kndAnSPxfqfo8QrlpbskKhUBxU5D1AxDmVmDWX/dPBWbFdLULm3oepoB2+EFoD3qngvrgSvYMUp0qXHDQ/5pIQKUhsxKRim3fBcQoEZlB0RpqkuxHW5hWuQAgBjmPj39QaYr5iFjn6ArT6yNAGZN7jZiTb3geRdGelNg7KQupbwT8bhAucpyCEC6nvAO/XSBlEuM5AWMvWYqlJNuflYrdo+Eu8UlmFxrb8PJIdDoZ++xV/b92KXw+xZOcO5mzZwk9XXo3TuvfvLgqFYv+iHOkDmHgOq6EbZO/MqdI4uXvyoj77vQGytmdXqq/NbqPj8e1Z9ffaKDGvLid1jGnb/38n8fkL35K5NQspo1PFLBaNYa/dgMVmYeuaHdRtkk6dxhlVeo6SFOR4sDttXPHghcyYMpe8zDxCfh2EpGmHRtzS6z48OYVIQ7J17Q52btrDI5/fvVdzrV7wH3f3G4VhSBDgHu6k3+V9+OGN6QT9QQxD8ulTX/H0LyPpeNwBkKJlbQqylLiLDIGlCdLIAf8sil+oQiBzzNRCx4k1u07FQU2pf+IKxWGDlDpIT6mLhhmZrQpGTqkLATB2V6qrEE6krTMEl1PsrEqw94ht7L4ICt8Nj136H64FkTIaEBDaCJaG5nnrvUQaeSCciMRbkf5fwMjFtDcCLM2Rey4EPIABoY1IYwci9YW9myuwGJl9dfEvo7wnkc4zwfe5Ka6JRBZOhPT3Ebaj9vqZqovmKakxZa90adA4OZk93kLmbt1CICyQGjQMsrxeFmzfRu+mFW9qKBRFKNtcs6g60gcwQgjad2+NxapFXevUu0NUO0+uh3E3T+KOPg8x/vY38RZEl6U4sncHrLbi1C2Hy07nE2Md4bJ49Kt7OfrUzriT3TRq3YAx3z0QlV5dRFJaIlc/eil1mmQgtOIzGlabhXNvOp20+qkkpydxRK+2e+1E52Xlc2uv+7m4/rUMSB7MZ89+zZM/PggIDGlg6JIf3/wVb74PaZi/TQLeALOnziMYiJ92XhEv3jARb4EPf6Efv8dP9s5cvnjxO7wFPkJBHUM38BX6ef3u9/Zq/Moig/8iC15Det41HeIyEFo6pDwFOEEkmv9NGYvQ0vbr+hQKheJwQAgLWI8gJiXa1i3qozTyMHJHYmReipE3Blm6ZJS9K9HxDDvYu1d+HWkTwX6c+Xve0gKR9hbCEue4lEiFhNtA1Cf6tc8G7sEILR2hpSHsXffaiZZGFsaeC5C7jkXu7IIsfA/S3grfNQA9fGa6kOJIug98PyJLb/xWds68kSALAa/5I3eD973wtZA5p/Qi857eq/Ery8rdu5gwby7v/LOQXF9ZKfRQLyGRJ0/uj9NiJdFux2W18sLpZ5HscO7X9SkUiv2Hikgf4Dz61b08dO5TrF20HofTzh2vD6VNt5aR+3pI584TH2bLv9sIBkKsXbiOVX+vZdzsMWiaaTDve/827j11NP/9swHNonH5/Rdw9CmdK72G5PQkxnz7QIXt3h89mcljv446syw0Qe8LejL0maui2gb8Qf74dDa5e/LoctKRtD26VaXW8uyQCfz3z/pIKvfU8T+SsyvPdJrDu3ClVb6LKPo+ivDkepg44gP+W7SB1t1aMPTpK0lISYjpV9kMgIIcT8WN9hLpn22epSMIWMEzEep8U+bZZs11FtJxPOjbwNIYoaUAILRUpKMP+P/CTEu0mi9Z8aIYCoVCoYiLSHsNmX0DhP4F4YTkMQhb8Sa3lAFk5mWgbwSCEFyBDC6F9I/NlGhApL6AzBoModWABRJvRdh7Vn4NWhoi/c0K28mCF6HwnVJnlgU4T0ck3RXdVvrB950ZSbb3Qtgqt+kuc+41v4ui6LjnHdB3EJ1+XtZmdrQ4kjTykPlPQ/BfsB2JSLoHoSXGdqtsBoDMq7jNXvLnxg3c+N1UgrqOVdN4fcE8frhiMKnO+EelzutwBCc2b8G2/DyaJKeQ4jSd6DouN70aN4mkdts0jQy3i2Malq8jo1AoahflSB/gpDdIY8K8pwkFQ1islogBLuK/xRvYsX5XxHkM+IKsX7aZrWu207S9ef74v382sGX1NoQm0CwaX738A2dddypp9VOrbZ1SSj564suYWs4Wq4UBN58RpfAdDAQZ1uchNq/aSiioY7Fo3PP2LfS95PgK51nx1+qIEw3g8/jZvn4nMRqFAqxW8+y0w+2g/+C+UQJtekhn+EmPsHnlVoKBEOuWbGTV3DVMmP90jCp6t1M688fk2WUKqQE43A5OvLji9e8tMu8xisVidDCykZ4PEUm3ldlHaKmgpcZeT30Zmf9yWGysuSk2ps5HKxQKRaURlgaIOlOR0tzcLG2bCa4AYzvFzqPfvKZvLlbDDq6A0CbMKLEFCt9Bui+qVvFHKXXwTCK67BXmmt1XRil8S+lHZl5sOv9SBzRkyrNorkqc+w4uLjWH19zIjUFgRvJDgAvcF0cJtEkZRGZdDqENQBBCq5DBJZAxJao+NQD2Y8H3E1CqUkgULnCeWfH695JRv0/HFzKfW9d1sryFfLR0CTf36FVmnzSXizRXtM0VQjDxnPN5ce5sFmzbSqu0dEb0PlGdj1YoDnCUI32QUFQ3Gcwzz8tmrsLhdpCYGk/RUUYZ9VfvfCciWBYKhMjPKuDLl39gyOPVV7/Q0A2MUKzwSSgQ4usJP3FUiVTyPz+bw+ZVWyMCaCHgxZsmVsqRrtskg9zdxbvLdpedrv06sW7xRkLBEIYhcbgdnHntyRiGZOeGXRxzWhfOu/WMqHE2rdzCtrU7IhsQQX+QbWt3sGnFFlp2jj6PdNv468jLzOfvHxZF0sVLI6WkTdcWFa5/r4kRkAnFOV9XOYSwI5LvqrihQlEe6hyWQhHtiBpZEFgAwo0UTir6RyLzHqd4gzQARg7S8wEi6fZqXKFOXFEygsjCjxD2o4sveb8zz0lTInKdNxIq40hb6kMot8QFJziOg9CKsFNuYDrOl4P0mU6240SE+4rocUKrTWHMyAZEAELrQF8H1jZRTUXyo0gjNyyUVtZ3LcNp+PuH/EC0Ex80DLJ93jJal4/DamVEb6VVothHlG2uUZQjfZCxccVmhp0wEkM3kIakUdsG1G9Rl61rthP0h7A5bbTs3JxGbRpE+pQWLNNDBvmZscqe+0LWjhySMhKjnNwiSu/U52Xmo5dyur35lTM8d791M3ed9AjSkEgkTds35tJ7z+OUK07g7ZGfkLMzl94X9OS8W86IjRBEL6rS110JTh7/5n50XWftwvWMufxF9mzNRLNYTLEx3SDgDfDkFeMYP/9pmh/RJM7A+4jjVPB+QfFLlxNRqsSJQqFQKGoHGfwXmTWIcCFX0FqaytX6ZsyIqQNsR4KlRHUHWVBqlFBYnKsaMfaASDZFJWMoZe9kNjGR65g1xkekPI3MKjrCZYC1LSLhOnCeZaaW61ngPAPhvrx82xybXxYmVtJHaImI9DeQMoQMLoOcO8OCahqmI64DPsi5A1lnKsLaMmaMfeXUVq35atUK/GGRMKfVyiktDwyVcIVCsf9RjvRBxnPXvYonxxNR5du8ciuX3X8B2TtyWLdkI+2Oac01Yy6POg/c54KefDdxGn6vuXPqcNs5/vyKz2Ft/ncrm1dto3HbBuWWdvJ7/dxx/IPkZ8UaXIfbzsBhZ0ddO6pvR7RSYmRHlhJQK4vWXVrw9qpxLJu5Cmeik24nd8Jqs9KodQMe/GhYpcYAaHZEY5of2ZR1SzYS9AWxO200P7IpzY4ouxyXxWKhfY82vLf2FXRd50zH5dERagFL/1y5XxxpkfwAEj/4fgQckHQPwtG72udRKBQKRdWRufdHZw7payDxFjPyGlpt1llOGhbtRMbdID2l4rlC/0FoPVhbllvaSRqFyMxL4pbEAiciYXD0JXsvzLTromiwDSp5ZlvYjoQ6P0FwIQg32I9DCCtYWyBSX6zUGABY25k1rENrKd6A6FBuXWshrAh7V6j3m3k2fedRREfhhZkpsB8c6VF9Tyag6/z831pcViv39TmRY5scIKUwFQrFfkc50gcZuzbtiZK2D/iCZG7NYthrN5TZ5/qxVxHwh/jtk5nYHTaGPDGIHqd3LXeeqeN/ZNK972OxWdCDOleNuoRL7zkvbtv//tmAJ68QQy82XJpF0OWkTvxv9KUc0attVPvWXVow4v3befHG1ynMLaRTnyMYOXl4xQ8fJq1+KidcWEbtykpisVh4ZvojvPvwp6xdtJ423Vpy9ehLY85Hl4WmaThc9qj63JqmkVInaZ/WVRZC2BEpT0LKk/tlfIWiagikLC+qpFAcZhjbS13wg74LLWV0mV3MDdKguUEqnJB4N8JR/hEnw/Mu5D8HwgoyhEwajpbwv/iNQ8vDCtYlChejgf14ROIdCFu06KiwdUKmPAV5o8zyXvYeVXKChaUuWE6vdPu4YwgrpH9oRrGDq8DWCZF0e+z56DKxhX+KbTNCxNULqQ4cVivP9d9/Z7AViqqhbHNNoxzpg4yOx7Xnr2/mR0S9nG4HnU8oX1XTarNyx4TruWPC9ZWaI2d3Lq/f/R5BfzByVOq9Rz6l36XHU69Z3Zj2NoctyokumvOuN26ifvPY9gAnDOzFCQPLFuOoCVwJTm587uq96iuE4PYJ1zPuxokYuoHFZqFl52Ycf55Sv1YoFIrDDlsX8M+gOJrrQtiPKbeLuUE6BlLGVGoKqe+C/GcBf/E5yPznkM4zyyhbZSf2fLQVkfJkmWWuNNdZ4DqrUuvZXwgtAZH84N71FQKZ/AjkjcbcQLCBtSM4TqrOJSoUCgWgHOmDjjsn3sDuszJZu3A9UkrOuO4UTh7Up1rn2LM1C5vdajrSYWwOG7u3ZMV1pBu1qU9SeiIBbyAs9mWne/8u1GtWp1rXdaBx2lV9adahMUtnrCStfip9LzkuShlcoVAoFIcHIuVJZNa14RJQEtyXgbOaHVJjJwgbyJLRVpt5PY5jLC0tQCSZ4l4YmAJgJ+11reiDBc19EdLaFoILQKsLzjPNSLdCoVBUM+o3y0FGUloiL//1BPnZBdgcNpxuR7XP0bBVfaSMlv3TQzpN2jWMaRsMBLnzhIfJ3pmLYUg0i0bT9o0Z+dldFQiKHBq079GG9j3aVNxQoVAoFIcsQkuDjCkgc0E4EcJZ/ZNYmhMbYTbC16ORMgBZl4GRFe5jMQXAUl+o/nUdgAh7F7B3qe1lKBSKQ5zKHjpRHGAkpSXuFycaICHZzeipI3Anu3C47DgTnTz82V2k1EmOabt81r/s2LArkmpu6AYblm+OUQpXKBSHGPIg+VEoagghBEJL3T9ONCC0ZETqeBAJgBNEAiJ1PEJLiW0c+BuMHRSnmusQWgly70ozKRSKg4TatrmHmW1WEWlFDH9Mns2HY6aQ0Tid0wb35aI7z8Fmt8VtGwrqMZFnIUTEsS6NJ6+QVX+vZdXcNaTVT+XUq07E7og/tkKhUCgUChPD+y0UvAaiASRciEgYjBD2+I1lkNhSUoJix7pUcyMfGVyCCC4BrQ64zit7bIVCoVAAypFWlGLudwt4Zsh4/IVmqax3HvoEPahz5UMXxW3f8bh2ON0OfB4/hm5gc1hpe3RL0uqnRrXz5BVyz8mPsmbhusg1m9PGt6/9xLjZY8p01BUKhUKhONyRvl8g9wEipbIKnkNKEEnXxe9g7w7CEVbtNgC7KYgmUqPHNfLM+s+hleZnszMUfgoZHyOEss0KhUJRFiq1WxHFdxOnRZxoMFO13xs1ma1rS5f2MHEnuXh57pP0OKMrTdo3ot9lfXjyx4diotRjr34lyokGCPqCbFm9ndlfzav+B1EoFPsPCVKKg+JHoTgUkIWfUFxvGkAHz7PI0Ka47YWWhMj4HOwngKUVuAYg0ibG2GaZMzziRBcTAH0t+H+r1mdQKBT7GWWbaxwVkVZEYXfG7j5LQ/LDm79y3ZNXxO1Tr2kdHv/m/nLHXfLHirjXQ0Gd/GxP3HtSSrO0VDUoYfsK/UjDwJXo2uexFAqFQqGoUeKeuzaQ3i8RSXfE72JpjEifVP64wYXxr0sdaeTFJIcDYTFSvVqUsKVRCEiElrDPYykUCkVNoyLSiiguu++C2GNVmKrd+0JSemLc60F/kJ/f+z1GJfyrl7/n7IQrOMs5iLtOeoT87AIAcvfk8f0b0/lu4i9kbs+ucF49pPPkleM4P3UwF6Rfw0MDniLgj39GrLrYsHwzP779G/N+XBTzXAqFQqFQVBWReGO8q5i1kvdl4KQybvih8MsYG2Z43kbu7Izc2QkjazDSyAdAGlnIwsnIwk+Q+p4Kp5UyiJE9DLnrGOSu7hjZN5tK4/sRGVyNLJyC9M9QtlmhUFQLypFWRNGmW0vOv/VMLNbivxoOt4NTrzxxn8a9+62b4zroACv/Ws30D/+MfF7061LeuP9Dgr4ghmGwYs5qnh78Mru3ZHJtxzuZMOxtXr3zHa7tOIwtq7eVO+/kZ79m1ld/o4cM9JDOoulLeOvBj/bpWcrjt09ncWvP+xh/+5uMvuR5Rg18RhlsxaFJbSt+HmbKoIrDG2HrDK5BQMkMLSfCec6+DZzyZNn3QvOQvh8iH6V/BuS/AAQAAwILkLkjkPpW5O4zkHmPI/OeQO45o8yU88hYntfB/yvmRoAO/pnI/Jf27VnKwSicisy8CJn/GDLnNmTO7co2Kw5NatvmHma2WTnShyjfvzGNIR2Hce2Rw3jhhte4qvUtXN70Bt4fPRnDKF2HMpqbX7yGG5+7mrZHt+Kovh15+ueRtO7SIqpNKBji2SHjOcs1iAHJV/HxU1+WO+ZRJ3Zk/N9P0aFn/JrLM78sPie9+PflUee0Q4EQS2es5J2Rn5CfXYC/0I/fG8CTW8iYy18od97Fvy2LGivgDbLk9/hp5vuKlJLnrp2A3xvA5/HjK/CxcPpSFvyyZL/Mp1AoFIqDC8PzMcbu0zF2n4WRMxJjVz+MXSdiFEyo0LETyY9A0r1g7Qi2Xoj09xC2dlFtpAxg5NyDsaMTxs5uGAVvlDum5jge0j8Ha+f4DXy/FI8dmEv0Oe0gBOYh858HmRe+5wOZZ569Lg//nFJj+SAwt/w+e4mUOuQ9GF5bofkTmAGBOftlPoVCcfigzkgfgkz74A8mDHsHf6EfgE0rt0bufTr2a6x2G5ffd0GZ/YUQnH/bWZx/21lltnnzgY/4/dPZBP1Bgv4gHz4+hQYt6tHvst5x2y+cvpRPn/4Ku9uO0ATSiH5hqN+8TuTPGQ3TcLjs+L3FDnBKnWQyt2Vh6NGbAP/9s5FZX/1N7/N7xp23UesGLP59OaGgmf6mWTQatKxX5nPtC35vgKA/tuxX5ras/TKfQqFQKA4ejMIpkP8UEK7lrK8tvlnwOlI4EAnXltlfCIFIuAYSrimzjcx/Gnw/AQGQASh4GWltinCeHr+9fyZ4JgFuzLSxUs68pVHx/Fo9JA7AX3xfSwd9F6YyeAlCS5G+3xDOfvEXam0WPp9dZDMtYG1a5nPtE9Ibuz4EGLv3z3wKheKwQUWkD0FM5W1/3Hv+Qj+/vPs7f0yezfdvTGf7up17Ncecb+ZHObr+Qj9/fR1ffXvx78t5eMBTLJy2hCW/r0Bo0TneDreDuk0yGHP5C7x+z3sce253GrdriCvRiTPBgdPt4K43b+LYc7vH9JVS8s1rP5e5zqtHX0pGo3RcSU7cSU5S6iZz0wv/26tnrgin20GjNg2i1ih1gw692u6X+RQKhUJxEOH9hIgTHXsTvF8ivd8hCz9Dhjbv3Rz+34mO9HqRvulxm0r/LGT2zRD4C0JziX0ldIOWjpEzDCPvaaSzP1ibm9dxgXAhUsaAsx+xZ7ck0vtJmcsUiXeBVhdEgvmjZSCSRlTxYSuJSABLw+g1Sh1sZUThFQqFopKoiPQhiMPtKPf+zk27efa6V5GGRAh48ocH6dTniCrNkVI3mS2ri0tiWawW0humxW37xbjvopxuI2TQtH0jWnRqSmJaIja7lXcf+RSfx4/VZuH3T2fz5A8P8OvHM9E0jdMG96Vxm4YcdWJHPnv2a3ZtihYyiac0HllnnWQmLXuef35dhqEbdO13JAkp+08d9MkfHuSBM8ewdc127E47d799C82PaLLf5lMoao9Dp3yFQlEzxFPeLkFoIzLvQcwC0UDaOwh7t6pNoaWBXtIJt4Klbtym0vMOMSW1tNZgawNaCkgNCl7CdP5t4PsBUieC/1vAgnANRFibgu1opOdtMEpvzJf9LiIsGVDn+3B6tQT7sQgtvijpviKEgLS3kdnXmt+NcELyWIS15X6ZT6GoXZRtrkmUI30IctXDF7Ns5sqos8FF6dRWmwVDNwh4i5Wrn7vuVd5eVTWRj1vGDWF430fQQzqaReBOcnPpvefFtDMMg6w46trJGUk8/NndSCk5yzWIUMBM7woFdfL25HFz9/uwO22Egjo7N+7m3nduRQjBfe/fzv1nPB5xzB1uB5ffP7DctboSnBx3bvcqPd/e0qBFPd5aOY6AL4DNYYup2alQKBSKwxORdDsy61qindeidGorYIAMZ5NJkLkPIup+X8U5RiKzB5sRVzTQkuOmi0tpgBFHXdtSBy3tZaQ0kDs7UZx6HQQjE7IGgrCDDCGNnZA8BiE0SHkGmT20xLO5EIlDy1+rlgDOU6r0fHuLsDZD1P0FKX2AQ9lmhUJRLShH+hDkyOPb8/wfo/lu4jSEEBw34BhWzF5NwB8kb08+P7/7e1T77et28uyQ8VwzZhAZZUSVS9P26FZMXPIsc79diNVu5cSLjyU5PbqMhpSS0Rc/x7ol0eqdDredS8JOt5QSWUr8LOAznfxguEzVzC/mctKlvel11tF0PuEIxk5/hG9f/xlN0xhw8+m0O6Z1pb+bmsLutNf2EhQKhUJxACHsPSD9faT3M0ADxykQnA8yaDq1vq+jO+gbMHIfQCQOR1jqxB0zdo4ukPGNmeIt7OA8E6GlRLWRUiJzboLQ2lK9nYjE68J/NoiV1i1y8sOb9N7vwHk2OHojHMdC+jvIwk9AWBDuqxC2jpVac00i4tbjVigUir1DOdKHKO2OaU2714sdzF5nHQPAvJ/+4Y/P/oo6Q62HDKZ9MIN5P/7DWytfrHTqc8OW9Tn/tjPLvL981ioW/LyYgC+6NmSfC3qxc8Nu8rLySU5Pos/AXvz1zQIC3vg1JPWQHnWWu+Ox7eh4bLu4bUtTpIKqdp8VimrmECpfoVDUFMLexXR2i3D2BUD6fkP6fiH6DHUIvF+ZZafq/FDp1GdhbQbWwWU3CMwNK2SX0lJxnmGml9tyEVoK0nEy+P8Mt4sjRIYRlUYu7Ecj7EdXao1SSmWXFYr9gbLNNYoSGzvM6HF6V4aMuQybI/pcsR7S8Rb4mPv9omqbK2d3Hpol9q/Y75/M4o37PuD6TsPJ2Z3Lve/exlnXnUKjNg1wJcbuFodCOq27tqjS3L5CP48MHMuZjss4N+kqPnv+64o7KRQKhUJRCwhnP0i8HSidzRQCWQCBmdU3mZFF3HOUvm+Q+c8g95yNNLIRqc+D60KwNCf++e4gWKumryIND0b2DcidHTF2dMHwvLs3T6BQKBQHBMqRPgwZeMc5TM19N0YBGwApycvMZ+53C1j8x3J03SwbtXLuGp4f+hov3TKJDcsrpybavkebmHJVALpuEPAFyc3M56uXf8DusHHLuCG8/s+z+OKojQsEKXWSq/SML908iXk//oMeMvAX+nn34cn89c38SvU1DIPt63eye0tmhXU9FQqFQqGoDrTEa6HefOK/mkmkkWVGrgPzzDPOgAwswsh9CCP3UWRMqnYZ2LuAjLXNoAN+MLKQno8QwoGWMgqR8SUQP2MMrXLHwSJPkfcw+GeF5/JC/nNI/x+V6ysNZGgzUt9RpTkVCoVif6FSuw9TbHYb/S7rzayv/sZfGECzaNidNuo2q8PgtrciDYlhSNp2a8kVD13IIxeMxV8YQAj45b0/eHHm47Tu0gIoO0WrbpMMRk8dwRODxpGzOzcm3UQP6uTuyStek8Mat8a0zW6lMK+Q/OwCfnzzVwpyPfQ662g6Hte+zOdb8MsSgr5iQTV/oZ+53y+MER3z5Hr447M5BLwBup3ameWzVvHB41PI2ZkDCI4+7ShGTbkbq039U1EoFArF/kXTnBiO/iXKWGkgnEhRB3afhmlIDbAehUy4DnJupUjgS/q+hPTJCJt59Kks2ywsjSFtAjLnLpDZxOaChsLXizqUpb5tB1mANHLAOwVp5CEc/RD2rmU/oH8W0U65D+mbgXD0jWomjTxTJVwGkPbjITgPCiaEo+kgHSciUl9CCGWbFQpF7aF+Ax3G3PP2LTRoWY8FvyyhXtM63PDsYB65YCyenMJIm9UL/uOlmydFFMClBJ/Hz6djp3LdU1fwyPlj+W/xBpLSEhnx3m30PDO6VEe3kzvz2Y43GH/HW3z18g8xazh+QI/Iny0WC4MfuYR3Hv4kyq67kpzUaZzB0C53k7s7l2AgxJTnv+Wed26l78XHxX22lLpJMWrhs76cy9CxV+FOcgGQl5nPDd3uIT+rAMMwCAVCCAGGXjz5P78uZfKzXzOoAmVwheKwQyVrKBT7BZH6LDL/ZbO+s6URIvl+ZNZ1IPOLGwX/gfxHiVIAl16k501Iuh2ZfSOEViNFKiL1OYSjT/Qcjt6I+nMwch8O17cutQZHv+I/Cxsy4SbwvBLdSEtCahmw5xwwsoGQWQYr9TmE87T4D6elgZ4Vfc3/A9IYjtDc5mMYWcg9A8DIwxQ9C2KmopeIovtnIj3vIhJjFckVisMaZZtrFJXafRhjtVm55rHLeWXOkzz82V3Ub143pkazvzBAYYEvpq/P4+P+M8awbslGpGGmg4+++Dm2/Rc/5apOkwys9uh9m4xGafQ4I9rxvuLBC7n7jZvIaJSG3WmjzdEteeHPx/jzs7/I3Z1H0B8CCX5vgFeHv1Pmsw17dWjM+WxPbiEfjZkS+fzFuO/I2ZmDv9BP0Bc0o/B69G8gf2GAVXPXlDmPQqFQKBTViRB2tOS70Op8jpb2EsLSEIzSttUHRmGpaxJkITLrfxBaE/6cjcy+BRnaEn8ySwMgWjMF0RDh6B11SUu6HZIfB60u4ABrJ0T6xwjfN2EnOmjOhw+ZN6bsZ0t5jJhXTyMX6ZlY/BSeN8ORZx9m9DochS/9/MF/ypxHoVAoagLlSCuiaHdMKyxWS+SzM8HB8ef1wOEuTu1yuO2cesUJbF2zLeoMtGYRrJwT3+kccFN/GrashzPRicPtwJno5JEp98Rte/o1J/PJlol8V/gRr84fS5N2jSjI9RAKhqLa+TyxDn4RHY9rT4OW9aKuBf0hvn71Z9YvM8txZW7PJhTUyxwDwO600eLIpuW2USgUCoViv2LrCBTbZoTLLJ8lXCUaOcF5JuhbiXI8hQbBJXGHFe7BYGkEwg24QLgR6a/Ebau5L0GrNwutwVK0Ol8grM3MFGyC0Q1laQe/xHz27qA1LHU1AIXvFZ/x1ndRXL+6LBxgbVtBG4VCodi/KEf6AGTWV39zXac7ubrtbXw69qsaFbwa8f7tNO3QCJvThtVm4eyhp3LHhOsZOvZKmrRrSLMjGjN80k30HtgrJuKrhwzW/rOexb8vj1mzK9HFqwvHctekG7n1pSG8sfR5juhVeSPY66yjsZdQGrc7bVFp4fE46sSOMerk3nwvd530CJ5cD8eefUzUBkFpNIugWccmXP6ASutWKKKQgBQHx49CUU0Y3h8xdp+Jsfs0DM+bNWqbRcpzYGkBOAAruK40o7uJd5rXLW0g5alwSnWpv/dSRwaXIwPzYsfVEhF1vkYkP45IHomo8z3C1rny63L0I1rR2wnOU8vvZO9BjDq5LEBmXoE0ChDOkwFXvJ5hNLC2QyReX+l1KhSHBco21zjiUFQl7t69u5w/v3IKzQcai35dysgBT0XOJDsTHFz58MVces955faTUrJxxRZ8Hh8tOjXDWY6DWBFSSrJ35uBwO0hIdpfZ7vs3pvHKbW8SCuoRUROH2wFS0u+y3gyfdNNeryEes7+ex4Q73qYw38txA7pzx4TrsTtLlwoppjDsNK9dtD7qujvZxeipI+jS90g+e/5r3h/1GcFAiDZHt2TTii34PH5adm7GtU8O4uhTjoqK0CsUBxtCiAVSyu4Vt6w8jhZNZMNHbq/OIfcbG4eMqPbnV+wdB7Ntlv6ZyOybKT6T7IKkO9ES/ld+PynNNGvpBVt7hIhXRqqSa5ASjN1m1LicmtKG50PIfwJTGVsCAoTT/LPzPLSU0Xu9hrjr8v2MzHsCpAecpyGSRyFE2bZZGgXIrMsh9G/0DZGISHsDYT8ao2AieCaADIH1SAitBnxg7QCJdyEcxyqhMcVBjbLNh4ZtVr+FDjB+fu+PiBMNprDXj2/9Wq4jres6owY+w6Lpy7BYNZwJTl6c+RgNW9bfqzUIIUhvUHFJi4at6gPFKttSSnzh89S/fTKLs2/oT/vurSscZ+0/68nclk3rLs2p0zijzHbHD+hRYRS6JO4kF49/ex9Xtrg5KoVbDxkkpJgbBBcPH8DFwwcAEAqGmP7hDHZt3sMRvdrRvX+XSs+lUCgUikMX6Z1ClLAXXij8DMpxpKUMmaJfgXlmerVIhIxPTNXsvUAIAZZ6FbezNkdGiXPJ4nRr71Sk+zKErWOF48jgctNxtx6BsJT9PiGc/RHO/pV4gnB7LRGZOhH2nEpUWrgMgUgCQEscColDzcsyaK5b34Gwd4s5v61QKBS1hXKkDzCcbjtCiKiUMUc5UVeAn976jUXTl+EP12D2FfgYO/gVXpjxWKTNljXb2bZ2B03bNwo7wPvOx09+SdAfjHtPs2hkbssCynekx908iV/e+x2rzYoe1Hn487tiBMj2hYyG6Zx1/an8/O7v+Dx+nAkOjjntqEjpriJ0XWdE/8dYPf8//N4ADqedQQ9dyOX3XVBta1EoDiUOwWQmhaJshBszZbrEX/yKosveTyHwN+ALp1x6kbn3IdLfjzSRofWgbwJLK4S1evQ4ZMFrlFn3WVjA2AWU7UhLKZF5D4H3W7M9OqROqFYHVrM2xHBdAN5vAK951tt+EljblFpLCJk1GEIrQPqRHgcy8Xaz5rZCoYhB2eaaRTnSBxgXDjuH6R/OwFfgR0qJw23nmjGXl9tn/bJNEScawDAkm1dvA+Df+f8x4Y63WPX3WuwuO4ZucPML/+PsoWWUpqgCpcW/SqKHDNp0a1lu/79/XMQv4Qi8P2z0H7/0Bb7KeTdu7cvy8BX6mTTifZbNWEWjNg245aUh1GmUDsCtL19L15M7s27JBhq3acjJg/rEjL/4t+WsXrAOn8cfGe/dRz7lwjvPiZzN1nUdb76PhBR3ldenUCgUioMXkXAN0vedmaKNBJyIpGHl9pHBf4mOYhsQWmfeCyxG5j8OwWWY554NZPLDaO6LqmG18Te4zYl1sB5Rbm/p/9V0ovFG9g1kzh1Qb16VbZ80PMj8p02FbUsL8xy2pS4AIvkxcPRBBv9FWFuB8+zY8QOzIbjSXAuY/y14DplwdSS1W0rdjLiLRGWbFQpFjaIc6QOMJu0aMWH+WKa+8gN+b4D+g/vSqU/5Rq9115Y43I6IM61ZNFoc2ZRls1Yxov9jBLymk1qUdj1h2Nv0vqAnqXVTImP88v4fTLr3ffzeAH0G9uKOV4dGiXvF44LbzmLZzFWR1O4iNE3w0Cd3suDnxWz+dyutjmrBKVecEDFwuq7z7JAJTP9oBrJ0uSmvH5/HhyuxPKGRaKSUPHTOkyydsRJDN1i3ZCN/f7+Qjza9SkqdFIQQnDCwFycM7FXmGAU5nhgDLITAX+jH7rDxx2d/MfZ/r2CEdNIapPHUTw/RrMPepecpFAqF4uBCWNtAxhdIzwdAAOEaiLAfXX4fW0ek10WxE2gBaztk4G9k1rVA0QZ4OO0671Gk8zSEVmybjcIpUPAsSD84z0QkP1Lu+WMA3IMh9x+IKSirQeo48P+BEVpvpnc7z4nYPil1ZO494PuemHJTsgAzyl15/RUpJTL7OgguMscLrULu/h1ZbwaaZtpmnGcgnGeUPYiRR4x4GtL8PoQVw/sN5D4A6KDVh/S3EdYWlV6jQqFQ7AvKkT4AadK2IbeMGxL5HAqG+HTsVFbOWU3zjk24cuRFUY5m/6v7suDnf5j99XwsFo3kjCRGvHcbz147IeJEl8Rqt7JnS1bEkV7061LG3TQxcjb7j09nY7NbGfbaDQDkZxcAkJQWLW5ywoXH0vOsbvz93cJIKonNYeWMISfz/RvTWDhtKf5CM5160fSl3PP2LQBMfeVHZkyZE+NEA6TWT62SEw2QszuPZTNXRpXiCviCPDPkVR7/+j4AZn45l8nPTAXg0nvPp/f5PaPG6Hh8+6h8GItVo0m7hiSmJrBlzXaeueaVyHe5Z8se7uv/GB9ufFXtfisUCsVhgrC2QqQ8HPksZQDpmQSBxWBri0i4BaGVEOh0XQz+WeD/3UyR1tIRKU8hc+6i2ImOmgD0nRB2pKV/FuQ9SiSq7f0GKRyIZHMN0sgFBEJLjhpGc52NUfgFBGdS7EzbwXk5FH4QVu/2InFBYC4i5XFzPM9b4JtGbM1mQGuAEFUUMTV2QXBxqfF8kPsgpJkltgzvD+B5C4SGSLghrNhdAvsxIGSJPQErWNsitASzXFbug0S+S2MbMnsIou6vVVunQqFQ7CWq/NUBjpSSRy98lo+f+IK53y3ky5d+YFifkVFp1Zqm8cBHw3hz+QuMmz2Gt/8dR90mGVHp3iUxDEnDVsWCJXO+mR8lcOb3Bpg9dR4Bf5CHBjzFJQ2u45IG1zHyvKcJBqJTxh76ZDhH9u6Aw2XH4bbTpltLThvcN+JEgymY9tuns9i1eQ8AS/5cETVfEan1Unjy+wcq9b148grRQ6aAmDQMdD3W8K9bvAGA2VPn8dRVL7FyzhpWzlnDk1eOY863C6La1mmUzpM/PkTDVvVxuB0ccVx7nv55JEII1ixYF1XqS0rI2plDzu7cSq1VoTgkkQfJj0KxHzCjrTdBwesQ+B087yGzrkDKYtsshAWR+pJZUir9M0Sdn0zRLukre+ASQmTS9wvRqeE+8P2ClH6MrGuRu45H7joWI/sWU5CrBCLtZbB1xSxN5QRbZ3CfCUHTiTbxgvcrpL7b/BiYV2q+MFodRNqkyn0vRkHkO5DSIG496OBywCwnRu4ICC2G4CJkzjCk/8/o57A0RKS9AZYmgAtsRyPS3gyPsyx8hjsyO+jbMPScSq1VoTgkqW2be5jZZhWRPsDJ2pHDgl+WRES9gv4g29ftZNXfa+nUu0OknRCCBi2i1TzPHnoaaxdtiHKobQ4ro6bcTUJKQuRaUkYSVpslStnanezm/VGTWTR9aeT6wp8Xc2XLm8nP8lCncToPfHQHHXq25fk/RrN93U6klPgL/Tx+2Qv4vdFOvNVqwRtOLW/SriGaVcMIFTu/QgjOuPZkWnZuXu73sWdbFved/hhb/t2OEILBoy7ml/f/RCCQpf5lNm7XEIAvX/o+eqOgMMCXL33HseccE9X+yOPb897aV2LmrNskPSZ9XQ/q3Nrzfl74czT1mtUtd80KhUKhOMQwtoeFxIpsnR/09aaTaC+u+CCEgNIiYu5LIW8NxQ4tgAOROgGhFdtmtDTM17QSzqhIQuY/H5477Dz7/0DuPsmMUFsaIFJfMGtBp39iCpkhkIYHcu+I48RbiCh6W1tAICwuVjwhuC5F2NqW+3VIfTsyawjoG835Eu4A3+fECLQBWML6KYXvUXqjQHreQzhOjGou7N3jR5m1BrFjY0DmQGTGRwhLg3LXrFAoFPuKikgf4OghndLZw0ITkWhseZx2VV9ueuFqmrRvRJP2jRj6zFV8lf0ux5wWXdZpwE2nk1wnGZvDhmbRsDltBHwBPhn7VVRqeMAfJGt7TsSZH9H/MbJ35SKEoFHrBiybuZKbuo9g86ptUbZNC6ebN25jGrU6TTKinGgwd/d/eit+Otbmf7fyw5vTmT11HqMGPsPmVdvQQzqhYIh3Hv6UbWt3ULoeujPBwR3jrwfAYoutA12V2tBH9u5AnwuPxeaI3nfaszWLJwaNq/Q4CoVCoThEkCFiz+4K4kZgS7dyXQRJ95oOpaUVJN6PqD8f4Tguul3CVaClAnbAYv5XFkDhO0SnhgfMMlUEQN+EzPof0shGCGGWwvLPgawLQN9AtOOpgaVOcRRca0C0E43Z3vt5GV/BWmThZ0jfr8ism8yNBEJAEDzPg76ZWEfXjUgZFf5zHDtcldrQ9l7gOBnz+ymBsQ2Zc3flx1EoFIq9REWkD2BCwRB7tmbRsHUDtq7ZRiigY7FaSExNoH2PNhUPAJx9/WmcfX35Ct3JGUlMWvoc097/k/zsAr56+Qf2bMmsMPVCCMHq+f/R66yj+WPybMbdNCnGQQZo36M1D31yJ1ab+dft6/E/xR2v6H5J5n63gMcueR6hCYQQeD2+qHUZcVK6i65vWrmVJu0acdmI81k2c2UkKu1w2bl0xPnlP1yp57z37Vswgjq/fjwzao4NKzZXehyF4pBCKn0AxeGJlAGkkQmWhqBvwYwMW80Isq1Thf2FEIiEKyDhivLbaelQ5zuzhrKRB4XvgrGjMiuE4Apw9MYo/AbyHyXuuWdbV0TqixH1a7wflTFerPCo9E1D5gwHBAhRHNWOEN82gw6h/8DaDJF4IzJ7McVRaSci4fqKHi6CEAJSnkPKO8D/Y/TcoTWVHkehOKRQtrlGUY70AUpBjodhfR5i1+Y9SAnOBCfprVJp0akpt7w0BKe7iqIfFZCcnsTAO85m7T/r+eKF72Lq0Nld9hjhMj2kIw3JjClzeOfhTwn6Y3fiLVaNsdMeiVpvPH0uzaJx5cPRZT+8BV7GXDEOfxzBtJIITcSkXgd8QSbe+z7Hn9eDrv068cT3D/LluO8QQjBw2NkVKqHHzCEER592FLOmzoukyhdF4hUKhUJxeCCNHGTmpaaQlpRmfWmtDljbmaWdqirIVQFCS4OE/0FwKbLwnTgtnMSea9bNc8q+n6BgHPHLYVkQ6e+VUgCP9wJugcRbo65IoyAsmBaet8xN9zhp3fiR+WMRzn5mXeq0icjC9wENkXBNhUroMTMIAY7eSP8fFKfKa2BtVqVxFAqFYm9QjvQByqT7PmDb2h0EA6ZzanNY6dLvSG4fX/nd2r0hOT0xpj601W7ltpeHsPW/nXzxwrcE/EE0TaNBy3qMGfQCmtDMSHEpNIvG+bedFeP0X3Lvebx8yxuRCLFm0Rj6zFWcdd2pkTbZu3K5pccIvHleKqK0E11EybPhR53YkaNO7FjhWOVx6lUnMuurv1k4bSkWqwWbw8r9H9y+T2MqFAqF4uBB5j9VIgoNSDs4eqMlP7R/JxYpIEs7xDZIHmVGXws/wEz3toDWHHJuRwoLSE+cwSzgHhJbRivhOsh7gqhyXUkPoLkHRppIfRcy80Kiz3eXRRketizuKxzHIhzHVmKscnBdCP7p4J9rio8JByLl2X0bU6FQKCqBcqQPUDYs3RRxogGC/hDrl27a7/PWa1aXM687hZ/e/o1gIITNbuXky/twxpBT+G/xBqa88C3IcFrz8s1l2kmLVeOKhy7iypEXxdw7/ep+OJx2vp80DYfbwRUPXUiHnm3RdZ3JY6cy++v5ZG7NImtH9l4/h8Nt5+QrTtjr/vGwWCw8+uW9bFi2CU+el9Zdmle5VJdCoVAoDmKCa4iO8AYguHq/TyuszZCuC8A31XSohQ2cF6C5ByKDy8JRXQAd9FXmH+PaZwsk3IZIvCnmjua+FAOXeSZacyMSb0HYOpv1pT2vg+9XMHaCsWcfnsQFrvP2oX8sQlgh9XUI/WtuHFiPiC5DplAoFPsJ5UgfoLTv2Ya1i9YT8JkG2+60Vfpc9L5yy7gh9DijGxuXb6Zph8YRdespL3xL0FfiBSKOkW7Yqj5NOzTmshHn0/mEstOnT7q0N73OPpoXbpjIyAFPk1ovmWYdGjP3+0Vllu2qDEITJKUlcMaQkxky5vIK2+u6jsVSeeExIUSFyuIKxeGAOITKVygUlcbW2XTYKDpy5ADbUTUytUh+FBz9QP8PLK3BcRKAWf+Z8o5AaWb5KEtrROIN5aZPa+4BSOfJyLyHkNlDkVoGWFqA/0/ilsaq/OpBpIL7UkRixZlcUuoIUTXbjK1DxQ0VikMcZZtrFuVIH6Bc8/jlLJ/1LxuWbUIIQZujW/G/xy6LaZe7J4+f3v6Nwnwvx53bPa6zPf/nxbw2/B08uYWceNGxXD/2qrjCXkUIIeh11tH0Oiva2MY7A10SZ4KD28ZfR4/Tu1bqGR+/7EUWTV9K0B8kZ1cuG5ZVXbirQat6ZG7JIhgIIYQgMTWBt/99ieT0pHL7bVq1lZHnPsX2dTtJqZvMyMnD9zn1W6FQKBSHNiLpHmTwH1MwCwG2zoikW2PaSSMLCqcgpQfhPBURR4RM+v9A5j1pCnU5z0Ik3V0s/BVvbiHA2Q/oV2qgeGegS+JAJI9GOI6v8PkAZM5t4ZrSATAyIbQXEXetsXmOnCCggUhB1P0FoSWXP3dwDTLnRtC3ILUMROrLCPsx5fZRKBSK2kKVvzoAkVIy4Y63WbdkAyBIqZfMg58MizlrnLM7l+s738XbIz/hwzFTuOukR5j73YKoNqsX/MeogWPZuGILe7Zm8d3Eabw6/J1KrcPv9bPtvx34whHic244DYer+EyVw2UntV6KadyBjEbptDqqctFawzCY/9M/kfrY8RCaQGii3FJV144ZRO8LelGvWR069enAS7PHVOhE6yGde04ZxfZ1ZtmsnF25PHTOk2TvzKnU2hUKhUJx+CGlgcwbXawIrdWBlBcRwhndTt+D3H0WsuBF8LyKzByE9P8Z3SawGJl9G+jrTCXuwo+Q+U9Xch0+ZGgTMlwTWrgvwxQdK8IJpBMRD7M0BGu7So4dhMBfVBjhRiNu+aoikkaA41TQGoKtOyJjcsVOtAwgswcXl80y9iCzrzM3JRQKheIARDnSByDTP5zB75/OIhTQCfgCZG7N4pn/jY9p993EaeRn5RMKhECC3xtgwrB3otrMnjqPgLfYWfV7A/z+yawK17Dgl8VcXP86buh6NxfVu5bZX8+jy0lH8vDnd9OhV1tad23B0GcH43DbERbTWO9Yv4s7TxhJMBDEV+hH18uvdV1avdtitWCzm7vxmmZGl9/59yW+yHwbuyu2/IbQBB16teXBj4fx4YZXef6P0TRp16jCZ9u1eQ+Fed4oZXJh0Vj7z4YK+yoUCsxjHQfLj0JRXXi/At+PmFFWv+kA590X00wWfggyL9xOAj5k3hPRbfw/E50q7QPftxUuQfr/QO46FrnnXOSuXkj/HwhHb0TqOLAeBdaOkPQgaA4ir3j6JmTWIKQMIaUXKcu2zVLGey20UlwCSwORDHV+QdSbR0wN53AbYe+KljYOrd4faBkfIKyV2GTXt0YJkUXmC66quK9Coah9e3sY2maV2n0AsmbBf/g8xeeE9ZDBf4s3xLQryPEQCkYbxML8aCPkTHBisWpR7ezOeIavGE+uh1EXPouvoNjIPzFoHB+sH0/PM7vR88xu5joXriMvMz9SO1oP6WTvzOWW7vexceUWhCb43+jLuCxOzeZvX/s5EskuIq1BChfeeQ7zflhEWoM0/jf6Uhq0qAdA/8En8f2b06PqVA8edUnkflUwlcmjvzc9qJNWL6XKYykUCoXi8EAGFxOtVh2C0MrYhkaeeS+qc0GpRgmYr2Al2zkpD2nkIHNuL3Y2Jebnun+Y5aScZsq3DCxGyjygyM6FQN+J3HOeGQFHIJPuQku4NnYSr1mKKqoOtKgHCVdBYAZo9RBJwxAWc9NaugaA98sScwEJwxGWvSgNqaXGpqnLIGgZVR9LoVAoagDlSB+ANGnfGIfbEVWvuGGr+jHtjh/Qg29e/SlSRsrhstNnYC8AAv4gLwx9jT8/+ws9pCMESGmqWV/31JXlzr99/S40LdrJtdosbF2zg9S6xc6m3WXH0EvVb/b62bRqC4ZugA4fPPY5rbs0p8cZ3aLafTHu+xhn9pjTunDRnedy0Z3nxqzpuqevZPfmTJbMWIEr0cmNz11Nv8v6lPscZRHwhzj1yhOZ/tEMQGKxWDjx4uNo063lXo2nUCgUikMfYW2DjKrbrIElNtIqnKchvZ+VaOcE5xkASOlH5j4Avp8xnc+iWstOSLq7/AXom4hNp7ZAaCPYU0sswEGUIwyAP+xEh+1u/ktIawezlnNJPO8RswngPBEt8VogjuOddB/oOyGwEEQCJD+I5jqz/OcoC6mD82zw/YD5vQhwnYuwtd+78RQKhWI/oxzpA5CzrjuFWV/OZfnsf7FYNKx2K/e9d1tMu84nHMHdb97MxHvex1fo54QLj+XmF/8HwGt3vcuMz+dEVL8tNgvH9D+KC4edy9GndI4Za9msVbx08yTyMgvo2u/ImLPLQX+Qes3qRF1r1qExnft0YOmMlfi9ARxuO8FACL1E1Nhf6GfpzJVRjvT2dTsj6ypCCNMxj0dBjofbjr2fzO3ZCAR6UGfaB38y7YMZnHtj/4iqeGVYOmMlD579BJpFQwCturTkqkcurrRAmkKhABAgRcXNFDEIU4r4bKAFJWywlPL52lqTopK4LwPfLxBaDBTVK34qpplwHItMHgMFY0H6wkJiIwDMM9a+nzFrPgNYwX4CImEIwtErZiwZmIfMexSMXLAfC7LU2WUZBEupI03WdmDrCoFFmM68EzPNvOTmtQ8ZWBjlSMvQRmLPRgsQ8SPl0siBzItMQTIBEALvFAzvl4iEQYiwqnhlkP65yJwbMDcKJNg6mmW6Sjv6CoWiHJRtrmmUI30AYrFaeOKHB1m7aD3efB9tj2mFOyl+veKTLu3NSZfGGpo538zH7y02iHpQp06jjLhO9JY127n/jMcj6eQzpsyhZedmbFy+BavdSigQYsiTV1C3SXR6lRCCx765j6njf2TtPxto260lX0/4ka1rdkTaOFx26jYu7vf581/z9kOfxujzO9wOBtx0etxnfG/UZHZu2F1cVzsf/v5+EQCLf1/GPW/dQt9LKqdG+tglz+MtkbK+YZlZC7sozdyTV8iWf7eRVj+Fes3qVmpMhUKhqALfYHo3S4kNGyoOYISwQfo7EFpupldbOyK0xLhtNfe54I7NrsL/O8VONEAILI3iO9Ghtcis64ikk/t+AmsHU0Vb2EynOuk+hCXaVgmhQdokpOd9s1SXrRN43gFjS4lWDoSlONPNKJgIBS+XfmIQLoT70rjPKPNfBH07xXW1PRAwRdVkYA6kPotw9o/bN2asnNtBFhZfCP2LECJim6WRD/p60OoiLA0rNaZCoVDsb5QjfYCiaRrtjmm9V32XzVxJ9o6cqGtWm4W0+vHPAM/7YVFUFDngC7J20QYmLn2OXRt2U69ZHZod0SRuX6vNyoXDzol87tCzDSNOf7xIK5SmHRpz+pCTATMS/fZDn0RFo4Um6H1+T64ceREtjmwad44tq7cVO9Gl8BcG+OjJLyrlSBuGQc6u3OhrusH2dTsBWDl3Dfef8ThSSoKBEBcPP5drHq+4FrVCoVBUgSZSypopPKyodoTQzFrSe4EM/A0xCtQ2U/07Hv4/iE6z9plOfMY3CGMbUmuMsLYqY512RGJxKra0dURmX0tEydvaFlznm/dC68JOdEkHXwNHf0TiLQhrGe8i+nqKnejS+JAFr1XKkZYyCDKn1EUjrN4NMrAAmX2duXYZRCYMRUuKzdJTKBSKmkY50ocYu7dkcv9ZT0SdPxZCkFwnmfrN6/HhmCm0Oqo5x55zTGSn1+F2IEqdiTZ0g0n3fEDmtiz+W7wBu9PGHa8O5bSr+pY597KZK5nxxVzOvPZkGrdtSL2mdehxRtdIzeoNyzfF1KK22iwMvOMsmneM76iDmcK+5M8VkbPgpTH0ygV1NE2jUZsGbFu7PaLYLTRB664tAHj4vKfx5BbviE958Tt6nnU0Rx6vzmcpFIpq4wchRH8p5c+1vRBFzSH1bcjs64lOrxamkJZWF1nwKlg7RATDzNsuYour6FDwPFLfDKE1SBzI5MfQ3APKnjswD+n7GZwXg7WVGdF1nBCpWS2Da4hN6bZAwjVQhqMOgL1HifTxeJRfuaMIIWxIrXGpiLkA6xFIKZHZN4H0FN/yvIF0nIiwd6nU+AqFQrG/UI70IcaKv1ajla4rJaDdMa2YMOwtAt4AdpedM4aczC3jhgDQ95LjePP+Dwh4ow3p3O8WoFk0pCHxFwYYd9NEmndsEjdSPvPLuTx15Uv4vQEsVo2E1AQmLXku4kRLKZn302KkjE7pDvpD3Hf642hWCyM/HR5RBC/JJfecx9p/NjD7q7+R0owsS8Mcx+F2MHDY2ZX+fkZPHcE9pzxKYV4hoaDOlSMvpNVRzXnwnCdjotVCwKaVW5QjrVDE4xAqX1HDzAG+FEJomOE8AUgpZflFdhUHN4GFEK+0lLUDFIxBSj/gQLovR0sOl9RyngP5z4P0R/fxT6NYWdsLeQ8hbW0RtiNihje830PufZjOrjVcuuq7YidaSvD/Sew/6CBkDUYKK6S+Evesski4ARlcCf7fKK5pU7Sx7QL3NZX6agBE+kRk1mAwPEAIkm4Haytk1rWx0WohwsJpypFWKGJQtrlGUY70IUZSWgJGKWdVaIJF05dGzkz7PH6+m/gLl913ARkN00hIdnPtk1fy8i2TYpS0S0Z7pSFZMXt1XEd64j3vR8bXQwaenEK+mziNqx6+GCklY68Zz+8fz4y7ZjPVO8hjlzzHe/+NjylDZQk72QunL+Gf35bj8/hYs2Adekjn3JtOj4qS52Xmk59dQP3mdSNOfEmadWjMRxtfZdfmPSSnJ5KQksCogc+waPrSmLZSUmZKu0KhUOwlzwHHAUtl6Z1FxaGLlmxqg0T9H9cgMJfiklpeKHwfmTgUoaUjtGRk4l2Q/xgxStqlj9cH/4E4jjT5YymOGIdA5iO9nyMSbzCjvbl3hWtjx8MP0o/MuQXq/obQ0qLuCmFDpI3H8M+EwN/mGefAchA6uK4yz4mHkUYWGPnmeXBhKz0RwtoG6v5pnrnW0hBaIkbWUAjOjV2WNMBSTqRcoVAoagjlSB9idD25Ex16tmHV3DUEfEFsDhunDT6RXz+eBSUizla7lYIcDxkNTcPY95LjeP/RyWTvykUP6jjdDnTdiFLv1iwaaQ1S487r80SndukhncJ8L3u2ZfHUlS+x5M8VkShyWVisFjav2hq3nvOMKXN4evDLBAMhbHYrGY3SeW3RWFyJxSJsb4/8mMnPfI3VZiEhxc2zvz1Kk7axoiQWq4WGLYtFVhZMWxKjUm6xalw0/BwVjVYoFNXNGmCZcqIPM+y9wXokBJdhplHbwDUQfN9EO9fCZtah1tLNj66zkZ5XwMgGQma6twwRdTZZaGWfs5beUhdCID1IfQcy5y4IzqfiEJYGoQ1gT4u5Y3i/g9z7w89kB0tDRMZXCFFsm428Z6DwHcAKWgqkf4CwNosZSwgrWEtopQTmEHsG2wIJQ1Vat0KhOCBQjvQhhqZpPPXjQ/z68Uz2bMmifc82tO/Rmj8m/xVpIzSBO8lFo9bFzmRCspsJC8by/qOT2bVpD91P70rdphk8OWiceX5aCNp3b02fgT3jztvvst58N2laVE3rHqd34ZYe95G9MyeuEy00EXU96A+SUjeZDx7/nPVLN9G+e2vOuPZk5n67kFdufzMS8fZ7A+zZlsV3k6Zx4bBzEEKwcNoSvnjxO0KBEKFACH9hgIfOeZL6zeuw+d9ttO7akuGTbozrpCcku/CVUPK2Oaxc8dBFXPHghVX89hWKwwjlBu4t24HfhRA/UELdSZW/OrQRwgLp75qOs77TLE9l64j0fVuilWamXlsaF/fTkiFjKrLgZTNa6+hrOs259xCptWzrCo6T40/sPBO8X1AclXaA7Vhk5kCzbFXcf8hFaeNhZBCppSLzX4bQGrB1AddAROA3yBtdYmwf6NuRhZ+B+yqEEEj/H+D9ANMhDoLhR2bfgLTUNetf245EpDyOCG8cRC8jAYySm/QOSLwNLXFoWV+zQqFQtrlGEYfipnj37t3l/Pnza3sZBxTrl27k8UtfYMeG3TRt34iRnw2ncZuKS0hsWrWV5bNWkVI3mV5nH43FYonbLhQM8cZ9H/D7p7NxJjgZ+sxVIOGpwS/hzY8VInG47Ax9djAT734Pi82CHtK57L4LmP/jP6xZuI6AL2jWlZYSoYm4QmNCEySlJ/L4N/ezbOYq3nrwQ0KB6NR0zaJh6AZWm4VGbRowcclzMc/w1zfzGXPZC+ghHYvNSt0mGUxY8DSuhPi1MxWKgwkhxAIpZffqHNPRvKlseN8d1TnkfmPjzfdU+/PvC0KIR+Jdl1I+WtNrqWmUbY5FBlcic4aBvg2srRGpL8WN1sb0C601hb60OuA40XTU47WTQWT+U2bpLOFGJN0P+JG590cLeEVwQ9JwyH8WhNWMfifeDP7pEFyFuffjCLcVxBca00CkItIngv8vZMGLxAqPFTnrVrC2RGR8Yyqil1y772dkzt2Yae02sDRG1PkCUUZda4XiYELZ5gPLNu8tKiJ9mNCyc3PeXPFi5LNhGPz49m+sX7KBxm0bUZDrYdua7RzZuwOnX9MPTTMNWrMOjWnWoXEZo8KKOavZsyWTNt1acuNz/+PG5/4XuTd76rwy+/l9Ac654TS69uvEppVbaNymAXrI4NOnv4qUxyotflYaaUjy9uRz/xmPc/uE67HarDGOdNEZ71BQZ9emPWz/bydN2jWKanPcud15cdbjLJq2lITUBPpd3ls50QqFYr9wODjMisojbEcg6v4U+Syljiz8DBlabZ4DNrLB2ISw9QTXBZFqG8LaBqxt4o4ppTTPTBs7wdoRLXkkJI8svu/7KW4/Ey/CfRU4jofQOrC0AOlFel6jOIHCX05/AANkFjJriDmvcETXiC5qA0AIQptB3xqd1g1m6ayMjyHwF4gUcJ2rnGiFQnFAoRzpwxApJU8MGsfc7xbg8/hNwyxMx/T3yX+xcu4ahk+8kawd2fz+yWx03aDPwJ5R54qllIwZ9CJ/Tv4rosR9+f0XcMEdZ5NaNxkhBN1O6URiagK+An+MWjdA5rbsKEd9xZzVCC2OqmlJigTJSwwnpaTZEY05/ryezPrqb6w2i5neXcoR93sDFOSWNuYmbbq2pE3XlhV8c1Vjx4ZdTHnhWzx5hZx8+Ql076/OdCkUhztCiO7Ag0BzSthgVVtaIaVE5twO/pmYAmTh1G0MpO8HCC5BpIxC6jvB9wOgg+N0hLVJnDF+pshQSvetiIQrQEs37b29N4iEsHNb2jZLMPZEOeoyMI/YMlyliWOc0U1Vcntf8P8ejnAHiY1i+5FGAaXqjZij2o4E25EVzF01ZGgT0vMO4EE4B8RVJFcoFIrKUNFvRsUhyPZ1O/nrm/n4POauspQyclbZX+jnl3d/Z93SjVzXaThv3P8Bbz3wITd0uZv/Fm+IjLF05kr+nDw7ykH++MkvGdTsRu7o8xCevEJciS7G//0U3U7pFLMGi0XD5/HxwFlPcEnD67ij94O4EhwkZySiWeL/tbS7bHQ7uXNManbAF8SV6OS+92/jxZmP8fDnd9O+Z+xOvTQkD579BNmlylztD3Zt2s2N3e7h6/E/8su7fzBq4Fh+/WjGfp9Xoagx5EHyc+DxIfA2cCFwbokfxeGOvh78MyhW8S5RTkp6wTsZI/gvcs/ZyPxnkfnPIzPPRQZXR4aQ/jlRTjQAha8gd5+IzBpkOqxaIiLjS7D1iLMIC9LwYGQNwdh1PEbm5UiRCiKJsl8ZHWA7DiiVXi4DZjp56ouIjI8RqS+bgmsxSMi+xlT23s/I0BZk5vng/Qi8XyKzbzJLhCkUhwq1bXMPXtu8VyhH+jDE5/FjsZb9v15oGp88+SWeHA9Bf4hQUMdb4OP1u9+LtJn3wyLiHa8PBUKsXbiOV259EzDrPG9fv8sULAtjtVs5Y8jJjBr4DAunLyF7Zy4r567hnlMeZcy390e1LUKzCJq2b8zy2avQQyXSt4V5PvvajsMYed7TNDuiCTa7laUzVsZ9tvzMAkacNppNq7ZW9DWVSSgY4t1Rkxl2wkM8eeU49mzNjGnz/aTpeAt8GJENigBvj/xkr+dUKBSHDLullF9LKddLKTcW/dT2ohQHALLQjNqWiYCC8SALMFWygyALkflji5sEfiP+W2oQgkuR+U+Eh3Ka6dRRcWA7uC6HnKFmOrWxB4KLIHswpE4i/iujBaytILiQ6BJdwvy8p79ZPsvaxuwfWljGs2cjs65BhjaU8/zlI2UQI/9FjMxLMXLuRuq7Ytt4Pw5H4otSy31Q8OJez6lQKA5vVGr3YUiT9o1ITE3EXxiIqhMNppPbsnNTCks4gUXk7snjr2/ms/i3ZUydUPYZq6A/xD+/LwPgu4nT2LMlK0qdOyk9kUtHnM+0D/5ED9etlobEk1vICze8HjkDVoQ72cVdb97EU1e+RNBfqpZmeFg9ZLBo+hLeevAjtq/bWWapLSkl65du4rZe9zNp6XPUa1a37C+qDMb+7xVmfzUPvzfAqrlrWDR9GW+vepGElIRIG78v9ruNWbtCoTgceUQI8QYwnWjV7i9qb0mKAwJr2xIp16XqRGMzU5xlQal7EvQspG8aMjAHCj8uZ4IA+M0KHrLwIzB2E+V0a2ngHgzeKRSLgxlg5EL+I8Q40iIRkp+G3GHElqkqGlcH/wxk/ksQ+peyQ1ESQquQmRdCne8QlgblPEcZI+TcZaaQ4zM3DQJzoM6PCC2xuJHhI+a7leXrsSgUCkVZqIj0YYjdYePFGaPp1KcDKXWSaHt0K9r3bEO9ZnU4fkB3nvppJCdc2Aun21Hcx2XHm+/jiSvGMWWcWWaqPPZsyeKSRtezcs7qmBrNelDHmeBED0Ubs1BQZ/msf2PG1kM69ZrViTjdZRHwBlnye8X1qgEC/mBUSbDKkr0zh98+mRU5f62HDHweH/N/XhLV7qRLe+Nw2SOfHW4H/f/Xt8rzKRQHJBKQ4uD4OfC4BugKnEFxWvc5tbkgxYGBEA5E+sdg6wYiDaydwNoZtIbgPA2R9iY4TwdcJXo5QeYic++GwveJdWhLYWzF2NUbgosxo9olCSE0F7EK2yEILohtL0NgbRCnfWn8EJxLxfmcEqTfVBivIoa+Hfw/UXz+2qyXTWB2VDvhOhcoKVjmArcqdak4RFC2ucZREenDlHrN6vLcb2WLx/YffBKZW7OY/MzXGLrBUScdyeLfl0fVW66I7B05zPl2PjanlaDPdI6FJujUpwNp9VI49coT+f3TWZGz2iURQuBOdhEKhDj/trPo0KMtHXq1ZfX8/wiV4VALTdCgZT3Ovak/C39ZEnF2NYswo+ulBMoQVfuHrId07j11dNx3gdJDte/emke/updJIz7AW+Dj1CtP5IqHlLFWKBR0kVJ2ru1FKA5MhLUJIqOcqLLrEqSxGzxvARJsPU0nNUYVuxyM3eD/E7BT7BxrYOuBsNRHOs8KO7PeOJ1FOGoegoQhaLbOGNYjIbSS6NTukmhgaYpwDUQG/qbY2S1VrxrMZ4orO1Y2UgYh8xriO+rRYwl7V0gbj8x/BqTXVEJPuLFK8ykUCkURKiKtiIsQgkEPXMhX2e/ydd77HHfOMejBsqPQZQmEGYYkOSM58lkaktlfz+PmniNo0LIet758LU3axdazbtimPvd/eAcvz32S6568AoDRU0dwVN8jcbjtWGyWmLPUKXWSuOmF/9Ht5M6M+vJeuvQ7ks4nHMHIyXfRpG2pOST0vfjYyn4dAGxauYUdG2LPXNmcNo45LVZw95jTuvDawmd4d/XLXPXwxZGSYgqF4rBmjhCiY20vQnFwIoRAS7wVrf5CtPqLEI4TMJWwy6IcuyNSSnwwwP8Txp4LzbJbiSPBEqeetaUlIuU5RMYUtKRh5jDpk8DeHTPSayXGEdbSEUkjEI4+iLRXwNbLFDpLGQ9anDmc/ct5njiE1oDcEeeGE+zHxVwVjhPQ6nyNVvcXtMSbY+pXKxQKRWVREekDAG+BlwW/LEFK6HayWTLqQKPjce3KPeNrGKV3lU30oE7m1lJKnBLWzF/HmvnraNqhMbdPuJ6R5z4ViSA73Q4uuO0sep11dFS3lDrJPP2zWQsza0c2oy9+jrX/bCAxxc3AYWdz9vWnRs4pd+/fJVJuav2yTezeEr0GocGiX5eSWi+Vo/p2rFTd6HibBZpV46GPh0Wdj1YoDgfEIaS6WcP0Aa4WQqzHPCMtAKnKXx14SKMgnBoswX48Qkuq7SXFYj+a8tO5y/qHGgC5O7ZtaKn5Y2kHSaMg52aKI8gucF+NcPaL6iW0dES6KUZqhHZCzm3meWgtGRKuQbguiZxTFo4TEY4TzdmCK8zoeqk1SP9fYEkDey+EcFExGrHqpxZIeyn6fLRCcRigbHPVEaY40xVAKynlaCFEM6CBlPLvivoqR7qWyd6Vyy09RlCQ4wFMJ3L8vKep2ySjllcWTcvOzctvsJf/cDev2sqWf7cx8rO7ePfhTwn6g5xz42kMuPmMMvt48gp59KLnWLPgP6Qh6dqvExfeeU5MWawivPneGJXyUEDn5VvfxGKxkJiWwPh5T5FaNyVu/yKadmhM6y4tWLNwHQFfELvTRqsuLTjqpOqtcalQKA5pyv7lpjhgkPpuZObAsLgXINyQ8QXCUr92F1Ya6xEVNNhL46yvRhjbIPVFZMHLpiCX+wqE+7KyZzLyIefWcJq3BMfxCPf/yo74Sg8IS6klhiBvFFJopvhZxhSEllb+Wq1twdYWgv9i7k05wNYJYTumSo+sUCgOWyZgnjM5GRgN5ANTgHg1AqNQjnQt887Ij8nakRMR0vIXBnht+DuMnHxXLa8sGl2vSExk71mzaD3n3nR6TAS6LMbf/hZrFvwXiZDP/PJv2vdozQW3nx23fcujmmN32inMiz7v5S80I+B+X4A37/uQu968udx5NU3j6V9G8sFjn7NmwTpad2vJVQ9fXKYDr1AoFHHIr+Q1RS0iC54FI5PIuV/pQ+Y/jUh9vlbXFUsF4mL7gAyuQEsZhXCeXLn2eaPCTnT43LX3R6S1CyJhUPwO1iMAW5wbXtO51gPI/BcQKaPLnVcIC6S9hywYD6EVphOdeItK2VYoFJWll5TyaCHEIgApZbYQwl5RJ1COdK2zfd2uKDVqQzfYsaF0qlPtY7FYSM5IIi+z+H1PaCJGITu1Xgq5u/NMMa9KoFk0WnepINpdihV/rY5KM/cX+lk2698yHWlXgpOnfxnJDV3ujntfD+psXRt9vmrLmu18NGYK+VkF9BvUh5Mv6wOAw+Xg2ieuqNJ6FQqFogQLgaZANmZadyqwXQixC7heSrmgFtemKCK0mWjxLB30LbW1mjIRwo4kGcgrcTWeiFc65l+5ykaoLQhbh6otJvgP0cre3nB96fiOtNASkWlvQFZZQpxB0KNLrMvQOmTBqyDzwTkAzXVWeCw3Ivmeqq1XoVAoTIJCCAvhX5BCiLrE/hKNi9quq2W6ndwJh7tEmSSXna4nd6rFFZXN8DduilKnjieeVZ4TrVkENmeJvRsBzTs24eyhp0UuLZ2xktuOe4BrjxzGB499FvfsdaPW9aPOK9sctlgxsVI0bFUfzRJfCdThsnNU32Ltn50bd3NLjxFM++BP5ny7gOeve42vXvmh3PEVisMOeZD8HHj8CJwlpawjpcwAzgQmAzdjppcpDgQcxxFdJim+cNUBQcrjRAt8xXu1K8+J1jAVvEtgaQeuiyMfZeBvjMyLMHafiVHwGlLGece0NC01twMsLcpdurC2AMrK6nKCvWfxGkKbzDrTvq/B/yvk3ofhKa9utkJxGFLbNvfgtM0vAV8C9YQQY4CZwBOV6agi0rXMJfecx8aVW/nt45kAdD+9K1c/emmNzO31+Phh0nSyd+bQ7ZTOHH1qtNbNvJ/+4dOnvyJ7Vy75mfkU5Hii9Dz0UGy6t5QybqQawNAlhl5ih1/CtrU7+OSpL7ly5MWsW7KR+88cg7/QLIf16dNT8XsDkQhwYb6X3N153PziNdx54sMEfAGklDRoUY/L7ju/3Gd1JThp2qExG5fHRhS6n941qjTVL+/9jt/jjzyDv9DPWw9+xLk39sdiVWncCoVin+gupYzU25FS/iyEeEJKOVwI4ajNhSmKEQk3IUPrwPejecFxEiLx1hqZWxoF4P0MaWQi7L0RjmgHXvr/QBZMBCMLjByQeUS/mcYTBi0qKxXvDdYgpka0vh7pmYRIvNEUBcu6jojomOdVpAwgkm4vXq+RBUkPQ9ag8FgSLM0QideW+6xCS0JamoG+Pvamoy8iYWjxE3ingPSWeAYf5D+DdF+MEOp1VqFQ7B1Syg+FEAuAUzB/UZ4vpVxZmb7qN08tY7FauO+92xg+8QYMQ+J018x7lK/Qzy097mPnhl0EfEG+fPl7hj4zmAE3nQ7AwulLeXTgMxEl7aogDYkzwYHP40cIQVqDFDy5hZEzySXxewN88vRUrhx5MX9Mnk2gxHy+Qj8/vvUr1z5xBV+/+hOvDX8Hi9WC3Wln1Bf34PP4sNqtdOrTAZs93jmraE648Fg2rvg86j0iOT2RUV9Ep4PpuoFeKhLuzfcxauAzjJ46AlHF+tMKhUJRgiwhxAjgk/DnS4HscFpZpVLJFPsfIayI1BeQ8snw54orO1QH0ihEZl4A+g4ggPS8h0x+EM1tbrBL/wxk9m0UK2lXFTdQCAjQ6oCRhynQVRofeF6HxBuR3m+j55Ne8E6GpNsxPO9B/ljAAsIFqeMReAA72I9BiIptM47ToHBi9DWRjpb2cqmGOrH/RAqQOXcg0sZXPI9CoVDEQQhxLLBcSjk+/DlJCNFLSjm3or4qtfsAwe6015gTDTDzi7ns3ryHgM8UKvEXBph07/uR+1Nf/qFCJ9rusuFKjP9y0bBVfb73fcRPoU95ZvqoctM4iiLbNoc1Jv3aarOyfulGJt79HkF/CJ/HT15mPo9d8hzdT+9Kt5M7V8qJBjjp0t5R37HD7eCcG4vrVfoKzbH7XnI8dkfsmAunLWHXpj2VmkuhUCjKYBDQBPgKmAo0C1+zAJfU3rIU8RDCWWNONGBGwPVdmM6txIy6Ph25LT3vUrET7cB0mEsjwdoCUX8Zov4qRNrbxNR8jmoezjoTdmJfF23I4ArIfxYzAu0FmQW5w8Ilro6tnBMNCNcAoGSZKxckFGuRSKMQaWSD49zws5XC/wdS31mpuRQKhSIOrwIFJT57wtcqRDnShymFed6Y88cBXzByvrkisUvNqnHMaV2YvOMNzr/tTKz24uQGh9vO8ef3wGa3IYSgWYfG3DnpRuxOW4yjbHPa6HdZbwD6/68frkQXmibC4zi48uGLWLdkE1qp8lV5WQV4cgur9MzNj2jCs7+OostJR9K6Swuuevgirh59KVJKJt77PuenXs2ljYfy1JUvMeSJQTF1ozWLRjBQdi1thUKhqAgp5R4p5W3AScAJUspbpZS7pZQBKeXaWl6eoraRBZiR15LXSkaMK3pts4DjRKg3G1yDiFbFdoGzP0LYEUIgbO0geRTm+ejS4zrAdS4Awn2xWf4r0sYJibdBcFXsy4KxG2lUzTYLWztE+rtg62EqeSfejki4FSklRt6TyF3dkbv6QN59kHhHnLVqIPeferlCoTjkEbKEwJM0RSAqlbWtUrsPIgL+IEF/kITkeDvNVePoUztHl4YQ0LhNg8jHi4afy7wf/4lErEty8d0DuOLBgbiT3Xzw2GdM/+BPNE1gtVvQLBr9B5/EVSMvjupzyqATaHFkU24/7gECevGYmqZx58QbAKjXtA4TFjzN5GemUpDtod/lfTh+QA+Wz15FKBD9YmF32nAnu6gq7Xu04dlfR0VdmzFlDt+8+lMkMv7fPxvYvGobialuPLmF6CEDq91Kg5b1aNiqXpXnVCgUiiKEED2At4Ck8OdcYIhS6z54kTIAMoDQEvd9MMfxkF/SURRgaWHqjwiBSLwOmfUXcdOx3TciEoeCSEAWjAPft5hOpxWwgOtCRMINUV0090AMazvIurzUmBZE8ihzBZbGkPEV0vMGyDyE8zyEsx+G/2+QpTaXRYKZ4l1FhL0rIuPDqGvS+y0UfkLkzHdoORT8ByLZVO1GB2xgbQmWRlWeU6FQKMKsE0LcTnEU+mZgXWU6qoj0QYCUkrce+ogBSVdxYZ0h3HbcA+Rl7VvZ0SbtGnHzi/8rzuqSsHPDbl65/U38Xj+d+hzBUz+NpE23lggh/s/eeUZJUXRh+KnuiZsjOYMgoOQgiiIqCooZcxZFPzAgZgUEFRRFBVSCAbOIICoYAFFQiZJEQDJITpvD5O76fvQwO7MzuyxItp9z5sh0V1VXj7NTfeve+15Uq4pqVbntuevo9cptxCfH8924mUx8ZSqFucX4PH4Cfo06Z9Si58u3IJTocLGtq7ejWiPFurSAhqe4ZPGuWrcyD4/uxbMTHuHsK4w66LM+/R1dK/Geq1aVARP7xVQNPxxWz18bMQcAn8eHx+Xj9HanUa1BFc65uh2vzRls1ow2MTnFEEKMF0LsE0KsKuO8EEKMEkJsFEL8JYRoFXauqxBiXfDcUxW85PtAbyllHSllHaAP8MG/vhGTY47hMX0Fubc5cl879OwbkHrBwTuWg7A0gKTwr5IEbSuyYChSehG2doi098FyOsYCbjFe8Q+jJPUzSkq5PobiD4IiZF5AMzy9if2I9dgntA0gSq9tXpAl6V3CUgsl+XmUlBEIR2fjoOdbIr3nFkTKqCOmIyJ9SwF3qaMeI0fb0gzU2uC4BJH2sVkz2sTkFOMYr833A2cDO4EdQHugV7k9gpge6ZOAuVMW8fWIH0Ie043LtzD87tE8/82T/2rc7et2ReQu+7x+po2ewe+TF/LanMGceW5jxix9hcLcIrJ25lC5diZxiSU7zXMmzg8pbAMgYf3iTVyVcgeqVeXSey7igTfvDhm8VepWilLztlhV4pPL9rBvXbODnz6aE6EQLoTgtNb1DuuepZT4fYGIHOiq9apgd9qicsJ9bh+ntalPnxF3Hda1TExOZcSJV77icPkQeAv4uIzz3YDTgq/2GDvW7YPiYG8DXTAW3sVCiKlSyr8Pcr1CKeXvB95IKecKIf7dzqjJ8cHzA7g+I2RM+lch859FRIlkHSL+0o4QH7g/Rnp/gLTPDWM6YypSzzdEydQaCCU+cl4RBqiEwJ+wrxUSCzLuZkTiMyXGp1qDKCET4QiGc8dG+teBexqRhrQA6+GV7zSiKv0IUVKGS1hqI7ET7X33gq0VStK/ewYyMTkVMdfmQ1ubg+1fl1LeeDiTPOgWnhDiASFE6uEMbnJk+Ov3NXjCDNaAL8DfC9Yf0hhetzeqvrPVZonyHEsJefsKePGGN0LHElMTqHtGLeISnbgK3bx+7xh6NXuUXRv3lKlTovk1fnxvFl8Onxo61qRDIy65qzP2OBvxyXHY4+w8O+GRcj3LefvyI/KvwRAly8869OfOGR/Opnv8LVwefwv/a/0E2btzAeh2z4XUa147ahddtSjEH0b4uImJycmDlPI3IKecJlcCH0uDhUCKEKIq0A7YKKXcLKX0YahwX1nWIEKIVsEd8z+EEOOEEOcLIToJIUYDcw513ubafPyRvj+INFj94F92aGNId9TajLAQvbhK0LOReX1LminJCGsjhBKP1AvR859Gz+oO2s5yrhgA1+fI4g9LDlnbgOMKwAEiAXAiUkaW71nWs6C0mJiwGuW4DhHd9SVy75nIvc3Qs65BakFRz7ibwNKQ6M/CAiLxkK9jYmJy8nCs1mYppQZkivBdvEOgIrEwVTCs+S+DrnKz9s8xpmqdStgckQtWRvW0CvXdvWUvdzZ6iCuSbufyxFv5ddKC0Lmud1+AMz5ajVRKyc4Nu2Mef/LiF5j16W9sWbWNnD155apxB/waE4d9E/GQ8MConoyY+yJPf/oQ49eM4KzurcvsX1zgImtHdpTAl81upWq9yuXcdTTrFm/kzQfew+fxo+uSLSu3MuiaV0PjvfHbC9zx/A0ho121qMSnxHN5sByYiYnJf5bqwPaw9zuCx8o6XhavBV8tgIbAc8AgoDHQocxeZWOuzccbtSZRKtJKlZhNSyMDW9H3X4Tc2xK5rwW6e2bonIi7sYw8Yz1mvWUpdWTO7YaHOLAe9OyDXD0AxeNKxEWFQEl+AZH+BSL5NUTmDIT9vLLnrhci9f0Rod/BiR9yrrL0/QkFL2Iof+sQWIvMezA4LzsifSLEP0CJaJoFRBIizhS4NzH5j3Ok1maAf4B5QogBQoh+B14VmcRBQ7ullP2FEAOAi4G7gLeEEF8C70spN1XkIib/ju73d2HWp7+yY/1uEAIh4LHxvSvU9+muQ9i1aQ9Sl3hdPl698y3qnlmLWqdXJ29fPvHJcbiLPREh10IQ01Ddvz2LzX9txe81DNvwvOWycBW42LF+FzUblXyHG7SoS4MWdUPv53+7mNd7jaUor5imHRoxYFI/Ar4Afdo+hbvYixCgKAJdl6RVScGR4OC2en1o260FD77ZE7vz4GXDVs9fh66V3KMW0Fm/ZFNIwEW1qNzy7LW0vPBM5k5ZRFyig0vvvYi0KqbDx8QkJvKksdsyhBBLwt6/I6V8p8zW0cS6UVnO8ZhIKTtX6GJC3CGl/Ohg7cy1+fgj4m9BeqaCtg3DLyEQyUMP2k9Kicy9K+g5lkbOb/5jSOu3CEtdwxAWicbxiK+UALVW9IDaDghswjBGIUr1O+Yk8kHbDpaS8YS1CVibhN7r7hlQMMBQEre1QaSMBOlBZl8D0mPMBwXQQckE4UTu74y0n49IGoAQFSjp6V9KSEwMjH/7/yqZk7AgEh9E2s9Ben4CkYiIux6hZhx8bBOT/yLm2nxIa3OQXcGXQlAItKJUKEdaSimFEHuAPRi/eKnAZCHET1LKJw7lgiaHjs1hY9SCoSybtRJ3kYczzz29Qgaex+Vl9+a9EUayoiqsXbSBuCQnT13yIu6iknqUQoAz0YnVZqH/xEeixhOKQPNXYIEOQ7VY+HjwJKrWq8wVvS8ho1qkJ33Lqm0MvXlEKD959YJ1DLrmVTKqp5G3vyBkrKsWhU7XnsX8aUsMTzgw44PZbFiymZHzhxy0BndalRRUi4rfW6IYnpAaHxW61uSshjQ5q+Eh3aOJickJTZaUss2/6L8DqBn2vgbGgmsr4/i/5WHgoIY0mGvz8UYIJ6RPBt98w+i1tq2YgSeLjNzm8Gc7oRo51sKBzL07aESHThpq2NgQKSOih0MQaYxWBAuycATSUhMRdytCzYwc078G8h8nVLPatxSZ+xAoicHwbS00DvZLwTsT2G8cck9C+ldD+oSD1+BWMjC8zWHzV5KjmglbK4StVdRxExOTk5YTZm2WUg4+3Ekc1JAOyoHfAWQB7wGPSyn9wlCp2ACYi/UxwGK10K5byzLP+zw+RvZ+lwVTl+BMcNBn5N10uKINVpslQkRLSkivlsqahRui8qMVi8rASY/S5OxGMUO+33/m81KeawGC0DGLzYIQRki31CVCEfh9fuZ8MQ/VovD9uJm889frpFct2QRY+dsaZNjDhObX+HvBehq0qBPh8dYCOst/WYk/vByXhM1/baV3mycZs3RYuZ7pc689i2ljZ7Jh6WbDG6BLnvigT5ntK8rWv7ezZtFG0qqk0OaS5kdMSdzExOSEYSrwgBDiCwxBk3wp5W4hxH7gNCFEXQylzxuBm4/A9SrkTjDX5hMDIWxgP7/M81J6kPkDwTsbRDwi6TmjznNUZp00vLq+ZTHOKZDyNsLaHKHEEAArfI0o0S8EcGANPZD65zeug2L82/sdeC1I10TI+C5yE8C3OKx/sK9/CVhOK3WtAHjnUuIND95LYDUyuwekf1W+Z9pxKbgmQGCt8YCCRCS/XHb7CiL9GwzPtpoJtnOPmJK4iYnJCcMRW5uFELOJ4bWWUl5wsElUxCOdAVwjpdxaanBdCNG9Av1NjjDZu3N55c632PTnP1SrX5knPnyAz4dO4ddJC/C5fRTmFDH0lhEM/2UQj43vzfCeo4NGr6B1l2a0uqgZK+asjlLQBjjz3MaoFhVd1yOMwpw9ufw2aQG6XrKwKhaFR8bdx/Txv7B/RzZnnteE2wZcy9h+H7Nl1TZy9+bhdRmLqxbQKc538cO7s7htYEmN6aT0hCjj0xHv4IyOjdmwLDIXrDCnOObnsXfrfn75fC7del4YOialZMHUJWxZuY3qp1Wh0/Vn88qsgfzxw3Ly9xfQ9JxGEeHmh8Nvkxfwyh1vhTYkmp/flOe/fdI0pk1OfSQHD5Q6SRBCTADOxwgz24GRu2wFkFKOBX4ALgU2Ai6MMGqklAEhxAPADEAFxkspVx+BKVX0kzXX5hMMqe1F5j8B/nVgqYNIfiVYz3kmRjmpfGTew4j0CZA0xAibPqCcbTsfbO3BN4/or4BA2NoAAin1iFJPUtsN3p9L9VEg6SVwTwBtH9jPgrj7oHAoaJuMYyEl7ADIAqT7K0RCWI1pJcUQPQvPgxbxYG1pGL0R5Mf+QALbDAVx59Ul85USvD9BYKNR/9neFZH2KXjngJ4PttYIS51yPuWDo7u/g/xnwj7bs42NCNOYNjnVMdfmw12bHwv7twO4lgqG+VQkR3pgOefWVOQiJofPrk172PzXVqrUqUSDlnXRNI3HOj/H7s370AIaBVmF9O3Yn4Bfwxfmefa5/fzxwzJuH3QDdc+sxdo/NpJeLY3WXZohhKBZpyY0ateAtYs24HP7sDps3PDElQy9ZSQLpi5BKIJrH76Me4bdihACr8uHoqqEf6/sThtV6lbijd9eCB2TUtKwbX3W/rEBX7j3GMOY3rN1Hx6XNxSK3fGa9kx+4zu2rt6O5tdQVIWHx9xLg5Z1+fbt6RFeaavDGnGPJeMGKMpzRRx7++HxzPhgNl63D7vTxrxv/uCZz/vS4fLYUSTFBS62rdlJSmZShYTMpJQMv3t0hLd/xa9/s3j6n7S/1Aw/MzE5WZBS3nSQ8xKj1nOscz9gLOZHkgo97Ztr8/FFBrZCYB2oNRHWxkgZQObcEsx71sCfh8y5IRiiHV6+yQfe31AS/oe0Ngb/KlArg+1shBBIWwewNDWO4wXsEH+/IcDlnQMoyLieiMR+hmEo3YbBGJFK7URYahpCXQfmKyXSegYEVhLpPQYIQGAHUrqNcHUAR1ejFrW2GaSGYZw/D5Z64J5IpLfaRnSJKow2emSFDVnwnFF/WgbvzfELSsqr4Lgo9uesFxn530oawlIzZpuI9lI3jGg8JZ+Jb77xsp9z0P4mJiYnBsdybZZSLi11aJ4Q4teK9DXrSB8HtIDGb5MXkr0rhyYdGtKkQ6OY7X7+/Hfe6DUW1aKiBTSu6N2Vy++/mP07ckJ1lQ/URbaWKhFlsVmISzJCwGo3qUntJpELkKIovDy9P798Ppd927I4vX0D5k9dzOLpyw3jVYOpo2dQvWFVTmtVD78vQGbNdHZv3msYvIrAarcye8Jcht48krhEB/e/fie7N+3hi5e/iawvHcZPH87hty8XMGjK47Tu0hyL1cIbvz3Pr18uIH9/AWec25hGberjcXmx2a0RZb8AqtSvzJ5NeyPv1WKh5YUltSuzd+fyw7uzQqJonmIvC6Yt4Z/V26l7RrRQy/qlm3iyywvouk7AF+Cy+7rQ+43ya0cH/IGouSElOcGSWiYmJiaHybzjPYH/KlIGwPMj6PvB2hphax6zne6aAgWDgh7bADL+DoTzGqNfKOxZDxqLpUpEYQ3mO4OwNgRrpCaHECqkfQSeqaDtBWszpOdH8M4zxkQH18dItQ7YGhlzFpVA7sTY6FYAB9I1BZn3EIgERFJ/ZGA9FL9PZLmuMDxfIr3TIGUMwt7BCFlPn2h4lPVcsLVDWJsi9WIkNkK506GJVw/OIRwFbGeVfL7abnB/TYnR7QbPDGTgfwhLvagpSd8KI18cCdKPjLu1ArWjvRgh7KXQ90YfMzExMQGEEOECTgrQGqMyxkE5roa0EKIrMBLD9f6elPLlUudF8PylGG77O6WUh1ak8QRD0zSevPgF1i3eSMCvoVoU7n/9Trr36hLRzuv28vo9YyK8ulNHT6dt1xbogUjBL13TubZfdz578Su8bh9Wm4XkjEQuuat8kVjVotLl9k6h9289+D4+d8n1PC4vbz04HtWiIIQgrUoKzTs15Z/V26lWvzKVamXw0ye/4XP7yNkNL1z/GlXqVCrTiAYjBcpT7GXQtcOZuPMd4hKdWG1WLro1stSGI87OMxP6MuSmEVishkjYvcNuoevdFzJ19HR+eHcW+7Zlk5iWYHiww1TAi/KKsVgtIUMajBzz4rzI0PAd63exe8s+ht89mqKwcz++9zNndW9DqwvPLPM+rDYrtU6vzva1O9GDIfJSl5ze/rQy+5iYmJgIIR4GPgAKMXKbWwJPSSlnAkgpHziO0wP+m2uz4VG+HfyrMQxSFZk0ECWuR2Q7vRgKBgK+Eo9n8UdI69lBz204GsT1guLRGAaeFZS0iFDnWAhhAec1JdcsGEikx9cNhc8hRfARTqkM1nagbQC1jiHg5ZmGYezuR+b2AbUqZRrRxlVAupB5vaHSfIRwGsa086rIuSnxyOTXIP8xQyBN+iHxGYTzSqTrU3B9CfoeUFIQSS8YmwUH0PODmw9h9yIs0V7rwGbQdhph8jLsnOtzpKMzwtaunM/OiVRrBpXUg15zqYM19qaIiYmJCbCUEsXvALAF6FmRjsfNkBZCqMDbQBcM5bXFQoipUsq/w5p1A04LvtoDY4L/PWlZMmMF65dswlNsLCQBH4x+eDyX3nNhRG5tflZhlBiYarHgKfZy4a3nMWfiPDzFXuxxNhqf1ZAbnriK5p2asuj7ZSSkJtD17s4kpiZEXV/XdT4ZPImfPvkVu9POPS/fEgp3Tq+Wxs4Nuwkr+4zf68cfXPP2bsuiydmNGDZzAADXpN9ZKpzcFxHqXB5CCPZu3R/TQ3yADpe34bN/RrNzw24q1cogo3o6ANc/diXXP1ZSW33/jmxmfjQHe5yds7q3olr9ysQlxeEp9oTuRQhB3Wa1Q30mvPw1n74wGYtVxVUQ+XChazrb1uwo15AGGPL9Mzx72VC2r92J1WHl0fd6l3s/JianFKdIHtZx4G4p5UghxCVAJkZe1wfAzPK7HRv+q2sz3jkQ+JsSY9MPBYORzmsjc2v1bIz9hTCEFSH8SMel4JkRHMMB1jZG3rG9DdL7O0JJBmcPhBJdXUVKzcindk8DJQ6R+DjigIiZkmmUqorAV5K/rO0AW1uU9A+NKe5tRaTH2GcYvBVCgrYLLPXLbKE4uyDtsyGwFdRqCNVIhxIJvSChV8lI2i6ke4pRX9re2ciJFk6Q4ZvaKlgahN7phW9B8TgMT35R9NwCm6EcQxpApL6PzL0XtH8AOyQPQ5RzPyYmpxTm2nzISCnrHrxVbI6nR7odsFFKuRkgqLp2JRC+WF8JfByMg18ohEgRQlSVUu4+9tM9MhRkF0Yd0wI6Po8/ooRTetVU7E5bSKwLIODzU/fMWpzVvTXNOjVh/ZJN1GxUnUvvNYzwJh0alRkmfoCPBn3JV69/F/IaD7nxDV6eOYAzzjmdB9/qyYMdnsVdGHvXOuALsGXlNsAwyF1FkaFdUkKbri2Y9fGvhoEtBIqqhPqG4ynykLM7jyp1Mpn8+jR2bdxL8/ObcsldnSMeWpIzkkjOSELTNLJ2ZpOUnojNYQudX790E491HhSqB51RI523/3iJ9pe25Mf3f+HAL4qiKiFxtR3rd/HpC5PxuX34YtyqoirUaXrwXKzKtTN5b9Ub+Dw+rHarKWRiYmJSEQ78UFwKfCClXCFOrB+P/+TajJ5HxC4yYIQI+ylRvQbUKiCskeWppA8spxlq0/azkL7VCGsDcF5nrAu2NkGxsLKRha+D61PAbUSF5z4EaR8jbC0QSYOR2TdgOP9j4TcEzjAM8sjSWQA62DuBewqGZ/tA/ecD9xg+ETdSywKlMrL4fSPn29YB4bwqYo0TShrY0gxPvrbHyGEWJZ+TEZZ9R/ANYKmOSJsEtvPA8zUlT/sqBzzHMrARit8JzjFGZJsQ5Rr4oWaWmojM6UjpBWzm2mxiYlIuQggr8D/gQHjsHGCclAffgTyehnR1IHyLdQfRO9qx2lQHjulivXXNDiYMnYKrwM1Ft53HeT06HPZYTc9uFAoFhhKjrXQdZNWiMvCrx3j8gsEhA1DXdXas302VOpXoclsnutzWiYqQuy+f4rxiqtStxE8fzYkIvfa6fcz5Yi5nnHM6tZvU5NWfB/Lw2c+iBfSocax2Cw1bG3lMe7bsi76QgHZdW3L1g5cy+4u5KIrCedd14LWeo1mzaEPELpmUkqe7vogjwYHf6yfgCzB3yiI2/rmFB0ZFRlNsXL6Fpy55MehhlvR7739cePO5ALzRa2xELew9W/bxzVs/MvPjXw110CA+j4/53y7m4jvOZ88/+7HaLFHCZY4ERygXvUXnM6go4Ya9iYmJyUFYKoSYCdQFnhZCJBKp3HS8OWnWZulfjyweB7IY4bwW4ehy8E5lYWtNpCvHApbTI4xDMMpdyZRRkHtXWHsNAlsQ9qrgvMbIl67I/LUsI3RZrWEIcEWEXnuQnh8NQ9raCJk2HnJuIbL0VGjyYA2uWdpWDCO5VDv7BYj4W5Du7wHVEBPLfwICq0rPCnJvR+IktJHgmYEMrEUkPR3Z0r8SmdMTpAeQyORhKM5LjXMFz4IMM/wD25Cuz43c74iHAY9RGsx5BQS2B0O/S01JxIEMQNydCFvbMj7NaMotu2ViYmJSwhiMMJjRwfe3BY/dc7COx9OQjrVFGF3z4eBtjIZC9AJ6AdSqdeTCa3ds2M2D7Z/GU+xFSsmyn1dSlFfMpffEVpg8GNXqV2HQlMd55Y43Kcgu4rTW9Rg05fGYbTcs2YxqUUPe3IBPY1Tvd/l441uhNgF/gOnjZ7Njw24at2vAedd1CO2+Sil554lP+ObNH7HYLCSmxKNaI0PSFFXBEVYzunaTGhGG/gGsdit1mtag1/DbQ+8VVUHzlyzWdqedlErJ1Dq9OncMuiF0vObp1dmwbEuUV1pKGeH99ri8fDd2Jr1euS1knGqaxlNdXyQ/qyDU7o1eYzm9XQOqN6hKzp7Isht+r59FPyyPcS1CAm21GlePOu9MdDBs5gAyqqeTWSM96v5NTEwiEWb42OHSE2gBbJZSuoIiJ+WrGx5bToq1WQY2I3OuD3pfJdI7H5k0GCWu/PzjshCWupD6JjL/SdALwNoMkfJW7Mb+lRie1APrSABZMBiROaNkftIH7snIwDaErQXYL4lYm2Xhi+CaaBiOIpmocHFUw4AMvT2N2PstNrA0QiQ+VvI+qg61E6GmISwNEIkPh47qlnrBUlalq7xIIr3fbkPgLPExDMfNgZzyniDzSprlP4W0nmmoa2tZpcb0BlXHS11LyJJjlgaGwRxBAqR+gFArI9QKaf+YmPynMdfmw6KtlDJcSOEXIcSKinQ8nob0DiA8frYGsOsw2gAgpXwHeAegTZs2R+xrNP39n0NGNIDX5eXzIVMO25AGaHNxc77c/d5B2+VnFUQZfOGiWJqmcU/TR9i1aS9SSmwOKyvnrgl5dBd9v4zvxs4k4AsQ8AXwurxUqVPJCBl3+0AYucMplZNDodHzv1kcs7601HU6XXc28UEl8Mwa6bTr1pIlM1bgdXmxOWzUPbMWDduUKG/O++YPPho0kS1/bTuET0fg9wVChnT+/oKoUHPVorL5r21Ub1CV5uc3Ze6URfi9JdEXq+eVrnEJqkWhXbAsVaWaGTw6vjfD7x6Nohjh5y9MfYrG7RtG9TMxMTE5wnQA/pRSFgshbgVaYQh3nSicFGuzdE0MGdEGHih+Gw7TkAYQ9k6ISgsP3lDPIcoglCWburoegKxuoO8AJNJlg7jlJR5d70/gnkwoz1l6DK80DkpymwWIlNDajHcGsfcqdHB0RyiGEjhqdbCfDd4FwbEcYG0MlsYlPdzToegt0NYf/F4jCBBSIdf3Bz3RYQgLBDaApSbY2hqe5vBSW/7F0UNKixHujRGSLZNegIL+hpAZCiL13TLV001MTEyOEJoQor6UchOAEKIescN/ojiehvRi4DQhRF1gJ3AjcHOpNlOBB4I5Wu2B/GOdg6VpekSIMBBR2/ho0uaSFnw96odQnrTVYaVt1xah86P7fsDOjXtC730eP9+Nnckdg28gMTWBzX9tjVD9lroke1cuT3/2IENvHonfG0ALaHw0YCKuAg/b1+1kzsTYlVcCfo33n/mMv37/m4fevpfKtTMZMLEf37z1I2sXbaB205pc/9gVqKqxqz7hpSl89NyXIS9wRbDaLTRsU5837h3LX7/9TVrVVB4afY+RFxWGFtCpXDsDgL5je1GQVcCyn1eWbACUetZQVIU+I+8mvWpq6FjnG87hrMtakbMnj8wa6WZ4tomJybFiDNBcCNEceAJ4H/gYqFiuztHnpFibDYXsUj/28tiszcLeCemaQInRawfb+SUNCgeBHh757jM8ugkPIpQEpH9dKSNUNwzT5Jch/3GMkOoAFL2OlMXIwJqgIR2LABS9jO5bhEh+DqFWhZS3kcUfQ+Avw1sd3xMhDC+1XvQWFI0m2gtdHjawtkDmPYH0LwWlEiQNIvrzDwTVwUEkD0Xm9QHforB2pTcCVEgehFAzQkeUuCuRjotAzwK1ihmebWJicix4DJgthNgcfF+HCkaKHTdDWkoZEEI8AMzAiGkaL6VcLYS4P3h+LEYx7UuBjRhxRsc8/O2iW89j2piZobxiR5ydK/p0PSbXbt6pKQ++fQ/vPPYxHpeP9pe14pF37g+dnz0h2ug9UF4qMTWB6g2qYHNYQwrhAI54Gx8PmhSRA+1xefl8yFfBAcqej5SG6niftk8xfu0IktISubZv96h2uq7z0aDYRrRQBIqiIKWOrkksNguKqpCUnsAZHU8na2cO86cuxu8NkLs3n74dB9Dp+rOZ/80fWGwWtIDGZb0uomFrQ3AkLtHJyzMGsHXNdh5o93TEvR7A7rSRWSONH96dRXGBmzaXNKfuGbVwJjip3sBZ9g2bmJiYHHkCUkophLgSGCmlfF8IccfxntQBTpa1WcRdjXR/SciYFU6Iv/XYXNt+NjJpABS+YpRyclyASB5U0sD9Q4xeMmg8JyAstZE4iMyJdkDR20Q6QdxQ/BYHl+GV4JuDzF4BGTMQShIi4e7oVjIQ4xoHUDAi9iVGCLkV439/MtjPMnKvvb8AfsPIzbkR7Jca3nVhDeYw34awGp5voSQi0j5G96+BnJtLKXUHEXZD1Mz1hZFPbT/PCD9X4uGAh93ExMTk6JMOnIFhQF8JnA3kl9fhAMe1jrSU8geMBTn82Niwf0ugz7GeVzj1m9dh2MwBfNB/Aq5CNxff3okrH+h2zK5/yR2dueSOyHrQWTuzGdPvIwpzSpeGAGeCg/Rqhuf13B5n8dtXC1n0/TJUi4qn2IOr0EPByuhQ64p6jnVNx+fxsWT6n1wQFPwqzcRh30TkTofT7tJWPPPZQ3w+ZAprFm2gSt1KrFmwnj3/7OO3LxdE5WdLXfL75AV0ub0TZ3VvQ+XamTRoGa1SX61+9KbBASw2C6/dO5a8ffmGB/65Lxg05QnaXGyGi5mYHDZmHtbhUiiEeBpDzOTcYLkp63GeUwQnw9osrE0h7X1k4QgjxNt5LSKutOP86KHEXQdx10Uck9puZP4Qoss2ASSCEtTfcHQHz3TwzgvWYnaBLAItN0a/inqO9aBw11wICn6VRhaNIbYRLcB+keERLxoN/r9ArQn+pUYpLO80ovOzdfD+CI4eCEcnowyWtUn0yJZ6yKj87wPYIe9xpMw15lU4AlLHIuxnV/CeTUxMojDX5sNhgJRykhAiCaP042tUsKzjcTWkTxaant2I4b8MOmLj+X1+xj76EfO+Xkx8spM+I++m1UXNKtS3uMBFn3ZPk7s3L+b5G564MlSPWlEU+n/xCJtW/MOahRsY9/jHeGMYmjanDb/XHzM3ukzKKCexYNoSPhsyJeY5i81CnxF3EZcYxz0vG56DRzoNZOfGPeWGy2sBnRkfzEHTdB4fH/vZzWqzMmzmQJ65dAj5WQXoWsm9FOUVU5RXHLo/Q7TtHT7e+HaFbtXExMTkCHIDRqj03VLKPUKIWsCrx3lOJyXC1haR/tkRG09KH7JgCHh/BiUZkTgAYT+rYn31AmT2NcH86Rgk/C8kNiaEAilvQ2AN0rcMCl8l0jt9AAdGGahDWZtLC40F5+eZCcVlabNYIfEZFCUBkp4AQM++HrRtlC8or4HnS6TQUZKHxJ6OsEPaB8ice4PCZGHjyXwgj5L780eJtpmYmJgcAw7sMF4GjJVSfiuEGFSRjrF/cU2OKm/2eZ8Z42eTvSuHbWt2MvDKYWxa8U+F+q6YvRp3kSem0WtzWGnVJdLLKoSgQYu61G9eG1WJ/N8tFEHN06vR9a7OWGwV21NRLYbKd7tuLWOeX/7LyojyWuHous47T3wScWzjss0VyjmXUjJ7wlxuqnU/97V8jMXTl0e1adCyLhN3vcsdg2/EEqZOLnUZ9XkV5sYIMzMxMTE5ykgp9wBfAQeSP7OAr4/fjEwOIAsGgPtr0PdBYAMytxfSX0FBLt/8UBmoaOwIe2TZTCEEwtoEYW0Uw/hVQK0Pzh5UPFjBAiIebB1jnpXeecQ21sHwBg+LPORfQ8Wqsklwf42+71z0rCuD14lEWM9EVFoA8Q8QqU6uE/V56RWKpjQxMTE5kuwUQowDrgd+EIY4Q4VsZNOQPg78OmmBoZodxO8LsPC7pRXrLEDEWKjtcTYuuaszjdrUj9mtQcu6JKYnIJQDO+JQtW4l3l35Ohv//IdAmOp1WVSunckFt5zLmGWvkJASmb+UvTuX36cswuvyolpjf630gM7crxcxtt+HoWPhAmAHI+DTyN6Zw+YVWxncYzh/L1gX1UYIQWrl5KgyX+HYHFbaXNKiwtc1MTGJgTxJXicYQoh7gcnAuOCh6sA3x21CJiV4ZlAiIAYQAO+vFewcO0oLnBB3Yyh3OArrGSCSwvoLUOsgMr4H/woM4bGDoNQA5xWI9K8RSkLEKantRXpmGOrgZYZYa+Cdjl7wStiYGWW0jUUA9L2Ghz33f+i+6KoxQgiEmk75GwN2sJ93CNc1MTGJ4nivuSfn2nw9hi5IVyllHpAGxK5NXArTkD4O2ByRC4lqUXDEVUyZsuWFZ5KQmhDyuFodVpqc3YhXZj3HQ2/fW841bVxw87kIDtSxhKxduWxdvYN9W/cjD/KlVhRBYU4Rl9zZOcr4XbNoA3ed/hCv3vUWv3w+N0LILAoJU8fMJGtnNgBPfvIQzkQHNmekarbVYcXmLHvB9bp8PHxOf+5u0pctq7ZFlAU7/4azSa+aFvqc7XE2Lr7zfBJS47E5rLTr1op+795f1tAmJiYmR5M+wDlAAYCUcgNQ6bjOyCRI6eoNKghHBbueAyKRkow5G1jbINI+Rkl6tsxuQjjBcRklhrQ08pIDm0DfzcGfOBWQeQhnD4SaGXFG+pYhsy5B5j8Fnh8ov5qLNJTFg/WfRcprwTrWpe/fRvTnFI4Hcq5D338pun8jUi8oOeW4HNSMsP4OcFwb3Eiwg70zInnwQe7XxMTE5MgipXRJKacE12OklLullDMr0tfMkT4O3DPsFt7s8x5elw+LVSUhJYGLbqvYLqwz3sHbi1/mg/4T2L15H83Pb8qNT16FainbA3uAWR//iq6XGLk+t4+fPvmVlErJZO2MzuuyOWzomkbAr6HrElehm4FXDmPS3vex2UuM3JduGYm70BPVvywsNpXCnCIyqqfTuP1pfLhuFPO++YOxj36M3+tHUQQpmck8N7kfg64ZTn5WAX5fIObzxPZ1O+nV7FFUi0LtpjV5eXp/UiunMGbZK0x//xdy9+XT5uLmND+/aYXnZ2JiYnIU8UopfSX5ssLCibg//18k8VEoGILhlbaAkgzOKyrUVSgJkD4FWfQGaDvAdjYi/h4MLbmD4PmWyDBqL9IzDUQaRuR/aQ6sv36jnyxC5t4HlRZhfJ0MZN4jhpBZRRGWYN5yBsLWCjJmGrnVhcOC1xKgZELKCMjrA3oeEXWiw9E2QvalSFSkpREibTxCSYP0qeCehNRzEfZzEba2wEsVn6OJiYnJCYRpSB8HLrmjMxnV0lgwdTGJ6Ylc2acryRlJFe6fkpnMI+PK96gWF7iYPWEe7iJPqNyTokbnSKsWlYZt6rNx+ZaoMQKBADaHjUCYAre7yMOOdbuo16x26Njerfuj+gpBuV7uvP0lu9RpVVKZ/+3ikOCZpkv278hibL+P+WTz2xTlFbPsp794vdfYUE3tEMFraAGdrat3MPTmEbz68yDiEp1c0/ey8j4iExOTw0RI42VyWPwqhHgGcAohugC9gWnHeU4mgBJ3A1KthvT8AkoqIv42hJJc4f5CzUCUIbp1AKkXguc7w8C1d0JYGhAdci2MY9amoMXK0dYxUuzDwr5lETKwDWGtF9Zsb6xZUva+jYLUshCW+sH7qYT0zsQwloN99F2GOFrGHAQFSPdvUDiQyJD4cDQIrEfmPRY0phMg/q4yA+FNTEwOH3NtPvaYod3HidZdmvPAm/dwx6AbSMms+EJdEYrzi7mvxWOM7fch45/9jAfPeppls/7ipmeuxh4MIRdC4Iiz063nBbS68Myo0HJFVTivR4eo3GmpSz59cfJB55CYnoiiKiiqQvPOTalcJ9PIkRKCgF9jwBXD+GjQxFD7Pf/sjxQEk/D3wvW80WscKZnJXHDzuTz/zZN0uLwNqiX211YLaKxbsjnmORMTE5MThKeA/cBK4D6MMlP9j+uMTEII+7koyc+hJD6EUCqu4VERpJ6PzOqOLHgJWfg6MusapHchxN9HSQi1AOFEOK9G2M8BnKVGUYKh4KU9wRKKK1CJQqQaY6CCtQMo1YxrIkD6IbcXetHokvbaTiINb2mUxSochFDSUOKvQqSOBtv5lJ2DHTBKapmYmJicYpiG9CnI9+/MImd3Ll63j4BPw+vyMar3u1x2bxee+LAPZ3VvTb1mtYhLcvLsZS+haTrd/3cxqkVFURVSKyfz8Jh7eeazh6nXvHbU+GsXboh4X7VedHpfQnIcX+5+lx+9Exj+8yBenjEAq8OKlBK/x4/X5WXisG/J2ZMLQLPzmkQJhOmazqxPfwvVuG51UTMGf/MEna4/G0e8PWY4e1qVlMP92ExMTEyOOlJKXUr5rpTyOillj+C/TR/CfwDp+hz0LAzvrR/wIAsGo8TfAskvGcao2giIR+bei5QWiLseI3hQNcKqk4Ygkl8FS4PoC/iWRb5Xqka3UZIhcyGi8mqU9I8Qae9heLclRqktNxSNRh4o42VtS7SBrIH7K6Q0wtGFvSMidRzYLw7mVccIdlRMGQATE5NTDzO0+xQkb38Bfm8g4tgBMa7zenRg95Z9fDJ4UqhM1bDbR3HRbZ2YvO89dF2SmJoQqnfZ8Zr2bFm5LTSeEJBZMz1i7Kc/fZi+5/Yn4CsJAd+3PZt3n/qUW565NlTH2WKz4AtTK7faLOTvLyCtSir3v34Hfy9Yxz+rtpd7b0IInvrkIRZ9v4ydG3Yz48PZ7NmyD6EIpJQ8+fGDh/mpmZiYmBx9hBBbiBFbK6WsF6O5yamEnk2UCrc0yj0pzsvQtW1QPBak29AFK+hniHFVWohARoSZS3sXQ5AsNJ4AtVrE0CLlDWTOzUDY84C2E4peh/h7kLIIqWeDsGKU7jrQ0QJ6LihpiKQBSP8K0DaVe2tCCCN32vsLUtsGrklGGDgKIBEpw8rtb2JiYnIyYhrSpyBtu7Zg6ujpoXxim8NK264ldZ9nfjg7otazrklmffIbuzbu4bU5g0NGNMBVD17K7AnzDGNVCBRViVK8btS2AS0vPJPFP/4ZOhbwBfh98kJmT5iHxapitVuRpepFB/wBkjON3HBnvIPX5gzmxuq9IjYB4pKclHbWCCE4q3trY34PdePPX1ZRnO+iydmNyKiWdjgfmYmJyaEizSzHw6RN2L8dwHUYpTZMTnGE/Xyk60tK8ontYD+/pIF7imFEh9DB8xVo2yHtw8ix4u9Gen4MKnsDqIjk5yPb2FogrW3BvyDsqA883yPdXxsGMw6QkRvvSA0pUo2AbyUe0j9D7juXiE0AkWTMLyywUQgBjguNLOy428C3EGQxWFsiVNMjbWJyTDDX5mOKGdp9CtLygjPpM+puEtMSsDlsnHV5Gx4e2yt0PlapLV3T2bh8C5v+/Cfi+AGV8P4T+/HY+N58sG4ktZvUjOpfr1ltrGFK3kIReIq9+Nw+XAVuCrIKSauSEtFGD+g81nkQvmAettQluh5pNAf8AVbPj64XfQBVVWndpTnn9ehwxI3o4gIXW//ejqvQffDGJiYmJhVASpkd9toppRwBXHC852Vy9BH2jpD4TNAIdYCjCyJpYFiD0vnQADoEVkAgMqVKKPGIjG8QKW8gkl9GZM4MiYRFYG1EZLkqEVTy9hpGrswFtQqR9Z01yL0NKYMRZDJG2SzpKTfvWQiLEfLtuOSIG9FSL0QGNiL1oiM6romJicmhYnqkT1G63X0h3e6+MPQ+P6uAqW9Px1Xo5uI7zmfLqu34SwmJKaoSdQzAarPSrlvLqOPh3PzMtSz8bhn7tu1HCIGu6RFebyklWbtyIrzLgYBG1q4cVs1dS6sLzyTg11BUBS1MJVxRFAK+Urvlh4Cu66yau5bifBentz+N1EoVE3b7fcoiht02CsWioGuSZyf0pcPlbQ7e0cTExKQchBCtwt4qGB7qxOM0HZNjjBJ/I8TfGHov9Rxk8SdIWQzOHlD4CtFCYkqMYyCELdKjHQOR8CDS+1tQwVuA1IHwklh6ybkQAaOWtf9PsLXD8ESrRHqkVUOc7DCRUjNEy/QisLUwSmNVAN39A+Q/ZVwfHVJGIeydDnseJiYmJv8G05D+D5CfVUCvZo9SkFNEwB/A7rBxx+AbmDjsa4ryXUhdoqgK8clx7N26nwFXDqM438UZ55zOwEmPkpR+8Ge8uEQno5cMY9XctQR8AfL25/Nmn/fwFBvGtBCCKnUqsWvTnoh+B4xuMITCqtarzPY1Ow2DW4Aj3k7jsxoe1n1rAY2nuw1hzaINKIrxkPDqz8/RsHWMXfsw8vbnM+y2UXjD8rmH3DSCCdvHkpiacFhzMTE55TDlsQ6X1yj59ALAPxjh3Sb/MaSWjczuDnoBxlfBDgl9oXgMyCKMr4kKIgXp/weZ09M4bmuLSBmJUFIOeg2hJELGVPAtBjSktg8KXwgLIVdArQmBf2JNMNikiuG11rYG5yRAxIP1zMO7b+lH5twFgVXG9RGQ9gnC2qT8ftp+w4jGE/oLknkPQeY8o6yWiYmJuTYfY8zQ7lMYKSVbVm5lfP8JFGQXGp5dCV63j+/fmckH60ZxzlXtqFKnEm0ubs6j7/2P13qOoSCrEM2vsXreWgb3GF7h69nsVlpdeCbturWky22daHpOo9A5oQoeG/8/Gp/VEJvDCCFTLQpxiU6anm0YyuuXbmbvln0hr7UiBNc9dgVxibHC3Q7OT5/8xpqF6/EUeXAVuHEVuHn51lEAFGQXMrjHcG6r14enuw1h3/asUL9dm/ai2iL3mPxePy/dOorcffmHNRcTExOTIN8FX98DM4C1wLlCiBbHc1Imxw4pJdK/Flk4HPR8DE+vBDzgnoTImAn2C0GpAbZzIWkwFDwLMg8IgG8JMu/hCl9PCBvCfg7Cfh7CeS1YmoedVSBxqFGzOhQCbjHCz20tjLf+laDtpuQJXUB8L4QSd3gfgPsrY0zpMjYGZCEy/wnjs9Fz0HN7o++7AD3nHqQWtvmu/WMIo4Ujvci8R0tUxk1MTEyOIaZH+hRF0zReuP51lsxYgRYIEPBH5ji5izwkZyTx3OTHQse+ePlrAoGSdgG/xqq5a5FSRgiQVYQd63exYvbq0Hs9oPNs95f5ZNNbvPvkZ6yev5bqDarSZ9TdOBMMQ/m7sTMivMC6Lvng2QksmbGCKnUycSQ4uPj286nXzCjJNffrRXw+5Cu0gM7VD19K17si0wz3bt2HJyy8HCBrVy6apvFo5+fYsW4XAb/Gvu1ZPHT2s3y4bhSOODuVa2dGhZPrms7SmSt4oN1TvLf6DZzxDkxMymJbfh6vLZjLfpeLi+s14I7mLQ/5b8jklKU1Rjj3VIx42suAxcD9QohJUspXjufkTI4uUmrIvD7gXYBhQJcW+ipGqOlGbeYgetFbRKp9+8G35PAmoG0Cf3jfAOT1goyZUPSKEc6t1kUk9UcEc7al6xOM0lihGUHhK+ie2WCpDiIe4bwGYTU2xXX3j1A8DpAQdxdK3FWRt6jtAEppj2i7kTKAzL4l6PkOgG83MvsGyJyBEA5Qa4AsHeKug+83ZHYPyPjBaGdiUgY7N+7mg/4TyNtXwLnXtueK3l3NtdnkX2Ea0qcoP3/6O0tnrojIUz6A3Wmj49XtI47t257F50O/jshPBiNk+3B+ZJbMWBFlvBdkFbJm0UYeHn1v7E4xruPz+Fk6c0Xo/Xdjf+LVn5+jKLeIl28bFVImf+vB8SiqwsW3n8/iGX+ybNZfFOUWY3faQm0UVaFByzrs/Wc/uzfvC81P13TchW42LtvMGR0bk141ld5v3Mnovh/g85Q8vOiaTlFuMavmrqXtJS0O+TMx+W+wr7iIK774lCKfD11KVuzZzZ6iIp7qeN7xntoRRZjhY4dLOtBKSlkEIIR4DpgMnAcsBUxD+lTGPSVoRMcSsXSA45KIIzKwA4rew6iHFYY4vFBm6ZlDtPGejdDWIJJfKKNXrGcAL/jnhux76ZoA6Z+ClgX5TxJSJi94Dh0VJe5ypPdXpHch6HkYgvUH1Msthkdc2xosmXVgfhrIAvCvNfKo1arIxKeg8GUiDXvNKNflWw72Dof0eZj8d8jamU2ftk/hKnQjdcm6PzaSsyefu1648eCdTyLMtfnYYhrSJwHZu3OZO2URUko6XtO+QurU29fvCuUnH0AIQUJaPOdecxa9R94Vce79pz/D4/JEHFNUhYfHxDZ6PS4vX776LdvX7qTJ2Y24ovclqKoaOm+1x/5qFeWUrbJ5+f0XM3vCvJjG/wG8Li8fDfwCu9MeMpAPHJ/69nSK81y8/8zneF1erA4rjjg7fl8A1aJSpU4lnvm8L0iJrkeW4tI1GaEoflmvLjQ+qyH/a/1EKIcbgtlh5u6lSTlM37gBbyCAHkxRcAcCfPLX8lPOkDY5bGoRqRzlB2pLKd1CiLJ//ExOOKS2Bzw/YQh6XFwhdWoZ2ES0ES1AJIPjUkTiU5HtC1+J0V6BpOeJhdRdyOL3QNsM1jaIuJsRIiyLr3Ro9AH03DLnLOJuRXpmUGL4xsKNLBxFKEQ97DjuT9HlPigcGTxnNxTKpR+wgKUmIvk1kN6gGFrEDYEoUR1X4m9BtzaHnOuJ2hCIafCbmBj8NnkhPo8PGawO43F5+WbUD6ecIW1ybDEN6ROcXZv20KftU/g8PnRd8v7Tn/HKrOdo3P60cvvVO7M2jnh7yJhWVIXT2zVg5LwhMdvv35Ed+nE5QO2mNTn/hnOi2moBjUfOG8C2v3fg8/hZMG0paxau55nP+obaXHjreYzq817UmC/f/iYj/vcOt/a/lqxduWxfu5NmnZpwzcOX0bB1fV6ZNZBPnp/Ekul/lnlvefsLiE+Kzpu22qy8//RnofBwv8ePqio8PPpezuremtTKKSEj+KzLWvPHj8vwunzYHFaS0uKZ/No0GndoyJUPdEVVVeo1q027S1uxfNZfeN0+LDYLKZlJnHnu6WXOzcQkFuYGsUkYnwMLhRDfBt9fDkwQQsQDfx+/aZkcCjKwxQgnlj6MUOfhyLRPUGzlC3AJa2OkcIaJfalgbYWS/lnsDvoeon5BLI1RnJdENZXSh8y5AQJbMOpFz0b6VyJShpU0cvaAwqFRY8q8fkgRB/EPGl7hwGawnYWIvx1haw5pHyCL3gbf3LJvTs8pw1C3Q+EblOwfeY37ThqCsJ8HSjpCCEMfxd4RvPMIGdxKGrLoHaStFSLuFoRQEdamSFuHoICaB7CCkgm28quLmPy3kbqM+lMKryRjYnI4mGJjJzjj+0/AVeDC5/ET8AXwFHvpe25/Vvy6utx+599wNp1v7IjVbsWZ4CC9WhpPf1a2OEnbri2xh9WXtsfZ6NTjrJhtV89fx/a1O0Nhz16Xl9+/WkTe/nxy9uSybNZfzPliHrHMh4AvQFFuMWMf/ZjJr01j0ffLePeJT7n9tAfJ3pPLjnW7aH9pSxLTyw5b+2fVNtYv3RxxzO60cXP/a/GXzm3WJVpAJ61KaoQn+dkv+tJz6M2cf+M5JGcmkbsvnzlfzmf8s58z5MYRoXYDJ/Wjx6OX0/z8plxy5/m8tegl7M7oOtwmJge4uH4DbKoFJfh9c1os3HxGs+M8K5MTBSnlC8C9QB6QD9wvpXxeSlkspbzluE7OpMLIwuFBZW0vRlCBC3KuR/qWlt/RcQXYuwI2EHGgVEGklCPqae+EEQZ9ACc4Lo3d1rcUAlspMVjd4JmG1AuQ2j6kdx64p5VxIT/IfCh6EVzjwTcHil5G7r8YXcsyxrV3BpLKnmvgb/CvKX3DkHAf0eHkEoGGUDNCa7MQApHyJiT2A/tlIFJA3w/eH6DwNWT+4yXtUsdA/F1gbQfOHoj0SQhhrs0mZXNuj7OwOqyh75s9zs7l9198nGdlcrJjeqRPcHL35KGX8urqAZ3B1w5nStYHZfYTQtDv3fu57bnrcBW4qNagClZbyU6xlJIpI79n6tvTUVSVm565motuPZfp438BoPNNHbnx6atjjj1n4ryIsGoARREsm/UXb/Qah65JfJ7ompflsX9bFj0b90ULaAR80eJo4WgBHS1Q4mmv17w2vd+4izPPbUzrLs34c/bqUD1sRQhaXRTtIVBVlasfuozT229g4XdL8XuNRd7r8rHwu6Vk7coho1oaVpuVO58/PmE/m1b8w9bV26nWoAqntys/AsHkxKFKQiJf33Azw+b9TparmIvrNeDe1m2P97SOPOZG/mEjpVyKkQ9tcrKiZxH9R6Ah8x5AVFpQZjfDWByG1PqCLAa1NkJErs3SNR5cnwNWiP8fOLuD+2ujgfNKRPzdMceWnmlEh18rSO+vkN8f0InMLa4A+g7Iutio+xxLHC0CjZIwdAUsTRFJzyBsrdFtZwUF0oLPBgKwRW/WC2FBxN+JtC5F+mYTuSkwA6nnIJQ0Q4k88ZFDu5cjhPT/DYFNYKmDOMwSYCbHnko1Mxi1YCjjn/mcvH35dLy2Pdf27X68p3XkMdfmY4ppSJ/gnHNVW/5esD5KRboorxifx4fNYSujp0FmjXQMbZtIvhs3kw/7fxFStR7V+12e+bwvD759D0BEvnM4XreXH977Oep45TqZjLjvnai87EPBVeA+5DAbXdNp1KY+Z57bGID+E/vx+j1jWP7LKpIyEnlk3H1Ub1C1zP4+jy9UY/oAiipChvjx4qsR3/FB/wkoqoKuSa5+qBs9h5rOqpOFeqlpjOt+5fGehomJydHC3gX8q4hU0wb0HKQMIET5j1dCjb0uSdfHUDiKkEFaMACROgqSDCEwIWKvzVIvBvc30SfU2kEjOpa4WQWRxRz607kO1hYIW2sARMpbyPynwbcIlDRE8hCEpWY51/QSHTSpxFDtPrboRe9B0SgQKkgdGX8XSmLf4zonk4pTu3ENBn/9xPGehskphBnafYJz9UOX0em6aBXKtKqpBzWiy+PH936JKA3ldfmYMX42qqqWaUQDFOW5UNXIr41qUTnvug5RpaZKI4RAtapl6oEczIgWAmo3rWGMEcRqt3Ba63qh93GJTvpP7MdX+8fzwZqRNDuvCUtm/smLN77OM5cOZdqYmWhhJb4atqmPM9GJErwni81C9QZVqVw7s9y5HE0KsguNXG+XD3ehB6/Ly5SRP7Bj/a7jNicTExMTkxJE/N2GMV0apepBjehycU8m0uj1IF1TjNzgMoxowFC3jvKNWMB+MQf3QosYfSMGP3h/pUGpMWzB2tTBFkoCSuqbKJX/QMmcbnipPb+h5z6MnnMvevEXQa93EGtzEA5KHlOtYKkPSuWDzOXoIbVsKBoBeIKbC24ofh8Z2H7c5mRiYnJ8MQ3pExwhBE998hD3vHwLVrsFZ4KDpPREXpz21EH7FmQXMn/qYpbN+ouAP9Kj7YiPzCUSAhwJB6+/mFo5mZRKyRH5xrqu89kLX0UJix0gLsnJyHkvMmBSPywW9bDDTuxxdh4b3ztCtVzTdL4bOxNfGR7kjwZN5NnLXuLXLxewePpy3nrwPZ7tPjSk2u2MdzBq/hBad2lGlbqVOPuKNrz6y3MoyvH708jdm4fFFvlQY7VZyN5VtqqqickxRRolNk6Gl4nJ0UAIBSV1BCT0xch3jgeRikgdd9C+Us9Ben5GeucjZalQaVFaSFOAEnfwCSmVQEkmcqdaA9fbGCHdsW4iCdK+hKQRQDlG+kFxQMowUDIir138KbIMD7JeMBzy7gPvj+D7FQoHIXPuD63NQolHpE8C29mg1gRHF0TaR8e3aoa+P1pMTdhA33d85mNiUpoTYM39r63NZmj3ScINT1xFt54Xkre/gCp1Mg/qjd66Zgd9O/ZH13SkLqnRqBpv/PZ8SCjrzhdu5JluQwyFa2EYqTc+ddVB56EoCq/MGsiAK4axY90uLDa1zHxmi92CqqoMnPQojdo14Kaa94cUtctFENPY1gIaNRtWixAU0wM6O9btZtYnv3HpPRdGtC/KK+aLl76OKF+l65KlM/+ie/wt3DbwOm56+hoq1cxg6A/PHnxeR4Hlv6xk5e9rSK2cwiV3no/NYaNK3UpRUQGaplO7aY3jMkcTExMTk9goCb2RcTcZitVqTYQof22W/vXInJsxjFsdLKdB2mehfiLhEWTufRi5zgKEExF/z0HnIYQKaR8jc+8H7R/ASlTYeQgboCJS3gLrGUafCuVOl7E4E0BY6iNl+PU00DeB5ztwXhPRWuo54PqAyNrYOvh/hX3N0BP6oiTcg1CrI9LGV2BeRx7pnYf0LUOomeC8xvj/o9Yi2v+kgaVerCFMTEz+A5iG9ElEUnoiSemJFWr7Ws/RFOcVcyBa+p/V2xnb7yMuuaszDdvUp9l5TXhtzmBmfDQH1aLS/b4u1G5cMUOteoOqjP97BGsXb+CJC58PCXWFY4+z0e+d+2ncoSFV61Yma1cOxXnFFRq/8VkN2bxia1Q96aT0JOZ8OT9qHJ/XT96+/KhxivKKUSwqxDD0/d4Anw2ZYnymGUkkpSdw5rmNj6kn+tu3f+TdJz/F5/Zjc1r5/p2feHPhUOxOOy/P6M+z3V+iOK8Ym8PGc1MeJyUz+ZjNzcTExMSkYgglFZTUCrWV+U+BLCRkkPrXIgtehrirDXEuewdI+wTp/hqEFRF3E6KChpqw1EVkzkD3/Qk5dxBZrvwA8Yjk58HaEmGpgdR2gXRVaHwsrSCwmihBM5GO9PwYvK/wm/UbGwyl0QswPOCxDH0fFL+JriQjlCRQ0ox62MfQE60XfwCFIwAPEju4JkH6FwglDlLfR+b2MhTbhRORMtr4/29iYvKfxDSkT0GklPyzajvhKcd+j5/p439h1qe/cXq703hp+rM0atuARm0bHNY13nrofb4bOxMtEB0yplpVLripI51v6hha/JLSEiokJKZaVc7o2JiktAT+nL0aXdNChnr2rhzeeuD9qHGsNgvNzmscNVZmjXSSMxLZvz075rW8Li+jHngPh9OO3+cntUoKdw+5mQvC5n20kFIy7vFP8IdKiPnYtXEPC6Yu4bweHWjUtgGT9rxHcb6LuCTncQ01NzExMTH590gpDbXnCK+uF9xfID1fgbUlpL6HsDU3ajcfxviyYBC4vyTS23sACzivAEf3kjVOSaXM0O/SfW3tQHGCfylIjZChLvdAwQCivdUWsMaoWKBWByUJ9NIK4wduxA0FA5HCYYiLKZWRCf0QzsuOwdps1AQvMfI9oG0C7xwjvNzWAiotMjYNROLxDTU3MTE57phP56cg342bGTOEOuDX8BR7WbNwPd+N++mwxx/T7wO+fWt6TCMawGJRmT7+F3pU7smqeWvRdZ09/+zjhieuiqjhhyBCOEyogvikOK7sfQkvTH2KUfOH0Oy8JlH3EH5dq91Cn1F3c0bHaEO6ON/Fmec2jsoHD0cP6LgK3fi9AfZtzeK1nqN5++GjH0qma3qUEruuS4rzSzwDQggSUuJNI9rkxESeJC8TkxME6fqE2CHUAcN49C0Lio0d5vgFg8A9gdhGNIDFMNr3dUD6liOljgzsgvi7ATuR+dXhfhbFyKeOvxGR+j4i7QvD6C99DxHXtUHS4NgbArLQqP9M6XzwcLSgoJffKMFV8BSy8OVy2h8p/MT8/MK87UIIhJJkGtEmJybHe839j63Npkf6BELTNOZ8MZ89/+yjUdsGtLn40HekAX79ckFEXnBpvG4f29fujDpekF3Ia/eMYe0fG6lcO5PHxvem1unVI9pk7cph2piZ5V7/gBFfkFXI4xcONoTOpFHz2Zlg545B11OlXmVeumUEWljYtdQkHpeXXs0fZcj3z3DGOaeTUSO6dFc4mbUyOK+HUYtS13VmfjiHdUs2Ub1BFb589Vty9xoh30IRnNGxMRuXbUbTdBRFxCzV5fcG+H7cT9z5/I0kpMSXe+1/g2pROeOc01mzaEOEQd2sU5NyepmcCvy0aSNztm6hSkICdzRvSZL94CJ/JiYmxw8pA0aur7YbrM0Q9nMObyDPj5Tv/fUgA1uiCltIPQeZ9zQEVhl52MkvISx1I9toO8H91cEmEGycg8y5FcP4lRg+lQRIeMgQ9sp/lMiwa90I/866POgxb4FUK5edgg3GPB2GqrmUOrgnI/2rQa0DRWOB3GBDAdb2EFiBEUYniF2qyweuT5AJDyGUo7c2C2FHWpsFS5sdWJtlbM+6ySnF71MWseynFWTUSOOqBy8lPqkCIn8m/3lMQ/oEQdd1+nd/mVVz1+Bz+7A6bNzwxJXcNvC6Qx4rJTMJoYhIFe0wjRB7nD0qpFtKyZOXvMA/K7cR8Gvk7smjb8f+fLh+FElpJXnZhdmFWGyWmHnRsQg3EnVNpzjfzcyP5nDf8NvR/NEPFD63D58bBlz+MpP3v881D1/Gr1/OL7M+9a6Ne+jZ9BHGLHuVdx7/mN+/WoTX5cVitUQolUtdsvK3v3nnr+GsmrsOu9PG12/9yOblW9BLqY0rqsJnL05m3eJNVKlXiXtfvpXUyikVut9DYfA3T/DSLaNYNXcNyRlJPPr+/8qteW1y8jNu6R+MWDgfr2ZsII1ctICXLujCdU3PPM4zMzExiYWUOjK3J/j+xPAm25EJvVES7jv0wZRUyhbswsi5DSsZZVxfInPuCIaEB0DPQmbfCJk/GTnEB9DzDEXpCtdZLmUoUwCeqRD/MLEtZA9Ij5EfXGkhIv4upOcnyqxPrW1GZl0KGd8gC14Az8/GGFEiaBL8CyH9B4R/MQgHsmg8aOuJ/pwUZNEopH8lWGohEh5HqOVvth8OInUcMu9R8C8P1rx+ufya1yYnPZ8P/YrPhnyFz218Nz8eNInHPuhNl1s7HeeZmZzomIb0ccTn9fPjez+zb9t+ElITWDVvbchg9Lq8fD7kK3o8ejnO+EPzWN35wo0snvEnPo8fpMRqt5KcmUju3gJ0TeP86zvQ5fbIH4e8fflsXb09pMAtpUQLaKxZsJ72l7UOtat+WlXsDhvuIs9hh2bs3ryXz4dOKbeNz+Mjb18B9ZrVZsTcF3njvnGs+2NjdEMJOXvy6HvOs+zdlhXycJcu93UAR7yDy++/GICWF57JY52fY9emvaHzqkXFYrMwdcwMfG4/fy9cz/JZK3n/7xHEJZYXhnboJKYmMPSHZ47omCbHn4Cus7uwkGSHgyR7SVqBlJLXF8zHr5dEYehS0n/2LGqnpNKu+kmmyn4KhWaZmIQjpRdcXyK1PSASwL+CEoPRDUUjkfF3IkTZaUOxEIn9kL4FIIMbw8IOIiUoyBUAR3dwXB7ZSd8LgX+I8I7iB/9fYO9Y0s5SD0ONu2KinjEJbIXiseW3kS6QeYbBn/45Mn+A4SmPbgj6PmTWDaDvosR4LsONrSQh4m4y/m1rh8y+zQjpDmExSk25Pge84P8T6V0AGT8aImBHEKGkHje1cJOjR8AfYP+ObJLSEyO8zVJKPh40CS0QtjZrOq/fM5Zq9arQ9OxGx2O6h4+5Nh9TTEP6MJBSsm7xRnL25NGwdT0yqh/6jmjAH6Bfp4FsWbnN8EDbrVEiWkJV8BR5DtmQrtGwGu+ufJ1fv1wAUnLedR1Iq5bKX3NWY7VbaXpOo6jcHpvTFuWZlbpk77b9vNZzNCiCK3t3pUHLugyfPYhB1w5n96Y9pFdNI2tndlTfkpsg6o9aCMHfC9aXew+KqpCcYXjC6zevw8W3n8+mP7cQ8EXnLkldRhjD5ZEeVoM6s0Y6H65/k9Xz1vJ23/Hs35ZN/RZ1+XP2SnTNmLTm1ygucLP855Wcc1W7Cl3D5L/LppxsbpkyiUKfj4Cu8VD7DlxQtz5JdjvxFmuEEX0Av64za/PGk8+QNjE5wZBSGgamngXWMxBq5cMYw4/MvgECmzE8qDain0yFYVAeqiFtaQAZ34FnunHA0Q0pMsG/CIQDYW0ZnXcrHESHg+vIwA6k52lARcTdgrA2NtS+8x4AbTsolQ0jvMx86ViecQmBlQe7CRDJxj+tTcF5FbJwLSWGfuQ80beWP96BYZWStVmo1SHzZ6RvMRQMAX0PWJuAb2HY/QRAFoBvETg6V+gaJv9d/lm9nccvHIyn2IPm17j9+Rtp17UFCanxWO3WCCP6AAFfgEXfLz35DGmTY4ppSB8iUkpeufMt5k5ZhKIq6JrOoCmP07rLoeUzL5u1km1/78AXzCf2eyN3aRVVoXKtDFIqJUcc1zQtqsZwLCrVzOC6R42dba/byxMXDmbDsi0IAdUaVOH1OYOJTy7JM4pPiuPSey5i5kdz8Lq82BxWMmqkM+7Rjw3PNjB7wjxemz2IRm0b8MGakYCRV31DtXvRYxgIiiqo1qAquzftDf1IKaog4Nciw87DsNqtqBaF/hP7YbEaX0+fx8fGP7eUm/ddEeKTnNjs1ohjQhi502OWvAqAx+XlqpTbiXzAkDEVx7N25ZC/v4Dqp1XFEXdoD1Qmpyb3TPuG/a7i0LfntQXzeHvxIqSUnFerDqoQaKW+S6oQpDiObLSDicl/DSklMv9RI4RYqIAGKWONclKHgve3YB3mA4rSpUOlVaOesEgpdX3NqOV8EIRaHeJ7Bvu4IedW8K81bHO1LqR9ilASStorKUjn1eCehuEVt4NSDQqHcEC4TLqnQfrnCGtTRKahYSK1LOT+TpSp3q3UAH172HmFkpzpWNhBKIiUN0P3KaUH6f+biql+l4NIRojIx1EhBMLeDjK/Na6lFyH3VWwzW2p7DS+/pQ5CmL+tJtC/+0sRZVLff+pTPn1+ElLXadu1Zeh5PhzVqpKYmlB6KBOTCEw54ENk6U9/MXfKIjzFXlwFbjzFXl688Y1DHsdd6I7aeVZUhcp1M7E7bTRqW59XZj0XarNj/S7ubPQQ3Ww3cm3m3Sz/5SC7xmF8+sJk1i3eiNflxVPsZctfWxl2x1tR7R58qycPj7mX7vd14c4XbyKtakrIiIZguHmpkOyk9ERadWmGUKLVK9OqpPLuX6/xzIS+VKqdgcVmQddkmQax1W6h16u38fHGt2h/aavQ8aG3jOTnz34PeYkVVaFus1oVvv8DpFRO5t0nP8HnLVshxRFn5+wr22F32gBQLQrOBCctL4zMYf3ouYncXv8B+nUayM0172fj8i2HPB+TUwO/plHs86HpOtvy86IeQz2BAF5N4/ftsT0zqQ4nN53R7OhP9Agj5MnxMvmP4J0D3l8AN8gikG5k3iOHPo4shii5L8UwXnGAtTki7cPQ2iwDm9D3X4Tc2wR9b3uk74+KX6pwJPhXB+fshsAaZP7TUe1E0guI5OfAeQMk9At6hMN1Q9zIonGlppxulKuKuhdAqYTI/A6SXwelKkbesk7Z3msbJD6FyPgFYT+3ZP55fcHzPSWGtArqaRW698gbTEMvGI4sJ79bKAlg7wQciNCzgEgM3mMJesFw5P4LkTk3I/d1QvrXHPp8TE4J/D4/7mIPfp+ffduyos57XV58Hj9LZv5JLAH25IxEuva84BjM9MhyvNfc/9rabBrSh8i+rfujNmyL81xl5uSWRdOOp0cMY7GqNGhZl083jea74s8YNX8omUHFak3TePyiwezauBspDS/wwCuHkbUzdn3k0mxYujlCHExKWDBtCSvmROY1CSHoclsnHh7Ti+v6XR4zjNrniV7onvvqcao3qBJ1vErdSlisFhJS4inMLooq9xSOPc7GA2/25KoHukUIewX8ARZMXRLy3IMRhn7do1cwbsVwbEGDtyLs3LCHb96azpCDbHw8/dlDdLvnQqqfVpUzOp7OmwuHRuTTrJq3lkmvTcPv9eMqcFOYW8SAK45FWQ6TE40RC+fTdMwoWox7i+snf1GuZ9kbCNChRi0cFgtOiwUFaJiWzpWnN2ZddvQib2Jicgjou0CW2qSVuYZi9KFga0fkIm8FazOUSnNQqvyFkv5FKGRcygAy53YjlBppXC+3F1LbX7Fr+VcT6fGW4J2J7lsa0UwIgXBeg5L8AkrCXcTOM/ZG90kda3ieS6PWQgiboX4t88sY7wBOSHoeJf6WCGEvKb3G5kX4dYUDkfA/SPsWo5xWBdG3gOtjQ+CrHETKSHBcC2ptsLaBtIkRCt7SuwhcnwA+Y0NE5iFze1d8HianBFJKxvf/nMsTbuXq1Dt44qLniU8uO4/e7w3Q4oIzsTtt2OPtKKqg7pm16HzTufyzavsxnLnJyYhpSB8iDVrVRYYtskJAlXqVQmHIFSWjWhqv/vwctZvWJCE1nlYXNeOlH5+N2TZndx4F2UWER4SqFpUNyyrmBa3fvE70QQlPXfIiG5ZtLrNf9/u7YI8rMVTtcTYu69UlKpfEZrfy+IcPhLy4AHanjZufuQaA4vzikIhZaRRVYficwUzeNx5PkZcx/T5k3jclO/pCETF3Cq02C/XOrM2wGf2pVr9yzE33WPjcPhZ9vxR3safMNpv+/IcZH8wmd08e65ds5oXrX8fvK3nQ2Lo6+NAURvaunEPeTDE5OQnoOkN//5WW497izT8WENB1NClZtW8v9VJTibNaSbTZor6STouV65qewbc33MpLF15MlcREtubn8f7ypdw9dQpfrq54lImJiUkpLE2JXAgEqHUR4tAec4RaBZH6Eaj1Dc+vrSMi9Z3YjbU9hvc7Yj1QIVBBL6j19BgHJeTcXr4nNe4mImswOxDOG4wyXeH3IuyIlGGUeHGDbYOK41IvAlnWuqVC6hdQaT5C5qEXDEV6fg4fnZgLr7Ci2Boj0t4PGvEVrbXsAe9PhoFeFv7V4P3ayIEP/AX5jyBl2CZAYANRYeb6rkPfTDE5KdECGmP7fcg1GXcx4aWv0QI6WkBn3R8bqXNmLRzxduKT46KeKW0OK5fdexFvLnqJfuPuI61qGjs37OarN6bxdLcX+emTX4/PDZmcFJg50odIw9b1uWfYrbzz6McoqkJCWgJDvosOxaoIjdrU572Vrx+0XUJqfFQ4tBbQSK2cXEaPSG597jq+GvEdWiByjIBfY1Tvd3lz4Usx+110y3kEfAEmvzYNoQjOvqINI+4bx/M9hlO1XhVe/O4pqtStxPhnJ/DHj8up3bQGiamJOOJtXNGnG62C4dCr5q6NygE/gK7pvHzLSJIyEtmxbhc+j5/v35nF9Y9fwe3PXY+qqlzeuyvT3/sZj8uLxaqSmBpPu2Dod+MODcnZk3fIKoVRgi5hvHLn24YqeZAtK7cyffzskNp3jUbVovqnVE455M0Uk5OT4fPn8tnKP3EHIh9A/brO5twcZt/RkzX79+P2+3n2l5/w6RoBXeeievXpfpoh9Ld8zy5y3Z5QGSxPIMDQ33/lerMMlonJYSFsLZCJj0Dhq4AKSorhkT2ssZojMn88eEMlJdoQlQFQMip2nYS+SNcnROcY+5EFgxHpX8S+bNy16ASg+EMjH9x+ATL/KZD5SLW2Yfir1ZCFr4J3LlgagJIMIg4RdzvC3t4YyLeY6BzwA2hGPWklDhnYBniRronIhPtREv6HEDak8wZwf42Ru201Pg9bMPTb2hL0bA5dQrjstVnmP2GIvB3Av8a4ftz1xntLXRBK5CWVyoe8mWJycvLO4x/z/buz8Loiv9N+X4Cd63fx0YY32fTnP3hcXkbc9w4BfwDNr9Hx2rPoeE17Qwh3/joKcwpDaY1el4+x/T6ky22djsctmZwEmE/+h8FVfbrR9a4LKMotIrVKSoXEv/4NzngH9w67hfHPTgBpeGnPvrJdVC3o8vrfPfRm3n/68yiDfOvfOxj3+MdYrCpd774gqo5x17suoOtdF5C9O5c7Gz4YKs+1e/MeHr9wMM3Oa8L8bxfjdfsQApyJTu4eejPrl2xCCGh5wZnM+uS3cueXtSuHorzisB8uL58PmcItz16LalHp/cad1G5cnSUz/qRS7Uxu7d8jVIrKCKuP7e1u1K4B9ZrVZu6URbgKXGgBHXucjXOubl+uOFjO7tyI916XLyK/pnmnplzWqwvTxszAGhQvG/z1E+Xeo8mpw9R1a6KM6ANUjk8gMy6ezNpGuGHHWrVZn51Fot1O/dS00AZMUTCnOhx3oLzwShMTk4OhxN+JjLsB9HwjD/goG1BCSUAmPAJFow4cAWc3sDSuYP94ZEJfKBpBlDHtX49e8DIIK8J5HcISqQuixN0AcTcgtT3I/ZcQKs+lbTXCzS0twDcHQzRNgEgw8qv9K5BgGNOeqeVPUN8JupOS8G03FL2JjL8PIRRE0kCkpQH45oNaA5HQu6QUlZ4ffU8HsLQAy2ngnRn06GuAA5zdEKKcdC29dAqMB6ntDZnewn4O0tkDXF+CsAICkRqtB2NyajJn4vwoI/oA6dXTSKuSSlrXVABad2nOP6u2kZiWQM1G1UPtivOjnyk9xRWtzW7yX8Q0pA8TR5z9mCo1X/Nwd5p0aMSGZVuoUieTNpe0KNerWprrH7uSfVuzmDpmRoRitrvIE/I4f/vWdN5c9BK1G0fnVG1cvgXVUrJhICUU5RXz66T5IREwKcFV4Gb0wx8ghMBis3DrgGtRYgiRhROfFBcVLi6lxO8LoFpUhBB0v+9iut93cVTfxLQEEpLjyNtfEHWu1unV6ffO/dw95CY+HPAFuzfvpUXnM7j+8SvLnU/j9qfx5+xVoR9Te5ydM86JLH9w/2t3cGWfruTuzaN2kxoRCugmpzZOqzXqmEUI7BYrw7p0jTgeb7PRsmq1qPYda9Vm+IK5oedMm6pyXu06R2O6Jib/KYRwgnrslJqVhHuQtjZGOLdaE2znHNLaLOLvQwZ2gmcSkYZnEbjGAwrS9SmkT0FY6kYP4F9leKVDy7oEPRd8M8PGkyALofBFJAKwIBP7ctDsPpEEUQJgOoa6t80wpuNvhfhbo/sqqSCcJTWzw7E2REl+Ean1Qxa9DtpOsJ2NCKqZl4n1TPAtoaTUlgNhaxF52aQByLg7DG+4pQFCSSx/TJNTBnuMZ3KLTcXmsPHoe/+LOB6X6KRJh+iyVm0uacHHg79ECz7/2RxW2l3a8uhM2OSUwIx3OYk4vd1pXH7/xbTtGqPWZAXoM+ruMuvhSV3iKTY8wbFIrZwcZexqAR2hRH+FdE1HC2h4XV4+GjiRax7pjj3e+IETisBiU7E6rMQnxxGX5KTDFW1Cnm4w8qabdGhYoY0KIQRDf3wWqyPSuLHH2UPK3ymZyfQdex/DZg7kpqevidgQiMVTnz5EvWa1US0qqkXlxievpP1lraPaVa1XmSYdGplG9H+Ma05vEnXs6sZNmHXbXZxZqey6tfkeD4Ve43veMD2Dcd2vpGZSMkl2OxfVrc8bF1961OZsYmJy9BC2Foi4mxD2joe8NgshEMnPg6WstA4dpAtZPC72aSUDZOmoLJ3YIdIahhHqgcLhEH+3YewaM8FQ77YbatgiEWznU1IGDEAFa9vyvcah+1IRae8FxwzHibCfZ7RR01GSh6CkfYiS0Oug5cNE8huGJxuL8UroHaEiHmpnqYWwtTSN6P8YF94a/V245M7OfLB2JA1axNiEwnDaFOQUUlxgpAzUa1abgZMeo0qdTBJS4zn7qnY88dEDR3XeJic3pkf6P4QQgpYXnsnfC9bHLEElpWT7up0x+57Wqh4drz2LuV8tNDzaQnDnCzeSty+ficO+KfuaiqDr3Z3JqJ7GnInzSEpP5NYBPQDI3ZuPI97Ow2f3j5rHkx8/WOH7Oq1VPSbvfY8XbxrB0hkrsNgs3PT01XS6/uwKjxFOckYSby8eRnGBC7vTZuY+m0Swav/eqGPrs7OpnBC73qTb76fXd9/wx84dSODSBg157eJunFurDr/eec9Rnu1R5BQqX2FicjwRQiDtZ0NgJbHDoSX4yxAGtTYHx0Xg/blEtTzxcdB2gOuD8q4KzptAqQSe6aCkIRL6ABroOUjskHNz9DySX6n4fVmbISsthLyHwbcAsEJCH4QjOrqsQuOp6YiMbw2RNGFHiOjoIJP/LhuWRv+NbFm1nbQqqTHbu4s9DLj8ZVbPW4dE0vnGc3hsfG/adWvJJ5tHH+3pHj3MtfmYYloIJxD7tmfxw7uz8Lp9nH/92RXOgT4Uut59AVNGfI+70I2uR/+1bflrK163F7sz0hsshOCJD/pwwU0d2bNlHw1a1qVx+9OQUjJ19HTchdEq2IqqULl2JimZyXS5rVOUWEP1BlVZMWc1VrsloqyWI94R4aGuCHGJcQz97hlkUNr8cDz20WM6mTZmBt++PR2L1cKtA6/j3GsMkRYpJRuXb6Ewt5jTWtUlMTW2EWVy6qHGyLtUyvm+Dfl9Dot2bCcQ/G7O3LSB95dXolfrtkdriiYmJkcQqe1Eur4E6UM4L0NYzzji1xBx1xvCY9JFTGM6sAopfVHeYCEEJA8H3++g7QJrE8OAlRLp+oJQ7nQEqlECS0lGxF0LcdeWOl8XvPOQwgoybG0XDgRlV7yIhaIkQtr4I7o2I+KRrk+QrgkgLIiEhxGOiwBjbSawCvQisDZFKEn//nomJwVKDL0i1VJ24O3ovh+wau7aULTlb5MX0LB1Pa5+6LKjNkeTUw/TkD5B2LdtP/e1eBx3oRtN05k2egaDvn6CNhc3/3fjbs9i7aINJGck0axTEyrVzGDs8leZ9NpU/lm1ndXz1kaoeasWldy9+VSpUylqLCEEbS9pEXXs8Q8eYNhto9A0DUVR0ILe7gYt6jBw8mPlLpw1T68WJewggMp1Mg/rfg91kZZSIoRA13XGPfYxP7w7C0VRuOaRy0irmso7T3yK12UY9cNuH4Uj/nFad2nG4B7DWfbTX0aYuIDXZg+OXWbM5JRDl5EbUALwazof/rmM25u3DBnVPk0j21XMV2tWh4xoAI+mMX/7VtOQNjE5CZCB7cjsq4IGroZ0fQap4xD2Dv9uXG0X+P8CJR2sbRBqdUj/Blk8HvzrIbAcIxT7ACroOaBWiRpLCAHBcOnwYzL5Jch/CiOcWw2OJwwDM2VU+eulpT7I0gKICqhVYzY/GIe7NkupIQuHgnuycf34e4BEKH4NpLFJIPP6QepYsLVH5vUG70IQFkBA2mcIa+yUNpNTC1l6bRYCr8vLt2//yBW9u4a+g36fn7x9+cz69LeIlEWf28/y2atMQ9rkkDAN6ROEr0Z8j6vQHQq59rp9vPvkJ//KkP5z9ioGXPEyiqqg65LmnZrw/LdPUqVOJR588x72/LOPe5o+ghYo8QZ73T5++fx3bn6m9A512Zx7TXuq1HmBP39ZRWJaAp1vOge7007uvnw+GvgFe7dm0arLmVzbtztKMKda13UmDZ/Kr18uoFr9yuzcsBuhKKgWhee/fRJnvOMgVy0fXdfJ2Z1LfEp8zLGmf/ALYx75EK/LS4sLzqTxWafx/TuzQkbzpOHTSEyLD70HQ737x/d+pjCniGU//RXhNR9y4xuMXzPyX83Z5MRnc24OP2/ZFHFMYoR7r8/JYsKqFXSoUYsku50xS/5Ak7FjrLyB2ErzpdF0nclrVrMxJ5smGZW46vTGR8ajY2JiUiFk8XiQxZR4iT3IwlcR9th6IhUa0zsPmdvbEAlDB9s5kPKmkdubPAgZ2IrMupxIQ9qLdH+HSKh4OojivBRpqQm+P0CkgLM7QtiR2n5k0SjDmLefa5TECkbaSKkji98Fz4+g1gZtC6Aant/UcQjx79ZmKTXQ94OSbAjDlUJ3fQmFL4H0IG3ngLUJuCYT8qwXvWPkb8twT7sH6Z6M0PcaRjTuUHirzH8UkfHdv5qzyYnP1r+3s2TGnxHHpJSsX7KZf1ZtZ9q4n2jZ+QwcCQ6+fOXbmOmNAD53xRS6tYDGjA9ms23dLk5rWZcLbj50fQSTUwPTkD5BcOW7ov6wY4VLHwpDbx4ZYeytmPM3875ZHApPrlKnEn3H9WLY7ZHlIT4f+jUtLjiTJmc1jD3XQjeOeHvIKAaoe2Ytlv60goXfL2Xv1v1c0ftierd5ity9+WgBjZW/r2HHut08Mu4+AD4Y8AVfj/whZKja42y8+N3TND27IVbbv8t72rlxN09c9Dx5+wvQNZ2eQ2+mR7/LQ+dXzV3DWw++HyqTsGLOatYu2lDKaPbGDAmyOW3s2rgnqsTCvu2ly3KYnGpkuVzc+NVE/HoZC7CmsSEnhw05ORUYLdrAzna5+GzlCgq8HrrUa0C76jW4//upzN++FXcggNNiYe72rbx2cbd/eSdHAAnCzMMy+S8gi4gKtZbF/27IvH6EG3t454F3NjguBEBYaiOTnoOCpyM7Fr2JtLdHWKOFyaSUxrxEfOQDvaUR0jsPfL+AtgsZdxNkX2UoexMA3xJkYCsi+TljnMJXwPU5JSJjTkh9z6itXQGRsXLvO7AFmXNH8No6MvFJlPjbS857F0HBiyXX9i0E/3Iiw9PdGN71cAQIR7DedalQdi227ovJqUPOnlwe7TyIgC92WUqfx8/WVdvZunr7QfOHYxnDuXvzmDZuJsV5Ljpe3Z4zOp7OwCuHseLXv/G6vDji7fw5e1WUMvhxwVybjzmmIX2C0PmmjsyeOC9koNnj7Fx4S7QCYVksmbmCcY99hKvAzbk9zuKahy8jb39+RBstEGD/tkiDr3331kZsasQfnmTziq0hQ1pKia7p7Niwm2e6DSF7Vw5Wm5WnPn2Ic65qh5SS565+hRWzV+N1+1j843J+mTCX4nxXKGzG6/IyffwvPPhWTyxWC9NGz4gwXP0eP3/PX0uL85tW/EMrg4FXDmP/9uxQmM+HAyfSpEPDUKmD5bNXhWpWAwR8AXRNRwijhBeAoggatW3A3/PXhWpk2+PsXP/YFezduh97nC20SaEogtpNav7reZuc2PSd/j1ZLtcRGWvRrp3cOPkLcj0e6qSk8nD7Dtz57VfkeTwEdJ2PViyncXom63Oz8WnG35A7EOCHDevo1+EcqieaeX8mJscC4eyO9MwgwrB0ll9CMRzp/Q1Z8LIRGu64DJw3gswt1UoDbXfkIXtnjMIqpetLrzPKQHEglFWDwBZkbk/D0yvskPwGwtHZyJPOvQ98S435e38DzzTQiykpIeUG9xfIpP6GarbrCyKVun2IwAqE/d+nosjc+0DfS+iBo/A1pLU5wmZE3knf/KhrG4rk4Q8pClhbBMtgHaiR7UTE3QXaFqRwhnmrFbDEdgiYnDq8cMMb5McogRpFBQzMpTNX0K/TQAqyC6nRqBq3DujB05e8SGFuMVpA49u3fqR+8zpsWb0df/A50lPs5efPfufOF24kvWpsYTOTUxfTkD5BaHVRM/q9+z8+6D8Bv9dPlzvO59aBPSrUd8OyzQy65pWQEf71yB+YMuL7qB8NRVVo1M4QMJNSMvbRj/j2relR7YQQVKlbiQkvTeHrUT+Sty8PMMpW+b3G4qsFvLx060je/et1FFXhz19KjFOfx8/+7dkoauTOnq7r7N6yj2r1K+MqdJc6J/G6S+djHTq6rrN93a6IXBmp66xfujlkSKdkJmOzW/GGhfDYnTY8Li8CUK0qjjg7j7xzH9k7c5g+/hcsNgtXPtCNumfUou6Zteh+/8V88+aPWKwqSemJDPiy37+eu8mJzeJdO47oeH/sMjwlG3Oymbd9K35NIxD0dmtSsiprX1QfVVFw+f7934mJiUnFEPZOyKQXoGgk4ANnD0T8/RXqK30rkLkPEDIOXe8br6jdaxFhHMuCF8A9gSgjWoBUayCLRkPxJyAPRL9YgODvgnQh8x6GzB9BBkqMaAC8QQ9taY+ujtR2glqNaHEyDSm9MYtpHQpSBkDbSuR9S6P+dtCQFkq6oRZOuNioI2xOFhBxiOQXQduJdE8G7Ij42xGWBkhLA3BeH/SoW0BNR6S88S9nbnKis2bh+iM2lpSw8vc1AGxbu5OlP/2F3+sPOYW0gPE8WRrVouAudINpSP/nMA3pE4gLburIBTd1POR+c79eFGEURoSIC8MwVlWFu4fcFKojPWfifH54Z1aE0IJqUbHYVC685VxWzFnFV298FzKcQYb928Dr8vH9u7Po1vOCqHrSFquKoir4FL9RLssYgrtPf5i6Z9ZCURU0PTJPtEbDskVMivKKsTmsqFaV3ycvJHtXLo3POi1kHB9AURSSM5LI21fijT+gHn6ALrd34tu3p7P3n32hmtcBv1YyTySDv32CqnUrU7VuZc7o2DjiGkII7nv1dm566mqK811UqpVx0NrUJic3mq7HVLmPCuY4DCREGNFloQpBisNB7ZSUf3nFI4QZPmbyH0GJuxLiKu6FPkCkJxui1bgVQIXEJ0JeWTzfgvsrIvOjg3WTndeC91dwfQKEpxeV3lzzIF2TEc7LMEKtws9ZQShRUWhkXYRUmhjzoVSIrFqn7HvU84O1qBWjjJa+H6ytSu4niBAWpEgGmRd2UAka70GcPQwjWNsdvH8teG9hn1vquwi1GqjVELZIL7kQApH0LDLhf4Zqt1oNIczH3FMZTdNi5jsLRYQ90x0eUpcEvH40f/maJoqqkFo5har1Kv+r6x0xzLX5mGL+wpzgLP1pBZ++MBm/L8CVfbpGlZACo1yUalFj/7FLQxl77PJXI3KPV89bg8cVWWJKsSiMmj+Ues1q06NyzyjDORZfvf4dF9zckWr1K7N93S4CvgCqxfDSDv3xGe5r8XhU3sqWldsovb1tsVmo0bBkQd23bT/j+3/B3i372LttP7l78pAS0qqmkLe/AM2voVoUeo+4i+73Rdak7P/FI/S//CUUVUULBGjWqQm1m9YMqYA64uyMXvwyv05aQHGei4+em0hRXknOm65JVsxeTbNzm5R770npiSSlJx70MzI5+Xnsp+nIGKtTeetVlfgE9hQXVcjYVhUFgcCnR/8Nq0KQaLPTMD2D1y/phi1GiQ8TE5Nji/T+ZniGpQbxd6A4u0c3EvEYj1llrKWW0xDpX0XkHkvfUqK9whZIn4RibYS+ty2RRnQZFL+DtF8GSjXQtmEYpIaXlpRxkH1F9Lz0v4lanLFGGNIysANZ9AYEdoG+A/Ts4L1mBD3kGqAgkwajxEVG1YmUEci8/wGq4S23dkCqdSG4NgslDjK+MYTO9CLjOrIofIII3yKwtSj31oWSBkrawT8jk5Oel24ZSawVtiwjWiiC9GqpZO3IKfmql7NAq1YVoYiYz8OqVSUu0Um9ZrV58uMHTYfKfxTTkD6B+eu3v3nuqldC3uaRq95F13UuuaNzRLuud3Vm8uvTKM4rjihlBYaXuU7TmlECXtXqV8Vqt0T8OAR8AX7+7Dcya14dkUNcHrqu82D7p/F5/Tji7GRUT6N+89o8+Pa9OBMcBPxlPEDIyB1DLaAx4IqXSExNpN2lLfnpk18pzosWYNu/Pbvk2prOqD7v0e2eC1HDjIuMGmnUb1GHnRt2E/AL/vxlFfee8QhpVVI455r2tOvWilYXnhnalPhs6FcR1xCi/NqDB0NKyRfDvuGHd2dhtVm44/kb6XTdvyuVYnL8yHW7+WHDupi+pPJ8yHuKjQfAimwOpzmcDDzvfJ7/bQ67igpDx50WCzef0Zxnzzv/EGdtYmJytJDeBZEh2/nPoEuJEnd5RDsRdx3S9RHIQiI9zAAWsDSMFvBSawE2Io1lH3h+QKqVQVZMVRh0yLkKw4B2glLZqDGdNMgQ5irLuEcSGWujQU5PdDXZyNt2fxW8n9ICbHvC3mhQ0B/pvDZSvEmtCpbTIbDN8Eb75kLWpUilEtJxMcLeCWE/C5xXG0MWvVlqbkpQ6fzwMBTJxxoq4MKGSOyHcFx88I4mJyQ5e3KZ/+1iZKmvoqKImBFkYBjYWTuCKREHFR6D1Mop9Hr1NsY88mHE86c9zs5VD3Tlnpdv/Te3YHIKcPjWgslRZ9qYmREh216Xl69H/hDVLrVyCu+seI3rHruCrj0voErdSjgTHMQlOkmvlkqfUXdH9en+v4ujRBGkLvny1alcW+lu3EWld8Rjo2u6YXRL8Li8aH6NgZMfI71qKvO++SNC2bs0QilZYKUuyd9fyI71u5g6egbFecVllicoPeedG0sW8MLcIh7q8Cx/L1hP3r4CinKL8Xn8+Dx+9vyzn69e/46BV77MtLEzQn1ufPIq7HH20JzscXYuuvW8qGtVlC+HT+XzF79iz5Z9bF+3i1fveoulP6047PFMjh8bc7J5/KfpMcOuD/7tPDgCsCgKOR43E1avZOatdzK40wXUSUmhZlIyd7VoxVMdD/+7eFSRJ8nLxOQIIyNUrTH+7fowqp1QKyEypkJ8T3D0MLzDIt54qVUQic9E94m/zagtHYEOxWOQ+zqUum55aBjGuMTwcEtEypsINQM8Myj/8S/cWNWBHKMMluuT2EZ0THRkmICa1HOQ2deD/0+Q2SALMHKhvaBvB9f7yNxe6K5JJUPE3wscKJGlgHCAI4bnv4LI4nFQPM7wpGubkXmPIb0LD3s8k+PHP6u389o9YwjEiMQsy4g+JIThiMrZk8eMD+cwfs0I/jfiLqo3qEKVupXo8Wh37hpy07+/ztHgeK+5/7G12fRIn8DE8ooqauzFL71qKj2H3gJAwB9g7aINaAGdRu0a4AgaieHY7Faue+wKxvb7CH+p0GupHeY3XELe/nzy9uWTViWVVXPXlGsMK0JBj7Egl1XCIBZCEfjCSlGt/H0NAX+g3NwYr8vHu098yuX3XwLAtX27k5yZxJwv5pGYlsCtA3pQqVZmmf0PxowPZkeEzXtdPmZ98hutuzQvp5fJica2/Dyunvg5Lr/vqP7mB3SdgK6zaOcOzv/ofdwBIxqkakIi97Zqi1rOZpSJiclxIJZXtAxPqVCrIBIfA0BKH/hXgNTB1jxmTWYhHMj4u6DwVaJznytWfz4aCfo+kHlIUpC+xRzeVuChCB0qiPCwbN9ijFDy8n5NPVD4MsRdB4CIvwepZILnB1BSEQl9EGqVw5h3EPdXRNWf9kw1vOAmJw07N+7moQ7P4Cn2II/S4izAMNL9Gst/Xslt9R7A6/aChMp1Mrmu3+URkZAm/13MJ7QTmGv6XhbylIKhLO1McNDNcROXJ97KhJemxOxnsVpofFZDVvy6mn7nDaT/5S+xfV10LcWzr2qHzWk7pCLyiqqQUSOdrnd3xmKL/hHRAjoJqQmMfewjfnzvlzLHsdgsUWJjh0NckpPqYSJlNoctQrG7LHweX0S7i245jxenPc2THz1I9QZli55VBEdcZKieEAJHQvQDk8mJRUDX6f/LTzR+eyRNR4/kyVkz8AT8R9WIDh/bEwiQ43ZR7PdT7PezNT+Pl+f9dhSvbmJicjiIuLsw1KQP4ACs6Huaou9tgV70Xux+wgbWlkjfQmT2Teg59yEDW6PbOS4xylgdkla2Yni8nT2IVuUG0EEkIAteBM/X5Yxj44jE24hEsNQqNW4FkCUedyEEStxVKGnvoKQMQ0SMdzhzcpY6oICI+3djmhx1Av4Ar/cay2VxN3N54q28fs8YvC7vUTOigYixfW4f+VkFuAs9uIs87Fy/m/HPTjh6Fzc5qTAN6ROYhq3r89qcwZx3XQc6XNGGNpc0Z90fGwn4AniKvXw2ZAqzv5gXs++oB97jy1e/ZcOyzfzxw3IePOsZsnblRLTJqJbGmwuH0u7SllhtsYMTrHYLletkYnNYcSY6SK+ayhu/Pc+j7/XGUirvGuCcq9rhLnTz7Zs/lm3QCnDG26nduGK1l1WLyvWPX4HVbsUeZws9W1SqlcHwXwbhjC95oGl+fhMq187EajfmJoRAKeXZt9qttL64ecwNBP0gyskV4a4hNxvzDF7fmeDg2kcOPxzN5Njw5h8LmLL2b7xaAHcgwNJdO9GP4kqd7oxDDfsOCiIfX/26zvrsrKh+JiYmxxdha45I+wTsl4D9QrB1AP9fgB+kC4reDCp2RyMLBkDx+xBYDb5fkdnXIrXIv3OhVkWkfwm284DoddbABkoNwG6EiitVEOkTUJKHEjPY0N4N9Dxwf0HZXmFhGJblqHRHYoG4nsZccBBanJUaiLRPIj3u9rNBqUKJQS2INvhtYO8U80qydCLsYSAS+lGyAWIY0SLu9n89rsnR5aOBE/nl89/xefx4ir2snr/uqK7NKZWSIqI/SyuA+30BtqzadtSub3JyYYZ2n+A0alOfARONGsV3NHwwKmd64XdL6HzjORF9pJTM/HBOKERaSonP42fq2zO4pf812J0lXu6ajarz4rSnmffNH7x0y0i8bl/wB0SSkBJPhyva8uBbPcnbV4Cr0E3106piCxqpLTo3ZeG0paGxrHYLmqZxa73eMfNWDmCxqIxe+gpTx8zgnxg/RoqqRISE65rGhmVb+HDdSNb+sZHkzCTO6Hh6zLAaq83KqPlD+HL4VOZ9/Qe7N+/BarNSq2lN1i5cjxbQSUyLp++YXhH9dm3aw4ArXmb72l0kpiXw7IS+tLqoWZn3UB5tL2nBKz8N5KdPfsPmsHJln65Uq/8vwtFMjgmzNm/CEwgT3ztKC7UiBO9dfjVNMjO5btIX5Lhd6FKS5oxjf3FxSLnbrqo0r/zvoiOOFgIQp1COk4nJoSJszRE2QwxL39eZyNrHbqR3tuFZDkNKHdzfUqKWrYP0Il2fQcJ9EYansDRApL2L7v4R8p/EyI1WAQkiGRwXIZIGgrbfMN4tdUqEy2ztwRcezWIz5rS/C+WHZ1sRGd8giz8AV3StXOP64Wu7BoENiMwZ4F8JSjrS0gpFiV6bhbBD+iRk8XvgmQXaDmNe1gbgX26MpaRC0qDIzyzwDzL3ftC2IEUqImXEYYdiC0dnSBuPdE8F4UTE3fLvvdwmR50F05bgDUvhKy2qe6RQVIUhPzxD7cY16NuxP4W5ReiaTkpmMtl7cgkExXltDiuN2512VObwbzHX5mOPaUifRKRUSmJXmLCWalVJq5ISs21pb6vf6+erN6bxw7s/MXz2YOo0jfQGn31lWwZ82Y+lP60gMS2Ry3pdRFqVEjGy8DrMUko2LNvM8lkrw64HqtXC/G8WH/Q+7PF2qtSpxFV9ujL17emhH0iLVaXjNe1ZNXctWTtLvOdSworZq0itksJ5PQ6ufu1McJKYGs/uTXvxuHx4in2snrs2dL4wu4hX7nybV39+LnQ/T1z0PPu2ZyGlpCC7kOeufoX3/x5BpZoZB71eLJp0aBRV49rkxCY97tiE+EkpOadmLayqyvc3384fO7ZTKSGBeimp3DV1Civ37QWgaWYlHj/70OvKm5iYHGOUNNDD06csoMTS2RBEh2t7ofg9pPsLSPsUYakf2cPRFSns4JsPIgURdxNCDRMjs9QI/VNKifSvBN8fpa5pAe/PB78P4TRqNMfdgXR9QcnmgBUc3cC3wKgTXXJF8M0DpTLCUT10tTKHVxKQIsEQF8MNuMC/pKSBngv5T0Ha+OD9aMic20Hfa1xL5iDz7oOMmQj18Gr2ClsbhK3NYfU1OT6kVEpm6987jvp1dF2n5QVnoKoq7/z1Gqt+X0N69TSqNajC012HsGn5FgAatm3A7YOvP+rzMTk5MA3pk4g+I+/msc6D0AIaQhHEJ8Vx/RNXRbUTQnD1g92YOnpGhOiVz+PH7/UzuMdwPlgzMnQ8a1cOT3Z5nl2b9iKl5PbnroswosOZ8eFsRvV+F583cldbSvAUVUxN9IKbDOOgUq1MRs0fytsPjyd3bz7turWk50s3M+aRD5k2ZmbkPSmizBp9Pq+fUb3fZe6URdidNu595VZ+/mxuVJ3sA/h9Af767W80TUNVVfL2F5CzJy8idEdRFdYt3nTYhrTJycez557P1V98hkeruNjd4VAtMQmrqrJk1056Tv2agK6hS3i1S1e+uPYGdhQUIJHUTEo+JP0CExOT44NIGojMvd0QEUOAkoyIj66WIYRAxt0CrolE1or2gu5D5j6EyPw+dFRqe5A5d4C2E9AhoV+kER2G7voSCl6gRKk7NArgqtiN2K805mmpAekTjXxqPQfsFyASH0HmDwLPpFKdFGLnZIOUXmT+QPD+ZOQnJz4NnmmlBL/C8YFvATJYVxp9vxGOHnE/KvhXw2Ea0iYnH/97404e6vBMhcuyHi5V61ZGVVX++u1vBl45DM2vIaXkyU8eYsTvL7Bnyz4QUKVOJXNtNglhGtInEQ1b12fciuH88cNyrDYL5/Y4i8TUBFbNW8ubfd6jILuQ9pe1oveIu7hn2K1UrpPJ16N+YOfGPSEjUUrYvWlvxLhDbniDHet3h8KpJwz9mkZtG0SpTK9bvJE3+7z3737MBGxc/g8elxdHnJ16zWrz2uzBEU2WzPgzqltK5RQGXjmMRm0bcONTV0XUxR7T9wNmfzEPn9tHcb6LEfe9Q63GNaLGCMdis4RKc8Unx0Xlc+uaTmqlpMO8SZOTkUbpGbxzxVXc8fXkoyYwluZ08s5lVzJ94wYemfE9Xq0kTPKJWdNpWbUqNZOTj9LVjzBm+JiJCWCEeZM+Dby/GiJhjm4IJRHpW4wseN4wBu0XIJKeRSQ+hVRrGKWktG2U/CFJ0CKFx2Teg8FjwVDW4jeR1jOiQpul708oeJHI8PLDQFuNlB6EcCCsTRDpn5e6ztwYN5+BzL0PaWuBiL8XIUrWZlkw2FDcxguyCPKfAbXuQSZhLzFSRBJRSuVSi1EezORUpn7zOjz31eM8233oUVt3UisnM/ibJ/h10nxevv3NUBg3wLDbR9F4/ZtUrXeSbN6Ya/MxxRQbw1Bw/vbt6bz/zOf88ePy4z2dcqlatzJX9unKpfdeRGJqAjvW7+LpS15k819bydqZw0+f/MbwnmMQQnBF767cN/wO7M5ItczKdSJDzjYs2xyRk+x1G0JmPSr15IZq9zJ19HQAQ+AhRlkp1aJisVawDICETX9u4YP+ZSsexsp/yd2Ty6LvlzFx2DcMuGJYhOE779vF+MJzx90+ajSqhiPejlCEUa9agFBLdhBVVWH7ul2AUQrsvuG3Y4+zYXPacCQ4aNutJU3POb1i92RyytCxZm1Ozzj80mcHo3XVavSYPIHeP0yNMKIBrIrCxuzso3ZtE5OTDSk9yOJP0AtfQ3p/P97TKRdhqYWIvw0Rd71hRAc2InPugcA6IzTZ/TUyvz9CKCjxtyMSHy+lIi1ALSXA6V9DhASh9CGL3kLf2x593znoxcF11L+UkrzrcCwckr/EvwpZ+GY5DWJon8i94JsDRWORub0jN6U9PxNp3HvBehpGbWiFkkfQsEdRoSADW4L/jIPExzAEwhyGEJrjQrAenn6JyclL264tqNOkYgK1h0OTsxvywFlP8+INb0QY0WBUwtm2JrryjYkJmB5p/D4/D5/Tn+1rd+J1+/h61A/cNrAHN8QImT4R+eOH5WhhD+Q+t495Xy8KvW9/WSsuvPVcfvr4NyxWFdWi8tzkxyLGSKuawu7N+0LvFYvKmoXrQ2Jl7zzxKSvmrGbR9+BuyEQAAQAASURBVMvwlwrpdsTZOa11Xdb+sbHCc/Z5/KxfsqnM85f1uogJQ7+OCM3Wg7WtvW4fK39fw96t+6lSpxIA8Ulx5O7JC7W1WFVqNa7OLf2vZfYXc1FVlcS0eN557BP8wbBdT7GHF657jXdXvg7AVQ904/R2DVi3eBN6QMNit7Lwu6W0v6xVyHNt8t9gyvU3c92kCazav+/gjQ+RnzaX/b336zo1kswoCBMTMGouy+zrILAV8CCLP0Ym9kWJv+t4T61ieOcQKezlAc8M4BXjrb0LOC79P3vnGSVF0YXhp3rybA7knCWIICAgiqICogQVM6IYEUVB/VRUUBEVwYiYFTOKomJAEUVQAck555w3p0ndXd+PXmZ3dmZhUTZBP+fskemuqq4ed7v61r33veD5CYQNsCLiJ4SOoSSBfqDQAZEvzBUwvE7ZY9F9C8A/h3BDOgpszSCw9kQmbYiGFYf7Osj9oEho9lFD35ufQ30IjtZ6VqJBSy/U1oqwNoOkwUjvLxi55FH5NbPzx5G5yIzhiOQfjCGibkXa2oK6DikDgB18fyIdF5rhtacRQgjeWPICwzo/zrZV4SXj/ivzpxWv7xPwq1SrZ6b5mUTmtDekl8xYyb4tB4Jq2L48Hx+PmsI1/+tbKQwoh9seItMPBEs/gfHwGf72YK55qC9ZqTkoFsE3r/7EmrkbyTySSVSsm153XMw3L/+EUETQ41w439mX52Ped4sjloaq2aQGm5ftIOAreV6pxWqhZqPqPHzJaLYs205y7SRGfHofjdsaIV83PHYVNoeN3z/5Cykl+7cfCvE4CwGaWrB5cM+EWxnd/0UCPhWL1UJMYjR9h/QkNimGQaOvB+DLsdPQCnndpTSUugtzxjlN2LV+LxOHGjVAhaLQpltLnvn+UXPBPo1wWK38cP1NzN+7m/t++YlM338MlywBAri+5Zk0TEgs9WuZmFQKfLNB3YOhVg3ggeyXke5BleR57MTIHS60NoqC6DAhBCLueWTUXaBnIhHI3PeR/mUg0406zK5rIG8ShsdWzy9uW9iI9YL/dyJ6ii31Qd2AkTNdUqxgrYOeepPR11IDEfciwtbcmHPUvUic4PneaK4V/v+DMU9ZcL8iZiQyY1j+HGygxIP7WoQSh7ANA0DmvIEM2QSQoO0MmZWwt0FXN0H2OKOFUMB+HsRPrCS/CyYnA4fTztvLX2T5rNWMufYVcjNLmPv/HxCKoO+QHmblFZNiOe0N6dysvLB0Al2XqH4Vu9MesU9F4sLrzuXzZ79FC2SgBjQcbju3jL4urF2txjWQ+n7uaf8onkJGsifby9fjf+CRT4YiFIWYhCg+Hf01a/7eENK/uPrKB3ccoug6ZrFZcMe4yE7LidgnoXoca+dvYP+2QyAhNzOP/130NB9tep2EqobA0jUP9eWah/ri9wW4o+UDHNmTghrQsDms1GlWKyRXpUPPNrw291kW/rwMd7SLS27uSmxiTMg165xRE7vThjfXMIqEICzfRdM0Jgx5P8TrvmrOOlb8seZfl8IyqVz4VJV3ly1hY8oRWlerzouXXMpdP/9Q6teVwOdrVrEh5Qgf9bsKp7W42rEVBGmW2DApZfQcwpP91PyfCv73AeDqA7nvGGJdqIAToh8Iayas9ZHqVki92ihjdRSZC7nvQ9x4w1gU8ciclyGwssgIxZSa1CPVuVVARIPMitxHVAXfAtDzFZLVbGTaTVBlFkJJQAgFEX0nRN9phN2n9ALtUP792cHaBCw1C4ZzdoOkL5DevxBKFLiuRChFNCCsjYzvJrhBIMBSL6SJlAHIeoagh18C/nmGOrmjY+R7MTml8Hl8fDX+B3as2U3zjk144L3BPHvdq6V+XalLvp84g20rd/Lsz48Hy79WWMy1ucw57Q3psy5okb/La2C1W2nWvlGlMKIBouKieHfli3z/+gzSD2XQ8fJ25GTkcGvzYeiazpX39aLf0F4IIfjpnd/w5IYra/s8fj54bDKjvnqQJmc3xO6y82j3Z4ya0oo4Zs0+q91KVkp2yLHo+Cjuf/tOnr3mlTARL4CYxGh2rA5d5P0+PxsWbubcvh1CjtsdNib88xxvDvuQXWv30LR9I+55bVBYtEDjtg2CHu29Ww6wdfkO6javRXItQ5SkyxXn0O36LvzxxTysNgs2u5VRUx8K/R7y/OhF8lYRkH4os9j7Nzl10HSdAdOmsu7wIXyaxp+7dtCqStmJi6i6zvID+3l90UIe6XJ+mV3XxKRCYu9ohGoElxAb2NqGiFlVZIQSB8k/InM/Az0N4eyG1FLRj/QEdHAPQokaAIDMnVyMkrUXsl+BhNcQthYgHkWm3YaRd6wQOS/6KDaQoWszSiJEPwFZDxJZkSgW9I2hh6QPAqvBcUHo/QknJH6NzBoD6jawt0bEPIEQoWuzsLVC2FoZQ6k7kIG1YG1cUL7KcSm4/gTPL0aIu3Ag4l8rMofcCHMVoKcc4/5NThU0TeN/3Z5m++pd+L0Blvy6gibtGh2/40lCDWisnb+RL57/NhjlaGJylNPekK5atwrjfhvFi7e9RcbhTFp2OYNHPr63vKcVwoEdh9i1bi/VG1QNq/8MEJsYw81PGzXt5k1bxGt3vxeszfzBY19gc9q4/M7uBPxqsWp+B7Yd4sGuT/La/Gdp0akpbyway59f/4OU8MVz34aUhjqKYlHIywoPrXls8v28PfzjiEY0EGZEAwR8KlGxkev4JlSNY+SX4Tv5kfhi7HdMfvZbbHYrql/l0U/v4/z+nRBC8OD7Q7h+xJVkp+dSt3ktXFHOkL7uGBc1GlZn/9YDwRB3XdM5o2PjEl3bpHKzMeUIG1OOBEXAvKrKigP7S+VaxoNXoBb5gwzoOisPHYjUxcTktEJY60DCJGTmE6Cngr09Im58eU8rBKnuNoxIax2ENXydEEoiIsYIYdY9MyBrNMFQ6Ozx6MKJ4u6P4WktZnHWdyLTboDEbxD2dpA0FemdYbTPfYcQMbIglnAjGiDuNcgaWfy15MYIBwOGFzsCwlIFkfB65LGK3kb2RMPDLmwgA8i4V1Bcl+SHuI9DRt1reMqtjRAhImyAiDPyro+WAQNDvdsUHTst2LJsOzvX7w1WjPHl+Vn/T6Tf1f+OxaYgdRnU5TlKwKeycVHJtYBMTh8qfhJwGdCiczM+2jCBaakf8+yPI8LCgsuTWZ//xZ2tHmTsTRMY2nEEnzz11THbz/xoTtCIBiO/+Zf3/wCgx80X4HAX72n35vn4bLRRI7Jeizrc8vR1XDX88ohGNBi5zhZr6F6MK8ZJXFIsezefoAEi4cux33Fk779XLd61YS9fPPttsAyWz+Nn3M0T2bd1P9+/MYMf3vwVV7STZu0bhRnRR3lh5kjqtqiNEIKoODcjpzxIrcY1/vWcTCoPAV1HEJqnIEupjoTdaiPGGf47aBGCZomVRNREVpIfk0qLsLdHqTITpdpSlIR3EErFEePT875DpvRGZj6ETLkKPefNY3fwTCU0n9gDnq8BEK7+GOHNxSA9yNw3jLa2pigxw8A9kMhGNBi52UX9JG7DINVOVKhJInPeQmqHjt+0uBECmwwjGm++ge+FzIfQ1V2GiFzeZBBRhve6qBFNfj55wsf5pbMEiDhEwkRjs8XklEf1qyhFcgiLey/9r9gcNtyxUWHHLTYLDc6sWyrXPOmU95p7mq3NpiFdgfHkenn1rnfxefzkZXnw5fmZ+tKP7Fq/p9g+jihH2DFnlANd11n2+2qi4qKwOazEJsdEbLvgp6Us/W1V8POhHYcRxfyW6JqGFggNhZYSajSsSlLNExdNWjF7LcO6PIHPc2xxpyN7U3n44qe5utrtDD9vJAe2Gwv8wR2HsdpDXx6klAw5+1Hef+Qz3nv4U25v+QAHdxavxlytXhXeX/0KM/xf8n36J3Tq3e6E78OkctI8uQqJLhfW/AVbUPxr6n9FlTpD2p+D02IJmu6KEDROTOLBzl1K6aomJiYnA6nnQNZTGIZhjvHfnHeR6s7iO0UwEBFupNSQ/vmgxAB2EAlENKq9vyF9Cwq6anuB4oS2dMLCvoVAWGuDUvUYd1YM/n+Qqdcj5bGFy6S2Hz11APqhTuipNyLV/FxrbQ+Iooa9Bqn9kNkvIrNeQKb0QmrFR+MIax2UKjMQ1dajVFuCKBJqbnLq0qRdQ6ITorBYjZdRoQiKCXj8z2gBjQFPXIXdZQ/q/whFUL9FHW5+6prSuahJpcY0pCsIPo+Pud8tYtbnf5N6IB2AjEOZYYrcVruVQ7uKzwu68bGrcBYykB1uO4OeuZ6PRk3h8zHfkHYgnYBPJSslmxoNqgYfTEfRNZ0PRnwOwPcTf2Fox8eQxVgTNoeNW0ZfizPKgdPtwBXtZPR3DxMVF8Worx/EHevCHeMy6jiXAF3Tyc3MY3uE0O+jqAGVB7qOYvXfG8g8ksWGhZsZdt5IvHk+6javFSzZdRRN1fDm+vB7A/i9AXIzco/r1QewWEpYF9uk0rM/O4s/dmxjS1oq31xzA90aNKJ+XHypbpi6bTYGtm7DLwNu4Zlul/C/zucxpf91/Hj9TcQ4wje4TExMygcpPUjvTKTnR6R2xDioHwFRZI0QtvzQ48iI6Hvzjemj66ETEX0fMvslyHnbGBM/yPR8sa2ia5BmiI0Bes5HyLTrKN6tY4Oo+zFqL7sMb2/82wglChH/OogoIIqSvwJqIDNA3VxsC6Nc2Q0QWA4yDQLLkWk3IKUXrI0prOZdMKYHI9/bBzILmXP8MHFR9Hs3OWU5vPsIC35ayp5N+5nwz3Occ9nZ1GpSvdS80QDuWDf9hl7Kuytf4v637uS252/k1b+f4c0lL+CKjrAZZnLac9rnSFcE8rI93NthBKn705CAoghe+esZ6javhdVmxVhoDNSASv2WtYsdq2HrekxcOJbp7/6OpmpcettFNGvfiNFXvxRmZO7ZuI86zWuxc02oh9uX52PN3A28NfyjYnf9hCK49pF+XD/iSq4afjlpBzNIrJEQVDQ845wmfLJlIvd1ehyf14+mF6MsWgRd03G4ig8/37flAFkp2ej5pax0XeLL87F99S5adGrKsHfu4rXB76JYLSiKIKlmIns2Frzc6LoMqTltcnoze8d27pvxE1ZFQdV1rmjWgicv6IZVKHT+8N1Su64noPL20kUM79SF+vEJpXadUuUUCs0yMYmE1LORqVcaolYSw3hO/BKsdQkzQmUgX4E6MsLWwhDnypsCSIT7GoStJTJ9MKH1pgFtq1G+SitSd17PQ/oWQs4LFP8HqED0PSjRg5HRg0A7ApaqiPzSW8LeFpn8G6ReA3q4+GixSA3EMcLP1W1GjnNQRVw3vPXqFoTtTGTsk5D1dL5n2mLUyA4pc6WDZoqHmRj888MSnh8wAYvVgqaq9BjUjaGv34am6dzcaGipXdeT4+XrF39kwBP9qd2kkqb1mWtzmWIa0hWA7177mUO7DofUYn518Lu8sXAsz/38GE9cPpaAP4CU8PDHQ6lat8oxx6vfsg5DX78t5FhRzzYYdZLbXtSaXWv3BA1mxaLQ5cqOLPx5WbFGtM1hZeBT13LDiCsBsDvtVK9fEC62d/N+vnllOmkH0kndnxYW/l0cDpedMzo2oX6r4vOenFHOkBrSAJqq44o2FvjuAy+gyxXnkHYgnSp1kvjutZ+Z/Nx3+PJ8wftbMWctVyYN4s5xN3HZHZeUaG4mpx66lNz/63Q8asHf3ZfrVvPtxnVYi8tnOEn4NJUl+4v3XpmYmJQ/MncSaAcoKLskkFlPoiRNgYT3kel3GQY0QNzLCMuxa80KWzNE3FNFjkZ61ljAcR7kbafgrdgCjh5I7x8U/6bsgOjhKNG3G9cTDrAWbLxLdRsy92PQD+crXpdsbQYn2NuD5RhKycId7nWWmnEcUNxXI52XGp53S01k7nuQk583bbQA/zz0Qx0gZkS+CJvJ6YimaTw/YELwvQ3gp7dm8uukP/KdS6WH3+Nn7bwNx29oYpKPaUhXAA7tPhJiRAOk7TfCu1t0bsbUQx+QdiCd+Kpx/7os18Anr+b1ez8IWX8VRWH5rNUhS7Ku6Xw34WfOuqBlxHEUi0Jcciy9B3dny4rtfPHsd/g8fvoM6UHnPu3Zt/UA93YYQV6Op0S7Yka+dixtu7WiUZv69Bt6aVhpq8JUq1eFjpefzbzvFgdVwaNiXdQ5o1awjTvGCCkHuPaRfqQdymTGB7NQ/SpSSnRVkpOey1vDP6JavSq0637W8SdqcsqR4/fjL1ruDPBrGv4Sv2D+e6pHVxxRQxMTkwho+wn1FkvQDI0NYW8HVRcYBqmSZBit/4aoeyHn2SIHFfD+TegiqkHeJLC1L2YgCyiJCPe16P61kPsWSD+4b0JxXohUtyNT++eHU5fEZWUHkWjUaba1RLgHGPWsi8NSF+xdwD+nYHwlDqnUDwazCyUalHwF8Kh7kFoqeL6j4DvWQGZC1mikpTbCrBF9WpKbkRfmMAFDObvou3JpULVuJRH8NKkQmIZ0BeDsi1sz58v5wd03m8PGWRcWGLJWm7VYL7Smacz7bjFpB9JpcW4zmrWPvGPc5+6e+fnPk/Hm+nDFOHniywcY2Wds2Joa8AZYOnNlxHGsdgtjfx3JzrW7+V+3p4Nlopb8uoLbnruBzJRsPDnekDGFEGGlsBSLwhnnNKbr1Z3pfXd3HK7jv4Touk5Waja6Lg2xifzyBLlZeUx/5zeuGNorrI/FYuHe127l3tdu5Zrqt5NxOCt4zpfnZ8mvK0IM6dQD6ezbcoAaDatRpXbScedkUnmJsduJsdtJ955AeONJpKTpDiYmJuWEvTN4ZwJHazw7wNEpeFoIO1hqRuwqpWr01VPBfnawlnJRlOib0dEh59X860RD/GuQcUeE1j4IzC9msjZI+NCo05x+K0GpRP/f6NGPgrY3ghEtCDeqLWBrg3D2BPcNJdogkDLfADbi3wvG1LMMtfKo8Nq7QlgQcU9D3NPoh84xcrAL3af0zw0xpKV2CLTdYKlzXM+/SeUmJjEaZ5SDHH/pG82RUEsYRWliAqYhXSr4vX7efvATls9aTVKNBO578w4atCpeNv/C685lx9pdfD3+R6SUtO7anPvfirSIhqJpGiN6PMvGxVvQVB1FEQx943YuvfWiiO373duLfvf2IuAPYLMbucw2u/WEdvg0v8bvn/zJwp+XBY3oo3w0agqX33VJmNEckxhF9QZV2b5qF2pAQ1EE7hgXI796MMxYlVKSfigDm8NGTEJB7cr1CzYxsvdYvHl+1Pww96P48vxsXLQFIhjSfq+fDx//ghWz1+LNDVcDz8n0BP/9y6Q/mHjvB1itFjRd555XB9F7cI8SfzcmlQshBLVj48rNkP5x8yZe7nEZlmNEYFRkhJmHZVLJkNKLzHoO/AtBqYqIGx2x/vNRhOsKpLoF8j4CJNg7ImJGluA6KjLtZgisx1DPVpCxY1Dc/SK2V6IHQfQgpPQjhB0pJRIrYcrbxyQA3h/AO4OwegM5L4HzCsKMZpEASg3QNgXnaQiTTUBYQtW9pZT5ImsOhBJXcNy/1Mjzlj7C62F7QF0FhBvSUnqR2S+Cf3F+35CzhhGej547BbKfAWyAhox9CsVtKiifqgghqFo3mZz03HK5/m8f/8n/Jt1z7AiMCoy5NpctpiFdCjw/YAJLfl2B3xPgwLaDDD9vJJPWv0ZyMSWhhBDc9uyN3DL6OjRVDwp2HY8lM1ayccnWEAPx9Xs/oOegbsd8ABw1osEIHV/157oS3hlomk7K/jTysjxh56QuqdmoBlabJbijZ3fauGp4bwY80Z8/v5rPn1//Q0xiNDc+flWYEZ2TkcuIns+ybfVOdFXjjI5NGD3tEZxRTh6/7HlyM/MizsnuslGvRUEemM/jY/msNWSlZvP1iz+wb8tBNFWLqB4+58t59B9+OQCv3vkOQFCU7a3hH9Hx8namZ/oUxaeqbEkLr1tuEQKttGprFOHPXTu4uMEx8g5NTExOGjJjGPj+AXyg7UamXgfJMxGWyKGcQghE7CPImIcALSjYdVx8c0BdDxRas7KeRLr6HnNtDgqCCYG0ngnqipJdDwDNEBaTkdZJDawNIcQ4d0DUbSjRd6F7phsGuJKIiL473IjWM5Bpt+ardutIW1uIfxMhbMj0O0EWZ/A4wVKwUSGlF3zzkXo65LwH+h5jbpHyxD3fI6NuRkofZD+ZfzB/7lmjkY4LEZZj68WYVE78Xj97N+0PO26xKmhqaRWlDGXpb6vo0LNNmVzLpHJTOV0hFRhN1Vjw41L8HiPnR0oj73hZodrMxWGxWEpsRANkHMmiqCKY5lcJ+ALF9AjF5/FxePeJq2TO/34JZ3ULz6F2xTj59OnQ0lK6LvnhzV/Zs2kfF17Xhae/fZiH3h9CjQbVwvq/fu8HbF2xHdWnomuS9f9sZmDDe1m/YBO6HvrwFELgcDtwRjtp3KYB/R/oja7rHNhxiMFtH+b5Gyfw0u1vsXvDvmCuTaSSCVpAY8mMFbw17KOwc1IatalNTk3m79kd9nsFcHPrNmU2hy2ppkqtiUlZIKUffH9RUAVDGmJY/uJCpQsQwlJyIxpATwtbm43rlszDLKUH9EMlv95RvL+ALVJecTTkvlF0kpD3KVLdieLqjZLwJkrcGISlVlhvmTkK1I0YHmcNAkvhyEXIwCrCa1kLwGWIjNlaIqIGIqWOru5GHumNzHgIsh4HfSchCt9haOCbC1lF88fByFU3xRpPVZb8ujIs4hHgyvsvK7M57Fy35/iNTEwwDemTjlBEmOdTCIHNfvKd/626NAsJo1YsCvVb1S2xINnP784idX9ayDF3rIsRn92HM8qB1WYhoXo8zTqEesx8eT7+mrogqJQNkFgzAdWv4s31heSXqH6VjEMZPHnF+IhzOLD9EE9eMY4h7R5h4fRlYbuN3lwfMz6YHVa6y+qw8uD7d/PirCd55e9n2LFmN9dUv4NBTe9n3+YDeHO9YVFskbDaLDijnKQdygg7p6saNRubuVinKl41gM0S+ncpgB6NmpTZg3Hx/n08N/dPlh2ohC+FspL8mJgAxutOEaNPACdiIJcUeztCf/ksYG2BECXbKJe5nxu51YURsRD7IuACrKBUBWvRDW0P+H4D3IX6VcOoT+0h1JAPgH4EmX5v5Dmou9DTBqOnXGEYtGECjLng+d4QNAvBBnHPIxI/RSR+DoENyMOdIKUH6LsJ8dIfE4thjBf9HsCYi7X4dDmTyo0vz4fVFl4vvFPf9pRVtPXqv9fzzv8+YcOiLWVzwZNJea+5p9nabBrSJxlFUbjmoT443IZAh9VuJSYpmk59ilPaNJBSkrIvlay07LBzuq6zffUuNi/bRsBf4G2u3bQmo756kNikGBSLQuO2DXjul8dLPNf92w/h94Z6r+1OOxcP6MoPmZ8y9dAkvtr3Hm26hYukqD4VT44XZ5SD256/kWe+f/QY92bUfy6aO52ZksXQjiNYNH0ZW1fswJsTOVd14+LNIXncNoeVS27qiifbQ3Z6LmpA47Fez4XUly4psckxXDzgPFqf3zzswX3B9V1IqlFJa/yaHJdzatUJ+Z20KQoWIbj1x+/K7Bn/584dTFqxjIHTvuGP7duO38HExORfIYQV3DdjGKIANlASwX7BMftJqSO1g0g9M8I5DRnYiAysQ8qCtVRYGyPiXwURDyhga4VIOIG69NpuCjznRwd1orj7IaqtQFRdhKgyF+znROjsxzBWXRD9KCLhdYp/a5Wg7Qg/qqUaCt/+v/JD1MNTuQDwLc+/3lHs4LoKIbNBz0JKPzL9dgwhsRMMybUkgfNyo+xW0SxEZz+EEjlVzqTy0+aiViFrs9VmxWJVeLzX88WWZT3ZLPxxKd++Mp2HL3qaxTNOJMXC5HTDzJEuBW577kZqN6vJ0l9XUrVuMtc9ekWwHFMkMlOyeOSSZ9i7eT+6LulxywUMf2cwQgj8Xj+PdH+GbSt3IhRBYvUEXps3hvgqhthHx8vb8e2RD5FShuReZaVl48n2klw7EYslfGcP4MzzmzPzo9nBHGur3UqLzk0BY0MgOj4KgDM6NsEZ5Ygo1uXN9fHrh7NZ8uuKY4qWJdVICM4vKy2bmR/9ybr5G/Hl+YMhPEUN7aMc3HEk5HPAr/LH5LnM/mIuQii0vaglfm/RXfEiRBAnrdGoGm8ufoGouCjueulm9m4+wNr5G5G6Tue+HXj0k6HHHtOkUrEx5QgP/jaD/dlZtEiuQrLbjUct9PILBKREVcteKdSrqjw/7y8ubmjmS5uYlBYiZgTS2sQI57bURETdhVDcxbaXWioy/WZQdwM60nUNIvap/EoUHmTaLfl5w4BSDZKmIBRj81U4L0Y4F4etzVJPN7zDSnVEMfXqhf0cpOdHCgxYG9jONs4JBUR+6TzbWUhcRDZ0PZA3FemdSWgJryIoBWlWUk8DzzSkb2m+ANhR47cY60UWDX8NGLnNnu8BAY5zCastHUaExVmpj0j6xiiXFfMEUt0JgVXGfBw9EHHPH2dMk8rEtlU7GXfzRA7vSaHJ2Q2JTogKdfIooPl0NPU473mlgM/j571HPuWcXm3L/NomlQPTkC4FhBD0vKUbPW/pVqL2L9/+Nrs37A2GRP8xeR4tzz2DHrdcyJRx37Nl2fbgQ+VA3iHGXPsKY2c8ERLCfXShllLy1vCPmP7u71isCsm1knhpztMRhc66Xt2JLcu28c0r0xECGrepz0OThoS163LFOfS9pyffvvYzUpdhXt+8LA/7tx2MeG8Otx2LxcKoqQ8BkJWazV1nPURWanaJ1MKj4tzhImMS/J6CB+ryP9ZGLlcgjLxzm8PK+f07sXvDPnZv2ItQjPzq8b8/GVQGd0U5GT/rSTKOZPLbx3+yc+0evn11Olfcd9kJ5a2bVEwyvB6u//YrsnzGZtCifXvDXg39EfKly5K8QMm0DUxMTP4dQgiE+2pwX12i9jLzUVB3EAyJ9kwzwrZdfZA5b0FgA0HPsbYbmf4AJL4Xkk9deG2WWaONclBYwFIDEj+PLJjl7A2BtZD3KSCMXOO4CLnCzl6GgZn3GYbRW+QZJrPy5x8JFwgLImGC0VRPQ6b0AT2DYxrewRuLNcYPvSBQKLLMN5/IeeECsGB4sHuBfyPoOzBUw92IpI8RSqzRUomCxMlIPcWoOa1uReZ+DFEDTyxv3aRCkpmSxUMXPhV8z1v157owPRu1DGpHHwtPMdGSJiZgGtIVgk1Lt4UYgr48H+sXbKLHLReybdXOkJ05XdNZ8/cG7mz9EBMXPk9sYkzIWHO/XcivHxo5xarfyEEeO2ACL88ZHXZdIQR3vHATNz99LX5vIOiBjtTuznEDuWnU1exYu4cRPcbgzfUhpcRmt+KIskMETS6hCAaMvJrL77wEm9PGol+W89fUBWSmZIflPAM43A7Ov+ocJIJDOw/TrsdZSE3n09FTj/0FSkmbbi1ZO3cjFqsFTdPpc3d3bn76WlzRBZEAmqqxcfFW/F4/zTo0jhglMGHI+yyduRJfnh+Hy87Cn5bx0pynUSppiSITg9WHDoVEPFS09BxFCPo0bVbe0yg5p1iOk4lJRNR1hBqCHqR/JcLVBwIbCQ2/1iCwwDBGk6YGDcEg3p8NQ5yA8aPtQWY+jEj8OOyyhlr4Y8iYB0H6wscq2i76fqS6EdJuwzBkJWAH4YggegYgIHoown0NYEP6/kR6poOeTmTD1wXOywA/aAfA0RX0XMgrQbi6rZMhTiYsIDVw34yIHmIYyPlIqRobAjIAtjNDzgXJGpWvuO4FZiJ9f0Hix8V69U0qBxsXbQldmyOIjJUnikXhohvOK+9plBxzbS5zTEO6AlCjQVXSD2YEHyZ2l53azWoC0OTsRiybuQpfIQ+slJLDu1OY9PgXPPDO4JCxtizbHhKCrWs621buPOb17U57iQTK1s7byLevTqdui9o4XHa2rtiBpmqk7Ekrts9no6eyZdl2FkxfWuyuos1ho0m7hhzadZg/py5AEYKajarT9qIzqdOsJlNfmY4nuyB0zeG24/f4g+8HPo+ftfM34Yp1MeiZ62jctiHN2oeHyFqsFlqeW7yxcmRPCktmrAhuXPg8frYs3862lTtpcnbD434/JhWXaLu9zEpa/Ru6N2jMI126lvc0TExMCmOpZShwB99MnQhrfeOftlZGPeoQY1qCtheZ/Soi7qmQoWRgDaEh2Gp+neniEcJhGMPHQfqXQN7HYG0COEFbZxiteuRIMRCQM8GYk+8PivdAO8DWAtR94P3J6Geth7B3BmsdpOczQsttOTG+j6PflxcCy0BEQ8xwhK0lwhZe8UMIa75AWzFoewoZ0fnjqquMsHrbGcX3M6nwuGPdERW6Kwpdr+7EoDHhddBNTI5ibuVVAP734T3EJEbjjnXhinbSuE19+t5zKQDXPtyXFp2bhimBq36VPRvClX5rNq4eFDoDEAKq1QsNHfN7/UwZ/z3jBr3BD2/9iqZFCIsuwu+f/cXIvi+w7PfVbFq8ldV/rceT7cGX5w+WlypaH1PqkoAvwNxvFxZrRNudNs7s2pyNi7eQui8d1afi9wbYuW4PI3qOITs9h082v85ld15Cu+6teeC9wbyz/EVqNgpV0/bl+shOzWHjwi0RjeiS4PcGUCyhfxKKRQkTZDOpfLSpXoO21Wvgsla8vcPnL+rO2737YjWjHkxMKhQi7gUQcYYhmF/OCfd1xrnou8F2FuHlnwKgbQ8fy1ofw9AMHgFL7ZA2UnrRc95Bz3gEPXcKUh4/3UTP+wYyhoD/H1BXg7o437j1UqC0XXSOOuAH368c04i2nwOB1SAPG+3xgboZmX4L6DmI5N/AeQ3Yz4PY5xHJ08BSp8g4HkNsLLAuohFdIqQPwjzPSn4et0llpmWXZjRr3yjkvbWi8PBH9/LElw8UqzNkYgKmR7pCULtpTT7ZMpGNi7fidNtp3rlp8A/X7rAx7vcnefmOt/nji7lBg9TustOyS7h3tcctF/LX1AWsm78Ji1VBKIIRn99P2sF0fHl+kmon8vDFo9m6cid+j5+53yxk3fyNPD55+DHn+MGIyehFSlMVdfDValrDUOcu4e6iK9aF6guwcvbaiGrbmqqxZMZKqtWvwqFdR7A5bdRtXpvaTWvy8eaJDO34GJuWbA1pf+A/1H2u0agaVesms2/rQbSAhmJRcMe6aNy2/r8e06RioAjBR/368+2GdUxctID9OeHq+OXBI+eez/WtWgc/H87Nwa9p1IyJRSmrOh//ElFxnQgmJicFYW0MVX43jEnhBlsbhDDWZiEckPgZMvMRo35z0CB1BoXBQnBdDZ4ZhrGLAlgR8eOR2hGQHqRSDdJuAnUT4APvTGRgOSI+cunIINkvEV6aqqh4VyPQt4UfL5ZowJ9fYzuCMX+0/raSDPoBEHZDqdzaCFFlFvqRfqBtKNRBNbzK/xZrA6Pcl7bXGAuLscFheqMrPYqi8MLMkfz28Z98NmYqKXuLj3AsS+568WZ63HJh8HPK/jS0gEbVuslhTqOKhrk2ly2mIV1BiI6Pon2PsyKeE0Jw3xu3c3hPCmvnbgQkrc9vzsCnrg1ra7FaeP6Xx9m4eCuebA+Nz27A+w9/xh9fzMNiVYhLjiUrJTso1uXL8zHvu8WkHUwnsXrxpZ6Op4ptd9lRLEqJjWibw0pS9Xj2bj5QbBvForBrwx4+eOxzfHnG9VfMWsP4P56iRaemtL3kTHau3R0Me3e47bS5KLxUV0mxWCy8/OdoXhv8LltW7KBOs1o8+P7dOFwVb6fU5MSxKgqKEBzOzSnvqQAQ73RyJC+XI3m5JDhd3D9jOrN3bkcRgkYJiUy+6hpiHc7jD2RiYlJqCCUOHOdHPicExD2D1A5CIL9Ejr0jIjpctFMIGyR+nJ8LnIe0tkRmPwveXwEFlKT8MPKjXlYPeH9G6iOOU+rpeErGzvw365K+XTvAknAcw1dBBjaBZyxHw62l7x9ImoywnQmOzpC3g4JQbCfYO5Xw+uEIYYXEL5BZI43cdGtjRNyzxmaGSaXHarOiS0n6wYzyngoAcVViSd2fRsaRTKLjoxhz7Sss+XUlQhHUb1mH8b+PIiousqaQyemHaUhXEhwuB+NmjiL9UAYACdXii90VUxSFFp2MMlYzP57Dn18vCIqPpewL3+1TLCIkBzsSXa7owMyP/oxwLYHVbqVpu0ZsWLQ5cucI1S3UwHG8xwLikmPZuGhr0IgGI2/5+4kzaNGpKTc/dQ37Nh/gnx8WI6WhLn7DiCuPeR/HI75KHE9/98h/GsOk4jJh4T+oFSRXOsPr5ZNVK/hp00aubdmKP3ftwJ+fZrE5NYVRc/5gwqWXl/MsTUxMjoUQLkj8FPQjgIKwJB+jrQL2/DI6eV8hvb8TNIQj5jMrII9jKNsvAt+PkftiA1vrAiM/fEaEG9gB0MLTxkL6WJLAv5QQhW68yNzPEfHjEDEPIrXd4JtjnHJeioi6/dj3cRyEJRmR8M5/GsOk4vLZ6KloavlWzjhK5pEspr3+C3OmzKfHzV1Z9vsqAj4j4mTH6l28OewjHvnYLI9qYmAa0pUIIcQxvcaR2LR0G768UPExoQgUi4Ku6VisCg6XnV8/nE2fIT1DymT5vX7mTJnPznV7+fOrfyKOX6tpDV6YOQqr3cqNde8OOx8d7+bWZ2/gjfs/DPFWSymJTYwm/VBm+H0qgj739GTQ6Ot4tMeYsPN6fpkim93Gk1MfwpvnQwhMz7HJcQmUc4mrouhSkuLJ462li0OOB3Sd1YeKEwqqIFSM/QgTk3JHCAGWqifURwZWEyo+pmEYtgpGOLUFRBQy72tw3xBSJktKL3imI9Ut4JsZ+QKWhojESUgpIOXiCJOOg6j7IOc5Qv+YJYgEkJFCbBVw3YSIuR+ZNiDCeeP5KoQdkfAWUnoAgRBmZI3JsdEC5Vviqii6ppN2IJ0p434IOR7wqyEphRUSc20uU0x1m3ImKzWbJ68Yx/W172L4eSPZu3n/SR2/7hm1cLgK1bRUBI3bNqBNt5bEJccgJWSl5vDVuO8ZfNZDpOw3Fk+/1899nR7njfsm8c0rP4Z4hY9ic1hp1eUMqtZJ5s8p8yPmOft9KgiB1VZkz0YaXunYJENkTSgiKKimWBT++X4JFquFax7qi8NdMH+700ZuRh6P9niG79+YgZQSp9thGtEmJaJX4yblPYUSYRGChgkntmlmYmJy8pB6GnraYPTD56Gn3ohUd53cC1gaESo+poC1tSHwRTwgDWM29x1kSm+klmLMS3qRKVchs8YYSt1EEtwyhMKEpQZ4pxOxpJX0gbAT7k/JfwsX8YbIGgoFr4oW8M0y+rjvKDJ/B+hp6Gm3oudORkqJEC7TiDYpEedd2bG8p1AiLFaFOvlVdUxMwDSkyxUpJY9c8gxLZqwgdX866xdsZliXkeRk5J60a/Qe3J0zOjXBGeUgKtZFbFIMT3w5nHG/PUl0QnTQ+NVUndzMPKa/+xsAc6bMZ/+2g0YprQi7W0IRNDqrPne/Mgg1oPL+I59FzI/WNZ2Vc9ZyxjmNw87lZuQy5qfHGPfbKIQQwf5aQCMnPYfR/V/k728W0Ov2izmza3PO7Nocq93K8lmrWT5rDR+MmMz7j3520r4rk1OfK5u3rNAPPYFRqivZHcWz3bqX93RMTE5LpNSRaQPBPxf0wxBYjky9DqmfPH0FEXWTUUJLuA2DVUlExL+MkvgpWKIpEPlSQWYbnmkAzw/5odceIrueFLC1QMQ8jJQ+yHmlmHY6BBaA7czwUzIdEiYZP0fbAhAAmY7MGAq+38F1Ddjag60DYDUEyPzzIXs8MvuVf/vVmJyGdL/lQoSl4op4CQHuWBeJNRIY+sYd5T0dkwqEGdpdjqQeSGfPpn2oASMvUkqJGtDYsGgLHXq2OSnXsNqsjP/9STYv3YY310fT9o1wx7gAQupNg2FMe7KMULPstJzgvIricNm5adTVXPfoFQghyMnILTaSRA2ozP9+cZjiN4CuS0b0HMOEf54LO+fN9bHij7VIKXG4HQx88mpiEqLZvHRb0Pj35fn4fuKv3DluYJmoKK6cs5ZXB79LVmo2bS86k4cmDSEq1l3q1zU5eTRJTMKiKMH0gIqEAJomJfPUBRfRulp13DZbeU/JxOT0RD8A6h4KPLn55aICawwhrZOAEHZI/AwCa0F6wdYKoeQLGElPkdYqyHwjXs+k+JJVTogehoi6LX9zOo3w0ldH8YP3N8IVvwEkpN0CSVPC+0tPvpq3BFxGfWhhzw9VP/pc9YDnU4h9qPgv4CQiffORWU8Z3439XETc8wXfpUmloMGZdVEUpUTlWMsaIQQN29RjyMuDaHZOY5wVsFSXSflRkZ0zpzwOlz0sHFrq+kn/I1UUhTPOaUKbbq2CRjRAtxu6hIRNO9x2zr/aeElo060VlkI1lY+GXjtcdvo/0DtoRANExblxRUUI3xLGAyiSEX0UT46XL5//jnP7dQiGoB8dV+aLQvnyfEx54Xs0TQ8ruSXLSDhq7+b9jOzzAvu3HiQnPZeF05fy3A2vlcm1TU4ebpuN/s3/ZS3Tk4wAmiUlE2WzEW2zE+NwMLFXbzrVrlMpjGghK8ePickJI1yEG5h6/vGTeBlhQdjPQjg6hhp+zt6Ehk07Ec4exj8dnQj1gSgYTxMnRN0RNKKNCyRARGVrkf9zLKMlF3IngePCQnM5alQf/cPyQM7bIHXCvN4lqIF9MpDqVmT6ENB2g8wE3x/IzLIx4E1OHu4YFxffGFkdv6xRrAr1WtTGFePEFeMkOiGKJ74YzlkXtqwURnR5r7mn29pseqTLkZiEaHoMupDZX8zDm+vD7rJTv1UdWnRuWibXv2OsIRYy58t5ONwO7ho/kFZdjLqMjds24NFP72PCkPfJy87jrAta8sSUB4iOD9/lFULQtH1Dls9aE3b8uOWwJPz51T+0vqAFl915Mav+Wo/q19i7eX/IJoM3z0fnvu2Z9NhkAr4AUjc81ZcM7Fpq3ugje1NJP5RB7aY1WT5rDbLQi0HAp7Lst1X5eWAVNxzJJJxGCYkRtWrLGiEE064bwKK9e/CoKufUqkWiy4xwMDEpb4SSiHT1Meo+4wGcYG0eOQy6NK4f8ygSYdSnFm5EzAiEvY1xztYaGfcCZI0GmQv2Toj4VxFKTPg4QiCtzSGwpOgZItaHDkGC93uwnWuEcAeWgAyAtp2Qp6f0gLM75LxqnD/qqXZf/W9v/7hI7QDoqWCpD76ita794Jtbatc2KT3qNq9FhVicJby5dByr5qzD7/XTumsLYpPC/75MTMA0pMud4e8MpuW5Z7B+wSZqN6tJ33suxWK1lMm1LVYLg1+8mcEv3hxy3JPrJfNIFp37tuf8/kbtx4wjmRzccZgaDavicDuY9PgXLPhpKXHJMdzz2m00bdcooiEtrBE80kUelFKXbFiwmQat6vLuipfYvXEft7cYHtJF13X8Hj9vLBrLu//7lLSDGXTq3Y4bn7jqZH0dIXzy9Fd8Pf4HrHYrQgiuHHY5ihIawGF32k0jupKRFwjw4oJ55b5OA9SJicVptXJB/QblPRUTE5MiiNjnwdYBGVhpKGBHDUCIslmbhbAiYh+H2MdDjks9D/Q0hLM7wnWZcUxLBW0PkjogHMjsl4yyU0oSIvZJsLaMYEgDWAj3SBe1YiQEloKtGUryj+iBTZDap0gfFaSKSJqKzBpnGLjOSxBRd/23L6EY9OyXIfdjEDZjvu6B+fdS+DYqvtfQJJTcrDw+eeqr8jeigVpNquNw2jmnV9vynopJJcA0pMsZIQQ9brmQ7jdfQHZ6DhZr+Ubbz/xkDhOGvI9FUbA5bYz9dSTbVu7gzfs/xGq3oms6Lbucwdq5G/B5/OzbfIAHL3iSB969C6vdiuovUAdVFMENj13J52O+DYZgO1x2OvfrwLzvFoW09XsDrJ23kU1LtzGqz9iweTndDnat30vnPu0Z8+OIf3dvH8/h/Uc/x+/xc95VHbl97I14cnxUq5eMzV4QSrt+4WamvvQTfm8Av9fIRfvprV+pUieZQzsPE/AFsLvs3Dn+pn81D5PyI8PrCUsPKC/qxscT0DRslrJ5OT/pVJDv8WQghLgUmIDxRv6BlPKFIucfBo7W+7ECzYEqUso0IcROIBvDKlGllO3LbOImpYYQCrj7g7zKCBkuaqyVMXreVMMLLSyAExI/RPpXQfbYfKNSB1sb8C8HvKDtQqZeDzFPAzZC86oViLoTct+h4A/ZCY6LDBGxkLY+8C8zrpUeXuIS4QJtG8JxASLxvX95b19B9iuAH5yXQvQDCJkHlloIUbA2S/9SyPvUmJPM13jJm2qUHtMOGv1xQMy/e0cwKT+yUrLLewpBajSsjqZqZebUOumYa3OZrs2mIV0B2LF2N49d+iyZKdkoFoURn94X9ASXJXu3HGDiPR8Q8AYIYIRTj+gxBr/XH2JULvttVUg/v8fPy3e8Q+2mNdi/7RB+jx+H20H3my/g5qevo/+DfZj12d/kZubRvudZNG3XiIn3fcAv7/8RNKYtVoVq9aswoseYiKrlWkCjZqNqwc9r529kwpD3yUrJol2Ps7j/rTuPmbuyfNZqJg79IFjGa/YX85j1+d843A5cUQ5enP009ZrXBmD3hn0UdTRnp+fywbpXmf3FPNIPZdL24jM5++KyCfMz+fesOnSQD1csQ9N1BrZuQ7uatbBZFAJ6+QuaLNy7l4Hff8PkK6/BophyFeWFMNyMbwLdgb3AEiHEj1LK9UfbSClfBF7Mb98HeEDKkEK73aSUKWU4bZMyQAY2ItNvyxf4siLjXkJxlb2avlS3QtYYwJ//kuxBpt2aL0pWyKj0/1OkpxeynwRLXdD2Gm3zw66VmAeQUXeA53tDyMxxAcLWAj1zFHi+o8CYtoKlpvE9yAjGjlTBUqfgo38JMutp0DPA0RUR+9QxS2BJ39+Q9ZwxVzDm4/kOKVwg3JD4OcLa0Dinbgs3EmQKJC5CeKch9TSEvQvCUfbvTyYnxvqFm5k24ReklPS791LO6NgYxVIx1sEVf6xmxKXPMu63UWGRiCZlR2VZm01DupzRdZ0RPcaQdjAjeGzczRNp3LYBNRpWK75jKbBj9S4sNouREpaPN8+HzWEDb3EqoQaqX+XgzsPc8vS1HNp1hOadmnLxAEM4IirWTb97Lw1pP+iZ61k2cxVphzIQCNyxLnrdfjEr/lgTNrbNYeXGJ66iXgtjsd639QCPXfpsUHX8r6//ITcrj9HfPVLs/BZMXxZSC1tTDUPKm+PFl+vlyb7j+GTLRADqnlEzzGsZkxhNXHIsVw27/Jjfg0nFYdXBA9z43dd4VGOzZvbO7bx7eT8e6Xw+T/89u5xnBwFdY93hQ8zfs5uu9eqX93ROZ84BtkoptwMIIaYA/YD1xbS/AfiyjOZmUk5IqSHTbzVClQEIQOZDSPsMhKVW2U4msMnwRIdEXecADiLXkS6M3/DWRg8DbR/Cfna+mBlGXnXUwJDWIuZBpP8f0PPfRUUsuPoZpcDCsEP0fUFDV6rbkWl3EHyJ8ExH6rmIhNeLnZ30ziJoRAPBcHOZB9KDTL8HUeVX49hRg7owSjKKJR6ibi1Wn9ykYrHun0082uOZ4DvZwulLGfPjCG4efR3vP1z+JU0DPpVNi7ey6s91tL3IdJiUI5VibTYN6XIm80gW2UU8sBabha0rdpS5IV29QdWggXkURRGoAbWYHqEIIejQqy0NWtU9btuYhGjeW/0yq//egNR1Wp13BlmpOSHh3gBWm4UXZo6kddcCpeWlM1eFCJH5vQEWTV8eUfgr/XAmu9btQeSPFamkl5RwYPtBdF1HURRadG7G1Q/2ZupLP2KxWtBUjfP7d2LflgPUblqzRN+FSfnz3vKlQSMawKuqvLFkIZOvvKZCGNIAAkGWz3v8hialSS1gT6HPe4GOkRoKIdzApcDQQocl8JsQQgLvSin/XXyrScVCPwJ6kegoYYXARihrQ9pSO4IKtoWC8lzHQUiE86ICz+6xmioJkPwz+JdihIu3Bz0FKYtuplsh8TMUe6E8Ut9cQvOufeCL/KyVWiqoWzBUx63F3IsEbWdwbRf2Dkj3QMj7hGCOt7MHUt2FsNY77r2ZVAy+Gv99iGPDl+fni+e+49mfH6sQhjSAUAQ5GXnlPY3TnUqxNpsxC+VMdEJUWKiSpuok104q87k0Obshfe+5FIfbTlScG4fbwWOTh3HX+JuwO23HDbtRAxrJtRKP2UbXdQ7vPkJWWjZ2p532Pc6iw6VtcUW7qFavCv2G9jLKYOXbw5quc3h3aFSGM8oRNhebwxpmRC//Yw03N7qXp696kenv/Y7VYcu/j/B9a6EowdB1MDzmL85+2ijfpenM+OAPhrR7hE1Lth7z/kwqDoEI9ShVXeebDesqjOdCR3J2jUq4OSMr0Q8kCyGWFvopqoIU6dehuCyzPsD8IqFjXaSUZwO9gHuFEF2L6WtSmVASCFO2lhpYqpf5VIT9LHBfDzhBRAMuRPwEiHkIwyt9nFc5qYFS9dhNpIbU9iP1TIRwIhznIRxdEYobYa1bcP2CHvnh4oUn6iJc+MtOUaRvHjLlImTGveD5FrAf4z4Ehb3uSuz/IPFjjPwrDfKmIFP7IQPFOalMKhoBf/imiRpQmfnRnMhP43JA6pLmnZqU9zROnPJeb0/Dtdk0pMsZm93Ggx/cjcNlxxXjxBnl4OIB59O8Y/n8Ad81fiATFzzPY5/fz4frX+W8KztyxdDL+GTLROpH8DQriiAqzo3daaN+izoMbvM/Hur2FPu2Hghrm3ogndtbDOe25sO5rsadvDnsw7A60HeNH0hUoc0FqUleG/weO9buDrbpenUn4qvGYbMbARUOt4NBY64PGUdKyej+L+LN9ZGbmUfAG0DXdPoM6ckto68L+/O02iz88/3ikGO/fTwHb64XNaChqRreXB/v/u/TEn+XJuXLTa3b4LQWBN04rVZubt2GD5YvrTBaHGdXr0HNmNjynsapToqUsn2hn6K70nuBOoU+1wb2FzPW9RQJHZNS7s//72FgGkY4mkklRwgHxI7GMB6jDCPRdRXCVj516JXYxxBJXyPiX0FU+RXhvAglahCiyu9gaRSpB4gYwAGWxsiUy9HTBiLV3WEtpXYQmXIp8silyMPnomeNDVubRczjIAqXv9Qg8wmkuq3gkPOy/A2IowJhToh+MPRaUkNm3Gfkd8tsDCNZA/dNEDU8wn1YDRXywni+yc8PV42+Mg+ZPS5CX5OKyBX3Gg6bozjcdq4Y2otvXv6peDOpjDmzawuSax7bMWTynzkl1mbTkK4AXDKgK28tG8/wdwYz9teRPPDu4HKdT4Mz69Hx8nZUrVsleCy5VhK3jrne8Bbn43DZeejDe3js8/up0agaO9bu5sieVNbM3cCwc58gNzM0LO6FmyZwYPshfB4/akDj1w9nM/fbhSFtvHk+Mg5lhhwTimDz0oLF2hXt4p3l47npyavpN7QXo756gP7De4f0ycvKw+fxhxyzWBQat23AdY9eESYgIRQRzLk+SsaRLPQidbCz03IifmcmFY+u9erz+qWX07padVpWqcpzF3Wn3xktKlTJsvl7drMnM6O8p3G6swRoIoRoIISwYyzIPxZtJISIAy4Afih0LEoIEXP030APYG2ZzNqk1FHc/RHJ3yHixiASPkaJe6pc5yNsZyAcFyIsNQqOWaojYoYT6i12Qtw4iHvJCEPXNoN+APxLkGnXIfXQdUxmPADaHoxc5QB4poBvVujFZQ6GennhCVkgsK7goxKNSP4Rou8F10BEwkSUqCLVLWQmFA0TF1aErRUi+nbCdrmFBfQiIbZ6GmHRAnoGJpWDjpe3Y8Rn99O0fSOatGvIg+8P4YJrz61Qa/OSmSs4uOtweU/jdKdSrM1mjnQFoe4Ztah7RhnnXRUiL8fDmrkb0fwqrc4/g9jEguLznlwvKXtTOevCFoya+hDTJvyMUATXPtyPthedScr+NA5sOxTMb5a6JOBXWb9gM20uasXh3SnEV41j68qdaIVqSntzfWxeuo2uV3cOHnO47NidtjCjtkqhUPfMlCwW/LSMxOoJ9LrjEhKqxoXdjzvWTXR8FJlHsoLHdF2nwZl1sVgstOtxFitnryXgMxZ0IQRtLwkVlbjgmnNZOnMVvjxjLg63g/OvNtVAKxOXNGzMJQ0bBz/nBQIMOPMsxs//G2+E0O+yRgI9Pv+YG888i1Fdu5X3dEqMoMJE4P1npJSqEGIoMBMjLvVDKeU6IcTd+effyW96JfCblLLwDmE1YFr+C6AV+EJK+WvZzd6ktBHWxmBtfPyGpYSu54J/CQIV7B0QSsF6J/Vc0A+BvQsifgIy7xPAioi+C2E/xwjV1vZToMCtg/RBYDXS3h60A6AkgbqREMNUepCBdQhnIYVyEUV4LrMEpUDLRepp4J2NUKqB+3qEEsGjJ+INNW5ZaKNbamBtghA2pL1zfn52ofOOzqFjOC4D30IKlFFd4Ox1zO/RpGJx3pUdOe/KgnRXT46H3kO68/GoKfg9xxa3LQukJrm9+XD6De3FXeMHHr9DBcFcm4OU2dpsGtKnOZ4cD09d+WJQLdtqt+KKdvL45GFkpWZzcOdhvnh+Gooi0HWdx78YzgszR6EGVFb8sYa53y5ECBGSXwyGMX14TwrX17oLv09FC6jEJseSm5EbVMR2uB3UbFwjpJ8Qgkc/vY8XbnodxaogdUmn3u1oe/GZSCn554fFjL/lTVRVQxGC9x75jDeXvECNBtXCxnlu+mOMuPRZNFVD9avc+uwNNDqrPgCjvnqAVwe/x4o/1hBfNZYH3h0cNka367uQdiCdL8Z+hxbQ6HlrNwaM7F+i7zU7PYfU/elUq18FV1TxpT9MygYpJWPn/cXHq1agCEGi00W614Oq6+hSlms0mU/T+GrtGi6o18BU7y4npJS/AL8UOfZOkc8fAx8XObYdOKuUp2dyGiL1HGT6EAgsMj5jAxGNjH8Zoach1b1GHWihABIRPwEl8WOk9IN/AdI7Eyk1QhWxAXSktg8ODwMCIFUQcUDhd1AXwhKayiWEgowbD5mPABYQOji6g/0cpJRI70zIeswwihGQPR6SpyEsNcPGIeE9ZPodGGHZAYh5GGFrapyPfwOZNRL8i0BJRsQ+Gz6Gqy9SPwK57xljuK5DRBVNryzue80A7YhRo1pxl6iPSekhpeSt4R/x0zu/oSiC+CqxRjSgpqNpermGevu9AX56eyYdLm1jqneXE5VhbTYN6dOcCfe8z8o5BdEOql8lOy2Hxy9/Hofbjjcn1DP8/A2v8dGm13nqyvHs3bQfIQR5OZ6iwxKdGMU7D32KN6dgEc9OzcYV40IIgaZqNO/UlJ6DLgzrG/CpNO/UBFXVuPyu7lx8o1FGa+yACfw1dUGoYrcvwHsPf8YVQ3uxeMZy4pJjuezOS4iOj6JZh8ZM2fsuB3ceIaFqHLFJBV52V7SLxycPO+730/+B3vR/oPdx2xVmxod/MHHoJKw2Q3RlzA8jOOvC8smrMzH4ZctmJq9ZjaobvzsHc8snRP/s6tWxW6ws3Bcq0qNKnS1pqaYhbWJiAmAYk4HCuh0BkOmQfjsSF5Af7nxUTyR9GLLKb5B+F2i7AAGyiOo4gEjMr0ldyMCWmYA73yjXDKVuV78Ik/KB7SyjjftGhNMoBykzhoHvd0IUu6UPmf0SuK5B+uYiLEmGwatEI+xtoOo8Q6xMSUYo8QXTU6IR8a8d87sRQiCi74DoO47Zrih67peQ/RwIGyAg4V2EvcMJjWFycpn9xTx+/XA2WkBDA47sTTtun9Kg1flnIIRgzd8bQo7rms6u9XtNQ9qkWExD+jRn/rQlSD18y0/qMsyIBsNw/Wr89+xavxd/kRzkowghyDiUScAXqsxosVm468WBVK1bhahYF2d0bBKWq/zDmzN4/9HJ+PJ8CEWwZel23rzvQ/KyPcaud5G56prOtpU7eKL38/jy/NgcVn5481feW/0yUbFu1i/YzPZVu6jRqBqd+7Qv9Ryc/dsO8uZ9HxLwBgjke+mfvGIc3xyehM1uO05vk9Ji+cH9eNTyDRdThGB7egbv972CB2fOYE9WQb6hVVFolFDJhE0qiCiMickpiXc2kf/IJEEjOgQf5LwD6naKry0tQD9MSNg0GMraMY8jLNUMgTJba8NzXAg99yPIfg0jnFqBzLXIzKcxPNmSsJxldPCvCdaJltghbzIk/YhQosG/DNTNYKmPdFxY6muzVLdD9ljAHwwrl+l3Q9VFCGG+CpcXa+dvDEvlK2sURbB7wz7G/DiC565/NaRSjGJRyjXt8l9hrs1livn0OI05vCclmP9bUqQu2bNpf7FGNBihOkWNaABdkzRsXR8toPL2g5+Qm5nHhdedy2V3XMwvk/7Ak+3lt4/nBOckdYnP4w8TDSuMw20n7WBGsCZhwKeSdjCD5298DYvVwvJZq9FVHYvNwnlXdeSRj4eW6oK9Z+M+rHZryJw1VSd1fzrV6x+7/IhJ6VE3Lg6n1YpXjVSrtGzQpSTD5+XWH75jUp8ruWv6D2hSJ6Bp9G/ekgtMb7SJiQkg1T0UbwwXhw7qjuP0k4QZ0QBSQ9jOyFe/fhb0XKSrDzivBM9UkHmGUnYwJ1nH8GgXDRsvjBP0g4Xm4wftMDLjISQS/AuNcYQVnJch4p4/wfs9QdRtxrUKGxkyAHpKuZQ0MzGo2bg6dqctLD2wLNF1SVZKNo/3eo4xP43gyX7j0DUd1a9y2Z2XcPYlrcttbiYVH9OQPo1JP5RhhG8X2Q202CxogchCTFaHlSq1k7A5bUGPq6Io6HrBbrQQIqx0hs1hpc/d3XG67dzXeXTQWJ4ydhpTXpiGrkk09cTFny668XxmfzE35JjqV1n8y4qQYwG/ytxvF3HNQ31p2LreCV+npNRoVD0oulaYxOrxpXZNk+NzfcvW/LhpIysPHqgQm7V2q5V5t97J1rRUElwu6sbFl/eUTExMKghST8FQ4S6aNlVU7KswdsMgDNgpMJYVQj3FgnB3ld0oPYWCTLuDoHGc85bxg36Max4D15X5NaIL4wd/kVJW0g+e6cio2wxht9LCUs/IBy+MEBBJEM2kzOh3T0/++mo+m5duD3tvLGuklLiinUze+Ta7N+wlrkpsmHaOiUlRzPJXlYi53y3ilbve4dPRX5OTESH3CUM8zOc5/k721y/9yLAuI8OMaHesizcWjaV6g6oo1vBfD4Fg9pfzgiHWFqsSJhEY6WF4dvfWDH7pFv76ZkGIFzzgVwn41BMyou1OG8m1E5m04TUefO9uOvdpj915/LBpq81CZkrWcdv9F+qeUYuBT12D3WUnKs6Nw+3g8S+GYXfaj9/ZpNRwWK18dfX1PHVB+StjewIBklxuoux2zqpewzSiTUwqOdI7Az1zJHr2G0g9O3IbPRcpj+XBNdBz3oW0AYQZ0SIWkr4BpSbFvrp5f6bAULZEmkX4IfsFKLEPI72/EOph9uf/nIgR7QBRE5J+Q4kbDY5uxrHjIWygp5/AdU4cYWsK0UPy5xgDwoWIn4BRVcekvLA77bw271nufuWW8p4K3lwf8VXjcMe4OOOcJqYRbVIiTEO6kvDlC9MYd/NEZnzwB1+OncaQsx/BU0jky+/180SfsfSLu5neUTfR03Ydb9w/CS1CiZ/FM1bw6dNfh3mdk2slMn7WUzRu04BPt77B5Xdegs1RyEAVoGkaAW8g6HW1u+wh4l9AxNDpfVsO8uPbvzJl7PcndN9RcW6cUQ5sDisOl51HPhnKZ9vfZPLOt6nbzMhb+d+H99D12nOJTog6pu6/lDKo2l2aXPfIFXyw9hVGf/8In217g3P7mmImFQGronBDq7PKvTSEJiXvL198/IYVHCErx4+JSWmi57yBzBgBnq8h921k6pXIQnWPpfSip96OPNwWeag1+sHm6JnPI2XRnGKQ3j8g9y3CjFelBiLxUxRbC0SVOeC8GihsAAoMoS8fBaWuogg3nCM8/bSd6LmfQO6kE7xzwxg15uGE2JcRVWYjqs5GsdU3rhY/Hpw9jU2A42FtdoLXP3GU6CGI5J8RCe8gkmcjHBeW+jVNjo/VZqX34O4IpXxXZ13T+frFH47fsIJT3mvu6bY2m6HdlQApJZ8/MzWYQ6L6VTKOZDJv2mK6D7wAgEmPTWbZzJXB0lK6pvPzu7+TUC2eAU+Elmxa/de6sNzo6IQovtzzbvCzEIIda3YH6ywbEyFM7MuTHb7DrlgUhAKq3zDULVYFd4yLifee2EJtc9i4athl1GpSk8wjWZzZtTlNzm4Y1s7hcvDox0PRdZ1bzxjGwR2Hg8b90QdzldpJjPr6wRDl7tKkRoNq5m5mBcRmsRDjcJDlK19xky/WrObJrhdhUcy9TBOTyoqUEnLepsB4zc+59c0Gl1HtQWaNg8A/hXpp4JmMtFQ1lKcLj+dfCLJoOHcCStW/gp+EEEhtE6G5zpHEviJFXx31Uh811K0g3IaS9QnhgKg7ENYaoGeA/RyErUVYKyFciPiXkFJDpnQHbX+heeY/+5QaiISJCKUExvZJQFjrAnWP286kbLE5bLiinORlh1eBKUt+fGsmQ14ZVOridyanDuZbXCVASolaxHsspQwR/Fo5Zx2aGrqQqgGNf74P93wl1UzE7goNhU6oFh/WrmHretgcBXstR8s5FYdQBFa7lTvGD6BBq7q4op24Y10k1kggO61k5YZsDhuuGBeuGCe1m9bgmof7cfGA87lq+OURjejCKIrCS7Of5oyOjXFGOajTrCZvLn6B39Svmbzzbc44p0mJ5mByavP6pb0rxIPvFNqQNTE5TdEIKfkEIKVRJuoo/kXhbQiAb2b4cEp1wkKhrcnh7azNgMJr+PF8IorRPnoEWBsbxrOIAqWqYfiXCLvRR7jB2gARPQjhugIRNSiiEV0YISyIxM/BdqbhxbY0QiRNQ6m+EaXqHIStVQnnYHKqIoTg8S+GISzlbMDKyOmJJibFYXqkKwGKotCpTzuW/roy6JX25fl556FPOLTrCLc+ewM1GlZl++pdYX3jq8WFHet1x8XMmPQHB3ccDj4wHvpgCEtmruTXD2fjdDu4+qE+XD/iSpbOXEXqgTQURUFKie4NGIqbEajRsBofrH0Fm93GlUMvY9OSrQT8Ks06NOaWJvcd8x6FIhj80s1cclNXVv+9AYfLTtuLW51wyagqtZOYMO9Ed9dNTid0KQ2RmXJaLB0WC5c2boq1snujzXcNk9McIaxIx/ngW0iBOrUHmT0Gqe1DRN8HltqgbQ3vrIQbyMJ9A9LzLej7Mf7ABCL2eaTvT2Ted6C4EFF3QtQ94P8HtBQQSv7foo9wgz0fSwNE8o8IYUNG3QCBNUZb25nIw8fTjRAQMwrhugz8SwxD2N7phHOLhaUmImnqCfUxOb3QdYmQ5be02F02ul3XJawsa6XDXJvLFNOQriQ89vkw3rh/EvO+XWTUVNYl3lwf3034hcQaCdzz2q2smbuBrNQCz68r2smd4waGjeV0O3hj8Qss/GkpnhwvZ13Yks1LtzH+ljfwefwIAX9+NR+LzYoQRpj4mec3Z/XfG8LyoY9ytNbeUcPXYrXQonNBzlOnPu345f1Zxf6BK4rCVcMuRwjB+Vd1/A/flInJsRnz9xzDmC4HqkVF0b95K4Z17Fwu1zcxMTm5iLgJyKxnwPsbwZrKMg9yJyGVqojYUciU5YSEWosoRMzD4WMpbkieBr45oOeBoxPSvwIyH8MQAhNIzy8grBj5zjrYzgH/Yoo1orGAtTFCGGuzEDawnx08Kx0XgHcaxb99WxHuAUaoq7PniX05JiYnwFvDP0LXy2dtTq6dSI9B3bj5yWvK5fomlRfTkK4kON0O/vfBPezZsI/1CzYHj/vyfMz7bhFXDO3FJ1veYO63i9i4eAs1G1en23XnYnPY2LF2NzUbVcPhKggZsztsdL264GV+VJ8XgrWPpcTwfBeq67f67w3H9ODZnTauGnY5c6bMp3qDqjTvGBpGfc+rgzi08zDLZ61B6hLFooQY5VKX6JqOxXrs8HETk//KwZzIqrplQarHw/BO51Z+b7SJiQlgGL8i/gX0lC2gril0xgO+3xBR10PVP5DemRBYDdb6CGdvwIoMbAZrXYRwFownHOC8NPhZ5txGgZq2BHwRQsePEQ4rnOC+EemZblzLFloTV8Q+idT2Q2BR/vhFS2bpHPWOm5iUJmkHSle5/VhkHM7ilqevrfzeaJMyxzSkKxnxVeNC6jQriiAhP3w7Oj6KXrdfRK/bLwJg8nPfMvnZb7DabVhtFsb//iSN2zaIOK4aOHaJC6nrQfGwSDRuW59RfV9AsSromqT34O7c/bJRziArNZs5U+bTrnsb7nzhJmxOG/d2GBEsvWWxWWjYuh4+jx93jOvEvpB8vHk+XrrtTRZOX44zysGQVwZx8YDzi22fdjCdj5/8isO7jtCux1n0f6C3+QA9TbBZLHjUf1EX9SThVVWi7WbJFROTUwolEULqNCvB8G2hxCHc1wLXAqBnT4Dc90HYABskfoKwNS9m4EAxxwtzDPFES3NIH4zEAuhI900osYY3XOpp4PkZ4bwQGfOYMZ+0/oUEz6xgbWF8FlElmEc4Us9FZo4A31+gREHMSBTX5cW31w4jc14F7SA4uiLctyCEuTafDlht1mD6YlmjazoBXyDE4WRiUhLKxZAWQrwI9MGQndwG3CqlzIjQbieQjRGzpEop25fhNCskd7wwgJVz1hLwqQhh1OC79dkbwtqtmbuez8d8g5pfpxlgZJ8XmLLXUObesWYXHz7xJdnpOXS7vgu97+7BxyOn4D2q5l34fQDDYywUgdTCvdJ2p42Ni7aGCKJNf/c3et7ajfgqsQxu8zC5mbnoms4nNgsPfjCEkV89wHuPfM6+zftBl+zdvJ9BTe9j4sKxVKtXBYD92w7yx+S5SCm56IbzqN20ZrHfy6t3vcM/Py4l4A3gy/Px6l3vUK1eMq3OC385yc3MZUi7R8k8koWmaqydv4m9mw/wwLuDj/v9m1R+miYms/TAvjK/rkUImiYlnzpGtJmHdcphrs3/HhH7KDJ1KcgAIEA4ENH3h7XTfYsg9z0gADI/Cix9CKLqn8a/A+uR2a+BzAZnX3DeALkTCasrHUQjbMEO4gB1FSHGeN5nSPdVIGKQKX1B5mJ4nS0QNxbiXoXsF0HbaYypbkOm9ISkqQhLDWOO6k6k5ydAIFx9ENZ6xX4vMvMxI1QdP+heyHwMaamJsLcNb6tnIlOvyK8prYF/OVLdjYh7qtjxTU4d6javxcbFEfQEShmL1ULjtvVPHSPaXJvLlPLySP8OPCalVIUQ44DHgEeLadtNSllSWclTnjrNavH+mleY990iI5/46k4k10xE0zSmTfiFNfM2UKtxDRZOXxas9XyUtAPp+H0BjuxJYViXkXhzvUgJ21bs5PoRV3Dn+Jv4+b1Z2F12eg66kI9GTjEMcb9Kg9Z12bxkW8h4ikWhcZv69LuvFxPv/SDEkLbarKTsTWXWp3+RlZoVVBRXAxov3PQ6VpuFpu0bYbFa8HsDeLK9+PL8vDr4Xe4cdxNfjv2OedMWI3UdJEx96UdenTuGxm0ie9QXz1hBoNBOps/rZ8nMlREN6SW/rsST7UFTjfn68nz8+uFs7n/zDjO0/BRnytrVbEtLLdNrJjid+DSNllWqkuh0ceEnk6gfF89zF3WnVmzZlHwxMSkh5tr8LxHWxpD8c36utALOXghLFaRUkbkfQ2A5WBrmq3UX8brpB5BSA20XMu2GAo+wuh6i7oWYB8HzjSH05bwKcl4GVMNotzYFdW2R2VjA1gJcAyD7mXzj/uhEbaAdQvqmgMykILc6AJkPAVZDXVuzYOyn5ILuRWY+BTHDkTnvgG8WR8O/Zd4HkPgVwlZMHWj/XEJLdfmRvnkRDWl8fxq54cE5ecDzFTJ2JEKYa/OpzPR3f2P/toNles3Y5Bj8Hj9N2zUiOiGaW5oMpXbTmgx75y6q1omglm9iEoFyMaSllL8V+rgQuLo85lFZqVonmauGhYZGjb/lDeZ/vxhfnr/YzenohCjsDhtzpszH5/EHU569eT6mvT6Dbw5Pou89BblZ3W++gH1bDhKbHMPeTfsZ2WesMT5gc1g55/KzeXzycISAdx/6JBiqDUao+Oal21n864qwslxSlwR8KusXbA6pS61rOttX72J4l5EFnvF8vLk+Phr5Jc9NfzzidxIV6yYnPTf42e6wEZsYuWZ0cYJpZsmDU5sfNm3gmb/n4C3jsO4P+/WnddVqXPn1F8zeuYOArrEvK5Orvv6CP26+7dTxUJtUesy1+b8hLDUhalDIMZnxoGEgBvOcI3VMRAgLuuen0Pxn6YG8T1CqzoeoWwoOu/uButMIJ1e3INPvKTS+HRwXI+JfBCQy+/nQa0kV6V8JvvmEC5TpgN8w+kNeIjQIbECm3kCYZ1x6kDkTEAlvFXNv0fle76PYEEp4NZHgdcJeXsx1+VRn5idzeOehT/HlHSNFoRQY99soGraux70dRrB+4WZUv8rBnUe4v/PjfLTpdVxRzuMPYnLaUxEST24DZhRzTgK/CSGWCSHuKsM5VSqy03P4e+qCoJFb3LozPD90WQgRJhtStPZ8wB8gZV8a1eolk1wzkTbdWnHfm3cQlxyDxWZBDWgsmbGCq6vexuq/1vPCzFHEV43FarfijHIQlxTDF2O/ZefaPcXOW0ZQZ0w/lBFmRB/lqKGcfjiTVwe/wyPdn+HLsd+hqRr3vXkHDpcdi9WCw2UnoXo8l+bnigPM/HgOtzYfxq1n3E/aoQxsDhuKxfj1d7jsdL2mM1abKRlwKjNl7eoyN6IBmiUlcSg3h00pRwjoxourJiUeNcDKgwfKfD4nBQmikvyY/GvMtfk/IvU08P3BMY1ogLhjlWwMXZyl9IN2CCy1EZZqCMd5EDsSRDyGb0QF32zkoU5I/3JE4kcgEgCbUQNaiYXctyOX5Cq4SoRDh4kcXi5BzzT+pR1Bz3wCPW0Qes77SKkhYp8CnIDF+K+lGriuCvbW875GP9IT/UhPpJ4Nwk7Bq6kTnL1Nb/Qpzi/v/1HmRrQQgrrNa3N4dwp7Nu4LRnDqmo4nx8vmpduOM0IFpQKsuafb2lxqloMQYhZQPcKpJ6SUP+S3eQJQgcnFDNNFSrlfCFEV+F0IsVFK+Xcx17sLuAugbt26/3n+lQk1oCGUYytqxibH0OWKDgBcdMN5fDX+B7w5HqQ0FMGveqB3sO3WFTt4tMcY/F4/ql/l/P6d6HbDeVxyU1eant2Q+zo/ji+g4fcEgAAjej7LuN9G8fWBD8hOz2HJLyt4bch7+ecLUVwaV2GKOe9wO7h4wPl4cjzc2+FR0g5moAU01i/YxK4N+xjx6X28OPspfnxzJharwvWPXUVUrBuAv77+h4lDJwUf1B+P+opBY65j7dwNHN6dSrserbl+xJW8eNubLPxpGVHxbu6beDsdLo0QemZSaXFZT6wm+X9FAW448yycVht2SyCs5JaUErvFfEE0KVvMtbkMkQGO669QkhCOCwEQriuQeR/lh3ZLwAVRtxUabg0y7TaO5ldLRy+EqzfCdTXYWiFTr8cw2n3GT/ogZMKniKoLQWYivbMgawzHFCcr/maKOe4CV1+knoNMvRL0NEA18pu17ShxY5GJH0Pel4AVou9GKNEA6Hk/QtZzBA307Jch+iEILAyKjRF1O3rGw+D7G5QYROxohKPLv5i/SUXF4S7bqCyhCK6471LsDhs2hw1dD41S1HWJzW46VkxKRqn9pkgpLznWeSHELUBv4GJZTEytlHJ//n8PCyGmAecAERdrKeV7wHsA7du3P4X2Oo5PfJVYmnVozPoFmyOGLQtFcM1DfbHkv7TXaFiNiQue4+MnvyI7LYeLbjyPXrdfDBgv949f9hxZqQUlguZMmc8/PyyhZZcz6H7LBRGX09FXv8T36Z8QmxhDbraHgD/c81e/RR12bdgb0RN9LNyxLq57pB+97+7B75/8SU56LlrgaH6znzlfzmPIq7fw8u1vc3i3kbI399tFvPzXaBq3acAvH8wK2e305fmYP20xr/49Jnhs7E2vM2/aQvyeAFmp2Yy++iVem/dssTnZJpWP+87pxNzdO9HKIITfKhRGdr2Qga3bAJDocnNp46bM2r4Vj6risFioH59A2+o1Sn0uJiaFMdfmMkSpCrbmEFhD5DrPCrjvDKpSC2s9SPwKmfM66Nng6otw9QeMtVmm3Zmf15yP7yek73ewnwPOXkQMi84YClUXI5R4pJ5LaL5yPpamoG2J0P84iBiIGgzOa5CeqaDnYOy/AHjBMw09+hGjDrZ2KH/OM5GJXxo51Z6vCPVye8H3B0rSp8Ejevow8M0GfKClI9OHGMJnxeVkm1Q6bn7qWlbNWVds2t3JxGq3cM9rt9J7cA8Akmok0Kl3exbPWI4vz4/daaNe81o069C41OdicmpQXqrdl2IImFwgpcwrpk0UoEgps/P/3QN4pgynWeHJSs3m6xd/IGVfGj1uuZD4KnHM/35xWK5vVJybnoMuDDlWr0Udnvrmf2Fj5mV7yErNCTvu8/hZO38j7Xq0RlfDH3beXB+eHC/uGBfbV+0MGrqF2bmu+DDvwtgcNqo3qAII+j9wOZff2Z3s9ByGdhzB1hU7kBGetT++OZP92w4R8BV4wV+96x3eXDwOhztcidGTHRpq98+PS0I86AGfypIZK01D+hQi3evFpljQtNIP7xYCejdthiiUM/FKj158tnolyw7so3FiEned3QFbZfZIn14m0WmBuTafHKSehsydZBiPrutAJIF/NmF/NCIW4b4i9JCtGSLhzQiDZhhK3mF4wb8Y7J0Irf98tF82hvHsAHUjEQ16bXMJ7gpjDKWWEV0WdQeK+2qknm54orWNRHwo5H4K2j6CBrwUyKxRiKSvDfG0sPnmhn72zSHUg66Cfx6YhvQpQ+aRLKx2K35PhE2ek4zUodv154WszU9MGc73E2ewYeEW6rWozbUP963cwrPm2lymlFfswhuAAyMkDGChlPJuIURN4AMp5WVANWBa/nkr8IWU8tdymm+FIzcrjyHtHiHtYAaqX2X+tMVc83Bf+t7bk9fveZ+UfWk4oxy0Oq85d40fCEKwcPoyohOiaHlu6At+YdwxLhwuO3nZ4blQfo8fTdW48NpzmfV5qPMhLjkGV7QTXdf59aM5J3QviiKMEPNoB1KXPPXtw7TvcVZIm1fufIcty3eEPSDsThsderUl7UB6iBENkLo/HYABI69m4fRlIZ7w3Rv3smPNLhqcWQ8Ap9uON6fAuLbaLLhiTKGJU4kdGenoZbTCKEIQ5wj9/bEoCoPanM2gNmeHHF97+BBzd+8k1uHkimbNiTLFx0zKD3Nt/o9IPRuZ0g/0VEAF7+9GOHPUTcjMp0E/DIobbB0QsY+C1JHeOaDEga1tsWszItZQ3JaBCCe9gAUcPcD3c+gppQpCOAxVcO/3J3g3Csai6wYhEfFvIxydQ+83Y0QxRrQDHBeDPEioF1wGvdMi+j5k2tzQvuompLrVUEEHEA6QhTe+rUaut8kpw74tB4JVVEobq92COzZ0A8disdB/eO+wtpuWbmPFrNVEJ0Rz8U3nm+JjJhEpL9XuiDET+eFil+X/eztwVqR2JvDPD0vISs0OCiR483xMeWEaA5+8ho82vh7SduPiLdx99sOAIaTQumsLnvnx0WCod162h7QD6VSpk4TD5WDU1Id4+srx+CLsDu5et5dHP7ufpFqJfPPKT9jsVmxOG8/9/DhCCHRNL1HothCCJu0acs1DfWhzUSs2L93GrMlzSawWT+2moeGuGUcyWfDT0oi7bC06N+WJL4fzz/dLmPXZ30GhMpvDypnntwCgcdv6YXNSFIW18zcFDenBL93Ma3e/hy/Pj81uJa5KLN0Hdj3ufZhUHhonJqLqpR86BnBxg0ZYlONrOf6+bSvDZv5MQNOwWSx8sHwp028YaBrTJuWCuTafBLwzQc+iIMTZAzlvI6qvRlT9PaSp9K9Apt+G4eLVwN4Z4t8KhnpLPQf0I2CpgRBOiJ+ATB9KxBxndQtKwqvoWdUg71MMcTEnIuG9/AaRFLEjIcDaCqLuQDg6In2rwPsTWKqCNTTHXWop4P878ri2doj48eCdifT8QkEItx3sHfPbtIhwfQv4V8BRQzpmBGSNxtgssIMlCZx9SnAfJpWFus1rlUlYN0CXKzqilGBt/mvqAl4c9AZqQMVqt/Ltq9N5a9k405g2CcPMpq+kBLyBsBBuXdORUobtaI+96XXysgo8zKv/Xs+fU/7h4gHnM3vKPF6+/W0sFgUEPPP9o7TvcRYv/zWaoec8FnbdqARDJOSOsQO47pF+ZB7Jomq9KtgdhpCTxWqhU592LJ2xEr8v0s65QUxiFG8ufgGAVX+t45lrXsaX50exKMyY9AdvLR1HrcaGQf3irW9G3K1UFEGHS9tis9voek1ntq3eydfjf0RKSYtzmzH8XUNM1mKx4I5xhXjZhUUhvkpBDd9LbrqAKnWSWfzLcmKTYrnszouJiosqdv4mlY9MrxeFiMGPJ50/d+0oUbsn/5wVVBLXVJWDOTl8u2EdN59lCt2ZmFROfIQ/ZdSIa7PMeDA0lNm/ELy/gusy9LwfIGskCAugQMK7CMcFyMRPIO368MsqRrlHJXYEMnqIIfplqYUQxqacEHakoyv4/iFinvRRRCJK8rfG/Hz/QOYwDCNWMfKgk75HWOsY5zMfJnLutwXhvMC4prM3BDZC3ofGKXv7fCVvMF5BnYTkSQthlPU6elvu/khLTaTvb4QlCVzXBcXKTE4NstNyURSBdoL6Of+GhdOXlajdG/dNCjqTNNXPkb0pzJ48l8vv6l6a0zOphJiGdCWl/aVtUP5XkMNhd9roeHm7iDttqfvSQj77vQEO7TrCkb2pvHL72yF5KU9eMY6pBz+gabtGJFaPJ+1gRvCcEIJ+QwvqTMckRBOTULCg7d64jzeHfciRPanUalaDnLRc8rLzUCwKnhwfUpdoqobDbefqh/rw7HWvcGjXEXat3xss3aVrOp5sL1Nf+pHh7xjlujYt2RZxw9vudnD+1Z2Cc7vt2Ru55enrUAMqDpcDvy/Age2HiK8WxwPvDeal295CAhaLQuO2DTi3X4eQ8c66oCVnXdDyON+8SWXlSF6e8fehlX4ImVZCz3eOP/SFNqBpZPnKtgzIv+VUKl9hYnLSsF8A4sVCa5YTnBdHDtnWD4d+ln7Q9yPVvZA1CvAFx5Hpg6HqQoStDVIkgiy8rgtwDyj4pMQZoeJHhw1sQWY/B+pBsDQwBMv0XKMfRxXCVWOuUbehp98P2n5Qt1JQuksHmYvM/QgR96RxKLA28ncgnOA0xJyEEIjYh5ExDwAqQjiR0odUd4OlCsQ+k3+v0tg0sJ0F+SrmweEcncNCyk1OHdIOZlAGGqAAJQ4h9xRJb1T9Gtlp4fpBFRFzbS5bTEO6klK1TjKv/v0Mr9/7PmkHMmjfsw1DXrklYtsGreuxeem2YOiM3WmjSbuG7N6wF6vdGhrCLeHInlRqN63JpA2v8eglz7Bz/V6i49w8/uVw6jStGfEaaQfTub/z4+RleZBS4nDZ6dSnPSOnPAAYOd2/TppNxpEsGrWpx6t3vosnxxvmVQdDnTQno0DnpmrdZLJSsgoetALqNKvJyCkPUqNBtZC+FqsFi9XC6r/XM6rvC+iajq7pPPLJUCb88xxr520kvmoc5115TuUWkzA5YdrXqIlSXP7hSaZn4yYlate1Xn3+2LEdf75xb7daOK9uvdKcmomJSSkirLUhcTIya7SRJ+24ABEzInJja1NQN1DgwbaBtQVo2/LzoQvnBmugHUJY6yCTZ0L6IMPQFbGQ8DpKkbDro0jtIDLtunzPt8Qw7HuixL9onNezwfM1Us8EazPDCy7ziBwGrocKnllqgFpIRRwBlkaI+AkIS63Q70VYASvStxCZMcRQfUJC3MuIpCngX24Y1o5LzLrRpxmtzjsDm8MadKiUJhdce26J2p3dvTVLZ64k4DMixqw2C2d3b12aUzOppBw/UcCkwtLorPpMmPccn217k2Fv3YndGTmvctTXD1K9QVXsThsWm4WrH+pLh55tqN6galiZKk3TSayRAEB0XBRvLhnHz7mT+Wr/+8f01i6esRJN1YKGsc/jZ+63C9HyDYSoWDf9H+jN7c/fyIHth/F5fBGNaDBqCl5yU0F+8iMfDyUqPgp3rAtnlIOoWBeZR7J47e732LvlQFh/n8fHqL4vkJflwZvrw+8N8OKgN4lNiqHfvZdywTWdTSP6FOXTVSs476P36PLhe0xavjTkd6xWbBx9m5a+0mtVdxTjL+5ZorbjL7mUbvUb4LJaSXa5efGSS2ljlsQyManUCFtLlKSvUar8gRL7ZDC8OqxdwhtgqYmh72aF6MEIx7lgqR0uKiYlWJIBUCxxKMnTUKqvQak2H8XervjJ+P4CqVJgGHvB+zMyv/yFUGIQUbejxDwI6o584704l5YT4SrITxZx440SWCIacBn/1VKQWSMNj3MRpJ6Xb0TnYnjCvZD5ECjJiKibEM6ephF9CiKl5LsJP3NjvbsZUH8I30/8JeR8zUbVSmzg/heSayfxwHt3lajtiM/up33PNjjcdhKqxfHoZ/fTtF2jUp6hSWXE9EifBlStk8xHGyeQdjADd4wLd4yhWFircQ1uGX0tnzz1NTa7FdWv8tCH9wTPnwhWW/jiJ4SIGM5mGDeRPYNWu5X73ryDTr0LXgzqt6zDJ5snsnbeBl6/9wPSD2Wga5Ls9C0MP28kn259I2TOR/akhomLWe1Wdm/YS5XaSSd8byaVg2kb1zNu/t948nOOX1k4nyi7netbtWZXRgZXfDWZQCmGdStC0KV2Xd68vC92a8kerVF2O29f3q/U5lSqmOFjJib/CWGpBcmzjBBvEYNQDF0OYW2EjL4Hct4CYTUM4bhxiEjloo6LjfD1VolwDIw/6uL+sO0QOwbhKNjkFrYzoMrvSP8yyHo6X6lch8AqZNr1kDwLoRRS2Nb3hw8rbIYBb6la8lsyqVT8+tFsPnziS3z5YrAfPPYFrlgXPW/pxt7N+7mv0+OogdIrSykUQYdL2zDyqwexlnBtdse4eOb7R0ttTqWKuTaXKaZH+jRBURSSayaiBlS+fXU6n42Zypbl27n2f/14f/XLPDn1IT7a9DrdrusS0s/v9fPa3e8yoP4Q7u3wKBsXb4k4fue+7YmOj8KSb1DbXXYuuPZcDu9OCWt74bXnYnfawtZxh9vBLaOvBQlzv1sUIlYWmxRDvZZ1yM3MQ9eMp4TUJQFfgK0rQoWdEmskhOXBqH6VavXNhfpU5tsN64JGNIBHVfl2wzoAHvvjNzJ9XvLUcAG8kxXs3bl2HT6+oj/RpuK2iYlJCRFCQViqAz5k7iT07DeQgfUo0Xcjkn9ExE9EVPkNxdUrpJ+UXvTMJ9APX4Ce0h9ZXL6y8xJQoinwmzjBcVlEo1a4ehv5zeGDQPSDCDSkdyZSFoTgCiURYW2Q72U+GqKuG55tdWPoMErVfO944Rvx53vlTU5Vfv/0r6ARDeDL8/H7J38B8NLtb5GTkYs3N4I2yElanDv0astz0x83FbdNSgXTI11J8eb5eG3wuyz8eRnuGDdDJ97GuX07HLNPVmo2d575IBlHstA1ncljvuGJKQ9w/lWdqNmoesQ+4255g4XTl+L3BDi8O4WHL3mG91a+RI2GobnJUbFu3lo2ni+e/Zbta3exafFWFk5fyrzvFtL3np4Mfqkgf7tmo+o8/d3DvPO/T8k4lIGUkqj4KDr3acfkZ78DDHXT6g2qMvDJa/Dm+Wh13hk4o5xoaqiIk67puKJDH47uGBcPvDeY1wa/h9VuIeDXGDCyP7WbmCGzpzKRDNhou50cv58l+/dG7GNTLFzRrDk/bt6A7z96qxft3cPjs38jzeOlR6PGXHVGi+JrwpqYmJySSD0PmfUE+P42vMxxTyOKiGeF9dFSkam9QU8HdGTum8j4N1CcF4O1fuQ+GQ+Cby7gA/0AMu0mSP45PDdZiYWkH5A5b4G6CQJrwD8LeWQG0n0zSuzDBW2tDZDxr0P2eEP1W9cN0TLnRZAzAXn0eWaph4y6B4EHbO2Nus5hBrIWVu9ZKLHI2NGG9/qopz36/qAKuMmpSVRseN3vqDg3uZm5bFi4OWIfm8PKxTd1Zfbkufi9xVeAKQnLflvFK3e9TWZKNuf378QlA8zSpiYnD9OQrqS8fMfb/PP9YvzeALkZeTx/42u88tczYTkc3jwfMz74g7QD6aQeSCf9UIE6oqbqPH/jBMbPiuP7iTPQVY1+Q3vRplsrwAjBnj9tcYh3V1c1lvy6kr73hOeAJlSN497Xb+PGeneHiEZMf/d3zrnsbNpedCYA21btZHT/l9B1HYQgPjmWiQueZ3Cb/+HNLRBX2bluD88PmICiCKQuefjjoVx0Qxf+mroAb64Ph9tOy3Ob0ahN/bC5XHLTBbQ6rzm7N+yjRsOq1GlWK6yNyanFsI7nMm/3LjwBY9F1Wm080KkLaw8djNjeZbXy1dXXszHlCHarhanr1uD/D3WmVSn5Zv06NCmZt3sXB3OyubdDp389nomJSeVDZj4Kvj8xFLezken3Q9JXCFvz0HZ6HnimIvUjoB7KD4s+igYZw9ATPoK8zwCJiLoZYTc2y6XUwTeHkNJTUgffPHBfFzYnYUlGxD2Jfvg8wFsQ+pn3OdJ5YcG4gXWQMcwYSwgjJztxKqReBngK+qkbIfNB5NGCgvEvg/NS8P5utBMusJ1jiJcVQXFfhbR3AG07WOoa3myTU5qbn76WlXPW4s33SjvdDgY+dQ0bF2/FcDuHxiK7Ypy8POdptq/ejcWiMPOTP1F9/z70WwtozPzoT3RNZ9lvq0k7kM61/6ukKVUmFQ7TkK6kLJq+LGSXLuBTWfLryhBD2u/1c1+nx9i/7SB+TwDFooSVGFD9Ko92H0MgP4x6ya8reeq7h+nQsw1g5D4XNqQVi4LdVXzoqq7rpOwNLbela5LdG/YFDenX73k/pKZzql/l4YtHc2RPakg/qUvUQmJozw94jfG/P8lZ3Vqxedl26p5Ri8vuuDhiyS+A6vWrUt0M5z5taJ5chR+uG8A3G9YhpeSq5i1plJBIvymfo0UQtvOoKldP/RJFiGAt55LgsFgIaFpYpVgBwet41ADvLltyShvSZokNE5MI+P7CqCV9FNUwcAsZ0lJ6kalXgbYvv22kNcwP6bdytOaz9P0FCe8YYmQIwEJoDWelmLDso9cMgH6k6FFQt8FRQzrzyYK61hKjBFb6wPAyXUigkJcwYxgkfIpwnIsMrEdYG4PrmmIjcoS1Dphe6NOGJmc35I1FY/ntkz8RQtD9lgup3aQGd7d7JFhNpjCebC/DuoxEUZTQqjLHwe60oQbUYPpfEEHwOr48H1+OnXZKG9Lm2ly2mIZ0Bcbn8THuljf454cl2Ow2Bo25jv7DewPgjHLgySnw3lrt1rDwmQU/LuXgziP4PcaCF+mBBQSNaOOafr58/js69GyDEIKBT13DZ898gy/Ph9VmISYxmvP7dwRg2e+r2L56N7UaV6dz3/YIIVAUhSp1kkJyoxWLoF6L2sHPaQcyQq/vV9mxJlzhMwwJLwycyFf73qP7wAuO397ktKNRYhKPdikI21p2YB/b09OLbe//F+HcPk1DAE6rFU2XqLpG1ago0jweAoU82iWtJW1iYlK5kNKDzPif4RUWdoh+CCVqoHFSuIqUrbLm5ygXwvsb6AcoMLiLe1YUNiK8yNx3EY5zEULki5G9i6F+bQNLAjguMebn+xvULUbNaEe3fOFPG1KpUsQoFmAtFMWmF9U0UUGNHHobioTMRxBV/0K4ripBe5PTjXot6nDnuIHBz6v/Xs+BbZGjxYBg2akTwe8NIIRR+UVTNTRVJ6lGPOmHMkPSAot7FzYx+TeYhnQF5o37PmTR9GVoAQ0toPHRyCnUbFSdzn3aM+TVW3n59rfwef3Y7Dbiq8bS/ebQvI/cLE+YenVhhAI2hx1/kR2/gD/Ap6O/ZuOiLdRvVZcH3h3MyjlrSaqZwEU3nMerd73DqjnryE7PRShgtVk5/+pOPPLRUABGT3uEhy8Zja7pqH6VPkN60qZbK9IOprN7wz6andOYtIPpQY+61WHFEmHnUQgRViIr80jWv/4+TU4/tqWl4dVOvhqoBAKaRpvqNfj66uvZm5VFry8+CRrSLquV/s2LLxdnYmJSeZGZTxk50KhGnm/2i0hrPUPROuZxyBqFYSTbjdrIzj5FBsghLDwsBIFREssbelj3o2dPMPKcbc0gbgz4F4BSHZyXIzNHIP1LQGYZYwgbOC9HxD1njJrwNjLtVgwxsAC4ByLsHZDaYVC3g601+NIoMPDtGN7yohuO4eG4oaHpJibHZtf6vaVSN1pKUP0arc47gxf/eIr92w5yd9uH0VTjd9rhdtBjULeTfl2T0xfTkK7ALPl1RUj4ti/Px+IZK+jcpz3dru9C1brJLPl1BTEJ0Vx6Wzei4qJC+re9qBWFI6tsditndGpC3ea12LR4G/Vb1qFT73a8eNubwQea3WXD5/Hz9fgf8Hn8rPpzHXWb1+aNRWMJ+FVubzGclH1pITt6ql/j76kLuPZ//ajfsg6N2zbgi11vs2fTfuKrxLJ/2yFubT6MfZsPYHVYkVJSo0E19m05gKIodB94IbM++zNk7vFVY+l2fRemvT4jeEyxKDQ8q97J+4JNTnmmrF1damNrUrLm8CGEENSJi+Prq6/n2bl/kubx0KNhY+7v2LnUrl3uHKtKjonJqY4/X+QriBfpm4twdEVx90NaayF98xBKPLiuRhT1SNuPhmcHD4C9HVjqQGAtWJuCoytkPk6BMe0wDOTcScYx/yKwNkUkfQ3Si0y5ND90u5C3TQbA8xMy6naEtSHCdiZU+Qu0HaAkgbod/XB30Hcbc0A35qDtBCzgugo834XOXVQxPN/eLwsdtICtxb/9Nk1OQ2ZM+qPUxtZUjY2LtyCEoFbjGrzy1zO8+79PyUrJ5rz+HRkwsn+pXbvcMdfmMsc0pCswsckxpO4vCEu12q0k1ogPfm55bjNanhsu5nGUGg2r8fwvT/DyHW+TmZJF664teOTje8MMbrvLzpdjp6FpGpcM6MoHIz4PGvB+b4B9Ww6wedl2PDlecjJyI4bFWG1WMlMKvMWuaBdN2zVi4+ItjOw9NuhtDuSPe3jXEd5eNg5dl/yv29MoFgtgeA6TaycydsZI6resQ7X6Vfng0c9BCGo0rMroaY+c2JdoclpzKDe3VMePdzj5afNGvKrKeXXq8cVV15bq9UxMTCoAIh4o7IG1g5JccNreHmFvX3x3a31IeA+ZNRL0DLB3QsSNDTO4pXAgc98z3GzOvpDzEgWGtQ+0bYbwl55apPxU4YvZjGsc/ahEgdIK6V+BTB8SOh4YedFJ043w9PSbCcnfFjURSR8grI3Rc+pCzsuAMETD4icWe78mJkVJO1B8ytXJIDY5ltlfziPgC9Cux1m8NPvpUr2eyemLaUhXYIa9dRcjeo5B13QURSG2SgxXDO11/I6FOPP85ny86fVjtuncpz2d+xiL/v5tB5n0+OSQ80IIdE3HYlHCQq2PkpflYUTPZ2nUpj5PffM/4qvGovpVZn32V0SxCIvNyqFdKbx5/4fkZuYVHLdaaNCqLvu3HqRei9r0H96bfvdeSl62B0URYZsAJibHon3NWszctuVf5UIfC5fViKxAGDWqpZQoQmFK/2tpWbXa8QcwMTGptIi4Z5Bpd2CEPFvAkoRw33hiYzg6Iqr8fuw2zu4IZ3cApLodmfNy0RYFcyjODSVzkGkDkbaWhrGrJIAMID3fERY6DiBsCH0fMmOkEYIexAq2JqDuBmtjlOjbkVEDDfVxFFBiSnTfJiZgOIIW/LiUgP/kpl45oxxIaQjVvjr4XZASxaLw6t9jaNjajGg0OfmYhnQFpuW5zXhnxYss+XUlTreDrtd0xh3jKtVrVm9QlXot6rBjzS4CPhWLzUJclVianN0AhKBK7ST2bzuE6lcRoiDN6+iDa8vSbdx11kPkZuWhCEF8tfiIuc5aQCU7PYdDu0JVRLX88lpr5m6g7z09uXPcQDYu3sqTfV8gL8eLO9rJMz88SqvzQkuJmJhE4tlul3AwJ5vlB/ajSaNYixAioop3SXFaLNzUug1+TWPymlWohUTFRs6ZxbTrBpyEmVcCzPAxk9MUYe8Ayd8batzCDc5LDU9vaWKpZ9SUVrdhiJBZQakC1jMAafxb82OoaRfOYc5X2A6sRqb0BpltnBfJRMx1lgGklgLyUJEJqOD/C+lfjIwahBLzAARWQfrdID1IEQ0J7yLsbUvtKzA5dXjgvbtJ2f88GxdvRVd1hGKI1RauEnOiOFx2rrivF7mZefzywR9ogYKxXr/3fV6b++zJmHrFx1ybyxTTkK7g1Gpcg1pDa4QcC/gDKIqCxWo56ddTFIXxs57knQc/YdOSrdRrWYd7J9yK3WmUvHr9n+f49Omp7Nqwl5z0XLat2hlSokrXJTnpRjithiTzcCaKRaBrBI1pxapw78Tb+PrFH4udhzfXx3ev/cwVQ3vxxOXPk5dllMvKTs/lid5j+WL3O2Eq5SYmRYlxOHj90t7szszAbbMxf89uZmzdzKpiakuXCCHo1/QMbv3xuxAjGuBwKYeSm5iYVAyEtQEUqYEspR9QEOLkv1oJYYHEz5FZz4G6zsiPjn0CIfLLUSZ9g8yZAOpO0NNB3URIiSp0kJmFJptGuJCYFWKfhtx3jzETD+S+j+6+AdLvKlQuKwOZfgdU+bv0NxVMKj3R8VGM+upBDuw4hDPKyfJZa/h76j9sXrr9P43b7YbzeLT7mBAjGghJkzQxOZmYhnQlIuAP8MJNE5k3bREI6HX7xdz/5h3F1lH+t0TFunnogyGRz8VFMeTVQQT8AXpH3XTcMgJqQCO+ahwdLz+bnIxc2l3Smguv70JMQjSTn/32mH0Vq4Xtq3dFPLdh4WaW/raK1H1pdOrdnotuPK/YmpUmpy+vLJjPe8uXYLdY0KWkQXwCG1OK1lI9Ng5FwWqxoOo6fk1D1TT6TPk8rJ0AutSpe5JmbmJiUlmQ0ofMeBB8fwAC6boBETsSIU7u2iyUGET8C8Wci0XEjjJqVB9qS7jSdlEChnCY8zzQc8BxPsJ5GUKJRc957Th9FQhsJFQwDUAiA6uQvj8N4TPHJSiuy0tyayanGZMen8y3r/6MzWFF6pJaTWqwY03k973isLtsWCwWNFUj4FNRAyp3t304LAJSKIJ23VufzOmbmAQxDelKxEcjv2TRz8uCxuusz/6mTrOawdrSZUlJ6/AJYYSL/2/SPWHnLrnpfL54flrEEl0Wq0LVusnUP7NuiMcbIC/bwxOXj0VKidQlC39axoHtB7lp1DX/7mZMTkmW7t/HpBVL8WtaMEd63ZHDx+kVigJUj4nlp+tv4u6ff2DRvr2oxYSF2ywWnr7w4v86bRMTk0qGzH4JfHMJin15vkVaGyKibiqHyZQ0NFaAtS5K3LjwU84+kDeJyPWtrWCtB9bGhip4yLVzIP32/H4SvLPRtT0o0Xef0C2YnNqs+nMd30+cQcAXIOAzfoe2rthxQmMoFkHVulV4a8kLPHH5WNYt2BRSK7owNoeVIa8O+q/TNjGJyMndLjUpVZb/viZEuMuX52PZb6tOeJx9Ww9w7zkjuDJpEMPOe4I9m/aRfigDXT+2cSylxJ//0HO4HLS56Nh1cl0xLtyxbh58b3DE8wOfupbeg7tjc9iwOW107H029VrUxhXtJDohGofLzvR3fuPaR/vhcDuwOfL3faRhyB81wL15Pr584ftihdBMTk+2pJWsrmlxcQzJLhd3tuvAD9cPINrhYFNqarG51RYh6FKnLm6b7V/OtnIhACErx4+JSanj+4dQ4S4P+Oef8DB6YAd6ypXohzqgp96Aru5EaqlIefy12Qgrz1fltrY79oVEFIgYRNyYyKdjHgDXNRglsexgvxgsjfL7xYK0gWcqRN0GOPPbHUWjIEnTA7nvHP/GTU4rdq3fix7BgVIYIaC4IMPEmglc+3A/3lg0Fle0i53r9qAXY0QrVoUOPdvgcDn+67QrBebaXPaYHulKRJU6SexYsyv4ALLYLFSrV+W4/db9s4lDu47QqE19fHk+hnZ8LGiErl+wmduaD8dqt/J/9u47PIriDeD4d3avp5KE3jvSQUBBBBEb9l6xYVd+drBgARsKYkGxdxHFigoigoKC9A4iIL3X9Fzfnd8fGy655BISEvp8nieP3N7s7OwZmHt3Zt5JSkvgpd+epH7LusXqmDNhAS9c9zq+XD81G1Xnqa8fZPfmkgMVIQT3jbqVjme2pUr15JhldF3n3lG3ce+o2yLH8rLyuLnFfWTtySFrdzZbVm2jy7kdGTFtCC/3G8WG5Ztj1lWRBBXKsalxlZRS37dpGnah4TNiZw19umdvzmtWsL1c7YRE0n3eyFdETQg0IbBrOjXi43nxjLMrq+mKohxN9BrWVlSREVw76LVKPUVKCaEFYOwAe0ukmQ3pVxEJQkMLYc9ZSOzWns8pHyNsjYvX4/8dmfWwlfBLrwdJr4NZNFFYEQnPIJzdEHpqzLeFsFlBdqFAW5pZyN1ng8wEIx3y1oHrDETqaGTmI/n3H+tGKzcrs3L0q9O8FppW8lI8m11Hd+gE8orv+ALQf+QtnHrpSZHX1eqlkZNekGFe0wRC07A7bVSrl8b978YezFGUyqAC6aPI3a/dzIpZqwgFrI4pLsnDDUOuKvWc1+96jymj/0JowhrNlkRPpc7/YzgYZu+2DB495znGbHwnar3x9vU7efaqVwl4rX0mt6/dyQM9norsNR1LUloCvfv2KPc9LpyyDL83EJk6HvAF+XvcXB75rD81G1WPGUg73A66X9JFrZFWonSpXYe+bdrz2dJF1myKQjMunLpOr/qN+GND7C9/NiGK/T4NP/Mcrvz2KwxpYkpJi7SqjDizD4Y0qZeUjK2ScxUoinJ0EIlPIvdeYU11FoBIQsT3L7G8lBKZPQh8E0Bo1p7N1juFS+X/NwTmTmT6rYhqU6PrCW9EZj5AZDTc2AgZ1xaqLwatGprngnLeIVaGcgIUPCzwg/8XSHoR9NolBNIucJVvy07l2Nexdxv63NqbCe9OxpSScKDgYYvDZadznw7M/WVRzHN1m46uR/e1j3zanwd6PoU0QZomjTs0ZMBHd2MaJjUbV0fXKz8xr6LsowLpo0jNRtX56N/XWfDbEjRdo3OfDqVmrl41bw2TP/8rEgCXRcaOLLzZ3qj9mv9bsA7dVvAPl5QSf56fWLNcbQ4bDpedIeMGlvmaUfL3rC7MNEze6P8hVzx0IQunLIvcj9AEqbVSOPXSk7j1pUOzFu2ntyfxzcs/IaXkiocu4KJ71JeEI9ljp/akb9v27M7LZeaWzfy0+l/cNjsPd+3Og79NjAquC0t0unDoOnO2bKZ9jZo4bTaapqYy9cZ+LNqxnTi7gxNr1kI/noPnY2hqlqJUhLA1gKqTIPA3oIOzB0KLL/mE0GIriMZXxr9HEsztSNOL0Ar1+aFlIPRCdciCLNrF2EG4EMmjynLBGAQUm2JuIrOegbjbITiXguntArTq4OqDSHjoAK9XdlJKpPdzyPvYunbcrWhx5dvXWzm07n71Zi7537mk78xk4ZSlTBs7E3eck34vXMdzV70SWTtdVGJqPJpNY8mf/9CyazPsDjsN29Tns//e5N85/+GOd9HqlObHd/Cs+uZDSgXSR5mktEROv/bUMpXdvWVvVABcJsJa21xYSo3k4snFhEC3CYyQdVxogrY9W9LvuWuo37JOVCBeHuuWbIhaB77P1K/+xggbvPrXM/z09iSkYXL+nWfRokvTA7rOgZgy+k/eG/B5JJB//5EvcMW5OPumXoesDUr51U1Kom5SEh1r1aZ/l5Mjx2UJvU3HGjXZlpPDA5N+ASQ14hP47sprSXQ6SXa56dWg0SFquaIoRwuhpYC7jCO9xvb8kejyXEEHEd03o6VRvBINa1jcKHht74pIuB9sjUsP8EshQysAX/E3/D+BMBGpXyC9YwAQnusQ9tYHdJ0DapvvO8gZUdC+nBcxRRya56JD1gal/Go2qk7NRtVp1bU51xdOFltCLpJW3Zuzc/1uhl77OlJKqtWvyut/P0dcoofE1AROOrfjIWq5ohQ4jodTjn2N2zcode2wpgt0e/RTOyEE8ydFJzBrdUoLul7QCVecE1ecE6fHwR0jbqR6/Wq4E1y44100aFWXIT8MpGXX5gccRG9fv5Oxw8bF/HIR9AWZ8f0cmnZsxEPv38XDH91zSINogEkfT4sa3Q94A0z6ZGopZyhHshvbdsBWZPp297r1qZOQyB6fl7xQkLxQiM3ZWbwya8ZhaqWiKMcce6v9ZNfWgKIjagKCM6MPOU4Cx6kgPIAbcEH849b6bBFnHbc1Q1R5E+Fod+BBdHg9eD8p4V0/+H9F2NugJQ1FSxp6SINoAHzfER3k+8H/w6Ftg1JpLrznnGLfTbuc24HUGlXI2JmFN8eHL9fPtjXb+fyZbw5TKxXFokakj2E1G1bn0c/v5cW+I6NGeXW7TkqNZB79/F4eP/f5qI3rjZDBqnlr6NKnQ+SYEILHvriPBZOXsnvzHpp1akzjdg244M6z+G/BOoQmaHZiI2z2iv067d68l3Co5C8XDpejxPcOBXeCq9gxT5HRe+XocVvHToycOyvq2MId26geF0e40JTvoGGwJiP9UDdPUZRjlLDVRyYNg6wBWOuO97FZU6KThkPGTUTvBW1YU7mdpxTUIwQkj4TgjPykZW0Q9hbIuKsgtBzQwd4KISq4m4CxHSg5JwriMGdEFjEe3sc6phwVrhx4EV8OjX4QsvTPFaTUrBI1OBQKhNm0Ysuhbp6iRFGB9DGu+yUn8WP2Z2z6dyvvPzKarau30bRTY+4ddSuJKQmk1U5l63/bI+VtDh1Pops5vyxk1yYraG7eqTFCCDqd1S6qbofTTqtuzYte8oDVbVE75p7SADanjVuGHt41Tzc8fSWLfl+GP8/64uOKc3L901ce1jYpBy4nFMSmaRhGQcesCUH9pGS25eQQyD/ustnoVLP0DLzHI6G2m1OUA6a5z0G6zkSG10D2MDA3gr0tInEwQkvE1KuDUTi5po4kHvxTwdxhlbW3soJpZ/RyLyGc4NjPFljlYWtCyfPQ7RB/gDlRKolIuBe5dx6RUWnhRsTfc1jbpBy4vEwvdoctegDIplGrcXV2b94bWT/t9DhodUqLw9XMI5bqmw8tFUgfB3Rdp2Hrerww4fFi7z02+l4e7j2EgDeANCXhkMH7A0djKzSt5s5XbuT8O84q07WklKyat4acjDyandiIpLTEMrezSrUkajSqxo51u4q9JxDkZXtLPHfv9gyevXIE/y1YT5UaSTz6+b20ruR/YJt0aMgbs4fy68d/IE3JOf1Op2HrepV6DaXyGKbJF8uWsHD7NhpXSeHWjp1wF9rnOc3tIc0Tx7ac7MhXRMM0GdSjF4P+mMySHduRwMl16nJ355NjXkNRFOVACaEj7M0h9cPi7yWNQKbfSEGm7BDkPm9th5VPJj6B5inbw1xru62lILPB3hqhVSl7O/VqSFET5PZY74LMKfm6xg5k5r0Q+hf0aoikEQhH+zJfu0zts7eF1K+ttdIIhOcKhK1JpV5DqTyGYfDTqF9ZOXcN9VvW4fIHL4iacZhSM5mE1HiCWzOs31vACJvcM7IfL/d7i/8WrENK6NC7LVcNVOvglcNLyGPwyUWnTp3k/PnzD3czDpl5kxbz3Ss/gxBcOeAiOvZuU67zP3/ma8Y8/wPhUOz9Hm0OGz9mfYbDWfr0MNM0eebyl1kweSmariGlZOAn/el8Tnuc7pKnfmXuzuLPr2cRDoWZN3ERCyYvjVnO4XbwxqwX2LxyK7Wb1qRJh4aA9QXhtrYPsnnltkhSNIfLziX3nkvLrs3pemEntTXWceiBSb/w29r/8IXDOHWdZqlpfHfltVHbVG3MzOS2n39gbUY6yS43I/ucxyl16yOlZGdeLrrQSHA6mLd1K4aUdK5VmzjH4V1iUF5CiAVSyk6VWWdc1bryhIseqMwqD5oFHz5U6fevHJjjrW+WgWnIvE8AHRF3G8JZvgdyZvar4H0fKGkvZjui+hKEKH1MREoDmXk3BGcDNiuZU/IwhPNUa/S6pPOMveD/BYkB/t8hNCd2QeFBpHwF4XVga4iwn5B/XYncczYYmyjYNssBnpsQjo7g7KX65uPQc1e/wuzxCwh4gzhcdhq1a8BrM56NyrS95b/tPHXhi2xZvZ3EtASeHPsg7U5rhZSSvdvS0XQNT6KHZdP/BSlpfeoJuOOKL787kqm++djom9WI9FFu7sRFPHP5y5EpMMun/8szPz5CxzPaRpVbNW8NY4eNIxQIc/6dZ0VlN8zanV1iEA3WOqy8LC+OakmltuWvb2axYPLSyNRngGcufxlXnIunv3uYE89sV+ycPVv3ckeHAfhzA5iGUeoa6aA/yL1dH0e36RiGwVUDL+b6p64gJyOXrf/tiMosHvSH+Prln3C6HZzRtwf3vX17qW1Xji17vV5++W8Vofy1zgHDYF1GOgu3b6NL7TqRcvWTk/nt+psxpUQr9IVOCEGN+ASy/H76fPEZe7x5CARxDgfjrrqO6vEHlrTnmCFRW2woSimk/w9k5v3s2xJKBudBygcIR5focsElyLwPgJCV7brwNG2ZTslB9L4yeSBK75vxT4DAbKIScmXegxQeSH47ZoAvjW3IPReD9GGt1S6lHdKH3Htl/lZcBjL+brT4O8HcC8Y2CoJogCB430f6XOC+HJH4ZOltV44p6TsymPnj/Mj07KA/xMZ/NrNq3lpantwsUq5O05p89O/rmKaJVujhtxCCtNqpZO/N4bY2D5K9J8fa8SzJw6i5L1KlevKhvqUji+qbDzmVtfso982In6LWkQR8Qb59dXxUmdUL1vJQr8FM/24Os8cv4NkrRzD9+4Iny216tMLpif1UWghBSo1kkqvuf4r2jvW7iu39JyX4cv0MvuxlvDm+/DYG+GHkL3zw6Ghevf1dcjPyCPqDpQbRhe/Pm+Mj4A3y1Ys/sGPDLlxxLmLNrJCmxJ8XYNKn09i1afd+61aOHUHDiAqMwfpdDhqxf8eKlt3nldl/sy0nm7xQiNxQkD3ePJ6brjK1K4pSOis49hc64kfmfRRdJrgEmX49BCZB4A9kxj1I/++R962gu6SElhroNUGUYfmUsZnopGawb89pmXkX0rSWTUnpQ+Z9ipk9HJn1pDUNnAD7Debz78/aw9oPuaOQxg7Q4ogOogtf2wfesUhjZxnqVo4VQX8ITSvSN2uixH2jCwfRhX34+Bfs2bIXb44Pb7aP9B2ZvPvwZ5XeXkXZHxVIH+ViBpBFjo17Y2KRbZuCjHn+u8jrHpefTOez21lbTwqo0ag6cckehIA6zWoybMpTZZp+1aRjI+wlTP/WhGD7up0EAyHu7TqIDx77grHDfmT+pCXF96guQdG67U47e7am43DauXHIldgcsSdY2O02cjLyynQN5dhQIz6eJimp2PM7YV0IXDYb7WvULFc96zMyIqPaAIaUbMzMrMymKopyTIo1LBR9THo/oViwnft2wUvX+eDomv9CgFYPRIL1Z70RosrHZZsabWsJlDSFW4K5DSkDyL2XI3NetqaTB/8mdhAcS5HlLsIOxk6EcEPcPUAJy8KEDczsMl5DORZUq5dG7WY1I9/XNF3DHe+iWafG5apny+rtUYMvRshg65odldpWRSkLFUgf5a546EKc7oJOzOl2cPkD50eVibWXdOHg9deP/2DepMUgrVG7nL05vLdkBBMDX/HRv69Tq3GNMrWl01ntuOzB84vt/wcQDoWpWieVOeMXWAF1/ii6aUZ31HanjZjfCwTIIgG3YZjUa1EbgM2rtsX8QiGEwOlxULd5QdZlI2zwywe/8+HjY5jxw5yYDyOUo5sQgtGXXMHZjZtSNzGJrnXr8f2V1xJfzvXNXWrXwWUreEDj1HU61apTyhnHDyGPjh9FORxE3C1A4TWbLoTn5uhCMfeSLjgmvV9BcN8WfQJkJiJtAqL6P2hVf0HY6patLa5e4LmemKv5pAFaNfBPAWMrBSPXRYNoh9WG4rUTvU0XgARbw/zbWVfyeSIebPULzpIhpHcsZs4IpH/Kfu9LOfpomsbw35/mlIs6U6NhNTqe0YaRM58v9/rmtj1aRn33dbjttO6uMnjD4e9zj7e+WQXSR7mTzu3Ik988RPvTW9OhdxsG/zCw2FrkC+48C6enULDtcXDpA+dFXn8+5BsCXiuwtaZD+5n08VR0W/GAeH9uGnI13+78kL5PXo7D7SAuyYPT7aD/m7eQmJqAN8cXM3B1J7hwuh2cdeNpvDr92ah/IDVdo13PVogiU3xOvfQkElMT2Ls9g2lf/R01NUgIgd1po0HruoyYNiSSEdI0TR495zneuv9jvnrxB1664Q3eG/h5ue9TOfIluVyM7HM+f950K59dfDl1EvezjjCGO07sTK8GDbFrGjZNI97hYNGObbw9bw6GWdbRGkVRjjfCdQYi+TWwnwSObogqxdciC891FA22KRxs571JwbpmE6QXfD/uN7lYLFriw4hqsyHuDsBpBbG4IPEZhJYIMhdkjH/ThMcq574CqowhemRbB3sXin2VdJ6H0BKRxnbw/wYEC70pAAfYWiBSRiOE1TdLaSDTb0JmvwB57yIzH8LMHlHu+1SOfIkpCTwx9kE+XzuKoROfoFq9quWu49pBl3LiWe2w2XV0u44nwc3yGf8ydviPxQZoFOVgUsnGjgEnndsxKnlYYdnpOUx4bwpVqifjz/NTtW4al953Lmf07RkpEw5Gr38yDLPE9SplEZ8cx41DruKM63uwbc0O6jSvRc2G1QFo36t1VFm7w8YJJzdjxLQhUcefn/A4Hz/5Jb5cP+fcfDozfphTrE1bVm8DIOANoOk6hddxuRNcPDPuEdqd1irqnBWzVrNy7prIVHd/XoBxI3+h7xOXEZcUd8D3rByb7LrOqHMvZF16Ohd//QUZfj97fT5W793DzrxcBp/W+3A3UVGUI5RwnY5wnR7zPWmmI31fg5ZmrRfWa0JcPzR3oRllsujaZBMpgzHHd8vUHi0RkfAQ0n2ZlUlbb4Sw5c+wcXQFIQrNPneA40S0lE+j213lXWTu6yD9VnDt+5noQJn8UWis+xJ69Ix2EYeo8j6i6D7XwfkQ/oeCBwc+8H6IjL8LoXkO8I6VY5XdYWfIDwPZ8M8m7uv2BFl7csjclc36ZZtJ357BXa/cdLibqBwnVCB9DAuHwjzY4ym2rtlBOBjG5rCRVDVEr6u7R8pM+nQq3hx/1HlOt4OeV3YrVp9hGOzZko4rzhlzf2jDMNi8chtCE9RtXovaTWpSu0n0mtTq9avy4qQnefmWt8jclUWbU09g4Cf9i9XV7rRWvDb9ucjr1QvWoulaZEq6pmuk1U616mxQlap1U9m+didG2EBoAofLQdMTGxWr15vtQ9ejv4ZoNh1frl8F0kqJZm/dTNgwMfNnU/jCYb76ZxlP9zxdbd+iKEq5SBlE7r0GjC1ACGsNcVWEq0+kjOn9Jj9jdmFOhOvsGPUZYGwHLS7m/tBShq2tqYQOekOErQHYGkSVEbZ6UOVDZNYgMNPB0QWR9GKxuoSzG8JZ8P3ADM2H8BIKpoJroOcvB9PrWQ8KjK1Y0781EC6wnRDjQ8ml+CRJzRqFRwXSSmyLp/5DOBRGmlbfHPAGmPDeZBVIK4eMCqSPEeFQmJz0XJKqJkayHG5csYVdm/ZERpzDwTA7N+5m079baNimPgsmL+GNez6ITOsWApKrJfHE2Adp3K5BVP17t2fw8OmD2b1pD4Zh0ueW0/nfm7dGgojczDweOu1ptq3dgZTQpEMDXvrtyZj7R7fq1pyP/329XPfX7/lrmffr4shIst1p57ZhfQHQdZ0RUwcz/Oa3WLt4A7UaV2fAJ/fgSSie7bRFlyYUXoSt2zSq169KSs3iXz4UZR8hROxlfsezY2iNk6IcLFKGwMwCLQUh8gPF8Cowd2EF0Vj/NTaCsR5sTZCBaZD9LAWJyARoaYjkkQh7s+j6jR1W5m9jJ2AgPVcjEp6I9M3SzESmX2cFs1KCvTWkfBRz/2jh6ISoOqlc9ycSBiADs6wRagDhQiQ8bP1R2CDlC2TWo9Y96w0QSS/GHmG2tyf6H1mbtX5aSy1Xe5TjS8zcOMd7Z6365kNKBdLHgOnfz+Gl60diSokn3sVT3z7MilmrWLd0U7H9oaUp0XSrM5/xw9xIEA1WH2uz22jbo2Wxawy78U22r92BEbaeOk/+7E9adz+B06+xRrffeehTNq/cSig/aP9vwTpGP/sdt7xwbaXcY9U6qXy04jVmj1+AlJKTzutIctWCNa8pNaowdOKg/daTmJrAK9Oe4cXrR7Jr0x6adGjIY1/cV+IWC4oCcGajJgz/ezrBsIGJxG2zcW2bdmo0WlGUEpm+iZA10Hoh4pDJb0BogRVUFp22LSVg5SWR/klEZ/OWgLP4dGhAZj6UP7Kdn/DL+y04OoPrHOv97OcgvIFI0B5ahsx9F5Fwb6Xco9BrQ9WJ4J9mxcHO0xBaSqH3qyNSPi5DPamQ8jkycwCYO8DeCpH0ivo3VilV90tP4pOnviIcDGOaEqfHyYX9zznczVKOIyqQPsrt3Libl24YGdlLOssf4uHTB2Oz64QCYYQmIlOiHW4HTTs2pG5+puuElHh0mxYJjgE8SbGnUK1ZtD6qnD8vwOr5ayKB9JpF6yNBNFh7Bf63cF2F7m3Tyq28cuvb7Ny4m1bdmnP/u3dw1o2nVahOgEZt6/PeEpXERCm7NI+Hn67py8szZ7DLm0fvho25uX3svASKoigyvAmyHiGSBVsGIGNf5uwgVtSpYwXALrC3A72BVVYkF3ovn5YQ+0LhldHl8CFDyxH5gTShfykY+QbwQ2h5Be4MZOg/ZPYgazq5oxMi8VmE59IK1Qkg7C0RVSdUuB7l+JFaswpvzXuJj574kowdmZxycRcu/l+f/Z+oKJVEBdJHufXLNmGz6wQKHZOmJBQIR/4sdEGH3q3ZszWddUs20rfh3dz31m1c8r8+TPxgCrmZXsywgd1p5+7Xbo55nRoNq5GTnsO+hNtOj4PaTa0tpfKyvdgctqg1zAAb/9nMtrU7yrx9VmHZe3O475RB5GV6kVIy88d57Nq8h5EzXyh3XYpSGeokJvHaOeftv+Bx4ljavkJRKl14JQhbkWmWJgWJuSQgwN4NzO0QXo7cfRokPYuIuxnp+z5/3bABOBAJj8e+jl7bGuGOXMiN0K0tpaSZA8KBtfa4UCbj8CpkeHOZt88qTBp7kelX57dNgn8y0tiJSB1T7roUpTLUbFSdQWPuP9zNOGKovvnQUvNZj3JV66ZGbUpfElecix3rd+PN8bF7816evfIV0ndk8v6yV+j3/LX0feoKXvv7OTr2bhPz/IGf9ie+SjxxiR7c8S5antyMPrecTl62lzs7DGDdkg1RQTTAnm3p3HfKE7zz8KdcUeMWrq5zO+Pfm1ym+1o2/V/MsBnZKisUDLNq3lqG3fQmf307az9nK4qiKMphpNeKkXW7KAnYrKnZMg/M7ciM/mDm7xed8CDE9Uekfo1wnhSzBpH0MohEazsr4QFHR3BfgjSzkXsugPB/FNsT2tyBTL8KM+t5zJ0nY+461UpuVhahufn17fu2HoTQQszMR/OnpCuKohw/1Ij0Ua5xuwZccOdZ/PzOZHSbRjgQRkJkqyi7006H3q1Z8NuSqO2jjLDBwslLuezB8znv9jOKJeaa9MlU3n34MwLeICed35GBn/TnszVvsnr+WlzxLlp0aYKmafz89m+kb8+IjIBHkZCXlcfPoyYRzL/2Ow9+SnLVRLpfEvtLwT5OjxNZJGOCaZhM/uxPpn87mw3/bOaGp6/c7+eTviMDf16A6g2qouvl3xdbURRFUcpL2FsjPVdYa5aFDnLfSPS+/zrBeSoE/iR66rUJwVnguR7cV6Fp8VH1mt6xkPOyNVXcdbqVvKvqFGu6togHexuE0JDeb8HcQ7GtqQCQYGaD70vrfQlkP4vU0hCuXvu5M1eMYyb4v0f6JyLj16HF37Xfz0cau6wEZXpthFB9s6IoRycVSB8D7nj5Rk67ujs7N+yiUdv6ZKfn8tqd75K5M5sOvVtz/zu307fhPQT9BZ21btfZvHobFyRcjxEKU7VuGkN/fYI6TWuyeOpy3uhfkM179vgFvHbHuzz6+b10PKNt1LVzM/Oi1kYXFQ4akVFlsLYm+OjxL1k2/V9WzFqF3Wnn2scvo9NZ7aLOa3daS2o1rsHmlVuj2g3g9wb48oXv6fvk5SUmCZNS8spt7/D7F3+h6zoptaowYtoQ0mqlxCyvKIqiKJVJS3wS6b7IWktsaw7mXmT202BmgOMUROJg5O5TQRbu43RkaA3sbAeEkXptRJWPELZ6yMDfkP08kURk/t+RYgha0lBwnhJ1bWlmER2gFxUiet65H5kzHBmYCeHFgAMRf0/UVleAdR29NoQ3QtSiMgAf5I5Cxt1ZYpIwKU1k1mPgnwDo1lZZKaMRetVS2qooinJkUlO7jxHNOzWmx+VdqdOsFi1PbsZ7i0fw9fb3eWz0fbjj3dz12k04PQ5rj2W3g+SqSfw++i+CviBG2GTnhl08do61b/O8XxdFZfMO+UPM+3VRzOt2Ors9Dqc98npfcjOw9qN2JxR/er151Va+f20CK+esYdlf/zL4kmEs+fOfqDJ2h53XZjxH36cup3X3Ftgd0c98TFMWm0pe2O9fTGfa2L8JBcL4vQF2btjFsBvf3M+nqChKmcmj5EdRDiNhb4twnY2wNUA4TkRLG49W7W+05GHWNlAJg7BGeYX1Xy0V/OOwglQDjM3IjFsBkIE/ic7mHYDAtNjXdfYECm9xpbEvK7h1vRiJRY014PsUQksgNA+ZcScyuCC6XuFApHwN8feAvSPWHthRlVBsKnlhvnHg/xVrpNxn3V/WoyWXVxSlfA53n3uc9c1qRPo4ccZ1PajZsDoLpywlISUep9vB2w98wr4n1lLC7s178Ob4SK6ahN1pi5quHZccF7PeE05qysBP+zPqvo/x5frp0qc97Xu1Zu3iDdRrWYdGbesz6Lyhkf2fYwn4gvz01iTa9WwFQDAQYu+2dKpUT+aaRy/ljL49uaXV/ZGRb7vTTvterbDZS/71/W/BWvx5Bdc0wiZrF28o46elKIqiKAef5rkUaauHDMxCaFWQ2CD3xUJfNCUYm5DSn7+nsp2okWaRVLxSQDg6IpOGQs4LIL3g6AXOThBaibA1Q9oaQ8YdRAfmRfmR3jGRbbekDFr7VetV0eLvRLovQO45r9CIuhOc3Uqdqi1DSwBfoSNhCP9b2kekKIpyxFKB9BFGSsnSv1awZ0s6TU9sRL38raqKmvnTPH4a9Su63cbVj1xMm1NP2G/drbo1p1W35gAsnro8aso1gG634Ypzcu5tvfnprUlk7MrECBvous59b91WYr09Lu9Kj8u7lvj+G7Oe54sXvmfmuLmx11IDuk1HSsmSP//h6YuHYYQNpLSSnPW8vCuvTHuGV+94h/TtmbQ/vTX3jrq11Hut07w2To8zEsALIajZuHqp5yiKoihKLFJKCM4Fc5e1x7GtUexy/slI7xdYU6PvRDj2v02ecHRCODpZLwIzig/WCCfgRHiuQXrHWFPDMQAdkTi4xHo193ngjr3TgABk6lhk7tsQ+IPYa6kBbEgpkcHZkHk3SCu5qUwageY+09r7OespMPeCoxsi6enS79XWBImLggBeg/ws44qiKEcbFUgfQaSUDLt5FDO+m43QBKZh8uAHd3H61d2jyk3/bjYv3fhGZPr1kmnLeem3pyJBclm0O60VJ59/IrPHL7CuFTYZ8PE9aJpGXFIc7y55mT/GzMCX66fT2e1o2LreAd9XjYbVuOuVG5k/aXHMQNrpcZBaqwrnxV1HqMh66JeuH0nLk5vRpENDRs19KWb9q+atYdHvy0hIiad33x64PE7OvbU3f4+byz9/r0TTNewOG49+9r8DvgdFUQqRaosN5fghpURmPZQfcAqQBjLpJTR39H61pm8CZD3GviBRps+GlM8RjnbFKy2J4xRwnAqB6SCsa5E4zFpzLBIhbQL4x1tZvp09EbYmB35jel1IHAR7ZhRKhlaYG7QqyJ1tKBZoZz2AdExF2Nsg0n6IWb0MLoHgbNCSwX0RQrjAczX4J0N4KaCBcCKSYvftiqKUk+qbDzkVSB9Bls9YyYzvZkdNSR7R7y16XtE1KuP0V8PGRa1hDniD/DDyl3IF0kIIHh9zP0um/cPebRnFRr89CW7Ov+PMCt1P1p5sHj/3hciU6tOv7c7iqf+Qm5FLzcbVqVItGU+ii7Y9W/HBo6OLBdEAoUCYZTP+LfYwYZ9pY//m5X5vEQqGsTttfPfaBN6a/xIuj5MXfnmcNYvW48v107Rjo2KZyStL+o4M9m7LoFaTGngS3KTvyERKSWrNKiUmXFEURVGOEsHZVhAtvQXHsh5Bus5GiEKpZvLeJ3qqtB/pHV2uQFoIAckjrWuau60s3LaGBe9r8VYwWgHS2IvMuCV//2kBrgshOBNktjU6rKWASABHJytDeMzR6iAyuBjhjv09wfT+CNlPYk1Dd4D3M0j9HiGckPIJhP8B6QNbS+ueDgJp7LI+Q70+iDhrNgECtKqqb1YUpVKoQPoIsmdrOkKL/sfdNCXebB8JVQp1NDGeNhWdpl0WQgja92pdprKZu7OY8vlf+L0Bul3YmUZtY0/F+vPrmXz76niEEIQCQTYs34wRtqaCTf7sTxwuO7pNx5Pg5rnxj2Kz2/joiTFRDwaKihVg7/Pm/z4k4LPODXiD7Nq0hz/GzODcW3uz6Pdl/LdwPTUbVsMV5yyxjor4ZsRPfPzEV9idNqQpqduiNuuXbQIBrbs159mfH8XpPjjXVhRFUQ4BcyfWZOjCQlYgKArnD4nVDx9Y34yz5OVSUbUbe8E/DmkGEK4zEPZmMcuZvvGQ90n+Vlw+CK/Bmh4O+L8HXCA0EImIKu8jhA0z+yVKXUMtS3kv59lC5/ogvMXK1O2+FIJ/Q+hfsNWz9r4+CMzcdyH3DRAOKwmMrUH+ntqAozNUeccK6hVFUSpABdJHkKYnNsIMF2S7FAKqVE8ivkiirysHXMTwm9+MBJ9Ot4NL/hc9xawyZezM5PZ2D5OXlYcRNvnqxR947ufHigXhf34zi+H9RpUaFFtbWYVYs2g9v38xnbNv6kVKjSo43A6CvuLnCQHNO5c8dc2XG92RG6EweZl5fDp4LN+O+JlgIIQmBJ8/8w0vTX4SI2yyfe1O0uqkEA6GSaqaSHLV2Mla9mfd0o18+vRYQoFQZI/u1fPXRt7/Z9ZqPnlqLHcMv+GA6leUI5qaPqYcL+ytI2uDLQL0mgitSBJOz62QPYiCANKF8PQ9aM2Sxi7kngtB5gIGMu8dSPkQ4egcVc70jYesx9lfYjEkEFoG/l/AfSFCr4bESfFtrgAE2NuU0jhvkQMGmNmYOa+A99P8qeQa2Bohkz9CiBCENyP1GghCoKUgtAPbrlKGVkDuKKw9svO/V4QL7QwSXIDMeQOR+PAB1a8oRzTVNx9SKpA+gtRpWpMBn/Rn2E1vYoQNUmtWYeivTxSbgtTziq7oNo1xb0zE5rBxzaOX0Lr7/pON7fPPzFUMv+lN0ndm0rB1PZ758RGS0hJLLP/DGxPJSc/ByA/yA94gb93/Me8tGRFdbuQvpQbRhQV9QfZsTQfgnH6nM+G9yexYvytqWjuApmuMeeE7Hv/ifgBM04zaO7pD7zYsnLI0svZat+m0OKkpA898hnB+lm8T2LhiCzc07o/MrzOQF8DusiNNSfdLulDvhDo0bFOPUy7uUuYpX5tXbo2ach/rHlfMXFWmuhRFUZQjk7A1QSa9kL/+2QCtOqLKR8XKaZ4LMIUNvF+AcCDi70I42pf5OjI4z9pj2dwLthZQ5R00reQHvTLvY5BZREaWMZDZzyPSxkUXzPuE0oPowvIzcwO4rwLv12Bus0axo2iQ9xYkD7PaIs3oae6OkyE4h4IM4xrS1goybip0zLCml+/pjcTE2p7Llx+8m0jn2Qh7I+uzcPYu+3Ts8Jr8kfeSCvghFHtLT0VRlPJQgfQRpucVXTn1spPw5fjwJHpK7Di6X3IS3S85qdz1b1+3kwFnDIlMl14xazXXN76Hb3Z8UOIU5Jy9BUH0PrmZecXK6bayb0tudzlo2dWagubyOBk190UGXzqcBb8twTQLej8jbDLjuzn8fOok3h84Gr83QIsuTRkybiBVqiXx2Bf38eL1b7Do96V4Ej3c99ZtVK+fhq5rFE1rFiwyRXzfZzBt7ExrmZjHyZk39OTeUSVnKC+sdrOaGIZR4vs2u07dErKuK4qiKEcPzX0+0tXHGmkV8SX2zZq7D7jLP0NMhjcg028msh45tAB290JWm1XyFGS5L3t34WM5xcuJ8nzVs0F+8C80D6T9gEy/A0JziN4f2gD/BMy89pA7DKQfaW+PqPIWQktBJL+OzHwoP9lYAiLxWdCrW9t7UXS5VtEgP/+BemA8MiBAuMB9JSJxUBlvoWGRGQRF2cHWuGx1KYqilKLskY9yyOzLnH0wkmEsmLw0Mg15H1+On0kfTyvxnG4Xd8HpcUReO90OTr20eBB/zWOX4nQXlIvZfgG6XeemZ6+iw+kF08IcLuu8wkH0PhJ458FP8eX6kaZk9fy1DLlsOABxiR6e/fERxud+wdfb3ueUi7uQWjuF5GrlnK4twZ8X4NePprJn694yndKkfUOuffxSHC47niQPrjgnqbVTcCe4cSe4qFYvjduHXV++diiKoihHJCF0hJZwcBJVBaZTLKmXzEV6fyy5Pc6zAVehIy5wnlW8XPydRcqV1H47JDwcNTVcCFd+cTNGeQk5Q/OncZsQWorMuM86T0tAS3kPrcZStGp/I1yng14LShlhj01ao+HeL6314GUg7G0g7jbACSIe8IBWzVrPLuJAr41IeKic7VAURSlOjUgfZ1xxzpjTnTL3ZJV4Tuez23PPyH58POhLgv4Qp13djdtiBIidzmrHc+MfY9ybE9F0jRNOasqnT40l4AsihMDpcTL8j6dp2qEhuq34lOg2p57Akj//IegrCPQ1TZBcLZGs3QVP2Y2wwb+z/yuxvbqu8/LUwdzb7XEydpR8X7HY7Dp5WV7SaqeWqfy1j1/GGX17sGdbBnWb18LpdkTadsLJTSMPCBTlWCJQW2woSqUqIemWkBkln+LqhUx4HPJet9YCuy5EJDxYvJzzNKjydv7+1jawt4XckVgjwQKEG6qMRthbIGKNXjs6QXAh0WulNdCqWlmxI8IQWlhye4UNUkYj914JMr3EcrFPtuWPtpetb9YS/of0XArGbmuEWrgguDj/fjoghOqblWOP6psPPRVIH2dOuaQLTo+TgLegQ9TtGh16lZI0BOjTrzd9+vXeb/3te7Wmfa/WZKfnsGjKMq5+9BI2r9qKO97NJfedS/0T6pR47pUDLmLBb0tZ8mdBUpC4JA/XPn4p7w34nFChPjwuqfRMnzUaVOPLTe/yzBUjmPnjvP22G0BoAk+Sh1pNapSp/D7V6lWlWr2qkdftTmtVrvMVRVGU45zrHMgeTHSwagNHl1JP0+Kuhrj9b4clnKcgnKcgzQwIzETG3QbGBmuaetyNCFujks+NuxMZmGlNN48cTLRGfXOHgyy0kEorOd8KgLDVg2ozkBl3Q3DaftudXymIJNDLt1RK6LWjz3GWfzmcoihKaVQgfZxxx7n4aMVrPNz7abav3YXDZaf/G7fQ5tSyJyvbnx0bdtG/y6MEAyGQkJASz1vzXyo1oRlYicJ2btoddSwYCAOCRm3rs27pJqRpTS97+MO799sO3aazff3OEt+32W2ccf2prJyzhu3rd1GvRW2eGPsAdod9/zepKIqiKJVEaHHItImQfgOYWwAnJA5BODpU2jVkeBNy7+VYa5SllRk79XuEllx624QdaWwrcjRgbS2lN4HwWvZN/RaJL+y3HULYkMbmUkrYwX0JBBeAsQ1sTRDJryOE6psVRTmyqED6OGGaJp8P+Ybx7/6GpmlcO+hSLrz7nIOy1uut+z8mJyMP07A61lAgxKdPj41K4jXpk6mMef57TNPk4v/14dL7zkMIQebu7Ki6gr4gm1Zs4ebnrmHHhl2E/CFan3oCDVvXK1Nb/Lmxtu2wXP7wBdzy/LUHcIeKonAAe9crihJNShOZ8yr4vrGmL8fdg/BcfVD6Zpn9DMhsIuudjRAyd1RUEi/T+zXkvWu98NyE8PS12mIWmWIug1Z27ISHwdiKIAiOLghbydtVRp9fdHusQjx3oCXeW/YbUxSlgOqbDymVbOw48e0r4/l2xM9k7somfUcm7z/yBX9+PfOgXGvXxj2RIBogHDLYsX5X5PX072bzRv8P2bZ2BzvW7+KTJ79iwnuTAWh5cjN0e8H6aaELJrw3mcGXDuftBz6hUbsGZQ6iAXpfdypOT+yMpz+8PoGsPdkx31MURVGUg03mvQfez6w1w+YuyHkR6Z98cC5mbCc6aVgIjC2RV6ZvAmQ/D8Zm6yfnZaTvW+tNe1uKjb14x0Bmf8h5AWytyh5EA7guANyx3/N+gDTLl99EURTlcFCB9HHijzHT8RdaFx3wBvjjyxkArJq3hu9fm8AfX87ACJe2ZUTZtO/dGkeh7N0uj5OOZ7SNvJ70ydSoNdpWtuw/AHjsi3tp0r4Bmq6h2TQ0TSMUDJOX5cWb7Ytk6y6NLPQ0ru9Tl3Pp/eeSlJZI0Qf8uk1n+7roqd952V6+f30Cnw35mhWzV5frvhVFURSlXHw/A4X3aPaB/2cAZHAJMu8TpG88Uhbd0PEAOE8GCj9YdoOjW6FLf1u8LfmBtEh+3drPGQ1rv2cNCFoJwGQuMrP/fi9fuG8WCQ+Apy+IKhTLIi5sYGyNPtfMRuZ9gpnzBjK4ZL/XUhRFORTU1O7jRHxyXNRroQkSqsQz6dOpvHH3B5imiW7T+fntSbz8x+CYWbXLqt/z17Jj3U5m/WwlJjntmlO49P7zIu+7E9wIET37xBVnbc2RXDWJN+e8SMAX4LdPp/Huw58RLrQjSOauLMKhMDZ78V/dNYvWM/iy4ezatIfq9asy5IeBNGpbn37PXcsl955H3wZ3E/QXVBYOhqlevyBJWF62lzs7DCB9ewahQJivh/3IgE/60/OKrgf8WSiKoihKibTEIltBa6AlY3q/gexnsUaQbeAdCymfIMSB980iYSDS2AKBvwAJ7osQnusKFYiLcZKV2FPoqYi075HSj/R+AznDosuZu5DSRIji4zMytAyZ8T8wtyP1uojktxH2pojEAci4G5G7exOVZE2GQK9Z8NLMRu65AMx0IITMex+SRyBcZx7wZ6EoilIZ1Ij0ceLWF6/DFedEaAJd13DHu7jmsUt4454PCPiChAJh/HkB1i7ewKyf51foWg6nncHfD+Sn7M/4OXc0D71/F5pW8Kt27WOXWNOt8x9COz0Obnrmqqg6nG4njdo2oOiT6rQ6qTGDaG+OjwFnDGHnht1IU7Jj/S4e7j0YX54fgNyMXBq2qYvQBA63A6fbwb2jbqNK9eRIHZM/+5P07RkE/SGklAR8Qd6676MKfRaKcqwS8uj4UZQjmUgYgDXFWQC6Fcx6boXsIVjbUwUBL4SX5QfAFbiWcKJVeRdRfRGi+lK0pGeiAl8Rf7e1FVaEGxF/X5E6XAh7c4p9fdTrxA6izRxk+k1gbgMkGJuQ6X2RMj9wltmgN82vz2X9JD6L0KoUVOL7Pj+IDmA9WPAjs589wE9BUY5th7vPPd76ZjUifZxo0aUpb84ZytSxf2Oz6Zx5w2mk1qpC0B+KKmeakuy9uZVyTac79trkhm3qM2reS0x4bzJG2OScm3vRpEPDYuVadWvOVY9cxJcvfI/NYcPmsPHsT4/GrHPjii1R67IBjJDB1tXbSUiJp3+Xx/Dl+q2pZVJy8X3ncfbNvaLK52V5CYeip7bnZOTh9wZwlbDOWlEURVEOlHB0hNRvkP6JgB3huQS0FCQxpnKXsqd0ua4pXLGP21tC6ndI71iQEuG5DGEvvqOHcHRBxvWDvPdB2AEHIvmt2BcLrwaKfmsOQngjUriQe6/ITzwmARPibkXzXBxVWprZ1jmFmZlIGUAI1TcrinL4qED6OFK/ZV1uGlKw3+Ts8Quw2XVCgUIdtpS07t7ioLelXova3PXKTfstd/2TV3D+HWeRtTubWo2r43BZa699uT7evPdjlk9fQfUGVbn2scsIB6O/eIQCYRLTEpgy+i8CvkBkfVbQH2Lih79z69Drosp3Ors9X77wPQFfQYdthA3u7vQIo+a9iDsu9pcPRVEURTlQwt4MYW8WeS39U7DWIRd6OCxNsHc8+G2xNYnK4l0SLeE+pOc6K5u3rV4koJVmrjVaHFoAel1rr2kZ/cAeGQItGen9GqSfgkA7CL6vIeH+6DY5eyDzPsAaod8nhNx7KaR+V+KDAUVRlINNTe0+ShiGwba1O9izdW+l1Ldq3hqeu+qVqCBat+ucd8eZ2J1H1vOVpLQEFkxewqDzhvLiDW+wa9NunrjgRaZ+OYNta3eyeOo/PHvVCHr3PRVXnBO7044rzsmF95xNtbpp1mLsog/EY0wrad6pMY+PuR9NL/hrYRomuzbu5rdPph3Ue1SUo4o8in4U5SCS0kCGNyKNnfsvXJb6gouQmQ9i7fW8jw0813DEjX1oKcjgX8j02zAzB2KGtyMzbgX/BDA2QXAWZD4ArvOwpq87rP96bkTo1Yj9l7T4X1rhaA9Jw4j+ympAeDP4xh2UW1OUo9Lh7m+Pw775CPtXWYkla082D/UazI71uzBNk24XduKxL+5D1w886cisn+cT8EdPlTJCBr988Du/vDeF58Y/RrvTWlW06SUyDIMlU/8hL9tHq27NSKlRpcSy7z78GRPem0LAG0DTNeb+spC8bC9m2HpaL01JOGjQpU9HTr2sK5tXbqV+yzqceGY7AHpc3pUvh/6AkWetydoXZMfS7aLOOD1OfDkFmUuDgRDZe3Mq5Z5/eW8Kq+evpWG7+lx419kx13sriqIoRz5p7EWmX5e/rZSBdJ2FSHo55lrhMtfpn0xU4i0AwuAbi/R9BVU+QDg6V6TZpV9fhiE4B2Qu2E9E6Gkll81+DnzfAT4I6RCYZp0XmZZuAiFwnY1w94HwBrA1RTjzM4W7+ljTwyMjzW7wXB/zWpr7HMwsJ9FZxUNgZh7wvUbuQ4aR3q8g/A/YWiI81yCE6psVRdk/9S/FUeDV299h6+ptkfW7s8cvZPy7k7no7nMOuE53vBub3VZsOrQ/1+rQht38Jl+sf/uA6/d7A2xYvglPooe6zWshCu09FQqGGNB7COuWbEQIgQSG//40zTs1LlaPlJKf354UGTk3DZOgL4g0ox9nSSR2p53OZ7en89ntI8fHvfEL7w74HNMw8SS6qd2kBmfc0JNL/nduiW3v2LsNcycujFzT4bLT4fTWB/xZ7LuPZ698hfmTFhPwBnG6HcwZv5Chvw6KSsSmKIqiHB1k1mPWyOu+wNH/Ozi+Ac9VpZ5XKi0Ba1p3kTXS0hu5pqg65YCrl6YXwv9Z19EbRvXNUgaR6X3z1zUL6ydltLV2umg90gTfV4XaaYDclwwsqiRCOBDOU8DZM3LUzPsYcl62zhPxoDcA96XRWcSLcpwEwZkUrJe2g+Pkcn4CRe9DWlt3BWZiBfQTkIE/ocr7UZ+NoihKLOob/FHgv0Xro5JgBbwBVs5dE7Psyrn/cdeJA7mm7h28fOtbUXtHF3ZOv14kVInHZo89qp21+8BHYLf8t50bGt/DI2c9y90nDuS5q1/FNAs6198+mcaaRevx5frx5vjw5fgYduMbJdYni04BEVYisn0JwOxOG2m1U4sFu0v/WsEHj40hHAxjGqYVwMa5uPTe80rtIAd8cg8derfBZrcRl+zh3rduo3X34glXymPnxt3Mm7iIgNf6AhDwBVkxaxUblm+uUL2KcrgI8+j4UZSDJvwv0QGvDxlaGrOoDC7C3HMR5q4emFmDkNIfs5xwXwkikRLHOcz0A26uDK9F7j4dmXEzcs/FyKyHo/Z2xvs1hFZaQbvMA5mLzHqk7BcQgL0D1jRuAAfotaHICLoMzIKc17Cmr5vWOmktHi2ub6l9s0geYQXT2K3PKPE5a9p3RRgbCwXRWP8NzgVjbcXqVZTD5HD3ucdb36xGpI8CdZrVYs+W9EhWaofbQYNWdYqV275+JwN6D8GfP4V56pgZ5GbkMfi7AcXKLv3rX04+vyO7Nu/FHe9izoSFhALWmizdrnPCyU0PuL1Dr32NzF3ZkQ567i8L+WPMDM7o2wOAHRt3RwLKffZuy0BKWawTFUJwTr/TmfzZnwS8AYQmsDvsDPrqAWb9NI+lf66gZuMaXP3IxZFEZPusmLmKcLBgnZkRNlg9L/YDiMLiEj08P/7xA7r3kgS8ATSbTuF1b5quRSU2UxRFUY4ien0wd1MwCusEvUmxYjK8EZlxE8j8acm+n5BmDqLKyOhyUkJoHjhPB2MnCBcE/yRqBNbe4YCbKzMfwMr8nR88B6ZY65nd51vvG1uJTugFGDtL6Js1pPti8I3PP0cDHJA8EvyTIDQf9AaIuNsQIrpvJrSI6OnrYQgt2W/7hZaASPmwzPdbJtIHQo9esyl0K7hXFEXZDxVIHwUeev9O7u02CF+uH9OQNG5fn0vuPa9YufmTlmAWmvIc9IeY/fP8qE7QNE0+eWos3782gYA3gN1lp3aTGvR7/ho+fHwMpmHStENDBn15/wG3d+uaHVFPuf15ATb+uyXyulVXazS58Gh5XpaXC5Nu4L63buWMvj2j6uv/Rj/Saqcwe/wCUmsmc9uw60mrlcIFd57NBXfGXusMkForBbvTjhEuuE5SWuIB31dF1GlWi5QayezcsBsjbKDpGp4EN43a1jss7VEURVEqRiQNRaZflR90mWBrjYiLMTU58CfIwlsrBiDwe1QRKU1kzsvg+yI/4HaCrSHE3we5rwEG2Fsjkl8+8AYbm4iKGKUfGV7HvhBZODogvW6i1iHLTOSujsjE59Dc0d87ROIzSL0W+P8EvToiYSBCrwpxfYG+JbdDq2rdX+HraKkHfl8VYWsMWhUw/ICBtZd3Etia7e9MRVEUFUgfDarVq8rHq0by34J1OFx2mp7YKGaiMZfHiaZFPzXWCyWzmvLFX7xy69tRmbpD/hA7N+ymRsNqTPB+QTgYLjayW151W9Rm9bw1kaDeFeekYeuCgLFNjxM4/bruTPp4GqZhRKZu+3P9vHbHe9RtUSdqvbSu61w36DKuG3RZudrR65pT+OWDKaxdvAGwkpIN/LR/he7tQOk2nVf/eoYRt7zNuqUbqduiNg9/dHeJe20riqIoRzZhqwtpkyG8who9trWKnWhMuLHWPRc+Zo/80fR+D9lPEp2pOwDGZoStCVRfBoQqvmey3gDCKykYQXch7IVmnzm6gbsP+H7ML5PfOcs8yHoMaWsYtV5aCBsivj/El7NfdV8Evm/y12IDSETSSwd0SxUlhANSvkRmPW61x9YEkTS0+Ci6oihKDCqQPkq441y07VE84UdhJ53fEfuDdgL5ybicHid9n7wcIQTrl23ktdvfjd4zuhB/XgBN0yJB9Pb1Oxl59/tsX7eLVt2ac8/IfngS3DHPLerxMffxQI+n8GZ7MUIG3S89iV5XnwLAilmreKzP8wBousAo0hzTlPwzY2XMxGPlZbPbePmPwcyftJjs9Fxad29BzYbVK1zvgUqpUYXnJ1TulHFFOWyOoe0rFOVACS2u2BrgoqSzN4iXCiXjckP8vdZ7oRWQPZjoILrwyd784Dx/n+bwJmT202BsAUdnRMIgqw1laWvy68j0a/PXQIfBfR44raSlMjgfmXEbkSRjsf6CBxdCjMRj5WUFr2MgMB1ktpUd3FZ8udqhIvTqlT9lXFEOF9U3H1IqkD5GGIbBkMteJuANIE2Jrmu0OqU5Vz9yMQD/zlkDJSXxENC+V8FWV3lZefzv5MfJ2ZuDaUp2bdrDtrU7eOXPZ8qUxbJmw+p8tuZNNq/ciifRHQlepZQ8eeFLeLN9JZ6r2zWSqyeV/cb3Q7fpnHTeiZVWn6IoiqKUlZQGZN5dKIjWwdEZLa6fVaDUtcEiKkiXZiZy7xUgs6y6fNuR4S2I1M/K1BZhqw9V/4DwOhAJkeBVSonMuNMaeS7xZA1K2QqrvISwgatXpdWnKIpyOKhA+hixau4aVi9YR9BvPdU2DJOlf64ga082SWmJpNaqUjyOFtCobX0e+uAu0moXrE9aNn0loUAoMjU7FAixcu4actJzSUxNKFN7HE47jds1iDrmy/WTlxXdUTtcdkxTots0NE2jUdv69Li8YttZKIqiKMoRIbQwfzr1vlwdBgRnIc1shJYIWjWKb6AiwNbCmmKsVys4HJyLlXhs39TsIITmW4nLtLL1zUI4wV5kFwqZXZAILcKBNbSlW0G0rRU4zyjTNRRFUY4XKpA+RvjzAuhF9iPWdQ1/XoCkNOh8Tns69G7Doj+WI7CSjj36+b10v+SkYnXZnbboLTGwnljrJWyVVVbueBeeRA856bmRY0LTGPjRneRl+UhKS6DbRZ3RbRW7zsHky/Xx9oOfsmLmKmo3rUn/N26hap3DlCRFUQ4joaaPKcr+SS/FA2UtP3BNBGcva9Q5NA8QIA1E8uuIWKO1Mdft5ge7FSESrDXesvD0cg2SXkLILCsZl7O3NYp8hJJmLjLnBQguBltDROJTCP3wLeVSlMNF9c2H1pH7r6JSLs07N0a36wghIkFv9YbVqFrXCvI0TWPIDwNZOGUp6TsyOeGkptRpVitmXW16tKRavapsW7ODUCCE0+Ok5xVdiUv0VKiNQgie+fERBp33AgDhYJgrHr6QXld3ByDoD2KEjSM2kJZSMui8oaycu4ZQIMTmVdtYNW8NH698HXd82daPK4qiKMcRe3usr1r71h3bwNYgfyTa2kaKKu9CcCaYe8DeHmFrELsuR1fQqlvrowkCbnBfgNAq2jdrUOUdZMbtVjtlCOLvQnP3AUBGpqUfmayp6f0gtAIIgrEeuXcZpP1a4c9GURSlNCqQPkbEJcXx2oxnGX7zW2xft5OmHRsx4OO70QqNUgshOPHMdvuty+G0M3Lm84wdNo6t/+2gdfcWXHh3ydtMlUfrU1owZuPbbFm9nSo1kqlWNw0jbDDspjeZNnYmAD2u6Mojn/bHZj+yfj0zd2Wxcu5/kYRtpmHiy/Xzz8zVdDpr/5+roiiKcnwRWhKkjkFmPQrGVrC1QSS/GJVvRAgNnN33X5dwQuq3yLx3wdgM9i4Iz9WV005HZ6j6FxjrQauG0GsgZQiZ+TAEJgEgXecjkl488kamzZ0Q+peC/bYNkDnW+nNn18PZMkVRjnFH2L+GSkXUbV6bkTOfr5S6PAlubn72mkqpq6i4pDiad24SeT3mhe/5e9xcTMN64j3rp3l88fz33Dj4ynLVu3vLXlbOXUNiajxte7QsU2K08tDtOkVmvFuj/7YY250oiqIoCiBsTRCp31ZOXVo8IuGhSqmreN0JoLWNvJa5b0JgKpHRaP9vSFsjRPzd5apXGtshtBS0FLB3qvS+2foqG2M+65EW8CuKcsxR/8oopQqHwswcN5el01dSq3ENel1zClWqlS+r9o4Nu3jp+jfYvGor9U6ow6Of/49q9apG3l/0+zIC3mDkdcAbZOGUpeUKpJf8+Q9PnD8UTdcwTUm7ni155sdHokbkKyoxxVrDPWfCQgLeAHanjWp102jdvUWlXUNRjgoSij1VUhTlkJEyhPT/BsEFYGuAcJ+P0FLKV0d4EzJrAIQ3gK0pInk4Qq9ZUCA4E/AXOsMPgZlQjkBaBmZZGcGFDpjWXtXJb8beb/sACT0N6ewBgRn57XWAXid/Wr2iHEdU33zIqUBaKVEoGOK+boNYs2h95O/lJ099yai5L1K3ee0y1RHwBbi/+xNk7Mi09oieuYr7uz/JJ/+9gcNpxzRNNF1DaAKZnyVct2k4XXaua3AXWXtyaNWtOYO+vL/UjOFDr3sdf14g8nrJtH+Y/t0cel5RudO6Hv/iPr57dTzLZ6ykTvNaXPfEZdgd9kq9hqIoiqKURMqAtQ1WeBX7RmJlzquQNs7a4qpMdfiQ6VeDmQ6YEFqA3HstVP0NIezWtl3Yid5T2gbCjrmrJ5iZ4OiESB6B0JJLvk7Wg4CvoIrATAj8Dq4zD+DOSyaSRyLzPoTQIrA1RsTdjRCqb1YU5eBSc1KVEk3+9E/WLd0U9XDLl+Pnzf99WOY6Nq7Ygi/HH9lKyzRMcrPy2LxyK6ZpMujcF1g5d00kiLY7bcQlx/HPzNXs2rSHgDfA0j//4amLXir1Opm7sqJeh0MGuzbtKXM7y0q36Vw54CKe+fERbh92fYUTsCmKoihKufi+hfB/RE9nzkNmP1v2OkKrQPopSCJmgMyA8AakNPKTd/1T6BoO0JIgOB/M7YAPgrORGfeUeAkpJZgZRY4aYGwvezvLSAgbWvwdaFXeQUsYgNDiKv0aiqIoRalAWinRnm3pGGGj2PHdW9LLXIcrzlWsDiNs4o53MW/iIpbPXEXAG4h6v+8Tl6FpBWuowiGDf2evJhQMUZKGbeuj6QW/zrpNp0WXJiWWVxSlYoQ8On7KdC9CnCOEWCWEWCOEeDTG+6cJIbKEEIvzf54q67mKUtmksQMo3jeXK0AVbpBF6pAGaHEQ+MNK1EXhvaUFxN1h/TciZI1kF61n3xlCgK0J0V81BdjblL2diqKUy+Huc4+3vlkF0kqJWnVrjs0RPftfCEGH3q3LXEfd5rXodE57XB4nAK44JyeffyI1G1UnY2dWsbUc4ZBBcvVk0KKTkegOW6lZvId8P4Cajaphd9qw2XVuevYq2px6QpnauHd7Bn9+PZM5vywkHAqX+d4URTn6CSF0YBTQB2gJXCOEaBmj6HQpZfv8n2fKea6iVBrhOBFr2nVhGjhPKXsltmb5Ga33bd3oBtdZCL0WmHtBFt3uKggijeJfG50xjhVqa/LboNcGHFabEx5GODqUqYnS2In0TUAG/kRK1TcryvHkaOmb1RpppUQnntmOm5+7mg8e/SIy9frEs9pyx/AbipXNychl58bdVK9flYQq8ZHjQgie/PpBfvtkGhuWb6Jh2wacdWNPhBCccHLTSL0Amq5R74TadL+kC9+O+JlNK7YQ9AexuxzcPvz6UjN9VqtXlY9XjiR7bw7uBDcOZ9nWRv23cB0P9xoMWNPQ6jSvxWvTn8XhcpTp/LLKTs8ha3c21RtUK3PbFEU5JLoAa6SU6wCEEF8BFwErDvK5inJAhPM0ZPz/IPdVIlOvHT0QCQ8XKyvNTDC2gV7b2oprXx1CQPIo8H2LDK9B2E8A18XWm/aiga4GthYI91lI7/tWcjICgAMSHy+1bxa2upA2xZo2LuIRomx9qwwuQWbctO8V2JpCyhdlPr+spJlhTT/X61R63YqiVMhR0TerQFop1ZUPX8RlD5yPPy+A3WmPGQT++e0sht/4JrpdxwgZDPi0Pz0vL0jypes6fW7pXey8+i3r8shn/2P4zaPw5wVo0Kouz/78KHaHnVenP8uUz/8iY0cmrU9tQbuerfbbViEESWmJ5bq/4f1G4c0pmL62ccUWJrw3hUvuPbdc9ZRm7LBxfPr0WGx2Gw6XnWFTnqZR27IlhFGUI9bRkxg0TQgxv9Dr96SU7xV6XRvYXOj1FuCkGPV0FUIsAbYBD0sp/ynHuYpSqbT4O5FxtyGlFyGcMYNA0zcBsh6ztoGSYWTSCDR3QZIvIXTwXEXRMFjYmyOThkL2IJA+sDVHVHnHukbq1+AbZ41aOzpb+0/vhxACRDkzimc9CjKv4EBolbU23HNtueopjZn7FuS+ZX0+uCDlc4S9aaXVryiHheqbD2nfrAJpZb90XS8xqVb23hyG3/gmAV8wspxq+I1v0v60VmUKak+97GS6X3oSRtiImrrtcNo599biwXdh4VCYDx4ZzfQf5pCQHMddr91cpoC7sL1boxOhBH1BdlZikrJ/5/zH5898QygQJhQI48v188QFQxmz8Z1Ku4aiKKXaI6XsVMr7sYbTin4VWQjUl1LmCiHOBcYBTct4rqIcFELoCBF7Nwtp7LGCaPwFv5FZDyGd06NGpkuiuc9Dus4FwlHZr4VwgueqUs+VMojMeQn8v4OWhEh8EuEo7a9gDOauIgf8SGN7zL9wB0IGF0Duu0AQZBDwIjPvRFT9vZKuoCjKfhwTfbNaI61UyPZ1O9HtetQx3a6zfd3OmOUnf/4nt7R+gFta3c/ED60OSwhR6vrnkrzxvw8Z/+5kdm3cw9olGxl03lA2/LN5/ycW0rJrs6h14M44J20qcV/o9Us3Ior8fd6zJb3UxGmKohxSW4C6hV7XwXqyHSGlzJZS5ub/+RfALoRIK8u5inJYGJvzR1oLETYwtsYsbnq/w9zdB3P3uZjeH6ziQhzQFlIy+2nwfgPmNgj/i0y/BRleW75K7O2JGusRboS9Y7nbUqJCW4dFGFtKTJymKMohd1T0zWpEWqmQ6g2qEg5FdzzhoEH1BtWKlf3zm1m8ftd7BLxBAEbd9xF2l50zrusRKbN9/U5+emsS/rwAva/tTuvuJ0SOf/r0WGb/NB+hCc697QymffW3NRIeuW6IWT/Np0GrupTVgE/uYdB5Q/lvwToALn/gfE65uEvZP4D9qNWkRrHnYgmp8WrvaUU5cswDmgohGgJbgauBqPmjQogawE4ppRRCdMF6CL0XyNzfuYpyWOi1QRZ5YCtDoNcsVtT0/QzZQwC/dSD7aUzhRHMXLHGS4U1I7xcg/Qj3RQiHFdSaoU2Q+xoEpgEaxF0Lvl8K6gIgZL1va1zm5ovk4cj02yD8r3Ug7naEq1eZz98vvT4ILTqW1lKt6e6KohwJjoq+WQXSSoUkV03i/ndu57U738PusBEKhrn/ndupUq341LFf3p8cCaIBAt4gnz09lk+fGoumafS5rTdfvvA9vlw/0pRM+ngq3S/pgm63MW3sDMLBgoB93Ju/Rm2RBaDpOk53+ZKFJKYk8MasF/Dm+LA7bZUe4Lbv1ZqzbjqNSR9NxeawYZomT39bPCGMohxNBGXfvuJIJ6UMCyH6A5MAHfhISvmPEOLO/PffAS4H7hJChLEWsVwtpZRAzHMPy40oSiFCr4ZMHAzZg0HYQYYh6TmEVqV4Ye9YogNfP+S8ipnzMggd3FdC3lvWemlMpO87pPNsKxD1TwAKZdTO+yRGa3Ss7N7laL+Wgkj7DmnmgnAe0Mh4qRzdwHUB+H60Ph9MRPIblXsNRTnEVN986PtmIeUx8okX0qlTJzl//vz9F1Qqzd7tGWxft5OajaqTWjNGRw08dfFLzPqp5P8vmk3DNMwyr2JIq51CTkYuAW8Q3aaRkBLP+8teIbnq/td/HWobV2wmfUcmDdvUOyLbpxy7hBAL9rMOqdwSqtSV7U+7rzKrPGhmjBtQ6fevHBjVNx960thlTfPW6yH0qjHLmOm3QvCvUmrRiblvdUlEDZCZWMG5DbRkRNovCC257HUcIjK02kqcZm+O0MqXEE1RKkL1zcdG36xGpJVKkVqzSokB9D7XDbqMhVOWEfAGYr5vhovuW7kfAlJrpYCUdDq7PX2fvPyIDVLrt6xL/ZZln3KuKIqiKBUl9GqgF19qFVUmvj8yfS7Ro9KFlXPdsABEdUCCswciof8RGUQDCHuzw90ERVGOYiqQVg6IlJLx7/7GuDcmoukafZ+4nJ5Xdiv1HKfHicNlLzGQBmsvadMoQ0AtIHNXNuGgNaXsp7cmsXHFZob8MJC4pLhy3YuiKOUkpfWjKMoRRUpprWX2jgZhQ8T/D+E6u/SThAtwUHIgDWUflRbWCC/567N9o61EY1VGIbT4styCoigHSvXNh5zK2q0ckIkf/s67D3/Opn+3smH5Zob3G8WcCQtKLL9r024G9B5CTnpuiWVccU7uePkGajQs+em5pmt0PKMtNrstEkTvs2zGSl6+5e3y34yiKIqiHAOkdwzkDAdjHYRXIzMHIAPTSy5vbEWm3wBkl1yp8ED8QNBql3JlHWzdADuRIHqf0Dxk9hPluAtFUZSjgwqklVIt+fMfht38Jq/f9R4b/90SOT7h3clRI8sBb5BfPoy9/+LUsX9z8wn3k7krK+b7uk3njBt6MGreS1x633l8uOI1UmtHTxN3xbv4esf7/OIfw6Oj70XE2CHODJssmaby/CiKoijHNhmYjZk5EDPraWR4XcEbvrFYOXf28SN938asw/T+hNzdJ389cyw2cF2KSP0BLf5mRNWJINKKlImHanMQ1ZcjqrxYQj1hCM4p030piqIcTdTUbqVEc35ZyLNXjCDgCyKE4PcvpvPG7Beo37IujhjZsZ1uKyvnqvlrWT1vDVXrptGuVytevnkUQX+MfZMF1G5Sg4c+uJs2p1rbXM0ev4BXb3+H3Iw84pPjkFJSt3ktHh19L1WqJQNQpVoSHc9oy/zflmAU2XorqWpi5X4IiqIoinIEkf7fkZkPYE3FFkj/j5D6PcLWCETR7Ngif+o2yNBSCC0HrSbS3gmyBwGxlloJ0Bsgkl5AOE7Mv+Zka39omQ0iEZBga4xIGhHJBC616uDonB80R88YQyXyUhTlGKQC6WOElBLTNNH1ytsD8ZMnv4rs0yylxJ/n57tXx/Pg+3dxw+ArefKCF/ODbGv981UDL2L8e5N558FPQILQNVp1a46mFZ/4YHPaOOuG07j/ndsR+cPL65Zu5LmrXom6ZrterRg6sfiUsKe/e5hPn/6acW9MJBwMY3PoCCF46IO7Ku3+FUUp2bGyxYaiHEzWzihmpe5PLHNfo2A9swTpQ+Z9hkgajIi/D5lxN/uCbIQL4bkFM+8LyHnJOkVoYOtkbW1V7O+xHdxXoCUNLrhe6B9k5kMF15QSHKegpbwXdaYQAqq8i8x5FbxfYAXTNhACkfh8pd2/oiglU33zoaUC6WPA2OE/8unTYzFCBiee1Y4nxz6AO95d4XpDgehRZCmJjCx3OL0Nw6Y8xcQPfke361x0zznUbVGb/ic9FrV2efnfK4tNw7Y7bQz+fiBd+nSIOr74j+WYZkGisVAwzOI/lsdsm91h59ah13HD01cw88d5+HL9tO/VmpqNqlfklhVFURSlUpi570LuG4CBdPZAJL2K0DwVr1gGix5g38iycHaHlI/zp3PbEZ7rwVYP9l5CZO2yBEJzsdJrF+aA5HfQXN2jDwdnET3CHMo/VpwQDkTiI8iE+8D/O0gvOLoibHUO4EYVRVGObCqQPsrN+nk+nw/5hlB+gLv4j+W8dud7PDa64vvInX/HmXz42Bj8+WuhnW4HZ9/cK/J+y67Nadm1eeT1zo27imXc1nWNyx+8gO9eHY8RNjANk4c+urtYEA0QXyUO3aYTChR02K54V6ltdLgcnHbVKQd0f4qiKIpyMEj/b5D7FpAf9AZmIrOHIJJfqnjlnishZyQFa6FdCPelkbeF48TIlGwAM7SBYkPPwgZxt0DehyAN6/2kF4sH0ZA/ldtOVDAtSn8gIIQL3OeV/Z4URVGOQiqQPsotmLw0KulXKBBi4e/LKqXui/r3wTQlE96bjN1h44YhV9G2R0v++HIGGTsyaXVKc1p0aQpA1p5sHujxFNKMDqQD3iC7Nu3hia8eoFaTGlSpkYw7LnZwfNpV3fhmxE9sX7eLUCCE3WHjnpH9KuVeFEWpZGr6mKKUSAZmEJ30KwDBmZVSt/D0QyLA+w0IByL+frC3R/p+sraecnRC2NtY7TD2QkZfim1dJf1gbIfkkQi9HmhpJY+Wuy+AvI/A2IY1qm2HxKcq5V4URalkqm8+pFQgfZSrWicFu9MeNQ27SrWkSqlbCMGl953HpfdZT5WNsMHDpw9mzaL1GCEDTdf436hbOfumXox54XsydmTG3L7u14/+YOpXM7jv7ds58/qeJV7P4XLw5pyh/D56Oll7cmh/emtOOKlppdyLoiiKohwyWnWKbQWlpVZK1UIIRFw/iLMeNEsZQqZfB6HV+dfTkYnPonkuQua+CWY6xb9dS/B9Db6fkEkvoLnPL+V6bkj7AXw/gpkFzq4Ie9tKuRdFUZSjmQqkj2DeHB9/j5tLyB+i09ntqFavarEyF9x1NhM//IO929KREoSA+9+5/aC0Z/b4BaxZvAF/XsEI+Bv9P+CsG09j9+a9hItk0EZYwTdYI9PvDfi81EAarMzf5952RuT1qvlr+fmtX5ESLrjrrMgIuKIoiqIcDtLMhcBka62yswdCr1msjIi7Aen/3hohliYIDZH0zMFpUGBKfhDtzT8QgpzB4LkIzO0Uy6ANFIxQ+60kZKUE0pAfTHuujryWwSVI3xhAIDzXRUbAFUVRjicqkD5C5WTkcmfHAWTvyUFK0DTBK38+Q5MODaPKeRLcvLNoODN/nIc/10+HM9pQs+HBSbiVtSeHokPOQX8II2zQ+Zz2zJ24KDLNXLfpkSB6n33ZuMtqxezVDDzjmUidf349kxcnPUHr7idU4C6iBXwBXrrxTWb9NB+700a/56/l4v59Kq1+RTlWqcygyvFImhnIPRdZI7MA4kVI+RJhbxFVTmgJkPozBH4H6QPnKQi99sFplJkBRC+rQvqQ0gDHqVZiMLlvmrmNYoG19FEeMjgfmd6PfVm8pe8XSPkM4Wh/AI0v4RqmF5k1EAJTrS294h9Gi7u20upXlGOV6psPreL7EilHhG9H/Ez69kz8eQEC3gC+XD+v3/1+zLIuj5PTr+nOubedcdCCaIDW3VsgzYK/obpNp3G7BrzYdyTvDfgcm11H0zQ0XaNtz5Y43PZIWZvDRtcLToxVbYnGPP9d1PrvgC/I6Oe+2+9529fv5JkrRvC/ro/z+TPfFAvoC3uj/4fMGb+AcDCML8fPB4+OZs4vC8vVTkVRFOX4IPPeB3MP1vpnH8g8ZPbgmGWF5kG4L0B4rjx4QTSAvXORAzawtUZm3g+5r1qv0QAdHCcBhfeatoPzDMpD5r5FwfZbAH5k7tv7Py+8CTPjHsw9V2DmvmUF+iWVzX4aAn8CIZC5kPMiMvB3udqpKIpysKlA+gi1e+veqG2kADJ2ZB6exuSr16I2T37zEElVE9FtGs07Nya5aiIzf5pPbmYeeVle7C4bby8YxrDJT3HPyFsQmrW9hjQlK+f8R15WXpmvt2+rrehj1qi2ETZ4/9HR3Ni0P/d0eZTlf68ErKRn/bs8yt/j5rJyzn+MHTaOV29/p8RrzPt1cdR1At4g8yaqQFpRFEWJwYgxVdrcc1iaso+wN0UkvwoiGdDB3s7Kqh2YCjIbZA7ggNSf0VI+hsTHKNj6SkJokTVdvaxkIMZB65iUIczsFzF3n4G593JkcLF13NiD3HupNUIfXgK575b4AAKA4PRInRY/MvBX2duoKIpyCKhA+gjV5ZwOuDwFT40dLjsnntXuMLbIctK5Hfl254f8GhzL638/z+Kp/0QlOjMNyZJp/wAwdcyMyAi2ETbYtnYn7zz0WZmvdcGdZ+H0OCKvnR4HF9x5NgCj7v+YH9+cyLa1O1k9fy2Pnv0cG//dwpwJCwn6Q5FtuALeIFNG/4VhxH7ynZgSH/Xa5rCRXD25zG1UFEVRjiOO0wB3oQNOa/r0YSZcvdGqz0Wr8S8iZQyE5hHZegsAiQjNsf7o+5mC5GNhMNYjc4aX/WKea4HCu2+4wH2NdZXsIeAdA8YmCC1Fpt+IDK/PD+pDFExB94HvO2SsDKWQ/1CgMEelJWtTFEWpLCqQPkL1vLIbVz16MXanHd2m0blPB+5+7abD3axiCge6ALpNw51gfcnYuWl3sfJTRv9FXra32PFYTr3sZB58704atqlHg9Z1ufet2+h1tbVn9O+j/yLgLfiSEA6EmPXjvMgIeFFCxD5+71u34fI4sTvtOD1OUmomqzXSirI/EjDl0fGjKJVIuC/Mz5btAHRw9kIkPnq4mxVFCGGtK446qIHIf3Ac3lH8JN+3SLNsM8Y093mQOAT0pmBrBonPo7mth9z4fyZ62ncYAn8AomAQvKBRJd9D4hCsBxYO6796NYTnmjK1T1GOW6pvPuRUsrEjlBCCvk9cznWDLkNKiaYdmc88bh9+PW/d/zEBbxC7y05qrRR6XtkVgMbtG7B97c6o8pqusX7pxjInDDv92lM5/driT/ttjuhfXc2mYXfaOem8jrg8zsiotNPj5Mzre5T4+bU59QTeXjiMuRMX4Ypz0fPKrsQllrCXpqIoinJcE0IgEu5Dxt8LSIQ4Mvtm4gdCzotYQa0TtJrgyg927c0huLXICRqE14CjbDPfNM8l4Lkkxjt2ovfP1gAHuE6HnOFY07VNwA2ey0t8yC2cJ0Ha9xCYYU1Td52L0OLK1DZFUZRDRQXSRzghRIkdzZHg3FvPoHaTmiyYvITkqkn0ufV03HHWlK9bX+zL3z/MjUpQJgQkFJlOfSBuHHwl7w0cTcAbQLfpeBI9nH7dqSSmJPD2wmF8OOhLdm/aQ+c+HbjioQtKratOs1rUaVarwm1SFEVRjg9Wv3zk9s1a3LVIWwNkcDZCSwP35QiRPx074WHYO5XovaUFaIkVv3B8f8h5BSuAt1mj4O7zEFoKpI1D5rwCxg5w9UJ4biq1KmFrDLbGFW+ToijKQaICaaXC2p3WinantYq8zsv2WpmwQwbn9DudqWNmEAyEcLjsnHJxF+qdUKfC17zw7nNIq53K9B/mkJyWwGUPXkCVakkApNVO5ZFP+lf4GoqilOLYmZmlKMck4eyGcHaLvJZmDgSmIjCQrkvAPxFrHbUT3OcgbA1LrKustLibkHotpH8yaGmIuH5WEA0IvSYiuRxrsRVFKT/VNx9SKpBWKlXm7izu6jiQ3Kw8kNYWWbe/fAO5GXnUaVaT7peeFBlh9+X6+OiJr1i3ZANNOzbipmevjkqwtj/dLupMt4uKbvtRcaFgiJF3f8CfX8/E4bJz8/PXcN5tZ1b6dRRFURTlULCyZl8MZi7WN20bJDyKkFlgawTOgj5OmrnWyHF4NdjbIBLuKxjNLgPhOgvhOqvy70EGkdlPgv83wAkJA9A8l1X6dRRFUcpKBdJKpfri2e/I2JWFEbKyZAsh+HvcXF789YmocoZh8NBpT7Phny2EAiFWzvmPFbNW8dqM5w77evB3H/6MqV/OIOAL4sv18/YDn1Ctbhqdz+lwWNulKIqiKAdC5r4BZjoFW3dpEPgDkfJ+dDkZRqZfA+H1QBBCS5ChxZAy5rAvM5PZz4JvIta08TzIHoLUayCcpxzWdimKcvw6QrNkKOWxbe0O/pm5itzMsu/RfLDs2rInEkQDSClZOWc17zz8Kek7MiLH1y/bxJbV2yNbZwX9IdYttY4dbjPHzSPgK8gIHvAGmfnTvMPYIkVRFOVoI8MbkcGF1pTqw83YRvT+1yaEFmFmv4Q09hYcDv8LxmYKts4KQOgfazurwy3wB9EZwf3IwNTD1RpFUZTDE0gLIQYLIbYKIRbn/5xbQrlzhBCrhBBrhBBH1v4SR4h3HvyE29o8yOPnvsB1De5ixaxVh7U9nc9uX2x6dl6Wj3EjJ3JH+wFk783/QhFjDYcQIE2z+BtFmKbJyrn/sXDK0oPy8CC+SnRmUJtdJymtEpKwKMoxRMij40cpO9U3Vx4z+xnknvORGbchd5+GDC45vA1y9iR6/2tAZoP3U+TeC5FmVv4xk9hJ1Pb/l0lKExlcggzMRJrZFW1xcSKhyAE7iCqVfx1FOYod7j73eOubD+eI9KtSyvb5P78UfVMIoQOjgD5AS+AaIUTLQ93II9mSaf8w4f0pBP0hvNlevNk+Bl96eBN5nHf7mZx3x5noNj3quBE28OZ4mTZ2JgAN29SjRsNq2J3W6gK7007dFrWp26J25JxFfyzjh5G/MO/XRUgpI/UMOm8oA3oP4ZnLR3BD4/5s+Gdz1LWC/mCk/IG45/V+OD0OdJuGw2UnISWBi/+n9pZWFOW4oPrmCpKBmeD7DgiAzAGZg8w8vAkwheda8FxO8RV9YTBz8hOPAfaWoNXA2sYKwAH2ZqDXi5whA38j8z5DBmZE+lopQ8iMm5EZNyIz/4fcfQYyvDbqSlIGKtQ3i8QnARegY23pVQURd+0B16coilJRR/Ia6S7AGinlOgAhxFfARcCKw9qqI8iW1duKdUqZu7IIh8LY7JX7vzY7PYcvnvuOHRt20bF3Gy646+yYa5mFENw54kZuH349FyZeT8BbMEXaNGRkKrdu03n1r2d475HRrFuykaYdG3Lri30jdX40aAw/jPwFI2yi2zTO6NuD+96+nd8+ncay6f8S8AbyrwdD+77Ou4teZtem3Tx+7gtsXrkVu8vOgx/cxelXdy+4vmliGuZ+P5t2p7XijdlDmTN+AQ63gzP69iAxteiTcEVRlOOS6pv3x1ifP7JbiLkLKc1K33damhnI3LfA2AqO7gjPNTHXMguhIRKfRCYMQu5sS8HUbQATZDC/nB1Sv0LmDIPQvmRjD0XabWa/BL4xIA0QOrgvQyQ+ZT04CC6iYOq1QGYOQKR9jwxvQWbcCsYGwIlMehHNXfBwWkoTMKxrl0I4T4HUryEwzdpb2n0hQks+sA9OURSlEhzOQLq/EOIGYD7wkJQyo8j7tYHCQ41bgJMOVeOOBvVb1aXoFKzUWimVHkT78vzc0/lR9mxNJxwMs+C3paxfvpn73769xHM0TaPX1d3548sZBPPXG9vsOiedf2KkTFxSHA+8c0exc9N3ZPDtK+MjQXcoAL9+PJXV89eSviMzEkQDSAk7N+wGYND5Q9m8ciumKQl4g7xyy9s0bFWXBq3r8fGTX/L18J+QpqTzOe15YuyDpWYIb9i6Hg1b1yvxfUU57lVgZEk5oqm+uaJsTSk24U+rdRCC6FzknkvA3AWEIfA30libP3IbmxAa0nUu+H8lEvQKGzhPKyijJSGSni9+PWMHeD8nEoRLwDsWM7gYjN1Er1+WYGyx/hQJok3AB1mPIO1NQW+MzBkO3k8AE+k8HZH8SqkZwoW9BdhblP7BKMrxTPXNh9RBC6SFEFOAGjHeGgS8DTyL9c/ws8AIoF/RKmKcW+JvhxDiduB2gHr1jo8AqPUpLbji4QsZ+9I47A4bul3n2Z8qf7nagt+WkLUnm3DQSlQS8AaY+MHv3PP6zdgdJT9Bvu/t24ivEsfMH+eRlJrA3a/fTJ2mNaPK+L0BZo+fz5qFG6jfsjY7N+5m3qQlmEXWSoeDYVYvWFfsGpqu0ahdfULBEBtXbEGahX5FhODfOWtYt3QTP7z+SyQJ2qLfl/HW/R/z4Ht3HuhHoiiKclRSffPBJxxdkHE3Qt5HIByADVHl7cq/UOAvkJkUJBHzgXcMMuExhCj5651Ieg6pJVkju1oVROKTCFv0/xtpepGBP6zkY3pTKwFZYDpWMFxYCMLLY1xFB/sJSOkrFETva4AGwaVIloD3i4L2B6Yjs4cikoaU/TNQFEU5jA5aIC2lPKMs5YQQ7wPjY7y1Bahb6HUdYFsp13sPeA+gU6dOx83jmBsHX8kFd55J5q5sajWpUa59mMuqcBbuwkyj9MRgNruNO4bfwB3Db4j5fsbOTO7qOJC92wsNeAjKtJm8EOBwO0itlcLjX9yHzW7D5XHiyy14Iq5pgtSayUz7Zhb+vIJR7KA/xKIpy/Z/EUVRlGOM6psPDS3hQaSnr7XllK1BufZhLrtwjP5SUjzYjSaEA5E4COvZSXHS2JW/5/SewmdRps4ZAThBr4lIGo61ptlB9Gg1oFfNX0fuK3QwAMGZZbiGoijKkeFwZe0uPCx5CRDrceY8oKkQoqEQwgFcDfx0KNp3tEmpUYVGbesflCAaoEPvNtgcNoRmDUQ4XHY6n9Mep7vk64VDYT4aNIY7Owxg0PlD2bK6+Pesdx76NDqIhqh+WggBwrpeUTUaVqPH5V25bdj1pNVORQjBgI/vwel24Ipz4op30ebUE+jcpwPV6qZic9gK1QsptVSmT0WpiMOd8fN4ywx6KKi+uXIJvRrC3uIgBdGA4xRrWnbkq5wLnKdj/W+JTcogZvZwzD0XYabfjgxvLF4m+7kiQTREB9H7JiXE+A6g1QNXH4gfaN2/EJA01Gqb8Fg/jm7g6A56LQqSmuXXq1Xb310rilKKw93nHm998+FaIz1MCNEe61/mDcAdAEKIWsAHUspzpZRhIUR/YBJWisaPpJT/HKb2HtcSUxN4c/ZQ3uj/Abs276V9r1bcPuz6Us955bZ3+OubWQR8QdYt28g/f6/ko39fI6VGQQC7ZVWJgxgAuOOdDPikP4mpCTze5/movZ23r9vF9nW7mPzZn5x5Y08GftyfUy87mXot6/Dv7P9IqZFMp7PboWkaVzx0IVO//JvMXVlIKdF0jfveuq1iH4qiKMqxR/XNRxGhp0Lqt8jsZ8DYDs5uiISBpZ4jsx4F/xSsEeJVyL0LIW2SVdc+xob9XNgDSdZaZplxB1GjzeZG8G8E/w+YgSvQkp9Hc5+HtDWD0FJrJNpxqhVgx92O9E8Ec98DdR2ROLjcn4OiKMrhclgCaSllzChMSrkNOLfQ61+AYttvKOUnpeSXD6Yw7auZJKTEc+MzV1H/hDplPr9W4xoMnfhEmcqapskfY6ZjhK3pZdKUhEMGcyYspM8tvSPlWnZrzprFG2JOEdd0DafHSYfTWxOXFMcLEwfx7Ss/s3nltmKj21M++4sbnr6SGg2qUf+EOsXuKz45jneXvMyc8QsI+kN0PLMtabVSynzviqIoxwPVNx96Ukqk90tr+ymtCiLhfoStUZnPF7YGiJSPyngtI3+bq33LtUyQYQj+Be5LCgra20N4NbGniOsg4hCOzggtHqq8h/R+DKH1YG6ILur/Fmn0R+g1EfamYG8a3XYtGVLHQ2AqEALHKQhdjUgrinL0OJK3v1Iq0Vcv/sAXz39PwBtACMGC35bw7pKXqdGg8jstIUSxpIFCWMFxYbcMvY61izew/O+VkSRhTTs1QhqSGg2rcderNxGXFAdA2x4tadujJUP7vl4skJZSkrkrq9R7cce5OO2qUyrh7hRFURSlcsi8NyH3A6y1wgIZnAFp4xF6rYN1xRjH9KhXIuFRZHg1hBYVlLe1BgzQ6yMSH7eCaEA4T0Y4T8bM6A+BDcWvZaaDXpOSCC0O3Ocf6M0oiqIcViqQPk589+qEyLZRUkoCvgBTv/ybax67ZD9nlt+M7+dQdBtL3a7zw+sTePX2d6lSPYlHR99Lu56tGDFtCBk7MzHCBik1q6DrVoce9Ad5b+DnLJn6D9XqpdH/jVuo2ag6Hc9oxx9jZkTXbdOoV47RdUVRKkhStrxDiqKULu9TChJuSZB+8P8CcbdW+qWk/1eKJV0XDmTu+9aUby3N2n7K0QlSvgRzNxIDoVWPbN0lpR+Z/SIyOBf0OojEpxC2OuDsDoHfilzRBnrDSr8PRVFKoPrmQ+6wJBtTDj1TFpmiJUEWPVZJPn16bGRad+Rypsn65ZsxwgZ7tqbzxPlD2b1lL0IIUmpUoWqdtEgQDfDMFSOY+MEfbPhnM/MnLab/SY+SvTeHs27sSc8rukbK6Tad58Y/hifBfVDuRVEURVEOmkO552vuSAqmde+7fgiM/4AwmDuQGbcijV0IIRB6NTS9ZtT+1zLjbivbtrEGgn8h916ONLMQ7qvAWTghvA2qfIjQPIfizhRFUQ4LNSJ9HNi1eQ/SiO6s7S77QZvqHI6xXZYvNxC1x7Oma6yc8x9V66QWK+v3Bpj36+LI2mnTlISCYRb9sZyeV3TlibEPcu/bOXhzfFSrm4amafnlTIywUere1oqiKIpyJJDG1hi7SjnAec5BumAoxkEf0WuhNQgtA713sZLSzIXgLKLWWBOA4FyE60xElbeQZgbS9FrroiOj2CYQLjWbuKIoytFIBdLHgaF9X8ebU7BXo6ZrXP/UFdRqXOOgXO/8O8/k06fGRvZudrodhINhjELfFkxTkpiaEPP8omup99FtBccTUxJITElg29odLP1zBYunLWfa2JlIw6TNqScw+IeBxCfHVeJdKYqyjwDEoRxJU5RjkMx8AGReoSMaJDxgTZU+GDzXQO6bFEwldwFFg2sTtOTY5ws99vFCXyWFVgWhVUGGNyCD85HBWfkJzkykowsi+a3I+mpFUSqX6psPPRVIHwfWL9sUlRnbNEyy9+YctOtddv/56LrOL+9PweF2cPNz17Bh+SY+eWosRjiMzW6n7akn0KbHCTHPdzjt9LnldKaMnk7AG8DmsJGUlsiJZ7WLKrd46nKeuOBFTNMk5C/4MrBi1mpe7jeKwd+Xvg2IoiiKohw24f+IHg02wcw8aJcTcbcihQ7e70BzI+IfRIaWQ94oK3u3sIPjZLB3jH2+cCPdF4FvIlYwbgctFZxdo8rJwN/IjLus+6Fg20qCC5BZgxBVXj9Yt6goinJIqUD6OFCzYXXWLl4fWYrl9Dip0+xgZQS1snZfcu+5XHJvZLcUOp3VjmadGrNq3lqq1U2l+2UnRaZkx3LvW7dRv1VdFv++nBqNqnHdE5fhjnNFlRneb1QkgVphoWCYZdP/rbwbUhRFUZTKptfJ32Zq3wiSG2Grf9AuJ4RAxPWDuH4Fx5zdkPZ2EF4Oei1wnm3t8VxSHYnPI20tIDgH9LqI+HsQIrpvllmPErW3dEQIQnMr6W4URVEOPxVIHwceHX0vD/Z4CiNsYIQN2p3WijNv7HnIrr9u6UZG3PoWuzbtpdUpzTnng7uiEovFomkal/zvXC7537kllsneU/KoenK1pANur6IoiqIcbCJpBDK9LxAGDHCcAq4LD9n1ZWgFMutxMHeB/URE0hVRicViEUJHxN0EcTeVXKi0UXUt7UCaqiiKckRSgfRxoP4Jdfhs7ZusWbSeuEQPjds3KPWJc2XK2JXFgz2fIi/LC8CcCQsZdN4LjJz5QoXrbtWtOUum/ROV3MzusqPbdB768O4K168oSikOTtJ/RTluCHszqPo7hFaAlgC2Ew5Z3yyNXVYQL3OtA4E/kBl3IFK/rHjl9vYQWoD1gGAfJwgdkfR8xetXFKVkqm8+pFQgfZyIS/TQrmerQ37d5dP/jcrWHQ6GWb1gHXlZecQlVSwZ2ONj7uepi17i39mr0e06Z/TtQevuJ9DutFZUr1+1ok1XFEVRlINKaAngPOnQXzg4t8jWWyEILbYybldwyypR5XVkxh1W9m9s4L4E4egAjpMR+sFbVqYoinKoqUBaOahccU5k0d3hJdidFd+iKjE1gddmPEcoGMJmt0U9yd+zdS/rl20irU4qDVvXq/C1FEVRFOWYITwxtt7CSjhW0aq1FETqN0gZBOxRfbM0dljrwrWaCHvTCl9LURTlcFKBtFIiKSXZe3OIT45Dt5W+prkkHXq3oXbTmmxasYWgP4QrzsmFd52Nw1V5+0kW3Td69vgFPHf1K9jsNsKhMBfedTa3D7+h0q6nKIraYkNRDhcpJcgMEIkIcYBf45zd85OdbQACINzguRFRCYH0PkX3jTZ9kyHrYRA2kCGk5wa0xIcr7XqKoqi++VBTgbQS08YVm3nkrGfJ3puDEIKHPrqb06/uXu56bHYbr01/lp/e/o2d63fSuvsJ9LyyW7FyRthg8ud/sX3dTpqd2IhuF3U+oLVihmHw/DWvEvAGCeRvu/HT27/R88puNO/cpNz1KYqiKMqRQoZWITP6gZkFaMikl9DcfcpdjxAOSP0amTcGjC0I50ngPLv49WQYfOOQxhaEvQ3C1fvA2i1DVhCNr2AU3PsZ0n0uwt7ygOpUFEU53FQgrRQjpeSRs59j77aMyLFXbnmbZh0bHdC2WU63kysevKDE903T5Inzh7L875X48wK44pycf+dZ3HEAo8i5GXkYYSPqmK5rbF+3UwXSiqIoylFLShOZcTOYewoOZj2CtLdC2Mq/hEkINyL+lv1c7xYILQbpQ+JGeq4/sFFkM5NiWZCEDYzNoAJpRVGOUqXvc6Acl3IycsnanR11TLNp/Ldw/UG53so5/7H871X486w9of15Aca9MZGcjNxy15WQEo8nMTpRihE2aNhGrZNWlEojj6IfRTlWmOlgRvfNCBuE/z041wstgNASkL78Az7wfoQ0y983o6VY08cLk2GwNatwMxVFyXe4+9vjsG9WgbRSTFySB02P/tWQpqRq3dSDcr28bF+x6+m6hi/HV8IZJdM0jRd+eZzE1HhccU7sThv3jOxH/ZZ1K6u5iqIoinLoaUlYGcIKM0CrcXCuZ+ZS/GuiDtJb7qqE0BEpH4BIyg+oHZD4NMLWsDJaqiiKclioqd1KMbquM/DjexjebxS6rmOaJqdddQqtujU/KNdr3rkxolBfrekaqbVTSKtzYIF7sxMb89XW99izNZ3kqom44937P0lRFEVRjmBC2JFJL0DWIBA6SBNcFyEc7Q7OBYvVq4NeG7QD215S2NtCtb/B2AFaKkKr2BaYiqIoh5sKpJWYel7ZjcYdGrJ20XrS6qTSsmuzcif/WjF7NX9+PRN3nIvz7jiTqiUExokpCYyYOoShfUeya9MeGrerz6Av70fTDnzChN1hp2bD6gd8vqIoiqIcaTT3BUh7awitAL2WtT9zOcngQqT/VxAehOcahB67rxRaCqSMRmY+BOZOsJ2ASH71gBKBRuoUDjiA9dyKoihHIhVIK8XM+3URo5/9lnAozEX9+xzQSPTciYt45vKXCfiCaLrGj6N+5d3Fw6lWL/aT7MbtGvDBslcq2nRFUQ4JCWqLDUU5pKR/KjLvbZAGeG5EO5Ag2v8HMvN+wA/oSO8XkPYzQo89PVzYWyKqTqxQuxVFOVRU33yoqTXSSpTFU5cz5LKXWTFrNavnr2Pk3e8z6dOpUWUCvgB/fjOL3z6dxu4te2PW8/7Azwn4rO2nTMPEm+Nj3JuqM1YURVGU8pKBv5GZ91kZtMPLIPsJTO/P0WWkD+mfiPR9jzR2xK4n5yWsIBrAAJmL9I45qG1XFEU5VqkRaSXK+HcnRwJggIA3yA+v/8LZN/YCwJfr454uj7Fny16klAgheHnqYJqd2Diqnn0ZuPcxDRNvdvmThymKoijK8U56v6AgAMb6s/dT8FhbS0ozF7n3UjB3YaXE1SDli+J7NMui/bABZt7Ba7iiKMoxTI1IK1F0W/FfCZu94HnLuDd/Zcf6Xfhy/fjzAvhy/bx6+zvFzjn9uu44Pc7Ia6fbwWlXnXJwGq0oyiEn5NHxoyjHhhjjHkKP/FHmfQLGViujtvSBzENmPVn8HNcFQOEEnC6E+5zKbqyiKIfJ4e5zj7e+WY1IK1Eue+B8/h43j4DXGlF2ehxc98Rlkfd3b9lLKBCKOid9R1axem4YfCWmYTL5s79wuu30e+E62vdqXWntXDF7NWsWrqd6g6p06dOhQslPFEVRFOVIJuJuQQamUTAq7ULE311QwNwORPfNmLuL15PwIBIJ/p9BuBAJAxCOzpXWThlcaO1rrdcBRw/VNyuKckxTgbQSpdmJjRkxbQjfvvIz4WCY8+84kxPPLNgCo8Ppbfjtk2mRQNvutNPutFbF6tF1nVteuI5bXriuUtsnpWTYTW/yx5gZIKzrd7uwM4+Nvld12IqiKMoxSTjaQcrnSO/HIMMIz3UIZ9dC73dD+scXmrrtBMfJxesROiJxICQOrNT2SSmt7N6BiVh7XdvBdTYkvaT6ZkVRjlkqkFaKad6pMYPG3B/zvVMvPYkNyzcx5vnvMA2TNqeewP3v3H7I2jbq/o+Z8vlfkdeBcICZP85l5dw1nHBS00PWDkVRFEU5lISjHcLxWuw3XedC+D/Iew8wwdEFkfj0IWubzH4aAuMLHQmD/1eIuwHslTcbTVEU5UiiAmml3K5/6gque+IyjLCB3WGvtHp/GPkLY4eNQ0q4uP85XP3oJVFPsv3eAOPfnhTjTEHmruLTyxVFOYjUFhuKcsQQQiAS7kfG3wsYCFE5fbOUEun9CPI+BiR4bkbE3RLVN0szF3zfxGoVmLF39lAU5SBRffMhpQJp5YBomobmKFuuOtM00bTSy04Z/ScfPj4mMmX8i+e+Y9mMf9m8chuuOBe3vdSXFic1QWgaYEbXbxg0PbHRAd2HoiiKohwrhNAoax5ZKc388qWU8X0HOSOB/CnjuSORwdlIYx2IOETCI2BrAeiAUeRsE2xFsoYriqIcQ1TWboXsvTlM/242cyYsIOgP7v+EMlq7ZAN9G93NOfaruabuHayat6bEslNGT48E0QABX5D5k5awY/0uNizfxDOXv8zmVdto1K4+ur0gUykCHh9zP2m1Uiqt3YqiKIpyuEkzHemfhPRPRcrK65tlaAXmrtOQO0/A3NUTGVpecmHfj0SCaAD8EJwBxhYIr0Jm3I00toGtMdFjMwKSX0PoVSut3YqiKEcaNSJ9nNuyehv3dhuEETKQSNJqp/LG7BeIS/RUqF6/N8CAM4aQszcXgD1b07nvlCfoemEnrnviMpq0bxhVPj7JgxDRM1KkWfAi4Avy1zezGDpxECNueZt/Z6+map1UHv74Hhq2rlehtiqKUk4ShLn/YoqiHBgZXoPcezWRUV69FqR8jdDiKlavmYdMvwFktnXA3I7ceyXSeQYi/m6EvUX0CVoCVvKwwtNFC//l90NgEiLlY2TmYxBeBlotRPKLCFuTCrVVUZRyUn3zIacC6ePca3e+R25GHjI/gt2xfiffvPwTNz1zdYXq3frfdoxg9DQvI2ww4/s5zJ+0mNf/fp5GbetH3rv+6SuYO3ERAW8AKbG25yjUb2u6hjvORWJKAkN+qNxso4qiKIpyJJFZT4LMIdIRhjcivZ8g4u+pWMXGeoouj4IwBH5FBv+ElG8R9oLEnSL+PmRwJsh9225JooNqG+BBaCmIlHcr1jZFUZSjjJrafZzbtWlPJIgGCAXCbF+3s8L1JlVNJBQMx3zPnxdg3JsTo47Vb1mXtxcO45rHL+Waxy7hjpdvwOlxAFYQ7Ulwc+7tZ1S4XYqiKIpyxDO2ER2wBsHYXPF6tRSQodjvSR/S+0XUIWFvjkj9AeLuhLg7IH4g4Mp/V7fWSXsur3i7FEVRjkJqRPo417ZnS/ZsTScUsDpWp8cZc1/o8kqrlcLlD57PDyN/we8NRH8fAMxw0aQkULtJzaiR8MbtGjBt7N94Ej1c8r8+VKubVuF2KYpSSVRmUEU5eBydre2j2Lc22o1wnFThaoVeC+m5HrxfEL32eZ/ifbOwNUQk3B95Le0tkP6JIBIQcTci9OoVbpeiKJVE9c2HlAqkj3P3vH4zOzfsZtn0f5FScvZNp9Hnlt7Fyi2eupwxz39HKBjmonvO4bSrTolZX15WHu89Mppb92uqAAAfBElEQVS1izbQuEMDBn11P7+Pns7f4+YVBOtuB31u3f/ocofT29Dh9DYVu0FFURRFOcqIxMFIYweEFmJtO3UluC4uVk4GZiJz3wHC4LkBzX1OzPqkmY3MeQlCq8DeCpJfBd84CPxBQbDuQrj3P7osnKcgnLG/AyiKohxPVCB9nHPHuxn++9N4c3zY7DoOl6NYmeV/r+SJ84cS8Fmd7er5azHCJr2vOzWqnGEYPHja02xeuY1QIMS6pRtZOec/Rs17kd8+mcaEdydjd9m5YfBVtOrW/JDcn6IoiqIcbYQWj0gdbe3RLOwI4SxWRgbnIjPuBPLXL2ctw8REc58bXU6GkOnXQHgDEPp/e3ceZ1dd33/89Zl9spGEfQdrFHBjR0UUVyCtpUBFkBZKsUh/UtBWK4pVLC5UxFoXShGhVKFoS1GqSMRKVX5UylIVEZAIFEICIZBlskwmM/fTP+5NnBlmkjlh5p65c1/Px+M+cu9Z7n3PmUk++cz3e86B/gdgw70w919g3Teqj+giZryH6HjFhH9tkjRV2EgLgGkzu0ddd+OlCzY10QB9vRu4/P1XP6eRfuyXi1i88MlNI88b1m9g8cInefz+J5j/zjcxfwyj0JIkqSpaZoy6Ltd8lU1NNADrYdWnYFgjTf+vYOAJYOO50X3Q/2ui8ggx/WSYfvI4p5ak5uDFxjQGzz3fYvnSVTx416+HLowYeffRlktqXNkgD2mqyhFqay4lN/xy2MLRarC1WZpyyq65TVabbaS1RUePcM50e0cbjz/wxJBle+y7K3vutxvtXe0AdHS1s+d+u7HHvrvWJackSU1j2gkjLOyA/keGLmp7EbTuVV0HQCe07wOte09sPkma4pzarS064PUvZdqsbtau+s0VPqMlntMgt7a2cvEPLuDqj3ydh+55mHkHvoDT/vrttLa21juyJElTWnQeQcY0yLWDl0LbC4ZuF20w9xpy9edgw/3Q/hJi5nuIcCxFkp4PG2ltUUTwyZvO50PzPwHAhr5+3vGh43nRQb/1nG27p3dx1iWn1TuipDoLb7EhlSqiBeZ8mVx+JhDV+0PP+DOifd/nbtsynZh1fv1DSqora3N92UhrTF7y6hdz7WOX8cRDS5i702y223XbsiNJktTUouMQ2P7HMPAotGzvPZ0lqY5spDVm02dNG3EUWpIklSNaZkDLS8uOIUlNxxNkJEmSJEkqwBFpjZs1q9Zyy9U/pGfFag45an/2OXRe2ZEkTRTPw5IaQlZ6YN0NZKWH6Hot0f6ysiNJmijW5rqykda4WLNqLWcd8H6eXbKc/r5+vn7RNznva+fwmuMOKzuaJElNKSs95LK3QuUZYAO55h9g9t8SXc+9raUkqRindmtc3HL1D3l2yXL6ejdQqSTr1/Vx8R99iS+ecyV3fOfusuNJktR81v0rVJYB64EK0Euu/Esqqy4k1/+w5HCS1NhspDUuelaspr+vf8iytT3r+NYXv8uFb/9brv/ct0tKJmncJdX/kzfCQ2piWVkJbBi2sAfWfpVc/mdU1nytlFySJoC1ue5spDUuDjlqf9o720dct37teq768HV1TiRJUnOLztcCnaOs7YXVl9QzjiRNKTbSGhf7HDqPD3z1HObuPIf2znaiJYas7+/bQHoBBEmS6iY6DoRtLoKW7YEOYGhtJvvKiCVJU4IXG9O4OeL4wzji+MN4YuESzjrg/fSuWQ9AR1c7B73lFUTEFt5BUiMIkvAXY1JDaOmeD93zyf6HyWXHAetqazqh88gSk0kaT9bm+nNEWuNu1xfuzKdu/jB7vWR35uy4DUf8/iv54DXnlh1LkqSmFW0vIOZeAa2/BS3bQdd8Yvany44lSQ3LEWlNiJcevg9fvvezZceQJEk10XEIsf13y44hSVOCI9KSJEmSJBXgiLQ265FfPMYlZ/w9Tz++jH1f9SL+4oo/ZeacGWXHklQ2z8OSSpMb7idXng+Vp6D9QGKbTxAts8qOJals1ua6ckRao1rx9Eree8Rf8au7FvLskyu44zv38KH5n5zwz122+Fnuu/1Blj+1YsI/S5KkRpIDT5PPngL9v4DK07D+B+Tyd9Xhc58k++4hB56Z8M+SpEbgiLRGde+PHyAruemXW/19/Sy852FWr1jDjNnTJ+Qzb7ri+3zp3Ktoa29jYEM/77vq/3HkiYdPyGdJktRw+v4bGDzqtAE2/JSsrCFaJqY2V9ZcCz2fgmiH7Ce3+TQt3UdPyGdJUqNwRFqj6prWQTJ0ikgmtHdOzO9flj3xDF8650r61vWxdtVa1q/r4zOnX8rqFWsm5PMkPQ+ZjfGQppqYBozwsx3tE/JxOfBEtYlmPeRqoBdW/iVZWT0hnyfpeSi75jZZbbaR1qgOeOPL2HXeznR0VYtz17ROjjtnPp3dnRPyeUseXkp759D/CLS2tbL0sWUT8nmSJDWczsOhdXegVoujG6adQUTHxHxe/+Mw/L2jFSpPTsznSVKDcGq3RtXW3sbnfnwhN166gCWPLOVlr9mXI9/+6gn7vF1euBMb+vqHLBsYqLDjntsVep+BgQG+duH1/Od1tzF9m2mcefGpvPy1+41nVEmSShHRAdt+g1xzDQwsIjoOha5jJu4D2/aC3DBsYQVadi70NpkD5Oq/g96boWUWMfODRMdB4xZTkurNRlqb1dndydv+4nfr8lnb7jyHP//yWXz2Ty6jrb2Vgf4KH7r2XKZvU+ycr6988FpuvHQB69euB+BD8z/J52//BC94+Z4TEVtqPglUyg4hNa+IbmLGO+vzWa07kbMugFUfrU0fH4Bt/q7w+djZcxGs/TrQCwOQz54O215PtM+biNhS87E2152NtCaVN77jCA45en+WPraMnfbaYbMXNatUKnz1Y//Cgqtupb2rndMvPIkj33443/vHWzc10QB96/r40fX/ZSMtSdJWaJl2PNn1ehhYAq27Ey0zR91208jzuhsguoiZ7yO6jqq+pnfQln1k7y020pIalo20Jp1Zc2cya+7oRXqjaz5+Pf9yyb9vapo/c8alzNp2Jq3tQ3+sW1pb6OicmIuwSJLUDKJlDrTM2eJ2ufoLsOZqYF319Yr3w5zZtSt+D96ylWiZoPO6JakOvNiYtsqih5bwi///wLhcUXvNyjX85Nt3c+eCn9LX2zfm/b7/1R8OGXlev7aPW//5Nk772Il0TqsW55bWFrpndvGW04583jklSZrMsv8Rsu9ustLz/N+rsors/QG5/jYyx16bWfctNjbRVb1k700w/Wygq7astXr18a5jn3dOSSqLI9Iq7IvnfIWbv/ID2jqqPz4XLfgw+xy6dVOznvrfpzn7sA/S19tHZrLdLnP5wh2fYvqsaVvct2t615DXLS1B98xu5r/zTczZcTY//MbtzJgznRPf97tst+u2W5VP0shiCt2+Qmp0mUmu+mhtOnU7EDD3H4n2l23d+/U/Rj7zNmADkNULi237DaJlxpZ3ju5hC1ogptMy/RSydQey92aI2cSMPyFat9+qfJJGZm2uL0ekVcg9/3EvC666lfXr+lizci1rVq7lguMu3ur3+/y7r2DVMz2sXbWOdT29PPnoUq75+PVj2vedf/MHw0aeuznu3PkAvOqtB3PeV8/h7M+fwQ57WKglSVNY349rI8G1ez1nD7n87K1+u1x1AeTK2nutgYHHyDVfHtO+MfP9DB15nkFM/4Pquq430zL7Elq2+SuidaetzidJk4Ej0irkiV8tplIZeknAZ59cwcDAAK2trYXf78lHnqIy8Jv327C+nyceWjKmfQ85an8u/o8LuPW62+ia1slvn/lmdtzTplmS1GT6HwUGhi6rPElmEhHF32/gcYZe/rev9hlbFl2vh7lXk+u+Ay3TiGknE63FbpUlSY3ARlqF7PmS3YkYOpFh+z2226omGuClr9mXJQ8vZcP66j0qO6d1Frrn876HzWPfw7zip1R3Th+TJo+2ecCwOty6+9Y10QDtB1Wv0M3Gc6O7oeOQMe8eHQcQHQds3WdL2nrW5rpyareG+OV/PcgXz7mSK877Gk8+uvQ561/+2v044b2/TXtnO90zu5m17Qwu/NYHtvrzzvrsaez3qhfR1tFGa3srrzn+MH7vnGOez5cgSdKUkn13UVn5MSo9nyEHFj9nfXS+Cqb9IdABMR1iDjH70q3+vJj1YWh/OdAOtEH3fGLaO7b6/SRpKnJEWpvcefP/8LETPsP6dX20tAT/ftn3uOx/LmbnvXccst3pF57Mse8+mpVPr2KXF+5EZ3fnVn9m9/QuPvODC1j1bA+tba1jusiYJEnNIntvJVecS/UezC3k2utguxuJ1l2GbNcy633k9FOhsgLa9iRi62tztMyAuddUz5OmbWwXGZOkJuOItDb58ge+xvp11WlclUrSu7qXGz5/04jbzt1pDnu/bM/n1UQPNmvuTJtoSaWIiKMj4sGIWBgR542w/pSI+HntcXtEvGLQukcj4t6I+GlE3FXf5GoG2fNpqk00QAVyNbnmayNuG607EO0vel5N9Kb3iiBaZttESypFI9RmR6S1yeB7MkO1mV7X0zvK1pKaV06Z87AiohX4EvBmYBFwZ0TcmJm/HLTZI8DrMnN5RBwDXA4cNmj96zNzWd1Cq7nkumELKtUraUvSENZm6lybHZHWJm8+9XV0TvvNb7E7uzt4wzteU2IiSZpwhwILM/PhzOwDrgOOHbxBZt6emctrL38C7FbnjGpm3ccBg+/N3EV0/05ZaSSpHhqiNjsirU3ecf4JVCrJgqtupaOrndM/fjIHvOFlZceSpIm0K/D4oNeLGPob7eHOAL476HUC34uIBP4hMy8f/4hqZjHjbJIKrPsmRBcx8y+IAlfQlqQG1BC12UZam7S0tHDqR0/k1I+eWHYUSZNZ0kjTx7Ybdn7U5cMK6kj3Bxrxi4uI11Mt1oOn6hyemYsjYgfgloh4IDN/9LxTSzURrcTM98LM95YdRdJkZm2ue222kZYkTWXLMvPgzaxfBOw+6PVuwHPuLxQRLweuAI7JzGc2Ls/MxbU/l0bEDVSno9lIS5I0uilRmz1HWpLUzO4E5kXE3hHRAZwE3Dh4g4jYA/g34A8z81eDlk+PiJkbnwNvAX5Rt+SSJE1NDVGbHZGWJBVXKTvA+MjM/og4G1gAtAJXZuZ9EXFWbf1lwEeAbYFLIwKgv/ab9B2BG2rL2oBrM/PmEr4MSZKszXWuzTbSkqSmlpk3ATcNW3bZoOfvBN45wn4PA68YvlySJD0/jVCbndotTYDM5Nknl7N6hff6lCRpMshMcuBpstJTdhRJU4Aj0tI461m+mvOOupBH7n2crFR4yx8dyXsuexe1KSaSJKnOsrKcfPZ06P81MEB2v42YdYG1WdJWs5GWxtnn3vUPPPzzx+jv6wfgP665jX0OnccxZ7yx5GTS+InGucWGJJErz4f+h4AN1QW934SOA6D790pMJY0va3N9ObVbGmf33/HQpiYaYP3a9fzy9gdLTCRJUpPb8DM2NdEAuY7su6e0OJIan420NM522msHouU3U8U6utrZ9UU7l5hIkqQm17orMHgadye07lVSGElTgY20NM7+/Io/ZeacGUyb1U33jC72fMnuHHfO/LJjSeMrszEekgTENp+C2AZiBsQ0aH8xMf2UsmNJ46vsmttktdlzpKVxttu8nbn6oS9w3+0P0tndwUtfsw9t7f5VkySpLNH2W7D9LbDhf4Bu6DiICGuzpK3nvyDSBJgxezqHzT+w7BiSJKkmWraBziPLjiFpinBqtyRJkiRJBTgiLUkqJoHK1DnHSZKkhmdtrjtHpCVJkiRJKsBGWpIkSZKkApzaLUkqaGrdvkKSpMZnba43R6QlSZIkSSrARlqSJEmSpAKc2i1JKs7pY5IkTS7W5rpyRFqSJEmSpAJspCVJkiRJKsBGWpIkSZKkAjxHWpJUnOdhSZI0uVib68oRaUmSJEmSCrCRliRJkiSpAKd2S5KKSaDi9DFJkiYNa3PdOSItSZIkSVIBNtKSJEmSJBVgIy1JkiRJUgGeIy1JKighK2WHkCRJm1ib680RaUmSJEmSCrCRliRJkiSpAKd2S5KKS2+xIUnSpGJtritHpCVJkiRJKsBGWpIkSZKkApzaLUkqJoGK08ckSZo0rM1154i0JEmSJEkFlDIiHRFfB15cezkbWJGZ+4+w3aNADzAA9GfmwXWKKElSU7E2S5I0dqU00pn59o3PI+ISYOVmNn99Zi6b+FSSJDUva7MkSWNX6jnSERHAicAbyswhSSrIW2xMWdZmSWpQ1ua6Kvsc6SOApzLzoVHWJ/C9iLg7Is6sYy5JkpqVtVmSpC2YsBHpiPg+sNMIq87PzG/Vnp8M/PNm3ubwzFwcETsAt0TEA5n5o1E+70zgTIA99tjjeSSXJGlqsjZLkjQ+JqyRzsw3bW59RLQBxwMHbeY9Ftf+XBoRNwCHAiMW68y8HLgc4OCDD3ZegyRNJKePNSRrsyRNYdbmuipzavebgAcyc9FIKyNiekTM3PgceAvwizrmkySp2VibJUkagzIb6ZMYNnUsInaJiJtqL3cEbouInwH/DXwnM2+uc0ZJkpqJtVmSpDEo7ardmflHIyxbDMyvPX8YeEWdY0mS1LSszZIkjU2pt7+SJDWi9DwsSZImFWtzvZV9+ytJkiRJkhqKjbQkSZIkSQU4tVuSVEwClUrZKSRJ0kbW5rpzRFqSJEmSpAJspCVJkiRJKsCp3ZKk4rwyqCRJk4u1ua4ckZYkSZIkqQAbaUmSJEmSCrCRliRJkiSpAM+RliQV53lYkiRNLtbmunJEWpIkSZKkAmykJUmSJEkqwKndkqSCEipOH5MkafKwNtebI9KSJEmSJBVgIy1JkiRJUgE20pIkSZIkFeA50pKkYhIyK2WnkCRJG1mb685GugmteraH266/gw19/bzydw5ixz23LzuSJElNLSvLoXcBZD90vYFo3aXsSJKkzbCRbjLPPrmcsw74S9b2rCUryVc+eA2f/dFf88L99y47miRJTSkHniKXHQu5FkhYfQnMvY5of3HZ0SRJo/Ac6SZz3UU3sOqZHtav7aOvdwPrVvfypXOvKjuWpEZTycZ4SA0gV18KuRLoBdZDriV7Pll2LEmNpuya22S12Ua6yTyzZAUD/QNDlq1curKkNJIkicpSYHBtThhYVlYaSdIY2Eg3mVe99WC6pnVuet3Z3cEr33pQiYkkSWpynW8Eugct6ILON5SVRpI0Bp4j3WTeeMoRPPW/T3PdRTcw0D/A6058NX/8iXeUHUtSo8mpMzVLKlt0n0AOLIY1VwAV6H4rMfPcsmNJajTW5rqykW4yEcEp55/AKeefUHYUSZJEtTbHzHNg5jllR5EkjZFTuyVJkiRJKsBGWpIkSZKkApzaLUkqJhMqlbJTSJKkjazNdeeItCRJkiRJBdhIS5IkSZJUgFO7JUnFeYsNSZImF2tzXTkiLUmSJElSATbSkiRJkiQVYCMtSZIkSVIBniMtSSosvcWGJEmTirW5vhyRliRJkiSpABtpSZIkSZIKcGq3JKmg9BYbkiRNKtbmenNEWpIkSZKkAmykJUmSJEkqwKndkqRiEqg4fUySpEnD2lx3jkhLkiRJklSAjbQkSZIkSQXYSEuSJEmSVIDnSEuSistK2QkkSdJg1ua6ckRakiRJkqQCbKQlSZIkSSrAqd2SpEISSG+xIUnSpGFtrj9HpCVJkiRJKsBGWpIkSZKkAmykJUmSJEkqwHOkJUnFZHqLDUmSJhNrc905Ii1JkiRJUgE20pIkSZIkFeDUbklSYd5iQ5KkycXaXF+OSEuSJEmSVICNtCRJkiRJBdhIS5KKy0pjPMYgIo6OiAcjYmFEnDfC+oiIz9fW/zwiDhzrvpIk1U3ZNbfJarONtCSpaUVEK/Al4BhgP+DkiNhv2GbHAPNqjzOBvy+wryRJKqBRarONtCSpmR0KLMzMhzOzD7gOOHbYNscC/5RVPwFmR8TOY9xXkiQV0xC12UZaktTMdgUeH/R6UW3ZWLYZy76SJKmYhqjNU/L2V3ffffeyiPjfrdh1O2DZeOeZYI2WudHygpnrodHyQuNk3nO837CH5Qu+n/+63Xi/7wTpioi7Br2+PDMvH/Q6Rthn+P1DRttmLPuqxto8qTVaXjBzPTRaXmiczNbmKVCbp2QjnZnbb81+EXFXZh483nkmUqNlbrS8YOZ6aLS80JiZx0tmHl12hnG0CNh90OvdgMVj3KZjDPuqxto8eTVaXjBzPTRaXmjMzOPF2lz/2uzUbklSM7sTmBcRe0dEB3AScOOwbW4ETq1dIfSVwMrMXDLGfSVJUjENUZun5Ii0JEljkZn9EXE2sABoBa7MzPsi4qza+suAm4D5wEJgLXD65vYt4cuQJGnKaJTabCM91OVb3mTSabTMjZYXzFwPjZYXGjOzRpCZN1EtyIOXXTboeQLvHuu+GneN+Het0TI3Wl4wcz00Wl5ozMwaQSPU5qhmkCRJkiRJY+E50pIkSZIkFdB0jXREvC0i7ouISkQcPGzdByNiYUQ8GBFHjbL/3Ii4JSIeqv05pz7JN33+1yPip7XHoxHx01G2ezQi7q1td9dI29RDRFwQEU8Myjx/lO2Orh33hRFxXr1zDstycUQ8EBE/j4gbImL2KNuVeoy3dMxqF1/4fG39zyPiwHpnHJZn94i4NSLur/0dPHeEbY6MiJWDfl4+UkbWYZk2+32ebMdZakTW5vqyNk8ca3N9WJs1KWRmUz2AfYEXA/8JHDxo+X7Az4BOYG/g10DrCPt/Gjiv9vw84G9K/FouAT4yyrpHge0mwfG+AHjfFrZprR3vF1C9ZP3PgP1KzPwWoK32/G9G+x6XeYzHcsyoXoDhu1Tvp/dK4I6SfxZ2Bg6sPZ8J/GqEzEcC3y4zZ9Hv82Q7zj58NOLD2lz3jNbmicloba5fbmuzj9IfTTcinZn3Z+aDI6w6FrguM9dn5iNUrwB36CjbXV17fjXwexMSdAsiIoATgX8u4/PH2aHAwsx8ODP7gOuoHudSZOb3MrO/9vInVO8/N9mM5ZgdC/xTVv0EmB0RO9c76EaZuSQz76k97wHuB3YtK884mlTHWWpE1uZJydpcnLV58phUx1lTU9M10puxK/D4oNeLGPkfkh2zeo8yan/uUIdsIzkCeCozHxplfQLfi4i7I+LMOuYaydm1aTVXjjLdbqzHvgx/TPU3miMp8xiP5ZhN2uMaEXsBBwB3jLD6VRHxs4j4bkS8pL7JRrSl7/OkPc7SFGBtnjjW5vFnba4fa7NKNyVvfxUR3wd2GmHV+Zn5rdF2G2FZKZc0H2P+k9n8b7wPz8zFEbEDcEtEPJCZPxrvrLD5vMDfAxdSPZYXUp3y9sfD32KEfSf02I/lGEfE+UA/cM0ob1O3YzyCsRyzSfMzPVhEzACuB96TmauGrb4H2DMzV9fO2fsmMK/OEYfb0vd5Uh5nabKxNgPW5s2yNpfH2iwVNyUb6cx801bstgjYfdDr3YDFI2z3VETsnJlLalNElm5Nxs3ZUv6IaAOOBw7azHssrv25NCJuoDrdaEIKyViPd0R8Gfj2CKvGeuzHzRiO8WnA7wBvzMwR/+Gt5zEewViOWd2P65ZERDvVQn1NZv7b8PWDi3dm3hQRl0bEdpm5rJ45h2Xa0vd50h1naTKyNlubt8TaXA5rs7R1nNr9GzcCJ0VEZ0TsTfU3bf89ynan1Z6fBoz2W/SJ9CbggcxcNNLKiJgeETM3Pqd6gY5f1DHf4CyDz0c5bpQcdwLzImLviOgATqJ6nEsREUcDHwB+NzPXjrJN2cd4LMfsRuDU2pUrXwms3Dj1sQy1cwe/AtyfmZ8dZZudatsREYdS/TfqmfqlfE6esXyfJ9VxlqYYa/MEsDZPGGtzHVibNVlMyRHpzYmI44AvANsD34mIn2bmUZl5X0R8A/gl1SlD787Mgdo+VwCXZeZdwEXANyLiDOAx4G0lfBknMWzqWETsAlyRmfOBHYEbav/mtQHXZubNdU9Z9emI2J/qdJpHgXfB0LyZ2R8RZwMLqF7x8srMvK+kvABfpHqF2Ftqx/AnmXnWZDrGox2ziDirtv4y4CaqV61cCKwFTq9XvlEcDvwhcG/85tYwHwL2gE2Zfx/404joB9YBJ4026lAnI36fJ/lxlhqOtbnurM0TwNpcN9ZmTQpR7t8DSZIkSZIai1O7JUmSJEkqwEZakiRJkqQCbKQlSZIkSSrARlqSJEmSpAJspCVJkiRJKsBGWpIkSZKkAmykJUmSJEkqwEZaGkcRcUhE/DwiuiJiekTcFxEvLTuXJEnNytosaSJEZpadQZpSIuLjQBfQDSzKzE+VHEmSpKZmbZY03mykpXEWER3AnUAv8OrMHCg5kiRJTc3aLGm8ObVbGn9zgRnATKq//ZYkSeWyNksaV45IS+MsIm4ErgP2BnbOzLNLjiRJUlOzNksab21lB5Cmkog4FejPzGsjohW4PSLekJk/KDubJEnNyNosaSI4Ii1JkiRJUgGeIy1JkiRJUgE20pIkSZIkFWAjLUmSJElSATbSkiRJkiQVYCMtSZIkSVIBNtKSJEmSJBVgIy1JkiRJUgE20pIkSZIkFfB/+02BWAsZbTEAAAAASUVORK5CYII=\n", + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], "text/plain": [ - "<Figure size 1152x1152 with 4 Axes>" + "<IPython.core.display.Javascript object>" ] }, - "metadata": { - "needs_background": "light" + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1000\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "fig, ax = plt.subplots(figsize=(16, 16), ncols=2)\n", + "fig, ax = plt.subplots(figsize=(10, 10), ncols=2)\n", "data.plot.scatter(x=\"x\", y=\"y\", c=\"guess_bgmm\", colormap='viridis', ax=ax[0])\n", "data.plot.scatter(x=\"x\", y=\"y\", c=\"source\", colormap='viridis', ax=ax[1])\n", "ax[0].set(xlabel=\"x\", ylabel=r\"y\", title=\"Guessed source using Variation Inference GMM\")\n", @@ -664,8 +4497,7 @@ "source": [ "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", "\n", - "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", - "#### Arman Davtyan: arman.davtyan@xfel.eu" + "#### Data Analysis group: da@xfel.eu" ] }, { @@ -693,7 +4525,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.6.13" } }, "nbformat": 4, diff --git a/README.md b/README.md index d00bc85..bb9b0af 100644 --- a/README.md +++ b/README.md @@ -6,16 +6,134 @@ are also given in the notebooks. Most of the notebooks require installing special software the following is a general setup that should work with most of the given notebooks. The list of packages needed in each given notebook is given in the beginning of the notebook with a `!pip install ...` command. +It is highly recommended to use Anaconda/Miniconda for the setup, as shown below. If you prefer a simpler configuration, details on the +Virtualenv setup is also given at the end (but this tends to use a less optimized setup, which may affect the performance and some results). + +All the data used in the examples are produced on-the-fly for demonstration purposes, or are taken from public and open resources. +None of the data comes from the EuXFEL, as the purpose of the examples is to show the idea behind the methods. + +## Anaconda configuration + +If you already know how to use Anaconda (or Miniconda), the following +setup is recommended. +If you are not used to Anaconda, see the following references on how to install and a quick start guide: + + * https://conda.io/projects/conda/en/latest/user-guide/install/index.html + * https://conda.io/projects/conda/en/latest/user-guide/getting-started.html + +Here is a cut-and-paste installation guide for the impatient in Linux: ``` -pip install torchvision torch pandas numpy matplotlib ipympl torchbnn scikit-learn +wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.10.3-Linux-x86_64.sh + +# or download it from: https://docs.conda.io/en/latest/miniconda.html#linux-installers +bash Miniconda3-py37_4.10.3-Linux-x86_64.sh + +# follow the instructions ``` -All the data used in the examples are produced on-the-fly for demonstration purposes, or are taken from public and open resources. -None of the data comes from the EuXFEL, as the purpose of the examples is to show the idea behind the methods. +This creates a conda environment named `ml` (use whichever name your prefer instead) and install the packages needed. +If you are using a Mac, please see the section below for a special configuration +for Anaconda in a Mac (due to an incompatibility between some Mac libraries +and Anaconda's default MKL installation). + +``` +# create the environment +conda create --name ml python=3.6 + +# activate it +conda activate ml + +# install basic libraries +conda install mkl + +# PyTorch (without the GPU acceleration): +conda install pytorch torchvision cpuonly -c pytorch + +# Or, instead, if you have an NVIDIA GPU (for AMD GPUs, check https://pytorch.org/ and look for the ROCm platform): +#conda install pytorch torchvision cudatoolkit=10.2 -c pytorch + +conda install numpy scipy pandas scikit-learn matplotlib jupyter + +# for the Bayesian Neural Network notebook: +pip install torchbnn + +# play with the notebooks: +jupyter notebook + +# when you are done: + +conda deactivate +``` + +### Special Anaconda setup in MacOS + +In MacOS, the standard optimization done in Anaconda for fast matrix multiplications using the MKL library clashes with a Mac-specific implementation. +To avoid this issue, use the setup below. + +``` +# create the environment +conda create --name ml python=3.6 + +# activate it +conda activate ml + +# remove MKL to avoid conflict in MacOS +conda install nomkl + +# PyTorch (without the GPU acceleration): +conda install pytorch torchvision cpuonly -c pytorch + +# Or, instead, if you have an NVIDIA GPU (will not work with an AMD or Intel GPU): +#conda install pytorch torchvision cudatoolkit=10.2 -c pytorch + +conda install numpy scipy pandas scikit-learn matplotlib jupyter + +# for the Bayesian Neural Network notebook: +pip install torchbnn + +# remove any MKL libraries installed as a dependency from the packages above: +conda remove mkl mkl-service + +# play with the notebooks: +jupyter notebook + +# when you are done: + +conda deactivate +``` + +More details on this can be found in: + +https://stackoverflow.com/questions/53014306/error-15-initializing-libiomp5-dylib-but-found-libiomp5-dylib-already-initial + +## Virtualenv setup + +It is preferrable to use a virtual environment to avoid any clashes between these +packages and your current setup in your computer. Using a virtual environment, +the setup would be the following (for an environment called `ml`, but use the name +you prefer): + +``` +# create the environment ml +virtualenv -p python3 ml + +# load it +source ml/bin/activate + +# install some packages +pip install numpy scipy pandas torch scikit-learn matplotlib torchvision torchbnn jupyter + +# play with the notebooks ... +jupyter notebook + +# when you are done: +deactivate +``` + +# Contact us! -### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data! +#### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data! -#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu -#### Arman Davtyan: arman.davtyan@xfel.eu +#### Email: da@xfel.eu diff --git a/Representation Learning.ipynb b/Representation Learning.ipynb index 95fd59c..7c4f153 100644 --- a/Representation Learning.ipynb +++ b/Representation Learning.ipynb @@ -24,7 +24,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "id": "44ca341e", "metadata": {}, "outputs": [ @@ -32,20 +32,20 @@ "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: numpy in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.19.2)\n", - "Requirement already satisfied: scikit-learn in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (0.24.2)\n", - "Requirement already satisfied: pandas in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.3.0)\n", - "Requirement already satisfied: matplotlib in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (3.4.2)\n", - "Requirement already satisfied: joblib>=0.11 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (1.0.1)\n", - "Requirement already satisfied: scipy>=0.19.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (1.6.2)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (2.2.0)\n", - "Requirement already satisfied: python-dateutil>=2.7.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2.8.2)\n", - "Requirement already satisfied: pytz>=2017.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2021.1)\n", - "Requirement already satisfied: six>=1.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (1.3.1)\n", - "Requirement already satisfied: pillow>=6.2.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (8.3.1)\n", - "Requirement already satisfied: pyparsing>=2.2.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (2.4.7)\n", - "Requirement already satisfied: cycler>=0.10 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (0.10.0)\n" + "Requirement already satisfied: numpy in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.19.2)\n", + "Requirement already satisfied: scikit-learn in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (0.24.2)\n", + "Requirement already satisfied: pandas in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.1.5)\n", + "Requirement already satisfied: matplotlib in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (3.3.4)\n", + "Requirement already satisfied: scipy>=0.19.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (1.5.2)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (2.2.0)\n", + "Requirement already satisfied: joblib>=0.11 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (1.0.1)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.2 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2021.3)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (3.0.4)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (0.11.0)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (8.3.1)\n", + "Requirement already satisfied: six>=1.5 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n" ] } ], @@ -55,13 +55,14 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "300cf8d3", "metadata": {}, "outputs": [], "source": [ + "%matplotlib notebook\n", + "\n", "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", "\n", "import pandas as pd\n", "import numpy as np\n", @@ -78,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "4959a292", "metadata": {}, "outputs": [], @@ -100,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "024fb65a", "metadata": {}, "outputs": [ @@ -207,7 +208,7 @@ "[500 rows x 2 columns]" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -232,14 +233,972 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAHlCAYAAAAOQn7zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABoXUlEQVR4nO3de5Bc130f+O+5j35Md0/PTGMeeA8AAsKQAB/gkBbJtWkblCkvFTqskjZZJ3HkpKJysonkjZ1sEmc3qd1NrWtTlUTepHZL8XqzSbxJJbJpK6ZFWoJsWhZokXiQAsiBQLwxAOaBefQ8+nFfZ//o6WZPz+337b79+H6qVCIwPd2n7wz6d3/n/M75CSkliIiIqDspfg+AiIiIGsdATkRE1MUYyImIiLoYAzkREVEXYyAnIiLqYgzkREREXawjArkQYkgI8XUhxBUhxIwQ4jm/x0RERNQNNL8HsOWrAN6UUn5eCBEAMOD3gIiIiLqB8PtAGCHEIIAPAByWfg+GiIioy3RCRn4YwCKA/0cI8QSA8wC+IqXcLPcNu3btkpOTk20aHhERkb/Onz//UEo56va1TsjIpwH8KYAXpJTfF0J8FcCalPJ/LHnclwB8CQAOHDjw9O3bt9s/WCIiIh8IIc5LKafdvtYJxW6zAGallN/f+vPXAZwqfZCU8mtSymkp5fToqOtNCRERUd/xPZBLKecA3BVCfGrrr04D+MjHIREREXWNTlgjB4C/BeA3tyrWbwD4eZ/HQ0RE1BU6IpBLKd8H4Dr3T0REROX5PrVOREREjWMgJyIi6mIM5ERERF2MgZyIiKiLMZATERF1MQZyIiKiLsZATkRE1MUYyImIiLoYAzkREVEXYyAnIiLqYgzkREREXYyBnIiIeoJhOUimTRiW4/dQ2qojmqYQERE1Yy6ZxttXF2E5Epoi8OKxUUzEw34Pqy2YkRMRUVczLAdvX13EgK5hPBbCgK7h7auLfZOZM5ATEVFXS5s2LEciHFABAOGACsuRSJu2zyNrDwZyIiLqamFdhaYIpI1c4E4bNjRFIKyrPo+sPRjIiYioqwU0BS8eG0XKtDC/nkHKtPDisVEEtP4IcSx2IyKijmdYDtKmjbCuugboiXgYrz21r+JjehUDORERdbRaK9IDmtJXATyv/94xERF1jX6vSK8FAzkREXWsfq9IrwUDORERdax+r0ivBQM5ERF1rH6vSK8Fi92IiKij9XNFei0YyImIqOP1a0V6LXhViIiIuhgDORERURdjICciopbp1x7h7cQ1ciIiaol+7hHeTszIiYjIczyRrX0YyImIyHM8ka19GMiJiDpIr6wp80S29uEaORFRh+ilNeX8iWxvX13EWtYsvB/uBfceAzkRUQcoXlMOB1SkDRtvX13Ea0/t69rgxxPZ2oNXlYioA/TqmnJAUxAP6wziLcQrS0TUAbimTI1iICci6gDs8kWN4ho5EVGH4JoyNYKBnIiog7DLF9WLvy1ERERdjIGciIi6Qq8cluM1Tq0TEVHH66XDcrzGjJyIiHxTS5bNBiyVMSMnIqKWMizHtRK/1izb7bCctayJtGl3ZGFguffbKgzkRETUMuWCdT1H0hYflpN/bKceluPHEkDn3coQEVFPqDQlXs+RtN1yWI5fSwDMyImIqCUqTYnXm2V3w2E5fi0BdN6VICKinlDp/PhGsuxOb8Di13n5zMiJiKglqvUk74Ysux5+9WBnICciopapFqx77UhaP25OGMiJiKilei1YV9Pu99s/V5aIiKgHMZATERF1MQZyIiKiLsZATkRE1MUYyImImsDWmuQ3Vq0TETWIrTWpEzAjJyJqAFtrlsdZivZiRk5E1IBua63ZLpylaL/+/W0jImqCX+dq+6HWDJuzFP5gRk5E1AC/ztVut3oybM5S+KNjArkQQgVwDsA9KeXn/B4PEVE1vdb0o1Rxhp1vNfr21UW89tQ+1/dab2tS8kYn/dZ9BcCM34MgIqpHp7fWbIZbhm05EmnTdn18I61JqXkdkZELIfYBeAXAPwHwt30eDhERobEMu1NnKQzL6bgxeaUjAjmAfwHg7wKI+TwOIiLa0mgdQKd1O+v1SnrfA7kQ4nMAFqSU54UQP17hcV8C8CUAOHDgQHsGR0TU5zo1w65Vvev83agT3sULAF4VQtwC8B8B/KQQ4t+XPkhK+TUp5bSUcnp0dLTdYyQi6lvdXAdQ7zp/N/L9pyKl/PtSyn1SykkAfx7Ad6SUf9HnYREREbr/lLZ+2O/v+9Q6ERF1pl5YW+6H/f4dFcillH8E4I98HgYRUd/rpbXlbl/nr6a33g0REXmi19aWu3mdv5ree0dERNS0flhb7hUM5EREfaaWArZWn9LW7UV0naSj1siJiKi16ilga9Xaci8U0XUSZuRE1BeYATbWZtTrtWW2OvUeM3Ii6nn9lgEWnysOoPDfndBmtBPG0GsYyImop/XSNqpaFN+0bGZMAAKRkAZNEXj+SML3NqNsdeq93vstJiIq0mvbqCopvmlJDARw82EKNx9uIhEJYEDXcPb6Ep47nPC1zShbnXqPGTkR9bR+ygCLb1pShgVVFQCArOUgEtCwljURHwj4fjhKrx/Q0m68ekTU0/opAyy+aQmoCmxbwrYlgpqy7QbGz8NR8kWHAHr2gJZ2Y0ZORD2vHzLAfIHb80cSOHt9CVZW4tCuAQACS5tGR5wx3m9Fh+3CQE5EfSGgKT0ZwIGdAfK5wwnEBwI7qtb9fP/9VnTYTrx6RERdzG1f9js3lgqBu1POGO+nosN2YyAnIuoipQfb+B0gaz1op9LZ7TyspzmcWici6jDFB7oUZ9Jua8wjkaBvVfn1rHmX6wu+vJnlunmThJTS7zHUbXp6Wp47d87vYRARea5ccDQsB69fnN22xpwyLbz21D5fgmGl8VSaxi89da6R5+hHQojzUsppt68xIyci6hCVCsIqHW3qR1V+o0etFhcdJtMmj2v1AK8UEfW8blmDrbTeXa0/eLuL2rzoV86e595gICeinjaXTOP1i7P4vR/cx+sXZzGXTPs9pLIqBTYvD7bx4sbGi/H002E9rcQ1ciLqWY2u4/qpeI0ckHh2cgQHE9HCeMsVwjXy/F6spzc7Hq+eo9dVWiPnFSOinuX31qxG5Ne7n5kcBqTAu7dWts0kNDOF3ope4F5M6XfKXvduxatGRD3L7zXYZqawL95ZxWBIbzrgFo+hG29sqDpWrRNRx2t06rXc3uV2ZH7NTGE3WhFebQyd0I+cvMdATkQdrdk13Vq2Znm9RtvIueLFY/Ci9arbGPL9yN+5sdT2GxtqHQZyIupYXjXaqNQwpRUduerNqN3G0OxMQrkxdEI/cvIWAzkRdSyvppjL8eJGwS2bryejrjSGSgG32ixC6RjWM7l1clWInu4E148YyImoY3kxxVxJszcK5bL5etbmK42hXCV3LbMIxWO4u5LCjcUNHB6N4I1L97c9nlu/uh9/akTUsVp9YEgzVe3VtnLl1+Y/9/gevPbUvrLT9fWOoZ4tZBPxMF45uQcDARUvHNmFY+OD2x7fTYflUHkM5ETU0WoNiI1o5kahlq1cteyPrncM9W4hs6WErimIhfVtj1/LmJ7vKSd/cGqdiDpeK9d0G2044uW0fz1jqPd1yz0eEmxY0iP40yKivueWOVc7zMXraf9aTzer93XLPX4wrDd1WE63NKLpBzxrnYh6WiPFXPVsSfOrWKze13V7fKNb71qxZY8qYz9yIupLjQScerek+bWVq97XdXt8I8sKXu3tJ+/wqhNRT2qkQYhhOZhfzyBj2X1zHnm9DUuaPa+dU/LeY0ZORD2p0dPVMqaDS7NJKFJg91A4t4YsAdN2YFhO32edzRT5cUq+Nfr7N5KIelY9+7OLs/e9Q2E8sX8IF+4u4/riBmZXUtjMmnjrwznutUbjRX6taKFKOQzkRNST6gk4pdl7SFdhO0DGsHF1YQ3hPg4+blPhjeztZwvV1uHUOhF1DK8rwGst5irO3nVN4MLtFUQCGvaNhHEvmca1xQ2MxoJ9t9e60lR4vcV2rT5ut5/1/m8iEXWFVh0XWq2YK3/z8NzhBFKmhdmVNDKWjVMHhhAJagjrKjKmDcN2+ir4eD0V3urjdvsZM3Ii8p1fW5pKM87njyQQ1jWEAwpCugZNUfDIWBQf3F3FStpASFPrDj71zDJ0UgOTVnSea/QUPaqMgZyIfNfqdqVu3G4ezl5fwmtP7cPp4+OFzmUBTcGXTx9FfCBQd/Cpp0q70yq6WzUVzhaq3mMgJyLf+bF+WnrzoKsC6+sW1jKmJ5ljPbMMnXjISj2tWMlfDORE5Ltmg4bblHS1aerim4eNrIFzt1ZhOQ7CuorTU2OFvuKNqmeWwYsZiUrvt9Epe06FdwcGciLqCI0GDbcpaQBVp6nzNw+/feEuvvXRAlRFYDIRheNIT7LhemYZmp2RqDQt3+yUPafCOx9/OkTkmWaP36z3uFC3yuozMws4c2W+pmrrkUgQAU3D5K4Inj00gpFIANcWN5Cx7Kb3N9dTpd1MRXel6vJOOoSFR7O2DjNyIvKEH8VablPS8+sZAMB4rLYpbV1VMBjSYdm5gJpMG5AOPFmfr2eWodEZieJrYNkOJOS2G5FO6DneaYV8vYYZORE1rTTzCygK3rw8h42M1dLXdTuGNayrCAeUmo5mDesqQnpui1nWsrGwnoHtSJyeGvMs0NUzy1DvjATwyTV4sJrGOzeW8L1rD3HpbhLJlFHXMbWt0kmzAr2KgZyImlacFa5sZvH+7Cou3FnBfz5/t6Vnk7tNSZ+eGsPp4+M7pqkB7JjazX9/QFNweDSKqd2D+PLpo9g/EmnZmL0W0BQ8fySBD2ZXkTZthHQVT+wfwjs3lgDA90NYeDRr63FqnYials/81tMmLt9fg4DA8EAAQ2G95duoyk1JF//d8mYWr1+cdZ3a7YXK7MFwACf3DWFoQEdQU6ApCubXM0ibtu/vj0eztl73/cYSUcfJZ7bJjImVlAEJiRN744iF9Kazr1qKpNympPN/B6Dq1G4jU9rtVuk65JcIFAhoirIjWPr5/ng0a+sxIyciT0zEw/j80/shAQyFdcRCekPZV/Ge5+XNbNNFUn6cGue1asVinX54i9+zAr2OgZyIPBMNafjpExN4++oi5tczdQeU4oAFCWxmTeyODzR12lnp1O56JpfVqkI0+jbbqtZT3ybiYbxycg9W0gaGwwFEQ5318c796K3TWT9pIup6jWZfpQFraTOLmbl1HBiJwHIcOJDImE5hmr7W5y/OVu+upHBjcQOHRyN449L9rtgGVeuMgldbvDqpcQvVhoGciDzXSPZVGrDy69t3VlK4t5JG2rThOBIn9sRwbXGzroCVz1a/fv4uXjiyC7Gw3hHnmdcSNIsLCVVVwLbljuUKr85q537v7sTbLSLqCKV7nk1L4uhYFFfuryGzFewe2z2I//DuXQRUpe49ybaU0DUFsa0bBL+3QdXafz2gKZiaiOF71x/i2zPz+N71h5iaiG0L0F5s8eJ+7+7FjJyIOoJbwdZLj44jEtIwHA4goCowbAfGrANFya1v11O41optUI1OQ9fbGW1mbh0vPLILiiLgOBIzc+s4vjteeKwX760XigL7FQM5EXWM0vV1ALh4ZxUCApqa21YVUBU4jgRQ30llXld2NzMN3UhntEREL/xdfo94/rFevDcvb3S4zt5eDORE5BkvPsBL19dLA9TPPXcQM3PrDVXFe7UNqtE16fz1UYXwvDNas+/NqxsdrrO3HwM5EXmiVR/gbgHq+O54UwGr2SyxkWno0uszNRHDzNx6IWg+dzhRWNMuPdim1gDb7Htr9mbAq6I7qg8DORHVxS3rbvUHeGmA8ntPcr3T0PnrE1AUhPVc5fnM3DpeObkHtpRYSxs4e32p7E1QOw9Uaebacp3dHwzkRF3Kj3XIu8ubODOzAKEAIU0tBJxu/QBv9BrWOw2dNm0sbWQxv5aFLXPr+yMDOjKmjcGwjjcvL1W9CfL75qUWPFfdH74HciHEfgD/FsAEAAfA16SUX/V3VESdzY91yDtLm/i1Mx9DVQRCuopHRqN4++oiXjm5B6blAJANf4C346ak9DWavYb1ZMmqELixuIloUIeuCPxwbg0fmjYSsQCeP7zLt5sgr697px8V26t8D+QALAC/JKW8IISIATgvhPiWlPIjvwdG1In8WIc0LAdnrixAUQRGYyEYloNrixvYFQ3i6+fvQtcUbGZsbGZSiIT0uj7A23FTUvoazx1O4J0b1bPgamrNkm0pcXg0ivuraVxb3EBAVXAoHkJI1fDurWVAtj+LbWdNA7WW71dYSvlASnlh67/XAcwA2OvvqIg6lx/9ndOmDUXkgothOQhoCjazNj6eX0c8pGM8FsLueBiRoI6XH5vAa0/tqykotOMQErfXOHNlARnLhoDEw40MBGTN17CWbmylwrqKRDSAR/cM4sDIAI6NRREL6Vun1wk8c2i4rd3BWn3du6GbXC/phIy8QAgxCeApAN/3eShEHcuPdch8m8xHxqK4trCB1bSBrGXj2Hh020lpa1kTulr7Wm471tbdXkNJCcw+3MAb9x4AAoAEnp0crnoNG81i81POZ2YWYNoONg0bpw4Mwdw6bnUyEcVkItq2LLZbaxrIXcf8xIQQUQC/BeAXpZRrLl//khDinBDi3OLiYvsHSNQh/OjvnH/NgKbg8GgUU7sH8YsvHcXYYKhwpGr+hkIVouaMtfRY1lbclKhCwLAcrGfMwmvYjoMbSykoAhgI5MZw42Gq4pibzWIn4mF8YXo//saPH8GJfYMwHLntZ9fOLLYd153aR8itCkpfByGEDuD3ALwlpfxn1R4/PT0tz5071/qBEXUwP6rWqxWM5fdG15OxtnKNPP/cSxtZ3FjcxOHRKDRFYCVl4LsfL2JoIIC9w2EkIgHMrqTxdz57HPuHB1yfK5k28Xs/uI/xWKjwd/PrGXzu8T2FBi+1KreFr50/Tx7c0l2EEOellNNuX/N9al0IIQD83wBmagniRJTTzu1IxUGmOGgVFzapQuCNS/frLiBrVXFUcQadGA9i92AYS6ksdFVBIhJA2rCRMTN4uJ7FY3sGEVAVDIcDZZ+vliWNWoNx6c/Oj6DKorTe4XsgB/ACgL8E4JIQ4v2tv/sHUsrf929IRL2lmWyvWpDJB6Vk2mx43bUVNyWl68CxsI6llIGM6eD+ahon9w7hytwaUoaNa4ub+Ed/ZgrRUPmPxGpbq4qvEyDx7OQIDiaiVd+Xn6ehdcPedKrO90AupfwT5MpNiKgFmsn26gkyjZx21sps0G084YCCdNZBxrSxb2QAQxEda2kLx8aiGB0MFyryyymXxRZfp4xp4cKdJM7dWsH0wRGcnhqreL2bKTxjcxICOqjYjYi812yBVj1b3eopwqu1F3cz3MZz+vg4Xj4xDtuRWFjPQErgyK4BXFvcwHeuzNc0FreitPx10lWBy/fXEAvpiAQ1aKqoer0bLTxrxzWk7uB7Rk5ErdPsNqN6s+xa1l2bmUo2LAdraRMQwGCoeoV3ufF8+fRRnLmyAOlIfPRgDU/sG8LueNh1LLVkvfnrlEybhSNYVSEQD+tY2jQqXu9GTkPzuzkJZwI6CwM5UQ9rds95I0Gm3Lpr/sPftJ2Gbi7mkml84/37mJnL7U6dmojh1Sf3Vl0mcBvPgUQEf+FHDmJ+PQNVE9i99RylYym3LFEayAr7xK/MYzNrwbYlTh0chmnJmq53vYVnfu4DZ7V752EgJ+phXpx97UV187ZCMAlsZk2kg7rrzUW5rVlnZhZw8+EmRqO57V83H6Zw5so8vvD0gR1jqpYx5r8+HA4gpKmuNzrlst7njyRw9voSMqYDR0qcPj6GA4lIbp/40wfwzOQI3ru5AsPOfb3W611P4ZlfzUn8ngkgdwzkRD0qH6xGIsGmA3EtQaZc8HT78N/MWljLGljLim03F+WyvbRp57a4qaLw3KoqkDacHVlotYyxWl/w/FjcqvCXUwbOzCxAVQRuLG4gbdr48F4SX3npKPaPRBDQFBwbH2z5KW1+NSfhiXCdiYGcqAe1e/qz0uu5ffhHQhpefnQCuqYUgl2lbC+sqwjrKmxbFgrHbFsiHFB27OOulDG6fb24L3hx4HXLeh0p4UiJmwubCGoqYiEdi+sZnJlZwM/+yMHC97ZjW5cf+8DZprQz8RaKqMe0oxFJPa9Xrip7MKxvq/6uVCEf0BScnhrDoV0RLG5ksLiRwaFdAzh9fNy1erxclX25r9tS7qhEd696H4OUuVPeVCV39GtIVyEUtLRpTTntbk7ix/HAVB0zcqIe0+7pz2qvV+s0cLVsbyIexhdfOFSxar3aczRbhb+8mYVh2bi9tIl7KykcTAzgiX3DCGhK32SlPBGu8zCQE/WYdk9/1vJ6lQ5SKf67agE/oCnYFQuWHUu152imCj8/87B/OII/98x+nLu1AsNxoKio+By9uFWLJ8J1lo5omlIvNk0hqqwda+TFAWp5M1v369W6taveseSDbi1V6/V8vbRpiuU4mF1J488+ubfszQW3apFXOrppChF5r9XTn24Bqp7Xq1SU5sVYigvtALjOAJTrWFbu+UpnHkxLIhbSMFjmebhVi9qFgZyoR7Vq+rNSgKq1nWe5dfVbSxu4eGe15iy93FieO5zAOzeWCvvWnzk0jLCu4uz1pYrZcbXg++KxUZyZWcD8egZhXcXpqbGy15hbtahdGMiJqC5eBCi3dXVA4r2bKxgM6duCaP4Allq3ti2nszhzZQG7IkFkLBsXbq/g+zeXoAmBpw4MY/eQ+1GsNb83Ibf/fx3v0YtahV5cc6fm8LeAiOrSaJOPYm7bmJ6dHAEEtgXRjJk70a2erW3SARQhoGsCl+8lEQvpCOkqHADXFjdg2U7Z5i+V3ttGxsKbl+cwoGmYTEQwGAxU3NbXiq1abJRCbpiRE1FdvDpVrHQdHwAu3FndcQCLomwP7sspA/PrGYzHQq5jOT01hrPXl7Y1MAloCgKqgoxpw7AdmLb7Gejlps+XN7P45uU5XLyzguGBAE7sGcRwJFh1JsLLWgWuuVM5DOREBKC+Kdt6AlSl5y1dx98RlI+P4Z0bS4Xg/iCZxqXZVUBIhDQVLx4bxUgkiNNT44AEBrcOR3lRVXBmZuGTBiYHhpCxHHxwdxUraaPwvWXHXTR9btoOzl5fwlBYx/BAAAK5VqVP7huqaSbCq1oFrrlTOQzkRG3Q6euajWyTqiVA1fu8bjcIAU3B21cXsZwycGl2dVvL0W+8fx+RkApAbHv+kUgQP3l8DEfHo5h5sAbDkQhoCr58+ijiA4GqLVYHgwEkBnJtSd/6cB66qiARCeLE3jgu30tiJWUgmTHx2RMTbft58nhUKoeBnKjFOn0vcaumbBt93tIbhHxwn1/PAEIWWo7qmsDM3Bo+fSiBRDS4rWL9zctzhXanx8aieOnRcRxMRGtuD5oxLZy7vQZbSqxlTBzZFcFgSENAU3BibxwbWQuff3o/oqHtH6Fe7IGv9JhnJofxx1cfQqRRfVaB+gYDOVELdcO6ZqumbKs9bz1BL6ApGI+FtrUcTaZNAChsectXrP/BR/Pb2p3eWU7j7I2HGB4IFqbey8lltxIX7uSK5IBcc5asaeO7VxdhSYmAquDnnju4I4g3csNWy/fkH7O0YeDG4gYOJAYQC+l47nCio24IyT+d8UlC1KOqNfHoBF5UoZcyLAem7QASrs9brvrasBwk06ZrJXhpFbhlS0xNxGDasvD80gFsRxbanQY0BRnLxns3VvE779+rWukd0BQ8OzmCjGUjZVrIWjYe3xfHg7Uspg+O4KWpcbxwZBdm5ta3jbGRRjW1fE/+MQFVwfxaBtGgjqUNA0MhHe/cWGpZIxzqLszIiVqoG9Y1ve5tXZxlbmZNbGYtREJa4XkBVD3EpVx26tbEpLRi/Y+vPiy0O7UdiXsraUzuimDfcBimJavOiBxMRDF9cASaKhAP64XMfyQagKbmvmd+PbNtxqKRWY1avif/mJAuYEuJobCO1bQBVRWwLMlCNwLAQE7UUl4HyVaZiIfxysk9WEkbGA4Hdkwb12rHUkJQx1rWwMuPThSmtZNps+IhLtWWIIrX0N2K405PKdjMWpiZW4NhORiJ6Hhq/xCyloOgpsDKVg6A+Zapb19dxNKmAUgUMn9NdZ+xaOSGrZbvyT/GcSRUIbCRsaAKAbvM9jnqTwzkRC3W6nPPvaiId1urHYkE635e9yxTQC8Kvm4BLH+IS60Zbel7Li2Oy7c7NR0Hv3NhFj+YTUJVcwHw0K5I1QBYLfN368rWSFe1Wrq95R8zPhjCjcUNHB6NwHCcjrwhJH8wkBM1oN7g2apzz72oiHcryCu3rav4e9zef2mQXs/k1rtVIQqPqXSISy0ZbS3vOd/u1LAcSOT2gotCSVBtHR+Lf2b5veqm5UBXFddGKY3csNXyPcWPUUVuir1TtzGSPxjIierUKdvJvKqIL82iy23ryj9vpfdfHKTvrqRwY3EDBxMD+Pr5uzg9NYb9IxEA7gHsRVWpmtGWe8+vnNyzI8AZloOLd5dx6d46BoMaJIDH9w3CcOS2k+Gq+aRqPIsbi5s4PBpFIhooewORv6bFf66klps89v+mShjIierQSdvJvNo2VppFu23ryj8v4F6oVvz+8+vtXz9/F4/tHsSt5RRmV9K4fC+JL58+igOJXDAvt1+8+MjWZNrcFpzd3vPdlRS+fv4udE3ZVlD3+oVZvPnRPJKbBsbjITyyK4rvfbwECMC2JCIhrepNWP589UhAxfxaFtGgjvm1DHbHQ64/9065yaP+wls8ojp00nYyr7aN1bKtK/+8tb5/W0oIBbi1nEJQUzEaC0FRBM5cWai4ZSqgKYiHdSxvZl23p5W+5/WMiRuLG4iH9MIWrjMzC3jrowe4trCJWFDDwUQESxtZXLy7jIuzK7AcidvLqcJNWbnxzCXT+M/n7+LCnRVcuLOK9YyJaEiDLSUURex4341sQSPyAgM5UR1asee6UV5218pnw597fA++ML0frz651/V5a33/YV2FdIBM0eEvYV2FI3PT2pWC20bGwjcvzyGgKjsCYul7Xk2bODwaQaxo9iBt2lhP2wjouUYpjpQQEFhOmVCgYCwWRFBTcW1hAxnTcb0Jywfl/PnqmqJgLplBMmVAFbkq8tL3XctNTrl98pX2zxNVw6l1ojp02nYyLyviq23ryj+mlvef38J1+V4SC1tdxEZjAczcX4OmKAjpStlTzN4s7jK2N47hgcC2JYPS4q83Lt3fViQX1lXoGoAVYDQaxMW7qzAsByFNxehgELcebuLEvjhW07nuam43YfmgnIjohfPVI8HcssPx3YMw7J1V49W2k5Wbdud0PDVLSFlbBWcnmZ6elufOnfN7GNQn3Cq0O70JSqtVe//5rz9cz+CPP34IR0rM3F/DE/uHMBoL5vaS2xJfmN6/7Zq+fnEWAUXB+7OrcBzAchycOjAEByhbh+AWCAHgG+/fwwezSdxdSeHg8AACuoKgquLGww3sHgpDFWLbmn3p+F+/OFuoBVjPmFhNm/izT+yFooqy77tcUC5+Pl0Thff/M0/uxRuX7m+rOUiZVkcd4UudQQhxXko57fY1ZuREFZT7YO73KuJK77/0mr00NQYIsZWJq3jn+hJsKbGZtfDsoWEcHR+EYTmYX88gYzpIDAWxbyiEP/zhIjYMCxtZC3/tRw+Vfb1yswdffOEwljazeOMHD5CIBGDZDi7cWcX4YAiP7Y7j5RPjhSp6t/dXOvPw0ycmMBwNVLwu5cZSaMZi2Th3O1l4/4/ujrE1KTWNgZyojHZUqHdSZu/FWNyu2dnrS3jl5B5oisCF2yvbmpG8e2sZIV3F2etLyFg2Ls0m4UgHs6sZHBmNwnIkTh0cxszcOo7vjlc8jS2/Fl9c6b47HsbnHt9duLE4sW8Qz06O1NQJrdFli9KbnPy585YtcXl2+/v/wf1VaEKt60S4/HN2yu8N+Y+BnKiMVnUFy+uktVGvxlLumtlS4plDwzh3exmqKaAKgVMHhpAyHZyZWUAiEkQiEoQiBd67tQwHEolIEKf2D2F4ILDjbPN63kMzdQTNzrwUj2k1lcVyKgtV/eT9G47EM5PDuHhnFcspA46UOH18rKH3Sf2Lt3JEZbSyQr2Ttip5OZZK12wyEcX05DBO7onjucMJhHQtV1GuoBD4dw+F8cTBITy2J44n9w8hFtKwtJkFJFyvez4D38hYFd9DflublzMp5arMy43pwEgEEV3Do+ODhfevKQKTiSieP5KAlBKKArxzY6lsh7ZO+r2hzsGMnKiMVlao15PtezmN6vZcXs48lF4zQOLZyZHC15+ZHMF7N1ewlDJyR7MeH8M7N7YfzRoNaHjueAJvXp7DzNwagFzTkuXN7LbMszgzNS0HKcNGYjzY9HuoplJGXGlMsZCOR8ZjMByn8P7zhXlnry8hUUPDmFbPElF3YiAnqqDZ7V21nkleLtuvZRrVsByspU1AAIOh8llnuefyutVq/ppdm1/H2ZtLOHt9GX94ZRGARCSkA0JuW6cOaDuPZh2JBBEJqfj0oQTiYR2mvb39aOla/HraxOV7SeyOhxAL6S3b31+pbgJA1TElooEdx8m6dYMrF5y7oS0utR8DOVEVja6T1nomeblsv5Ziu7lkGt94/z5m5tZgS4lHdkXw2ql9O6qxqz2X1zMP82tp/Mb3bkJRBAKago20iXAgdySqaUtcuLOKg4koAPebpdwxsQLxAd21/WhpZhoL6zg8GsFq2kTKtFu2v79SRgygpjGVtoitJzh32jkG1BkYyIlaoJYgXC3brzaNali5QrGbDzcxoGu4u7yJ766kcethCr/4mWPb9kdXey4vD5bJj0tVBEZjIaxnTMytZ3F4lwbDdjAQ0HZknKU3S2FdxWbGwuUy7Ufdgl8iGnRtnuKlakG3kTHVG5xb3RaXug8DOVELVMvcyvXSLlYtaKRNG2nThlCAe6spaKqCsAAcAGeuLOAv/MjBwnPXkvV5tTc+P6aQrsKwHES2jio1LAcBValjOrj0sKpP/lwu+JVmu40qtyRSLeg2OqZ6g3O/n2NA2zGQE7VAucCZTBl488ZSTVuHqgWNsK4irKtY3TQwu5yGrgnYNjAaCUIRYkfG264p2fx7n4gFcXMpBUcCY9EADu+KbCvyqvTaadNGJKTjxWOjMOzcDcBSytj2nlqVmVarS6j0un5udaP+xUBO1AJugfP5Iwmcvb5U1wEzlQJDQFPwo0d34bsfL8C0HQACI5EgbLmzoUe153LTaLX88mYWc6sZ/Mm1h7AciYnBIH7hxSM4uW/Y9fmKXwdA4Qx1TREwbYmBgFY2i68W/Op9D7UeAlTpdRmQqd0YyIlapDRwNrp1qFJgiA8E8Nwju/DswQSuzK/nZgEsG88cGi67HltLkGn00JH8+vjDDQOnDg7DsiUypo0r8+s4uW+40OPc7XU2Mxbyle2aIjA1EcPM3HrFGYRKgbrSueeN1iUQdSIGcqIWKg2cXm8dCusqQpqKgbCGPcPh3FYm6WByqyK8Ec0cTZtft1dVgbCuAXquN3nacHYEw+LX0TWBy7NJAChUtl+6n8RPHBtHQFdct9VVutko9x7ysyLlblC4vYu6EW8xidokP93eaP9wt9PEip9zKWUAAjh9fLyp7LGWvtrl5NftbTtX3GZYDmxbIhxQdgTD4tfJWk7u6FJVwLAdZEwL526t4PcvP8BbHz7A7aWNbe+72glnbu8hs3Uc7ICuITEQACRw5sp82evZbI93onZhRk7URo0WQ1XKPr0u+momKw1ouT7km1lr26lsxTcX+ant/Dp42rAR1BTYdq4qXQFw4c4qQpqKSEDFD2aTOHdrBdMHR3B6agwT8XDVKXC39+BsHYGaMS2cu71W6ED2zOQIJhPRwvXj9i7qNgzk1Nf86CJVbzFULVPdXhZYNVvhPhEP44svHHI9ba70hiS/Dm5lc/vEAYm59Swylo1nD43gyoN1xEI6VFNAU0XhfecD9XrGhKIIOI4EkDsW1bAc1/dw+vgYvnttERfurG7rQPbm5TkMBDXoioKQrmxrVUvUDRjIqW91SxepdhRgld7QNJuVBjQFu2LBwvPmld6QzMytbzswBQDWMrk2pAoEbJnL0lUhEA/rWNrMbUGLh3VMTcTwb9+5DcN2YNkOjoxG8dZHc9t+lqXv4VnLxrlbK4UObJOJAbz54Rwmd0UwGNLxyFjU81a1RK3GQE59qR29xr3S6gKscjc0lbL8WmYySp/3xN5BrGcsxLey4eIWp8XV7LuiQZyeGsOZK/NYS5tIGzamDw7DtD7ZVmdYDmbm1vHCkV2QkDh7bQn3VzP41EQMUoptP8vi8R1MRDF9cASaKhAJaPjDK7kT6HYPhmA5wLWFDRwejbJKnboKf1OpLzVT0AVUbmPptUoFWM2OYyNj4ZuX5xBQlZrbYs4l03j94ix+7wf38frFWdeWm6XFaIbp4Nf/+CZ+MLuCt68uYmUzW/GGZCIexo8dHcUjoxGYjoN3by3jQTJdeN/5n18srGMja2F2NYW7qyn8ybUlZEyr7M8yv4YPAHNrGViOg8lEBJaDwvM6RbMDRN2AGTn1pWay3Fo7knm59u42Tdzs0sBcMo03L8/h4p0VDA8EcHx3DJGAhoxll81Iq3X/ctszb9kOri1uQNcUPLVnCDMP1nH2xhKmJ4fLVtgbloOz15dwaFcMx8YHC9vqRiJbbUrza+RpE1fnN6AIgYCqIBpUceHOKk7sGyz7s8xfy7W0iXBAgWMD1xY3kEwbcByJ08fHmI1TV2Egp55VKZg2WtBVa0eyVqy9F08TN7s0kP/+eEjH8EAAqayF//L+fewZGgAg8RPHxnYc3gKUX6+/vbSBC3dWC+/5ucOJwo2SRO5QmLCuYmwwhLHBEGZX0nj50d3YFQu6jq/0dRLRIObXM1jLmNDVXFX6i8dG8eblOaxlTOwdyl3fjOXkCuUmR6oesrMrFsTp4+N4++oiDo9FIB3g9NTYjs5xRJ2OgZx6Ui3BtJGCrlo6krVj7T0/Dl0T2DSsHW0+a/3+RETH8Yko/ssHD5C1HGiqwGN74njnxlJhnbz4hshtJgMSePfWMgaDgcLfvXNjCc8fSeCPP17ERsaGYds4sTcOTck1TYmFNAy63Cjkub3OZsbEW5fnAIHCz/TzT++HJSUGNBWDYR2bhgXLloUWqdUU/w6oIldcl696J+oWDOTkq1Zs/6onmNa7bauWjmStqDAvPY/ctB0kU0bZNp/1vI+gpmJXNISQruC/emQXQrqK+fUM0qaN5c3sjhui0pmMZw4N471bK+6d3qSAqggcHY0hbdiYX8/UNPtROmOS63wmMBjSd5zU5tgO3ruXOxVuamIQrz65Z8ee9Uq/XwFNcX2f7dzB4Mc2SOodDOTkm1ZNQbdyu1YtHcm8rjB3O488GFBx+V4SAU1BVM1ntqVtPz9RGijy7+Mb79/D5QdruLuSwv7hASxtZjG4dda5KkTZG6LimQwAuHhndXuWDon3bq5gMKRjfDCEtGFjLWvg5UcnMBjeedyqm4l4GK+c3IOVtAEVAt+6MgcJCct2EA6oWE4ZODOzgN3xARwYiexYR6/198urWZRGg3G3bIOkzsVATr5o5RR0uWCqCoFk2my681e1jmRetgstdx75M5PDiIV06KqCUweGMKBrhTafAGoqihuJBBEJ6njhyC6sTBj4zpUF/PaFeziyK4IvvjAJW0pkrNzz5INn/oYoXhKMS9/zs5MjeHdHli6g1zADkr/2a2mjcC56MpXF5XvriIU0hHQVj4xGCye1la6j569Brb9fXtz4NdNkplu2QVLnYiAnX7Q7a56aiOGNS/dr+qCt5UO50pS8l0d8Fl+nTcOCqorC10Jb1eGqosC0c2NdSxt48/LStqKzd24sIaAoCOu5Kfh8oCg8t65idjWNk3vj2MhaeGLvEGbm1hEJarh0NwlVEYXgGdB3npnu9p6B3DGrxSev1TIzkb/2GdPBpdlVPLFvCKOxIC7PJhFQBXQ1t0Xsg9lV/PUfP4Jzt1dcZz8KNQSqQMqwEFDL1xA0O4vSbJMZdlujZjGQky9afchJaRHTG5fu1/RB2+iHstvUtRcfxNvXsj85j3wgoOGR0Sg+mF3FaspESFfw3OGd/c7PXFnARsbEww0DtpRQhcD4YLCQ8V6aXYUtJR4kMziSiCCkqxiJBjC/kcEff/wQT+wfwrWFjULw/MpLR2vuw1188lpAVfBzzx2seg3z1z6kSyiKwLXFDUSCKlRVIBrWcerAMFRFYDVlYlcsVHH2YzNjltQQDLj+fjU7i9JMMGa3NfICAzn5wusp6HKvEdCU3NppjR+0jXwot3KNs/g6FZ9HvpQyENAVfOWloxgMBxDWVaylzdzJaeFPTk6T6xIfz29gJBLEUFjHRsbCjcVNOLbE2etLeGLfEH64sA7LdvDx4gZee3IvTFtCOoAiBHbHwxiNBZG1HKymTAyGA67jLL2RKT55LR9IZ+bWcXx3vOx13Lb33HEQ1lVktqbJP7mBUWFaEqGtmYF4WK8w+yFKXqH0z59oZhal2SYzrf53QL2PgZx8064uU/V80Nby2NIK8loz+EaLodymrUufZy6Zxpkr8/jwfhLXFzZw6uAwQpoKoQgcHY/h4UYWq2kDqhA4PBrFhmkhYzoYGtDx6UMjODYWw/nby9g0bThC4tlDw7h4J1m4DiY+CZ6lim9kAIlnJ0cwHAkWtrfl5devy7330mv/yFgUH9xdxbph4dCuAQACS5vGjmDnNvuRNm1EQhpe/NRorkWqEJhby2AtbZbdu97oLIoXTWbYbY2awUBOvvKya1el16j1g7baY0uz71MHhmrK4JvN2ksPgymWn5IeDAbw/OEELtxZxdnrD3NtP4+P4Z0bS9g3HC6sVRu2A8O0cWl2FcrWTcojY1E8eyiBpw4M4eKdVVy8m8Rm1kQybSCg5faPn57aeeJZ8XR4xrRw4U6u5eiT+4eRNS2kg3rNWWrptVcU4OdfmMR4PIzBrfPZaw12+ZsC05JIGRbO3VzJZfkBBaePj3teFe5FkxkGcGoUAzn1hXo+aMs91m39/N1by4CsnsF7VZnsdkMQDmiFm4lwIHfi2exqGi+fmMCuaBABTcl9j5n7nuePJArT6tcWN5AxbXxw95Pisfxe7QeOxMXbKzi2JwaIytPhuipw7vZaoeVoSFeQNQXWsgbWsqLmLDW/5eyjB0lcvLOKc7dXEdLX6m4tmr8p+O3zs/jWzDxURWAyEYFjo2VV4X4FY+5Bp44I5EKIzwL4KgAVwK9LKX/V5yFRD6rng7bcdO3O7Dt3IMrFO6tls/3StV8HEhnTqbsyudwNwSsn92ybkjbtT5p+GJaz48YkbdrIWDaGBwJ45uAwHACLm1lk7dzxpolIEJbj4NpC7nz0PYNhCAjXAJjPfJNpc0fLUcuRePnRCeiaUjHIFAei5c0sXr8wiz/4KB98B/DE/uEdr11L8BqJBBEIqJjcFfmku9niBg6PRXqmKpx70AnogEAuhFAB/CsAnwEwC+A9IcQ3pJQf+Tsyou2K13B1LRe8IIHJRBSTiWjZwJL/vgfJdKEC3HEkfvL4qOt55uWUK8Szpdw2JZ0/NOatD7f35i5eHijeVjYaDeDWUgrCAT56sAZFCgwO6J+8H1WBpipYTmcxv57BcDhQ6B+ez3zPXJnHZtaCbUucKmo5Wu3wl9L19bWUieuLm4gENQwENCysG/jh3DqOjscKwbfW4JU2beiKgsGQXuhulkwbkA4KrVC7OZPlHnTK8z2QA3gWwDUp5Q0AEEL8RwA/A4CBnDrKJ6eh3cfM3BqA3Bar5c1sxWnfgJbbGvZrZz6Gml+THo3i7PUlvDZY/vtKA02lQrx89fZa2sRbHz3Ydu558Ye7YTl458ZSYVtZyrDwnR8m8Wee2I39wxHomoIP7q5ias8gHEfikdEoNFXBg9U03r+zisW1LO6tpHF0PIpENFgIol94+gCemRzBezdXYNgOnK2bi1q3m4UDKpY2srh8fw3RkIaAqkAgVzm/kbVgOg5M28FGxqo5eIV1FSFdwSNjUVxb2MBqvrvZ1FhLj2Rt1w0C96BTXicE8r0A7hb9eRbAj/g0FiIA5T+MRyJBREIqPn0ogXhYh1l0wEqlD8/4QAAn98cxHA4UMtxKVdzlss5t549L4JlDw4XvCWgKdE0BIMp+uOc//PPbylbTua8lto413R0Pw5HAT06N4aceHcfZ60u4l0zh+zeWoSnAudsrUJBbMo+HdZy5Mo8vPH0AAU3BsfFB15mJcteyNBDFwzpUVcCyc+O7u7yJtGkjpAkYho23PpzLPZdhITEedH1/xYqL5w5vnQR3+vgYxgfDeP3ibNVWrI0Ew3ZOdXMPOuV1QiB329y549BoIcSXAHwJAA4cONDqMVEfq/RhnDv+UyARzQUSTUVNWVBYV3PbwSCgqUrFD91KU6b59e7bSxt499Yy3ru1got3VgtjrPbhXvr1oKpAVwXWMyYCau6EuJCuYDwWQkBT8NpgGPdWUjh/axnDA0GsZS04DvD+7VUoyHULe2ZyBMfGBwHsrK6/tbSB926ubOtYlr+WpWMxbYkTuwdhORIfL2xgKBrAkyMDCOsa9g0PIBxQsZ4x8eG9JHYPhhEL61WDl1vhYrlzBW4tbeBiUSvWeoNwu6e6uQed8johkM8C2F/0530A7pc+SEr5NQBfA4Dp6eny3SGIyqhlyrPah3GjWVA9H7q1TJm+e3MFmqrkZgWs7bMClV6n9OubGQt74wM4d3sFQG6p4NUn9257fCysQ1UU6IoAJLCwloGi5I6ItZ1cc5TJRHTHdrszV+Zx7tYKQppa2NdePE63sb765F6MRIJYS5u5W3wJvPXRXOFaxEI6Do9GkcyYSFl2zZ3USgv0IIGlzWzh+hU3eWk0CPsx1c096AR0RiB/D8BRIcQhAPcA/HkAP+vvkKhXuDXgqFYg5fZhvJYxoau5QN5oFlTrh261m4XbSxs4d3sZkaAGVQic2BuH5Xxyjni118l/Pb+evjsexol98VymastC97C8wZCOqYkYbj5MIRbUcNO0MRLJnfB26uAwDHt7BX7+ZkgTSq5oTddw+V4Szx1J7DjvvNxY84e2GJaz41okogG8cnLPtoK7eixvZrGZNTEztw4g1/r0J46PujR5qS8I+zXVzT3oVHMgF0J8BsB/A+BfSSnfF0J8aStLboqU0hJC/E0AbyG3/ew3pJQfNvu8RG4NOHYPhasWSJV+GG9mTLx1eW7b9HC5fea19L6u9qFbKas2LAfv3lpGSFMxoOf++V64vYITe+PbAka11yldT7ccByFdxaq5M3gFNAWvPrkXZ67MYz1rQVGAx/bEcSARgWlJOFJue+38zVBiIABV5FbObCmRTJuuga3SWMtdi2iosRwkf5NR2vp0d3wAmrLaVBDmVDf5pZ5/DX8DwM8D+IdCiBEAT3o1CCnl7wP4fa+ej6hcA47RWLDmAqm1rIlcuYZwnXIt3jpWaV29kSrmcplqfo3+1IEhXL6/BlvmTi6b2h2r+xoVb4v74dw6NrIWFMB1W1y+Mj1t2kg+ZuCdG0uux6UWP69pS5zYM4gLd1aRsWxYtnQ9Ha7Ra9GI0hmXfOvT0i18jQZhTnWTH+oJ5ItSylUAvyyE+FUAz7RmSETNK9eAw7CdQsvPWgqkTMvZtkbrdhNQ2jM8mTZxZmYBX5je7/k2p3yQDOkanjucwJ2lTcxkTVy6t4aPFzbqev78trhf/eYMFtezUBUFE4NBfPPSA3zxhcOuNzkBLbcuPxEPlw1WxTdDliNxYt8gnp0cwcGSdfR6bnC8mj6uZQtfs0GYU93UbvUE8jfy/yGl/HtCiL/VgvEQeaJcA46VtIGQptZcIOW2Rlt6E5C/achYNs7dTsKWEptZC08diOPSvbWGqpjdGpHkA2E+SGbSNq4ubODUgRHsjoexnjbx5uU5fP7p/TVPPQ8ENWiagkf3xBEJqLAcYGZuHWsZE7ui7s1Fiq9PqXxwHokEKwZFv04kq6UYkEGYuk3Vf+1CiH8B4L+XUv5u8d9LKf+PVg2KqFmlH9gBTcGXTx9FfCBQV7ZVy7pnvgr6wu0VxLaae9hbbUJ1VUUi4p7Nl8tI3RqRfP/GMh7fP4SfmhrHgUQErz21D/PrGUDmWo2ubOYOU1lJGZAAfvrERG2BUeaOVA1qKhRFARyn8Pf1qjU4+30iGae/qdfUctu+AeAbQog/J6VMCSF+CsA/klK+0OKxETXFqw/sas8T0BQ8c2gY524vQzUFVJFbw05ZuaNY3bL5anvVixuRKEJgYT2LD+8lceX+Gr7y0lHsH4lgPBZCSFewnjZx+f4aBASGBwIYCus1B8bBsI6piUHcfLhZ6Bs+NTGIwTqOjgXqC86dcCIZM2/qJVV/k6WU/xDAfwDwthDiTwD8EoC/1+qBEXkhv6bb7Id2teeZTEQxPTmMk3vieO5wAiFdQ0hTcfr4GFKmhfn1DFKmhRePjQL4pIf5eCyEAV3D21cXC+1JixuRmLaDuyspBFQFuwdDUBWBMzMLMCynMFuQzJhbmbjEib1xxEJ6YTtaLe/r1Sf34MTeOCYTEZzYG8erT+6p+3q5BedyYyhe9gDAE8mImlTL1PppAH8NwCaA3QD+qpTyh60eGFE3CWi5PtdvX13EUuqTau6RSBCnp8YBiUIDkfzJYroqkDIsBFQFVlbu2Kt+5so81tIWUqaNk7sHYTm5Q1iEgm17xj//9H5IAENhHbFQ9dPOSk3Ew/iZJ/diJW1gOBxoaGtXPXuouU2LyFtCysqLYUKI7wD4n6SUfyKEOAng3wH421LK77RjgG6mp6fluXPn/Hp5orJKW3K6FawBwL/53g3cfJgqTGcnIjp2Dw1s26s+Egni2vw6/vWfXEdAVRHaarYS0JUdU9bFe+bzZ4ofSETqHmczhWf1FrB1e/cxonYSQpyXUk67fq1aIHd5st0AfktK+bwXg2sEAzl1OsNyCo05cgVrub3U0wdH8GPHduGbl+YK69KG6WAja+Ezj44XMuqUaRWC9d3lTZyZWYBQUKi4dwuQtT6utCJ+M2NjdzxcyKSLX7uR911rcHZ7LIM7kbtKgbzuOTQp5YOt6XYiKqO0YC0W0qGaApqaW+MO6ipe/NQospYD23HwRz9chKLkTkErLf7aPxLBz/7IwYoBzrAcnL2+hEQkWLHYzK116MzcCg4kBlxfu161FpG5Ze8AfNmSRtTtGrrllVKmvR4IUS8pLlizt2a9VCEQD+sQCuBICdOSiAQ0CCkQUBU4Tu5xbuvL1Yrtai02c2sdCgDJtFn2tb1WfDORL/Y7c2UeZ2YWyhYAlnueZNqs+BiifsC5KyIXjQSJ4u/JF3RZ0sFm1sJ6xsSJvXGYlixUs69lTNxa2kTKtPFzzx2EYTvbqtvryYhrrQTP/VliYS2DZNpA2rQxNRGDZcuGX7tebjcdaWNrSr2Gqncgl9G/fnEWv/eD+3j94izmkswtqH91Qvczoo7SyKlj5b7nC08fwDOTI3jv5goMO1eIlp9GhpCF/x8bDOH47njD68O1VoIvb2Yxt5rBn1x7CEcCe4dC+IUXjzT12vVyq3APBxRA1lb17veBMq3A2gBqBgM5UZFGgkS17zk2PojJRLTwQQ0Ar1+cxWAwgPFY+UYstYy1+MO/2sE1huXgzMwCHm4YOHVgOHesrGHj0v0kju+O1/XazXC76Th9fBwAPOvX3k38Oq6WegcDOVGRRoJELd9TXASW30feTCAq9+FfqdgsbdpImzZUVSAcyP3Tt6UsTGt7EQRrzSzL3XR40a+9m/Ti7AK1H39TiIo0cupYvd9T7vGqEDWty7sVi5UrDCtetw/rKsK6CtuWMCwHhuXAtiXCAcWTIFjvurVbAV8tJ/HlM/rSE/O6MfDVcyIeUTnMyImKNHLqWL3f4/b4qYkYfvf9e4Vs9PTUWNnp1VpnDdyy9tNTY9jMWpiZWwMATE3EcPr4eNNBsN2ZZa80Puml2QXyDwM5UYlGgkS931P8eFUI/H/fv72tcclm1sIXXzjk+jy1fPhXCqxffOEQ1tImIIDBUPPn0AP+rFv3QuMTHldLXmAgJ3LRSJCo9D1ua8f5xz9cz2Jmbg2j0VChvenM3BrW0iZ2xXb2BK/lw79SYI2HddfnbQYzy8b1yuwC+YeBnKjFqlYlC/fvM53c+nb+w30jYxUam1T78G93YG02s+z37Ve9MLtA/mEgp57QaCAwLAdrGXNbdzIvbWQsvHl5DpGAilhQg21LvH11Ea+c3ANbSoR1FYMhHVMTsW1NVPbGQ/jOzEKhicpoNIDfvzQHw3YQUBX83HMH8fj+4brW4Vs9ZdtoZsntV0TNqbtpSidg0xQq1mggmEum8Y3372Fmbh0AMDUxiFef3ONZEJlLpvHNy3N459oiNrI2xuMhDIZ0DOgKxra2ihWfM37myjzShgNdA7KGLDQyWdnM4j+8dxeP7RlEPBzARsbCRtbEP371RNWWo52e6RY3lwkHVKxnTKymTXzh6f0NtVMl6lWVmqZ03r9sojrUsxWr9PvOXJnHzYcpjEZDGI2GcPNhrntYI2d3lx7pmh9XNKhhI2tDVxQkUyZMS+L7t1YQDWpIRAIAgDMzCxiJBPGFpw/gC9P78cqJvYiEtML6ti0lLMdBaGtaPBrSYNgOVtJG1XHVsp3LT8Vr+SspA+/fXcXFOyv4+vm7PHaVqEa85aWu1mi1dNq0kTYcqKooPE5VReHQlHrWdm8tbeC9myvbeomHAxosRyIaVDERD2M1ZWDDsJAyLMTDOtYzJi7fS8KWuQr1Zw8N4+j4YKHYLb++rasCWStX2Z4xbQQ1FRsZCwFVwXA40PT1K83Y253B59fy89dDQGB4IIBIQMWbl+fweWbmRFXxXwh1tUaLusK6inBAKRyOAiB3OMrWoSm1mEumcebKPM7dWkFIU3Hq4DBCmlpYA9cUAceRiIU0RIIqkmkTisidd/77l+bwqfEYIlvr5u/eWsbBRLRQ9PTisdFt0/5P7I1jYcNAMm0W1sibDXClSxJTEzHMzK1vW6IYiQRbGtjz7/Wbl+ewkjIwPBDAvqEQLt9fw0rKgATw0ycmuGZOVAEDOVXU6WusjRZ1BTQFp4+PYzNjbVsjPz01VtP7zE+da0JBJKhhQNdw+V4Szx1JwMpKZCwbpw4M4d1byxgfDOHjhTVkLRuRgSBemhrD21cf4vriBh4Zi+LUgSEYW6d55V97JBJEJKjj04cTiId1mJbEcjqDH3tkDKOxUNNBvHSf+UrKwL/+7k382NFdGI+FkDZsfOP9e4gE9W0zDa0IqLnmMvshAEQCKi7fXytk5kNhnUeWElXBQE5llWZszx9JYDAc6Lig3mi19EQ8jC++cLihqvX8lH5iIABV5PaP2VIimTaxmTHx1uW53LYyKfDSo2N47am9eOPSA+wbzgXC+TUDm1kLpw4MQVdVOKa1bSYgbdqAABKR3H5vLQBoWRUj0aAnU82la9MXbq/g9vImLtzRcOrgMGJBDTNz6/j04QQSkeC2A2Xy3+/l70E0pOGzJybwZlFmfmJvHLGQjvn1TNc2RCFqBwZyclWasT1YTeOr3/4YJ/cNIaQrHbdFqN59uMUzDbui9R+OUpjSN20cHo3go/trMGwHGdMGIDAY0gtT/RfvrOKnpiagbi0BxEI6joxFcPH2KlYyJqIBuWMWodX7wFUhYFgOVlIGLt9LQlMEogENAsCF2yuY2j0IAIWOaPnag9tLG7hwZ7UlW8Um4mF8/un9kACGwjpiIZ0HyxDVgLe45Ko4Y7NsB9cWN6AoAkMDes2V4c0qrQT3Sr3NPdwENAVTEzF879pDnL+9AtNy8IWn9+GVk3u2VZyHAyqWNgz87gf3kDas3ONvLePDe2s4Oh6FdICTe+MYiQR3PH+rGoPMJdN449J9pA0L3726iAeraSiKwNMHhnBraRMfPkji+zeWsG8oDNPKbU9NGzYggXdvLde9Q6Ae0ZCGnz4xAcN2ur4hClG7MCMnV8UZoYREZit7DWoKNEVp+Tna9e4Nr3Utv3SmYT1j4puX5+ret5w7RnUdLxzZVTjE5e5KGo/vG96WSa9nTNxY3MALR3Zh3/AARqNBfPfjh/jRY6OwHAfnbq7g0uwqnj08gtPHx7e9x1Yc3Vn8/hPjwcJ4jk9EcWVuA0dGY7AcB6cODGElZWAtYxZqD545NIz3bq20/Dx1HllKVB8GcnJVXESWsWzYjsQjY1FoitLy6c56O2nVE/RL14Yv30tiJWVAAPhsHdXRhTXyiF74u/n1DGwptxXfGZaDw6MRxLamqIO6CghgPWPi2x/NQ1EELNvBZtrypKir2g1N6Xa94UgQx3fHsJq2CmvTp/YPY3ggAMORePmxCejqJ21OL95ZbcuxrzyylKh2DORUVnFm9BPHxvDOjSXMr2daftxnPXvDKwX9/HMVB7Vy+5bjofqqoyutYcfD+rbOZrlp7NzjbFtCEwKXZpMAgICqAJC4s5LG0aC67T3WOytRy+Pdxp2IBvFTUxP4nQ/u7VibLu2Oxk5dRJ2HgZwqymdG8bCOiXi4LdOd9RR6lQv6t5Y2cNGlKMtt3/KJPYOIhd2ro8tluNW2vRVnlKWP+/z0Pvyb793E3FoGihAYiwWRTBuQDgrvsd5ZiVofX27cw9EAfvrEBN6+uljxZo3T3kSdh4GcatbK6c7SgFlr5ucW9AGJ926uYCCgIqTnDmUpDmrF+5bjIR2xsHt1dLUMt9agVvo4w3IQCd3F43vjWE2byFg27q1m8Isv7So8R70n1tXz+HLjrvX9NPp70OlnEhB1KwZy8l25gFkcVABsa+mZ5xb0n50cwbc+WsDV+XXYUkIVAuODoW1BLb9vuVwGWk+GW0tQKn5c2rRxdCyG+bUsBgIaJIDdw0HsioUKj693+1m9jy837lbdrLHDGVHrMJCTL/LZmSpExYAZ0JS6M2PDcnBjcQPRoI6hsI6NjIUbixuFg1vKfV9xAGv0DPda3nfKsBBQVZzYM4ignls3NxxnW9Ct98S6Rk64qydDbiabrneZgIjqw0BObVccmA3LQdqwkBjP7aMuDZiNZMb5Q1rm17JYTRtQhcDh0Qhsl5a95TLQVhzIUtw2NW1YUISCE3sHkYgGPVmPrvXxhuXg9tIG3r21DEBUzZCbzaZbdVNERDkM5NRWbvu4P7yXxO7BsOtadSNBIKyrSESD2D0YLuzxLs14q2n0DPdK77u4bSoArKYNBDQVr5zcU3YPe/HNSfGfK4270mPmkmmcmVnAudvLuUYvB4YQ2jrYxS1D9iKbbvUpdUT9joGc2iofmHVVIGXkzhc/PBpFMmMiZdk7AmYjQaA4CFuWbDgIe1mh7do2Vcm1Js1YNqJl/il6ubZcaPSiik8avdxfw3OHc41e3G6OvMimvb4pIqLtGMiprcK6is2MicuzyUK2fGjXAD7/9H7YUta9zauc4iCsCgFb5qbxK003l9tm5kXAKW2bupExcX1xA5tZC29dnsPpqbEdAbqZbNjt/XxyiM3ORi/lbo68yqa5bY2odRjIyQdix58rBcxGg0BAU7C8ma2a0daS9boFxnoKwALaJ21TP7y/hjvLKRwcGcALR0cLPcxLA3Sj2XC595MPyqYlcWJvHBduryBj2bCkg9OfGi9bxe5VNs3T2ohag4Gc2ipt2oiENLz4qVFkLQdBTcHSplE1ODUSBGrJaGt5jFs714xp11wslpdvm3pvNYU/uDyPg7sGoCm513AL0I1kw9XeT2HJwckF82cODWMyEa14bZlNE3U2BnJqq+KsMBLQWlr4VEtGW+0xbu1c/9m3fgjbASIBbVux2Csn97guDxQLaAr2Dg1gKKLDtCS0AMpeg0ay4Wrvp5nZDQZwos7EQE5t1c7Cp1oy2mqPWUubWM9YiIf1QjtXQCCkK4iF9EKx2NKKga+fvwtdU6pm6PVcg3oDby3vmUGZqLcI6bK3ttNNT0/Lc+fO+T0MakK7juusZf273GPmkmmcuTKPc7dWENJUTO0exIf3k9A1BZDAQEBDyrTw6MQgLtxZwQtHdhW20KVMq2pRWquuAU9RI+o9QojzUspp168xkFOvqyVglj7GsBy8fnEWA7qGjGnhwp1VpAwLihA4dXAYIV0tFIs9ticOw7JxbHyw8Hzz6xl87vE9iIf1bc8N7OzI5td7JqLuUSmQc2qdel4tU8mlj1nLbE2ph3SEA7mT12ZX03j+SAKX7iVh2E6hWGxPfGBbq9Li6ezi7HgzYwGQiIT0lmfKnD4n6h8M5NT1vM4+7yxt4g8+mscPZldwfWGjUNAWC2l4ZCyGR8ZiO17Pbc0bQKFQTtcELm/1IH/x2ChMW9Z9QhoRkRsGcvJcO6d1610Prja2u8ub+LUzH0NRBIKqirRh4eyNJUxPDuP08U/2WtdyLnoybRYqyDcNC6qa2z9v2A4GAlpHnTfu51Q8lwGImsNATp5qZ6FVvSefVRubYTk4M7MAVRFIRALYNGyYtoODiQhefnQ3dsWCFcdTOp1dXEEe1HKnugFAQFW2Tb/7Hcj8LI5jYR5R83j7S54pDqzjsRAGtvZXG5bTktdz2zNtObLQYCQ/pocbWTxYzTULqTS2tGlDKIDtSFy+l8Tt5U1cXdhA1rQxGNbrHl9+m1nKtLC0aeDQrggO7RrAUspAyrTw4rFRLG9m8frFWfzeD+7j9YuzmEumm78wdWj3z6xTXpuolzAjJ8+0u12l255pQMK0HGxkLDxIpvDtj+ZxdWEDhuXAdiROT40jHFBdx/bJYTUOIAQsW0IBoCmlR8rWrnTKHcC2/85Xxnvdp7vWLL/Wn1krZg3Y3pTIGwzk5Jl2t6ssPVhlM2MCEPhP5+7i4/l1bGQNJNM2HhmNYmQgiEv3VvHezWX85NRY7lQ1l4NSnp0cwblbK9g7HAYk8Pj+OByJhoJLcfCLF2X0+ecpXkMHvAtk9UxX1/Iza9X0N9ubEnmDt73kmeKp5Pn1TGH6uJXZVT7jffmxCUSCOkZjQcyvZRDSVaykLGgqMLeWyR2NOhxGyrAxu5IuO7aDiSimD47gyf1DePFTo4gG9JqDi2E5SKZNGJaDuWS66pR5cSADyh/VWo96p6ur/cxaOf3tx+8LUS9iRk6e8qPBRkBToKsKIABFybUsHY7oUBQBSAHDdpAyLIQ0FU/uj+GVk3swGNbLdvv6sWO7cGZmARnLRkhTC1vJkmmz7HsqzloBic2Mjd3xcMUp81YcV9vIdHWln1mrp7/ZkIWoeQzk5LnihiTFf26lfHbrOBKqEEhlHRwYjsAwLdxdTWM1ZeCxPXG8/NhExerzuWQaZ68vQYjccz13OAEgt5Zdqdq9uHp+aSOLmbkVHEgM5MZWIfh5GcgMy8mt70PWPV1d7gCZdkx/8/AaouYwkJPn/NhSVJzdjg+GcGNxA4dHI4iHA/iFA0MYi4UQ0lXYUsKwHNfAURyQE5Fc0Pruxw8BITEYDJTNrkuz1vx6eDJtIhEJVg1+5QJZPQVm20+Qs7GZSW07Qa7RQNnOJjdE1BgGcvJUvXu7vVSc3apCbGspOpdM441L89tuLkYiwW2B0m0aeX49AwAYj5WfWi7NWk1bYmoiBsuWmF/PNBT86rkZ2nHNgzbWMiZefmwCgyH3JYR6cPqbqLMxkFPdKmWKzayperHFyS27dbu5+Mb79xAJ6oDAtsBeOo0c1lVAVJ6qdstaX31y744bhVrVezNU7prrqndT1pz+JupcDORUl2qZYqNrqq2cji8NdLoqMDO3jk8fThSmvs9cmcfLj+7G80cSOHt9qRCQT0+NAUDVqeVyWWsjwS9t2siYDkK6hOU4VW+GuI2LqL8xkFPNaskUG1lTbfV0fGmgS6ZNALm17Ixp434yhUuza0gbDmIhDc8dTiA+ENgWkGuZWvYqa11LG7g0uwplKxg/MhZFQFMqrrGXXvPnDieQNu3cQThFSwxE1HsYyKlmtU6b17um2uotTqWBDpCYmhjE9fl1fPfaQ9xfzUARAlO7o4iFNHz344f4wvT+HVvFqt2MeFV5fvb6Ep7YN4RrixvImDY+uLuKL58+WvF5i6/5WtrA2etLWNow8PHCGvYPD2A8HsLp4+M8x5yoB/kayIUQ/xTAnwFgALgO4OellKt+jonKq2cKt57stPR519MmTMuBKho/GrVU6c3F3eVN/J2v/wDK1uvHQhp+68J9PDM5DMN28OyhYRwdH6zpub1cFsjf1IwOBjEQVCEEsJ61EB8IVP3e/PV+8/ISAqqCm4sbmE9m8WA1gwMjEWxmLHzxhcMdm5n73TyGqFv5/a/lWwBOSCkfB3AVwN/3eTxUQatO4ip+3qvza/je9YdIGTbeuHTf0yYiAU1BfOsgmICuYk88hMf3DWE8Hso1TAEghEBIU/HureWaTi8rPfksoCr45uU5bGSshsaoCoGl9Sy+c2UBF++u4r2bK8gaTs3r3fkbAQng7moasZCO0NaSxczcOtYyZkPjarVaTsIjIne+BnIp5R9IKfOfeH8KYJ+f46Hq8pnt5x7fg9ee2ufZVO1EPIxXTu5BOKDhhUd24dh4zLPjQIuPTs0bDgcQ0lU4EtgbDyFl2pBSQhHAqQNDAMSOLmqlzwFsXxZYSRl4/+4qzt9axr/701u4u7xZ1zjnkmn87vv38OGDJG493EQqm/+nIWt+jvzsRmbr2FfLdqAIQFOUep+qbdgFjag5fmfkxf4KgG+W+6IQ4ktCiHNCiHOLi4ttHFbnKBdM2q04s/WSLSUCmoJYKHegiltb0nqVy/SiIQ0/99xBbGTN3NR1WMcrJyfwY0dHEdK1bUsGlbLFfOBcz5i4fC+JVNbC8qaB6wub+Oq3P8adpdqCeT6YaarAaCyEk3uHENRUvHAkgUhIr/ka5Gc3JIChsL41La8jZViYmhhsqB1rq9XSjpaIymv5GrkQ4tsAJly+9CtSyt/desyvALAA/Ga555FSfg3A1wBgenq6A/OK1vLjtLR283obVbVq+Mf3D+Mfj8awkjZgmDbO3V7BUsrYVmlf7TnygfObl+ewtJHF8qaBQ4kIhqNBLKxncObKAv7CjxysueAvEQlAFQKqIqCqApsNXIOJeBhfmN6PZw8N4+z1JZh2rmr99NRYR649c/scUXNaHsillC9V+roQ4i8D+ByA01LKvgvQtfDztLR28vo40Fqq4aMhDdFQ7p/B/pHIjmKrWp5jIh7GF57ej4xp4/rCJoajQRhWbl1bEaKm6vtPeqFLnNgbx4XbK8hYNizp4PSnxuu+BgFNwdHxQRxMRDu+gIzHwBI1x++q9c8C+B8AvCilTPk5lk7W6u1ZncTL40DrzfTcKu1rfY5oSMPnHt+Nr377YyysZ2ra/1362vlgZjm5YP7MoWFMJqJNXYNuOZGNx8ASNc7vfeT/EkAQwLdEbqvRn0opf8HfIXWefpp6LLcFqZGtSV5kevU8x/6RCL58+ijOXFmAIkThe2t9vX4PZt1y00HUaUQ3zmZPT0/Lc+fO+T2Mtirtd/3s5AgONpmtdZpydQDN1gd4sT+5nufgfmgi8poQ4ryUctrta/yU6RL5bO2ZyWFACrx7a6Wn9tuW24K0kbGa2ppUb1AttzOgnkr9VlX1l+qUXQxE5C+/p9apThfvrGIwpPdc0Vu5OoCVtNFwfUClTN4twJc+/vkjCQyGAx2ZWffDLgYiqg0DeRfp5aK3cnUAw+FAQ/UBlSr9lzezO4LgSCS47fEPVtP46rc/xsl9QwjpSkcFyn7ZxUBEteG/+i5SHOwA9FTRW7njX6MhraFjYcsdMrKWNl2n6tfSZuHxlu3g2uIGFEVgaEDvuJPGeIAKERVjRt5FKlVQ90KBVWnVNgAk0yZGIsG6q7nLZfgQcJ3VgEDh8RISma3XCmoKNEXpqJmPftrFQETVMZB3GbctSt2+Xlp6E1LPeyp3A1PupmcwpLsGwZCm4tSBIbx7axmWI2E7Eo+MRaEpSscFSh6gQkTFuP2syxmWg9cvzm5bL02Zlufrpa3K+N0C9kgkWNN7qiXY11LUNjURw8zcem5rnwSeOTSMkKbinRtLHX1z1AuzMERUm0rbz5iRd7l2FMC1KuMvV7R1emq86nuqteDL7ZCR4lkNVQi8cen+tue5eGcVrz21r+x0fqcEUB6gQkQAi926XqsL4FrZYrJc0RYkqr6nZgu+8nu9bSnLPo/bfnD2zSaiTsNA3uXKVXs3c4JZ8SEjraiQzr+GKoRrwB4M61Xfk1c3MPU8D/tmE1En4tR6D/DqjO5y69VeVkiXW58uLdqq9p68Kviq53l6eR8/EXUvBvIe0ex6aaU1Z68qpN1eY2ZuHa+c3ANbStfK80qv49UNTK3Pw21fRNSJGMgJQOVs06uAWe41bCkRD+sNPWetNzDVCtRqeR5u+yKiTsRATgCqZ5vVAl0tldx+ZbReVt33e6tRIuo8/BQiAM0VzdVayV3La3jd0asVBWrt6m5GRFQLZuRUUCnbLJdx19vAo9JrtGK/erMFap2yZ5yIqBwGctqmdArdsBzcWtrAezdXCueRFwfYRgKl2zR9qzp6NTOd3+1H3xJRf2CKQWXNJdP4z+fv4P/8o+u4fC+JgKrsmJr2aj93qzp6NbpkwD3jRNQtmJGTq3wg04SCSFDDgK7h8r0knjuSgJX95OQzryq5W1kI10iBmtuNxXLKwPx6BuOxEKfZiahjMJCTq3wgSwwEoAoBALClRDJt7giwXlRyt3prV7377EtvLB4k07g0uwoIiZCmcpqdiDoGAzm5ygcy05Y4sWcQF+6sImPZsGyJ01NjrietNRt0O2lrV/GNxXLKwKXZVTyxbwi742HP1u+JiLzAQE6uigOZ5Uic2DeIZydHcDAR7Zvglb+xmF/PAEJi91YG3itHs7Iin6g3MJBTWe3OkDuxSjygKRiPhRDS1J46mrUTrzURNYa34VRRuw4/Ka4ST0QCAIAzMwuFKnGvD4qph9cd5qpp9XtlRT5Rb2FGTh0hX1yXsWycu52ELSU2sxaePTSMWEj3PXts1+xEOzJldnEj6i38V9uF/MxOWyWsq4AELtxeQVBTMaBrCGkqzl5fwpkr8zuyx42MVfEatOIatXp2ol2Zsld7/4moMzAj7zK9urYZ0BQ8c2gY524vQzUFVCFw6sAQkhkLpi0xHvske7y7ksLXz9+Frimu16Bbr1G7MmV2cSPqLfyX20W6eW2zlgx5MhHF9OQwTu6J47nDCYR0DWFdRTigFLLH9YyJG4sbiId012uwba19IABI4MyV+a64Ru3MlPNLBZ97fA9ee2pfV9zoEJE7ZuRdpFvXNmvNkAOagtPHx/H21UUspQxoisDpqTEAKGSPhuXg8GgEsa3+5aXXoLDWblo4d3utsNb+zOQIjo0PtvV916vVmXLpdjMv9v4Tkf8YyLtIrceYdtL+YK+6o+X/ThUCb1y6X/Ya5P5f4sKdJGKhXLC3bYn3bq5gsgv2wLeqqK5blxuIqLrO/lTrUq0qRqtlG1StvcHbpZFmKG5FZfm/i4a0itcgoCl4dnIEGctGyrSQtWycOjgMCDTdgKVdvC6q6+YlGSKqjhm5x1qd+VTrGe5lK1AvMvtWNEOplrUeTEQxfXAEmioQD+swLQlHyr6tyu7WJRkiqg3/FXuoXZlPuYzNy1agXmX2rTpMpVLWGtCUwtr60qbR8Gv2yjY/bjcj6m3MyD3kd+bjVfbrdWbvRzOUZl+zl9aUud2MqLcxkHuolT21a+HVB3YzNyTlpuP9qJBu9DW9vpHxWiNLHp3UWY6IvMVA7iEvM59G16e9+MBu9IakV7JYv2dWKmnmGnO7GVFvYiD3mBeBtNmAWPqBXe9NQSM3JJ2exdbD75mVcnrpGhORdxjIW6CZzMfrD+tGbwrqvSHp5Cy2Xp26ptxL15iIvMNA3mG8/LBu9qagnhuSTs1iG9WJa8q9do2JyBv+fzrRNl5uFfJyO1o17e7Z3Q7t6sVeq168xkTUPGbkHcbLad12Z3CdmMX2Gl5jIirFQN6BvPqw9mOtl5XRrcdrTETFGMg7lFcf1szgiIh6GwN5H2jkpqCTOqgREVF5DOS0Q68c7EJE1A+YatE2bHlJRNRdGMhpm3ZuWSMiouYxkNM2bHlJRNRdGMhpGx46QkTUXVjsVkGnVW63azzcskZE1D0YyMvotMrtdo+Hh44QEXUHflK76LTK7VaPx7AcJNMmK9OJiLoQM3IXndYuspXj6bSZByIiqg8zchedVrndqvF02swDERHVj4HcRadVbrdqPNwzTkTU/Ti1XkanVW63YjztbnPaDTptpwIRUTUM5BV0WuW21+Pxo81pJ2O9ABF1IwbyPtdpMw9+Ka4XyM9OvH11Ea89ta9vrwkRdQd+QhECmoJ4WO/rgMV6ASLqVv37yd1DuA+8eZ22U4GIqFacWu9yXNf1BusFiKhbdUQgF0L8MoB/CmBUSvnQ7/F0C67reov1AkTUjXz/pBJC7AfwGQB3/B5Lt+G6rvdYL0BE3aYTPq3+OYC/C0D6PZBuw3VdIiLyNZALIV4FcE9K+UENj/2SEOKcEOLc4uJiG0bX+aqd+NauIjgW2xER+UdI2dpEWAjxbQATLl/6FQD/AMBPSSmTQohbAKZrWSOfnp6W586d83agXcztNLJ2FcGx2I6IqPWEEOellNNuX2t5Ri6lfElKeaL0fwBuADgE4IOtIL4PwAUhhFvQpwpK13Xb1QyFTVeIiPznW9W6lPISgLH8n+vJyKmydrVh7bR2r0RE/Yiftj2oXUVwLLYjIvJfxwRyKeUks3FvtKsNa6e1eyUi6kcdcSCMn3q1bWW7DjfhISpERP7q60De6xXX7WrDWul1evVGiYioU/RtIOfxpq3X6zdKRESdoG8jFo83bS1uTSMiao++DeSsuG4t3igREbVH3wZyVly3Fm+UiIjao2/XyAH/K657uRCM/b2JiNqjrwM50L7K7lL9UAjm940SEVE/4CerD/qpEIz9vYmIWoufrj5gIRgREXmFgdwHLAQjIiKvMJD7gBXzRETklb4vdvMLC8GIiMgLDOQ+8qtinoiIegejCBERURdjICciIupiDORERERdjIGciIioizGQExERdTEGciIioi7GQE5ERNTFGMipboblIJk2e7LJCxFRt+GBMFSXfmi/SkTUTZiRU836qf0qEVG3YCCnmrH9KhFR52Eg7yGtXrtm+1Uios7DNfIe0Y6163z71bevLmItaxZeh41fiIj8w0DeA4rXrsMBFWnDxttXF/HaU/s8D7Jsv0pE1Fn4KdwD2r12HdAUxMM6gzgRUQfgJ3EPaGTtmnvBiYh6A6fWe0C9a9fcC05E1DsYyHtE8dq1KgRsKWFYzo5g3s71dCIiaj0G8h4S0BQsb2YrZttu6+lrWRNp02YgJyLqQvzk7iG1nLzGveBERL2FgbyH1FK9nl9PT5kW5tczSJkW94ITEXUxTq03wbCcjtpPXZxt59e/3bJt7gUnIuodDOQN6sTK73qq1wOawgBORNQD+j6QN5JVd3LlN7NtIqL+0teBvNGsutMrv5ltExH1j779tG+mtzYrv4mIqFP0bSBv5nxyVn4TEVGn6Nup9VorvMvhWjQREXWCvo0+XmTV7AJGRER+69uMHGBWTURE3a+vAznACm8iIupujGBERERdjIGciIioizGQExERdTEGciIioi7GQE5ERNTFGMiJiIi6GAM5ERFRF2MgJyIi6mIM5ERERF2MgZyIiKiLMZATERF1MQbyPmdYDpJpE4bl+D0UIiJqQN83Telnc8k03r66CMuR0BSBF4+NYiIe9ntYRERUB2bkfcqwHLx9dREDuobxWAgDuoa3ry4yMyci6jIM5H0qbdqwHIlwQAUAhAMqLEcibdo+j4yIiOrBQN6nwroKTRFIG7nAnTZsaIpAWFd9HhkREdXD90AuhPhbQogfCiE+FEL8736Pp18ENAUvHhtFyrQwv55ByrTw4rFRBDTffyWIiKgOvha7CSF+AsDPAHhcSpkVQoz5OZ5+MxEP47Wn9iFt2gjrKoM4EVEX8rtq/a8D+FUpZRYApJQLPo+n7wQ0hQGciKiL+f0JfgzAjwohvi+EeFsI8Uy5BwohviSEOCeEOLe4uNjGIRIREXWulmfkQohvA5hw+dKvbL3+MIBPA3gGwH8SQhyWUsrSB0spvwbgawAwPT294+tERET9qOWBXEr5UrmvCSH+OoDf3grc7wohHAC7ADDlJiIiqoHfU+u/A+AnAUAIcQxAAMBDPwdERETUTfwudvsNAL8hhLgMwADwl92m1YmIiMidr4FcSmkA+It+joGIiKib+T21TkRERE1gICciIupiDORERERdjIGciIioizGQExERdTEGciIioi7GQE5ERNTFGMiJiIi6GAM5ERFRFxPdeCKqEGIRwG2/x1HGLvC8+FbhtW0dXtvW4vVtnX65tgellKNuX+jKQN7JhBDnpJTTfo+jF/Hatg6vbWvx+rYOry2n1omIiLoaAzkREVEXYyD33tf8HkAP47VtHV7b1uL1bZ2+v7ZcIyciIupizMiJiIi6GAN5iwghflkIIYUQu/weSy8RQvxTIcQVIcQPhBCvCyGG/B5TtxNCfFYI8UMhxDUhxN/zezy9QgixXwjxh0KIGSHEh0KIr/g9pl4jhFCFEBeFEL/n91j8xEDeAkKI/QA+A+CO32PpQd8CcEJK+TiAqwD+vs/j6WpCCBXAvwLw0wAeBfDfCiEe9XdUPcMC8EtSyikAnwbw3/Haeu4rAGb8HoTfGMhb458D+LsAWIDgMSnlH0gpra0//imAfX6Opwc8C+CalPKGlNIA8B8B/IzPY+oJUsoHUsoLW/+9jlzA2evvqHqHEGIfgFcA/LrfY/EbA7nHhBCvArgnpfzA77H0gb8C4Jt+D6LL7QVwt+jPs2Cw8ZwQYhLAUwC+7/NQesm/QC5hcnweh+80vwfQjYQQ3wYw4fKlXwHwDwD8VHtH1FsqXV8p5e9uPeZXkJu6/M12jq0HCZe/40ySh4QQUQC/BeAXpZRrfo+nFwghPgdgQUp5Xgjx4z4Px3cM5A2QUr7k9vdCiJMADgH4QAgB5KZ9LwghnpVSzrVxiF2t3PXNE0L8ZQCfA3Bacv9ks2YB7C/68z4A930aS88RQujIBfHflFL+tt/j6SEvAHhVCPFfAwgBGBRC/Hsp5V/0eVy+4D7yFhJC3AIwLaXshwP920II8VkA/wzAi1LKRb/H0+2EEBpyRYOnAdwD8B6An5VSfujrwHqAyN3N/78AlqWUv+jzcHrWVkb+y1LKz/k8FN9wjZy6zb8EEAPwLSHE+0KI/8vvAXWzrcLBvwngLeSKsf4Tg7hnXgDwlwD85Nbv6vtbGSSRp5iRExERdTFm5ERERF2MgZyIiKiLMZATERF1MQZyIiKiLsZATkRE1MUYyImIiLoYAzkREVEXYyAnorK2+ml/Zuu//1chxK/5PSYi2o5nrRNRJf8IwP8shBhDrnvXqz6Ph4hK8GQ3IqpICPE2gCiAH5dSrgshDiPX6S8upfy8v6MjIk6tE1FZWx39dgPISinXAUBKeUNK+Vf9HRkR5TGQE5ErIcRu5Pq9/wyATSHEyz4PiYhcMJAT0Q5CiAEAvw3gl6SUMwD+FwD/2NdBEZErrpETUV2EEAkA/wTAZwD8upTyf/N5SER9jYGciIioi3FqnYiIqIsxkBMREXUxBnIiIqIuxkBORETUxRjIiYiIuhgDORERURdjICciIupiDORERERdjIGciIioi/3/NlL9ojavt4gAAAAASUVORK5CYII=\n", + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], "text/plain": [ - "<Figure size 576x576 with 1 Axes>" + "<IPython.core.display.Javascript object>" ] }, - "metadata": { - "needs_background": "light" + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -325,7 +1284,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "id": "88982b21", "metadata": {}, "outputs": [], @@ -344,60 +1303,1977 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "id": "333581b5", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7gAAAOkCAYAAACMLZi7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADkIklEQVR4nOz9eXxc130f/H/OXQYz2AYgABLcN4kWbUrWQsmmlJROmERx5NjVEzu13Seu08W/pk2Ttmn7tEnaOk/aJu2vbeJmrZulUdMltROmiuxYTZiUiSMlEkXKIiUytEiKIkQBBEFgsN3B3OU8f8wMNBjMcu/M3efzfr38sggMZs5s93u+53zPOUJKCSIiIiIiIqKkU6JuABEREREREZEfmOASERERERFRKjDBJSIiIiIiolRggktERERERESpwASXiIiIiIiIUoEJLhEREREREaUCE1wiii0hxLIQ4kDU7SAiIgIAIcQPCyF+ye/burgvKYS4y+VtPyuE+HU/HpcoiZjgEjUghHhDCGFUEqwZIcSvCiEGa37/uBDij4QQS0KIWSHEaSHEh+vu4wOVgPSPwn8G0fMSjCu3/z9CiL9e+zMp5aCU8qr/rSMiol4nhPi0EOK8EGJVCDEthPgFIcRIq7+RUv4rKeVfb3WbTm4bFSHEfxZC/Iuo20HkJya4RM19p5RyEMCDAB4G8KMAIIT4KIAvAHgKwC4A2wD8MwDfWff3fwXAncr/uyaE0LprdrD3R0RElHRCiB8C8K8B/EMAeQDvB7AXwO8JITJN/obxlCgBmOAStSGlfAvA7wI4IoQQAP49gB+XUv6SlLIgpXSklKellH+j+jdCiH4AHwXwtwHcLYQ42uz+KzO9U0KI/0cIMQ3gV4UQihDiHwshrggh5oQQ/1MIsaVy+32V2dHPCCFuCiHergTq6v19VgjxRSHErwshFgF8WgiRF0L8cuW2bwkh/oUQQq3c/q7KDHRBCHFbCPEbNfd1jxDi94QQd4QQfy6E+O6a3/1nIcTPCSG+VJnJ/jMhxMHK7/6ocrOvVWbB/5IQYlQI8Uxlxnu+8t+7Krf/lwC+EcDPVm7/s5Wfr88CV57DU5W/vy6E+FEhhFL53aeFEF8VQvzbyn1fE0J8sLN3nIiI0kwIMQzgxwD8HSnlV6SUppTyDQDfjXKS+39Xbtconm4o/xVCfKoSk+aEEP+0UgH2LTV//+uV/67G7r8ihHizEm9/pOZ+HhFCPC+EWKjE6p9tlmg3eD77K3F8SQjxewDG637/hcoMdUGUq8/eU/n5ZwD8ZQD/qBJ7f6fy82r/Y0kI8ZoQ4snOXmmiaDDBJWpDCLEbwHcAOAfgXQB2A/himz/7LgDLKM/0PgvgU21uPwlgC8qB9TMAfgDAXwRwHMAOAPMAfq7ub74JwN0Avg3AP64G1IqPVNo4AuC/Avg1ABaAuwA8UPmbatnUjwP43wBGUZ6R/pnK8x4A8HsA/huArQA+AeDnq4Gx4hModxJGAbwO4F8CgJTyL1R+/95KmfFvoHy9+dXKc9wDwADws5Xb/wiAPwbw/ZXbf3+D1+hnUB5lP1B5XT4F4Htrfv8+AH+OcmD/NwB+WQghGtwPERH1tkcBZAH8Vu0PpZTLKA9of2vNj+vj6TohxLsB/DzKSeJ2lGPUzjaP/Q0o9yVOAPhnQojDlZ/bAP4eyjHsWOX3f8vl8/lvAF6q/O2PY3Pl2O+i3F/YCuBs9XlIKT9f+e9/U4m91Uq0KygPOudRjvG/LoTY7rItRJFjgkvU3G8LIRYAfBXAaQD/CsBY5Xdvt/nbvwLgN6SUNsqB5xNCCL3F7R0A/1xKuSalNAD8/wD8iJRySkq5BuCzAD4qNpZH/ZiUckVKeR7lxPETNb97Xkr521JKB8AwgA8C+LuV298C8FMAPl65rYly0rlDSlmUUn618vMPAXhDSvmrUkpLSnkWwG+iPDNd9VtSyheklBbKQfL+Zk9QSjknpfxNKeWqlHIJ5WT4eIvXZF1ltvkvAfgnUsqlykj7vwPwPTU3uy6l/E+V1/zXUO5sbHNz/0RE1FPGAdyuxK56b2PjDOh6PK3E51ofBfA7UsqvSilLKC9Xkm0e+8eklIaU8msAvgbgvQAgpXxJSvmnlXj7BoD/CBcxUgixB+VlVP+00of4IwC/U3sbKeWvVGJntT/xXiFEvtl9Sim/IKW8WXnOvwHg6wAeadcWorhggkvU3F+UUo5IKfdKKf9WJbDNVX7XdCSzMuP7TXhnpPd/oTxS/ESLx5qVUhZr/r0XwMlKqdICgIsoj+7WJmw3av77OsozvY1+txeADuDtmvv7jyiP5ALAPwIgALwghHhVCPFXa/7ufdW/qfzdX0Z5trlquua/VwEMogkhRL8Q4j9WSrkWAfwRgJFqqXQb4wAyledZ+5xrR8rX2yKlXK38Z9P2EBFRz7oNYFw0XlO7vfL7qhsNblO1o/b3ldgz1/zmAJrETSHEocrSnelKjPxXqCs1btGGeSnlSs3P1mOlEEIVQvxkpeR4EcAblV81ve9K2fXLNbH/iMu2EMUCE1wib/4c5WD2XS1u8z0of7d+R5TX1F5FOcFtVaZcP+J7A8AHKwl29X/Zynrgqt01/70HwM0m93cDwBqA8Zr7GpZSvgcApJTTUsq/IaXcgfLM8c9X1r3eAHC6rg2DUsrva/E8WvkhlMuy3ielHAZQLWOulhG3GvW+jXdmmqv2AHir8c2JiIiaeh7luPh/1f6wsjTngwBO1fy4VWx6G+WlPdW/z+GdSi+vfgHAJQB3V2LkD+Od+NjK2wBGK22v2lPz359Eucz6W1AuOd5XbW7l/zc8PyHEXgD/CcD3AxiTUo4AuOCyLUSxwASXyAMppQTw9wH8UyHE9wohhkV5Q6hvEEJ8vnKzT6G8ZuX+mv99F4AnhBBuA98vAviXlUADIcSEEOIjdbf5p5VZ0fegvBb1N+rvpNLmt1FeY/vvatp7UAhxvHLfHxOVzZ5QXusrUZ4tfgbAISHE9wgh9Mr/Hq5ZL9TODMrrZauGUF53uyDKG2b98za3r30ONoD/ifJrMlR5Xf4+AJ7zR0REnkgpCyjH6Z8RQnx7Jb7tQ3nfjCkA/8XlXX0RwHcKIR6tbAj1Y+g8ERwCsAhgWQhxDwBXg8lSyusAzgD4MSFERgjxDdh4qsMQysn8HIB+lGeGa9XH3gGU+wGzACCE+F6UZ3CJEoMJLpFHUsovorwe9K+iPGs6A+BfAPhfQoj3ozw6+nOVmdHq/55GeROmTzS523qfA/A0gP8thFgC8Kcob6JU63TlPk8B+LdSyv/d4v4+hXKJ72soJ7FfxDtl1g8D+DMhxHLlMX9QSnmtsk7221Beq3sT5bKqfw2gz+Vz+CyAX6uUOH03gJ8GkEN5NvZPAXylwXP+qCjvgvwfGtzf3wGwgvKM+FdRXtv8Ky7bQkREtE5K+W9QniX9tygnln+GcuXSicpaVTf38SrKsel/oDyTugTgFsoJpVf/AOXZ1iWUZ1AbDlo38UmU+wh3UB48fqrmd0+hXLL8Fsp9gD+t+9tfBvDuSqz+bSnlayjvcfE8yv2bewH8iednQxQhUZ6QIqKkqIwyXwOgN9kgg4iIiEImhBgEsIBymfG1iJtD1LM4g0tERERE1AEhxHdWlgsNoDwbfB7vbORERBFggktERERE1JmPoLyM5ybKZ81+XLI8kihSLFEmIiIiIiKiVOAMLhEREXkmhBgRQnxRCHFJCHFRCHEs6jYRERE1OuA68cbHx+W+ffuibgYREaXASy+9dFtKORF1O2LocwC+IqX8aOWIlP5WN2ZsJiIiv7SKzalMcPft24czZ85E3QwiIkoBIcT1qNsQN0KIYQB/AcCnAUBKWQJQavU3jM1EROSXVrGZJcpERETk1QEAswB+VQhxTgjxS5VdZDcQQnxGCHFGCHFmdnY2/FYSEVHPYYJLREREXmkAHgTwC1LKBwCsAPjH9TeSUn5eSnlUSnl0YoJV3kREFDwmuEREROTVFIApKeWfVf79RZQTXiIiokgxwSUiIiJPpJTTAG4IId5V+dEJAK9F2CQiIiIAKd1kioiIiAL3dwD818oOylcBfG/E7SEiImKCS0RERN5JKV8GcDTqdhAREdViiTIRERERERGlAhNcIiIiIiIiSgUmuERERERERJQKTHCJiIiIiIgoFZjgEhERERERUSowwSUiIiIiIqJUYIJLREREREREqcAEl4iIiIiIiFKBCS4RERERERGlAhNcIiIiIiIiSgUmuERERERERJQKTHCJiIiIiIgoFZjgEhERERERUSowwSUiIiIiIqJUYIJLREREREREqcAEl4iIiIiIiFKBCS4RERERERGlAhNcIiIiIiIiSgUmuERERERERJQKTHCJiIiIiIgoFZjgEhERERERUSowwSUiIiIiIqJUYIJLREREREREqcAEl4iIiIiIiFKBCS4RERERERGlAhNcIiIiIiIiSgUmuERERERERJQKTHCJiIiIiIgoFZjgEhERERERUSowwSWKgZLloGCYKFlO1E0hIiIiopTqhT6nFnUDiHrddMHA6cuzsBwJTRE4fmgCk/lc1M0iIiIiohTplT4nZ3CJIlSyHJy+PIt+XcO2oSz6dQ2nL8+melSNiIiIiMLVS31OJrhEETJMG5YjkcuoAIBcRoXlSBimHXHLiIiIiCgteqnPyQSXKEI5XYWmCBil8sXFKNnQFIGcrkbcMiIiIiJKi17qczLBJYpQRlNw/NAEVk0LM0tFrJoWjh+aQEbjV5OIiIiI/NFLfU5uMkUUscl8Dk8+sAuGaSOnq6m80BARERFRtHqlz8kElygGMpqS2osMEREREcVDL/Q50/3siIiIiIiIqGdEluAKIXYLIf5QCHFRCPGqEOIHG9xGCCH+gxDidSHEK0KIB6NoKxEREREREcVflCXKFoAfklKeFUIMAXhJCPF7UsrXam7zQQB3V/73PgC/UPl/IiIiIiIiog0im8GVUr4tpTxb+e8lABcB7Ky72UcAPCXL/hTAiBBie8hNJSIiIiIiogSIxRpcIcQ+AA8A+LO6X+0EcKPm31PYnARX7+MzQogzQogzs7OzgbSTiIiIiIiI4ivyBFcIMQjgNwH8XSnlYv2vG/yJbHQ/UsrPSymPSimPTkxM+N1MIiIiIiKiWCtZDgqGiZLlRN2UyER6TJAQQkc5uf2vUsrfanCTKQC7a/69C8DNMNpGRERERESUFNMFA6cvz8JyJDRF4PihCUzmc1E3K3RR7qIsAPwygItSyn/f5GZPA/hUZTfl9wMoSCnfDq2RREREREREMVeyHJy+PIt+XcO2oSz6dQ2nL8/25ExulDO4jwH4HgDnhRAvV372wwD2AICU8hcBfBnAdwB4HcAqgO8Nv5lERERERETxZZg2LEcil1EBALmMisU1E4ZpI6NFvio1VJEluFLKr6LxGtva20gAfzucFhERERERESVPTlehKQJGyUYuo8Io2dAUgZyuRt200PVWOk9ERERERJQyGU3B8UMTWDUtzCwVsWpaOH5ooudmb4GIN5kiIiIiIiKi7k3mc3jygV0wTBs5Xe3J5BZggktERERERJQKGU3p2cS2qrefPREREREREaUGE1wiIiIiIiJKBSa4RERERERElApMcImIiIiIiCgVmOASERERERFRKjDBJSIiIiIiolRggktERERERESpwASXqAsly0HBMFGynKibQkRERETU87SoG0CUVNMFA6cvz8JyJDRF4PihCUzmc1E3i4iIiIioZ3EGl6gDJcvB6cuz6Nc1bBvKol/XcPryLGdyiYiIiIgixASXqAOGacNyJHIZFQCQy6iwHAnDtCNuGRERERElFZe/dY8lykQdyOkqNEXAKNnIZVQYJRuaIpDT1aibRkREREQJxOVv/uAMLlEHMpqC44cmsGpamFkqYtW0cPzQBDIav1JERERE5A2Xv/mHM7hEHZrM5/DkA7tgmDZyusrkloiIiIg60mj52+KaCcO02cf0iAkuURcymsKLDhERERF1hcvf/MOeORERERERUYS4/M0/nMElIiIiIiKKGJe/+YMJLhEFqmQ5vFATERERucDlb91jgktEgeF290REREQUJg4PEFEguN09EREREYWNCS4RBaLRdveWI2GYdsQtIyIiojQrWQ4KhslB9R7FEmUiCgS3uyciIqKwcXkUcQaXiALB7e6JiIgoTFweRQBncIkoQHHd7p47OxMREaVPo+VRi2smDNNmvO8hTHCJKFBx2+6epUtERETpxOVRBLBEmYh6CEuXiIiI0ovLowjgDC4R9RCWLhEREaVbXJdHUXiY4BJRz2DpEhERUfrFbXkUhYvvPBH1DJYuEREREaUbZ3CJqKewdImIiIgovZjgElHPYekSERERUTqxh0dERERERESpwASXiIiIiIiIUoEJLhEREREREaUCE1wiSrWS5aBgmChZTtRNISIiIqKAcZMpIkqt6YKB05dnYTkSmiJw/NAEJvO5qJtFRERERAHhDC4RpVLJcnD68iz6dQ3bhrLo1zWcvjzLmVwiIiKiFGOCS0SpZJg2LEcil1EBALmMCsuRMEw74pYRERERBYNLs1iiTEQpldNVaIqAUbKRy6gwSjY0RSCnq1E3jYiIiMh3XJpVxhlcIkqljKbg+KEJrJoWZpaKWDUtHD80gYzGyx4RERGlC5dmvYMzuESUWpP5HJ58YBcM00ZOV5ncEhERUWKVLKdpn6bR0qzFNROGafdc/4cJLhGlWkZTeu7CTkREROnSrvyYS7PewV4fERERERFRTNRvFOWm/JhLs97BGVwiIiIiIqIYaDRTm8torsqP4740q1WJtZ+Y4BIREREREUWsdqa2WmZ8+vIsnrh3h+vy47guzQpzh+f4PXsiIiIiIqIe02ijKMuRsKVMdPlx2Ds8cwaXiIiIiIgoYq02isrn9FiXH7cS9g7PyXlliIhCVr/JAxEREVFQ2m0UldEU5HN6opJbYGPiDiDwHZ45g0tE1ECYa0WIiIiIgPhvFNWJauJ++vIsFtfM9X5VUM+NCS4RUZ1mmzw8+cCuVAQaIiIiiq+4bhTVjTAT93S9ckREPmi2yYNh2hG3jIiIiCiZwiqxZoJLRFQn7LUiREREROQPJrhERHXabfJARERERPHENbhERA2kcZMHIiIiorRjgktE1EQaN3kgIiIiSjP23IiIiIiIiCgVmOASERERERFRKjDBJSIiIiIiolRggktERERERESpwASXiIiIiIiIUoEJLhEREREREaUCE1wiIiIiIiJKBSa4RERERERElApMcImIiIiIiCgVmOASERERERFRKjDBJSIiIiIiolRggktERERERESpwASXiIiIiIiIUoEJLhERERERRapkOSgYJkqWE3VTKOG0qBtARERERES9a7pg4PTlWViOhKYIHD80gcl8LupmUUJxBpeIiIiIiCJRshycvjyLfl3DtqEs+nUNpy/PciaXOsYEl4iIiIiIImGYNixHIpdRAQC5jArLkTBMO+KWhYfl2f5iiTIREREREUUip6vQFAGjZCOXUWGUbGiKQE5Xo25aKFie7T/O4BIRERERUSQymoLjhyawalqYWSpi1bRw/NAEMlr60xSWZweDM7hERERERBSZyXwOTz6wC4ZpI6erPZHcAo3LsxfXTBim3TOvQRCY4BIRERERUaQympKqpK5kOW0T9l4vzw4KE1wiIiIiIiKfuF1XWy3PPn15Fotr5vpt05ToR4EJLhERERERkQ9q19VWZ2VPX57Fkw/sapi49mp5dpD4ChJRV7i1PREREVFZJ8ceZTQF+ZzO5NYnnMEloo5xa3siIiKid3BdbfQ4TEBEHeHW9kQkhFCFEOeEEM9E3RYiojjo5WOP4oIzuETUEW5tT0QAfhDARQDDUTeEiCguuK42Wny1iagjtSU4AFiCQ9RjhBC7ADwB4JeibgsRUdxwXW10+IoTUUdYgkPU834awD8C0HRdghDiM0KIM0KIM7Ozs6E1jIiIehdLlImoYyzBIepNQogPAbglpXxJCPGBZreTUn4ewOcB4OjRozKc1hERUSdKlpOKPh0TXCLqSkZTEn0RJKKOPAbgw0KI7wCQBTAshPh1KeX/HXG7iIioA2k6GYO9UiIiIvJESvlPpJS7pJT7AHwcwB8wuSUiSqa0nYzBBJeIiIiIiKhHNToZw3IkDNOOuGWdYYJLREREHZNS/h8p5YeibgcREXUmbSdjRJrgCiF+RQhxSwhxocnvPyCEKAghXq7875+F3UYiIiIiIqK0StvJGFFvMvWfAfwsgKda3OaPOTJMcZaWHeeIiIiIqHtJ7Bum6WSMSBNcKeUfCSH2RdkGom6kacc5IiIiIupOkvuGaTkZIwnP4JgQ4mtCiN8VQryn2Y14mDyFLW07zhHFUclyUDBMfq+IiCj22DeMh6hLlNs5C2CvlHK5ctbebwO4u9ENeZg8ha3RjnOLayYM0245+pXEshWiKCR5FJyIiHpPp31D8lesX2kp5aKUcrny318GoAshxiNuFhGAznacmy4YOHluCs+8chMnz01humCE1VyiROEoOBERJU3adiNOqlgnuEKISSGEqPz3Iyi3dy7aVhGVed1xjh12IvfSdiYfERGlX9p2I06qSEuUhRD/HcAHAIwLIaYA/HMAOgBIKX8RwEcBfJ8QwgJgAPi4lJLlxxQbXnacY9kKkXu1o+C5jMpRcCIiSoQ07UacVFHvovyJNr//WZSPESKKLbc7zrHDTuRedRT89OVZLK6Z62tw2VEgIqK4S8tuxEkV902miFKDHXYibzgKTkRERF4xwSUKETvsRN5wFJyIiIi8YIJLFDJ22ImIiIiIgsFeNhEREREREaUCE1wiIiIiIqI2SpaDgmGGfsRjVI+bVCxRJiIiIiIiamG6YOD05VlYjlzfKHQyn0vt4yYZZ3CJiIiIiIiaKFkOTl+eRb+uYdtQFv26htOXZwOfUY3qcZOOCS4REREREXnSS2WzhmnDciRyGRUAkMuosBwJw7RT+bhJxxJlIiIiIiJyrdfKZnO6Ck0RMEo2chkVRsmGpgjkdDWVj5t0nMElIiIiIiJX0l4222hmOqMpOH5oAqumhZmlIlZNC8cPTQR+7GNUj5t0nMElIiIiIiJXGpXNLq6ZMEw78YlX/cz0owfHMJzLIKermMzn8OQDu2CYNnK6Gtpzjepxk4wJLhERERERuZLWstnamelcRsXbCwY+9/tfx727RpDVlfUy7CgSzIymMLH1gK8UERERERG5ktay2dqZact28PrsMhRFYKRfT10ZdtpxBpeIiIiIiFxLY9ls7cy0hESx8tz6NAWaoqSmDLsX8B0iIiIiIiJPMpqCfE5PTcJXOzM9b5RgOxJ3bR2EpiipKcPuFZzBJSIiIiKinlc7M/1Nh7bi+atzmFkqrh+FlJZkPu2Y4BIRxUTJclJV7kVERJQ01Q2d8jkdk/lcpHGZ/YLOMMElIoqB+qMJqrs1EhERUTSi3L2Y/YLOcSiAiChitUcTbBvKcrdGIiKiHsZ+QXeY4BIRVZQsBwXDDD2A1B5NAKB8RIEjYZh2qO0gIiLqRVHF/2bYL+gOS5SJiBBtKVDt0QS5jMrdGomIiEISx1Jg9gu6wxlcIup5UZcC1R5NMLNUxKppcbdGIiKigEUd/5thv6A7nMElop7XqBQo7APda48m4G6JREREwYtD/G+G/YLOMcElop4Xl1KgKHdrJCIi6jVxif/NsF/QGb5iRNTzWApERETUexj/04kzuNTTeIA2VbEUiIiIqPdEEf+76X+y79oeE1yKhSi+rHHcNY+ixVIgIiKi9GrW3wwz/nfT/2Tf1R0muBS5KL6stbvmVddcnL48iycf2MUEh4iIiCjBGiWycUgOu+l/su/qHl8NilRU27PzAG0iIiKi9JkuGDh5bgrPvHITJ89NYbpgxOY4oG76n+y7uscElyIV1Ze1dtc8ALHbNY+IiIiIvGmWyC4WzVgkh930P9l3dY8JLkUqqi8rd80jIiIiSpdmEyeQiEVy2E3/k31X97gGlyJV/bKevjyLxTVzfU1EGF9W7ppLRERElB7NzrUdzumR9TfrddP/ZN/VHSa4FLkov6zcNZeIiIgoHVpNnMQpOeym/8m+a3tMcCkW+GUlIiIiSoY4n8XaKpFlf7M3MMElIiIiIiJX4nDcTjtMZHsb33kiIiIiImorLsftRKVkOSgYZs8836TiDC4REREREbXVaJfixTUThmmnfsY0CTPXVJbuTyIREREREfmiV89i7fWZ66RhgksUIJayEBERUVok7SxWv/phzc7XNUzbj2aSz1iiTBQQlrIQERFR2sTpuJ1W/OyHNTtfN+0z10kVz08kUcKxlIWIiIjSKqMpyOf0UJLbTmZh/e6HJW3mutdxBpcoAL28CQMRERGRHzqdhfWjH1Z/1m9SZq6JCS5RIFjKQkRERNS52lnYal/q9OVZPPnArrbJZbf9sGaJNc/XTQa+Q0QBYCkLERERxV2cN8PsZmOnbvphXGaWfJzBJQoIS1mIiIgoruK+GWa3s7Cd9sO4zCz5+C4RBSjMTRiIiIiI3EjCLGUns7D1M9Kd9MN69azfNOEMLhERERFRDwl6lrJ+g6ZOeZmF9WtGuppYn748i8U1c/2+OFmRHExwiShUfgU9IiIi6kyQm2H6XfrsZmOnbjakaoTLzJKN7xYRhWa6YODkuSk888pNnDw3hemCEXWTiIiIek5Qm2FGVfrczYZUzVTLmwHEdiMuaowzuEQUCr9HV4mIiKhzQcxSdlP63E2FV1Az0nHfiIsaY6+SiEIRxOgqERERdc7vzTA73aCp2wovPzakavT7VrPRcT5iqddxBpcCwXWWnUnz6xbkeh8iIiKKXicbNPlV4eX3hlStZqPvrKxxZjfGmOCS71jO0ZmoXrewkmruSkhERJR+Xkuf/dzR2c8NqZoNzKtCcMlVzDHBJV9xnWVnonrdwk6quSshERFR+rlJNKvCrvBym1A3G5i3pQz0iCXqHhNc8lXQ56qlVRSvm9ek2q+ZXi9Bj4iIiNIt7AovLwl1o4H5kuVwyVXMMcElX3GdZWeieN28JNUsOyciIqKghFnh5TWhrh+Y55Kr+GOCS77il74zUbxubpNqlp0TERFR0MKs8Oo2oeaSq3hjgku+45e+M2G/bm6TapadExERUdp0m1BzyVV8McGlQPBL35mwXzc3STXLzomIiIgoKZiBEPW4doe8d3J4OhEREVFVyXJQMEyULCfqplAP4AwuUZ2wzoVNEpadExERUSe4UWUZ+5fhYYJLVIMX4eZYdk5EREReEjVuVFnG/mW4eueTRdRG7UV421AW/bqG05dnWU5DREREhHKidvLcFJ555SZOnpvCdMFoeftGG1VajoRh2mE0NxbYvwwfE1yiCl6EiYiIiBrrJFGr3agSQE9uVMn+ZfiY4BJV8CJMRERE1FgniRo3quyuf8nNuTrDNbhEFW7PhSUiIiLqNV6PDayu1d0y0NfTG1V22r/kut3OMcElqsHdgomIiIg285KoMTnbyGv/kptzdYcJLlGdOO0WzC3liYiIKC7cJGrtkrNe7dt46V82KgdfXDNhmHZPvWadYoJLFFMc/SQiIqK4aZeotUrO7qyssW/jgtdycNqIQwBEMcQt5YmIiCiJGm2qBAmsrlk4dWmGfRsXuDlXdziDSxRD3ZamuC3/6dUyISIiIgpG/VrdlaIFQOJL59/GqzcLePTAGHIZlWW3bXBfmM4xwSWKoW5KU9yWNqetBJrJOhERUTxUk7NFw8Szr72N4b4MdE3gyq1lnH1zAccPTcC0ZWrLbv3qk8RpX5gk4StGFEOdlqa4LW1OWwn0dMHAyXNTeOaVmzh5bgrTBSPqJhEREfW0jKZA1xQAArmMCk1R8ODeURQtG1MLRmrLbtkniR5ncIliqpPSFLelzWnanY9b6RMREbUWVZVTfUVaVlNxdO8WPH5kEsNZPXVxmn2SeGCCSxRjXktT3JY2p2l3vjQl60RERH6LcklSo7NzTxzeivHBvlAeP2zsk8QDX2mimClZDgqG2VG5sNvS5jTtztdot8akJutERER+isOSpGpF2ofu24EnH9iV6P0+2mGfJB44g0sUI36MsrotbU7L7nyNRoeTmqwTERH5KYoZxUbl0L2yWRL7JPHABJcoJvxct+E2kCQh4LhZN5SWZJ2IiMhPYS9JStsJDZ1gnyR6THCJYoLrNjbzEiiTkKwTERGFKcwZxSA3WPKySVYcjg1knyRaTHCJYiJNGz/5oWQ5OHXxFjRVYGwgA9OS3ImQiIjIo7BmFIMaqPcy2M0ZZAK4yRR1oJtNkKi5NG385Ifrc8s4c/0Ozr9VwPNX5lC0yoHTMO2om0bgdYCIKEkymoJ8Lthjeeo3WFoyTJiWA1WIju/TyyZZcdhQi+KBM7jkCUfGgsV1G2Uly8ELb9xBVlPRr5cvU2evz+PIznzPzmjHCa8DRERUr7Yc+sb8Cq7OruDAxCC+dP5mx3HCy6wwl3pRFd9tco0jY+EIY5Q17sqztAIP7hnBmmVj1bRQtGw8vH+0p1+XOOB1gIioN3RSqTOZz+GJe3cgl9Hw2F3jOLRtqKs44eXYHR7RQ1WcwSXXODKWPnHYiKGRapDK6hqOHRjD3MoaDNPGjnx/1E3rebwOEBGlXzeVOkXLhu3I9cSymzjhZZOsbjbUimt/iDrDBJdcS+ImSLxgNRfnMtPaIDU3v+ZLmRP5I4nXASIicq/ZbshP3LsDtpQt+1TTBQOnLt7CqzcLuHJrGQ/uGUFW17qKE16Wb3Wy1Ktdf4h9yeThu0SuJW0TpOmCgZPnpvDMKzdx8twUpgtG09v22oY5SSgz9bvMifyRtOsAERF506hSZ265hC++dKNln6ratxjO6nj04DgA4Lmrc1hcK3UdJ7ws3/Jy23b9IS99SYoPzuCSJ0nZBMnLWWxxnskMSlLKTG0pkdEUDGV1APFtZ69JynWAiChtwphNrK/UWSqauDq7jMcOjmMopzftU9X2LXIZFcffNYGpeQOPv3s7xof6Amlrt1r1hwAEdq4vBYvvDnmWhE2QGl2wGh0xk4SZzCBEuRGDl9lybhgRX0m4DhARpUlYs4n1lToLhokDEwMYyr0z2NyoT1Ufs01LYiirYbjyd3HUqp/hti8ZhF6rLPQbZ3ApldyuE0zKTKbfutmIoRteZ8ujaicREVGceKlM80NtpY4qBL50/mbbPlUSY3Ztm+8Ya5AOcOLw1vU2R7HnRC9WFvqNCS6lktuLbC9vmBN2mWmnwZnlsERE1OuiGJDPaMr6fbtNXJMYsyfzORw7MIZTl25BEQLPXZnDcVXBZD4XesIe9kBGWjHBpdRyc5FN4mijn2qDV9C6Cc5htpOIiChuagfkdVWgYJgAZGgD8l4S16TF7JLl4Pmrcxgf6NuUVIadsPdqZaHfIk1whRC/AuBDAG5JKY80+L0A8DkA3wFgFcCnpZRnw20lJZmbi2wSRxuTqJdny4mIiLpRHZB/+uW3cHF6CQBweHIYd1bWQitfTVri6la7pDLM582+kj+i/pT+ZwDf3uL3HwRwd+V/nwHwCyG0iXoQN8wJHo+XISIi6tyWgT4M9Ol4/4ExPP6eSWzP53piY8ygxWlDS/aV/BHpDK6U8o+EEPta3OQjAJ6SUkoAfyqEGBFCbJdSvh1OC4nIT70yW85D4YmIyG+GaQMCGBsoH7mjZRBp+WpaYl3clqv1Sl8pSHFfg7sTwI2af09VfrYpwRVCfAblWV7s2bMnlMZRMqTlApwWaS1xquLuh0REFIQ4la+mLdbFLalMe18paHF/5USDn8lGN5RSfl5KeVRKeXRiYiLgZlFSdHJmHM8eo0716rnKREQUvLiUr6Y11nG5WnrEfQZ3CsDumn/vAnAzorZQwnSy1XraRiQpXNz9kIiIghSHmUbGOoq7uH8KnwbwKVH2fgAFrr8ltxpdgC1HltewNJDWEUkKT5w2qiAionTyY6axm2q1pMY6Vuj1jqiPCfrvAD4AYFwIMQXgnwPQAUBK+YsAvozyEUGvo3xM0PdG01JKIq9rVTgiSd2K20YVRERE9bqtVktirGOFXm+JehflT7T5vQTwt0NqDqWM1wtws4RYFeUD1eOw6QDFXxzKx4iIiBrpZPlWI0mKdX49Z0qOuK/BJeqKlwtwo4T48OQQvnT+Jkf8yBPufkhERHFTshzMLBVRtOz1o4a6qVarxrpq6W9cE11W6PUeJriUOvXHAnlJNmoTYlUIfOn8TY74EXWJR3UREUWrWqJbNB2cnypAkQLbR3Jdr59NQulvnI5XonAwwaVU8eNCW02IC4YZyIgfO/vUS5LQ+SEiSrPaEt2xARWKAL52YwGOkMhqasfrZ5NS+ut2yVo3/TP27eKFCS6lht8X2iBG/NjZp16SlM4PEVGa1Zfobs/n4Ejgm+/ZitFcBraUKFnOermx20QtSaW/7ZasddM/Y98ufpjgUmr4daGtvbj7uUsgO/vUa5LU+SEiSqtGA/ZZXQGk3LDPyOHJIVycXnKdqCWt9LfZkrVu+mfs28UTX3lKDT/OZZsuGDh5bgrPvHITJ89NAQCefGAXPnTfDjz5wK6uRuS8nstLlHRJPSuRiChNqiW6q6aFmaUiVk0Lxw6M4bkrc+jXNWwbyiKjKHjq+evIqAq2DWXRr2s4fXm25Zmxje43iuOC3J5v2+x23fTP2LeLJ87gUmp0ey5bq1G4fE7vepfApI10EnUriWclEhGlUX2Jbn1ipqoCJduBoggA7ituoj4uyG15cKvbddM/Y98unpjgUqp0c6FtVU55Z2XNl82r2NmnXhN154eIiMrqS3RrEzPblsioChxHAvBWcRPV0Xhuy4Pb3a6b/hn7dvHEBJdSp9MLbbNROFUI39ZXuOnscyc+ShueC0xEFC+NErNPHduLi9NLmFkqJiJRc7vPg5vbdTMYy4Hc+GGCS1TRbBTOltLXjXJadfaTvBMfE3MiIqLkaJSY3bM9n5hY7rY82O3tuhmM5UBuvDDBpcjFKTFqdLEvWU4o6yuSvBNfkhNzIiKiXlWfmEVZbuy1L+i2PJhlxL2HCS5FKo6JUaOLfRgXxmoJja4KrJYsZFQF1pqM/ZEqSU7MiYiIKFrd9AXdlgezjLi3MMGlyCQpMQrjwpjTVawUTVyYKkBVBWxbYv94f+x34uNZp0RERNQJP/qCbmed41xGHKdqxjRggkuRSVpiFM6FUbT5d/xwi3wiIiLqRNL6gkGIYzVj0vXGJ4diqTYxArxtSZ9GhmljIKvh+Lsm8PC+LTj+rgkMZLXYHxYe1EHvbg9uJyIi6hVpi42d9AXT9BrUzmBvG8qiX9dw+vJsKp5blDiDS5Hhov+Nqhd505IYyGiJSvj9LuHmaGbwWA5FRJQsaYyNXvuCrV6DJMY1zmAHgwkubRLmBYKL/t8RVMIf1vvpVwl3ktZmJ1UaO0lERGmW5tjoti9YfQ0yioKcXt6rpPoa3FlZS2Rc4zKvYDDBpQ2i6PjGedF/2DgTytHMoKW5k0RElFZpj41u+oKGaWNueQ0zi2uwpYQqBLYN92HRMBMb11jNGAy+erSO6wDiIaMpyOd0X2Zuk/h+cm12sBp1kixHxn6tNxFRL6lfZ8rYCKhC4OrsCgQERnIZCJT/bTpOouNadXLjQ/ftwJMP7Ir9REQSMMGldez4pktS38+gNq2iMnaSiIjibbpg4OS5KTzzyk2cPDeF6YLB2AjAlhIHJgYhIbFglGA5DnaM5iAdJD6u+TW5QWUsUaZ1XAeQLkl+P7k2OzgshyIi8i6s/SyWixa+cmEa+ayOsQF9Q7ltEmJjkK9TTlcxNpjB9nwWS0UTF24u4sadVfzh5RncuyOPi9NLjGsEgAku1WDHN12S/n5ybXZwktBJIiKKi7D2s5guGPjdC9M49+Y8RvszOLJjGKMDfbizWsLMUhHbhrKeY2OQCWf9fQf9OlX7Nacu3sK5GwvIaioePjCGrK7h4vQSnrh3B2wpQ4lrSdyxuZcwwaUNeqHj20sXpaS9n7303kSNAwjUDSHEbgBPAZgE4AD4vJTyc9G2ish/YW3MV32ckZyO0f7y+tILNxexb7wfr761CAiJrKZ6ShqDTDjr7/vYgTE8f3Uu8NdpMp/D40cmYZg2do3koKnl+15cM2FLiXxO9+2xmkniBp69hr0b2iTN6wAarWtJu6S8n7343hAlmAXgh6SUhwG8H8DfFkK8O+I2EfkurP0sqo8zlNVxZGceEhJzK2s4d30B7901gp35fk+bRQa50WSj+z516RaKlh3Kvh/DWR1DWQ2mLQGEu+Y2qRt49pp493iJfMSLUnzxvSFKFinl21LKs5X/XgJwEcDOaFtF5L+wNuarfZzR/gzu3z2C9+zI4717R7B9pDw76CVpDDIxb3TfihCQDkLZ6CnKDbeSuoFnr2GCSz2DF6X44nvTe+qPwKDkEkLsA/AAgD9r8LvPCCHOCCHOzM7Oht42om6FlUzVP07JdvDEvdsxmNE6ShqDTMwb3XdWV3Di8FYsrpXwxtwKFtdKgSadUR2tw5MIkoFrcKlnJHlX4bTje9NbuH4pPYQQgwB+E8DflVIu1v9eSvl5AJ8HgKNHj8qQm0fki7D2s2j0OBlN6WizyCA3mmx23wBg2eVBa11t/zjd7rsRxV4SSd/As1cIKdMXb44ePSrPnDkTdTMohtixji++N72hZDk4eW5qw0Ykq6bl+0YkfhJCvCSlPBp1O+JGCKEDeAbAs1LKf9/u9ozNRJ3pJhEMaxdlAPjPf3IN126vQFUFbFti//gAPv3Y/oaPm/SYz00xo9cqNnMGl3pKnHcV7vWLZZzfG/JPo3L0xTUThmnzPU8QIYQA8MsALrpJbomoc93MVAY1y1nfZ7m9tIaL04uYGCwfZVSyHFycXsSiYWJ8qG/T34axM3WQeBJBvDHBpVDEKXnz46Lk9/NJ+kimX+IeMOL0OU4qlqOnxmMAvgfAeSHEy5Wf/bCU8svRNYmIwtCozyIBmJaE4zjYsMWP2Pz3HOikoDHBpcClLXnz+/mkYSSzF6TtcxwVrl9KBynlV9Gw60pEQYtysLVRn+Xpl99Cn67BdGy88lYBu0Zz6NNUHJ4cwnB287m0HOikoLFHQYFK2/EvQTwf7iAcf2n7HEctqt0viYiSLuoz4+v7LLoqcHF6CVldwQfetRU78zkUTRv37BjEh+/f2TABD3Jnau7QTwBncClgaStDCeL5JGkks1dLdNP2OY6DuJejExHFTRwqvur7LAXDBAA4jsSl6SXk+lSYhsTDe8ZaDl6223ejk/4GK62oigkuBSpJyZsbQTyfpJRs9nLgSNvnmIiI4sVNQheHwdb6PgsgcWjrEF6ZKmAoq6NPUyElcO7GAu7aNtSyXc0GOjvpb8Qh+af4YIJLgUpK8uZWJ8+nZDlYNExAAMNZveFt476DcK8HjrR9jomIKD7cJnRxGWyt77Ncn1vGz/+fK1BNAVUIPLh3FCXb6Sjx7rS/EYfkn+KDCa4HvVqe2a24J29eeXk+0wUDT798ExenFwEAhyeH8OH7dzYMXHEu2Yxz4Ajre5m2zzEREfnPa0zyktDFabC1ts+yd2wQR/dugaYK5HN6eTdlKTtKvGv7G5btQEKiaNlt+xtxSf4pHpjgutTL5Zl+iHPy1gk3z6dkOTh18Rau3V7BxGAWAHDt9ipOXZrBxx7ak6jXI66Bo/Z7CUg8sm8L9o4NBvbapu1zTERE/umkr+h1ADmOg60ZTcGJw1tx+vIs5lZKXSXe1f7G2wsGXp9dRtG0YTsS33RoK/K5zTsy17ahkwq7OL2O5B8muC70enkmdcYwyyOOqirWPyeqKmCUNpfthHGR7eYx4jRqXFX7vSyaFs6+WcCZN+ZxdO8WnDi8lQNQREQUmk77ip0MILsdZA8zeatNvFUhYEuJkuV01N949OAYPvf7X4dSeR3u2jqI56/OYTKfa3l/XivsOHGVXkxwXYhzeSbFV05XkdNV2LZc367etiVyGWVD4ArjIuvHY8Rt1Lj6vdRVgTPXFzGU1aGaApoqOABFRESh6rSvGMQAclTJW0ZTcGdlrevHHs5lcO+uEYz06+jTFGiKgpmloqt+t9vknxNX6cZ30YXa0TUAsSnP7EVJOt+sWrKzf3wAs8tFzC4XsX+8Hyfu2bZ+AQ3jfFU/HyOjKcjnGm+UFbbq97JgmLClBACoorz+h+cIExFRmLrpK/p5NniU57b79dg5XUVWV6BAQFMU3/vdjQYj2G9IF87guhDH8sxelMRyksl8Dp9+bH/TXZTDqA5IawVC9Xt56tIMVtYs2LbEg3tHYVqSA1BERBSqbvuKfu3xEGXM9+uxg+53x3VfEfIPE1yX4lae2WuSXE6S0RSMD/U1/F0YF9k0X8gn8zl87KE9eHjfFrx4bR4l24EjJQegiIgodHHoK3Ya85eLFuaNEkZzGQxmO0sP2j22l3XBQb6WUU1ccVOr8DDB9YA7qEYn7BHJsC5CXi6ynbYp7RUIGU3BoW3D2Dc2yMBBRESRirqv2EnMf+XGPJ56/jpKtoOMquBTx/bivt2jvj52qyq8Zv2bIF/LsAcjkliFmGRMcCkRwpyF7OYi1EkS6uYi2+2FMQ6jykGLulNBREQUldr+h5eYv1y08NTz1zHYp2Mwq63/+7MTQx3N5DZ67FZVeH5sStWpsPoNSa5CTCq+qpQI1VHBVdPCzFIRq6YVyCxkNxskTBcMnDw3hWdeuYmT56YwXTBcP26rzZv82rQhThtEERERkT8a9T/cxvx5o4SS7awns4NZDSXbwbxR6rg99Y/dbFOnRcOMbEOsMHFTq/Cxp0uJ4ecug810ehEKctdCXhiJiIioES/9j0YnUYzmMsioCpaLFoDyjG5GVTCay3huR7NTLprtMA2Bnujf8DSW8LFEmRIl6HKSTkuhg1wjnOZNooiIiJIuys2D3PY/mi11Gsxq+NSxvXjq+eu4s7q2vga3vjy51XNst4yq2drc4awOTRFYKppQFAHHSecpCGnfCyWOmOAS1ej0IhRkEprUC2PQAZ+7ERIRUdTC3DyoUdxz0/9otwb0vt2j+OzEUNNdlNttEOVmfWmzdcGHJ4c2bXCVxpjeC3uhxAkTXKI6nVyEgk5C69sEAAXDjO1FsjYYAhKP7NuCvWODvrWVuxESEVHUwtw8qFncc9P/cDPLO5jVGm4q1e45eqlgq6/CK1kOLk4v4bGD41BVAduWuDi9hHu252PZt+kWN8MMDxNcogY6uQgFPTpXbVMQyZ2fs6G1wbBoWjj7ZgFn3pjH0b1bcOLwVl/ayt0IiYgoamEdYdgu7rXrf3RTZdbuOfpx32MD+vrPZpaKgR0BSb2Dnx4iHwW9U3EQm1l1s/tzI9WApasCF24uYiirY6BPg6YKXzbe4qZbREQUB2FtHuQm7rXqf3RzEkW75xjkfRN1ijO4RAni92hxELOh1YBVMEzYUgIAVCGQz+mYWyl1PTIb1aZbXPNLRES1wtojw4+412mVmZvn2E0F24N7RvDCG3ewuCYSs8cIxR8TXKIQ+JUc+Z3cBVFeVQ2Gpy7NYGXNgm1LPLh3FKbl3+6IYQdErvklIqJGwtg8yK9EutM1oG6eo9f73rBXhxR4eP8o9vm4Vwf1Nia4McHZofTyMznye7Q4qNnQyXwOH3toDx7etwUvXptHyXbgSNl1IhpFQOSaXyIiaiWMzYOi3oXXz+fYKK6ee3MB+8YGfbl/Iia4McDZofQKIjnyM8gFWV6V0RQc2jaMfWODvrQ1qoAY1iYiREREraRlF17GVQoaE9yIcXYo3YK6iPsZ5MLa/blbUQXEqNb8phErVYiIwhPXa24ncTWuz4XiiQluxDiKlW5JSY6SMCoc1WsZ1iYiacdKFSIib7pJ6uJ0za1/Hl7japyeCyUDE9yIJSUBos4wOfJPlK9l1Gufko6VKkRE3nST1Pl1zfVj1rTZ83AbVxk/qBNMcCPGBCj90pYcRVkmFOVrmYRZ7rhipQoRkXvdJnV+XHP9mDVt9zzcxFXGD+oEE9wYSFsCRJulJTmKQ5lQWl7LXsJKFSIi97pN6lpdc90MUjdLTJ+4dwdsKTf8bav78yM5ZfygTjDBjQl22inuWCZEnWKlChGRe90mdc2uuXdW1lwNUjdKTG/Mr+ALL91ARlOgKQLHDoxhzbLxwht3AIiG9+dHcsr4QZ1ggkuUQkGUETcbiV00TOiawuoDaomVKkRE7viR1NVfcwHg5LkpV7Oy9YnpkmHi6uwKHrtrHENZHW8XDPzU712GIyX6Mxoe3DOCrK5tGvR28zzc9FcYP8grJrhEIQhz3WpQZcSNRmJXihaefe1tNBu9TSIeRRAcVqoQEbnjR1JXe80tGGaDWdlVfPGlG9Ars7LVGF6fmJqWgwMTgxjK6rAcB6/fWgYE0KepGMrquHBzEccOjMFak5vKj1s9Dy/9FcYP8oKfFKKATRcMnDw3hWdeuYmT56YwXTACe6zaMuJtQ1n0V0ZUS5bT9X1XA96qaWFmqYjFoglAYrgv4/tjRSXM94qIiKiVjKYgn9N9SexqB6kBYKlo4ursMvJZvWEMryamH7pvBz760G6MDWZglGysVQaBB/o0ZNRyu2wpUTDMpuXHjZ5HkP2VdkqWg4JhJrq/Qq0xwSUKUNgX8EZlxJZTHlH1Q23Ae/zIJAayemCPFbYogy0REVGQ6gepFwwTByYGMJTTATSO4dXEdDCrrf/twqoJx5F419YhvHf3CJaKJlbWLFjS8VRGHXR/pRkOZPcGligTBSjs7e3D2G2wWiZUspyOHiuuJcA8ioCIiNKstlxYFQJfOn/TdQyv/dtvvmcCz12ZQ8l2cGRnHg/vH8W+sUFPsTKK3ZG5WWbvYIJLFCCvF/Buk78wdxvs5LHicMxQM0EF2zgm9HFsExERBa92LavXGF7923xOx5PDua7jyIN7RvDCG3ewuCZC2R2ZA9m9gwkuUYC8JIF+JX9h7jbo5bHiPnIaxOBAHBP6OLaJiIjCVz+ja0uJkuW4inteNn2qH1StjUOQoqMZ4E7wTN3ewQQ3xThLEw9ukkC/k78wdxt0+1hJGDn1c3Agjgl9HNtERETRyWiK6/NxO1E/qProwTE8d2VuQxw69+YC9o0N+vJ4rfBM3d7BBDelOEsTL+2SwCQkf91KysipX4MDcXxP49gmIiKKTrOBz0bn4/px36cu3oIQAmMD0cQhnqnbG/iuphB3g02e+u3745r8daN+B8dV00r1yGkc39M4tomIqJf4fURNt/fXaOBzbrmEL750o+udhmvv27IdSEjYkHCkjDQO+Xn8EsUTZ3BTiLM0yeO1bCap5ee9NHIax1KoOLaJiKhX+F1d58f91VdXVc/HfezgOIZyeldLWar3/faCgddnl1E0bdiOxCce2Y3XZ1cYhygwTHBTyO9S0GbJVFKTrEbi8FzcJn9JLz8Pc31w1OKY0MexTUREQYhDbK9ti597IPh1f/UDnyXL2XQ+7uKaicWiCUgAAhjOupv9zGgKHj04hs/9/tehVPqhd20dxOuzK21LoOP03lHyMMFNIT9naZolU0lPsmrF6bm0S/64SVDyxDGhj2ObiIj8FKfYDvhfXefn/bU7H3elaOILL76Jy7eWAQCHJ4fw4ft3uno9h3MZ3LtrBCP9Ovo0BZqiYGapCFtK5CtJdL1O3rt2CXH199Xdopk4pxsT3JTyY5am1cYDaUmy3CSMcRpFZPk5ERFRa3EcDPa7us7v+2t2Pi4gYTkSN+4YmBjMAgCu3V7FqUsz+NhDe9q+njldRVZXoEBAU5T1dqpCoGCYDasDvb537RLi6u/nlku4OruMAxMDGBvsi3zQg4LDHnGKdbuIvlEyZTkS80ap4c8N0/at7WFp9hyrz2W6YODkuamuN1rwS1w2CapuarFctHzdLIOIiKhb7WJ7FPzeaLHd/XWz+VR1kuRD9+3A4+/ejoymQlXFehKsqgJGyXH1ejZq5+HJIXzp/M2GfSuv7127jVWrv8+oCmYWixjs0zGzuIaMonAD1hTjDC411Wx0cDSXScRxL260GgGN4whwdT3LqYu3IAwgq6mhb87AkVAiIoqzuB5L5/ceCM3ur9mMppeKtGoyW7Ic5HQVti3Xk0HbltA1wLQclCyn7X01KoFu1rfy+t61q2yr/j6rl0uTR3I6FowSVFXAsiQr4FKK7yg11Wx0cDCrpea4l1YjoGGNAHsZZZ0uGHjuyhyEEHAc4NiBsVCTSo6EEhFR3MX5WDq/j6ipv79mM5pvzq10VJGW0RScOLwV+8cHMLtcxOxyEWMDOtZKEs++Nu36vqrttKVs2bfy+t61q2yr/t5xJFQhsFy0yutwbRmLQQ8KBmdwqaVmo4Np2om12XMJYwTYy0YKtUErny2vXfnj12fxsXwutNefI6HexGn9NhFRL0lTP6WRZvGl0eD8HWMNpy7dwvhAX0cVaZP5HD792H4sGiZMx8EfXLyF4aze0X256Vt5ee/abaxa+/ttw9n1yrOS48Rm0IP8xwSX2mq242qadmJt9FyCPjPUawl0NWgVTQtnri/ClhIraxYe3rcFh7YN+9KmdjgS6l7cdvAkIuo1aeqn1GoVXxolkNIBFCG62qAyoykYH+pDwTABgY7vy23fyst71y4hri+R5i7K6cd3lqiF2o0Wnnxgl68JitcS6HLyKHH2zQX0aSr6dQ1ZTcWL1+ZDKw2uBqaS7WDbcBbLaya2Dfeh5Dg4dmAMhmmzTBntN70gIqLe1c0GUO3iS6MS3xOHtyKrK75sUOnHZpdB9K3alX5Xfz+Y1XwtEad44gwuURtBjQC7KdOpL0F6ZN8WnHljHqpZ3mL/wb2jKNlOqKXBjUZCF40Snrsyx9nKCh7nREREjXRb3eMmvjSa0TyuKr5UpFUT6FMXb2FmqYicruLE4a2e7yuts+sUD0xwiVwIYi1lRlNw7MAYTl26BWVVIKsrGwJOoyC4d2wQR/dugaYK5HM6TEvCqZTahKk2MJUsB1+5MBer3aajFtcdPImIKDp+nM7gNr7UJ5Bu1rV66usIufH/iWKkN3ufRB4EdRbudMHA81fnoCiAlBKPHnxnR+RmJUgAcOLwVgDA3EopFjtDxvG8wajFeQdPIiLqXDflxX7Ey27iS6syXrd9nWr/ZLgvg31jAxjuy3AJDsUOZ3CJWqgfbV0yTHzlwjQ++tBuDGbdf33qR0Vr73dsoA9GycZzV+bw5HCu6RFF1RKkuO0MydnKxuL2PhERpUGUu9N3W17cKF5CAqbt7jzZqmp8Waxs+DSc1Tt9SgC8zSxzCQ4lARNcohZqL+TzK2u4cHMR86slSAAfPDLpKrA1Coi5jNYyQLRLGutLhKNMooLebTrJuMaIiMg/Ue5O70d5cX28XClaACSefXW64fNpFd/vrKz59lp4SVqr/ZMlw4SqdneKQtT9F0ovJrjUMzq5kNZeyC/cXISAwGh/BiM53VVgaxYQn7h3R9sE1k3SGJejaDhbSUREQfIjweyGXzOXtbOvz772Nob7Mg2fT6v47vdr4aUSK6MpODw5hKeev46S7SCjKvjUsb2eHrdkOXhjbhkvXpsHBJr2X5gAU6eY4FJP6DQRrCaaX7kwjfnVEkb7MziyM4+hrI6ZpWLbwNYsINpSNk1gqxf0LQN9LZPGqIN9tQ217YtjAGKAJCJKvqhLY/1cjpPRFOiaAqDx2bQAWsZ3v18LL5VYy0ULL1yfx327RjCY1SAAXJxewj3b864ee7pg4NSlGZx5Yx5ZTcWDe0eR1dRN/Ze4DOBTMjHBpdTrNhGczOfw0Yd2QwIYyekYyuquA1urgJjP6ZsSWC8X9KiDfRKCTxLaSERE7UW934Pfy3FaPZ928b32b3VVoGCYANyfqNBo4LdRJVb97aYLBv7ni2/i1KVZ5DIqdo/k8MiBMRQtGzNLRWwbyrqqatOEgoE+Df26hgtvFXDs4BisNbn+/OIwgE/JxgSXUs+PRHAwq+GDRyZx+vIsZpaKrgNbu4BYv5bWywU9ymCfhOCThDYSEZE7cdjvwc/lOO2ej5tlTE+//BYuTi8BAA5PDuPOylrbQdxWA7+1fZL62x07MIY/fn0WU/NF5HM6dEVgZmkNf3BxBqqiwLYkBrJay4HkxaKJpaKFyaE+qEIAAGwpUTDMDc8v6gF8Sj4muBSpMMpH/UoEOw1sbv/O6wU9ymCfhOCThDYSEZF7cdjvwc/lOM2ej5v4vmWgDwN9Ot5/YAz5nA7Tkm0Hcd0O/Da63alLt7Bm28joCg6MD+DNO6uYX13DlVkTR3bmcf3OKu7aOti0DdMFA6cu3sKrNwu4oqk4MN6Pq7dXUbRsWLbEicNb1/8m6tl6Sj4muBSZsMpH/UwEOw1sbv6ukwt6VME+CcEnCW0kIiJv4rrfQ6eaPZ928d0wbUAAYwN9AAAtg7aDuG4HfhvdTlkV0IQC25boz2rYOdKPmcU1TAz14eDEACwbeP3WMg5MDG66v/Wzc7M6Hj04jrPX5/Ha9BLu35PHowfGsXdscMPt4zBbT8kWaYIrhPh2AJ8DoAL4JSnlT9b9/gMA/heAa5Uf/ZaU8v8Ns40UjLDLR+Mw6ttOsws6ABQMs2m7owj2SQg+SWgjERFRM63ie8MzdSFhWs3P1HU78NvodlldwTffM4HfdRy89OY8bi4U4TgOVKGhsGphdCCDBaMER25eC1ybMOcyKo6/awJT8waeOLIT40N9DZ9fJ/02bipJVZEluEIIFcDPAfhWAFMAXhRCPC2lfK3upn8spfxQ6A2kQEVRPhrXUd/aC3L9Bf3OyhpOnpuK5SZJSRg0SEIbiYiIvNp8pq4JQODZ1xqfqVv1wJ4RvHhtvuXAb7MB4sl8Dp983z4oqoKMInD51jLWSjau3V7GmtUPQOLEPVs33V99wmxaEkNZDcM5ve1zbBS3GyWy3FSSakU5g/sIgNellFcBQAjxPwB8BEB9gksp5Ff5aNJH65pdkJOyi2BcBw1qJaGNREREXq2fqVs08eyFaQxn9ab9hdr+BoTEI/u2bCoNbnTf9X0suzJDu20oi5yu4sLNRWwZyODg1gF86L7t2L1lYNN9+VlR1ajftGWgL/b9JQpXlAnuTgA3av49BeB9DW53TAjxNQA3AfwDKeWrje5MCPEZAJ8BgD179vjcVPKbHxe7pI/WtUtgg5jlTvqAABEREb0joynQVQUQaNpfaNTfOPvmAvaODba971azsaMDfbh/1wgKRRMffWg3BrPN0wo/Kqqa9ZtOHN7GTSVpgygTXNHgZ7Lu32cB7JVSLgshvgPAbwO4u9GdSSk/D+DzAHD06NH6+6EY6uZil4TZzXa8nHPnxyZJSR8Q6BSTeiIiSpP6uNauv+DngHmjCYpvPzLZMrmt/dtu4nDt87AcBw4kiqYDyNbHKlHviTLBnQKwu+bfu1CepV0npVys+e8vCyF+XggxLqW8HVIbKWCdXuzScARMu4DkZ0lPGgYEOtGrST0RUVpwkHKjZnGt2l+4s1re6Kl2LWx9f2PJMGFazvpZtF5FfYLD2wUDr99ahmHacByJb75ngptK0gZRvvMvArhbCLFfCJEB8HEAT9feQAgxKUT52yeEeATl9s6F3lKKndqLNYBEjtZVE9hV08LMUhGrprXpglwNIh+6bweefGBXx8lZowEBy5HlYwZSqjap3zaURb+u4fTlWZQsJ+qmERGRC9MFAyfPTeGZV27i5LkpTBeMqJsUqVZxbTKfw6MHxyClhKIAz1+dW3+9avsbl2cW8SdXbmO1ZONL5292/JpmNAX5nB5qEpnRFBw7MIav3VhAsZJcv3fXCJ67MoctA32+9JcoHSKbwZVSWkKI7wfwLMrHBP2KlPJVIcTfrPz+FwF8FMD3CSEsAAaAj0spWX5MqTkCxs0oaPVn1WS0k+fYi2fCpmGWn4ioV/Vq5VErreIaADx3ZQ5jA30bXq8n7t0BW0psGejDE/fuwBdeuoHH7hrHUFZP5Gua78/g3t15jOYyyKgKNFXBzFIRhmmHnnBTfEV6Dq6U8ssAvlz3s1+s+e+fBfCzYbeL/BVUeVFajoBpV6btR5ltGgYEvH6OejGpJyJKi6AGKZNc8twqrjV6vW7Mr+KLL92ArinQFIEH94wgoykYyurrt0nawG9OV5HVVAgIaKrC2E4NRZrgUvoFvQYyqCNg4hIA/RzBTvKAQCefozQk9UREvSqIQco47MvQTf+iXVzbsM62aOLq7DIeOziOoVx5tvaFN+4A0vtrGpc+EcDYTu4wwaXAJLW8KA4BsMrvEewkngnbzecoyUk9EVEv8zuRiUOfxI/+RbO4Vv96lSwHByYGMJSrna0VeHj/KM69ueD6NY1Ln6g2yfbryCH2DdKLCW6KRf3lTeIayDgEwFqdjGBH/b773Z5uP0dJTOqJiMjfQcqo+yR+9i+axbXa10sVAl86f3NT/2Hf2CD2jQ26ek3j0idqlmR32oa4JO0UHCa4KRWHL28S10BGHQDreR3BjsP77nd7kvg5aiRuAw9EREng1yBl1LEkrP5F7evVqv/g5jHj0CfymmS3i7VxSdopWExwUyguX94krpOIOgA24nYEu/Z91zWBgmHi1MVb+NjR3ZG85n59DpP4OaoXt4EHIqJeE3UsiaJ/0ar/4GbQNaw2N2tLyXIws1RE0XQwNtA+yXYTa+OQtFPwmOCmUJy+vElbAxl1AGzVrnZtqL7vRcvGmesF2FJiZc3CI/tHcfe24ZBaurk9fnwOk/Y5qhWXASciol4XZSyJqn/RqP/QLhGsTTiDbnOztlR/XrRsnJ8qQBHA9nyuaZLtNtbGcSKD/McEN4Xi9uVN2hrIMAJgEOWqOV0FJHD2+vz6EQC2LfHCG3ewd2ww9PfA789h0j5HVXEacCIi6nVhxZJGcT7I/oXbfkW7RLBRwhlkmxu15Yl7d6z/fGygD4oU+NqNBTgSyOpKwyTbbayN60QG+YsJbgrxy9u9IANgUOWqGU3Bw/tHceb6HaimgCrKZ96VHBlJMhWHz6GXgYSg1sjGbcCJiIha6zYetIrzfvYvqu1cNEp47sqcq35Fq0QQQNPkN1/ZjdlPzdoyb5Q2/Hz7SA6OkPjme7Zi21C24evnJdYmuSqM3GGCm1L88sZT0OWq+8YGcXTfKDShIJ/TYdoSjmlFlkxF+Tn0MpAQ5BrZOCT6RES9pJsE1Uv5bpSbGK2X8JoOzk8t4L27RrB9JNf28VolgmFXHDVry2gus+nnWU1tmtwC3mNtUqvCyB0muCnGL2/8BB08MpqCE/dsw+nLs5hbLcUimYric+ilgxFGZ4QDTkRE4ehmwNJN+e6pSzMwSg5ymXK8jWITo5Ll4NTFW9BUgaE+DYoi8PrsMiaG+to+XrtEMMyKo2ZtGcxqHQ0MM9ZSFRNcohCFUa7KC7y3Dka7ci2/XkcOOBERBavbAct28eDpl9/CtdurEABKtoPCagl//RvvCn0To+tzyzhz/Q4G+srdeOlIFE0bJduBacu2j7dloA8nDm8DJDCc0zccHRR2xVGzPkunfRnGWgKY4BKFKqzg0esXeC8djGa3LayW8JWrzdc08VxbIqJ46Xb2tFXsWCyauDi9hH5NxduLRZRsG1dml3H8XVvxnh0j6/cRdJwvWQ5eeOMOspqKfr3cjV82TAhHYN4oIaupLR+v3Qx3FIPkzfosvd6Xoc4xwaVQMSngDGsYvHQwGt320YNjeO7KnKddJnmuLRFRtLqdPW0ZOyRgOw5uLJSQ01XoqoKi6eD51+/g7q3DG+JLkHG+PJtc3kTyws1F2FJCKAJ/4xsPYOdof8vHczvDzcSSko4JLoXGbVIQZRIc1mMzeATPSwej/rad7jLJ95SIKDp+zJ42ix3DOR13TQzhj16/DUUBHFti39ggdF00nCEOKs5Xk/isruHYgTEUDBOWdHDX1qG2j8dj66hXMMGlULgdNYxiZqya1BZWS3i+RUkqJY+XDkb9beOyyyQREbnnx+xpo9iR0RT8xQd24trtFUAAA30a3lVJKsM8qaA2ibfWyv2VE+/a1nUJdpBYvUdhY4JLoXCTFIS1tX6t9W32LRvnbxTw3t0j2J5vv81+kBgIohenXSaJiMibRgmqH7F1z9gA/v63HcKzF2ZgSwklopMKutmAKexNpLikh6LABJdC4WbUMOyZsQ0Jta5CVQRev+Vum/2gMBDER7MOBM+1JSJKFj9jq64qyPUpMEoOIKTPLXWnm2Q9zH1Aopi4IAKY4FJI3CQFYZfO1CbUlu0gWyk/XbMcmGi/zb7fejUQxHnGulmJMzcKIyJKBj9ja/W+hvsy2DYUTZxerzwzHThS4sQ9W7FnbMDTfXS7Ptht3OaSHooKE9yUiHOSUNUuKQh7Zqw+ob5rYhBfm1rAwqqJrK6EPivXi4EgyTPW3CiMiCj+/IytQcRpL/23aoJdshxcnV2GYdp49a0CfvBb7sbuLY2T3Or9q0LAlrLrfqKXuB3Vml8iJrgpkKQkoV1SEObMWH1CndEV/OC33I3hXCaSgYJeCwS9OmNNRETh8TO2+h2nvfbfDNNG0Swnt32aiqGsjtmlIk5dvIVPvm/vpthZvf+55RKuzi7jwMQAxgb7Ou4neo3bXNJDUeEnLOFqLzbbhrLo17X10b2kymgK8jk9lAtgNaH+0H078OQDu7B7y0Boj12vGghWTQszS0WsmlaqA0GjkXDLketH8RAREXXLz9jq53110n/L6SocKddnjEtWeXmVULApdlbvP6MqmFksYrBPx8ziGjKK0vZxSpaDgmFuuk2zuL1omA1vD2zuZ8V1AobShTO4CdeLZa1+azarHEXZdy+t7YzjjHUSSv2JiMgbP2OrX/fVSf8toyk4cc9WvPpWAbNLRWT18vKqRkcVVe8/q5dLk0dyOhaMElRVwLJk08dpNavcKG6vFC08+9rbAETTWWgu6aGwMcFNuDgmCWkQZdl3rwQCv0qX/EpKk1TqT0RE3vgZW/24r077b3vGBvCD33I3Tl28BaG8E0vr21O9f8eRUIXActEqr8O1JQAJ03JQspwNf9euBLk+bkMCgMRwX4ZLjShWmOAmHNc3+M/LGhPO+HWn25Fwv5JSrgcmIqIwddN/271lAJ98396WsbP2/rcNZ9fX4M4uFwEIPPva9Ka46WZWuTZum7aDZ1+dZhUhxQ4T3BTolbLWsJJJt2VD0wUDpy7NwCg5yGUUnLhnG2f8OtDpSLifSSlL/YmIKGzd9N/cxM7a+1eFQNGy8eyFaQxndeQyKpYME1+5MI2PPrQbg1nN9axy9bFLlrN+e10VKBgmAMkqQoocE9yUSEJZazcJapjlo24u8CXLwdMvv4Vrt1ehquWSn5WihU8/diCUowKou6S0/rVmqT8REdUKKyYH3X+rvX/bkIAox8v5lTVcuLmI+dUSJIAPHpnEZD7naVa5Okv89Mtv4eL0EgDg8OQw7qysccCfIsUEl0LRTYIadvmom7KhxaKJi9NLmBjMro9iXpxewmLRxPhgn+fH5PpP7zpNSpu91iz1JyIiINkxuVViXo2bS4aJCzcXISAw2p/BSE5f71d5nVXeMtCHgT4d7z8whnxOh2lJnLo0g8ffvR3DEZ1KQcQEt0eFOVvYbYIaRflo2wu8bPKHzX7eAtd/dqaT9UutXuswSv05S09EFG9JjsntEvNq3PzKhWnMr5Yw2p/BkZ15DGV1zCwV1/tVXmaVDdMGBDA2UB7cXzLXcOaNeRglB0NZLVGDA5QeTHB7UNgjk90mqFGVj7a6wA/ndByeHMa12ytQVYGS6WD/2ACyHbSJ6z875zUpbfdaB1kqluQZASKioMRt4C+pMdltYj6Zz+GjD+2GBDCS0zGU1Tf1q7y8J7V9NF0VOPvmAnRFwZaBDASQmMEBShd+2npMJweLd6v24gfAc4Lq58HqfsloCj58/w4c2ZnH2EAGpmNDUwW+dP4mpguGp/vq9vXpdRlNQd5lGVRUr3UU3zsioribLhg4eW4Kz7xyEyfPTXmOn0FIakxulJhbTvm823qDWQ0fPDKJku1s6lfVvyc37qygYJhN41VtH21qwSiv6ZUSZ9+cx8s3FjC3XGrYBqIgcQa3x0QxMum2lLTViGHYO0W7Gb2czOfwkft34osv3cC+LQMYyukbRkwBuGovj3oKT1SvdVJnBIiIghLXUuCkxmSv1W6N+lX178nbCwY+9/tfx727RpDVlaaVR9X7mltew6s3FzDQp2Mwq2G5aOHq7DJUIYJ++kQbMMHtMVGV+7ZLUN2Ub4a1U7SXUlJbSuiagqGcDuCdxOWNuWWce3PBdTlqrxz1FAdRvNbcpZmIaKM4D/wFFSe8lP66vW31dqoQeHDPCF544w4W10TLxLz2vvOV/guw8T2xbAevzy5DUQRG+nUoEC0HIDKagv4+DXdvHcLM4hoWjBJUIXBgYgC27GCDEqIuMMHtMVGOTDZLUOM0iuu1LY0SF0DixWvz6+fMuX0+STjqKc68dBzCfq2TOiNARBSUuA/8+R0nvAyeu71t9XZzy2u4OruCAxODyOd0PLx/FPvGBhu2v9V9174nEhIraxZ0VYEqgKzefgAip6sYG+zD9uHc+hGKJceJzXtKvYO9qx5UHZn80H071nePjZKXdSNVJctpuSYkrLY0Wh/8yL4t6+fMuX0+1F6r9zyO67jqxe17R0QUpTjurxEUL/swuL1t9XYZRcHM4hoG+3TMLBbRn1Fx7s2FjtpR+568cWcZV2+vYHnNxItvzOPtBaPtAET170uOg6U1CyXHSe17SvHGGdweFafZQq+juG5GNjvdlbGTEeX6UiYAOPvmwsZZXQmYtoOS5TRtT9x2koyTVu95nCoA2onT946IKGpJW57TaZxeNEwsFa31cuBW5dhuS7fXb6cL2FJiJKdjwShBUQQsU3Z835P5HJ64dwe+8NINfOd92/HG3CoM08bXphbwg99yd9vnnbT3lNKJCS5Fzkv5pptkxm1pT6NA1WkpaX3iUnsfK0ULgMSzr043bQ+PkGmu3Xse1DouDjgQEQXP68BfVNfmTuP0dMHAqUszePVmAVduLePBvaPIamrTwXO3A+3V29m2hCoElosWVCHgVNrXzX3bUiKjKdg2lMX2kRzWLAcLqyaGcxlXrxUHcylqLRNcIcTjAHYBOCWlfKPm539VSvkrAbeNeojbEb92yYzb2bxWgcqP0cfqfSwaJp597W0M92WatidJM5BRaPeeB7GOiwMORETx0+7aHFTy22mcrv7dcF8Gjx4Yw9k3F/DVr8/i3p0jePzItqabNbkZaK+93bbhvvU1uCW7eVmw2/uuj6smJLK6wrW0lBhNE1whxL8C8A0AzgL4YSHET0spf6by6+8HwAS3BwU5cupmxK9dMuMmAV4smjh18VbLTaD8GH3MaAp0TQEgWs4uxnknyTho9577vYETBxyIiOKn3bU5yIHJTuN07d/lMiru25nHn1yZgy0lnrsyh+Oq0vLYnfojfOr7X7W3U0W5VLld/8zNID43RqSkazWD+50AHpBSWkKIzwL4b0KIA1LKvweAB1r1oDjMarW76LZKhqrtXypaePVmAY8eHF8POkEllG5mF+O+k2TU3ARaP9f8cMCBiMgffg6Kt7o2Awh0YLLTOF37d7oq8MpbBQxlNewd64dpybbH7rhZetXJgHyjv6l/r7iWlpKsVYKrSSktAJBSLgghvhPA54UQXwDgrgifUiNOs1qtLrrNkiHgneCXz+q4cmsZZ6/P4/i7JmBazderdMtNcsaR0vbcjjhH2ZEhIqJ3+D0o3uraHPTAZDf7c1T/bmnJQtGy8ejBcWiKAi0DV20Mo//V6L3aMtDH5JYSq1WCe0UIcVxKeRoApJQ2gL8mhPgXAL4rlNZRbMRtVqtVMtMoGSoY5ob2P7hnBM9dncPUvIGhrNZxQlmyHCwaJiCA4aze8D7cJGdxHimNy2ZLYW1awQEHIqLuBJGUtbs2Bz0wWd1deN4oYTSXwWDW3T6t63tyFE3kdBVZrbKkqqaNreKsm6VX3cToRu/V0y/fxEBWBSC4DwUlUqtv58ca/VBK+aNCiF8IqD0UU0mb1apPhurbn9U1HN03isffvR3DucaJaTvTBQNPv3wTF6cXAQCHJ4fw4ft3NgwCbpKzThI4N4Gtm+AXh7L0KAQ94BCXQQMioiAENSje7NocxsBkN/EwoykYH+zDicNbN7Xxzspay/t1s/Sqmxhd/17pmsDF6UW8f/8Yxgb7Oh6ciCLOMbZSVdMEV0pptPjdW8E0h+Iq6bNajdp/4p5tGB/q6+j+SpaDUxdv4drtFUwMZgEA126v4tSlGXzsoT2hvC71ge3Rg2MYzmU2XNi7CX61o7q6KlAwzFCfX9SCmjHu1UEDIoo/vxKEIAfFm12b/R6YrH0tAH/W+Na3EQBOnptqeb9ull5106b696pgmADg6szeZqKIc4ytVIvn4JJrcS6jdcPvjYgM04aqivX7UVUBo+SEUrZdX1L09oKBz/3+13HvrhFkdWV9/UynxxoYpg3TdmA5EkXTwpnri7ClxMqahYf3bcGhbcOBPr+0itNadiKiWn4mCFENivs1MFn/Wty7I4+lotVV0leNrap4Z59WtzPdbpZedTpLXv9eQZYr0kxbQlOxaXCi3SBIFHGOsZXqMcElT8JaB9lOp6PMfm5ElNNV2LZEyXLgSAfFyi6JYZRt1wZFy3bw+uwyFEVgpF+HAoHTl2dx4vA2z8GvNqhDAotGCW/eMTCULQd125Z48do89o0NRvI5SHr5UdzWsidd0j8PRHERRIKQ1EHxTQPIBQP/6atX4DjAlVvLeHDvKLKa2nRGutF1qRpb55ZLuDq7jAMTAxgb7MOxA2OuZ7rbLb3qdJa8ZDnIZTQ8ce+O9WOGqmXT9YMTbgZB/IhzXq/tjK1Ur22CK4T4L1LK72n3M6KwuLnABt3xzWgKvvHuccwtr+HCWwuYXS5h63Af1kwbd1bWAi+LqQ1sEhLFynPt0xRoirI+Cusl+DXq4Mwtr2GlZEJVBVQh8ODeUZTs8lnCuqp09Pp2+t6kofwoaWvZ4ywNnweiuAgqQahPypIwKLVhANlx8PqtZWRUFe/ZNYyL00t47sptHN27BScOb930HJrtRnz68iwyqoKZxSIG+3TMLK5h+3AOz1+dw6MHx/DclTnPM92dzJLXl12/MbeMF6/NAwLrf5/P6U3P4XUzCNJtnOvk2s7YSvXczOC+p/YfQggVwEPBNIeoNTcX2GYXRz8D63TBwPNX5zCQ1ZBRVXzbuyexf3wApt36XDu/1Aa2omXDdiTu2joITVHWL+zDOd1T8GvUwckP6LivbxRDWQ35nA7TkphfWcOzF6Y3BES3iYXbwFX/XqWl/Cjpa9njIi2fB6K4CCNBSMqgVO1r4UCux6Ktw1lsHc5iasHA40cmMT7Y52qd7ol7ytVUWV3AlhIjOR0LRgmqKmBZEsO5TMcz3V5myWtf/5WiBdtxcPnWMrKauj4rXXsdrR+ccDsI0k2c6/TazthK9ZomuEKIfwLghwHkhBCL1R8DKAH4fAhtI9rEzXb5jS6O1RFSPwJr7WNkdRX9WQ3Ti0XsHx8ItSymNrB906GteP7qHGaWihsu7F6CX6MOTlZT8U2HxvD81TnMrZQASAACw1ndc2LhNnA16gTlMlpqyo+SWrYXJyxHI/JX0AmCl8Ql6lneDQPIpgPHkbhrYhCaWh5AHspqGM7qm2LVA3tGYDkSuiqwWrKQURVYa3J9MNhxJFQhsFy0oAoB25ZdDyK4fa02bBqpCVyYKpRLkzUVg1kdF94q4NjBMVhrsul1tLaPUN14EpAN299pnOvm2s7YSrVa7aL8EwB+QgjxE1LKfxJim4iaajfK3OjieGe1hFMXb2FsoM+X2Z768qWcrqJo2ijZTnlThhDLYqojrNWSokYXdrfrjpt1cCbzufX7Ni0Hz7423VHwcRO4mnWCnrh3R6rKj+Kylj2pWI5G5L8gEwS3iUtcZnlrX4tvvmcCz13ZOIAMbJ6tffHaPBaNEi5MFaCq5QR2/3g/hrM6jh0Yw6lLtzA+lMH126s4MDGAkuO4OiaoGS+vVe3rv1KyyhtkCgVSln9vS4mCYba8jlb7CE+//BYuTi8BAA5PDjddltVJnOv22s7YSlVtS5SllP9ECLETwN7a20sp/yjIhhE10m6UudHF0ZESioK2gdXtSGj9Y9y1dRBfu7GAeaOErKZGVhbjx4W91RmD1RnyToOPm8DVrBNkS8nyI1rHcjSiYASVILi5/ndSnhrkbG/tAPKTwxsHkBvtYHxntQTTlnX3ItaXNCkKMNSn4/s+cBDjQ1nXxwQ1e95eXqva179PU2BX2nnfzjxeeauAomXDsmXDdcW1tgz0YaBPx/sPjK0vW/JzeQiv7eQXN5tM/SSAjwN4DYBd+bEEwASXIjGZz+GJe3dg3ihhNJfBYPadj3Gji+OJe8rlu60Cq5eR0PrHyGgKfuDE3cj3Z1JRFtOqg9NN8HHzt606QfmczvIjWsdyNKLkcHP991qeGuZsr5sdjB0pkR/QcWhyCGuWgz5NwcxSsTxzO9CHsYE+GCUbZ67PryeEnR714/W1qn39rTWJ/eMDACQcARzZNYxH9m3BXhenIximDQhgbKAPAKBl4PvyEF7byQ9uNpl6EsC7pJRrQTeGqJH6Edp2Qa3RxTGjKU0Dayejxkm6AHc6wt3s77p57u3+tl0niOVHVIufB6LkaHf991KeGvVGc60G001LYiCjlU85cABFiKaJaKcluZ38Xf3rD8BzHA9reQiv7dQtNwnuVQA6ACa4FLr6ZPbYgfKGR+2CWv3FsVVg7XRTgyRcgDsd4W73d90893Z/m6TBAyIics+vCqE4bDTnZjD9xOGteO5K8woyL8+5ftC5k2qq+tff62vFEmJKCjcJ7iqAl4UQp1CT5EopfyCwVhGh8QjtqUu3oCjvlMd4CWrNAmtcNqzxMtPq5radjnBHPTIOJGPwgIiI/OV2gDPquF0bg/M5vWX7j6uNK8iq97FloK/tc64ddAbkeklxFIPBHISmJHCT4D5d+R9RqBqN0CqrAtKRvgY1ryOSQWxq4WWmtdVta9vW6Qh3HEbGiYioN7kZ4IxyJtFrhdOWgT6cOLwNkMBwTne11KpW7aBz0bRw9s0Czrwxj6N7t+DE4a2R7DLNQWiKOze7KP+aECIHYI+U8s9DaBMRgCbnsurK+pm2fgY1tyOSQWxq4fV8wGa3rT9q4NGDY++cWadVzqyTCGRtDxERUdBqB3Hdxm0/B6W9Vjg16jNsGejzdB/VQWddFThzfRFDWR2qKaCpouPqqm5fk5LlYNEwAQEMZ3UmuxQ7bnZR/k4A/xZABsB+IcT9AP5fKeWHA24b9bhmI7ST+dymLfv9erwwS3erAca0Hdczps1mVxcNc1Pbnrsyh2MHxvCVC9O4OL0IADg8OdT0zLra14FrbIIT5LEWfktSW4ko3ZoNMLe6Nvk9KO2lwqlZn+HEPdsaHjE0s1TEtqFs0823Ckb5yDwAUIVAPqdjbqXkubqq29dkumDg6ZdvbuhXfPj+nZHMJBM146ZE+bMAHgHwfwBASvmyEGJ/gG0iWtfuXNYw+Vm6u2E9jQRW1kwYfXrbGdNms6sQaNi2/j4NA1kV799fObPOdndmHdfYBCPMYy26laS2ElG6dXpGrh+D0rUDfV4qnJr1GSCw4T7eLhg4P7UACImspjYseT5+aAKnLs1gZc2CbUs8uHcUpiU9V1ctFy185cI08lkdYwO659ekZDk4dfEWrt1ewcRgFgBw7fYqTl2awcce2sO+AsWGm0+iJaUs1P2s/iRrosBktPJB61FfOGsDG4COS3drg+62oSyGszoAgcW18gjuqmk1nTGtBrpV09pw2+Gs3rBt5W+qwNhgHzRVQS6jwnJk+Sy7NuLyuqdF/fver2s4fXkWJcuJummbJKmtRJR+jZLFdrGsk7+pN10wcPLcFJ555SZOnpvCnZW1hjG43QaWwDtxeTirr9/HWwsGvnZjAe/dNYKd+f6m19rJfA4fe2gPvu8DB3FkZx4l22n52M2eyxdeuoGzb87j5akFzK+seX5NDNOGYdpQVbE+0aCqAkbJ8fS6xknJclAwTMa3lHEzg3tBCPFJAKoQ4m4APwDguWCbRRQ/fpXuNgq6A1kNj797EnrlXLxGpU7t1h01attwTgcgMbe8tj6Dy/W00UjS5l1JaisRpV8ne0N0u59EqxlgNxVOjfoMjx4c27Bz8sxSERAS2ysztq2utRlNwaFtw9g3Nui5uqr6XEZyOoazOkqWg6+9VcBDu0c3vCbtlqVUZ7FtW64nhLYtkcsoiexXsFIpvdwkuH8HwI+gfETQfwfwLIAfD7JRRHHlR+lus6A73GS21O26o0Ztmy4YWCnauDg9D+CdtTK9nqREsbY0SZt3JamtRJR+nQww1/7NndUSHClx4p6trq/5rQb63FY31cblwmoJz12Z2xDLtw1lkdVUT9faTpZoVZ+LIiTWTBs3FgwYJRtbB/vw3Q/vdr2zc0ZTcOLwVqysWRvW4J64Z1vi+hVxOBKRguNmF+VVlBPcHwm+OUTx1yq4uEmcWgXq+r/3egGubVv1b7fnc9gz1o+CYcKyJbZUzhDuVVGN2CZp864ktZWiI4T4dgCfA6AC+CUp5U9G3CRKsWqyWLt7r5u/efTgGE5dvAVFAZ6/OoeMpri65rsd6GsV96u/U4XA81fnGsbyIK+1tY8PCZy9Po/RgT7kczoWDBP5AQ1bBvo89TUm8zl8+rH9id9FmZVK6eZmF+VDAP4BgH21t5dSfnNwzSJKHi+JU7PZ1vq/1xQFS0Vr/SB5Lxfg+ov32EAfZpaKPXPxbtTpiHrEtpsKgLBnnbnRGLUihFAB/ByAbwUwBeBFIcTTUsrXom0ZpVn9cXjtBihLloPnrsxhbKDP8zXfzUBfq7hf+7uS5cAoWRjbVh5gro3l9ddaACgYZtfX3fq2HRjP4cz1O1BNAVUIvG//FpRq1t96SfYymoLxoc2D5UnaeZ+VSunmpkT5CwB+EcAvAUjmCnLyXZIuYmHoJHFqNNta+/dPv/wW+nQVr94s4MqtZTy4dxRZTXV9Ae7li3ezTkccRmw7KS+LctaZ329q4hEAr0sprwKAEOJ/APgIACa4FIhO4my31/xWA32t2gNgw++WiiZefauA7cM5DOX0TfG4eq2tXuuLprNeUr1nbMCX1+rq3Cru3z2CrKau78nhmNZ6G7rtLyRtPSsrldLN7S7KvyClfEFK+VL1f4G3jGKrflfB6YIRdZMi52W3xkY79tX/va4KXJxeQlZX8eiBMQDAc1duY7Four4AN9txOe0X71Y7AHeyE3bUOyxyR2OKqZ0AbtT8e6rysw2EEJ8RQpwRQpyZnZ0NrXGUPp3siuz1mt/oet/sRIFW7an/3VBWx4GJQRSKZtN4XD2CZ2G1hK/PLOHi24v4D6e+jht3Vnx5rQCBYwfHAAHMrZawalrrm14B6Kq/EFScCjr+VgcwPnTfDjz5wK5YJ+TkjZsZ3N8RQvwtACdR3mgKACClvBNYqyi2oi7xjCu3s6XNRjjr/75gmACAfE6HppQT1akFA48fmcT4oPs1tEkrM/WjMqDdxiBeRmzjMCIdh1lnogZEg59tOkJQSvl5AJ8HgKNHj/KIQepYJ1VJXmbpvF7v27Wn/ndjgxk8ce8O2FI2jHHX55bxZ9du49ZSCRlVwcGJQSwVLTzzytv4nvfvw2DWTZe9ddv2jQ2u78LcaNOrTvsLQcSpsOIvK5XSyc07+lcA/EOUjwZ6qfK/M0E2iuLLj3Pl0sjNbGmrEc76v7ekg8OTwzCtcn/QtCWGspqrTTUata3Vjo9Rz1BW+VUZ0G7E3u2IbVxmTv06f5nIZ1MAdtf8exeAmxG1hVKm2UxqJ7OMbq75bq739W1q1Z5mvxvMag3jccly8MIbd5BRVWhK+br/6s0CpuZX8OpbBXzhpRtNY6LX1ypTOY6wuulV7fMF4HqH6FrN4pQqREf9i7jEX0ouN7so7w+jIZQMvbyus512s6XtRjjr/766mUaQa0PiMEMJbAxmulYOiKcu3sLHju72/JzdjNi7GbGNy8wp1wlRTL0I4G4hxH4AbwH4OIBPRtskSoNWcanTqqR21/x21/tmbWrVHi+bR5UnCQQe2jOK33nFwHLRwuzyGu7bkcfIQAYjOb1htVynr5Xf8a1RnDo8OYQvnb/ZUf8iLvGXksvNLso6gO8D8BcqP/o/AP6jlNIMsF0UU+xst9YqiLoZHKj9+6DLi+NUbl4NZkXLxpnrBdhSYmXNwiP7R3H3tmHP9xfkecVRDOb4+VngBnHkBymlJYT4fgDPonxM0K9IKV+NuFmUcG7iUhAlpa2u9+3a1Ko99ZtHNUv2qo/fr2v4zvdux3Ov38HimomhnI4jO/MYyuqbTkGortnVVIGxgQxMS7p+rYKIb7VxShUCXzp/s+P+RZziLyWTm4L+XwCgA/j5yr+/p/Kzvx5Uoyjekraus15UHfxOBgfqd1r2s92GaaNoOsjqEpbjBDZC6qbdOV1dP6NvqFKGbdsSL7xxB3vHBjseUe7meUQxmNPqtfKjUxeXGXtKBynllwF8Oep2UHpENXPX6npfMMyu2uQ2aa8+vgOBowdGcPe2Qeze0o+h7OZdl4Hymt0z1+9goE+DKgSO7MyvLxnz4wikTlTjVLevGSdTqFtuEtyHpZTvrfn3HwghvhZUgygZkrooP+oOfqeDA0G0e9Eo4fzUApRK0Lxr6+D62hy/uG13RlPw8P7RDWf0PbhnZP2Mvqg+a2EO5gT92YzTjD0R9aZ2A55Rztw1u9532ya3SXuzZUozS8VNCV51zW5WU9Gvl7vyZ6/P48jOvOt2BVkZ5Mf7mPTJFIqWmwTXFkIclFJeAQAhxAHwPFxKoLh08L0ODgTR7pLl4Lkrc3jvrhG8PruMomnjazcW8AMn7vbttfDa7n1jgzi6bxSaUBqe0ReVMAZzwvhsck0TEUXJzSBeo5m72qNsgr5WNbreZzQFxw6M4dSlW1BWBbK64mk20Uuy53aZUnXN7oN7RnDh5iJsWV7i8/D+UU+vUZCVQX7MwCZ1MoWi5ybB/YcA/lAIcRXlYwH2AvjeQFtFFICkdvCDaHf1PreP5DAx1IeS7WDeKCHfnwm93bUjvyfu2YbTl2cxt1oKrCTJj1LvIMrFg/5sck0TEUWhZDlYNEycujSD4b5M20G82sSu0VE2YS+rmC4YeP7qHBQFkI7EowfHPLWhm3Lbdmtos7qGYwfGyiXB0sG+sUFPz61brQZnOQNLUXKzi/IpIcTdAN6FcoJ7SUq51ubPiGLHrw5+2Gt4g0hM6u/TtCWymuprsuOm3Y1GfoMMiH6UAQdRShxG8sk1TUQUtur1cqlo4dWbBTx6YAy5jNp2EK/6s69UjrKJquqqNoEbG+iDUbLx3JU5PDmc89SG+g2YbCnXjwjsRO313Forx6IT79oW2QaRzQZnOQNLUXGzi3IWwN8C8A0oH+L+x0KIX5RSFoNuHJGf/OjgR7GGN4jEJOhkpzoI8OjBMTx3Za7hY7Qa+c3nmp/32+kAgx9lwEGVEoeVfHJEnYjCUnu9zOd0XLm1jLNvLuD4oQmYtmw7iBeHqis/25DRlPV1tX70IeJwPWdlEMWVmxLlpwAsAfiZyr8/AeC/APhYUI0iCko3ASHKNbxBBLKgguN0wcCpSzMwSg5yGQXfeNcE8v0ZX87h62aAofbxLMeBaTtYWDWxaJgYH+rzfB9u2+xWWJ0Vjqj3FiHEtwL4bgA/J6V8WQjxGSnl56NuF6Vf/fXywb2jeO7KbUwtGBjKam0H8bwkT0FVVjVqAyBhWo7nGdgg+hBRX89ZGURx5SbBfVfdLsp/yF2UKck6DQhRjyYHEcj8vs+S5eDpl9/CtdurUFUB25ZYKVr49GMHNj2O15HfbjsH1cd7u2DglRsLuHZnFbbtwHEcPPngLleJctCj1VF3ViiV/hbK+2b8qBBiC4D7o20O9Yr662VWU3F07xY8fmQSw1ndt6Nsmg18+pH01rdhpWgCEHj2temOBlmLVrk9lh3c0Xxhi8NMMlE9N5/Cc0KI91f/IYR4H4A/Ca5JFDcly0HBMFGynKibEqnaYG3ZDuaW1wBIluLUWCyauDi9hKGsjpFcBkNZHRenl7BYNDfdttpxWDUtzCwVsWpaLUd+Gw0wVM/8c6O6E+bZ6/O4NreCfl3F4clhvHmnPOPs5vPttc1EMTArpVyQUv4DAN8G4OGoG0S9odH18sThrRgf7HN9zawmTx+6b8f6xkW1Nq6RLW+SeOriLbw5t4KT56bwzCs3cfLcFKYLRsfPo9qGx98ziYE+HdvzOWwbyqJf13D68qzrvlFhtYTzNwr4k9dv4/mrc3h7wQi0nDfMvltGK59+wFhIceFmBvd9AD4lhHiz8u89AC4KIc4DkFLK+wJrHUUu6nNjo1Q/+lsN1k+//BYuTi8BAA5PDuPOylrPvCZtSW8/9zLy68fsab4/g3u2D0PXFIwN9EFVBBaMEoyS43oUnaPVlDBfqv6HlPIfCyH+TpSNod7ix/WyVWVLdeCzaNk4c70AW0osGSbmltewf3zQc7VPs1nfjKZAVxVAoKMqrpLl4Pmrc3jv7hG8fmsZhmnja1ML+MFv8e9ovlq93HcjAtwluN8eeCsoluJybmwUmgWHLQN9GOjT8f4DY+WzWi0Z2WsS9m7ObgzndByeHMa12yvrJcqHJ4cx3GLTKLdluX6s9cnpKgb7tPIulo4s/8+WyGUUT4ly3EuJ4/jZoHAJIX4awN+TUv6v2p9LKX+m8V8QBSPI62VOVwEJnL0+j6FsOc4YazZen13Cocmh8m1cJqLVuF+0bEgHOHF4K3ZvGdjwWJ0Osq4fzZcvH823ZpX3gBjO+Xc0X1Uv992IqtwcE3RdCDEKYHft7aWUZ4NsGEUv6jWnUWkVHAzTBgQwNlDelEjLIJLXxMvobJjJTkZT8OH7d+DUxVvvnG17eGvDxy1ZTrl0WZYT4yBnTzectXt4K1bWLFycXgQAHJ4cwol7wj9eISgcuaeKZQBPCyH+kpRyVQjxbQD+uZTysagbRuSXjKbg4f2jOHP9DlRTQBUCR/eN4IU35lEwzPWjfdolotW4XzIdXJ1dQdG0ceGtAn7gxN3YMzaw/lidDrJuOpoPElnd28BqbVtbxcBe7bsR1XJzTNCPA/g0gCt4p9BQAvjm4JpFcdCr27+3Cg5xeE28jM5GkexM5nP42NHdLQPwdMHYVOr94ft3uGqb19mARq/Bpx/bj0XDBARcbXaSFBy5pyop5Y8KIT4J4LQQYg3ACoB/HHGziHy3b2wQR/eNQhPldaCmLXF4cgiWLTGzVHSViFY3gLo6u4I+TcVQVsetpSJOXbqFv/y+vet/2+l5tn7tNuwmpsehn0IUNTclyt8N4KCUshR0Yyhekr79e6czl62CQxxeE7ejs2ElO41e51ZJaMlycOrSDK7dXsXEYBYAcO32Ck5dvIWPHd3te9uavQZujwZKEo7cU5UQ4gSAv4FyYrsdwF+TUv55tK0i8l9GU3Dinm04fXkWc6slaIrAh+/fiS0DfZtiU7N+QU5XIR2gaNoYyuowTAuKEJCVjQzr1+N2cp5tt+uR3cb0OPRTiKLmJsG9AGAEwK1gm0Jx1OiCnIT1fd3MXLYLDlFvMuR2dDaMZKeT19kwbRglB6oq1tuhqqL8c58TsTgkfGF+XzhyTzV+BMA/lVJ+VQhxL4DfEEL8fSnlH0TdMCK/NYvLtdfcVvEqoyk4cXgrLrxVwPW5Fcwtr2FsMIPX3l7Etxol5Gv2kehm8Lib9che4lnU/RSiqLlJcH8C5aOCLgBYq/5QSvnhwFpFsVJ7QU7C+j4/Zi7bBYdOgpRfiY7b0dmgk51OX+ecriKXUWDbcv34AtsuH7fkdyIWdcIX9veFI/dUJaX85pr/Pi+E+CCA3wTwaHStIgpOu8qhdvFq95YBfN8HDuJzv/917Bjpx0CfirsmBvHclTk8OZxbv11UA6de41ncN0MkCpKbBPfXAPxrAOcB9PZBqD0uKev7/Ao+fgYHvxMdN6Oz7ZKdbhPuTl/najnZStHasAa32WZU3Ygy4Yvq+8KRe2pESvl2pWyZqOe4jVfjQ1k8tH8Uo7kMMqoCTVUws1TccLuoBk45gEnknpsE97aU8j8E3hKKvTiUe7oR5axdo6QxqETHTQLeLNnxI+Hu5nWezOfw6ccOeN5FuRNeEj4/y4mj/L5w5J4akVIaUbeBKApu41VOV5HVVAgIaKrS8HZRJpocwCRyx02C+5IQ4icAPI2NJco8JqjHBJE4BrE+0e/g47aNzZLGqAcG6pMdvxLubl/njKZgfDCcjZ7cJHx+z7JHXR5NRERlbuOV29tFmWhyAJOoPTcJ7gOV/39/zc94TFAP8jtxDHJ9ol/Bx20bWyWNcUt0Ok24GyX6aRlNDmKWneVkRETRaBavnrh3B+aNEkZzGQxmta7iWpR7cRBRa20TXCnlN4XREEoGvxKaMNYndjvK6aWNrZLGfE6PVaLTScLdbvfJpAfqoGbZ0zIAkETsSBL1pmbxqv7nhyeHcHF6KbS4loRNOonSou23VwiRF0L8eyHEmcr//p0QIh9G4yieMlr5MPVuLv6NEgqrct5cXHhpY23SCGBT0lhNdD503w48+cCuSINadWZx1bQws1TEqmm1TLhrE/1tQ1n06xpOX55d3wG5lZLloGCYrm4bpXbvXzf8+L6QN9MFAyfPTeGZV27i5LkpTBe49JSoFzSLV8tFa8PPM4qCp56/joyqeI5r9Y/XLsaVLAe3l9dw6uKtjuIoEXnnpkT5V1A+C/e7K//+HgC/CuD/6vbBhRDfDuBzAFQAvySl/Mm634vK778DwCqAT3PtbzrErWy3ES9tdFOOGqeZTi8zi53ObsZ5tLp+do/lxOmRlN3eich/9fFKVwWWlizMLhc3/FxVBUq2A0URADqr2nET46q3WSpaePVmAY8eHEcuowa+FwcrWKjXuUlwD0opv6vm3z8mhHi52wcWQqgAfg7AtwKYAvCiEOJpKeVrNTf7IIC7K/97H4BfqPw/JVwSEgqvbUxaOarbhLuTwQi3SUYUQbhZpyRp718Y/Hh/wn6Po97UjYiiUxuviqaFs28uoGjZ0FWBNdOB0VeOY7YtkVEVOI4E4L1qx02Mq71NPqvjyq1lnL0+j+PvmoBpycAG9ZvFOCa91EvcJLiGEOIbpJRfBQAhxGMA/Kj3egTA61LKq5X7/R8APgKgNsH9CICnpJQSwJ8KIUaEENullG/78PgUsSQkFF7bGKdZWr90MhjhJsmIYoa3Xackje9fp/x4f6J4j5NQHUJEwajGq1OXZnDmjXlkNRWPHhxHVlPxdmEVi0VzPY596theXJxewsxS0fMgu5sYV3+bB/eM4Lmrc5iaNzCU1QIZ1G8W444dGMPzV+diWVFFFAQ3Ce73Afi1mnW38wA+7cNj7wRwo+bfU9g8O9voNjsBbEpwhRCfAfAZANizZ48PzfMXR84aS0JCkYQ2tuLHZ89rot8uyYiqjJSze+748f5E9R4noTqEiIIzmc/h8Xdvh1FysGs0B00pf/cHsjoef88kdFVZj2P3bM93FB/dDKTV3yarazi6bxSPv3t7YGe/N4pxd4w1nLp0C+MDfVy2QT3DzS7KLwN4rxBiuPLvRZ8eWzR6uA5uU/6hlJ8H8HkAOHr0aMPbRCXOaxEp3fz87HlJ9NslGVElmpzdc8eP9yfKwYQkVIcQUXCGczqGslq5FDjzTgnycHZjYtnpALbbfTfqb3Pinm0YHwru/PdGMU46gCIEB3app7RNcIUQ/wrAv5FSLlT+PQrgh6SUP9rlY08B2F3z710AbnZwm1jjhifJEPYMexiP1+izd+rSTKCjx7VaJRndJJrdvHac3XPHj4GAqAcTkl55QUSdC+Na72YgLezBtoZJ9eGteO7KHAd2qae4KVH+oJTyh6v/kFLOCyG+A0C3Ce6LAO4WQuwH8BaAjwP4ZN1tngbw/ZX1ue8DUEja+luWRMZfkDPstckYUP48LBolPHcl2LUwJcvBzFIRRcvG2EB5tLhoWjjzxjyMkrO+/ifoSoJmSUannQ+371WrJJize+350TnkYAIRdSrIpTV+DjC7GUgLe7Ct0fM+riqur8VcUkdp4CbBVYUQfVLKNQAQQuQAdF1fIaW0hBDfD+BZlI8J+hUp5atCiL9Z+f0vAvgyykcEvY7yMUHf2+3jhi3qWQxqrZvdftsFgdpkbKVoAZDo0zWcn1rAe3eNYPtILpAZ/erjFk0H56cKUKTAxFAfzr65gKymYtdoDqYlI68k8Jpoun2v3CTBnN1rz4+BAA4mEJFXQS6tCXvJ2HLRwrxRwmgug8Gsmy63P+qft9trMZfUUVq4+bb9OoBTQohfRXn9618F8Gt+PLiU8ssoJ7G1P/vFmv+WAP62H48VFc5ixFunu/0CaBkEapMxXRO4MFUAABzdNwpFEXh9dhkTQ32+z+jXPu7YgApFAF+7sYC7JgdRtGw8enAcmqJAyyAWlQReEs1m5xsuFk2MD5bH3LgkwF9+DARwMIGI3Or0Gu5m1jHs+PDKjXk89fx1lGwHGVXBp47txX27R31/HLfaXYsZPylN3Gwy9W+EEK8A+BaUN336cSnls4G3LEU4ixGsTstpSpYD03YACU+7/Z66eAsQEsN9maZBoDYZWylZUNXyfmlClGf1i6aNku3AtP09C68+Cdyez8GRwDceGsdQRkdWq5RKJ7CSoNn5hjldxYnDWzGZz3FJABFRgnVyDXc76xhmfFguWnjq+esY7NMxmNXW//3ZiaFQZ3K9YPykNHH1iZVSfkVK+Q+klD/E5LYzGU1BPoSNfaJUshwUDBMlywntMacLBk6em8Izr9zEyXNTmC64O6K5+nfPvjqNlTUTbxcMzCwVsWpabXf7NUwbRsnZ8DPLkTBMe/3+a5OxPk2BbUvYtkS/ruGurYOwHYl5o7Tp8bpV+7hAOZHN6gp2jfTjxOGtWDWths8zCarVEItrJTx3dQ4A8OjBcQxndZy+PIuS5TR8/klL5ImIepXXa3jtIPS2oSz6dW09HnR7392YN0oo2c56MjuY1VCyHcwbJd8fyy9piJ9R9EMpnuI5jESJE8W6jW5KmTb8XZ+OxbUSHn/35KbdhRutoc7pKiBky3XVtaXp1prE/vEBABJzqyVkNAU/cOJu5PszbWedvc5OtyqJT0MlQbPzDaujzPmcziUBREQJ5XVZl5dZx26XjHmJx6O5DDKqguWitT6Dm1EVjOYyrh4rCklfUsf1w1SLCS51Lap1G52W0zT+OwG9wfqUZlvuA2gbBOoTyupju00uO71Yt0pk07Aestn5htXXOA2JPBFRr/JyDfe6kWen8cFrPB7MavjUsb146vnruLO6tr4GN67lyVVJjZ9cP0z1PH/ThBC7AXxcSvn/D6A9lEBRrdvodIdqvwKimyBQn1B6GSnu5mKdhkS2mXajzDzigIgo2dzGsE5mHb3Gx07j8X27R/HZiSHfd1EOOsYlsf/A9cNUz9W3TQgxDuBjAD4BYCeAk0E2ipIlqqOQOi2n8SsgBhkEeLFurdmgQ1QlSkyqiYii0c2so5trt5d4XH9/g1nN11lbluE2xiM5qV7Tb50QYgjAkwA+CeAQykntASnlrpDaRgkR5bqNTgNb3MtweLFur36AoWQ5OHVpBppQMNafgWmHc9YvOxxERNHqZMDZ7bXbbTwOOhawDLe5pK8fJv+1Gla6BeAFAD8K4KtSSimEeDKcZlHSRJkwdjqTGrcynPqR3+OHJnDq0gxmlhzkMgpO3LOt7WhxEmcS/WrzG3PLOPPGPAb6NKhC4MiO4fXdrYN6LdjhICJKnvqz6guGiVMXb+FjR3d3tDlVGLGAlV2txX3igsLVKsH9YQAfB/ALAP6bEOI3wmkStRPXJCZuCWOSNBr5BQBIsfH/W/zN4ckhXJxecj167PZzFOTnza8R75Ll4MVr88hqKvr18mXt7JsLOLJruOXxEt0+L3Y4iIiSp3rtLlo2zlwvwJYSK2sWHtk/iru3DW+6fbvkKYxYwMqu9tgPpaqmCa6U8qcA/JQQ4gDKa29/G8AOIcT/A+CklPJyOE2kWiyHTJ9GI7+nLt4ChMRwNoNtw9lNo8H1f7NUNPHU89fx2MFxjA3obUeP3X6O/P681SaVAHwb8TZMGxDAg3tHceGtcmelaNl4ZN+Wrp5/O+xwEBElT05XAQmcvT6PoawOALBtiRfeuIO9Y4MN40ar5CmMWMAyXCL32n4rpJRXpZT/Ukp5L4CHAeQB/G7gLaNNvBxoTsnRaOTXMG0YJWfDz6rlto3+RlEESrYDVRUNb1/L7efI78/bdMHAyXNTeOaVmzh5bgpvzC1vet7N2txOtXOR1VQcOziGe3fmcXTvFuwdG+z4+btR7XCsmhZmlopYNS12OIiIYi6jKXh4/yiKlo1V08KaZePBPSMAREcxKKxYUJ1J/tB9O/DkA7s4wUHURKtNpu4CsE1K+SfVn0kpzwshRgH8ShiNo41YDplOjUZ+c7oKCNl0NLj+bxxHIqMqsG0JYPPZsLXcfo78/Lw1mqV+8dp8y+foRe3ItrUm188rbtROv79HXPdDRBRPrZai7BsbxNF9o9CEgnxOh2lLOKbV8axrWLGAZbhE7bX6hvw0gKUGP18F8FOBtIZaqk1qgNZJDCVHo5HfE4e34sQ925qOBtf/Tcl28Klje1FynLajx24/R35+3hollRDAI/u2+DLiXbIc5DIanrh3R9uR7SC+Rxmt3EFip4OIKB7qq4amC8aG32e08uaNEMDcasmXWVfGAqJ4EFLKxr8Q4oKU8kiT352vlCzH0tGjR+WZM2eibkYguAY3vRqNNLfbCKnTXZTDXoNbshycPDe1YQZ31bTw5APlU8e6Ob9w0SjhuStzntrI7xF5IYR4SUp5NOp2JF2aYzPFS6uY0+40AiJKhlaxudUuytkWv2NPMCIsh0yvRmVH7UqR6n/vtnTJ7eeom89bo2OPmm2O0en5hUXTwfmpBbx31wi2j+Rcb1TF7xERUXp5WYpSjZsly0HBMD0NMidBGp4DkVetEtwXhRB/Q0r5n2p/KIT4awBeCrZZ1ArXX6RXyXKwaJiAAIazwZY5uf0cdfJ5azZDWk0qVSFgS4mS5XS1njerSyiKwOuzy5gY6vO0npbfIyIif8UlmfK6q3GjmGXaDk5dvAWhAFlNTWSlD6uVqFe1SnD/LoCTQoi/jHcS2qMAMgCeDLhdRD1numDg6Zdv4uL0IgDg8OQQPnz/Tl+DURidj3YH3t9ZWesq4NaOzFuOg5yuomjaKNkOTFtyXToRUQS6Sab8jk0ZTcGjB8fw7KvTsB1gMKviL9w9sb5Dcu1jNIpZv3X2Br4+s4KMpiCrq7hrYrDjY+yi0i4WE6VZq3NwZwA8KoT4JgDVtbhfklL+QSgtI1/EZTQ1rfx6fUtWeaT42u0VTAyWVwdcu72KU5dm8LGH9vjy3oU1ktuqNAzo/uzb+pH5u7YO4ms3FjBvlNZH2flZJyIKTzfJ1JtzKzh16RYUIZDVFV9i03TBwO+en8aFmwU4DrB7JIvfLU5jIKttin/1MUtXBV67uQxdE5gYyqJkOXh9dhkHtg4k6tSKTc9LE1hasrBomBgf6ou4dUTBanVMUBbA3wRwF4DzAH5ZSmmF1TDqHktTguXn62uYdrl0VxXrwVNVBYyS40tADXMkt1VpmB9H9NSv581oCn7gxN3I92c4kENEFIFOr+037qzgP5z6OpRKjLhra/czpbUDxpPDOdiOxEs3FrBvfADffM9WmJbc8Bj1MatgmFAUiYGMvr6MpmCUIB0kqjqo9nkVLRtnr8+jaNnIZcq7R7M/SGnW6urxayiXJJ8H8EEA/zaUFpEvahOabUNZ9OsaTl+eRclyom5aLFQ3k+j09fDj9a1tQ05XkdNV2HZ5XWrJcmDbErmM4ktAbdT5sBzZ0YH27bQ68N6vI3rqD7vfMzbQc0czdPsZJiLySyfX9moiqioCW4ey6NNUvH5rGUXT6So21Q8YKwKAKP9uzXI2xb/6mGVJB0d2jOBdk0NYs2zcWirCdmTTs9Xjqvq8FosmnrtyGwDw6IExDPdl2B+k1Gu1Bvfd1aOAhBC/DOCFcJpEfvBjpiytOp15rS1H7vb1bdSGE4e3YmXN2rAG98Q923x5v7xuuNGtVrsUP7hnBC+8cQeLa2LTbspeRLVJVBzK/lmdQURx0m6n/EYM0y5v4KSr6zOlC0YJjpSuY1Oj63H9gLEjAVROxFSFwNzKGiA3zsbWx6zqXhEHJgbhSIkT92zF7i0DHb8+UZnM5/D4kUkYpo1dIzloavk1Yn+Q0q5VgmtW/0NKaQkhQmgO+SXshCYpOi3VrU8ojh0Y6/j1bdWGTz+237ddlL0c0xOG2tcQUuDh/aPYNzaYqAAbh8SSG4cQURx5PX4tp6vIauUNnF6fXUbBKMFxyslkpwPFk/kcMpqyacD4kX2jEELg1KUZAOUB5Dsraxuu37WDpkEfJRfmQOlwVsdQVitvwqh2XjlFlCStEtz3CiEWK/8tAOQq/xYApJRyOPDWUcfikNDEUSczr40SiuevzuHRg2N47sqc59e3VRvyOd2XzR/aHdMTdFCtf/zqa1X7Gp57cwH7xgYDa4Pf4pJYsjqDiOLKS2VNbT/lwNYBSAc4cdjdTGm1vFlTBcYGMpvW1U7mc+sDxqbjQDrA7116G7tG+5HP6TBt2fT6XZt85nN6R69DK2EPlLI/SL2o1S7KHNpJuDATmqToZGa7WUIxnMt09PoGPbveLhEL+nPQ6PFPXbwFIQTGBpKblMUlsWR1BhGlRaf9lOtzyzhz/Q4G+jSoQuDIzvz6utrqfWQ0BZbj4I8uz2KpaOHVmwU8emAMmqpAUxuX6QaVfFaTZlWIhvH5iXt3wK6UZgcRT/w6h54oKVrN4FIKRLVOMa46GclslVB08voGPZraKBG7Y6xhZqmIbUPZwD8PjR5fGIDjyEQnZXFJLDkaT0Rp4jWOliwHL7xxB1lNRb9e7saevT6PIzvzG67HtYOt+ZyOK7eWcfbNBRw/NNHwzPSgqnRqk+aS5cAoWRjbVq7UymVU3JhfwRdeuoGMpgQ6o+vHOfREScEEN2Jx2LCml5QsB7mM5mm0NIiEIsjZ9fpE7O0FA+enCoD074xBL49vlGxkNRXHDozh+aveS7rjws3noP77HNT3m9UZRNSryrsfCzy4ZwQXbi7ClhJFy8bD+0c3XAvrB1sf3DuK567cxtSCgaGstun6HUSVTn3SvFQ08epbBWwfzmEop2PJMHF1dgWP3TWOoawe6NKXuCyzIQoDE9wIxWHDml4yXTBw6tIMjJKzfg5cs/U19YlJEAlFULPrtYnYHWMN56cKeO/uEWzP5zwHtE4StGaJ4GQ+h8l8LtFJWavPQf33+fDkEC5OLwX2/WZ1BlHv6uXB8eogalbXcOzAGAqGCUs62Dc2uOF1qR9szWoqju7dgsePTDbcxDGIKp1GSfOO0RzmVkpYtWyYloMDE4MYyurrvw9q6UtcltkQhYEJbkQ4khaukuXg6ZffwrXbq1BVAdN0MLe0hr/6DQcxmN34NWi1M2NS3ptqIjazVASkwPZKYuUloHUzANMsEUzSa9hMo+ewaZTeMPHU89fx2F3jGBsIdlSeiHpLrw+O1w6iWmvl1+DEu7Y1LL+tH2w9cXgrxgcbb+QYRLVWbdJctGycvT6PomXj/j15PLJvFNvz/fjS+ZsNk2q/BzHissyGKAxMcCPCkbRwLRZNXJxewsRgFqZl482CgUszS+jv0/Gh+7avdw7SNPCQ0RRsG8oiqyueA5ofr0Maklm36r/PqipQsh0oSvl4NX6/icgPjQbTvnJhGh99aPemwdo0qx9EBYCT56Yaxiwv1Vd+V2tVk+ZTF2/hzPXyuuFHD4whq2s4++YCnnxgsGFSHcRaWe7fQL2kd66GMcORtMYCK7uqHPJuOw6u31mFrqrI6RL9urohcUvbwEOnAS3s1yHp5Xb132fblsioChyn/MHj95uI/FB7bZ5fWcOFm4uYXy1BAvjgkcmemsmt1e74PS9xxe/B2cl8Do8fmYRh2tg1koOmlu+72j4vyXq37eL+DdQrmOBGhCNpmwVZdjWc03F4chiXZ5awvGYhqynYNdqPLQMZzK2W1hM3vwYe2iVsYSV0nWyqBYQ7AJOGcrtG3+dPHduLi9NLmFkq8vtNRL6oXpuXDBMXbi5CQGC0P4ORnJ7YaqNONDprvVHMUoVAwTAD3/ivlZLlACi/d6YtoanAkmHCtByoolzlU5tUFwwz0AHmXqquot7FBDdCHEl7R9ClwRlNwYfv34FnX52BYdoY7NNwdO/opqMC/Bh4aJewhZXQNXoct4fWhzUAk6aS8Ebf53u25/n9JiLfVK/NX7kwjfnVEkb7MziyM4+hrI6ZpWJiqmy6ub9GceO5K3Obduo/PDmEL52/GdrGf43UxuGVNRMraxYsx8HV2RUcmBjEl87f3NQOVvgRdY8JbsQ4klYWRknsZD6HTzyyB48e3IIX3riDkiPhmNamxK2bgYd2CVtYCZ0fjxPGAEwaS8Jr283vNxH5bTKfw0cf2g0JYCSnrx8vk5Qqm27vr1ncyPdn1mOWKgS+dP5m043/loomfvfCND4W4NrlTXG4T8cdowjFUlseC8QKP6LuMcHtcXFZ+xjWiGVGU3D3tmHsHRts+bw7TUzaJWxhJXR+PU4QCVqrYxw4Uk1E1N5gVsMHj0zi9OXZQJdB+D0o68f9tYob1ZhVX+Zbu/Hf/GoJF94qYH61BAHg2wNau9woDptL5d+1OxaIFX5E3WGC28PitPYx7BHLoGbW2iVsYSV0cU0cG33mgn7f4zKIQ0TkpyRW2dTfn64JLC1ZWDRMjA81Pr6nnpv+QrON/0qWg6/dWIDtSAxndeSzwa1dbhSHcxkFkO5iMyuAiDrHBLdHxXHtYxpGLNsF3rAS+TiWOLX6zAX1vsdpEIeIyG9BJ0FeB0vbDSg2Oxc2l1Fw4p5tXZ+1XtVs478//PNbOP9WATldxa7RHCzHgeXIQJbFNGrDiXu2AUCsYjNRGjHB7VFxXfsYVLAOcxavXeANOpGvPtctA32uHyeM18fPYxzciOMgDhFRkngZLHUzoNjqXFi/z1pvdPzOuRsF3L11EPmcDlVRcPbNBRzZNbwhYfczHjaL90kfzCeKOya4PSquJaxBiGIWr13gDSqR7+S5hvX6hP2Zi+sgDhFRkrgZlPUyoNjuXFg/r8/1x+9oqsD7DozhwlsFrNkWipaNR/ZtWb+Nl3joNhFuFO9ZfkwULH67elR1FHXVtDCzVMRqg92E06A26G4byqK/MkpcPZeu2/suGKYv9+WHTp5rkK9PvdrP3FuFVcytrOHRg2OBfeZqE2oAqR7EISIKUkZTWlbaNBpQtByJxaLZME4OZ3UMZTWYtiz/fQjX52pM0BSB9+4ewbsnh3F07xbsHRsE4C0eThcMnDw3hWdeuYmT56YwXTACazcReccZ3B6WhjWv7QQ1ixfHtZ2dPNewZzkn8zkcOzCGU5duQRECz12Zw3FVCeS1a1Rad+zAGBYNExDlDlYaP/NERGFrVKGzUjTx7IVpQGBTnIxin4iMpuDw5BCeev46SraDjKrgU8f2rj+m23jI5S9E8ccEt8fVlsmkcbfZIMpi4xrcOnmunfxNN5+TkuXg+atzGB/oC+W1qx3EWTRK+N3z07g4vQgAODw5hA/fv7Pj5DqN3xciok7UJ6yABCAwnNWbXuvbDbL7fY0tWQ4uTi/hsYPjUFUB25a4OL2Ee7bnkdEU1/GQy1+I4o8JLgGI54ykH4IYJY5rcOvkuXr9m24/J4uGiaWihXyu9RmAfqre7zNfu41rt1cwMZgFAFy7vYpTl2bwsYf2eH7stH5fiIg6TSxrE1bTcvDsa9PQNYGVkoU+TYG1tnm34mZrUYO4xlZj99iAvv6zmaXiepvcxsNe2sOEKKmY4FJsZyT94ncpdpyDWyfP1e3fdPs5mS4YOHVpBq/eLODKrWU8uHcUWU0N5bUzTBuGaUNVBVRFwLIdQABGyfGcXKf9+0JEvavbxLKaKJYsBytFCxemCuuzpfvHB1xd64O6xrqJ3W7iYRyP4atiZRFRGRPcFOn0whbXGUk/+bljYZyDG9DZc3XzN918TqodluG+DB49MIazby7guSu3cXTvFpw4vHXT+ia/A3ROV5HTVSytmnhzbhWOlChZDnaPZj0n173wfSGi3uMmsfR2fZZt/t1YUNdYt7HbTTyM4x4mrCwiegcT3JTo5sIW5xnJuPI7uCVh1LWbz0lthyWXUXH80ASmFgw8fmQS44N967fr9HPc7vXLaAr+wqFx/Mnrt7Fqltu9I5+Fpnj/jPP7QkRp1C6x9HJ9NkwbA1kdxw9NrG/oNLdacpWkBnmN9TN2x+moH1YWEW3EBDcFur2wtRrVTELiFRW/gltSRl27mbmu77CYtsRQVsNw9p21UJ1+jt2+fsO5DN53YAxDfRoggP6MirkVdx0uv14HIqK4apVYer0+V+/LtCX6M5qnJDWoa2xtf6a6D0TcsBKPyB9McGMkygtbo1HNpCRe3Yg6gQ971NXr862/faej3246LJ18jr28fjldRVZX/r/27j1M7uuu8/znW7fuUqvVknWXZdnyLbaxnSjIhiQ7eIIcnIsnGc2S5TIzBJhdP7DAA7PDQMC7O5ndmWfzwD7LwMIzjJ+QGXgmswww0STrhNwECJYkJIrl+IIcEQtf2nJLbclqtdXVXbezf3SVXGpXVdfldz2/9+t5/FhdXV116ldV55zvOd9zjor53NizAklMTwOAUXTW873q6YVKbaj6edwgNeg69oXzl68cTzdZzEXenxmk7SUTDwgOAW5CJKFiW3tkkO/pLkkI4KMcdR329fa6/3oz170a8vU6LKN8joe5fkHPCiQpPQ0ARtGtnu9WT49SP48bpAZVx7544bJ+4+jfKNcq7807Nkbanxmk7Q0zEw/IIj75CdBZse2cntSGYkHHTs2rWm8O9Pftim2pVtfZxWUt1eqhHIVTb65u8e+Dca95UDo7DZJCG3Ud9vX2uv9ry3UtVGo9/25uoaIjJ2b16BNndOTErOYWKlf9vlTIaaZc7DviP8zneNjr1+5wPXj3Hh0+sNe7jAQAGFSvel7SG+rpUfsZ/er8KFTrTR09eU75nGnH9KQmCnl9+9xrWq41I+nPDNr2BtHnon0DXscMbgKElWI8jmFHa+NO9R1W3OtVBkkJG/dxx0n/vbTcOq928vXzal989bL+8BsvqlTIdR2FDmLWf9jP8Sij1sy8AsDw7UIal2ZUag1ZTppsrSMuFXK6WKmq6Vwk6bvd2tJu1ziMTDwgywhwEyCJFdswgUMSUn2HFdV6lW4B56ApYcPqfFw56Z79W3TD1o0qFXJDvd65hYqOnjz3+nm1+zarkMvp9PxlvePmbZqeLHYNXoMaNBj2c5zGThcAxG2UdjBtAVS5mNdkIa+bt2/Ut+df00KlqmbT6dBtO3q+jqAG7Lu1pZPFQtdrTIoxECxzbrBzydLk4MGD7vjx43EXYyhJDRLXq+ir9aaOnJi9atZuqVZPxVrdsK95t8e/ZmoilOvV+T4s1xt67PlXtVxv6OANW3Totp3aNVMeeB1Qt8f5jj2bVK073bpz+sp9zy4u68G796hczKtSayhvps88eSbUz0JQHY8kZBwkoQxrJbFMSWBm33DOHYy7HGmXxrbZd3MLFR195qwq1abKpdyV9sIn7bZvud6Qa0qHbt+h666Z6nvfcfsFg7TJvf6OOhgYTL+2mRnchEjqLNR6o7W9Zu0uVWoqtmYOk/Ja2toNyDVTE6Fd817puodu2xlKanT7fSgWTMefX9D0ZFH5mqlguSszrYN8xt5wXu2btmv21Yred9du/fnfzL9hpH9hqarPnT5/pTNw+65pnZxbDGUEOqiORxIGk6Iow7AdpSRcFwAxcHb1/z0zaP8qyM01e7WlD9yxW9umJ3r+XdpmyIGkIsBNkCRUbMN2irulOF1eruvzf/2yJEtcRzmqTnyvwF+mUFKj2+/DQqWmRisrI2+mmXJR55eqVzaqWO+9fcN5tfXV82q3bpx4Q/rU22/aqi8/e/6qzsDJuUW97649arTWNw36eR4kUyCIjkcSdgePogzDfs6TcF0ARKv9vd80WdTOTZNef+/XnhIRxF4VndY+Zq+2dFNCz98FfEOAiytGCf7WrhuRkySnTROlxHWUo+zE91rbtGmyGMo6m/b7cPTkOV1eqavRcHrrvs2qNVzXmdZe722/dUBrR8F7dQYazmlmiEZ8kM9dUOt7495cLIoyjPI5T8J1ARCtKL/3SUm97dfejLo3R6/HZE0tEB8CXEgarlO8tqHqDHxqjaY+//RcIjvKUTbmwwSKozx3t87CrpmyPnjwOt27f4u+9twFVZtOzVq960xrv4CnX/nWZhmMOxvd+bkrFlZnoI+ePKcPHrwulB0mo9pcLM4yjPI5T8J1ARCtqL73g+7/EHYAvF4/Z5SNnvo9ZlKXngFZQIALSYN3ins1VO3GoVpvJrajHHUnfphAcRj9OgulQk637Nyk67duXHemtV/A0698QR5x1C7bcr2h488vqOGcLq/Ude/+Lbpl56aryhPEaHgSdqoMuwyj7owa93UBEK0ovveDDJ6Pkj02SkA8SFs4bFC63mMmYekZkEUEuJA0WKd4kIYqyR3lOMoWdOM26Ex70DOtbUEfcVQu5iUnPfb8q5punRPYaDh97bkLur51xFFbUKPhSRhVD7MMo37Ok3BdAEQr7O/9egHgIG3a2mB21L00Bh38G6bdJvsFSCYCXEgarFM86ExgkjvKYZQtyrVFo87GBhHY9+uIDLPmdm3Z7tm/Rcefv6B8zZQ301v3bVa16bq+pqAGDJIwqh5mGUb9nCfhugCIVpjf+/UCwPXatLXB7LBLbta+zqAHuZM8qA9kGQEurlivUzzMSGWSO8pBli2q1Kq2UUeLgwjsw1rDfMPWjTp4wxYVLKeZclG1xuraYUbAx5Pk7yCAbFgvAOzXpnUbVP3802dVbzrNXLM6qDpsOxTGIHeSB/WBrCLAxVX6dYoZqbzaKLvVjntM0TjvwbgBT1ipWKVCTodu26ljp+Z1fqma+c8VAPhkvf0oerVpC5XaVYOqy7W6nnjpohoNp+dfuay37tusyWJh6HYojME/BhSBZCHAxVAYqXzdsDOaQR1TFNd7EOYAB58rAPBXvwCwV/2fN1O13tTick3lYl6PvXBRU8WC7t4/oydmF/Tl0+d18IYtOnTbTknSQqVG+wFAEgEuRsBI5aphZzSDTPEN8j0YJmU67M2R+FwBQPasrf/b2U6Val1Pv7SgPZvLWq439PabtmnLhpLue1NJs69W9MAdu1VvNnXkxOzImVEA/EOAC4xo2BnNJO62OErKNIEoACAsndlOW3dOaPemss4vVfWWjVs0WVhtL2t1p+nJgiaLeX3mybNjZ0YB8AsBLjCGYWY0k7aGOaiU6ayIcrdsAMiqtdlO0+WiluoN3XPDFp144eJV7WfDuVA2PwSQbgS4wJiGmdFM0lrTsHZF9tG4m4MBAAbTK9vphq0bdcPWjVe1n9V6s+8uzEloawFEjwAXiFgSUnyr9aZq9aYkF1jKtK+dCWa6ASA662U7DbIL84XLK1cGJeWke/Zv0Q1bN1JnAxlBgAv04WPQ1jkbeXm5ocvLS5qaLI6VMu3zDCcz3QAQrWGyndbeV5KOnJjVhmJBy/WGHnv+VR1//sKVHZd9aZsA9EaAC/TgY9D2htnIiYYuLdf0wHfs0qbJ4kgBm+8znFFuDubjgAoADGvYurAzM6p9fm6xYDr+/IKmJ4vK10wFy3nVNgHojQAX6KIdtJVyOZWLpkbDedEw9pqNLOZHT5v2fYYzqs3BfBxQAYBhjVsXtgclFyo1NZyTtHqm7ky5qPNLVW/aJgC9EeACXVRqDZ1/bUVnL62o4ZzyZtq5aSL1DWMYs5FJPP4oaGFvDub7LDgA/wWRgVKtN3X05DkV8qatUyXV6sMPLrcHJY+ePKfLK3U1Gk5v3bdZtYbzrm0C0B0BLtBF3kyn5y9r40RRm8tFvbZc1+n5y8qbxV20sYQxG5m044/CEubmYL7PggOITxRLH4aZde1XnufPv6bjz1/Q1ERBeTPdee2M6k03dF24a6asDx68Tvfu36KvPXdB1aZTs1b3sm1aD0tfkEUEuEAXDed04/aNOntpWRcrVeXNdOP2jVfSndIsjNnIJB1/lEads+DFwmpqnZyYaQAwliiWPgyTgdKvPNV6U1977oImC3ltKK52Tx97/lXdee3MSHVhqZDTLTs36fo1RwvFLcqAk6UvyCoC3B4Y8cq2cjGvrRtL2j0zqVzO1Gw6VRtNbwKOMGYjk3D8UVq1Z8E//fgZnZy7JEm6fde0LlxeoTMCYCRRLX0YNANlvfJUag1Jprfu26xvzi6o1miqUm/onv1bxs4ySkrbFGXAydIXZBmf8C7mFio6cmJWjz5xRkdOzGpuoRJ3kRCxdsBRbTT12kpd1UYzE6lN1XpTC5WaqvVm3EXJnGumJjQ1mdd379+qB+7Ypd0zG3Ts1DzvBYCRdAs82+m+QerMQJHUcx+G9crTfpzl2mqdV603VZBpshDOjvVRt3WdAefO6UltKBZCreOjev+BJGIGdw1GvIbj80x31tJus5LKlNTPbHv2YuvGCUlSIS/W4QIYWVQbAA66D8N65SkVcnr7TVv161/6G+Vypk3lom7esVFfOX1eu2bKgdWDcbV1Ue+1kIUNIIFeCHDXYLOXwWUhIEpSalOYfBrY6RfAJvkzS2cEQJCi3ABwvQHhdr38thu36iunz/csz6ZySXft3azNG4qaKORUyOV0dnE5sD5YnG1d1HV8VjaABLohwF2DTuZgfAqI4M/AznobmCT5M0tnBEDQosxE6hwQ7hxonFuo6Ogz55Qz02RxdZZ2U7nUtTzlYl6TxZxyMhVyucD7YGG0dYNmBcVRx2ctEw1oI8Bdg07mYHwJiKKW1PTYcQZ2kvKaBtnAJOmfWTojAIIWdSZS50Djq5er+uYLr2rThpI2ThR0846N+vKz53sOLIbdBwt6EmPYrKA46visZKIBnQhwuxg01SbLHVBmuoeX5PTYUTsVvV5THN+R9QLYtHxm6YwASKvOgcbXVmr602fOaX5xRTdun9JEPqdvn3tNN27f2HdgMcwgMMgAetSsoH51PP1LIBgEuD30qoCSHKREiZnu4SQ9PVYavlPR6zW111hF/R0ZZAMTPrMAEJ72QGOxYPrmswuaLK4OLjabTnOXlrVlqqSmc+sOLIY50BdUAB10VhD9SyA4BLhDSEOQEiXSKQdTrTd1dnFZy/WGtk6t7pCbxPRYqXunoteIcrfG/UJlRUefOadtUxORf0cGCWD5zAJAeNoDjQuVmnJmyptp81RRudZtGycKOnTbjlDr3kFmQYMIoIPMCqJ/CQSLAHcIaVjDFzXSKftrj8gu15p6cnZBOWfavbmc2PTYtfqNKHdr3F1TypnF9h0ZJIDlMwsA4WgPNB49eU6VWl3XbCypkDOZmTZNFvVz77pF+7ZOhfb8Uc6CBpkVRP8SCBYB7hDSsoYPydA5Irt1Kq+cSd988aKa5jRZyCc+PXa9EeVujfuh23foy8+ej/U7QgALAPHZNVPWBw9ep3v3b9HXnrugekNqOqdDt+0ILbit1pu6tFzT0ZPntGmyGNksaFBZQfQvgWAR4A6BNXwYxtoR2d0zZTWd9L237dDO6cnEf24GGVHu1rjfl8/xHQGADCsVcrpl5yZdv3Xj0MFftxTjQc43X1yu6+kzC3r7TdtULuUjmwUNYlCV/iUQLALcIbGGD4PqNiI7WcylIriVBh9RXtu4+/YdYVdLAGkXVz02bPDXLcVY0kDnm89MFvXsudf02POv6r43bVet7lI1C+pb2wnEiQB3BKRAJl+Yjfnax+71XGkfkR2n/L58R9jVEkDapaUe67Ys5ujJc5I5bZooDXS++Vv3bdaXT5/X7KsVTU8WQm1zw+hn+NJ2AnEjwIV3wmzM1z727bumdXJusedzpX1ENsjyp20mlF0tAaRdmuqxbstizi4uS5J2Tg92vvlksaCDN2zRA3fs1qZyMbTXmJZBAyCrklW7AWPqbMx3Tk9qQ7GgY6fmVa03A3/sUj6n3/vK8yrlcn2fq1TIaSbEhjZsQZR/bqGiIydm9egTZ3TkxKzmFioBljAc3Tpb9aZTpdaIuWQAMJik1WPVelMLlVrXNrkzWJW0GrQW8yqXclfd1u1886VaXWcXl7VUq+vQbTu1bXoi1JnbsPoZAILBDC68EuZW+2sfO5czVRtN5fMW+HP5JE0zCJ3Y1RJA2iWpHltv1rPXzvySIjvffJBMI470AZKPABdeCbMxX/vYzaZTKZ9To+EkvXFkGauC7gxEleqc1jXUaUsFBxCepNRjXdfXPnP2DanEvYLVKM43HzTtOEmDBgC6iyXANbNrJP1nSTdIek7Sf+ece7XL/Z6TtCipIanunDsYXSmRRmE25t0e+0fedr1Ozi3q7OJyagKgKHQGWUF2BqJe95S2NdSsCwOw1ij1WNADZWsHOpdrdR1/7lVVqs0rm0G166puwWrYmy8Nk2mUlEEDAL3FNYP7YUlHnXMfNbMPt37+xR73fadz7pXoioa0CzMo6fbYt+2eGeu54phxC/M5uwVZQXQG4kp1TsuulmlNBQcwvvXq9GHqsTAGyjoHOot502MvXNRkIa+9W8qq1V3sddWwmUZpG/wEsiauAPcDkv5u69+/K+nP1DvABYYWZlCy9rHHea44ZtzCfM5+Qda4nQHWPfXH9QGyKcg6PayBss5Zz8XFupbrDb39pm0q5HIqlKQLlRWdXVyO7Zz4cjEvOen85RXNlIsDnaGblsFPIIvi+mbudM69LEmt/+/ocT8n6Qtm9g0ze6jfA5rZQ2Z23MyOz8/PB1xcIHhx7MQY9nP227Fz3N2Yu+2wybqn13F9gOwJuk4Pc9fl9qzn3z9wrQ5ef40mC6vP8fLFip58cUF/cvJcbLvsX7i8ossrNX319Hl9/uk5vbxQIe0YSLHQvrlm9iUze6rLfx8Y4mHe4Zx7q6T3SPopM/ueXnd0zj3inDvonDu4ffv2scsPhC2O4xvCfs4wg6xux0HQAXkd1wfInqDr9LAHykqFnLZtnNCh23doqVbXSwtL+vrzF7TvmrK2TpViOXKnPUiwe2aDHrhjl757/1ZNTeZ1zdTESI/V6xgkANEJLUXZOXd/r9+Z2Vkz2+2ce9nMdks61+MxzrT+f87Mjki6V9Kfh1JgIGJx7MQY9nOGvfkG65764/oA2RJ0nR7VBkrtuurYt87qyPklzS0s66unL+h7b9uh8kQh0qUVawcJtm6c0NnF5aHLwCZ/QHLE1fv5tKQPtf79IUmfWnsHM5sys+n2vyV9n6SnIishELI4ZtyieM52x+XBu/fo8IG9gTfw46Y6+47rA2RHGHV62HV4W7Xe1B8/OacNpYI2byipXCzoC399VvWGi3RpRRCz1q8t1/W5p+ZUyuUiW3IEoLe4Npn6qKQ/MLN/IukFSR+UJDPbI+ljzrn3Stop6YiZtcv5n5xzn4upvIhBFs7zjGPGLYrnZPMNAIhGGHV6FHX4q5Wq6s7p1p0b9cKFJdWbTkvVum7bvXGo5x63rzDurPXcQkV//NScvvH8BU1PFHX3tTPavmmSTf6AGMUS4Drnzks61OX2M5Le2/r3aUlvjrhoSIj1Un2q9aYuLdckp6sOiU+jOILB9nO21wv5PIgAAL5L46DilnJJpXxOkunazWV9a25R+ZzpmZdf0/XXTA00cxxUWvCumbLed9cevVqpaku5pI2Tg3WP2+t35ZwuvFbVK6+t6Pnzl/WuO3Zqw0SBTf6AmMQ1gwv0tN4xBXMLFX368Zd0cm5RknT7rk16/1v2sNZlSKwXAgD0E2Ym1cbJgn7kbdfrP/zlc3r2lcuaKOT09+7eo2s2lAY6mijII41GbQ8rtYaWa009d35J+7dv1MsXK7pYqenECxf1z9/9psQMOmQhIw7oRICLSAxTufY7z1OSjj5zVn/7ypK2b5yUJP3tK5d19OQ5ffDgdVTcAwrrrEMA/jOzX5X09yRVJT0r6ceccxdjLRQCF8Ug6N3XbdHPPzCp/3JiVvu3TmmyNeM5SHpvUGd/j9Melot5Nd3qrtU7pidVLub02kpDt+zcqE3l0sBlCBOD2cgierII3dxCRUdOzOrRJ84MdMZdvw0fKrWGKtWm8nm7kpKVz9vq7SEer+ObOI4oAuCNL0q60zl3t6RTkn4p5vIgYFGe075tekI7pifk3OrPg27y1NlXqDebOn95RXIaOi14nPawVMjp0G071Gw6zS8uq9Zw+o7dm7QxIenJUb6PQJIQ4CJUo1Su/XaFLBfzKpdyajScqvWmqvWmGq0dF5PQmIQpyPP1wj7rEIC/nHNfcM7VWz9+VdLeOMuD4EU5CDrqTtDtv3t5oaLPPz2nr54+r8srNV24vDLU8+fNVKs3tVipSRq+Pdy3dUo/e/8tun33Jt24Y0qlYi4xZ5AzmI2sIkUZoRo1hajXrpCro6U7dXm5ftUa3EO377hyHx/XmgSdYhTVWYdh8OH99eE1AC0/Luk/9/qlmT0k6SFJ2rdvX1RlwpiCPl93vTpv1J2gr5ma0NRkXt+9f6tmykVVqg197qk5ff93XjfQRlHttnWp2tBTLy3oxu1T2rpxYuj28LprpvTD33V94ur1oN9HIC0IcBGqcSrXXrtC7pop60ffcWPXXZR9XGsS1nrZOI4oGpcP768PrwH+M7MvSdrV5VcPO+c+1brPw5Lqkj7R63Gcc49IekSSDh486EIoKkIQ5CDooHVerza/X3C8OhNp2rpxQq9eXtFTZy7p1aWqnKT33Lmrb93a2bZu3Tmh3TOTulip6X137Rl4F+VByh+nNA9mA+MgwEWowqpcS4Wctm2cuOo2XzdOCmojDemNHYUkNsi9+PD++vAakA3Oufv7/d7MPiTpQUmHnHMErvIvMyOIQdBx67z1guP2IPpipaanzlySybRlQ0mby8V1n2dt2zo9WdRSraGGZx/nNA5mA+MiwEXoxq1cB+00BBkIJklQKUZpnzn04f314TUAZvZuSb8o6T7n3FLc5UmCtNevvYw7CDpOnTdIcNweRP/cU3N6damqLRtKuvPaGU1PFnV2cbnv82QpfTdNg9lAEPi0RyTIDYLSqFTIaaYjlXhQw+zA7OvGSaNuwNEp7J0Uo/h893t/0/L98vUzisz5TUnTkr5oZo+b2W/HXaA4sVNtb+PUeYNukLRrpqzv/87rdGDfFr3lus3asqE00PME0bYCSCZmcCPg68hu2IZNbfJ5rcm4s+BhzhxG9fnu9f5euLySmu+Xz59RZIdz7ua4y5AkZGb0Nk6dN8wM68bJgt5z5y4dOzWvs4vLAz8P6buAnwhwQ8aau97WSz0epdPgc2M1TopRWKlYUX++176/knTkxGyqvl8+f0aBLMpSqusoRq3zhg2Ox3ke6mHALwS4IWNkt7tBZv1G7TTQWL1RWDOHcXy+O9/fhUotld8vPqOAP8jMWN+odd6wQSt1KwCJADd0jOy+0aCzfnQaghXGzGHcn++4nx8AJDIzwkTQCmBYBLghI0h7o2Fm/eg0BKtbR2Gcoy3i/nzH/fxB8e14ESCLfAvEutVL1FUA0oAANwIEaVcbdtbNt05DUILoaASxQVTcn+9rpiZ06LadkkmbJoffqTtubEIHIGm61UuSqKsApAIBbkQI0l437qwbI8jBBEVBbhAV1+c77cEhm9ABSJpu9dLRZ85KzrRpskhdBSDxCHARi1Fn/dIe0AQhqKAo7Rug+RAcpv09APBGaR+E7VYvnV1cPdN356bJK7dRVwFIKmolxKZUyGmmPHhKaWdAs3N6UhuKBR07Na9qvRlySZOlW+ej3nSq1BpDPU5nqrikxG3QVK03tVCp9Xx/g7oOcUr6ewBgOHMLFR05MatHnzijIydmNbdQibtIQ+tWL5VLOZWL+dDrqvXq/TgluWwArsYMLlKD2a5VQe0cnOQNmsI8RipJkvweABiOD1klUvd66dBtOyVppLpq0BntJGdoJblsAN6IABep4UNAE4Qgg6K4N4jqJmvHSCXxPQAwPJ8GYXvVS8PWVYMGhr3W/T5wx25tGiLTKwy+DFwAWUKAi9TwJaAJQpBBUdI2QMviMVJJew8ADM+3Qdhu9dIwddUwgeHaen+5Vtfx515VpdrU9GQh1hlTnwYugKwgwEWq+BLQBMHXoKjdSVxcrimXMzVbI/8cIxWctG+CAyQRg7BXWy8w7KyHOgcHinnTYy9c1GQhr71byqrVXawzpr4NXABZQICL1Ik7oAkzOCDwWH1/b981rd/7yvOqNpoq5XP6kbddn9nrETTWkgHhYRD2df0Cw271UHtwYHGxruV6Q2+/aZsKuZwKJcU6Y8rABZA+BLjAEMIMDgg8VlXrTZ2cW9Q7btqmfN7UaDidnFvUbbtn6FCMibVkQPjiHoRNil6BoaSe9dDhA3t1abmmcjGvycLqDGkSZkwZuADShW8oEqlzO/6kbM0f5jFFvhyBFMR71U5rmy4XtaFU0HS5mLrjf5LKh6OVAKRHOzB88O49Onxgr3bNlPvWQ6VCTts2TujQ7Tu0VKvr7OKylmr1RMyYDnu0IYD4MIOLxOmcyby8XJNkmposxD6r2a1RvlBZ0dnFZe2cnhyr0fNhE4ugZqBZ7xQeri0QvawvPVk7oz1IPcSMKYBxUGMgUTpnMrduKOlvX1nS375yWVunSrHPanY2ypL08sWKnnxxQX9y8pyOnJjV3EIlsMdOW+AR5Ax0O60taaP3PuDaAtGaW6joyIlZPfrEmbHbiTgFmUk1aD3EjCmAUTGDi0TpnMlcqtaVz5skaaXe1FSpkJiNJi5UVvTk7ILefN1m7Z4pj72WMe2bWAQ9A83ofXiSdm2zPrsFf6VxzXu37+Mg2TnDfo+TVg8B8AsBLhKlcyazlM+p0XCSpIlCLhGzmu1G+ezisuRMu1uNfBApxWlo8Ht1YsJIfWWjlvAk5dqysRp8lralJ92+j9dMTawbpI/6Pe6shxjoAhAkahEkSmfq0vmlqvZv26D926Z0/nI1MemUpUJOO6cnNVnMBZ5SnOSUrH6pdqS+Yli+bKwG9JKmpSe9vo+Xlmt9N6YL4nvsSxo3gORgBheJs3YmU1LiRnbTnlI8rEFS7dIwA43kSNvsFjCssNuJIGc9e30f5dQ3O2fc73Ea07gBJB8BLhJpbQplEjsEWQroCEYQNHZ0RhaE1U4End7f6/u4qVzsG6SP+z2mbQEQBgJcZEYY6/2SspYxbIN0YlhPmQxpWcuWtSwIZFfQ7UQYs579vo/9gvRxv8cMdAEIAwEuMiFraVBBBznrdWKydn2TKm2DDFnKggCCEtas53qBbK/HHud7PGyAnJYBPADxIsBFJmQpDSqsIKdfJyZL1zep0jrIkJUsCCAoYc56jvp9HOd7PGiAnLYBPADxoVeBTEjTbpbjCHtn2l67PGfl+iZZt0GGzt1OAaRXtd7UQqWmar3p5a71650gwK7rAIbBDC680S91KSvr/eKaSY37+pK2xlo2wFe9Zi6DSu9PQ/1JlhCAYRDgwguDpC5lYb1fnEFOXNeXtLVVcQ8yAAjeeksPxv1+p6X+ZAAPwDDo+SD1hkldWi8NKu3iTl0b9vp2pt2NgrS1q7UHGR68e48OH9ibyI4qgMGFufQgTfVn3G0bgHRhBhep51PqUhCpYmmZqQ5i5sCn9z4obNoE+CPMmcu01Z9padsAxI8AF6nnS+pSkKliSQ9ygtrx15f3HgC6CXPpQRrrz6S3bQCSgVoCqedD6lJQqWLrpfyOmxIclKDS7nx47wGgn7CWHlB/AvAVM7jwQhipS0GkCw/6GEGkiq03AzzuDHGQO20GOXNA2hoA34U1cxll/ZmG3ZoB+IEAF94IsgMQRLrwMI8xbsC3XsrvuCnBQe+0GXTaXZRpa3TSACTdMPVUFPVnWnZrBuAHAlxgjSDWhw77GOMGfOvNAI8zQxzUetm10jjzSicNQNIlrZ4Kqw0BgF6oWZBJ/daiBrE+dJTHGGedVecMsKQ3zACv9/ugX8ug0nRsU5qO1ACQTUHWU0Ht2RBmGwIA3TCDi8xZb3R7nHThdlpY3mykxxg1VWy9GeBxZojTuNNmGNJ2pAaA7AmqngpyFpg2BEDUCHCRKYOkSo0aDK7tENy+a1on5xYDP9qhl/VSfkdNCQ7zmIo0oZMGIOmCqKeCTimmDQEQNQJcZMqgo9vDBoPdOgQn5xb1vrv2qOFcYtaYjjpDnMb1skGjkwYgSbptJBVEPRVGtsqobQib+gEYBQEuMmWY0e1hgsFeHYKGc5opFwN9Db3MLVR09OS5K52BQ7fvCHRjkSh3Kk4qAn0ASdAvhXjceiqsbJVh25CkbZYFID3onSFTwjrYfpxNnIJQrTf16cfP6KmXFvTc+ct66qUFffrxM2yAFII0bYwFwD+DbCQ1Tj0VVjs5DDb1AzAOZnCROWHMwsWdvnqpUtPJuUvavnHyyrm3J+cu6VKlpm3TE5GUIYlIbwPgm0uVmhaX61eyg8LY8C7ubBU29QMwDgJcZFIY6baxdghsyNszgPQ2AL6ZW6jo6DNn9fSZBT177jW99fotmizkQ8kYinNZCpv6ARgHw2BAgOJKX900WdTtu6a1uFzTxUpVi8s13b5rWpsmo1n/mzSktwHwTbte2zRR0ttv3CpJ+vKzr+jScs27De+SkCYNIL2YwQU8UCrk9P63XKujz5xVpdpUuZTTodt2ZrYzQHobAN901mvlUl733bpdsxcreuDOXdq20b+lKJ1ZUXkzNZxTtd6kDgewLgJcwBO7Zsr64HfuY82pSG8D4J+19Vqt4TQ9WfA6U6dUyOnC5RWWmwAYSnZ7wICH2OF3FeltAHyTxXqN5SYARsEMLgAvxb0LKAAELWv1GstNAIyCABfe4WgYtMW5CygAhCFL9RrLTQCMggAXXuFoGAAAxpeEweK4z5gHkE4EuPBG51qd9kjvsVPzOnxgb6IbwyR0IjAe3kMAPknSYLEPadm0EUC0CHDhjTSu1UlSJwKj4T0E4JMkDhanOS2bNgKIXjprC6CLzrU6knqu1anWm1qo1GLfhZHdIdOP9xCAb7oNFtebTpVaI+aSpQ9tBBAPZnDhjUHW6iRpJDWNM864Gu8hAN+wsVNwaCOAeBDgwiv91uokLe2KTkT68R4C8E2/wWJf15KG9bpoI4B4EODCO73W6iRtJJXdIdOP9xCAj9qDxZcqNcmkTZPFRGVABSnM10UbAcSDABeJEubocBJHUn3YHTLreA8B+OjC5ZUrgZ+cdHmlpt0zGxKRARWUKDK7aCOA6BHgIjHCHh1O6khqmneHxCreQwA+WRv4nb+8opNzi9p3zZSk+DOgghJVZhdtBBAtAlwkQlTrYxlJBQCEyYd1qmsDv5lyUZK0UKlp68aJKxlQeTMtVGpdX2sarkMSM7sAjI8AF4kQ5fpYRlIBAGHwZZ3q2sCvVne6fdcm1V1TZxeXVciZbt81rc88eabra03LdUhqZheA8RDgIhEGHUVNyohwUsoBAEiGpO3UP45ugd/737JH10xNqFJrKG+mzzx5putrlZSq60BmF+AfAlwkQprOsE1KOQAAyZG0nfr7GWSQtlfgVyrktFCp9XytklJzHdrI7AL8QoCLxIj6DNtRZmF9GqEPEzPcALImLes5hxmk7RX4rfdaO3+3WKmpVm8qbxbq6wKANnqeSJRSIaeZcvENDWq3kfF6010ZLR7W3EJFR07M6tEnzujIiVnNLVQG+rugy+GjUa/toKr1phYqNVXrzUAfNynPByCd2plIS7W6zi4ua6lWT9x6zs5B2p3Tk9pQLOjYqfmh67d+r7Xzd6fOXtJfPvuKlqoNfebJM4G3BwDQDTO4SIUgR8bHmYVNywh9XMKe4Y46PZx0dADDSPp6ziDTqPu91l0zZb3vrj36w2+8qHfcvE3Tk8VMZTyRxQTEi28dUiHIkfFxZmHTMEIfh/Ys56Uu67KCmuEOauYhqc8HwA+9MpGSoHOQVtLYg7T9XmvDOZUKOU1Prh4xlJWMp7CzmACsjxlcpEZQI+PjzsImfYQ+ap2znJLT5eWGKhPBz3BHvYFLmjaMAYBBRHksThYzntinA0gGAlykShA7HQbRwLPj4qpujfnl5SVdWq4F3nkKurO0XgpZFjtnAMKVhNTVqAZps3jGLAOjQDIQ4CKTmIUNRrfGfGqyqAe+Y5eK+Vyg1zbIztIga2uz2DkDsiTqYDNJa/qjGqTNWlvLwCiQDAS4yCxmYcfXqzHfNBnO+rMgOkvDpJBlrXMGZEXUwWaWU1ez1NYyMAokAwEu4KkoZifiaMzH7SwNm0KWpc7ZqJKQdgkMKo5gk9TV7GBgFIgfAS7goShnJ5LYmPcLuEghC1aS0i6BQcQRbAZV7zCYlA4MjALxIsAFPBPH7ESSGvP1Ai5SyIKT5bRLpFccg1xB1DsMJgHAYAhwAc9kORWuX8Al6crMRxJnndMoy581pFdcg1zj1DtZG0xiphrAOAhwAc+EPTuR5I5Hr4Dr+fOv6bEXLr5h5iNp5U8b0r2RVnENco2a7ZKlwSRmqgGMy69aEcCV2YmlWl1nF5e1VKsHNjsxt1DRkROzevSJMzpyYlZzC5UAShyczoBL0ur/nfS15y5oQ7GgndOT2lAs6NipeVXrzZhLm35hftaAsJUKOc2Uw9nxPWjd6jYfB5M6Z6qprwGMihlcwENhzE6kIUWuW+rhPfu36OvPvZqJmY84kO4NhG+ctOokZ92sldSZ6jRdQwAEuIC3gt74Kakdj7XWBlySdOKFi6TRhihJm4wBvhplMClt6b5JXPaQtmsIgBRlAANKU4pcZ+phtzTat9+0VZVag7Q3ACOr1ptaqNQirUeGSatOY7pv0pY9pPEaAmAGF8CA0ny8TufMx8JSVV9+9jyj8QBGFtSsXpipr2nJulkrScse0noNgawjwAUwsG7pvwuVWuydkEG0y/e50+cTvY4YQLIFtR9B2KmvSUz3HVRSlj2k+RoCWRZ/7QEgVdopchcuryR6R+Vuuo3G15tOlVoj5pIBSIsg6pEoUl+Tlu6bRlxDIJ1imcE1sw9K+oik2yXd65w73uN+75b065Lykj7mnPtoZIUEMq5f6lwadlTuhtF4AOMKoh6JKvU1Sem+acU1BNInrhTlpyT9A0n/rtcdzCwv6bckvUvSrKSvm9mnnXN/HU0RgexaL3UureuS0ryOGEAyBFGPRDnYlpR03zTjGgLpEkuA65w7KUlm1u9u90r6tnPudOu+vy/pA5IIcIEQDTI7m+aZUEbjAYxr3HqEwTYACE+SN5m6VtKLHT/PSvquXnc2s4ckPSRJ+/btC7dkgMcGmZ1dr3MW5s6gQWA0HsC4xq1HGGwDgHCEFuCa2Zck7eryq4edc58a5CG63OZ63dk594ikRyTp4MGDPe8HoL9BZ2d7dc7C3hkUAHzBYBsABC+0ANc5d/+YDzEr6bqOn/dKOjPmYwJYxzCpc2s7Z2ndfCqJkj4LDgAAkERJTlH+uqRbzGy/pJck/aCkH463SEA2jJo6l9bNp5KGWXAAAIDRxNLjNLPDZjYr6W2SPmNmn2/dvsfMPitJzrm6pJ+W9HlJJyX9gXPu6TjKC2RR+7zbUXcGlZSqzaeSIorzMbs950KlFupzAAAARCGuXZSPSDrS5fYzkt7b8fNnJX02wqIBGAM7g44v6llwZosBAIBPkpyiDGCNNKzLZGfQ8UR5BBNrpgEAgG8IcIEhxRVkpmmmjZ1BRxflLDhrpgEAgG8IcIEBtIPahaWqvnL6fORBJjNt2RLVLHiUs8UAAABRoGcMrGNuoaIjJ2b1Xx+f1W8c/RtV683INv9p6zbTVm86VWqN0J8b8Rhlk69RnuO+W7drqVbX2cVlLdXqrJkGAACpxgwu0MdVM6fFvPI507fPvabt0xNd0znDSl9mpg1hYc00kA5p2IMBAJKAABfoo3PmtN5oarKYV6XW0Eq9qZrcVUFmmGtk2Z0YYWLNNJBsadqDAQDiRo8G6KNz5rSQz+nm7RvVbDpdXKpdlc4Zxdml7Zm2B+/eo8MH9tK5AYAMiONsbABIM2ZwgT7WzpyWijn97P23aFO5dFWaWFS70QY100aqGwCkA7udA8BwCHCBdQyyRjFNa2RJdQOA9EhT+wIAScDQHzCA9Xa0TctutKS6AUC6pKV9AYCkYAYXCEgadqMl1Q0A0icN7QsAJAUBLhCgpO9GS6obAKRT0tsXAEgKakogQ0h1AwAAgM+YwQUyhlQ3AAAA+IoAF8ggUt0A+ISjzwAAbQS4AAAgtZJy9BlBNgAkAwEuAABIpc6jz9ob5x07Na/DB/ZGGmQmJcgGALDJFBKkWm9qoVLjTFYAwEC6HX1WbzpVao3IysD54gCQLMzgIhHSNvpNKhoAxC8JR59xvjgAJAs1L2KXttHvuYWKjpyY1aNPnNGRE7OaW6jEXSQAyKQkHH3WGWRLCizIJqsJAEbDDC5il6bR76Ss9wIArIr76LN2kH3s1LwurdSuZCGNU460ZTUBQJIQ4CJ2YaaYBZ1K3BmM1xtNOTkt1xuJDMaDREo2gCSL++izIINsBlIBYDwEuIhdGKPfUjgj4O1g/OWLFX17/jUt1xpqNJ3eeesOzZSLYz12UjGTAADrCyrITlNWEwAkETUlEqE9+v3g3Xt0+MDesQOosNb1lgo5vf2mrfrm7EVVag1NFvN683Wb9ZXT571cJ5W29dEAkHZhrekFgKxgBheJEWSKWZgj4JvKJd21d7M2byhqopBTIZfT2cVlL0fXmUkAgGiFldUEAFlBgAsvhbmut1zMa7KYU06mQi7n9eh60NeRtbwAsL64N84CgDQjwIWXwhwBT9Po+rgBZZCvlbW8ADC4uDfOAoC0IsCFt8IcAU/D6HpQAWUQr5VdQQEA6yHLB0AQCHDhtTBHwJM8uh50QDnua2UtLwCgH7J8AASFniXgoW4BZb3pVKk1YikPu4ICAHphx34AQSLABTyUtICyvZZ3qVbXSwtLOn95RW+/aSuztz1U600tVGp07gBkQtIGZQGkG71LwEOdAeXZxWUt1eqhbYQ1aDC2a6ast924Vc2mZGb68rPnNbdQCbw8aTe3UNGRE7N69IkzOnJilmsEwHtJG5QFkG6swQU8FcVGWMOsmarWm/rK6fPaNjXBRlM9sBkXgCxK0+kEAJKPABfwWJgbYQ0bjLHR1Pq4RgCyKg2nEwBIB2oPACMZds0UKWjr4xoByLJSIaeZcpHgFsBYqEEAjGTYYCzKdcFpxTUCAAAYDynKQAZV682x08BGWTNFCtr6uEaAX4KobwEAgyPABTJmmI2h1jNKMBbmumBfcI0APwRZ3wIABkMPCsiQzo2hdk5PakOxoGOn5sc6b5U1UwDwRmHUtwCA9dEjBTJk2I2hAACjob4FgHgQ4AJaHWlfqNS8H1lnl14AQTGznzczZ2bb4i5LElHfAkA8WIOLzMvSGqlRNoYCgLXM7DpJ75L0QtxlSSrqWwCIBwEuMq1zjVS5lFel2tCxU/M6fGCvt50QdukFEIBfk/QLkj4Vd0GSjPoWAKJHgItM67ZG6tJKTZVaw+uOCLv0AhiVmb1f0kvOuW+a2Xr3fUjSQ5K0b9++CEqXPNS3ABAtAlxkWucaqfYMblRrpDgbEUBSmdmXJO3q8quHJf2ypO8b5HGcc49IekSSDh486AIrYMpR/wNAeAhwkWlxrZHK0rpfAOnjnLu/2+1mdpek/ZLas7d7JT1mZvc65+YiLGJqhV3/EzwDyDoCXGRe1GuksrjuF4AfnHNPStrR/tnMnpN00Dn3SmyFSpGw638GTwGAY4IASaszuTPlYiQBJmcjAkA2hVn/dwbPO6cntaFY0LFT894ffwcAaxHgAhHjbEQAvnDO3cDs7eDCrP8ZPAWAVQS4QMTa636XanWdXVzWUq3O2YgAkAFh1v8MngLAKtbgAjHgbEQAyKaw6v+4Nk0EgKQhwAViwtmIAJBNYdX/DJ4CAAEuIIljFQAAfmDwFEDWEeAi8zhWAQAAAPADQ3zINI5VQJJU600tVGp8/gAAAEbEDC4yrduxCpdWaqrUGoGneJEGjX7IJAAAABgfAS76SlpQFnR5Oo9VKJfyoR2rQPCCfjozCdqfw2On5nX4wN5EfO+ApEhamwQASB4CXPSUtKAsjPJEcawCwQvWE2UmAZBWSWuTAADJRM8JXSVtbWqY5Wkfq/Dg3Xt0+MDewDtM3YKXetOpUmsE+jxIr85MAkmhZRIAaZW0NimtWOcPIAuYwUVXSZtRCrs8YR6rEFUaNNIrikwCIM2S1ialETPgALKCABddJS0oS1p5hkHwgkG0MwlYXwi8UZrbgCRgqQyALCHARVdJC8qSVp5hEbxgEGFmEgBplvY2IG7MgAPIEgJc9JS0oCxp5RkWwQsAjC7tbUCcmAEHkCUEuOgryKAsiOMdCBIBILtoA0bDDDiALCHARSTY3AIAgPgwAw4gK6jdEDqOdwAAIH6lQk4z5SLBLQCvUcMhdJwDCwAAACAKBLgIXefmFpLY3AIAAABAKAhwEbr25hZLtbrOLi5rqVZncwsAAAAAgWOTKUSCzS2yIYidsgEAAIBREeAiMhzv4Dd2ygbgGwbtACB9CHA9QAOMuHXulF0u5VWpNnTs1LwOH9jLZxJAKjFoBwDpRICbcjTASIJuO2VfWqmpUmsQ4AJIHQbtACC9qKVTjPNlkRTslA3AJxxvBwDpRYCbYjTASAp2ygbgEwbtACC9SFFOsc4GuJ1CRQOMuLBTNgBftAftjp2a16WV2pUlQNRrAJB8BLgpRgOMpGGnbAC+YNAOANKJADflaIABAAgHg3YAkD4EuB6gAQYAAAAANpkCAAAAAHiCABcAAAAA4AUCXAAAAACAFwhwAQAAAABeIMAFAAAAAHiBABfAUKr1phYqNVXrzbiLAgAAAFyFY4IADGxuoaJjp+ZVbzoVcqb7bt2uXTPluIs1smq9yRnSAAAAHiHABTCQar2pY6fmtaFYULmUV6Xa0LFT8zp8YG8qg0PfgnUAAACQogxgQJVaQ/WmU7mUlySVS3nVm06VWiPmkg2vM1jfOT2pDcWCjp2aJ+0aAAAg5QhwAQykXMyrkDNVqqsBbaXaUCFnKhfzMZdseD4F6wAAAHgdAS6AgZQKOd1363Yt1eo6u7ispVpd9926PZXpyT4F6wAAAHgda3ABDGzXTFmHD+xN/cZM7WD92Kl5XVqpXVmDm9bXAwAAgFWxBLhm9kFJH5F0u6R7nXPHe9zvOUmLkhqS6s65g1GVEUB3pULOi0DQl2AdAAAAr4trBvcpSf9A0r8b4L7vdM69EnJ5AGSQL8E6AAAAVsUS4DrnTkqSmcXx9AAAAAAADyV96sJJ+oKZfcPMHup3RzN7yMyOm9nx+fn5iIoHAAAAAEiK0GZwzexLknZ1+dXDzrlPDfgw73DOnTGzHZK+aGbPOOf+vNsdnXOPSHpEkg4ePOhGKjQAAAAAILVCC3Cdc/cH8BhnWv8/Z2ZHJN0rqWuACwAAAADItsSmKJvZlJlNt/8t6fu0ujkVgISq1ptaqNRUrTfjLgoAAAAyKK5jgg5L+r8lbZf0GTN73Dn3gJntkfQx59x7Je2UdKS1EVVB0n9yzn0ujvICWN/cQkXHTs2r3nRXzpXdNVOOu1gA4L1qvcmRZwDQEtcuykckHely+xlJ7239+7SkN0dcNAAjqNabOnZqXhuKBZVLeVWqDR07Na/DB/bS2QKAEDG4CABXo+cJeCDu1OBKraF606lcykuSyqW86k2nSq0RS3mGEfe1A4BRdQ4u7pye1IZiQcdOzVOfAci0WGZwAQQnCaP35WJehZypUm1cmcEt5EzlYj7ScgwrCdcOAEbVbXDx0kpNlVqD7BkAmUXtB6RYUkbvS4Wc7rt1u5ZqdZ1dXNZSra77bt2e6A5WUq4dAIyqc3BRUmoGFwEgTMzgAimWpNH7XTNlHT6wNzUbnSTp2gHAKNqDi8dOzevSSu1KJgp1GIAsI8AFUixpqcGlQi41HaukXTsAGEXaBhcBIGzUgkCKpTE1OCm4dgB8USrkNFMuUn8BgJjBBVKP0fvRce0AAAD8QoALeCBNqcFJw7UDELZqvclAGgBEhAAXAAAgJBxHBgDRYhgRAAAgBBxHBgDRI8AFAAAIQbfjyOpNp0qtEXPJAMBfBLgAAAAh6DyOTBLHkQFABAhwgQyr1ptaqNRIlwOAEHAcGQBEj02mgIxi4xMACB/HkQFAtKhlgQxi4xMAiE6pkNNMuThQcEtmDQCMhxlcIIO6bXxyaaWmSq3B7AIAxITMGgAYHz1ZIIPY+AQAkoXMGgAIBgEukBGdaW9sfAIAycKRQgAQDFKUgQzolfbGxicAkAydmTXlUp7MGgAYET1awHP90t6G2fgEADCefhtIkVkDAMFgBhfwHBtKAUD8BtlAiswaABgfNScQgTiPfWBDKQCI1zAbSJFZAwDjYQYXCFncxz60096OnZrXpZXalTLQeQKAaJBJAwDRIcAFQtQ5at/eNOTYqXkdPrA30k4NaW8AEB82kAKA6NDLBUKUpGMfSHsDgHiwgRQARIcZXCBEjNoDACQyaQAgKtSuQIgYtQeA+MW50V8nMmkAIHzM4AIhY9QeAOIT90Z/AIBo0dMGIsCoPQBEb5jjeQAAfqC3DQAAvJSkjf4AANEgwAUAAKkw7Frazo3+JLHRHwBkAGtwAQBA4o2ylra90d+xU/O6tFK78ncsFwEAfxHgAgCAROtcS9s+cu3YqXkdPrB33WCVjf4AIFuo5QEAQKKNu5aWjf4AIDuo6QEAQKKxlhYAMCgCXAAAkGjttbRLtbrOLi5rqVZnLS0AoCvW4AIAgMRjLS0AYBAEuAAAIBVKhRyBLQCgL1oJAAAAAIAXCHABAAAAAF4gwAUAAAAAeIEAFwAAAADgBQJcAAAAAIAXCHABAAAAAF4gwAUAAAAAeIEAFwAAAADgBQJcAAAAAIAXCHABAAAAAF4gwAUAAAAAeIEAFwAAAADgBQJcAAAAAIAXCHABAAAAAF4gwAUAAAAAeIEAFwAAAADgBQJcAAAAAIAXCHABAAAAAF4gwAUAAAAAeIEAFwAAAADgBQJcAAAAAIAXCHABAAAAAF4gwAUAAAAAeIEAFwAAAADgBQJcAAAAAIAXCHABAAAAAF4gwAUAAAAAeIEAFwAAAADgBQJcAAAAAIAXCHABAAAAAF4gwAUAAAAAeIEAF0DkqvWmFio1VevNuIsCAIlDHQkAoyvEXQAA2TK3UNGxU/OqN50KOdN9t27Xrply3MUCgESgjgSA8TCDCyAy1XpTx07Na0OxoJ3Tk9pQLOjYqXlmKQBA1JEAEAQCXACRqdQaqjedyqW8JKlcyqvedKrUGjGXDADiRx0JAOMjwAUQmXIxr0LOVKmudtYq1YYKOVO5mI+5ZAAQP+pIABgfAS6AyJQKOd1363Yt1eo6u7ispVpd9926XaUCVREAUEcCwPjYZApApHbNlHX4wF5Vag2Vi3k6bgDQgToSAMZDgAsgcqVCjk4bAPRAHQkAo6P2BAAAAAB4gQAXAAAAAOAFAlwAADAUM/sZM/uWmT1tZr8Sd3kAAGhjDS4AABiYmb1T0gck3e2cWzGzHXGXCQCANmZwAQDAMH5S0kedcyuS5Jw7F3N5AAC4ggAXAAAM41ZJf8fM/srMjpnZPXEXCACANlKUAQDAVczsS5J2dfnVw1rtO2yR9N2S7pH0B2Z2o3POdXmchyQ9JEn79u0Lr8AAALQQ4AIAgKs45+7v9Tsz+0lJn2wFtF8zs6akbZLmuzzOI5IekaSDBw++IQAGACBopCgDAIBh/FdJ3ytJZnarpJKkV+IsEAAAbczgAgCAYXxc0sfN7ClJVUkf6paeDABAHAhwAQDAwJxzVUn/KO5yAADQDSnKAAAAAAAvEOACAAAAALxAgAsAAAAA8AIBLgAAAADAC7EEuGb2q2b2jJk9YWZHzGxzj/u928y+ZWbfNrMPR1xMAAAAAECKxDWD+0VJdzrn7pZ0StIvrb2DmeUl/Zak90i6Q9IPmdkdkZYSAAAAAJAasQS4zrkvOOfqrR+/Kmlvl7vdK+nbzrnTrSMJfl/SB6IqIwAAAAAgXZKwBvfHJf1xl9uvlfRix8+zrdu6MrOHzOy4mR2fn58PuIgAAAAAgKQrhPXAZvYlSbu6/Oph59ynWvd5WFJd0ie6PUSX21yv53POPSLpEUk6ePBgz/sBAAAAAPwUWoDrnLu/3+/N7EOSHpR0yDnXLSCdlXRdx897JZ0JroQAAAAAAJ/EtYvyuyX9oqT3O+eWetzt65JuMbP9ZlaS9IOSPh1VGQEAAAAA6RLXGtzflDQt6Ytm9riZ/bYkmdkeM/usJLU2ofppSZ+XdFLSHzjnno6pvAAAAACAhAstRbkf59zNPW4/I+m9HT9/VtJnoyoXAAAAACC9krCLMgAAAAAAYyPABQAAAAB4gQAXAAAAAOAFAlwAAAAAgBcIcAEAAAAAXiDABQAAAAB4gQAXAAAAAOAFAlwAAAAAgBcIcAEAAAAAXiDABQAAAAB4gQAXAAAAAOAFc87FXYbAmdm8pOfjLkfLNkmvxF2IEPC60oXXlR4+viYp3a/reufc9rgLkXa0zd7g2o2H6zc6rt14fLt+PdtmLwPcJDGz4865g3GXI2i8rnThdaWHj69J8vd1IZ34PI6Oazcert/ouHbjydL1I0UZAAAAAOAFAlwAAAAAgBcIcMP3SNwFCAmvK114Xenh42uS/H1dSCc+j6Pj2o2H6zc6rt14MnP9WIMLAAAAAPACM7gAAAAAAC8Q4AIAAAAAvECAGxEz+xkz+5aZPW1mvxJ3eYJkZj9vZs7MtsVdliCY2a+a2TNm9oSZHTGzzXGXaVRm9u7W5+7bZvbhuMsTBDO7zsz+1MxOtr5PPxt3mYJkZnkzO2Fmj8ZdlqCY2WYz+6PW9+qkmb0t7jIBbb61YVHwqZ2Mio/tcVR8b/ej4GPfoh8C3AiY2TslfUDS3c6575D0f8ZcpMCY2XWS3iXphbjLEqAvSrrTOXe3pFOSfinm8ozEzPKSfkvSeyTdIemHzOyOeEsViLqkf+acu13Sd0v6KU9eV9vPSjoZdyEC9uuSPuecu03Sm+Xf60NKedqGRcGLdjIqHrfHUfG93Y+Cj32Lnghwo/GTkj7qnFuRJOfcuZjLE6Rfk/QLkrzZrcw59wXnXL3141cl7Y2zPGO4V9K3nXOnnXNVSb+v1YGWVHPOveyce6z170WtVtjXxluqYJjZXknvk/SxuMsSFDPbJOl7JP2OJDnnqs65i7EWCnidd21YFDxqJ6PiZXscFZ/b/Sj42LdYDwFuNG6V9HfM7K/M7JiZ3RN3gYJgZu+X9JJz7ptxlyVEPy7pj+MuxIiulfRix8+z8qxBMLMbJB2Q9FcxFyUo/0arne1mzOUI0o2S5iX9+1Z61MfMbCruQgEZacOikOZ2Miret8dR8bDdj8K/kX99i74KcRfAF2b2JUm7uvzqYa1e5y1aTau4R9IfmNmNLgVnNK3zun5Z0vdFW6Jg9HtdzrlPte7zsFbTYj4RZdkCZF1uS/xnblBmtlHSf5H0c865S3GXZ1xm9qCkc865b5jZ3425OEEqSHqrpJ9xzv2Vmf26pA9L+l/iLRaywNc2LAoZaSej4nV7HBXf2v0oeNy36IsANyDOuft7/c7MflLSJ1sB7dfMrClpm1ZnNRKt1+sys7sk7Zf0TTOTVtOTHjOze51zcxEWcST93i9JMrMPSXpQ0qE0DET0MCvpuo6f90o6E1NZAmVmRa02cp9wzn0y7vIE5B2S3m9m75U0KWmTmf1H59w/irlc45qVNOuca4+2/5FWA1wgdL62YVHISDsZFW/b46h42u5Hwde+RV9GnRQ+M/sJSXucc/+rmd0q6aikfT41CGb2nKSDzrlX4i7LuMzs3ZL+L0n3OecSPwjRi5kVtLr5xyFJL0n6uqQfds49HWvBxmSrvdHflXTBOfdzMRcnFK1R1p93zj0Yc1ECYWZ/Iem/d859y8w+ImnKOffPYy4WcIVPbVgUfGkno+JrexyVLLT7UfCtb9EPM7jR+Likj5vZU5Kqkj7kU3Drod+UNCHpi62R/a86534i3iINzzlXN7OflvR5SXlJH/ekMX2HpH8s6Ukze7x12y875z4bX5Gwjp+R9AkzK0k6LenHYi4PgPF40U5GxeP2OCq0+xgKM7gAAAAAAC+wizIAAAAAwAsEuAAAAAAALxDgAgAAAAC8QIALAAAAAPACAS4AAAAAwAsEuECAzKxhZo+b2VNm9odmtqF1+y4z+30ze9bM/trMPts6E7n9d//UzJbNbCa+0kfLzH65z+/+tZm9aGavRVkmAAAApBsBLhCsinPuLc65O7V65vFPtA4oPyLpz5xzNznn7pD0y5J2dvzdD2n14PfDkZc4Pj0DXEn/r6R7oyoIAAAA/ECAC4TnLyTdLOmdkmrOud9u/8I597hz7i8kycxukrRR0v+s1UC3KzP7BTN70sy+aWYfbd32FjP7qpk9YWZHzGxL6/Y/M7NfM7M/N7OTZnaPmX3SzP7GzP5V6z43mNkzZva7rb//o44Z50NmdqL1fB83s4nW7c+Z2b80s8dav7utdftU635fb/3dB1q3/2jreT/Xeu5fad3+UUnl1mz3J9a+VufcV51zL495/QEASDQz+1Mze1fr3//KzH4j7jIBaUeAC4TAzAqS3iPpSUl3SvpGn7v/kKT/R6sB8ZvMbEeXx3uPpL8v6bucc2+W9CutX/2epF90zt3deq5/0fFnVefc90j6bUmfkvRTrbL8qJltbd3nTZIeaf39JUn/o5lNSvoPkn7AOXeXpIKkn+x43Fecc2+V9G8l/Xzrtocl/Ylz7h6tBvS/amZTrd+9RdIPSLpL0g+Y2XXOuQ/r9dnuf9jn2gAA4LN/IelhM/uHkg5I+qcxlwdIPQJcIFhlM3tc0nFJL0j6nQH+5gcl/b5zrinpk5I+2OU+90v69865JUlyzl1ordfd7Jw71rrP70r6no6/+XTr/09Keto597JzbkXSaUnXtX73onPuL1v//o+S/hutBr1/65w71eNxP9n6/zck3dD69/dJ+nDrtf+ZpElJ+1q/O+qcW3DOLUv6a0nX978cAABkg3PuzyWZpP9J0g865xpmdqOZ/Y6Z/VHMxQNSqRB3AQDPVJxzb+m8wcyelvT93e5sZndLukXSF1eX6qqk1QD0t9beVZIbsiwrrf83O/7d/rn93V/7mK71XIM8bqPjcUzSf+uc+1bnHc3su9Y8d+ffAACQaWZ2l6TdWs2OWpQk59xpSf+EABcYDTO4QPj+RNKEmf0P7Rtaa2Lv02p68keccze0/tsj6VozWzvL+QVJP96xRvYa59yCpFfN7O+07vOPJR3TcPaZ2dta//4hSf+fpGck3WBmNw/xuJ+X9DOtDbVkZgcGeO6amRWHLC8AAF4ws92SPiHpA5Ium9kDMRcJ8AIBLhAy55zT6u7I72odE/S0pI9IOqPV9OQja/7kSOv2zsf4nFZTjo+30oDba18/pNX1rk9oda3r/zZk8U5K+lDr76+R9G9bqcQ/JukPzexJrc74/nafx5Ck/11SUdITZvZU6+f1PNK6/xs2mTKzXzGzWUkbzGzWzD4y8CsCACDhWgPWn5T0z5xzJ7Xabn4k1kIBnrDVvjeArDGzGyQ92jrSCAAAJEBrI8h/Leldkj7mnPs/Yi4SkCqshQMAAAASwjl3XtJPxF0OIK2YwQUAAAAAeIE1uAAAAAAALxDgAgAAAAC8QIALAAAAAPACAS4AAAAAwAsEuAAAAAAALxDgAgAAAAC8QIALAAAAAPDC/w/0/7k956UMkAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "<Figure size 1152x1152 with 2 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "fig, ax = plt.subplots(figsize=(16, 16), ncols=2)\n", - "data.plot.scatter(x=\"pca1\", y=\"pca2\", alpha=0.3, ax=ax[0])\n", - "data.plot.scatter(x=\"x1\", y=\"x2\", alpha=0.3, ax=ax[1])\n", - "ax[0].set(xlabel=\"PCA component 1\", ylabel=r\"PCA component 2\", title=\"PCA representation\")\n", - "ax[1].set(xlabel=\"$x_1$\", ylabel=r\"$x_2$\", title=\"Original data\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "54e538c6", - "metadata": {}, - "source": [ - "It is interesting to understand how many PCA components are necessary to explain the variance of the data. This is easily obtainable from the PCA object." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "fa5ebbce", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEWCAYAAACe8xtsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVd0lEQVR4nO3de7RkZX3m8e9DNw00dwK23EIjCmsJMogNJhIEjBIZSCJZiKJRZEWQGW9IRochTMAJWUsympDEKEEQULCJILhUECUiihkVukkjNBcDBKUFBSIQEJDbb/6o3VIcT3fXe7qr61y+n7Vqnap3X+q3+3Keet/91t6pKiRJarHOqAuQJE09hockqZnhIUlqZnhIkpoZHpKkZoaHJKmZ4aEZKcm5SU4dcN2vJjlyCDXMT1JJZq/pfY/zXvsmuW3Y76OZY+j/aKXVkeQuYB7wTF/zuVX1nrVVQ1UdtLbea1iq6hpgl1HXoenD8NBU8PtV9c+jLmKqSjK7qp4edR2aXhy20pSV5JNJLu57fVqSb6Rn/yTLkpyY5IEkdyV56wr2s3mSryS5P8mD3fPt+pZfneSd3fN3JPlOko926/57koP61t00ydlJ7k3ykySnJpnVLZvVbfdAkjuBg1dybCf0H1vX9rdJ/q57flSSW5I8kuTOJO/qW2/5sf/PJD8FzlneNmb/d3Tb35zk0L5lqzrGLZKck+SebvkX+5YdkmRJkoeS/L8ku6/oGDW1GR6ayv4U2L37Zbcv8CfAkfXcNXdeCGwJbAscCZyZZLyhm3WAc4AdgN8EHgc+vpL3fSVwW7fvvwLOTpJu2XnA08CLgZcDBwLv7JYdDRzStS8ADlvJeywE/muSTaAXPMDhwOe65fd1+9oEOAr4myR79m3/QmCL7piOGWf/dwD7ApsCHwbOT7L1gMf4WWAusCvwAuBvuhr3BD4NvAv4DeAfgS8lWW8lx6mpqqp8+Ji0D+Au4FHgob7H0X3L9wZ+DvwIOKKvfX96v8Q37Gv7PPC/u+fnAqeu4D33AB7se3018M7u+TuA2/uWzQWK3i/recAvgQ36lh8BfLN7fhVwbN+yA7ttZ6+gju8Ab++evw64YyV/Tl8E3t937E8C64/581i2ku2XAH84wDFuDTwLbD7OPj4J/MWYttuA/Ub978jHmn94zkNTwRtqBec8qurabgjoBfTCod+DVfWLvtc/ArYZu48kc+l9en49sHnXvHGSWVX1zNj1gZ/2vf9j3Qfyjeh90l8XuPe5D+msA9zdPd+m7/nyelbmc/TC5zPAW3iu10E3jHQysHP3HnOBG/u2vb+qnljRjpO8HTgemN81bUSvlzHIMf68qh4cZ7c7AEcmeW9f2xzG+TPX1Oewlaa0JO8G1gPuAT40ZvHmSTbse/2b3Xpj/Sm9mUivrKpNgFcv331jOXfT63lsWVWbdY9NqmrXbvm9wPZj6lmZi4D9u/Mvh9KFRzcM9AXgo8C8qtoMuHxMvSu8XHaSHYBPAe8BfqPb/iYGO967gS2SbLaCZX/Zd+ybVdXcqlo4wH41xRgemrKS7AycCvwx8DbgQ0n2GLPah5PM6c6JHELvF/JYG9M7z/FQki3ofaJvVlX3Al8HPpZkkyTrJNkpyX7dKp8H3pdkuySbAyesYn/30xsyOwf496q6pVs0h15g3g883fVCDmwodUN64XI/9E6+A7s1HONXgU90Ew3WTbI8bD8FHJvkld2khQ2THJxk44baNEUYHpoKvpzk0b7Hpel9se584LSquqGq/g04Efhs3wnanwIP0uttXEDvfMOt4+z/dGAD4AHge8AVq1Hr2+n9cr+5e++L6Z0ngN4v168BNwDXA5cMsL/PAa+lb8iqqh4B3kcvjB6kN6T1pUELrKqbgY8B3wV+BrwM+JdBt6cX1E8Bt9I7cX9ct99F9CYFfLyr63Z65080DaXKm0Fp+kmyP3B+VW23ilUlTYA9D0lSM8NDktTMYStJUjN7HpKkZjPiS4JbbrllzZ8/f9RlSNKUsnjx4geqaqvxls2I8Jg/fz6LFi0adRmSNKUkWeFVEBy2kiQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUbEZ8SfDGnzzM/BMuG9r+7/rIwUPbtyRNRvY8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUbWngkeSbJkiQ3Jbkoydyu/YVJLkxyR5Kbk1yeZOe+7T6Q5Ikkm65gv3sk+W6SpUl+kORNwzoGSdL4htnzeLyq9qiq3YAngWOTBLgUuLqqdqqqlwInAvP6tjsCuA44dAX7fQx4e1XtCrweOD3JZsM6CEnSr1tbw1bXAC8GDgCeqqozli+oqiVVdQ1Akp2AjYCT6IXIr6mqH1bVv3XP7wHuA7YabvmSpH5DD48ks4GDgBuB3YDFK1n9CGAhvbDZJckLVrHvvYE5wB3jLDsmyaIki5557OGJli9JGscww2ODJEuARcCPgbMH2ObNwIVV9SxwCfDGFa2YZGvgs8BR3frPU1VnVtWCqlowa+64p08kSRM0e4j7fryq9uhvSLIUOGy8lZPsDrwEuLJ3aoQ5wJ3AP4yz7ibAZcBJVfW9NVu2JGlV1vZU3auA9ZIcvbwhyV5J9qM3ZHVKVc3vHtsA2ybZoX8HSebQO+n+maq6aG0WL0nqWavhUVVFbxbV67qpukuBU4B76A1ZXTpmk0u79n6HA68G3tFNBV6SZI+hFi5Jep6hDVtV1UYraL+HXgCMteM46x4/Ttv5wPmrXaAkacL8hrkkqZnhIUlqZnhIkpoZHpKkZoaHJKmZ4SFJamZ4SJKaGR6SpGaGhySpmeEhSWpmeEiSmhkekqRmhockqZnhIUlqZnhIkpoZHpKkZoaHJKmZ4SFJamZ4SJKaGR6SpGaGhySpmeEhSWpmeEiSmg0UHkn2GaRNkjQzDNrz+PsB2yRJM8DslS1M8tvAq4Ctkhzft2gTYNYwC5MkTV4rDQ9gDrBRt97Gfe3/CRw2rKIkSZPbSsOjqr4FfCvJuVX1o7VUkyRpkltVz2O59ZKcCczv36aqXjOMoiRJk9ug4XERcAZwFvDM8MqRJE0Fg4bH01X1yaFWIkmaMgadqvvlJP89ydZJtlj+GGplkqRJa9Cex5Hdzw/2tRXwojVbjiRpKhgoPKpqx2EXIkmaOga9PMncJCd1M65I8pIkhwy3NEnSZDXoOY9zgCfpfdscYBlw6lAqkiRNeoOGx05V9VfAUwBV9TiQoVUlSZrUBg2PJ5NsQO8kOUl2An45tKokSZPaoLOtTgauALZPcgGwD/COYRW1pr1s201Z9JGDR12GJE0bg862ujLJ9cBv0Ruuen9VPTDUyiRJk9agPQ+A9YEHu21emoSq+vZwypIkTWYDhUeS04A3AUuBZ7vmAgwPSZqBBu15vAHYpao8SS5JGni21Z3AusMsRJI0dQza83gMWJLkG/RN0a2q9w2lKknSpDZoeHype0iSNPBU3fOSzAF27ppuq6qnhleWJGkyG3S21f7AecBd9L7nsX2SI52qK0kz06DDVh8DDqyq2wCS7AwsBF4xrMIkSZPXoLOt1l0eHABV9UOcfSVJM9agPY9FSc4GPtu9fiuweDglSZImu0HD478B7wbeR++cx7eBTwyrKEnS5DbobKtfJvk48A16lye5raqeHGplkqRJa9DZVgcDZwB30Ot57JjkXVX11WEWJ0manFpmWx1QVbfDr24GdRlgeEjSDDTobKv7lgdH507gviHUI0maAgbteSxNcjnweXqXYn8jcF2SPwKoqkuGVJ8kaRIaNDzWB34G7Ne9vh/YAvh9emFieEjSDDLobKujhl2IJGnqGHS21Y7Ae4H5/dtU1R8MpyxJ0mQ26LDVF4GzgS/z3G1op4wbf/Iw80+4bNRlSNJadddHDh7avgcNjyeq6u+GVoUkaUoZNDz+NsnJwNd5/p0Erx9KVZKkSW3Q8HgZ8DbgNTw3bFXda0nSDDNoeBwKvMjrWUmSYPBvmN8AbDbEOiRJU8igPY95wK1JruP55zycqitJM9Cg4XHyUKuQJE0pg37D/FtJ5gF7dU3XVpUXRpSkGWqgcx5JDgeupXdBxMOB7yc5bJiFSZImr0GHrf4M2Gt5byPJVsA/AxcPqzBJ0uQ16GyrdcYMU/1Hw7aSpGlm0J7HFUm+BizsXr8JuHw4JUmSJruVhkeSFwPzquqD3Y2ffofePcy/C1ywFuqTJE1Cqxp6Oh14BHp3C6yq46vqA/R6HacPtzRJ0mS1qvCYX1U/GNtYVYvo3dtDkjQDrSo81l/Jsg3WZCGSpKljVeFxXZKjxzYm+RNg8XBKkiRNdquabXUccGmSt/JcWCwA5tC70q4kaQZaaXhU1c+AVyU5ANita76sqq4aemWSpElr0GtbfRP45pBrkSRNEX5LXJLUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSM8NDktTM8JAkNTM8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc0MD0lSs6GFR5JnkixJclOSi5LM7dpfmOTCJHckuTnJ5Ul27tvuA0meSLLpSvZ9RZKHknxlWPVLklZsmD2Px6tqj6raDXgSODZJgEuBq6tqp6p6KXAiMK9vuyOA64BDV7Lv/wu8bUh1S5JWYW0NW10DvBg4AHiqqs5YvqCqllTVNQBJdgI2Ak6iFyLjqqpvAI8MtWJJ0goNPTySzAYOAm4EdgMWr2T1I4CF9MJmlyQvWI33PSbJoiSLnnns4YnuRpI0jmGGxwZJlgCLgB8DZw+wzZuBC6vqWeAS4I0TffOqOrOqFlTVgllzV3j6RJI0AbOHuO/Hq2qP/oYkS4HDxls5ye7AS4Are6dGmAPcCfzDEGuUJE3A2p6qexWwXpKjlzck2SvJfvSGrE6pqvndYxtg2yQ7rOUaJUmrsFbDo6qK3iyq13VTdZcCpwD30BuyunTMJpd27c+T5BrgIuB3kyxL8ntDLVyS9DxDG7aqqo1W0H4PcPg4i3YcZ93jV7CPfVevOknS6vAb5pKkZoaHJKmZ4SFJamZ4SJKaGR6SpGaGhySpmeEhSWpmeEiSmhkekqRmhockqZnhIUlqZnhIkpoZHpKkZoaHJKmZ4SFJamZ4SJKaGR6SpGaGhySpmeEhSWpmeEiSmhkekqRmhockqZnhIUlqZnhIkpoZHpKkZoaHJKmZ4SFJamZ4SJKaGR6SpGaGhySpmeEhSWpmeEiSmhkekqRmhockqZnhIUlqZnhIkpoZHpKkZoaHJKnZ7FEXsDa8bNtNWfSRg0ddhiRNG/Y8JEnNDA9JUjPDQ5LUzPCQJDUzPCRJzQwPSVIzw0OS1MzwkCQ1MzwkSc1SVaOuYeiSPALcNuo61qAtgQdGXcQa4rFMXtPpeDyWidmhqrYab8GMuDwJcFtVLRh1EWtKkkXT5Xg8lslrOh2Px7LmOWwlSWpmeEiSms2U8Dhz1AWsYdPpeDyWyWs6HY/HsobNiBPmkqQ1a6b0PCRJa5DhIUlqNu3DI8nrk9yW5PYkJ4y6ntWR5NNJ7kty06hrWV1Jtk/yzSS3JFma5P2jrmmikqyf5NokN3TH8uFR17S6ksxK8q9JvjLqWlZXkruS3JhkSZJFo65ndSTZLMnFSW7t/u/89shqmc7nPJLMAn4IvA5YBlwHHFFVN4+0sAlK8mrgUeAzVbXbqOtZHUm2BrauquuTbAwsBt4wFf9ukgTYsKoeTbIu8B3g/VX1vRGXNmFJjgcWAJtU1SGjrmd1JLkLWFBVU/5LgknOA66pqrOSzAHmVtVDo6hluvc89gZur6o7q+pJ4ELgD0dc04RV1beBn4+6jjWhqu6tquu7548AtwDbjraqiameR7uX63aPKfupLMl2wMHAWaOuRc9JsgnwauBsgKp6clTBAdM/PLYF7u57vYwp+gtqOksyH3g58P0RlzJh3TDPEuA+4MqqmrLHApwOfAh4dsR1rCkFfD3J4iTHjLqY1fAi4H7gnG5I8awkG46qmOkeHhmnbcp+IpyOkmwEfAE4rqr+c9T1TFRVPVNVewDbAXsnmZLDikkOAe6rqsWjrmUN2qeq9gQOAt7dDf9ORbOBPYFPVtXLgV8AIzuPO93DYxmwfd/r7YB7RlSLxujOD3wBuKCqLhl1PWtCN4xwNfD60VYyYfsAf9CdJ7gQeE2S80db0uqpqnu6n/cBl9Ibzp6KlgHL+nq1F9MLk5GY7uFxHfCSJDt2J5feDHxpxDWJX51kPhu4par+etT1rI4kWyXZrHu+AfBa4NaRFjVBVfW/qmq7qppP7//LVVX1xyMua8KSbNhNyKAb4jkQmJKzFavqp8DdSXbpmn4XGNkEk2l9Vd2qejrJe4CvAbOAT1fV0hGXNWFJFgL7A1smWQacXFVnj7aqCdsHeBtwY3euAODEqrp8dCVN2NbAed3svnWAz1fVlJ/iOk3MAy7tfVZhNvC5qrpitCWtlvcCF3Qfhu8EjhpVIdN6qq4kaTim+7CVJGkIDA9JUjPDQ5LUzPCQJDUzPCRJzQwPaUBJrk7ye2PajkvyiQG3/z9JXjuc6qS1y6m60oCSvAv4rao6qq/te8AHq+qaVWw7q6qeGXaN0tpiz0Ma3MXAIUnWg19d0HEb4C1JFo29l0d3H4k/T/Id4I1Jzk1yWLfsz5Ncl+SmJGd237hf3rs5rbs/yA+T7Nu1z0ry0e6+FD9I8t6u/RVJvtVd9O9r3aXupaEzPKQBVdV/ANfy3HWr3gz8E/BnVbUA2B3YL8nufZs9UVW/U1UXjtndx6tqr+6+LBsA/ffMmF1VewPHASd3bccAOwIvr6rd6X3LeF3g74HDquoVwKeBv1xDhyutlOEhtVlILzTofi4EDk9yPfCvwK7AS/vW/6cV7OeAJN9PciPwmm675ZZfJHIxML97/lrgjKp6GqCqfg7sAuwGXNld4uUkehf/lIZuWl/bShqCLwJ/nWRPej2GB4H/AexVVQ8mORdYv2/9X4zdQZL1gU/Qu7vd3UlOGbPNL7ufz/Dc/9Hw67cTCLC0qkZ2K1LNXPY8pAbdHQOvpjdEtBDYhF5APJxkHr17RqzK8qB4oLufyWEDbPN14NgkswGSbAHcBmy1/D7WSdZNsutK9iGtMYaH1G4h8F+AC6vqBnrDVUvpBcq/rGrj7p4fnwJupNeTuW6A9zwL+DHwgyQ3AG/pbq18GHBa17YEeFXjsUgT4lRdSVIzex6SpGaGhySpmeEhSWpmeEiSmhkekqRmhockqZnhIUlq9v8Bwtlaz3POl4kAAAAASUVORK5CYII=\n", - "text/plain": [ - "<Figure size 432x288 with 1 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1000\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10, 10), ncols=2)\n", + "data.plot.scatter(x=\"pca1\", y=\"pca2\", alpha=0.3, ax=ax[0])\n", + "data.plot.scatter(x=\"x1\", y=\"x2\", alpha=0.3, ax=ax[1])\n", + "ax[0].set(xlabel=\"PCA component 1\", ylabel=r\"PCA component 2\", title=\"PCA representation\")\n", + "ax[1].set(xlabel=\"$x_1$\", ylabel=r\"$x_2$\", title=\"Original data\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "54e538c6", + "metadata": {}, + "source": [ + "It is interesting to understand how many PCA components are necessary to explain the variance of the data. This is easily obtainable from the PCA object." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "fa5ebbce", + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1000\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, "output_type": "display_data" } ], "source": [ + "fig = plt.figure(figsize=(10,10))\n", "plt.barh([\"PCA 1\", \"PCA 2\"], pca.explained_variance_)\n", "plt.gca().set(xlabel=\"Variance\", ylabel=\"Component\", title=\"Explained variance\")\n", "plt.show()" @@ -436,8 +3312,7 @@ "source": [ "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", "\n", - "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", - "#### Arman Davtyan: arman.davtyan@xfel.eu" + "#### Data Analysis group: da@xfel.eu" ] }, { @@ -465,7 +3340,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.6.13" } }, "nbformat": 4, diff --git a/Supervised classification.ipynb b/Supervised classification.ipynb index 1a10549..94a6db0 100644 --- a/Supervised classification.ipynb +++ b/Supervised classification.ipynb @@ -20,21 +20,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "d0681795", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: torchvision in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (0.11.2)\n", + "Requirement already satisfied: torch in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.10.1)\n", + "Requirement already satisfied: pandas in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.1.5)\n", + "Requirement already satisfied: numpy in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.19.2)\n", + "Requirement already satisfied: matplotlib in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (3.3.4)\n", + "Requirement already satisfied: pillow!=8.3.0,>=5.3.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from torchvision) (8.3.1)\n", + "Requirement already satisfied: typing_extensions in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from torch) (3.10.0.2)\n", + "Requirement already satisfied: dataclasses in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from torch) (0.8)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.2 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2021.3)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (1.3.1)\n", + "Requirement already satisfied: cycler>=0.10 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (0.11.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (3.0.4)\n", + "Requirement already satisfied: six>=1.5 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n" + ] + } + ], "source": [ "!pip install torchvision torch pandas numpy matplotlib" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 2, "id": "23feddde", "metadata": {}, "outputs": [], "source": [ + "%matplotlib notebook\n", + "\n", "# import standard PyTorch modules\n", "import torch\n", "import torch.nn as nn\n", @@ -46,8 +69,7 @@ "\n", "import pandas as pd\n", "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline" + "import matplotlib.pyplot as plt" ] }, { @@ -62,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "30205402", "metadata": {}, "outputs": [], @@ -84,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "cc0b0774", "metadata": {}, "outputs": [ @@ -103,7 +125,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "6dccfac6", "metadata": {}, "outputs": [ @@ -111,115 +133,115 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'data': tensor([[[ 1.5547e+00],\n", - " [ 5.5951e-01],\n", - " [-4.4580e-01],\n", - " [-4.0911e-01],\n", - " [-1.9626e+00],\n", - " [-1.2957e+00],\n", - " [ 1.0107e+00],\n", - " [ 8.5706e-01],\n", - " [ 8.2698e-02],\n", - " [ 1.7445e+00]],\n", + "{'data': tensor([[[-2.2541e-01],\n", + " [-8.7492e-01],\n", + " [ 2.2757e-01],\n", + " [ 3.6083e-01],\n", + " [-1.0728e+00],\n", + " [-1.9445e+00],\n", + " [ 1.2723e+00],\n", + " [-4.6512e-01],\n", + " [ 7.8006e-01],\n", + " [-2.8025e+00]],\n", "\n", - " [[-1.1114e+00],\n", - " [-1.5847e+00],\n", - " [-2.0654e-01],\n", - " [-1.0200e+00],\n", - " [-1.6865e-01],\n", - " [-1.2053e-01],\n", - " [ 7.0255e-01],\n", - " [-5.0251e-01],\n", - " [ 1.0529e+00],\n", - " [-2.9051e-01]],\n", + " [[ 2.5337e-01],\n", + " [-3.9780e-01],\n", + " [-1.5573e+00],\n", + " [-6.1211e-01],\n", + " [-1.7922e+00],\n", + " [ 1.4484e+00],\n", + " [-3.1899e-01],\n", + " [ 1.4920e-03],\n", + " [-1.3394e+00],\n", + " [ 2.9670e-01]],\n", "\n", - " [[-9.3932e-02],\n", - " [ 2.6510e+00],\n", - " [ 1.4673e+00],\n", - " [-1.8302e+00],\n", - " [-1.2404e-01],\n", - " [ 3.8249e-01],\n", - " [-5.5515e-02],\n", - " [-1.3505e+00],\n", - " [ 1.3203e-01],\n", - " [ 9.6623e-02]],\n", + " [[-1.1016e-01],\n", + " [ 1.6733e+00],\n", + " [ 2.7996e-01],\n", + " [-3.7264e-01],\n", + " [-1.4377e+00],\n", + " [ 1.7887e+00],\n", + " [ 1.6038e-01],\n", + " [ 7.4539e-01],\n", + " [ 1.9320e+00],\n", + " [ 5.8520e-01]],\n", "\n", - " [[-7.8525e-01],\n", - " [ 6.6473e-01],\n", - " [ 4.6917e-01],\n", - " [-1.2006e+00],\n", - " [-7.7406e-01],\n", - " [-1.3107e+00],\n", - " [ 4.2693e-01],\n", - " [-8.7382e-01],\n", - " [-2.5915e-01],\n", - " [ 1.5292e+00]],\n", + " [[ 1.8378e-03],\n", + " [ 7.1617e-01],\n", + " [ 1.9320e-01],\n", + " [-9.8246e-01],\n", + " [ 1.0930e+00],\n", + " [ 1.4183e+00],\n", + " [ 1.9863e-01],\n", + " [-1.1845e-01],\n", + " [ 1.3640e+00],\n", + " [ 8.7122e-01]],\n", "\n", - " [[-6.6223e-01],\n", - " [-2.2870e-01],\n", - " [-1.1778e-01],\n", - " [ 1.1825e+00],\n", - " [-1.1801e+00],\n", - " [-2.1859e-01],\n", - " [-1.6676e+00],\n", - " [-1.0415e-01],\n", - " [ 8.8033e-01],\n", - " [-7.0019e-01]],\n", + " [[ 1.6613e+00],\n", + " [ 1.2155e-01],\n", + " [ 3.4827e-01],\n", + " [ 9.9064e-01],\n", + " [-9.4938e-01],\n", + " [ 4.7694e-01],\n", + " [ 5.2231e-01],\n", + " [ 5.8428e-01],\n", + " [ 4.5853e-02],\n", + " [-2.5305e+00]],\n", "\n", - " [[-1.9371e-01],\n", - " [ 5.4381e-01],\n", - " [-2.9687e-01],\n", - " [ 6.8429e-01],\n", - " [ 5.0528e-01],\n", - " [-6.3122e-02],\n", - " [ 2.4948e-02],\n", - " [ 3.4935e-02],\n", - " [-5.9903e-01],\n", - " [ 2.9530e-01]],\n", + " [[-8.4262e-01],\n", + " [ 9.2893e-01],\n", + " [ 1.0124e+00],\n", + " [-1.6017e+00],\n", + " [-1.4961e-01],\n", + " [ 2.2560e+00],\n", + " [ 2.0985e-01],\n", + " [ 7.7839e-01],\n", + " [ 1.5581e+00],\n", + " [-2.3309e+00]],\n", "\n", - " [[-9.3742e-02],\n", - " [ 5.5731e-01],\n", - " [ 4.4727e-01],\n", - " [-1.9633e+00],\n", - " [ 7.6218e-01],\n", - " [-9.8049e-01],\n", - " [ 1.6627e-02],\n", - " [ 2.7729e-01],\n", - " [ 1.7569e-01],\n", - " [ 1.2022e+00]],\n", + " [[ 1.5367e+00],\n", + " [-3.7147e-01],\n", + " [-2.3096e-01],\n", + " [ 1.1904e+00],\n", + " [ 1.9962e+00],\n", + " [-1.0334e-01],\n", + " [-6.0397e-01],\n", + " [ 1.0851e+00],\n", + " [-2.3377e-01],\n", + " [-7.0282e-01]],\n", "\n", - " [[ 2.4165e-02],\n", - " [ 3.4443e-01],\n", - " [-1.3817e+00],\n", - " [-1.6941e+00],\n", - " [ 5.7643e-01],\n", - " [-3.3574e-01],\n", - " [-8.5208e-04],\n", - " [ 6.7266e-01],\n", - " [ 2.4279e-01],\n", - " [ 1.8059e+00]],\n", + " [[ 1.7610e+00],\n", + " [-1.3054e+00],\n", + " [ 1.6490e+00],\n", + " [-3.9569e-01],\n", + " [-1.5368e+00],\n", + " [-1.0189e+00],\n", + " [-1.9441e-02],\n", + " [ 9.1458e-01],\n", + " [ 1.2236e+00],\n", + " [ 8.6759e-01]],\n", "\n", - " [[ 1.5710e+00],\n", - " [ 2.8216e+00],\n", - " [-2.3268e-02],\n", - " [-1.1153e+00],\n", - " [-8.6641e-01],\n", - " [ 5.0544e-01],\n", - " [-3.7233e-02],\n", - " [-2.8511e-01],\n", - " [-2.3818e+00],\n", - " [ 8.0363e-01]],\n", + " [[ 4.9696e-01],\n", + " [-1.0176e+00],\n", + " [ 2.7300e+00],\n", + " [-1.1193e+00],\n", + " [ 1.5149e+00],\n", + " [ 2.2174e+00],\n", + " [ 4.5604e-01],\n", + " [-1.0018e+00],\n", + " [ 6.1021e-01],\n", + " [-5.1552e-01]],\n", "\n", - " [[-2.4681e-01],\n", - " [ 1.0006e+00],\n", - " [ 1.9276e-01],\n", - " [-7.3025e-01],\n", - " [-1.0975e+00],\n", - " [ 9.3319e-01],\n", - " [-5.5379e-01],\n", - " [-5.1401e-01],\n", - " [-8.8545e-01],\n", - " [ 4.6912e-01]]], dtype=torch.float64), 'label': tensor(7)}\n" + " [[ 2.3127e+00],\n", + " [-5.9054e-01],\n", + " [-1.1682e+00],\n", + " [-2.8864e-02],\n", + " [-1.8656e+00],\n", + " [-1.4874e+00],\n", + " [-1.7110e+00],\n", + " [ 8.5748e-01],\n", + " [-1.2645e+00],\n", + " [-3.9108e-01]]], dtype=torch.float64), 'label': tensor(3)}\n" ] } ], @@ -237,113 +259,10 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 6, "id": "e97239d5", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", - "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/MNIST/raw/train-images-idx3-ubyte.gz\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "81f14eed13584b959df99d123c11d53f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/9912422 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Extracting ./data/MNIST/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/MNIST/raw\n", - "\n", - "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n", - "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/MNIST/raw/train-labels-idx1-ubyte.gz\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "35beff87bf47420fafba7e5a6301aaf9", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/28881 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Extracting ./data/MNIST/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/MNIST/raw\n", - "\n", - "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n", - "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/MNIST/raw/t10k-images-idx3-ubyte.gz\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7b5d6f41eef14f8a9ad29beae3acf62b", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/1648877 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Extracting ./data/MNIST/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/MNIST/raw\n", - "\n", - "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n", - "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/MNIST/raw/t10k-labels-idx1-ubyte.gz\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9e980b594b1942d68ab90d2255e2f42a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/4542 [00:00<?, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Extracting ./data/MNIST/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/MNIST/raw\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "# Use standard MNIST dataset\n", "my_dataset = torchvision.datasets.MNIST(\n", @@ -366,32 +285,990 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 7, "id": "067b8105", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAU4CAYAAAAVWio3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACwcklEQVR4nOzdd5hcZdk/8PtJNj0ECB1CCxCpihQRFFGxvhbsivqKNSoCFmyv76ti7yJSxFiwV+wVFSsCkSKIdEhAeq+BtN3n98dMfq6BPLOb2dl5dufzua69CPudc849s3PPmb3nnLMp5xwAAAAA1GVCtwsAAAAA4IEMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChja0LaX08pTSaUO87VEppW+s5XbWelkYj/QedI/+g+7Qe9Adeq97em5ok1K6KqX0hG7X0UpK6cCU0iUppftSSn9IKW09jGVzSmn7TtZXm5TSNs37fe+gr3d3uy7+bSz0Xkppckrp5GatOaX02GEu33O9F9He6xWjY4z03yNTSr9NKd2eUrolpfT9lNJmw1i+J/tvlZTSe5uPQdU/514zRnpv55TS2SmlO5pfv0sp7TyM5Xuu99p9v0DnjYXeG2xtXsN7sfciIlJKr04pXdH8fe/XKaXNu11Tp/Xc0GYsSCltGBE/jIh3R8TsiDg7Ir47guvvG6l1VWi9nPPM5tcHul0MY9JpEfHSiLhxpFc8Hnuv069X9JT1I2JBRGwTEVtHxD0RcdJIrXw89t8qKaXtIuJ5EXFDt2thTLo+Gs+f2RGxYUT8NCK+M1IrH8e917H3C/SWTr2Gj8feSykdEBEfjoiDovGatTgivt3VokZBTw9tmod4/TWldHRK6c6U0qKU0n7N71+TUro5pXTIoNs/LaX095TS3c38qNXW97KU0tUppdtSSu8ePOFNKU1IKb0zpXRlM/9eSmn2Gkp7TkRcmHP+fs55aUQcFREPSyntOIT79OfmP89vTh9fmFJ6bErp2pTSO1JKN0bESQ92eNvgaW1KaUpK6ZMppX+llG5KKZ2YUpo2xMf1mObjc3dK6ZyU0v6r3WRqSum7KaV7UkrnppQeNmjZzVNKP2h+yro4pXTEULbJ2FJr7+Wcl+ecP5NzPi0i+od5n3q199b69YruqLj/ftV8Ht2dc74vIo6LiEcN8T71av+tclxEvCMilg9zOUZRxb13Z875qpxzjogUjf3fkD6979Xea+f9AqOv1t4bZNiv4b3aexHxjIj4fs75wpzz8oj4QEQ8JjUGX+NWTw9tmvaJiH9ExAYR8a1ofLKwdzR2Vi+NiONSSjObt10SES+LiPUi4mkR8fqU0rMiGoeWRsQJEfGSiNgsItaNiC0GbeeIiHhWRBwQEZtHxB0RcfwaatolIs5f9T855yURcWXz+0U558c0//mw5tEmqz7x3jQa08itI2J+q/VExMciYl5E7B6Nx2KLiHjPEJaLiDirudzsaDym308pTR2UHxQR3x+U/zilNCmlNCEifhaN+75FRBwYEW9KKT15iNuNiLi6+WJ1UmocAUC9auy9tdbDvbfWr1d01Vjov8dExIVDuWEP91+klJ4fEctzzr8cYp10V7W9l1K6MyKWRsSx0fgku6Ve7j3GnCp7b21fw3u491Lza/D/R0TsOsSax6acc099RcRVEfGE5r9fHhGXD8p2i4gcEZsM+t5tEbH7Gtb1mYg4uvnv90TEtwdl06MxLV21rYsj4sBB+WYRsSIi+h5kvV+KiI+u9r2/RsTLh3gfc0RsP+j/H9usZeqg7708Ik57sOWi8eRfEhHbDcr2jYjFa9jeA9a1Wn5HNF5QIhqfwp85KJsQjUMB94/Gi+m/Vlv2fyLipEHLfmMN25gZEXtFRF9EbBIRJ0fEKd1+vvn6j59R9b232jaujYjHDvM+9mLvtfV65Wt0vsZg/z00Im6PiP2HcR97sf9mRsTlEbHt6j9nX3V8jcHemxERh0bE04ZxH3uu91ZbZtjvF3x1/mss9F67r+G92HvRGPDcGo33CdMi4vMRMRARB3f7OdfJr3F3nttauGnQv++PiMg5r/69mRERKaV9IuKj0ZjkTY6IKdGYHkY0JqnXrFoo53xfSum2QevZOiJ+lFIaGPS9/mgMGK5braZ7I2LWat+bFY3z+9fWLblx6sJQbBSNF6BzUvr/g8wUEROHsnBK6ciIeHU0HpMcjdoHH/Uy+HEaSCldO+i2mzc/6VllYkT8pdU2c873RuNaGhERN6WUDouIG1JKs3LOdw+lbkZdjb3XCeO696Izr1d0XrX91zxk+1cR8cac81CegyXjvf/eFxFfzzkvHkqNVKHa3muuZ0lK6cSIuCWltFPO+ebh3b3/b7z3HmNPjb3Xidfwcd17OedTU0rvjYgfROMop6Oj8Z7z2qHUPFY5PWp4vhWNi7NtmXNeNyJOjH8fknVDRMxZdcPmuYAbDFr2moh4as55vUFfU3POD7bjvDAiHjZoXTMiYrsY4mHia5BX+/8l0WjSVdvYdFB2azReuHYZVOu6OeeZ0ULzXMZ3RMQLImL9nPN6EXFX/OdhbFsOuv2EaDxu10fjMVq82mO0Ts75v4ZzR5tW3d9UvBVjxWj1XieM997rxOsVdRm1/kuNvzz2u4j4QM756yNQ+3jvvwMj4oiU0o3N6xdsGRHfSym9YwjLUr9u7fsmRKNPtmh1w4Lx3nuMb6PVe514DR/3vZdzPj7nvEPOeeNoDG/6IuKfQ1l2rDK0GZ51IuL2nPPSlNIjIuLFg7KTI+IZqXFRq8nRmJwOftKeGBEfar4hjZTSRimlg9awnR9FxK4ppec2zwt8T0T8I+d8SXPZl6eUrirUeVNEzG1xX86PiF1SSrs3t3HUqiDnPBARX4iIo1NKGze3ucUQzzNcJyJWRsQtEdGXUnpPPPBT+D1TSs9JjSuavykilkXEmRHxt4i4OzUunjUtpTQxpbRrSmnvVhtNKe2TUnpIalz8a4OI+GxE/DHnfNcQaqZ+o9V7qy7Itup83Mkppamp+fGD3ntQxdcrxoVR6b+U0hYR8fuIOD7nfOKD5PrvgQ6MxifBuze/ro+I10YHrttFV4xW7z0xpfTw5nNvVkR8OhqnOVzczPXegyi9X2DMG633ncXXcL33QM0+2zU1bBWNvzp5TM75jiHUPGYZ2gzPoRHx/pTSPdH4xeR7q4Kc84URcXg0Lmp1QzQO07o5Gk/OiIhjojGx/U1z+TOjcT7fA+Scb4mI50bEh6Kx09wnIl406CZbRuOaEWtyVER8NTWujv6CNWzjsoh4fzQ+0bw8Gn+2cLB3RMQVEXFmSunu5u0eUtjmKqdE47D2yyLi6mhc0O6a1W7zk4h4YTTu239HxHNyzityzv3RuCL47tH48223RsQXo3HoWytzI+LX0Xjc/xmNx/3gISzH2DAqvdd0aTQ+ddgiGs/n+6NxqGuE3nuw+9Pq9Yqxb7T679XReC1/b2r8JYx7U0r3Dsr13wPvz2055xtXfUXjEPw7cuOUYca+0eq99aLxJ3PvisaF5LePiKfkf59iofceXOn9AmPbaP3O1+o1XO890NRoHAl1bzSGP2dExLuHsNyYlnJe/QgqRkJqXH38zojYIY/wueYppd9E41z/i0dyvTAe6D3oHv0H3aH3oDv0HqPB0GYEpZSeERGnRuMQuU9FY6q6R/YgQ0fpPege/QfdofegO/Qeo83pUSProGici3h9ROwQES/SvDAq9B50j/6D7tB70B16j1HlSBsAAACACjnSBgAAAKBCfcO58eQ0JU+NGZ2qBViDpbEk9B6MPr0H3aH3oHv0H3TH0lgSy/OytPr3hzW0mRozYp904MhVBQzJwnyq3oMu0HvQHXoPukf/QXcszKc+6PedHgUAAABQIUMbAAAAgAq1PD0qpTQ/IuZHREyN6R0vCGi4Ni+K62JxRESsiGVdrgZ6h96D7tB70D36D+rVcmiTc14QEQsiImal2f4+OIySOWluzIm5EbHm8xuBkaf3oDv0HnSP/oN6OT0KAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAV6ut2AQC9buXj9yzmNxy6rJifv+9Xi/nDzjikmG9+/ORiPvEP5xZzAACgMxxpAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIX6ul0AQ5f6yj+uiRtt2NHtX/rWbYp5//SBYr71djcX8+mHpmJ+46cnF/Nz9/puMb+1f0kx3+f7Rxbz7d9yZjGHNRk44OHF/LNfPq6Ybz+p3Pvlzov4+74nFfNL9+ov5m/b5pEttgB0wpLn7VPMP/bxzxXzD7zgZcU8n/3PYdcEY8GVn9i3mF/84vJ+d1KaWMwfc+j8Yj7tx38r5gDD4UgbAAAAgAoZ2gAAAABUyNAGAAAAoEItr2mTUpofEfMjIqbG9I4XBDRcmxfFdbE4IiJWxLIuVwO9Q+9Bd+g96B79B/VqObTJOS+IiAUREbPS7NzxioCIiJiT5sacmBsREQvzqV2uBnqH3oPu0HvQPfoP6uX0KAAAAIAKGdoAAAAAVKjl6VH828SddijmecqkYn79AesV8/sfuaSYz163nP/lYd8t5t32q/vWKeYfO+4pxXzhbt8q5otX3F/MP3rTE4v55n9x9h9rZ8WT9irmbz/h68V83qTJxXwgBor5ohUrivldA1OK+cPLcSx76t7FfNofLijmA0uXljfAGt1/0CPK+QYTi/nsL58xkuUwym7eq/zZ2geuesYoVQJ1ufHN+xXzP77w48V8RS7vd1vylhEYRY60AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEJ93S6gJv2P3aOYf/orxxfzeZMmj2Q5Y86K3F/M33Psy4t535JczPf9/mHFfJ3rVhbzKbfeX8ynn72wmDN+TZw1q5gvecyOxfzNR3+rmD9u2r0tKmhvfv6VO/Yr5qeesG8x/+tRny3mv/3iicV852+Ue3PuO84o5qzZ9Y8pPzemb3dneQVfHrla6IAJE4tx3qq83zpw40uK+amp/NoAY9W9Ww4U89kTevs9OWPb8ifvVcyvfkn5+f/6Pf5UzN+0/mXDrmmw3b54eDGffkP5d7o791tWzLf+Zvm9z+RTzi7m45EjbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKhQX7cLqMmUS68v5ucs3bKYz5t000iWM+KOvOGRxXzRvRsW869sd3Ixv2sgF/NNPnt6Me+0cnX0smu/tkUxP2vv40epkrXz/o3PKua/nrlfMX/FVU8q5l/d5nfFfNbOtxVz1t77nv79Yv6xi8s/O+o2cbuti/klB3y5mO/+t5cW883PumDYNUEN7n3+PsX8B88+psUaUjE98c4di/nvXrBXMZ9x9YXFfKCY0utued2+xfzYt5ffd+41pb+YT2hxXMYhVz2hmD983X8V8/Nf3ar/ylrVt9/sg4v57FPa2vyY5EgbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKtTX7QJqsvKGG4v5sR97fjH/0FOWFPOJ/5hZzM8/9Nhi3soHb31oMb/iCdOLef+dNxTzF+97aDG/6ohiHNvG+eUbQIesfPyexfzbux9XzCfE5La2/4qrDyzmZ/9up2J+wavK9f3h/qnFfOOz7y/mV9yxYzGf9OE/FPMJqRjThklpZbdLoIP6vnhfW8vff+WsEaoERtfSpz+imL/3I18u5vMmtbfj+eoXnlLMN73o9LbWz/iWJpXfFy59wsOK+Q/+5xPFfPO+KcX8VVc/sZhf/cmHFPMZvzivmP9h+lbF/E8/mlfMf7DDT4t5K3eft0Exn93W2scmR9oAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQob5uFzCWzD7pjGK+0c/Kf1O+/7bbi/kuu76ymF/4mC8X858uOKCYb3zn6cW8lXTG+cV82/LDAx0zcMDDi/lnv3xcMd9+UvmlcCAGivkzL3l2MZ/4vCXFfL2n5WK+89cPK+bzjr+mmE+45u/FfP2/FONY8aH+Yv6Dh5Zfm175uCOK+cQ/nFsuYBwbePTuxXz/qaeNTiF0xTYzbmtr+S1/V+5NqNUNL11azB83rZxHTCymh1z1hGK+6THtvSemt91w2F7F/G9vPabFGqYU0+df8YxivvK5K4r59FsXFvPyu86I6+fvWcwX7tDq/pX96r51ivn2ny+/r13Z1tbHJkfaAAAAAFTI0AYAAACgQoY2AAAAABVqeU2blNL8iJgfETE1pne8IKDh2rworovFERGxIpZ1uRroHXoPukPvQffoP6hXy6FNznlBRCyIiJiVZre6bhEwQuakuTEn5kZExMJ8apergd6h96A79B50j/6Dejk9CgAAAKBChjYAAAAAFWp5ehRD13/rbW0tv+LuyW0tv8tLLirmt3xuYnkFA/1tbR86Je25SzG/9S33F/N5k8q9dU6LU7d/f+/Oxfy272xZzDe444xivu43ziznxTRiZYu80zaZOKWY3/am+4r5xn8YyWrGlqufPq2YbzzRteTGsr5ttirmz5v907bWP23xHcXcXp1u6ZuzRTG/cP+TivmKXH72XryivP1/fXpeMZ8RC8sroKddfuw+xfzS5xxbzAdarH+n376umO/41quKebu/c7byutf/pKPr/+CHDinm619Tft/cixxpAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIX6ul0A/7bTOy4r5q/Y7cBiftLWpxbzA57/hmK+znfPLObQKROmTy/mKz9+dzE/c8cfFvPFK5cX87e868hivv5f/lXMN55xczHvL6bj3yM2u7qYXzU6ZVSpb/t72lp+6SXrjUwhdMQ1n5lRzB81ZaCYf+nuOeUN3Fl+bYROmbjLQ4r5Xt/6Z0e3/8IfHlHMt/uB97Ss2ZWfemQxv/Q5xxfzuwaWFvPnX/LiYv6Qw8u/8/Xf0957gwkzyvue25730GJ+0MxPlNcf04r5jt8v/865/VfOKOY8kCNtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqFBftwvg3/rvvKuY3/b6nYr5v356fzF/5we/Vsz/5wXPLub57+sW8y0/dEYxj5zLOT3r/gN2Kean7HhCW+t/9RvfXMzX+fGZxXxlW1uHztn47IFulzCmTdxwg2J+03PnFfPZL7i2mP9p3pdaVDC1mH7u+GcV841vOr3F+qEzrn5muXdO3uDvLdYwsZi++MpnFPN5H72ymPe32Drj28RNNi7mX312+X3lQJT3rc+/5MXFfPITr26x/vZM2H3nYr7rly8u5h/c5LMttjClmD7qvBcV84ccVd6+/hw+R9oAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQob5uF8DQDZxf/pv3L3rf24r5N9/7yWJ+3iO/Vi7gkeV4lxmHFfMdvnBDMV+56KryBhi3HvqB84r5hBbz5VdcfWAxn/bjvw23JAaZlCYW8xW5vPzE1OIGrLX7Z5d7Y0aHtz+w/8OLeZ6Yivk1T5hSzJdvvqKYT5jcX8x/s/+xxXxSuby4sb9c37sXPbuY3z4wUMynTyjXv8nCe4q5zqJTbn/FvsX8R6/7RIs1TCqmr7vmgGK+4pBy7/Xf8q8W26eXpanl589eU8qvva1MO2Jyeftbb1nML3/dnGL+pCecW8zfvPGCYr5V37RiXt4zRfTn8t4lfXfD8vJ3Xt5iCwyXI20AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACoUF+3C2DkzP7yGcX8sEvfUMxnffTaYv7tuacU8wtfdlwx33HLVxfzh7yvPEPsv3xRMaded/73vsX8/zb5ZDEfiMnF/Jzf7FzMt4rTizllK3J/MR+IgWL+64vLP58d4txh1zReLFs6qZgPRC7mJ73r6GL+08N2H25Jw/KODb5YzCdEKub35+XF/Pr+8nPvuFseW8yf8Ls3FfP1/l5+bdnsNzcV83R1eb95y8XTivkmE1cU83zWBcUc1tbEXR5SzE//YPk9XcTUtrZ/xrXbFPMtr/pnW+unt+Wly4r5wmXlfe8+U8qvzT/53XeKeav3Re363f0bFvPLV5TfOzxu2r3F/Ozl5X3jel8r/87JyHOkDQAAAECFDG0AAAAAKmRoAwAAAFChlte0SSnNj4j5ERFTY3rHCwIars2L4rpYHBERK6J8bi4wcvQedIfeg+7Rf1CvlkObnPOCiFgQETErzS5f1QgYMXPS3JgTcyMiYmE+tcvVQO/Qe9Adeg+6R/9BvZweBQAAAFAhQxsAAACACrU8PYrxI/31vGJ+3/M2LuZ7v/DwYr7wHccU80se98Vi/pJtnlTM73p0MaZiK6eV83UnTC7mZyydUsznfu368vbLmx/3JkwvX4/skk/u2mIN5xTTlyx6ajHf8Y2Li3l/i62PZ9u/9O/FfJePHFbMt9z7upEsZ9j+cPO8Yn7Lr+YU8w0uXFHMJ//6rBYVlJefF2e3WL6s1XPzunfsV8z3nnJGMf/OvVsMsyIYGZe9q7xfWJE7+8q81UfLuesx0I7+m24u5u99/auL+SdPPKGYP7T8tjW+cfeWxfyDf3pmMZ/3laXFvO+mu4r5xt++vZg/bsvfF/ND/lB+fNrdtzJ8jrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQn3dLoB69N90czHf5LPlfOnbVxbz6WlyMf/CNj8v5k9/9pvK6//RwmLO2HVb/8xivnLRVaNTSKUmTJ9ezC/96G7F/JKDjivmv7pv3WJ+/fHbF/N17jizmLNm2/7PGd0uoS2bxb+6XUJHTX/MLW0t/39/eG4xnxd/a2v99K6BAx5ezD+41487uv0n/vNFxXzm2f/s6PahZPIpZxfzd237iI5uv93X9nsOKtf3i61+UsxX5PJxG9OuKv/OxuhzpA0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAV6ut2AYyegUfvXsyvfP7UYr7r7lcV8+lp8jAr+k/H3v7w8vp/cnZb62fseutfn1/M58U5o1RJdwwcUO6Nm99yfzG/eK/jivmBF7ywmM94yqJivk6cWcyBB7f1T3K3S2Cc+tBXFhTzXSe199x76w2PKebrHnxHMe9va+vQ21ZOKx93sSKXO2wgBor5tl/5V3n7xZROcKQNAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFerrdgEMXdpr12J+2RGTi/kXHvXVYv6YqcuHXdNwLMsrivmZt29bXsHADSNYDaMqleMJLebHxzz628X8+Jg33IqqcvX79y3mP3jZp4v5vEnl3t/jb4cU882ffVExB2Bsefjk8n51Re5va/1nnLRHMd/4jtPbWj+wZut858zyDT41OnUwehxpAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIX6ul1AL+nbdutifuUrNi/mR73wO8X8uTNvHXZNI+ldN+1VzP90zCOL+fpfPWMky6EmuRwPxEAxP2DabcX8TV/Zs5hvd1J5/ZNuvKeY33TARsV89guvLeaHb3VqMX/q9HOK+U+XbFLMX3bBU4r5hp+fUcyBzpiYyp+N3TFvUjHf9FcjWQ3jyTUn71rMJ6XzOrr9zf5Yfs/Z39GtQ2+750Xl36kiyu8rGXscaQMAAABQIUMbAAAAgAoZ2gAAAABUqOU1bVJK8yNifkTE1Jje8YKAhmvzorguFkdExIpY1uVqoHfoPegOvQfdo/+gXi2HNjnnBRGxICJiVprd4nKiwEiZk+bGnJgbERELc/lCtsDI0XvQHXoPukf/Qb2cHgUAAABQIUMbAAAAgAq1PD2Kf+vbZqtifteemxXzF77/18X8dev9cNg1jaQjb3hkMT/jhL2K+eyv/K2Yrz9wxrBrgoiIqan8UnXxE08s5qftP7WYX75s02L+inWvKubteuP1+xfzX5++ezHf4Y1njmA1wEjpzwPlG/jojDUYOODhxfwzu3+jmK/I/cX8roGlxXzvX72pmO949UXFHOicu+baefQaP3EAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAq1NftAkZT32abFvPbvzyjmL9+2z8V84PXuWnYNY2kw657dDE/93O7F/MNT/5nMZ99zxnDLQkiImKTP95czN/x2n2L+cc2be+595ipy4v5o6de1db6/76sPP8++E/zi/m8V5xTzHeIM4ddE1C/+/a+r9slUKmlsycX80dPXdJiDROL6Sn3bVXM580/q5gPtNg60Dlb/Km875h0WLn/V+SRrIbR4EgbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKtTX7QKGY/mT9yrnb769mL9r+18W8ydNWzLsmkbSTf33F/PH/PTIYr7j/11SzGffeUYxHyimsPb6L7uymF/+/G2K+c6HH17ML3rBscMtaVh2/OWhxfwhJ9xXzOf9/ZyRLAcYIyYmn40BMLLSX88r5l+5e+NifvA61xXz+3bZrJhPvubaYs7I824CAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACACvV1u4DhuOpZ5RnTZbt9v6PbP/7O7Yr5MX96UjFP/amY7/jBxcV8h5sWFvP+Ygr1WrnoqmK+/ZvL+TPfvPfIFfMg5sVZxTx3dOtArZb9bqNi3r/7wChVwngz67wbi/nh1z6+mJ+45Z9GshxgDDn6888r5ge/9Zhivtm7ryjmt9350HIBZ/6jnDNsjrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQinnPOQbz0qz8z7pwA6WAzyYhfnU0Hsw+vQedIfeg+7Rf2PbxA03KOaTf9BXzL+7/c+L+QHnH1zMZ7/4lmLef+ddxbyXLcynxt359rT69x1pAwAAAFAhQxsAAACAChnaAAAAAFSofEJbRKSU5kfE/IiIqTG94wUBDdfmRXFdLI6IiBWxrMvVQO/Qe9Adeg+6R/9BvVoObXLOCyJiQUTjQsQdrwiIiIg5aW7MibkR0bgoFTA69B50h96D7tF/UC+nRwEAAABUyNAGAAAAoEItT48CAAAA6td/623FfPlzNyjmO33qtcX84id8vpg/c8dXFfM48x/lnAdwpA0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAV6ut2AQAAAEDn9d96WzHf4ZBy/szYu8UW/jHMimjFkTYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUKOWch37jlG6JiKsHfWvDiLh1pIsaQTXXV3NtEepr10jXt0dEnNvB9Y809a29mmuL6L369N7IUl97aq5P76mvHeprTyf7r9fu+0hTX3t6rb6tc84brf7NYQ1tHrBwSmfnnPdqq6wOqrm+mmuLUF+7Ol1fr9//dtVcX821Raiv1+9/u9TXnprr03vqa4f62tPJ+nr5vo8E9bVHfQ1OjwIAAACokKENAAAAQIXaHdosGJEqOqfm+mquLUJ97ep0fb1+/9tVc3011xahvl6//+1SX3tqrk/v1U197enl+nr5vo8E9bVHfdHmNW0AAAAA6AynRwEAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNCGtqWUXp5SOm2Itz0qpfSNtdzOWi8L45Heg+7Rf9Adeg+6Q+91T88NbVJKV6WUntDtOkpSStuklHJK6d5BX+8exvI5pbR9J2usTUrpkSml36aUbk8p3ZJS+n5KabNu18W/jYXei4hIKU1PKZ2QUro1pXRXSunPw1i2F3tvckrp5ObPN6eUHtvtmnigsdB/KaWXrLbfu6/5nNpziMv3Yv/tnFI6O6V0R/PrdymlnbtdF/82FnovIiKl9IKU0sUppXtSShellJ41jGV7sffs+yo3hnrv1SmlK5r7vV+nlDYfxrI913uDpZTe23wMqv85t6vnhjZjzHo555nNrw+M1EpTSn0jta6KrB8RCyJim4jYOiLuiYiTulkQY9aCiJgdETs1//vmkVrxOO29iIjTIuKlEXFjtwth7Mo5f3PQPm9mRBwaEYsi4tyRWP847b/rI+J50Xit2jAifhoR3+lqRYw5KaUtIuIbEfGWiJgVEW+LiG+llDYeofWPx96LsO+jTSmlAyLiwxFxUDRexxdHxLdHcP3jtfcipbRdNPZ/N3S7ltHQ00Ob5iFef00pHZ1SujOltCiltF/z+9eklG5OKR0y6PZPSyn9PaV0dzM/arX1vSyldHVK6baU0rsHT3hTShNSSu9MKV3ZzL+XUprdgfu06qiA85sT2xemlB6bUro2pfSOlNKNEXHSgx3eNnham1KaklL6ZErpXymlm1JKJ6aUpg2xhmOaj8/dKaVzUkr7r3aTqSml7zY/zTk3pfSwQctunlL6QfNomcUppSOGss2c869yzt/POd+dc74vIo6LiEcNZVlGX629l1J6SEQ8MyLm55xvyTn355zPGeJ96tXeW55z/kzO+bSI6B/KMnRXrf33IA6JiK/lnPMQ7lOv9t+dOeermo9RikYP9uynrrWruPfmRMSdzfdSOef8i4hYEhHbDeE+9Wrv2feNIRX33jMi4vs55wtzzssj4gMR8ZjUGEi0uk892XuDHBcR74iI5cNcbkzq6aFN0z4R8Y+I2CAivhWNT6j2jsabnpdGxHEppZnN2y6JiJdFxHoR8bSIeH1qHj6aGocjnxARL4mIzSJi3YjYYtB2joiIZ0XEARGxeUTcERHHt6jt6mbjnZRS2nAodybn/JjmPx/W/LTyu83/3zQaE9ytI2L+EFb1sYiYFxG7R+Ox2CIi3jOUGiLirOZys6PxmH4/pTR1UH5QRHx/UP7jlNKklNKEiPhZRJzf3N6BEfGmlNKTh7jdwR4TEReuxXKMnhp7b5+IuDoi3pcap0ddkFJ67lDujN5jjKmx//6/lNLW0Xgd/9pQ7kyv919K6c6IWBoRx0bjU1vqVWPvnR0RF6eUnplSmtjcxrJmnUW93nuMKTX2Xmp+Df7/iIhdW92ZXu69lNLzI2J5zvmXQ6xz7Ms599RXRFwVEU9o/vvlEXH5oGy3iMgRscmg790WEbuvYV2fiYijm/9+T0R8e1A2PRqTv1XbujgiDhyUbxYRKyKi70HWOzMi9oqIvojYJCJOjohThnEfc0RsP+j/H9usZeqg7708Ik57sOWi8YKxJCK2G5TtGxGL17C9B6xrtfyOaLygREQcFRFnDsomROOwtv2j8WL6r9WW/Z+IOGnQst8Ywv1/aETcHhH7d/v55us/fi5joffe1azjqIiYHI0d7r0RsdMQ72Ov9961EfHYbj/XfD3oz6b6/lttG++OiD8O8z72ev/NiMYpZU/r9vPN13/8XMZE70XEq6Kxv1sZEfcN53mk9+z7avwaC70XjWHFrdH43WVaRHw+IgYi4uAh3see671o/J58eURsu/rPeTx/jdvz3IbhpkH/vj8iIue8+vdmRkSklPaJiI9GY/o5OSKmRGN6GNGYpF6zaqGc830ppdsGrWfriPhRSmlg0Pf6ozGUuW5wQTnne6PxqUdExE0ppcMi4oaU0qyc891rcycj4pac89Ih3najaLwAnZPS/x/+poiYOJSFU0pHRsSro/GY5GicHz34SKHBj9NASunaQbfdvPmJ4SoTI+IvQ6w7mof6/Soi3phzHvJydEV1vdfc5oqI+GDOeWVE/Cml9IeIeFI0dsJroyd6jzGnxv4b7GUxMkeM9Ez/5ZyXpJROjIhbUko75ZxvHs7yjJrqeq95WsfHo/EL37kRsWdE/DSl9NSc83lrcyejh3qPMaO63ss5n5pSem9E/CAaR+wcHY3rcl67dncxIsZ/770vIr6ec148lBrHC0Ob4flWNM6fe2rOeWlK6TPx7yfmDRHxkFU3bJ4LuMGgZa+JiFfmnP+6FtvNq1a7Fsuuvo5VlkSjSRsrTmnTQdmt0Xjh2iXnXHpT/QDNcxnfEY3J8YXNBr0j/rP2LQfdfkI0zqW+Phqf7izOOe8wnG0OWtfWEfG7iPhAzvnra7MOqjVavdfyUPC1MO57j3FvVPd9KaVHReNN3clt1h3Re/03IRr3b4uIMLQZ+0ar93aPiD/nnFd9YHhWSmlhRDwhIs5by9p7rfcYX0Ztv5dzPj6ap0+llOZFxP9FxD/bqH28996BETEnpXRo8/83iojvpZQ+lnP+2Fqsb0xwTZvhWScibm827yMi4sWDspMj4hmpcVGrydGYAg5+0p4YER9qDhYipbRRSumgB9tISmmflNJDUuNCVhtExGejcZj4Xc385Smlqwp13hQRc1vcl/MjYpeU0u7Ncw+PWhXknAci4gsRcXRq/uWAlNIWQzzPcJ1oNOItEdGXUnpPNKaug+2ZUnpOalzR/E3ROG/6zIj4W0TcnRoXz5rWPK9615TS3q02mhp/+eD3EXF8zvnEIdTJ2DIqvRcRf46If0XE/6SU+pq/PD42Ik5pLqv3HkRqXMRu1TnMk1NKU9Ogj2wY80ar/1Y5JCJ+kHO+Z/A39d8DpZSemFJ6eHOZWRHx6Wgcnr62RwZSl9HqvbMiYv+U0u7N2z48Gqcw/KP5/3rvQdj3jWuj9Tvf1OZzLqWUtorGXzA9Jud8RzPXew90YDSOgNq9+XV9RLw2hnC9vLHM0GZ4Do2I96eU7onG+YzfWxXknC+MiMOjcVGrG6JxaNvN0XhyRkQcE40/xfmb5vJnRuN8vgczNyJ+3VzHP5vrOHhQvmVElKa3R0XEV1Pj6ugveLAb5Jwvi4j3R+PIlMuj8WcLB3tHRFwREWemlO5u3u4h0dop0Tg96bJoXNB1aQw6NK7pJxHxwmi8sfzviHhOznlFzrk/GldR3z0af/Lu1oj4YjQOF2zl1dF43N6bGldQvzeldO8QlmNsGJXeyzmviMZF0/4rIu6Kxo7sZTnnS5o30XsP7tJofFKzRbOO+6NxeDDjw2jt+6L5hvIFEfHVB4n13wOtF40/D3tXRFwZjWsUPGUYh8ZTt9Ha9/0pGv1zcvO2P4iID+ecf9O8id57cPZ949do7femRuOonnujMcg4IxrXdFtF7z3w/tyWc75x1Vc0Tj27o3l5kXEr5bz6EVSMhNS4+vidEbHDSJ9zl1L6TTSu2eKTNFiN3oPu0X/QHXoPukPvMRoMbUZQSukZEXFqNA6R+1Q0pqp7ZA8ydJTeg+7Rf9Adeg+6Q+8x2pweNbIOisZ5dddHxA4R8SLNC6NC70H36D/oDr0H3aH3GFWOtAEAAACokCNtAAAAACrUN5wbT05T8tSY0alagDVYGktC78Ho03vQHXoPukf/QXcsjSWxPC9Lq39/WEObqTEj9kkHjlxVwJAszKfqPegCvQfdofege/QfdMfCfOqDft/pUQAAAAAVMrQBAAAAqFDL06NSSvMjYn5ExNSY3vGCgIZr86K4LhZHRMSKWNblaqB36D3oDr0H3aP/oF4thzY55wURsSAiYlaa7e+DwyiZk+bGnJgbEWs+vxEYeXoPukPvQffoP6iX06MAAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFChvm4XAFC7y07as5gvfvKXivmnb59bzH/3gr2Kef9FlxVzAAAgYoO/rl/MJ6RczG/Z784RrGZkONIGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACACvV1uwDqMXGD2cU8rTurmP/ruZsX86Ub5mK+/fvOL+YD991XzGFtTdzlIcX8J487vpivyJOK+RvWv7SYn/zQJxXzdS4qxjBmpT13KeYDk8tvU6577IxifuHhJxTzFbm/mHfbgf98XjGfcdANxXxg6dKRLIcekqZMKeb3PfVhxfyh/1t+T3f53suGXRNARMRlX9qrmJ+11THFfN+/vKGYz43zhltSxznSBgAAAKBChjYAAAAAFTK0AQAAAKhQy2vapJTmR8T8iIipMb3jBQEN1+ZFcV0sjoiIFeHcbxgteg+6Q+9B9+g/qFfLoU3OeUFELIiImJVml68kC4yYOWluzIm5ERGxMJ/a5Wqgd+g96A69B92j/6BeTo8CAAAAqJChDQAAAECFWp4exdgxYdcdi/nl/zOtmL9yt9OL+ZEbnDLsmoZjp01eV8x3ePk5Hd0+Pey6G4vxEZe9qJj/dpcfjGQ1MGbkfR9WzC9/+eRifvTjv13MJ6WVxfwJ0+4p5ity+bOpgRgo5t32212/V8x3//ori/m2r7++mPffetuwa6I3TNxow2L+h+NPLOZ/WVr+FeMT2z6jmK9cfHUxB8avyz73iGJ+1pOOLub3DJSv6DLrT+XfiWvkSBsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAq1NftAvi3tPduxfyKN08s5n989HHFfKOJU4r5hBYzvF/ct34xX7Rs42L+hvUvLeZff8wXivkH9j6kmOezLijmsCb9d95VzK++dofyCnYZwWJgDMkfvL2YX7LjD0epkt503n5fLuZP3ufQYj7lF7eNZDnw/+0/dWUx/9BWs4v5hMVXj2Q5wBjy2IdfXMzXmTC5mB969VOK+YafP2PYNXWbI20AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACoUF+3CxhPJm60UTG/7JgtivnP9juhmM+dNKlFBVNa5GUn3b1lMf/xcx9dzAemlOt7w88vLeZ7Tekv5vdvMq2YTy2msGYTN9m4mO+/02WjVAmMLdf9sbzfiB3bW/8ZS8v7tVf+8jXlFaQWG8jDq2d1j9yj/Npw0ja/aW8DMEZNTD4XhrV1/0GPKOYbHrm4mC974cRivvKGG4dd00i6+dD9ivnHNjm6mH/j7q2L+R3/s1UxnxC3FfMaeUUFAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQn3dLmA8ue6lOxTzCw84psUaJo1cMQ/iG3dvWcx//Kz9inn/pZcV8/TwXYZdE1RhnRnF+L9mn9XRzd+8Zyrm6/1jXjHvv6jcm9ApW3307GL+7O8d3Nb60/IVxXyHxQvbWn+77txwg2L+uzPXKeZPmHZPW9t//AUvLOaz/nBhMR9oa+uwZv25/OxaMb38K8iUkSwGxpiXfvTnxfwVs64p5k/Y8/XFfOrPbxx2TSPpkDf8spjvPqX8CvCaDzy7mM/+yxnDrql2jrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQn3dLmA82eKZV3V0/Sffu2kx//RlBxbzTd6ei3n/pZcPu6bB7thtVlvLQ7f0X7G4mP/fz15YzJ978PFtbf/CF3+2mD/8rjcW8y0vuqyt7cPayiuWF/P+S68YpUq646bnzCvmu03+SYs1TGlr+9dfP7uYz7xvUVvrh065ec9JxXzLX41SIVChG5avV8wH4upivnJaGsFqhm/ggIcX84NmHlvMV+RpxXzl1O7ev25wpA0AAABAhQxtAAAAACpkaAMAAABQoZbXtEkpzY+I+RERU2N6xwsCGq7Ni+K6aFxrZUUs63I10Dv0HnSH3oPu0X9Qr5ZDm5zzgohYEBExK80uX8kWGDFz0tyYE3MjImJhPrXL1UDv0HvQHXoPukf/Qb2cHgUAAABQIUMbAAAAgAq1PD2KYXjNlGK88xsOL+Zb/ra/mM+48MZivuHVlxXz8trbd98mqcNbgO7Y7q1nlm9w8OjUAYyuW16/bzHf8aWXFPNNJpbfF7Rrp7cvLuad3u8zfuUVK4r5ZSuWFvN5k6YW8/u3XT7smmC8uPyz+xTzH21wbDH/3J3zivl6Z15XzFcW09YmrrduMb/1rUuK+eZ95X3jm6/fr5hv8qVzivl4vJ6LI20AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACoUF+3CxhP+q9YXMy3f3M5b2VlW0t33oq97+l2CdAVk9LEYr4ij1IhwH+4+bD9ivkhr/9lMX/prE8W83UmTB52TcPxgVv2KOZ52fKObp/e1X/TzcX8iCtfWMx/veNPRrIcGFMmPmT7Yv71p3+umN+XVxTzH/7vk4r5tGv+VszbdfkJ2xbzf+7xhWL+u/vXKa9/72XDrmm8c6QNAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFerrdgGMnH+9Z79ivnJ6Lq8gtdhAi8Wfs8MZLVZQdti1jy3m0359bjFvUR50zIrcX8wHYmCUKoHRNXGXhxTzy16xfjE/4NH/HMlyHuDnWx5bzFv35uS2tn/FipXF/IWfO7KYb/Wjm4r5wD1XDrsmANqTH7V7MX/Rl35ezPeaUn7fuOOv31jM5/34b8W8XVd9cN9ifvZjPt1iDeURwzu++MpivkWc3mL9vceRNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFSo/EfUGVETZ80q5ksfsUMxn/Q/NxXzf+x47LBr+o/1p4nFfEXub2v9f7h/ejG/dv5WxTyvvLit7QMwPPlRuxfzl5/0o2J+0IxbR7CatdHdz6aOuOKFxXyLj51ezNvb60K9Zs6+r9sl0MPSpMnF/IbD9irmZ7+1/DtX69+pyvum5+x+bjH/6cf2Lebbv+/8Yj5h042L+TP/68xiPjFSMd/99FcW860+Wt738UCOtAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBCfd0uYCxJU6YU8+UH7FbM33zC14v546adWsxv6l9WzP9w//rF/D2XHVTMv73LV4r55n3l+9/K1AkrivmiF6xXzOdeOrWYDyxdOtySAGjDxMjFfEKXPxualCYW8xXl8tv2651+VMz3f8kbivm63zxzJMuBavxgjy8U88PjUaNUCb3oxtftVcz/9tZjivlAi/W32rd87e4tivmHN11Yzl9azt/1hH2K+RPX/VUxf9y0e4v5wmXl38m2ev4FxZzhc6QNAAAAQIUMbQAAAAAqZGgDAAAAUKGW17RJKc2PiPkREVNjescLAhquzYviulgcEREronw9I2Dk6D3oDr0H3aP/oF4thzY55wURsSAiYlaa3eFL9gGrzElzY07MjYiIhbl8kWpg5Og96A69B92j/6BeTo8CAAAAqJChDQAAAECFWp4e1UsmTC3/zfnbXvjwYv6XD3+2re3v8u3Di/mcP/QX8ym/OKuYb7DZvcX826fsWcyP3OCfxbyVfaasKOb/eHn58dv3miOK+SZfO7+YD9x3XzGHtTUpTSzmK9o8sXTWfje3twJYS+mv5xXzLz3rKcX8nS/foJhvdcryYj7x/pXFvNMuf9WkYn7JUz43SpVAXa45bcvyDXYcnTrgwdzyun2L+env+Ewxv2eg/DvLRStmFPP/fetri/nU28r7vlM/fFUxP2mb3xTzD2+6sJhPaHHcxkAxjdhrcrn+N19xcTE/5rnPKW///PLyvciRNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFSor9sFjKY0ZUoxv+TTDy3nB322re0fdOmzivm8Tywq5v033VzM+7acU8wf9tN/FfO3bXBRMb9rYHkx3+cHRxbzzXYs13/qbt8t5me8u/z4v/DgpxfzWz+7WzGfetuKYt7KxD+e29byjF0rcn8xH4iBttb/p4d9u5g/85GvKq/gzH+0tX1Yk/6LLivmc98+SoV0yE6Xb1S+wVNGpw6ozcxrclvLr5PKy0/ceV4xb/XaQ2/b+WUXF/OfLtmkmH94wcHFfLNPnV7Mp8fCYt7KbUeWfyd987H7F/OjN/9LW9tvZWJKxfxtFzy3mG9+fvl3Th7IkTYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUqK/bBYyk1Fe+O5d+5mHF/JJnHl/Mr125rJg/8/NvL+bbfPnKYr7yppuL+Yon7FnMd/3Y34v5ezc+p5ifdPfWxfzr//uMYr79D88s5hM33KCYP/aJhxfzJS+8q5j/6OFfKOZzPjulmLfy8yXl+hfMm9vW+hm7dvz9q4v5RY9f0NHtXzZ/cjGfV25NYA1ues723S4BqjRhZXvLT0ypmA9Mm9TeBuhp55yyczG//TsbFvPNLj19JMsZtvs3mVrMD9/o9y3WUO6fR77/sGK+4flLWqy/bMsrrivm/W2tvTc50gYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAK9XW7gJF0zdseUcwveeYxxfz6lcuK+fM/+rZivs2PFxXz2x+/bTHPL12nmJ+8a7n+jSZOKea7fOfwYj5vwa3FfPqlC4t5K/233lbMZ327VV5e//MOfXsx3+R5V5dX0MqR67W4wYXtrZ8xa8pl08o3ePzo1AGrS1PK+4U7n//wYr7+T8qvawP33DPsmmpyw5H7FfOfHPHxFmsoP74wXq3/lTOK+Ylv37qYv27d8nuyy988uZhv/9JiTI/b6n2nF/P+UapjTSZutFExv/a5K4v59pPK+55v3rNZMd/w8+X+bVe3H9/xyJE2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVKiv2wWMpM+95oS2lp+ayvkzXvfnYr7FEXcU80Nm/Wy4Ja1mSjHd5VtHFPPt/+esYt6/cuWwK6rJxiecXsxze0+PiLiu3RUwTm35gfJz79sv2aKYv2SdG9ra/uKnfLGYP/VhBxfzgfMvbmv7dM/SZzyimK/71n8V8z9tf2wxf/ZZ5edOXHpPOe+wvs02LebXPW9uMf/u4Z8s5pv3lfe7rdzUv6yYT7o/t7V+qNUnz3xyMX/KgZ8p5vNee1kxHxhuQVCRy4/cvphffOBni/kZyyYV8+89c/8WFVzZIqc2jrQBAAAAqJChDQAAAECFDG0AAAAAKtTymjYppfkRMT8iYmpM73hBQMO1eVFcF4sjImJFlK+LAIwcvQfdofege/Qf1Kvl0CbnvCAiFkREzEqzXTEPRsmcNDfmROMimgvzqV2uBnqH3oPu0HvQPfoP6uX0KAAAAIAKGdoAAAAAVKjl6VFjyZ/v3bGY7zPlgmI+e+KUYv6uDc8bbkn/4emXPKeY/+uMOcV87sl3FfPtLzynmOeVK4s50Blf+dd+xfzgXb7f1vpXOHG1Zz35Q38q5kdu8M+21n/Ju2aVb3DvPm2tv10v2u+MYv7jjX9RzAdiUlvbP+SqJxfzK056SDHf4Ifl+mG86o9UzAfuXzpKlcDIm7jzvGL+gWd/p5j35/Ibu1f89HXFfPvLzizmjD2OtAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBCfd0uYCSd/rjNi/k+L3l8Mb/rYcuLed8tk4r5vBOvKy9/483FfJul1xTzgWIK1GrZVzYt3+ATo1MHDNfFT/h8t0toU/mzqTOWTinmr1n4smK+/WsuL+YbLDmjmEOv2q5vWjG/7RWPKOYbfElvUa8X/PCPxfzZM8u/E+5x5iuK+fZvOnO4JTHGOdIGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACACvV1u4CR1H/b7cV8k8+eXs7b3P7KNpcHxqf1zyu/Nh1/x0OK+RvWv3Qky2Ec+f0RjyrmXzv0EcX8/Ed9eSTLGXHfuHvLYn7DivWK+ZfPLT8+23+hv5jP/et5xXygmELvOumA8mvLHQP3F/MN/3FvMc/DrghGz4d+8txifvBLP1vMp/1y1kiWwzjgSBsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAq1NftAgDGu/6LLivmp+w6q5zH3m1WcHGby1OriX88t5hv+7fpxXzPI95YzL/62s8U810np2L++AteWMzv+uOmxXzr715XzFcuvrqY7xDnFHOgM9528fOK+fO2/nsxn7BkWTHvH3ZFMHrmvuOMYv7Md5Tf120Q5eXpPY60AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEJ93S4AAOiMgfvuK+ZbfPT0Yv6ujz6ire3PjEVt5Svb2jrQLbOfflkx/33MaLGG8vIAvcSRNgAAAAAVMrQBAAAAqJChDQAAAECFWl7TJqU0PyLmR0RMjekdLwhouDYviuticURErIhlXa4Geofeg+7Qe9A9+g/q1XJok3NeEBELIiJmpdm54xUBERExJ82NOTE3IiIW5lO7XA30Dr0H3aH3oHv0H9TL6VEAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACoUMo5D/3GKd0SEVcP+taGEXHrSBc1gmqur+baItTXrpGub4+IOLeD6x9p6lt7NdcW0Xv16b2Rpb721Fyf3lNfO9TXnk72X6/d95Gmvvb0Wn1b55w3Wv2bwxraPGDhlM7OOe/VVlkdVHN9NdcWob52dbq+Xr//7aq5vppri1Bfr9//dqmvPTXXp/fU1w71taeT9fXyfR8J6muP+hqcHgUAAABQIUMbAAAAgAq1O7RZMCJVdE7N9dVcW4T62tXp+nr9/rer5vpqri1Cfb1+/9ulvvbUXJ/eq5v62tPL9fXyfR8J6muP+qLNa9oAAAAA0BlOjwIAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENIy6l9MeU0quHeNurUkpPWMvtrPWyMF7pP+gOvQfdofegO/Te6Bn3Q5ux8ENOKU1OKZ3crDWnlB67Wp5SSh9LKd3W/Pp4SikNcd0vTymd1om6a5ZSelNKaVFK6e6U0vUppaNTSn3drqvXjJP+e1xK6Q8ppbtSSlcNc9292n9HpZRWpJTuHfQ1t9t19ZJx0ntvSyn9M6V0T0ppcUrpbcNYd6/2nn1fl42T3lvr51Gv9l5EREppj5TSn5v7vJtSSm/sdk29ZDz03mq3uySldO0w1t2TvdfO+/SxZNwPbcaQ0yLipRFx44Nk8yPiWRHxsIh4aEQ8PSJeO1IbTilNHKl1VeRnEbFHznlWROwajcfuiO6WRMVK/bckIr4cEUP+hXE4xmn/RUR8N+c8c9DXom4XRJVKvZci4mURsX5EPCUiDkspvWikNjxOe8++j6Eq9V5Hn0fjsfdSShtGxK8j4vMRsUFEbB8Rv+lqUdSq1HurvC0ibh7pDY/H3osOv0+vRU8NbZoTyL82PzG4s/kpwn7N71+TUro5pXTIoNs/LaX09+YnDdeklI5abX0vSyld3Tz65d2DJ7wppQkppXemlK5s5t9LKc1+sLpyzstzzp/JOZ8WEf0PcpNDIuJTOedrc87XRcSnIuLlQ7i/O0XEiRGxb3Pqf2fz+19JKX0upfTLlNKSiHhcWu3wttWntSmlHVNKv00p3Z5SujSl9IJW228ut11K6ffNx+DWlNI3U0rrrXazvVNKF6WU7kgpnZRSmjpo+aenlM5r/rxOTyk9dCjbzTlfmXO+c9VqImIgGjtQumSs9l/O+W85569HxLCGDr3cf9RlDPfex3PO5+acV+acL42In0TEo4Zwf3u29+z76jKGe2+tnke93HsR8ZaIOCXn/M2c87Kc8z0554uHuCwjbKz2XnN920ZjqPORYdzfnu29tX2fPtb01NCmaZ+I+Ec0puDfiojvRMTe0dgZvTQijkspzWzedkk0PuVbLyKeFhGvTyk9KyIipbRzRJwQES+JiM0iYt2I2GLQdo6IxtExB0TE5hFxR0Qcv5Y17xIR5w/6//Ob3ytq7ixeFxFnND/pXm9Q/OKI+FBErBONie8apZRmRMRvo/F4bRwRB0fECSmlljVEY2f/kWg8BjtFxJYRcdRqt3lJRDw5IraLiHkR8X/N7e4Rjcnpa6Px8/p8RPw0pTRlCNuNlNKLU0p3R8St0fiU6PNDWY6OGov9t1Z6vf8i4hnNHf6FKaXXD3EZOmdM915KKUXE/hFxYavb9nrv2fdVZ0z23to8j3q89x4ZEbc3f9m8OaX0s5TSVkNYjs4Zk70XEcdGxLsi4v6hLtDjvdcTenFoszjnfFLOuT8ivhuNJ9T7m1Px30TE8mh+mpBz/mPO+YKc80DO+R8R8e1oNGRExPMi4mc559Nyzssj4j0RkQdt57UR8b/No2OWReNJ+7y0dueWz4yIuwb9/10RMbP5JnZt/STn/NfmfVva4rZPj4irmo/bypzzuRHxg2g8BkU55ytyzr9tPr63RMSn49+P4SrH5ZyvyTnfHo0XlYOb339NRHw+57ww59yfc/5qRCyLxo6xpZzzt5qH9s6LxvT5pqEsR0eNxf7rhPHef9+Lxg57o+Z63pNSOri8CB021nvvqGi8ZzmpzfWM996z76vPmOy9DjyPxnvvzYnGkfFvjIitImJxNH5+dM+Y672U0rMjoi/n/KO1uscPbrz3Xk+o5ReY0TR4p3N/RETOefXvzYyISCntExEfjcb5vJMjYkpEfL95u80j4ppVC+Wc70sp3TZoPVtHxI9SSgODvtcfEZtExHXDrPneiJg16P9nRcS9Oee8htsPxTWtb/L/bR0R+6w61K6pLyK+3mrBlNLGEfHZaHxCuk403nTfUajl6mg8tqu2e0hK6fBB+eRB+ZDknC9PKV0YjSn5c4azLCNuLPZfJ4zr/ss5XzTof09PKR0TjR2+N7DdM2Z7L6V0WDQ+Ad2/+Ya4HeO69waz76vGmO295nZG6nk03nvv/oj4Uc75rGYd74uIW1NK6+ac7yovSoeMqd5rHuXy8Yj4r6EuM0Tjvfd6Qi8eaTMc34qIn0bEljnndaPxScOqo1tuiMZUPSIiUkrTonE41yrXRMRTc87rDfqamhvXpBmuC6NxaOoqD4shHCLetKbBzurfXxIR0wf9/6aD/n1NRPxptfsyM+c8lFMePtLc1kObn9i8NP79GK6y5aB/bxUR1w/a7odW2+70nPPa/OLXF41D8Rg7aum/dui/hvwg26Ve1fReSumVEfHOiDgw5zzkv6IRem8V+76xpZreW81wnke92nv/iP+8j6v+bd83NtTQeztExDYR8ZeU0o0R8cOI2CyldGNKaZshLN+rvdcTDG3K1omI23POS1NKj4jGOYGrnByNazbsl1KaHBHvi/98Yp4YER9KKW0dEZFS2iildNCaNpRSmjLoYkyTU0pTB53+9LWIeEtKaYuU0uYRcWREfGXQsn9Mq10wa5CbImJOs8aS8yLiOSml6Sml7SPiVYOyn0fEvJTSf6eUJjW/9k6Ni161sk40jhS6M6W0RTz4lb3fkFKakxoX7XpXNA5hjIj4QkS8LqW0T2qYkRoXClun1UZTSq9uTnxXnYv6PxFx6hDqpR5V9F9qXGBuakRMavxvmjq4n/TfA6WUDkoprd9c7hHRON/7J0OolzrU0nsviYgPR8QT84P89TG990D2fWNeLb1XfB7pvQd1UkQ8O6W0e0ppUkS8OyJOy/++oDN1q6H3/hmNocbuza9XR6Ofdo/mESp674FSi/fp44WhTdmhEfH+lNI90Th/8XurgpzzhRFxeDQuanVDRNwTjT/NturQ7WOiMbH9TXP5M6NxQaw1uTQah+ltERGnNP+9dTP7fDT+/OIF0WjoX8R/XhBuy4j46xrW+/toHJVzY0rp1sL2j47GuZ03RcRXI+Kbg+7rPRHxpIh4UTQmojdGxMeicehgK++LiD2icR2eX0Rjary6b0XjzyIuan59sLnds6NxjuNx0Ti87ooYwl/NanpURFyQGldK/2Xz611DXJY61NJ/j2n+/y+j8anA/fGff8ZT/z3Qi5q3vycaQ+ePNc9PZmyopfc+GI1PM89Kjb+GcW9K6cRBy+q9B7LvG9tq6b1WzyO9t5qc8++j8Rj9Iho/l+3jP3/xp25d773cuIbMjau+IuL2iBho/v+qvzSl9x6o1fv0cSHlti6LwiqpcfXxOyNih5zz4lHc7pyI+H7Oed/R2ibURv9Bd+g96A69B92h9+gGQ5s2pJSeEY3DRVNEfCoaU9U9sgcVOk7/QXfoPegOvQfdoffoNqdHteegaBw6dn00Lh71Is0Lo0b/QXfoPegOvQfdoffoKkfaAAAAAFTIkTYAAAAAFeobzo0npyl5aszoVC3AGiyNJaH3YPTpPegOvQfdo/+gO5bGkliel6XVvz+soc3UmBH7pANHripgSBbmU/UedIHeg+7Qe9A9+g+6Y2E+9UG/7/QoAAAAgAoZ2gAAAABUqOXpUSml+RExPyJiakzveEFAw7V5UVwXiyMiYkUs63I10Dv0HnSH3oPu0X9Qr5ZDm5zzgohYEBExK83298FhlMxJc2NOzI2INZ/fCIw8vQfdofege/Qf1MvpUQAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABXq63YBAAAAq6Q9dynmr/z2z4v51LSimB+/w7xh1wTQLY60AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEJ93S4AAADoHZd/dY9i/p3HfL6YP2xyef1Pueh5xXxyXF1eAUBFHGkDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhfq6XQCDPPKhxXjxM2cU8/c+93vF/NOXHVjM77lgg2Leynbv/3sxH1i6tK31AwDQfX3bbFXMt/3+TcX855t/oZgPtNj+p27btZhPf/mKYr6yxfoBauJIGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACrU1+0Cesl179yvmP/y0I8X8636Zra1/Zfs+b3yDfZsa/Xx6HNeW8xn/GBhexsAGGcmrr9+Mb/mVTsV876l5fXfufvyYj5pZjk/7VGfK+avvPJ5xfyyGzcq5p228uZpxXzbn6ws5n2nnjOS5cCYkfbcpZgv//jdxfxTm5/WYgvlz40f+pUjivnG5wwU8+nXec9JxVIqxrf/bIdi/r3dvlzM3/DEQ4p5/2VXFnPq40gbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVankh4pTS/IiYHxExNaZ3vCCg4dq8KK6LxRERsSKWdbka6B16D7pD70H36D+oV8uhTc55QUQsiIiYlWbnjlcERETEnDQ35sTciIhYmE/tcjXQO/QedIfeg+7Rf1Avp0cBAAAAVKjlkTaMnK2/uqiYXz9/WjHfqvKf1hc+dXQxf1XfW4r5Ot89cyTLAajexR/ZoZhf8YzjRqmSNSnvl36ywy/Ki5fvXtetfG5/Mf/sHTsW8wW/eFIx3/7rdxTzgX9eUsyhW5ZuXL4kwik7fqWj259+XSrnP1zY0e1DJ01cZ51i/qEdf1TMt+or9+c1B21SzDf/xJXFnPo40gYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAK9XW7gF6y8oYbi/mrvnB4Mf/d6z9ezDfrm1nMf7pkejF/5oz7inkrO00ur/+GJ64s5ut8t63NAx0yced5xXxgxpRifvlLZhTzbx907LBrGuzl57yimG/5vH+2tf5O+uDjftDV7Z+3vPy6/KnrnzxKlTy4hYu3Keb7bHtVMd9h5s3F/D0bXlDM37L+5eX8peX8URccWszXrfepyTiX9tylmB96zPeK+YQ2P/d91P8eVsw3/srpba0fatZ/993F/Gs3P6qYH7j174v50g3zsGuibo60AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEJ93S6Af5vzkdOL+UkH71nM37XhpcX8imWblguYsaict2nHz95bzAc6unXoXfc+f59ifuNBy4v5zx99fDGfN2lqMR+IXMzb/fzgiJ3/UMx/FBu1tf5O+sYLnlTMj9113WK+/j/vamv7E+65v5ivXHRVW+tv1/ZxRzG/rcXyd26wSTH/2ZlXF/NnTL+7xRbKbvuvpcV83W+0tXpYa5cdMrOYHzTj1mL+9EueXcwnvm5yMV//8jOKOfSyS768U/kG7/t9MZ46r733BtTHkTYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUqK/bBTB0Pzz28cV84PBUzP9vw0tGspxhG5g6qavbh7Hqqu8+tJg/c4cLivlHN/lcmxVMLaZXrbyvmD/pL4cX8xl/n1bMtzjx/GI+sGRJMa/ZwPkXF/N1y3c9BtrdfpvL1+6GF+1YzJ8x/Xdtrf+OgfuL+ZZfntjW+mFtPeTs8nuur2/y6WJ+8r1bFfP01nWLef/lFxZzYM02/sstbS3/572+WMxfOvfFxXzloqva2j4jz5E2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVKiv2wUwdBt84YxifsbvHlLMP/GzFcX8bbOvHHZNw3Hv+5cU85lP6ejmoWv6tti8mF/+yY2K+cWPPqmYX7C83NvvvnnvYv6b4x9VzDc8755iPmHJsmK+/cV/L+atDLS1NGPZhKlTi/nlX96xmJ++/ydabGHaMCv6Ty/678OL+aQ/ntPW+mFN7nj5vsX8U5sdV8wHYnIx/79Tn1vMd1pyWzHvL6ZAOyam8nEXsyaU951Xv6D8vnSLj1413JLoMEfaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACoUMsLEaeU5kfE/IiIqTG94wUBDdfmRXFdLI6IiBVRvtArMHL0HnSH3oPu0X9Qr5ZDm5zzgohYEBExK83OHa8IiIiIOWluzIm5ERGxMJ/a5Wqgd+g96A69B92j/6BeTo8CAAAAqFDLI22ox82H7VfM79x1ZTH/6fo/arGFzs7wbj9z02I+MxZ1dPvQLRd9YPNiftljPl/Mt//N/GK+01vKvdN/xx3FfIM4o5i3OsSyv0UOa7LkufsU89tedF8xv3S/L7fYwrRiem8unwLwqOOOLOZbnnV+MR8oprBmEzfZuJjfsl/5PV+7Jt05sZj3X3ZlR7ffyr/eW35PvHSLFW2tf978s9paHjqpP7e3dxmYNEKFMGocaQMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECF+rpdQC9Je+9WzJ/11d8X85fN+kwxnz5hcosKujuj2+aHtxfzgVGqA1Y3cdasYn7p+3cu5h/5r28X809+aN9i/qg/H1bMd/z+P4p5/5IlxRy6ZcWT9irmvznm2GI+JXX2bcpAzsV85jXlPVNeuXIky4F/a/Hc2n+3S4v5pDSxmK8oP/Vjiz939rl99fvL+8XIqRi//+BvFvNnzyi/52xl0vXlx++/DnhOMe+/fFFb2wcYzJE2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVKiv2wX0ktt2m1nMX7jO5cV8+oTpI1nOqLv0yHL9OxwySoXAai75yE7F/NJnHV/MH3nuwcV845P/UcwHliwp58UU6rX4eamYT0ndfRsya8LUYv7Xj59QzN/11j2K+Q9OfWQxn/ujpcU8/fW8Ys74ddt/PaSY/2irzxbzFbn8uexPl6xfzKfcdF8xz8U0YuCAhxfzjfe5sZj/dtfvtdhC2bUrlxXzXy4p7/fnr3tVMZ/3nX8V88v+e14x77/osmIOMJgjbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKhQX7cL6CWzv3xGMd9vzluL+V9e84livuHEGcOuaTRttsmd3S4BHtSiZ3++mPfnVMwnnrxBMR9Yctmwa4LxYOsfl/Nn7PD0Yn7UNj8p5ntOnjjMikbWhzc+t5wfXM5XHtxfzHf8xaHFfOcP3Vhe/9XXFHO6Z+IGs4v5PduU9zut/OH+qcX8bb96cTHf4e9nFvO05y7F/Na33F/M/7brycX8nGXlz5Vf+4+XFvONPjOtmC9fr/wr0PzjP1fMd5h2UzG/LOYWc2jHxFTuj/48MEqVMFocaQMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECF+rpdAP+21ftPL+bPuOLIYr50vfZmcLnFs+EHR368mG83aWZb24dueduNDy/mH97k7GL+3nefVF7+/pcX85nfO7OYw1g15ZdnFfP+X5aXP2qnFxfz5ZuuU8yXbDa5mN/2zPuK+YX7l3t7QqRi3kpfTCzmVzzt88X8Fbs9tpjf9Kjy+mOgv5zTMXc8eV4x//vrjmlr/Yf+5FXFfIcjy/udvm22KubLP353MT9zxx8W88UrlxfzF592eDF/yOsuKeb9u+9QXv+HTynmi1cuLeafOvuJxXyHi84t5tCO/jzQ7RIYZY60AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQoZYXIk4pzY+I+RERU2N6xwsCGq7Ni+K6WBwREStiWZergd6h96A79B50j/6DerUc2uScF0TEgoiIWWl27nhFQEREzElzY07MjYiIhfnULlcDvUPvQXfoPege/Qf1cnoUAAAAQIVaHmlDPWZ968xy3u4GUirGT5r71mJ+5QtOLOaHbvunYv7NnQ8s5v0XXVbMGb+WP3mvYj71T/8s5gNLlxbzi562STHf8e1vKOaXvOD48vKf+GQxP/Sq1xfz+NsF5RzGqf6LLy/mEy8uL99qvzjrW+X8EYcdXswf/4ryfvnjm57dooL2nLTVH4v5Th8sv3Zt+64zRrAahuO23crvudq13ZHl52Yr237/pmL+qc1Pa2v9r37jm4v5Dj/+WzG//6l7F/NTvnjCsGsabMdfvKmYz5t/Vlvrh27a8IKV3S6BYXKkDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABXq63YB1GPCtGnF/MoXnNjW+u/pn1q+wcr+ttZPvfrmblPM9/rR5cX8mbNOKOav+vSbivkmx55ezFfecGMx3/FTE4t5vKAcb9VX7q1lG5Z7Y0p59UCHbHxc+bXjws9PLuav/ssBxfyLW/5p2DUNy7b3dXb9rLUV65bf80xo8bnqgf98XjGfFouL+cABDy/mz579tWLeqr6HfuHwYr7Vj8u9lfbcpZgfesz3inm79c07qlwfjGUzL7qtmPuNrD6OtAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBCfd0ugHpccvQuLW5xelvrP/qHzyzm21x2Rlvrp17v+N2Pi/kOffcW8wMXvL2Yb3lse8/NVi5+x5y2ln/hlU8p5tP/tqiY97e1daBT8orlxfyPFzysvIIt/zSC1TxQunJ6R9dP5wzEQDnPqaPbX5HLvyIMxNLyCna5pxgfccUlxXyjiWcV8+/f8Yhi/pWnHVjMt7314mJuvwvUxJE2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVKiv2wWMpr4tNi/my782sZjf+sMti/nGx58+7JpGU9/cbYr5755ydIs1zGxr+3O/d0cxH2hr7dTsVd97fTH/84s/UcwveP1x5Q2UV9/SV+4uvza8fNbnivmPl6xfzO9+b/m1Y+Kt5xZz6JZW+41L37BpMV/3slTMN/z8GcMtqSqpr/w2ap+dr+zo9u/Py4v5pgv7O7p91t7WP8vlGxxUjk/d7bvF/MlPPbSY37L7pGI+d9Lt5QJicjE9b78vF/MJLT43PmdZOf/Lp/Yp5utefmYxh16Wp5X7l/o40gYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAK9XW7gNF0/Qmzivnfd/pOMV9w2ObF/BvXPb2Yz7jq3mI+cN5FxXzl4/cs5rfvOKWYP/d1vy/m202aWcxb2fbnrynmO15Zvn+MX3PfeUYxf+zKtxXz6bvdUcw/t9s3h13TYLtNvaaYP+3SZ5VX8Pb1i3Hfef8o5rm8duiYvm23LuaP+cmFxfyns39YzJ+x+5OLeX8x7b6+bbYq5he9c9NifsU2J45kOQ9w/B27FfOpP/tbR7fP2pu4bKCYX79yWTHfvK/8nu+3Xyw/9waivP2IyS3y9ixeubSYv/i0w4v5Dt88cyTLgZ5y9TPL71u3PH+UCmHIHGkDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBCLS9EnFKaHxHzIyKmxvSOFwQ0XJsXxXWxOCIiVkT5goTAyNF70B16D7pH/0G9Wg5tcs4LImJBRMSsNNsfOYFRMifNjTkxNyIiFuZTu1wN9A69B92h96B79B/Uy+lRAAAAABVqeaTNeLLuiesU8yO22LuYf3bzs4r5/BMWFPMf3DurmH/pukcX8xPnHlPMt500s5i30p8Hytu/a+tivtPbLyuvf8mSYddEb9jm/85oa/n3xp4jVMmaXNdmDnW6+dgpxfytsy9ta/0rdp5TzPvOXVrMB+65p63tT1invN+/7H27FPPfPPeTxXybvvZOG5+Yyp+dLV5xbzH/xbsfV8ynxd+GXROjo+/35xTzg//3rcV87uvLvfnVbX437JqG42F/fWUxTxeVe2+j81YW8x1+7LlL78pXX1vMj71zbjE/fL1FI1kOFXCkDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABXq63YBo2nKr84q5j97zt7F/NQflPMLDz+hmD935t3l/CG/LOYRM1vk7blwxfJi/tOdN2ixhrtGrhgAOm7pnzcs3+Dh7a3/19/6UjF//627FfMrl2zU1va3m3FLMf/5huX9dsT0trbfyuIV9xbz/z7yyGI+48cLR7IcKrLuN84s5rd9o7z802PPEazmgbaOCzq6fuhlA0uXFvObl89qa/1bPPaa8g0+0Nbq6QBH2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFChvm4XUJN5rzmrmE+YPr2YP2Tm69va/ozdbi/m5+713bbWf9mKJcX8La84vJhPjHPb2j4AdZnzy/J+Z+9HH1zMz9rz221t/z0bXlC+wYZtrb7j7s/Li/luPz+imG/zo4FiPuOUhcOuCYDx7eRLdy/mH9j4vGK+ybR7ivktw6yHznOkDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABXq63YBY8nAffcV823+94yObv/JsXtH1z8xzu3o+gGoy8A/Lynmm7xoejHf+5A3FPN7H1Peb6Yry+t/zBP/Ucxb+dOi7dtafuafy/XNvnhZMZ/3x7+1tX0AWN32Hyjve4782iOK+d9/tnMxnxOnD7smOsuRNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFSor9sFAAB1GrjvvmK+0efOaJG3t/1//V97y28b57e3AgCoTP+Flxbzi/csLz8nTh/BahgNjrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFChlhciTinNj4j5ERFTY3rHCwIars2L4rpYHBERK2JZl6uB3qH3oDv0HnSP/oN6tRza5JwXRMSCiIhZaXbueEVARETMSXNjTsyNiIiF+dQuVwO9Q+9Bd+g96B79B/VyehQAAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIVSznnoN07ploi4etC3NoyIW0e6qBFUc3011xahvnaNdH17RMS5HVz/SFPf2qu5tojeq0/vjSz1tafm+vSe+tqhvvZ0sv967b6PNPW1p9fq2zrnvNHq3xzW0OYBC6d0ds55r7bK6qCa66u5tgj1tavT9fX6/W9XzfXVXFuE+nr9/rdLfe2puT69p752qK89nayvl+/7SFBfe9TX4PQoAAAAgAoZ2gAAAABUqN2hzYIRqaJzaq6v5toi1NeuTtfX6/e/XTXXV3NtEerr9fvfLvW1p+b69F7d1NeeXq6vl+/7SFBfe9QXbV7TBgAAAIDOcHoUAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGjDiEsp/TGl9Ooh3vaqlNIT1nI7a70sjFf6D7pD70F36D3oDr03esb90GYs/JBTSpNTSic3a80ppceulh+VUlqRUrp30NfcIa775Sml0zpRd81SSr9a7fFanlK6oNt19Zrx0H/N2+yRUvpz87l0U0rpjUNcd6/239tSSv9MKd2TUlqcUnpbt2vqNeOh99p5He/h3puSUjqx+Tp1e0rpZymlLbpdVy8ZJ7231s+jXu29iLV/r8DIGCe9t15K6asppZubX0cNY9092XvtPGZjybgf2owhp0XESyPixjXk3805zxz0tWikNpxSmjhS66pFzvmpgx+viDg9Ir7f7bqo1hr7L6W0YUT8OiI+HxEbRMT2EfGbkdrweOy/iEgR8bKIWD8inhIRh6WUXtTdkqjUGnuv06/j47T33hgR+0bEQyNi84i4MyKO7WZBVKv0vrOjz6Px2Hudfq/AuFLqvaMjYnpEbBMRj4iI/04pvWKkNjweey86/JjVoqeGNs0J5F9TSkenlO5MKS1KKe3X/P41zencIYNu/7SU0t9TSnc386NWW9/LUkpXp5RuSym9e/CEN6U0IaX0zpTSlc38eyml2Q9WV855ec75Mznn0yKifwTv704RcWJE7Nuc+t/Z/P5XUkqfSyn9MqW0JCIel1Y7vG31aW1KaceU0m+bn7hcmlJ6wRBr2C6l9PvmY3BrSumbKaX1VrvZ3imli1JKd6SUTkopTR20/NNTSuc1f16np5QeuhaPwzYRsX9EfH24yzJyxnD/vSUiTsk5fzPnvCznfE/O+eIh3N+e7b+c88dzzufmnFfmnC+NiJ9ExKOGsiwjbwz33uBtbhNDfB3v5d6LiG2j8Xp1U855aUR8JyJ2GeKyjLAx3Htr9Tzq8d5bq/cKdMYY7r1nRMTHc8735ZyviogvRcQrh3B/e7n31uoxG2t6amjTtE9E/CMaU/BvRWNHtHc0JuIvjYjjUkozm7ddEo1Pi9eLiKdFxOtTSs+KiEgp7RwRJ0TESyJis4hYNyIGHzp6REQ8KyIOiManFHdExPFt1P2MZvNcmFJ6/VAWaO4sXhcRZzQ/qVxvUPziiPhQRKwTjYnvGqWUZkTEb6PxeG0cEQdHxAkppaG8EUwR8ZFoPAY7RcSWEXHUard5SUQ8OSK2i4h5EfF/ze3uERFfjojXRuPn9fmI+GlKacoQtjvYyyLiLznnxcNcjpE3FvvvkRFxe3MHcnNqHCa+VauF9N//rz9F45ftC4ezHCNuLPbeYEN+He/x3vtSRDwqpbR5Sml6cxu/GsJydM5Y7L21eh71eO+t1XsFOmos9l5E4zk8+N+7tlqgx3tv1bYH/7vlYzbW9OLQZnHO+aScc39EfDcaT6j3N6fiv4mI5dFo5sg5/zHnfEHOeSDn/I+I+HY0GjIi4nkR8bOc82k55+UR8Z6IyIO289qI+N+c87U552XReNI+L6XUtxY1fy8aT/6NIuI1EfGelNLBa7GewX6Sc/5r874tbXHbp0fEVc3HbWXO+dyI+EE0HoOinPMVOeffNh/fWyLi0/Hvx3CV43LO1+Scb4/Gi8qq+/aaiPh8znlhzrk/5/zViFgWjR3jcLwsIr4yzGXojLHYf3Mi4pBoHC6+VUQsbtbSjl7qv6Oisa85aZjLMbLGYu8NNlKv4+O99y6LiH9FxHURcXc03ju8fwjL0Tljsfc68Twa773XifcKtGcs9t6vI+KdKaV1UkrbR+OIkelrsZ7BxnvvdeIxq067b6LGopsG/fv+iIic8+rfmxkRkVLaJyI+Go1p3eSImBL/Pp9+84i4ZtVCOef7Ukq3DVrP1hHxo5TSwKDv9UfEJtHYCQ5ZzvmiQf97ekrpmGg0Tzs7g2ta3+T/2zoi9ll1qF1TXwztMPWNI+Kz0fikfZ1o/PJ2R6GWq6Px2K7a7iEppcMH5ZMH5S2llB4dEZtGxMlDXYaOGnP916zpRznns5p1vS8ibk0prZtzvmuY61qlV/rvsGj8sr1/840M3TMWey+a9Yzk6/h4773PRcTUaHxSuSQi3h6NIyT2GcKydMZY7L1OPI/Ge+914r0C7RmLvXdENK4fdXlE3BaN3/Xa/aB+vPdeJx6z6vTikTbD8a2I+GlEbJlzXjca5wquOvzqhmhM1SMiIqU0LRo7t1WuiYin5pzXG/Q1Nee8Vm9aV5PjPw8Da3XboXx/SfznVHLTQf++JiL+tNp9mZlzHsppWh9pbuuhOedZ0TgccfXatxz0760i4vpB2/3QatudnnMezrDqkIj4Yc753mEsQx1q6b9/xH/2y6p/D6UHe7b/UkqvjIh3RsSBOedrh7IM1ail91ZZm9fxXu29h0XEV3LOtzcHpcdGxCNS4yKp1K+W3mvnedSrvdfOewW6r4rea/bcS3LOm+acd4nG7+p/G+riQ/z+uOq9Nh+zMcPQpmydiLg957w0pfSIaJwTuMrJ0bjOzH4ppckR8b74zyfmiRHxoZTS1hERKaWNUkoHrWlDqfHnFVddjGlySmlq81oQkVI6KKW0fmp4RDQmij8ZtOwf05r/vNlNETGnWWPJeRHxnJTS9OahZa8alP08IuallP47pTSp+bV3alz0qpV1IuLeiLgzNf5c5IP96d83pJTmpMZFu94VjUMYIyK+EBGvSynt07zvM1LjQmHrDGG7q15Unx9OjRqrqui/aJzW8+yU0u4ppUkR8e6IOC3nfGdzWf23mpTSSyLiwxHxxDyCf+mOUVNL7xVfx/XegzorIl6WUlq3+Xp1aERcn3O+dQjL0n219F7xeaT3HlTxvQLVq6L3UuNivhuklCamlJ4aEfMj4oODltV7q2n1mI0XhjZlh0bE+1NK90Tj/MXvrQpyzhdGxOHRuKjVDRFxT0TcHI3z7yIijonGxPY3zeXPjPJhpZdG4zC9LSLilOa/t25mL4qIK5rb+FpEfCw3zvVbZcuI+Osa1vv7aFwA9MaUUulN29HROLfzpoj4akR8c9B9vScintSs4/po/Im6j0Xj0MFW3hcRe0TEXRHxi4j44YPc5lvR+LOIi5pfH2xu9+xonON4XDQOr7siIl4+hG2u8qzmdv8wjGWoRxX9l3P+fTR2LL9obmP7+M+duf57oA9G41Oos1Ljrxjcm1I6cYjL0n1V9F7Ts2LNr+N674HeGhFLo3GY+C0R8V8R8ewhLkv31dJ7rZ5Hem81Q3ivQN1q6b09I+KC5jY+EhEvaW5/Fb33QK0es3Eh5bymI6kYjtS4+vidEbFDHsW/UpRSmhMR38857zta24Ta6D/oDr0H3aH3oDv0Ht1gaNOGlNIzIuLUaBwi96loTFX3yB5U6Dj9B92h96A79B50h96j25we1Z6DonHo2PURsUNEvEjzwqjRf9Adeg+6Q+9Bd+g9usqRNgAAAAAVcqQNAAAAQIX6hnPjyWlKnhozOlULsAZLY0noPRh9eg+6Q+9B9+g/6I6lsSSW52Vp9e8Pa2gzNWbEPunAkasKGJKF+VS9B12g96A79B50j/6D7liYT33Q7zs9CgAAAKBChjYAAAAAFWp5elRKaX5EzI+ImBrTO14Q0HBtXhTXxeKIiFgRy7pcDfQOvQfdofege/Qf1Kvl0CbnvCAiFkREzEqz/X1wGCVz0tyYE3MjYs3nNwIjT+9Bd+g96B79B/VyehQAAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIX6ul0AAADAKhMeumMxv+0j/cX89w/7ejF/3rNfU8zzWRcUc4DR5EgbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKtTX7QIAAIDesey/9i7mJ33u6GK+cOmWxXy3Uw4r5jtfc00xX1lMAUaXI20AAAAAKmRoAwD/r737DrOzrBP//7kzk2RIIBCalKGFEKpUAQFFXXatYFnRhQXEgkGlKLKo69f9imtbpQhLNaBYYRdR7K66rKiY0ERcCJ0EhNAh1EBIZp7fHxN+30j5nAxnJueezOt1XVyX5j3nee6ZzD3nzOc85wQAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAV6u70AgA67d4jd0978zfz037w1MvSPn216wa9pqUdNW+vtM/be0La++6/v63zA8Oja7VV0779b/KfPXtNmp32E968b9r7Zt+YdnixHjnw5Wn/6RdPSPvOv/pI2rc86qa0T3v0yrQvTitAXVxpAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQi3fiLiUMj0ipkdE9ET+ZpfA0LmzmRPzYm5ERCyKhR1eDYwe9h50hr0HnWP/Qb1aDm2appkRETMiIiaV1ZthXxEQERG9ZUr0xpSIiLisuajDq4HRw96DzrD3oHPsP6iXl0cBAAAAVKjllTYAtevuXT/tC87Jf9RdsdUpab9+0aK0f2zO29P+q/u2TPuMqf+Z9jN7f5/3326U9h9vtUbaYbTqmrpJ2hetu1pbxx/7wONpn/e6tdL+k7VPTftZj2yQL+Ce+/MOL1LZYeu0X/iF49N+SIv7zWnv/1Pa+/r70g6wInGlDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABXq7vQCqMdtn90t7f1j89v3bP5I2q/a5duDXdJfOfPhKWn/6daT2zo+I9cOP/1L2vdd9cq0T/vREWnf6rP58Zu756W9lek7fzDtZ1xwRtoPWXVO2r9ywpvSvunRl6Ydhkuzx/Zpv+3wJu3brH9XW+c/YJ2L0v7mifPbOv7mF34o7RtOy9ffVfLn1i6ev3naS09P2uGFjJk4Me3rnJHfLx5//55pf/rti/MF9PflHUax7nXXSftt785/ZzrhfV9L+14rLRj0mpa21XcOT/uUj89q6/ijkSttAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqFB3pxfAsnvyrbuk/YGt87/OSXvcl/Y/bXty2rtKSXsr/W3dOuI9q96Y9jHXbZb2H2+1RpsroFMef+fL0/7ptU5L+8uvOijt0z50edoXp7V9zRXXpH2vH/5T2m/e9/S0f2mfc9M+4+gpaYfhcsdeE9I+e89ThvX88/ufSvsOl01P+4nbnp/2G9+W781W+pr8fveG/9gi7S+ZN7Ot8zN63XDiVmn/9vonpf1de70r7X0P3DrYJcGosfANO6d9y8/9Ke0/XOdnae9v8VtZu7+zXXvgv6d9h03fk/YN9r22zRWseFxpAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIW6O72AkaR7ysZpX/vcB9O+75pXtHX+LcZekvbe7vFpH9NiRvep+3ZJ+7+u3d762zW2dKV9g7H51z9ijaFbDMtV39i8f+vR9dPe9f2R/Xe/6feeyj9g3zyv1f1o2rvWzL8+fQ+02lvw/G75ysvTfsnbv9ziCCuldduZ7077Uw/mt9/q83elff07Zqf9uFcdmPZJ55yd9p3yu+24YmGT9nW//ue09+eHZxQbM2FC2r/5d2el/b1z3p72vptuHfSaYLTo7s0ft77uuIvSftjkG9N++cL8d6aDL31/2tf6aU/an97/obTP3PG7aT9yq9+k/Uc9G6S9/6kWj4tXQK60AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoELdnV5ATR5/x65p/+jnz0v73hMfHMrlPI/xbd16n7ccnPauux9K+1vWfU/an9hwYtqP/tJ30/6GCfPT3srZd+3Z4iPuaev4dM7kH16T9u//ZFp++0dnDeVylruupxa3dfs9xven/fb3b5723i/ObOv8jF79E/rSvnbXhLT/8InV0j7l44+lffGc/GdHq501Zvut0v5Ii/PvPL6k/e6+BWl/39kfS3vvE/YmL87N/7pt2jfu/lXaFxy7Xtq7POaCF7TJhQ+k/bDJN6b97Te/Oe2LXn132jeNq9PeSrl+67Rf+4Mm7W9cOf/8vr/za9M+5vd/SvuKyJU2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAq1PKNiEsp0yNiekRET+RvGAgMnTubOTEv5kZExKJY2OHVwOhh70Fn2HvQOfYf1Kvl0KZpmhkRMSMiYlJZPX8raGDI9JYp0RtTIiLisuaiDq8GRg97DzrD3oPOsf+gXl4eBQAAAFChllfajCbrHnlr2vee+OCwnv+hvvxSxL1mfCzt61ya337slX9M++K0RsS8u9J810d2SPsbJsxvdYbUBY+vk/a+A7raOj716n/iiU4vobOuuTnNpzw8Je1HrDYn7QumLBr0kmBZbPyD/ALdU16Rf+8etlp+v/zp4yemfcP3rpr2WHP1NC864bG0/36LH6b9mqfze9b9vpXfr2/0hZlphxdrrz3/nPYj57497V2/uWoolwOjygNP5/ddrdz2X5ukff24u63jD7ebF+X3zWPveSTtfUO5mBHClTYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUqLvTC1ieHvuHl6f9zA2Pb3GE8W2d/0dPrJn20496Z9o3+NnMts4/3Kas+8CwHv9Tv/v7tE+784phPT90SrNwYdof7+tZTiuBwen5/XVpP/2aPdN+2CtvTfuJ256f9v/ztkPS/ol//m7a3zxxftpb+cevH5X2jT5b9/06I9dT++yS9q+sd2ra3/b372txhnsHuaLBWfC2XdO+0j1Ppb3M+vNQLgeG1JhoWvT8uorx81vcfuLEtPdtOzXtN797XNr3eOnNaf/tE1uk/b8Oze/7y81Xp300cqUNAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFeru9AKWp3UOuzXt63WPb+v4h9/56rRff9w2aZ/4s8vaOn+7utd5Sdrvevumaf/Pqce1OMO4tLb6+q3/SzNGRqcxEyakfc3u+9s7/uNdbd0eXkj/ggVpX/RYe/e7r1npqbTP/NypaR8TJe39Lc6/9e/em/ap59+X9r4Wx4cXa97+T6f9tIe3TPuYa/PHzK32xj1H7Z72b3/4xLRvPfaqtM/vfzLte555TNo3+PzMtMNwOmzdi9Le32KHvXp6/jvjmEObtH/uJWenvZU9jj0y7fef9XDaS1zd1vlHI78FAwAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUKHuTi9gefrLt6am/QtHbJ/2W59YK+3zD1g17RPnXpb2TrvpI1PSfu1BJ7c4wri0nvTQVmm/a78101771w+GS7NVvjffv+olbR1/w1/2tXX7Vrp710/7Iy/vTfs9u+bPL0z9z8fS3lx5bdrpnJ47xnZ6Cam9b3hL2qccvzjtfTfeMpTLgWV29Z5npv3Vnzkq7WssmJX2MT09af+/H/xO2t/7+fz8a//gxrTf847N037x/zku7W+Zc3TaJ513adqhHVc9uUnap3TPTvsX1sl/JxrT4rqM/rRG3LV4YdrXuOaJFkdgqLnSBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAp1d3oBy9MaZ89K+6Vnj21xhIfb7J318Lt2S/usA45vcYRxaV3Qvyjt3zrv79LeO3dmi/PDyDRmwoT8AzbbKM3zXjVpCFfzXH/35d+l/Vvv3SXtB25xRdq3Xek3aX/ThMfTftviBWl/85RD09779jQzjEp3/jBjtd3uTfuYKEO5nOd44w1vzj9grzvT3ETeYbg0u22X9pXKVWkvi9s7/1OvfmnaP37Flmnf9Kz8MXlfi/OvdWZ++5fvdkTaX/Pha9N+53ktFgBt+OnWk9P+g9cflfbHNsjvW2cde+qg17S0va9s8bjq0v9t6/gMnittAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUqOUbEZdSpkfE9IiInmjxZprAkLmzmRPzYm5ERCyKhR1eDYwe9h50hr0HnWP/Qb1aDm2appkRETMiIiaV1ZthXxEQERG9ZUr0xpSIiLisuajDq4HRw96DzrD3oHPsP6iXl0cBAAAAVKjllTasOC754qlp749xbR3/laf+U9p7vzSzreMzeo1ZZZW0lw3WTft9u62R9gd37kv7/rtemvZW1h53V9qPWO2Sto7fro+sfk3aN9/+7raOf9RP3pX2k3+2KO3j7n0i7b3Xzh70mlg+HvnJRmn/3bbnp71/KBfzvMcvaffMFrVasH5PW7dfffbjbd1+pStuTfvm1+TrW9zW2Vvb7Iz8DGd+/7dp3zt2GsrlwKCM+68r0r76HtsP6/k3+ELevfRm+fN4BAAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAp1d3oBDJ2bT9s17WPL1Wlf1LR3/t6LHk17m4dnBBuzyippv+G4LdP+T3v+Iu0fWPW3g17TULp18ZNpv23Raml/snk67SuVcYNd0l/Z8nfvSfuGM7rS3vWbq9o6/9S4tK3b97d1a9rRNXWTtN88fZ2037DtaWlv9Xf76ft2SPv3b9o+7de+4py0b7vavPz2aYWRq+vW/Hu/r8Xt+x58aOgWMwy6bsk/PxjJ7t9uQtrHlvxxXbu/87H8udIGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACACnV3egEsuzE9PWnfZpvb076o6Ut7f/SnfYfTP5z2Da66LO2MXiv9LP/evWXTM9M+v//JtL/xhn9I+813vCTt6/00/1HY9VST9ok3PZj2vptuTftt19+X9vdNujPt//H4Wmmf+qG/pL1v/vy0M3rd9cZ1037dAae0OEJJ61bfPjztmx13Y9pXOmDl/PSvyPPP52yd9g3jmvwA0CFNvrWiq4zu52UffOO0tM9d/OPltBIYet1P5o9LW/3Od/Btf5v2MU8tTnt+dIbD6P6JDgAAAFApQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIW6O70A/p+uSZPS/pcPbpP2P049ucUZ8hndzle8K+0bn31L2vv6+1qcn9HqB1N/nfbzH5+c9hnTD0l718VXpX2zuDPt7eofOy7tN525S9rfOPHEtF+6cELaz/nAW9LeNT//+jB6LXjbrmk/76PHtzjC+LTu/onD0j71B/+bH37j3jR/9EPn57dvYdFfJrZ1e+iU0uS9r+lfPgvpkDI+/9mzxntuT/vrLz4i7ZuF+006aJeXpnn1A+9I++ULS9pv+sYWaV9j9qy0s/y50gYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKdXd6AaNJ1xqrp/3+b66Z9j/ucHJb59/2q0ekfcPPXZb2vv6+ts7P6NXX9Kf9+ifXT3v3H65NezPoFQ3OmIkT097/48lpv2WLM9M+v7+k/RNHfzDtE36T7114IfP2yvu0sT1pf89fXp321b49K+3N+PFpv/1ta6R9i/F3p31MdKV9/IOeu2JkWvWqe9N+8VNj03779C3S3vvFmYNe01AqLX42zP3W5mk/fO3f5sc/KL/fXZxWaE/XWmul/QPf/X7aXzfhkbRv+/Uj077xWfl9M/XxaAUAAACgQoY2AAAAABUytAEAAACokKENAAAAQIVavhFxKWV6REyPiOiJCcO+IGDAnc2cmBdzIyJiUSzs8Gpg9LD3oDPsPegc+w/q1XJo0zTNjIiYERExqaw+3P9IC7BEb5kSvTElIiIuay7q8Gpg9LD3oDPsPegc+w/q5eVRAAAAABVqeaUNQ6dv0/XTfskOX2/r+N95dIO0b/ivM9s6PrxYX3u0N+2fWvPatG9z7sFpX2/yI2mfO3u9tK9yWz6/PuSQn6V9+moXp/3oe3ZL+7VHb5v2CRdflnZ40VpcP9vf4gP6m3zvlPHj037/wTum/c8fPCXts5/uT/uWvzsk7Zt8wf0iI9PiObel/YivH5r2iz90XNpfE8ekfaOzbkz709tslPb7t+9J+5GH/iDtDyx+KO2/eOtOae+7c07aYTjdfHL+O+HrJuSPa3e54l1p3/hfZg16TdTNlTYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUqLvTC1iRlJ1fmvY5Hy1tHf/sR6ak/Wf77tbiCDe1dX54sb6/5dpp/7d/3yftl7/txLSPLS3mz1vkuZXXX3Ng2s/93BvSPum8S9PeFVcNek0wFLrWWNjW7W+av1bat/7tPWn/yQantnX+Qz/9kbRv8q1ZbR0fRqoNPj8z7a+OY9J+8YeOS/vkw3sGvaalzV38VNpf/8Oj0775x69Oe/9Tcwa7JBgyj79j17T/7hUnpP3evvz443+42iBXxEjnShsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAq1N3pBaxI7v3UorRf87Jvt3X807+zT9p7r5vZ1vGhUzY78rK0H3DkHstpJc9vUtza4iNadahT900T8g94VZ7/sP1/pH1MlLRf8/TitL/9Rx9O+7QLr017f1ph9Nrg8/ljxoM+39n73c3i0rTb23RS19abp/2M405u6/h//5lj0r7GN2a1dXxGHlfaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUKHuTi9gJGl22y7ta6/8YFvH3+o309O+2a8eTXvT1tkBGG2mnHlr2rced3ja//vA49L+qXlvTPvlv9om7VM/PTPt/WkFgMEbs8oqab/h4xPTvvnYrrS/8uqD0r7G12alndHHlTYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUqLvTCxhJbj54fNpv2OLCtF/4+Npp3+ykRWlvrrw27QAwGIvvuTftm3wy7+//5CtanOHRtG4UM1vcHgCWr78c8dK037jXKWn/8F2vTPsa75iX9v60Mhq50gYAAACgQoY2AAAAABUytAEAAACoUMv3tCmlTI+I6RERPTFh2BcEDLizmRPzYm5ERCyKhR1eDYwe9h50hr0HnWP/Qb1aDm2appkRETMiIiaV1ZthXxEQERG9ZUr0xpSIiLisuajDq4HRw96DzrD3oHPsP6iXl0cBAAAAVMjQBgAAAKBCLV8exf+z/n+X/AP2yfOJX9wv7ZOvnDXIFQEAALCsFr32ZWn/ynvPSvsW3zss7Zuffn/a+xfcmnZ4NlfaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUKHuTi9gJJl4wWVpf/MFO6d9cswayuUAAAAwCGN/dWXaT5i6ddqnxqVp7xv0iiDnShsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqVJqmWfYPLuX+iLh9qT9aMyIeGOpFDaGa11fz2iKsr11Dvb4dI+KqYTz+ULO+F6/mtUWMvvXZe0PL+tpT8/rsPetrh/W1Zzj332j73Iea9bVntK1vo6Zp1nr2Hw5qaPOcG5dyZdM0L2trWcOo5vXVvLYI62vXcK9vtH/+7ap5fTWvLcL6Rvvn3y7ra0/N67P3rK8d1tee4VzfaP7ch4L1tcf6Bnh5FAAAAECFDG0AAAAAKtTu0GbGkKxi+NS8vprXFmF97Rru9Y32z79dNa+v5rVFWN9o//zbZX3tqXl99l7drK89o3l9o/lzHwrW1x7rizbf0wYAAACA4eHlUQAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqJChDUOulHJxKeWQZfzY20opf/siz/OibwsrKvsPOsPeg86w96Az7L3lZ4Uf2oyEv+RSystLKb8upTxUSrm/lPK9Usq6S/VSSvlSKeXBJf99uZRSlvHY7y6lXDJ8q69bKWVcKeWGUsqdnV7LaLSC7L/XlFJ+U0p5pJRy2yCPPSr3Xzs/sxgaK8jeO6aUcm0p5bFSytxSyjGDOPZo3XurlVK+WUq5b8l/x3Z6TaPNCrL3PlJKmVNKebSUclcp5SullO5lPPZo3Xsv+rECQ2NF2HtLfdygf3+x91bsvbfCD21GiMkRMSMiNo6IjSLisYg4Z6k+PSLeGhHbRcS2EbF3RBw6VCcvpXQN1bEqdExE3NfpRVC1VvvviYj4egx8Lw25FXT/DevPLFYYrfZeiYh3Lfm410fE4aWU/Ybq5Cvo3vtKREyIga/pLhFxUCnlPR1dETVqtfd+EhE7Nk0zKSK2iYGf5UcO1clX0L03rI8VWGG02nvPGJbfX+y9kWtUDW2WTCD/sOQZg4eXPIuw+5I/v2PJs1IHL/Xxbyql/GnJMw13PPsZq1LKu0opty95Jvlflp7wllLGlFI+UUq5dUk/v5Sy+vOtq2maXzRN872maR5tmmZBRJwaEXss9SEHR8QJTdPc2TTNvIg4ISLevQyf75YRcWZE7FZKebyU8vCSP/9GKeWMUsrPSylPRMRryrMub3v2tLaUssVSk+EbSynvbHX+JbfbtJTyP0u+Bg+UUr5bSlntWR+2cynlulLK/FLKOaWUnqVuv3cp5eolf18zSynbLst5l9x2k4g4MCK+uKy3YfiM1P3XNM3lTdN8OyLmDPLzHc3770X9zGJ4jOC99+Wmaa5qmmZx0zQ3RsSP4q/vG1/o8x3Ne2+fiPhy0zQLmqa5LSK+FhHvXcbbMsRG8N67tWmah585bUT0R8TUZfh8R+3ee7GPFRgeI3XvLTneoH9/sfdW/L03qoY2S+waEf8bEWtExLkR8R8RsXMM3BkdGBGnllJWXvKxT8TAs3yrRcSbIuKDpZS3RkSUUraKiNMj4oCIWDciVo2I9Zc6z5Ex8EzzqyJivYiYHxGnLeMa94yI2Uv9/60j4s9L/f8/L/mzVNM010fEByJiVtM0KzdNs9pS+R8j4vMRsUpEpJfSlVImRsSvY+DrtXZE7B8Rp5dSWq4hBu7svxgDX4MtI2KDiDj2WR9zQES8LiI2jYhpEfGpJefdMQYmp4fGwN/XVyPix6WU8ctw3oiIUyLikxHx5DJ+PMNvJO6/F2WU778X9TOLYTWi914ppUTEK1+oL22U771nzr30/95mGW/H8BiRe6+U8o+llEcj4oEYuNLmq60OYu9RmRG59+JF/P5i7634RuPQZm7TNOc0TdMXEf8ZA99Q/9o0zcKmaX4VEU/HkmcTmqa5uGmaa5qm6W+a5n8j4rwY2JAREftGxE+aprmkaZqnI+L/RkSz1HkOjYj/s+SZ5oUx8E27b2nxmuAlU8X/G399idfKEfHIUv//kYhYecmD2BfrR03T/GHJ5/ZUi4/dOyJuW/J1W9w0zVUR8f0Y+Bqkmqa5pWmaXy/5+t4fESfG//saPuPUpmnuaJrmoRj4obL/kj9/f0R8tWmay5qm6Wua5psRsTAiXt7qvKWUt0VEd9M0F7b6WJarkbj/hsMKvf9ieH5m0Z6RvveOjYHHLM93GflgrOh7778i4hOllFVKKVNj4CqbCctwO4bPiNx7TdOc2wy8PGpaDDyDf28bX4OIFX/vUZ8Rt/eG6fcXe28FsExvKraCWfpO58mIiKZpnv1nK0dElFJ2jYh/i4FnqcZFxPiI+N6Sj1svIu545kZN0ywopTy41HE2iogLSyn9S/1ZX0S8JCLmPd/CljzA+kVEfLhpmt8vlR6PiElL/f9JEfF40zRL/8AYrDtaf8j/b6OI2PWZS+2W6I6Ib7e6YSll7Yj49xh4hnSVGHjQPT9Zy+0x8LV95rwHl1KOWKqPW6q/0DknRsSXI+KNrdbHcjcS999wWGH33xLD8TOL9ozYvVdKOTwGngF95ZIHxO1Y0ffekTHwLO3NEfFgDPzisX96C4bbiN17S85zcylldgxcafD36WeaW9H3HvUZUXtvGH9/sfdWAKPxSpvBODcifhwRGzRNs2oMPNPwzDPFd0dE7zMfWEpZKQYu53rGHRHxhqZpVlvqv55m4P0dnqOUslFE/HdEfLYZeF3e0mbHwKWpz9gulv3lGy/0S9Kz//yJ+Otn49ZZ6n/fERG/fdbnsnLTNB9chvN/ccm5tl3yjM2B8deXbkcMTL6fsWFE3LXUeT//rPNOaJrmvBbn3CwG3uDr96WUeyLiBxGxbinlnlLKxsuwZupQy/5rx2jcfxHt/cyi86rZe6WU90bEJyJir6ZpBvOvAI7Kvdc0zUNN0xzQNM06TdNsHQOP8y5fhvVSh2r23rN0x8DLGZbFqNx7jHg17L12f3+x91Zghja5VSLioaZpniql7BIDrwl8xgURsU8ZeFOrcRHxmfjrb8wzI+LzSzZmlFLWKqW85flOUkpZPyL+JyJOa5rmzOf5kG9FxEdLKeuXUtaLiKMj4htL3f7i8sL/rOe9EdG7ZI2ZqyPi70spE5ZMf9+3VPtpREwrpRxUShm75L+dy8CbXrWySgw86/7wks/z+S59P6yU0lsG3rTrkzFwCWNExFkR8YFSyq5lwMQy8EZhq7Q457Ux8ENh+yX/HRIDX4ftY3DTZjqriv1XBt5gricixg7839Kz9H6y/55X+jOL6tWy9w6IiC9ExN81TfOcNxi0956rDLwR5BqllK5Syhti4F9y+9wyrJc61LL3DlnyrPkz7+fxzxFx0VLd3nuWVo8VqF4Ne6/l7y/23nONlr1naJP7UET8aynlsRh4zeH5z4SmaWZHxBEx8KZWd8fAP9l2Xwy8/i4i4uQYmNj+asntL42BN8R6PodExJSI+HQZeMfvx0spjy/VvxoD//ziNTGwoX8Wf/2GcBtExB9e4Nj/EwPPcN9TSnkg+Vy/EgOv7bw3Ir4ZEd9d6nN9LCJeGxH7xcBE9J6I+FIMXDrYymciYscYeE+Ln8XA1PjZzo2IX8XAu37PiSUPMJumuTIGXuN4agxcXndLLMO/QNMMvAbznmf+i4iHIqJ/yf/vW4Y1U4da9t+eMXAJ7c9j4FmBJ2Pg+/UZ9t9ztfqZRd1q2Xufi4FnM69Yqi/9INfee66dYmDfPRYDz3oesOTvjJGhlr23R0RcUwb+tZmfL/nvk0t1e++5Wj1WoG4d33vL+PuLvfdco2LvlcZbDAyJMvDu4w9HxGZN08xdjuftjYjvNU2z2/I6J9TG/oPOsPegM+w96Ax7j04wtGlDKWWfGLhctETECTEwVd2x8UWFYWf/QWfYe9AZ9h50hr1Hp3l5VHveEgOXjt0VA28etZ/NC8uN/QedYe9BZ9h70Bn2Hh3lShsAAACACrnSBgAAAKBC3YP54HFlfNMTE4drLcALeCqeCHsPlj97DzrD3oPOsf+gM56KJ+LpZmF59p8PamjTExNj17LX0K0KWCaXNRfZe9AB9h50hr0HnWP/QWdc1lz0vH/u5VEAAAAAFTK0AQAAAKhQy5dHlVKmR8T0iIiemDDsCwIG3NnMiXkxNyIiFsXCDq8GRg97DzrD3oPOsf+gXi2HNk3TzIiIGRERk8rq/n1wWE56y5TojSkR8cKvbwSGnr0HnWHvQefYf1AvL48CAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKhQd6cXAAAAAAy/B34yLe2f3Py/0n7qEe9M+7hfXjnoNZFzpQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAV6u70AlhxlJ22Tvuap8xL+/wDV0v74jm3DXJFMDoseNuuaf+fU09P+9jSlfY9PzQ97Sv98PK0AwBQhz3WnZv2t6/8aNqfOPmHaT93u03T3ixcmHaey5U2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVKi70wtYWtcaq6e9rDop7c0DD6W979H835ynPbfvs2raf7TRN9K+9YeOSPvUf74r7c2ip9MOI9U9R+2e9re++7dpX9T0tXX+13zmD2k/f7tXpX2jL1yZdnsXgKE05992S/sNB52W9qk//kDap33w8kGvCZaXrs2npv0L63ynxRF60vquSQ+k/bxxW6a9Wbiwxfl5NlfaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACoUMs3Ii6lTI+I6RERPTFh2BcEDLizmRPzYm5ERCwKb9gFy4u9B51h70Hn2H9Qr5ZDm6ZpZkTEjIiISWX1ZthXBERERG+ZEr0xJSIiLmsu6vBqYPSw96Az7D3oHPsP6uXlUQAAAAAVanmlzfJ0w7Gbpf36vz817dud/eG0b/TpmYNeE8tu7T8uzj/g/Xmevf8paX/rdw5Oe3P1dfkJoFL3HLV72rfe9/q0f3yNPw3lcgZ9/I+/P+/7fu/AtPddd9Og1wRDoWuraWm//p8mpf2a1+aPS1Yq49K+8x/3T/tab74x7TBada2xetrPesdX094f+YsHrtr7pLTvees/pX294/3OQecsXnPltK88pqet47/62remffwTd7R1fJ7LlTYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUqLvTCxhKP373cWk/cO4/pX3yN2YN5XJGnSfW6er0EmBYdL1k7bQ/tvsmaf/Il85L+649l6R99THj0t7KmQ9vkfaxpS/t71v15rbOD51y99G7p/3CI7+c9nPm75b23U/8aNoXrN+f9uv3Oy3t++z87rQ3V1yTdhipytj8fu+WozdP+x49v27r/L9/as20r3fJ420dH9rRan/c97GnhvX8j12wbtrH9982rOcfjVxpAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIW6O72AobRRd/5v1p9z7IlpP/KOw9PefdEfB72mFUnX5Mlp3/3QK4f1/Lfsv2rap1w9rKdnBfbQe3ZL+1rvuj3tv9zslLSPLV1pX9TkP7va9c2zXp9/QIvx/fuOPmnI1gKDMaanJ+23HLtD2mcdcFzad/nR0Wnf4rNz077uvTPT3veaHdMe++V5zMNP5MfPbw4j1pOv3z7tsw8+dVjP/4Vj35X2VS+9dFjPD5mbzt4m7XN2/vpyWgnLiyttAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqFB3pxewtIm3dw3r8aeOzT/d8Z+6O+1l9kvSvvieewe9ppHk6e02Sftx6351Oa0EBufeI3ZP+xWfOKXNM+Q/u8aW4f3Z1lJp7+YdXz+j1h0f2THt1x2U793tzjwm7Zt9dmba+9La2l9eNz7tsxbme6vv5jltrgDq1LX15mn/m89dMqzn33/O69I++cez094/lIuBZ7nrY/nj1kv/5rgWR5g4dIuhCq60AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoELdnV7A0tY/6fK0b73OEWmfvf8pbZ3/wmk/SvvLDvpw2tc77t62zl+7cXfOT/t5j62f9v1XmdfW+aee90ja+9s6OiPZvUfsnvZvfPQraV/UlLQ/0P902n//5EZp33TsfWnfdlxf2ltptb6xjzVpXzQp//wXNe2tD15I97rrpP3rh56c9j2u/se0b/hvV6Y93xmtdW01Le2fftv5bZ4BVkx/+59XpP2IyTe3dfxbFi1M+92nTE37yo9d2tb5IXP3R/PHrZcceULaVx0zMe2fvn/rtH9mrdlppz6utAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUKGWb0RcSpkeEdMjInpiwrAvCBhwZzMn5sXciIhYFPkb6gFDx96DzrD3oHPsP6hXy6FN0zQzImJGRMSksnq7/9ACsIx6y5TojSkREXFZc1GHVwOjh70HnWHvQefYf1AvL48CAAAAqFDLK22Wp2bx4rRP+9Ktaf/mmzZK+8GTbh/0mpb2Dwf9T9pnnTsl7Yvn3dXW+Tvt6d7Jad9/lXnLaSWMNg+9Z7e0X/GJU9K+qCltnf9jd7w57fP3eCjt9xz1D2mfdfRJg13SX3n9WR9L+wZfm5n2e47ava3zwwspY8elfZ+Lrkn7zAWbpX2tQx5L++JFT6e9XRt8446077fy/Wmf+tND0z4trhj0mmAk+PDkW9Le3+bx3/TTo9K+2fmXtnkGatY1Of+dZcHuU9P+0BZj89vvtCDtP9r9jLRvPe7qtEeslNatzvhQ2jf68fz88L+Y3eL81MaVNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFSou9MLGIy+++9P+4nX7JX2g/f4elvnP2aNa9K+99Td0j5m3l1tnb+VMT09ab/9mB3bOv4ee/+5rdvDC7nnqN3T/r2PHNfiCPn3/gP9T6f9Y3e8Oe3zj+5tcf6HWvTcFx7YKe0/+P4r077hv12Z9qbF+df/xvVp/9g/5uf/8rq/b3EGRqv7Dsm/t9+36qy073XYB9O+0t2XD3pNg3HfYfnPpgvXOyntf1mc/+zZ6ov3pn1xWqFeN539srR3lavT3t/0pX3/Oa9L++YfvzY/floZ6fo2yx+3HXT8T9L+vlXvaev8Ny3Kv8Om/fbgtE/5cv7Tf8Nr88d9ZdomaWfkcaUNAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFeru9AKG0tgrVsk/YI/hPf9du6+U9t7f5rdf+Mad03737vlf1+KJTdqve+fJ+QI67IyHN0v7mPsfTnv/EK6F5eufP3Be2nu7xrZ1/L3OPSbtUz4xq8URHmrr/Ov95uG0/+nCTdK+wW0z057v/Nb65s9P+8OLVmvzDIxWvfvNTfuMRzZO+4Rf/Dnt7X7vd2+yUdrPOPqUtI8tXWnf6ydHp32z2y5LO9Tqlm/vkPazdz8n7X1N/qjtSw9unfYn/7En7f1PPJB2VnCXX5PmC3aakvb/3P51bZ2+e/6CtG9y/fDetw23xRNLp5cw6rjSBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAp1d3oBQ2m942amfZc93pX2K3f+Tlvnv/rwU/IPOLzVEf7Y1vnHlq60L2rqntEdttqtaf/a/m9M+3rH3zWUy2EI9b9qh7RPGXdF2lt9b++9/k758WNW2odb/9XX5X05rePFGlPyFbb6+2H0unDqz9O++bmHpX3The3t3a4110j7Juffk/adxufH3+J/Dsn7sbekvS8/PHTMote+LO0zdj8n7Xv2PN3iDCWt5533N2nvvSN/zA+Z/gUL0l5m/rmt43f6Z3t5+LG0/+6p/PZ79uR98hta/M71lTwzeHX/Fg8AAAAwShnaAAAAAFTI0AYAAACgQoY2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAq1N3pBSxPa520Utr7v9u/nFYyPBY1ee+Pkf35LXzZ451eAi+g2X27tL9vxg/Tvs3Y/Jt3UdM32CUxCF2TJ6d9UveCtPv7Gb2e2HfXFh9xVVqn/PDJts7/2H4vT/vHPvudtO8z4dG0f/uxddO++UfvTHvfAw+mHWr1l3cvTvurexa1OEJJ6+kPb5L2jb53d9rd68ALWzzvrrRf8NDOad9zvSvSfu8l66V9w7gt7QyeK20AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFSo5RsRl1KmR8T0iIiemDDsCwIG3NnMiXkxNyIiFsXCDq8GRg97DzrD3oPOsf+gXi2HNk3TzIiIGRERk8rqLf59ImCo9JYp0RtTIiLisuaiDq8GRg97DzrD3oPOsf+gXl4eBQAAAFChllfaMHJ869H1097XYkb3xUvelPauR7vSPnu/U9LOimvt429P+5sn3rucVsKLMe/dW6b9gnVPWj4LYcSZcHd+Cf2D/U+m/S1n5c/mbjruvrTvOn5m2h/q7097V1k57V86b9+0b3h/fn6o1V+O3T3t/7vnSWnvj/wxYSu/eMuOae+7ZW5bxweGz4R7vPhmeXOlDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACAChnaAAAAAFTI0AYAAACgQoY2AAAAABXq7vQCRpM/P533Hz+yY9p/NuOVaV/79JmDXdJfmRZXpL3v1fn6Yr+2Tg8vaMevfSTtG0V73/srurLzS9N+1pEnt3X8Cx5fLz//gqfaOj71Kn+4Ou1/d/wxaX/Z/v+b9q/fv1vauy5YI+2f/pdz0v4vd+bH3/j4P6e9P63QOV2bT037oe/4edrHlq60L2wWpX2733ww7VNv+VPagc7pa/J7t4n39S2nlfAMV9oAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQoe5OL2B5Gnft7WnffuZ70/7yDW5L++9vnZr2Kac3aS9/uDrta8fMtK/ojt/pgrR/dZ1Xpn3xPfcO5XJYjsY/1OkV1K3s/NK0v+Nbv077DuPy+f2shV1p//b790n7mNv+lHZWXOucnN9v3Xlyfvs1y81pv+nrq6T9FT3z037Cp6ekfewTf0w7dMqY7bdK+5vO/X3ap696W1vnf+lPj0z7tA9c3tbxYSQrO2yd9qfXWqmt43c/sTjv9z6S9plfXSft3z/mprQvWCt/XLjKBr1pb1aZkPY7v5Afv+fC1dI++Zuz0j4SudIGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACACnV3egHLU98DD6Z9w3fk/a4Wx980/jTIFTEYr5vwSNq/2jN+Oa2EZxtT+tM+tnS1dfwrP3ZK2vc+eae2jt9pXZMnp/3x/1gt7Rdt8422zn/eYy9J+7kHvj7tY670s4/hseCtu6T9pteenvbNLzgq7Zv996WDXhPUYP42k9I+fdXbhvX8G/2kGdbjw3Aa09OT9v5tN0v7TdPz3zlmvvaktK/bvXLaW3mk/8m03764pH3bcfnn38o7P3NG2i//5KK0rzbm6bRPGzsx7Zvc+/60T/5mmkckV9oAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQoe5OL4CRY+wDC9L+2ycnpP1VK+W3b9etX1417RsfMC7tzaKnh3I5o8qcE7ZM++zjfp32aWNLW+d/yaxJae9v8vn0H3+5VdpXu6k/7ZsecUPax5T89pO6873x5XV/mfa7+/Lv3b3OPSbtm17wWNqbK69NOwyXzx5/VtovanG/s8WxN6a9b9Argjo8tfrwPu968G1/m/aJf/xL2hcP5WJgkLo33jDt953ak/Yrdvx2mytYua1bX/xkvr/7Whz/jLtek/Y/XrfJoNdUk82+Ofp+Z3OlDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACACrV8I+JSyvSImB4R0RP5G/4BQ+fOZk7Mi7kREbEoFnZ4NTB62HvQGfYedI79B/VqObRpmmZGRMyIiJhUVm+GfUVARET0linRG1MiIuKy5qIOrwZGD3sPOsPeg86x/6BeXh4FAAAAUKGWV9rAM/qvvSHtXzzs4LR3nX5O2l/R89Sg17S0P+/x9bS/beLfpr3v4afbOv9oNvGCy9J+5OIj0v7vXzkl7dPGlrR/bcPfpH1R05f2eP+v8t6msaUr7a3W997bX5/268/fIu1TTp6ZdpdQ0imL99op7S8bf2nadz3to2nvnZ9/78NIdewR3xrW49/0jfx+ZY17Zg3r+aEdt76nN+037Hj6sJ7/9Te8Ke1PnJKvb+LPr057s7DVy9ceSOu0Fp36uNIGAAAAoEKGNgAAAAAVMrQBAAAAqJChDQAAAECFDG0AAAAAKmRoAwAAAFAhQxsAAACACnV3egGsOMb98sq0f/7Qd6f9szPOSvvLxvcNdkl/5fFXb572lX54eVvH54W1+tp+cvb+ab/xsLXTfsM7Thv0mpan3z01Lu2fuP7taV/rPfPTvs79Mwe9JlgexkycmPY9T5yV9l8uyPf+RmfMTnt79xrQOc1u26V9g+5Wj1m60rrlfxyW9k3PvrTF8aFeU85/MO3HvX3TtP/hwalpn/Oj/Pbrnpg/LpsQ89LepJXRyJU2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVKi70wtg9Bj7339M++EnHJ72t06/OO3f/O0r077FxTekvS+tDKe+m+ekfepH8v6y245I+3ve//O0T1/1prSf+fAWaf/mWa9P++RbFqV99Z9dkXbfm4xUfzlyu7T/eM1T0v6md74v7eXhqwe7JBgR7t5jYtqndC9ucYSutI55uuQ3b5oWx4d69c2+Me3/vc0qLY5wb1rXbdFhqLnSBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAp1d3oB8Iy1T5uZ9pmnjUv7ZnFZ2vsGvSJGinVOyr93fnHSanmPXdo7f+Tnh9HqQwf9JO1fenDrtI+5/Lq0N4NeEYwM6x2f36/8/tA1075+98Np3/CXCwe7JAA6xJU2AAAAABUytAEAAACokKENAAAAQIUMbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVKi70wsAAFZM2/fcnvbpZx+e9t5FM4dyObDCOG2zaW3dviuuGqKVADDcXGkDAAAAUCFDGwAAAIAKGdoAAAAAVKjle9qUUqZHxPSIiJ6YMOwLAgbc2cyJeTE3IiIWxcIOrwZGD3sPOsPeg86x/6BeLYc2TdPMiIgZERGTyurNsK8IiIiI3jIlemNKRERc1lzU4dXA6GHvQWfYe9A59h/Uy8ujAAAAACpkaAMAAABQoZYvjwIAeDH+dcqOae+NmctpJQAAI5MrbQAAAAAqZGgDAAAAUCFDGwAAAIAKGdoAAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhQxtAAAAACpkaAMAAABQIUMbAAAAgAoZ2gAAAABUyNAGAAAAoEKGNgAAAAAVMrQBAAAAqFBpmmbZP7iU+yPi9qX+aM2IeGCoFzWEal5fzWuLsL52DfX6doyIq4bx+EPN+l68mtcWMfrWZ+8NLetrT83rs/esrx3W157h3H+j7XMfatbXntG2vo2aplnr2X84qKHNc25cypVN07ysrWUNo5rXV/PaIqyvXcO9vtH++ber5vXVvLYI6xvtn3+7rK89Na/P3rO+dlhfe4ZzfaP5cx8K1tce6xvg5VEAAAAAFTK0AQAAAKhQu0ObGUOyiuFT8/pqXluE9bVruNc32j//dtW8vprXFmF9o/3zb5f1tafm9dl7dbO+9ozm9Y3mz30oWF97rC/afE8bAAAAAIaHl0cBAAAAVMjQBgAAAKBChjYAAAAAFTK0AQAAAKiQoQ0AAABAhf4/y4siX54t0P4AAAAASUVORK5CYII=\n", + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], "text/plain": [ - "<Figure size 1440x1728 with 25 Axes>" + "<IPython.core.display.Javascript object>" ] }, - "metadata": { - "needs_background": "light" + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1000\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "fig, ax = plt.subplots(nrows=5, ncols=5, figsize=(20,24))\n", + "fig, ax = plt.subplots(nrows=5, ncols=5, figsize=(10,10))\n", "for i in range(5):\n", " for j in range(5):\n", " idx = i*5+j\n", " img = my_dataset[idx][0]\n", " label = my_dataset[idx][1]\n", " ax[i, j].imshow(img[0,...].detach().cpu().numpy())\n", - " ax[i, j].set(title=f\"Image {idx}, true label {label}\")\n", + " ax[i, j].set(title=f\"Im. {idx}, true {label}\")\n", " ax[i, j].set_xticklabels([])\n", " ax[i, j].set_yticklabels([])\n", "plt.subplots_adjust(hspace=0.2,wspace=0)\n", @@ -412,7 +1289,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 8, "id": "d908ef86", "metadata": {}, "outputs": [], @@ -522,7 +1399,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 9, "id": "988e1979", "metadata": {}, "outputs": [], @@ -543,32 +1420,24 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 10, "id": "d15d655d", "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /opt/conda/conda-bld/pytorch_1623448224956/work/c10/core/TensorImpl.h:1156.)\n", - " return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)\n" - ] - }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 0/10: average loss 0.36116\n", - "Epoch 1/10: average loss 0.10886\n", - "Epoch 2/10: average loss 0.07327\n", - "Epoch 3/10: average loss 0.05648\n", - "Epoch 4/10: average loss 0.04617\n", - "Epoch 5/10: average loss 0.03912\n", - "Epoch 6/10: average loss 0.03184\n", - "Epoch 7/10: average loss 0.02736\n", - "Epoch 8/10: average loss 0.02388\n", - "Epoch 9/10: average loss 0.02053\n" + "Epoch 0/10: average loss 0.35421\n", + "Epoch 1/10: average loss 0.10931\n", + "Epoch 2/10: average loss 0.07470\n", + "Epoch 3/10: average loss 0.05767\n", + "Epoch 4/10: average loss 0.04682\n", + "Epoch 5/10: average loss 0.03882\n", + "Epoch 6/10: average loss 0.03285\n", + "Epoch 7/10: average loss 0.02714\n", + "Epoch 8/10: average loss 0.02437\n", + "Epoch 9/10: average loss 0.02176\n" ] } ], @@ -627,7 +1496,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 11, "id": "09646d29", "metadata": {}, "outputs": [], @@ -652,7 +1521,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 12, "id": "7a06a4c0", "metadata": { "scrolled": false @@ -660,19 +1529,977 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAAU4CAYAAAAVWio3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADM90lEQVR4nOzdd5hcZdk/8PtJNoUEAoQOoYVeBKSKKKLYFcWuP6VY3uiLiBV7wV5elSIoRsWOoiAqVhRBRSChCtIhCRB6C4SStnt+f5yJrkvyzG5md+fZnc/nurhI9jvnnHvOzD1zcs85s6mqqgAAAACgLGPaXQAAAAAAT2RoAwAAAFAgQxsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytBkBUkqHp5TO7+dtj0kp/WgVt7PKy7ZbSqlKKW3d+PPJKaWPDcM2+/24MDLpveb0HkNF/zWn/xgKeq85vcdQ0HvNdWrvDfrQJqU0L6X07MFe72BLKR2YUroupfRYSunclNLmA1j230+WTpFSen1K6ZFe/z3W2A97tLu2vqqqeltVVZ9udruU0nkppbcMR00ppaf32X+PNPbfKwZxG8X3XkppfErp9EatVUrpgAEu34m995SU0p9SSg+klO5NKf08pbRRu+takUJ7b9uU0q8a++6BlNIfU0rbDcF2RkL/tfRc6tD+a+k1aziV2H+N7c1MKV2fUupJKR0+BOsfCb23Y0rpkpTSg43//pxS2nEAy3dc70W0dqw+nAruvd1SSpc29t+lKaXdBnn9xfdebymlTzR6qd81d2rvLbcq+2w4ldp7vbZ7WGP/tbztjjzTJqW0bkT8IiI+FhFTI+KSiDhtENffNVjrKkVVVT+uqmr15f9FxBERMSciLhvsbY3S/ff3PvvvxRHxSET8oc2ltcP5EfGGiLhrsFc8Gp87EbF2RMyMiC0iYvOIWBgR3x2KDY3S/bdWRPw6IraLiA0iYnZE/KqdBbXRkD6XRunzJ2IIX7N6G8X7759RHzMM+vHCCHJHRLwy6mPOdaN+TfrpYK18ND53hvpYvc+2RuP+Gx/1e92Pon7t/35E/Krx846TUtoq6h68c5DXO+qeO8sN1T7rs43RvP/WjogPRcTVg7G+IR3aNE4l+kdK6diU0oKU0pyU0lMbP78tpXRPSumwXrd/UUrp8pTSw438mD7rOzSldEtK6f6U0sd6T3hTSmNSSh9MKd3cyH+WUpq6ktJeHhFXV1X186qqFkXEMRGxa0pp+37cp781/vjPVJ8t8ZqU0gEppfkppQ+klO6KiO+mFZxGlf77dK4JKaUvp5RuTSndnerTu1br5349vrF/Hm5Mzp/e5yYTU0qnpZQWppQuSynt2mvZjVNKZ6T6U9a5KaWj+rPNFTgsIn5QVVXVz5qrlNJRjefAfSml/0spjWlkvZ8nD0TEMc32T0rp6JTSnSmlO1JKb+qzre+llD7T6+8vTSld0dhfN6eUnp9S+mxEPD0iTmw8jic2brt9+s8n0denlF7daz3rpJR+3VjP7IjYahX33fL9d3pVVY+2sI6VKrX3qqpaUlXVcVVVnR8R3QO8Tx3Ze1VV/b7xWvVwVVWPRcSJEbFff5ZtbLeje6+qqtlVVX2nqqoHqqpaGhHHRsR2KaV1+ruOgSq4/1b5udTB/bfKr1mN7XZ0/zX24UlVVZ0TEYsGuv8GquDeW1BV1bzGMVOK+rnUr0/vO7X3ooVj9cZ2O733DoiIrog4rqqqxVVVnRD1c+9ZA1hHv5Xae72cGBEfiIglA7hPndp7yw14nzW22+m9t9znI+KEiLhvFZZ9guE402afiLgyItaJiFOj/mRhr6jfrN4Q9Q5cvXHbRyPi0Kg/GX1RRPxvSungiPrU0oj4ekS8PiI2iog1I2KTXts5KiIOjohnRMTGEfFgRJy0kpp2ivqTn4iIaPzD+ebGz7Oqqtq/8cddG2dNLJ/6bxj1JwGbR8SMZuuJiC9GxLYRsVvU+2KTiPh4P5aLiLi4sdzUqPfpz1NKE3vlL42In/fKf5lSGtdomLOivu+bRMSBEfGulNLz+rndiIhI9emp+0fEDwayXES8LCL2jIjdGzX2brx9oj5zZ/2I+Gxk9k9K6fkR8b6IeE5EbBMRKz1lL6W0d6POo6N+Xu0fEfOqqvpIRPw9Io5sPI5HppQmR8Sfot5n60fE6yLi6yml5c+Lk6I+6NyoUXvfF47fpJQ+2GwnpJQmRT25/n6z27aoxN5bZXrv3/aPgU/t9d5/7B8Rd1VVdX8/b7+qRkL/9fu5pP9aov+GV7G9l1JaEPW+/FpEfK4/d6aDe2+Vj9V76eTe2ykiruzz4eqVMbD9N1BF9l5K6VURsaSqqt8N5M50cO+t8j7rpZN7b3kte0bEySu7zYBVVTWo/0XEvIh4duPPh0fEjb2yJ0VEFREb9PrZ/RGx20rWdVxEHNv488cj4ie9sklRT/6Wb+vaiDiwV75RRCyNiK4VrPc7EfGFPj/7R0Qc3s/7WEXE1r3+fkCjlom9fnZ4RJy/ouWinnQ/GhFb9cr2jYi5K9neE9bVJ38w6heUiPqTiIt6ZWOiPq3t6VE3ya19lv1QRHy317I/6sf9/1hEnDfA50UVEc/v9fcjIuKcXvfv1l5Zdv9ExCm9H7+oG/3fj0lEfC8iPtP48zeXP4dWUNN5EfGWXn9/TUT8vc9tvhkRn4iIsY3n0/a9ss/lHpfMvjgkIuZGRBrosk3WOy8K770+25gfEQeswvOok3tvl4h4ICKePsB9pvfq5aZFxO0R8bqBLtuPdc+LkdV/q/pc6uT+W9XXLP1XL3d+9PM4a4DrnRcjq/cmN54HLxrg86ijei8G51i9Y3sv6mP1n/b52Y8j4pj+Pu/6sY15UXjvRcTqEXFjRGzZt+YBPI86rfcGY591cu+Njfpyzn1XtO1V/W84riO7u9efH4+IqKqq789Wj4hIKe0TEV+IiJ0jYnxETIh6ehhRT1JvW75QVVWPpZR6f1K6eUScmVLq6fWz7qi/w+D2PjU9EhFT+vxsStTX96+qe6v69M3+WC/qF6BLU0rLf5aifpCbSim9NyLeEvU+qaKufd1eN+m9n3pSSvN73Xbjxic9y42Nevo4EIdGPz8h6uO2Xn++pVHTirJm+2fjiLi0z7pWZtOI6O+UePOI2KfP/umKiB82auqKJ96HVXFYDODSshaU2HtDoSN6L9Wn2f4+It5ZVdVAe7bjey+ltF5EnB0RX6+q6icDXX4VFNt/LT6X+uqI/mtRx/ffMCu29xrreTSldHJE3JtS2qGqqnsGdvf+bbT33mAcq3dy7w3Fv3WaKbH3PhkRP6yqau4q3qcVGe29Nxj7rJN774ioz3K7cADLNFXal/+cGvX1cy+oqmpRSum4+M8T886ov0gyIiJSfa1b7+8kuC0i3lRV1T/6sZ2ro/6H8/J1TY76WrVWviio7z/AH436Sbh8Gxv2yu6L+oVrp6qqBvSP2lRfy/iBqE9zu7rRoA9G/QRfbtNetx8T9afLd0TEsqgnl9sMZJt9tr9f1A10+iosvmn8Zx9v1qhpud77r9n+uTN63cfGulbmtlj5dYh9H7PbIuKvVVU9p+8NU0pjo95/m0bEdf3Y7gqllDaNekr/1oEuO8SGq/eGwqjvvVRfkvjniPh0VVU/XIVVdHTvpfrL4M6OiF9XVfXZgSw7TIat/wbhudTXqO+/QdDR/Ve4dr33jYm6TzaJiFUd2oz23huMY/VO7r2rI+K9KaXU60PCXWIILl9fRcPVewdGxLSU0hGNv68XET9LKX2xqqovrmLto733BmOfdXLvHRgRz0gpvbDx96kR8eSU0m5VVR05gPX8l9J+e9QaEfFAo3n3joj/1ys7PSIOSvWXWo2PegrY+0l7ckR8tnFAGiml9VJKL13Jds6MiJ1TSq9oXBf48agnYtc1lj08pTQvU+fdETG9yX35Z0TslOpftzcx6tPQIqKehEbEtyLi2JTS+o1tbtLP6wzXiPqJdG9EdKWUPh5PnKTvkVJ6eaq/kftdEbE4Ii6K+remPJzqL89aLaU0NqW0c0ppr35sd7nDIuKMqqr+a1Lfj30WEXF0SmntxuDinbGS3wLQj/3zs4g4PNW/QnNS1Keyrcx3IuKNqf61kWMa61n+JXZ9H8ffRMS2KaVDUn096LiU0l6NT8K6o/4tBseklCal+nrbw2LgDomIC6qqunkVlh1Kw9V7y7+Qbfn1uONTShNTY7yu954opbRJRPwlIk6qquoJ18bqvbyU0pSI+GNE/KOqqpK+d6O3Yem/QXgudVz/NWps5TUrooP7r3Efxjf2X4qIcY39V8rx53D13nNSSk9uPPemRMRXo77M4dpGrveeqNVj9YjO7r3zoj775KjGa9jyfyz+ZQDrGErDddx5YNRn8+zW+O+OqD84PamxrN57olb3WURn997hEbFD/Gf/XRL1c/gjA1jHE5TyprncERHxqZTSwqhfnH+2PKiq6uqIeEfUX2p1Z9Sn990T9ZMzIuL4qH+F4tmN5S+K+nq+J6iq6t6IeEXUX370YON2r+11k02jvm52ZY6JiO+n+tvRX72iG1RVdUNEfCrqTzRvjPpa7t4+EBE3RcRFKaWHG7fbLpr7Y9Sntd8Q9alai+K/T9+KqH/F32uivm+HRMTLq6pa2ngSHhT1E2hu1NPNb0f9BV9NNV6IXh0r/gLdZvtseV2XRsQVEfHbqJtrZVa6f6qq+n3U177+pXGblb4BVVU1OyLeGPVvjHkoIv4a9SlxEfVz5pUppQdTSic0BlHPjfq5cEfUv971i1GfshkRcWTUp3XeFfU1lN/tva2U0u9TSh/O74I4NIb+C4hXxbD0XsP1UU/VN4n6+fx4/Ocx0XtP9Jao32g+kepvvX8kpfRIr1zv5XvvZVF/EeIbe++/lFJJZwsMV/+1+lw6Jjqv/yJae81aXlen9l9EfZbb4xHx1Kh/5fzjUX9BZAmGq/fWioifRP1Y3Bz1d108v9clFnrvifen1WP15XV1ZO9VVbUk6i/rPTQiFkT9RaoHN35eguH6N9/9VVXdtfy/qAdZD1ZVtfy9T+898f60us+W19Wpvbegz/5bEhEPV1X1UGYfNJWqIf9ajaGR6m8fXxAR21SDe51ipJTOjvpa/2sHc72jWbN9llKqon6sbhreyhhseq8seq+z6L+y6L/OoffKovc6h94ri95rjxE1tEkpHRQR50R9itxXop6q7l6NpDvRoTTwyKb3Ri69N/Lpv5FL/41sem/k0nsjm94bufTe0Cjt8qhmXhr1KUx3RP272l+reWFY6D1oH/0H7aH3oD30HvQyos60AQAAAOgUI+1MGwAAAICO0DWQG49PE6qJMXmoagFWYlE8GnoPhp/eg/bQe9A++g/aY1E8Gkuqxanvzwc0tJkYk2OfdODgVQX0y6zqHL0HbaD3oD30HrSP/oP2mFWds8KfuzwKAAAAoECGNgAAAAAFanp5VEppRkTMiIiYGJOGvCCgNr+aE7fH3IiIWBqL21wNdA69B+2h96B99B+Uq+nQpqqqmRExMyJiSprq94PDMJmWpse0mB4RK7++ERh8eg/aQ+9B++g/KJfLowAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKJChDQAAAECBDG0AAAAACmRoAwAAAFCgrnYXADDU5n1m32zePbHK5uvtdG82v3DXMwZcU29b/eWN2XyN2atl8w1OuKCl7QMAAGVypg0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAF6mp3AQCtevC322Tzf+124pBuf2nV2vLXPfPb2fzHe26UzX/2p2dk8+5rbxxwTUBE2mOnbP7bX/8wmz/p5COz+aafvmDANcFwGLvWmtn8+hOnZ/Nm72sfvWePbH7V67fN5t3X3JDNAUYTZ9oAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQoK52FwDQzIO/3Sab/2O3nw7p9k9eMD2bf/XC52TzLTa/N5ufveMvsvnr17gzm3/28HWz+fQP3JjNgRW7Z68p2XxZdGfzSXdUg1kODJueLadl86sO+GY2X9rkqf+Z9S/N5ru+7KnZfNNrbshvANqo+5m7Z/MjZ/4sm39jm60Hs5ziLHzNU7L5Wlfcl827r79pMMsZEZxpAwAAAFAgQxsAAACAAhnaAAAAABSo6XfapJRmRMSMiIiJMWnICwJq86s5cXvMjYiIpbG4zdVA59B70B56D9pH/0G5mg5tqqqaGREzIyKmpKm+UQ+GybQ0PaZF/QW4s6pz2lwNdA69B+2h96B99B+Uy+VRAAAAAAUytAEAAAAoUNPLowCG2rID98jmf9n1pCZrGJdNj3tw22x+7mv2zK/+jnuy8bYPXpLNx0ycmM0/N+tJ2fzD616VzZetvSybA6vmwV26s/n8ZfnvfVjnOxcOZjkwaLo2nZbNt5x50zBVAqPPLc+bkM2njn1kmCop010vWpLNlx6SP69k6osHs5qRwZk2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFKir3QUMp/v/Z99svtkhN2Xz6+7ZIJsvWTwum2/yk3w+af4j2bznimuyOYxUj2wyPpuPaTJfPu7BbbP5eS95UjbvnnN9Nm/VTZ98cjY/depXmqxhQjad9gfzd1gV1X67ZfO/v/ir2fwZf3tHNt86Lh9oSTAobv34U7P5Hs/PH1N+aaO/D2Y5A7b6U+/N5rd9LH//1r1yWTZf7VezB1wTLJfG5Y9bn/WsK4ankBFqjcsnZvNXv/mv2fzctaZl8+4FDw24ptI50gcAAAAokKENAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAXe0uYDi9/+hTs/krJj+YX8FWLRZwQD6et+yxbH78vc9ssYCRbfY9m2fzyV9ZM5t3nXPpYJbDIFrrBxdm81de8oZsnh58OJsvu3PeQEsaVG954Z+z+epjJgxTJUBvD+y4WjbfaOykbL7J6eMGsxwYNFe+9WvZfGnVPUyVrJrzdv1x/ga75uMzH90om5+y8OBs3vUXx4ys3MKX7Z7NT9gk3387/PLIbL5NzBpwTSPJ4rWrbH7U2tdl8/PW2CG/gQUPDbSk4jnTBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAJ1tbuA4XTCh1+bzT++S36Gtfa1+d8p/+AOKZuP32VBNv/Szr/I5sduNCub//ax1bP5iyY9ks1b9Xi1JJvPWjw5mx8wcWl+A03u/9aveWs23/ac/OopV/c1N7S7hKx5n903m795rS83WcPEbPreO5+Szdf487XZvLvJ1qFTHXjEhdn8l4+ulc1XP+/6bK73GCrjztson6exw1TJqrl8SU82n7d0vWz+sskPZPNXr35PPv/hzGz+4k32yOaMbtV+u2Xzk754fDb/0cObZ/PtP5o/rh3t7x37Pvdf7S5hxHGmDQAAAECBDG0AAAAACmRoAwAAAFAgQxsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAXqancBw2ny6bOa5K2tf0pri8fXNjwgm39mvy3y2//rTdn8SwdsPcCKBqbr8Z5sPvnKO7P5On87I5s/afy4bD5pXj6HVbXgkH2z+T8O/XI2X3PMxGx+4eKx2fyKzzw5m6/28OxsDp1q7E7bZfPPrf+TbP6dh6dl8+4FDw24JuiPxw/eO5u/caOfZ/OlVXdLeat2Pudt2Xy9cyZk8wkP5ev70AH5z52vetUJ2byZ+R96ajaf9vkLWlo/ZXvwQ49l82ldy7L5e97xomw+7sFLB1zTSNK10YbZ/Lub/SGbL62cV9KXPQIAAABQIEMbAAAAgAIZ2gAAAAAUqOl32qSUZkTEjIiIiTFpyAsCavOrOXF7zI2IiKWxuM3VQOfQe9Aeeg/aR/9BuZoObaqqmhkRMyMipqSp1ZBXBERExLQ0PabF9IiImFWd0+ZqoHPoPWgPvQfto/+gXC6PAgAAACiQoQ0AAABAgZpeHsXwWXbX3dl88hn5vLvJ+ieffv8AKxpcd79l32y+0/j80/HLD2yXzbf47pxsviybwsrdt3v+ytA1x0xsaf2HnfeWbL7tL2e3tH7oVLc/Z52Wlr904eZNbvF4S+unc43dKX9M85mvzszme45f0mwLA6zov5356EbZ/KPnviKb7/D+67J598MPD7im3ra7cdtsPvsl+fflvScsyua//98vZfPnTnx/Nt/ic5dm82qx74xpp/v/J/9vkp8/6f+y+Q8e2iWbj/tz/vEf7a751KbZfGmV/1frYfOenc2777l3wDWNdM60AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoEBd7S6A0aNr802z+YkfPjGbj0tjs/nPj392Nl/nzguzOazMkj9tns0v3P4rTdYwMZvueuFh2XyH996czbubbB1YsYd3XNrS8lecuFs2Xyu877BqesbnD8H3HL9kSLf/pluen80Xvma1bL7t/NnZfKjft7qvuSGbH/G9t2XzS956XDbfaGz+/l/25vzyr/hF/n2/+ue12ZyhNebg+7L5xl0Tsvl3Ts33z7S4YMA1jSRjd9oum//owG9m88VV/r351q9um80nL56VzUcjZ9oAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQoK52F8Docd27N8nme01I2fzqJY9n86nXPDbgmiAiomv6Ftn801v/PJuvPWZiNr90cX77m3+6O5t3P/hgfgXACi1+wV7Z/FfP/Vo2/9R9e2TzqWdcmc17sim0z4fv3jObP/yWdbJ59/wbB7OcYbfFGfdl848d/JRs/oUNLx7MchhmY9dbL5t/dNvftrT+aZ+7oKXlR7rrjlgrm+85IX/ce9KDO2bzyWfMGmhJo54zbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAAChQV7sLYORY/KK9svllrzy2yRomZNP/fec7s/lqF8xusn5Ysa1+dns2f/L41ubXrzvnbdl8239e3NL6gRWb/6z8Ycwu4ydm88PmPSmbr//odQOuCQbDuDS2peWv3L1qcosbW1p/8VLKxl1jerJ5q/v/jk/m8w0Pbmn1NJEm5V/7nzfpoWy+98WHZvMN49oB1zSarLvFAy0t/+O5e+bXHze0tP7RyJk2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFKir3QUwctz6gvyMb/U0IZu/bu5zsvmkP/wzm1fZlE724GH7ZvNPbvCVJmvIP3cPm/fsbL7D+2/K5t1Ntg6smvV2viebd1c92bzrV2sPZjnQb9f/76RsvrTyztGKeS9fJ5ufvt7sbL60Gtskzz8+G38iG0f+lYlW9TywIJt/+t7ds/n/2+qSbP63jbbK5svuvCubl65r802z+T92+2mTNeT/zfj4Res2Wf6GJnnncaYNAAAAQIEMbQAAAAAKZGgDAAAAUKCm32mTUpoRETMiIiZG/vpbYPDMr+bE7TE3IiKWxuI2VwOdQ+9Be+g9aB/9B+VqOrSpqmpmRMyMiJiSpvouWBgm09L0mBbTIyJiVnVOm6uBzqH3oD30HrSP/oNyuTwKAAAAoECGNgAAAAAFanp5FJ1jzBprZPNDnn5+Nn+4Z1E2v+dz07P5hMUXZ3M6V9cmG2fzpx81K5uvPmZCS9u/8Jqts/m2D3ruwlDo2nLzbP7l7X6ezb/10KbZfOopFw64JhgMH336We0uoWhdm07L5gv3yB8XnPzGrw9mOU8we/HEbJ6WLBvS7ZPXs3BhNj/79u2z+d93OzWb3/mbNfPLf3PfbD7UFuyY/0aT1bd4KJs/ZeN52bwnegZa0n9JvnBlwJxpAwAAAFAgQxsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIG62l0A5bjxmJ2y+W/W/Xo2f+mNr8jmE3538YBrgoiIaz+8aTb/5YZntbT+Z171qmy+w/tvyubdLW0dWJkb37pxNn/KhPzy/3PZM7P5pvGvgZYEDINrPrlhNr/6uScO6fbPeGTdbP6N9+WPGyZeO3swy2GQrf3Jidn8Gce8LpufufP3svkXP3HhQEsaVJcsHpvNu5uct7Hn+CVNtpAGWNF/2+xrV2XznpbWPjo50wYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACdbW7AIbPQ294Sja/8jUnZPObly3N5o98cVo2nxB3ZnNYmUtfcmyTW0xoaf1rHtGTzZc9+GBL6wdWTc+mi1pa/vEFEwepEmAwjTtvo2z++Y3OGKZKVux7tz81m088a/YwVcKQmH1VNl7zhfnFDzngqGy+YJvWjktbtc63Lmxp+dt/sVM2v3Sf77W0/p6FC1tavhM50wYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACdbW7AAZP1yYbZ/N3fey0bD4h5Z8Or/3nIdl8vd9fnM2hVEs3WDObj1uyyTBVsmLd996XzavFi7N5mjAhm49db90B19Rb93prZfMb3zu+pfU3U3WnbL79O27K5t0PPzyY5TCIvr7Pj1pafpPfjx2kSmBwjU092Xxcau25+/D/e0pLy3/yU9/J5s9cbVFL6292/5ZW3U3WMLS9XT3r9iFdPyPb2PMuy+brnDccVQydx+etkb/BPq2tv9pvt2ye/nFFaxsYhZxpAwAAAFAgQxsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIG62l0A/Ze68g/Xrr+Zn81ftfr92fzHC9fP5ht8LD/j68mmUK7fnn5Ku0vIeurlr8vm9909JZuvvd7CbD5rj1MHXNNIsuNHj8zm099/4TBVQl+LDto7mz9t4uwma3AYw8j0hdNemc1f/ebjWlr/3/7vpGy+tOpuaf1Lq5YW78f6W6uvmZ3PeVs23yYuG9LtQ9FSPh7T4nkf6R9XtLR8J3KmDQAAAECBDG0AAAAACmRoAwAAAFCgpheDp5RmRMSMiIiJMWnICwJq86s5cXvMjYiIpbG4zdVA59B70B56D9pH/0G5mg5tqqqaGREzIyKmpKlD/LVjwHLT0vSYFtMjImJWdU6bq4HOofegPfQetI/+g3K5PAoAAACgQIY2AAAAAAVqenkUBdl1u2z86fV/2NLqT/rcq7L5Wv+8sKX1w6p66TWvz+bn7Hz6MFXSHhc8+Sdt3f5j1ZJsvrTqaWn9L7zy8Gz+0BXrtrT+Tc5f1tLyDJ1bX5K/6npCyh+mfOq+J2Xz1X91aTZ3zTftMv20+7L57DdMzOZ7T1g0mOUUZ/bi/P2fedczsvmDR2yYzbefe1M2786mMMo1eXPsidaO+xg4Z9oAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQoK52F8B/jN1x22w+46e/amn9O57y9my+xQ8vamn9MFRWe97cbL7T547M5tUQv9Ktsf0D2XzWHqcO6fZ3+vsbs3l16+SW1j/99EfyN5h9VUvrXztubCmnXGOnTMnmH9jvdy2t/9Tf75/Npy+7sKX1w1DpvuaGbP7x97wlm992UE82v+EF3xxwTSU54pS3ZfNNP3tBkzU8OHjFQIfpmZh/fWnm3u7Fg1QJyznTBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAJ1tbsA/uO6I9bO5gdNeril9U87b0n+BlXV0vqhXbb88IXtLiHrxbHHkK5/y7hySNcPq6pn8eJsfs1jG2fzZ9++Zzbf5nNXZ/PubArlWu1Xs7P5tr/KL7//696ezccdfnc2/8NOp2Xz5/7rtdm853vrZ/MqZePY4op7s7nehqHzo+efnM2vXdKTzV/3vfdn883iggHX1OmcaQMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKJChDQAAAECButpdQCdZdNDe2fycg77SZA2TBq8YABhi1eLF2fz6PfPLj49bsnn3QAuCDjHlJxflb/CTfPyyyB+zTo45TSpolufpbWifT819STZ/9OubZPPNzrhgMMshnGkDAAAAUCRDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgbraXUAnuWO/sdl8s65JLa3/xwvXz+bjHl6SzauWtg4AAMCIduD8bDw58jmDz5k2AAAAAAUytAEAAAAokKENAAAAQIGafqdNSmlGRMyIiJgYrX3nCtB/86s5cXvMjYiIpbG4zdVA59B70B56D9pH/0G5mg5tqqqaGREzIyKmpKm+qxaGybQ0PabF9IiImFWd0+ZqoHPoPWgPvQfto/+gXC6PAgAAACiQoQ0AAABAgZpeHkU5Pn//jtn8wudtkc2rO68axGoAAACAoeRMGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAArU1e4COsn0D16YzV/4wd1b3MJdLS4PAAAAlMKZNgAAAAAFMrQBAAAAKJChDQAAAECBDG0AAAAACmRoAwAAAFAgQxsAAACAAhnaAAAAABQoVVXV/xundG9E3NLrR+tGxH2DXdQgKrm+kmuLUF+rBru+3SPisiFc/2BT36orubaIzqtP7w0u9bWm5Pr0nvpaob7WDGX/ddp9H2zqa02n1bd5VVXr9f3hgIY2T1g4pUuqqtqzpbKGUMn1lVxbhPpaNdT1dfr9b1XJ9ZVcW4T6Ov3+t0p9rSm5Pr2nvlaorzVDWV8n3/fBoL7WqK/m8igAAACAAhnaAAAAABSo1aHNzEGpYuiUXF/JtUWor1VDXV+n3/9WlVxfybVFqK/T73+r1NeakuvTe2VTX2s6ub5Ovu+DQX2tUV+0+J02AAAAAAwNl0cBAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKJChDQAAAECBDG0AAAAACmRoAwAAAFAgQxsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQZgRIKR2eUjq/n7c9JqX0o1Xcziov224ppSqltHXjzyenlD42DNvs9+PCyKT3mtN7DBX915z+Yyjoveb0HkNB7zXXqb036EOblNK8lNKzB3u9gymltEXjAX+k13/9fsB7P1k6RUppfErp9MbjW6WUDmh3TStTVdXbqqr6dLPbpZTOSym9ZThqamxvZkrp+pRST0rp8CFYf/G9FxGRUpqUUvp6Sum+lNJDKaW/DWDZjuu93lJKn2jsgyIf51J7r9d2D2vsv0Hf9kjov5TS6/u87z3W2B979HP5juy/lNJbUko3NfbZH1JKG7e7phUptf9SSgellP7V2H8XpJR2HOT1F997EREppVenlK5NKS1MKV2TUjp4AMt2XO+1eqw+nAruvSql9Giv/fftQV7/SOm9VX4N78Tei/C+16qheN/r9DNt1qqqavXGf00f8P5KKXUN1roKc35EvCEi7hrKjYzi/ffPiDgiIi5rdyFtNjMipkbEDo3/v3uwVjyKnzuRUtoqIl4ZEXcO4TZG8/5bOyI+FBFXt7uWdqmq6se93vNWj/r1aE4M0mvSaHz+pJSeERGfi4iXRv16NTcifjJE2xqN+2+biPhxRLwtItaKiLMi4tej8b7mpJQ2iYgfRcR7ImJKRBwdEaemlNYfpPWP5v05JMfqvY3y/bdrr/037B+WtNtQv4aPxueO973WDNX73pAObRqnEv0jpXRsSmlBSmlOSumpjZ/fllK6J6V0WK/bvyildHlK6eFGfkyf9R2aUrolpXR/SuljvSe8KaUxKaUPppRubuQ/SylNHYL7tPysgH82pmevSSkdkFKan1L6QErproj4blrBaVTpv0/nmpBS+nJK6daU0t2pPr1rtX7WcHxj/zycUro0pfT0PjeZmFI6rfFpzmUppV17LbtxSumMlNK9KaW5KaWj+rPNqqqWVFV1XFVV50dEd3+W6VNzlVI6qvEcuC+l9H8ppTGNrPfz5IGIOKbZ/kkpHZ1SujOldEdK6U19tvW9lNJnev39pSmlKxr76+aU0vNTSp+NiKdHxImNx/HExm23Tyn9KaX0QKrPinl1r/Wsk1L6dWM9syNiq4Hsg6qqTqqq6pyIWDTQ/TdQpfZeSmm7iHhJRMyoqureqqq6q6q6tJ/3qSN7r5cTI+IDEbFkIAvpvX/7fEScEBH3rcKyA1Jq/63AYRHxg6qqqn7cp07tv4Mi4udVVV1dVdWSiPh0ROyf6iFqf2ru9P57XkT8vaqq86uqWhYRX4yITSLiGQNYR78V3HvTImJBVVW/r2q/jYhHox/7soN7ryV6b3gV3Hur/Brewb3nfa/A973hONNmn4i4MiLWiYhTI+KnEbFXRGwd9VkbJ6aUVm/c9tGIODTqqdSLIuJ/U+P00VSfVvT1iHh9RGwUEWtGvQOWOyoiDo56h2wcEQ9GxElNarul0XjfTSmt2587U1XV/o0/Lp9cn9b4+4ZRTyM3j4gZ/VjVFyNi24jYLep9sUlEfLw/NUTExY3lpka9T3+eUprYK39pRPy8V/7LlNK4RsOcFfUZH5tExIER8a6U0vP6ud1WvSwi9oyI3Rs19m68faL+xHf9iPhsZPZPSun5EfG+iHhORGwTESs9NTOltHdE/CDqT7XWioj9I2JeVVUfiYi/R8SRjcfxyJTS5Ij4U9T7bP2IeF1EfD2ltFNjdSdFPXDZqFF73xeO36SUPjjAfTKUSuy9fSLiloj4ZOOF/KqU0iv6c2c6ufdSSq+KiCVVVf2un3X21dG916hlz4g4eWW3GQIl9t+/pZQ2j/ox+UF/7kwH919q/Nf77xERO/ez5ojO7r8V7b8UA9t/A1Vi710SEdemlF6SUhrb2MbiRp1ZHdx7yw34WL2XTu695f6WUrorpfSLlNIWTW7bqhJ7b5Vfwzu497zvlfi+V1XVoP4XEfMi4tmNPx8eETf2yp4UEVVEbNDrZ/dHxG4rWddxEXFs488fj4if9MomRf2J8/JtXRsRB/bKN4qIpRHRtYL1rh71E6krIjaIiNMj4o8DuI9VRGzd6+8HNGqZ2Otnh0fE+StarvHAPRoRW/XK9o2IuSvZ3hPW1Sd/MOoXlIiIYyLiol7ZmKgvp3h61E1ya59lPxQR3+217I/6cf/nR8QBA3xeVBHx/F5/PyIizul1/27tlWX3T0ScEhFf6JVt2/sxiYjvRcRnGn/+5vLn0ApqOi8i3tLr76+JejLa+zbfjIhPRMTYxvNp+17Z53KPS2ZfnB8Rhw90uX6sd16U33sfbtRxTESMj/oN95GI2GEAz6OO6r2oX69ujIgt+z7OA9hnHdt7jeUviYh9V7TtwfovRkD/9dnGxyLivAHex07svwOjPjtrl4hYrfG87ImI1w1gn3Vy/23fuE8HRP2a/7HG/vvQqvbaCrYxL0ZA70XEm6N+v1sWEY9FxIsGcB87sfcG41i9Y3uvcfv9o+67taI+W/dfK3t+rsp/MQJ6LwbnNbzTes/7XoHve8NxHdndvf78eEREVVV9f7Z6RERKaZ+I+ELUk6jxETEh6ulhRD1JvW35QlVVPZZSur/XejaPiDNTSj29ftYd9Qv97b0LqqrqkagP4iMi7k4pHRkRd6aUplRV9fCq3MmIuLeqqv5e9rJe1C9Al6b070FcivpJ0lRK6b0R8Zao90kV9fXRvT996L2felJK83vdduOU0oJetx0b9fRxONzW68+3NGpaUdZs/2wcEb0vqbkls81NI6K/ZydsHhH79Nk/XRHxw0ZNXfHE+1Cy4nqvsc2lUb/ALouIv6aUzo2I50b9JrwqRnvvfTIiflhV1dz+1LgSndx7R0TElVVVXTiAZQZDif3X26FRH4S0alT3X1VV56SUPhERZ0T9ae+xEbEw6g8v+qtj+6+qqutSfUnEiVH/w+pHEXFNDGz/DVRxvZfqyzq+FPVB/GURsUfU33HwgqqqrliVOxmjv/cG41i9Y3svIqKqquWX9yxJKb0zIh6O+vsErxrIegaguN4bpNfwvkZ773nfK/B9r7Qv/zk16jv4gqqqFqWUjov/PDHvjIjtlt8w1de6rdNr2dsi4k1VVf1jFbZbLV/tKizbdx3LPRr1k7BecUob9srui/qFa6eqqnIH1U+Q6msZPxD1FPTqRoM+GP9d+6a9bj8m6mup74j60525VVVtM5BtDqJN4z9fArpZo6bleu+/Zvvnzuh1HxvrWpnbYuXXIfZ9zG6LiL9WVfWcvjdMKY2Nev9tGhHX9WO7I81w9V7TU8FXwWjvvQMjYlpK6YjG39eLiJ+llL5YVdUX+7mOTu69AyPiGSmlFzb+PjUinpxS2q2qqiMHsJ6hNKzvfSml/aI+EDq9xbojRn//RVVVJ0Xj1PuU0rYR8dGoP7Hur07uv6iq6vRoPNdSSmtFfZr5xQNZxxAart7bLSL+VlXV8iHExSmlWVGf6n/FKtY+6nuvj1U5Vu/o3lvJ9lv5t85gGrb3vUF4DX/CKvv8fdT1nve98t73SvvtUWtExAON5t07Iv5fr+z0iDgo1V9qNT7qT597P2lPjojPpvo6/UgprZdSeumKNpJS2ieltF2qv8hqnai/nPK8qqoeauSHp5TmZeq8OyKmN7kv/4yInVJKu6X62sNjlgdVVfVExLci4tjU+M0BKaVNUv+uM1wj6ifSvRHRlVL6eNRT1972SCm9PNXfUv2uqK+bvigiZkfEw6n+8qzVUn1d9c4ppb36sd3lX6S1/DrK8SmliakxFu3HPouIODqltHZKadOIeGdEnLaiG/Vj//wsIg5PKe2YUpoU9alsK/OdiHhjSunAxuO9SUpp+0bW93H8TURsm1I6JNXXg45LKe2VUtqhqqruiPhF1F+YNSnV19se1uT+/pdU/9r0iVE/b8c19l8pPTgsvRcRf4uIWyPiQymlrsY/Hg+IiD82ltV7T3Rg1J9E7db4746IeGv8581U7+UdHvUni7s1/rsk6ufwRwawjqE2XP233GERcUZVVQt7/1D/PVHjdXrnVNss6t9+d3xVVQ82cv3XREppj8Y+Xy/q08/PqqrqumbLDZPh6r2LI+LpKaXdGrd9ctSXMFzZ+Lve6yO1fqwe0cG9l1Ja/lwYm+rvkflK1GehrOpZzYNtuP7N1+preCf2nve9At/3SvkH43JHRMSnUkoLo76e8WfLg6qqro6Id0T9pVZ3Rn2a1j1RPzkjIo6PiF9HxNmN5S+K+nq+FZkeEX9orONfjXW8rle+aUTkprfHRMT3U/3t6K9e0Q2qqrohIj4VEX+O+vsozu9zkw9ExE0RcVFK6eHG7baL5v4YEb+PiBuiPlVrUfz36VsREb+K+lq9ByPikIh4eVVVSxtPwoOi/ofL3Kinm9+O+tS3/rg+6mnoJo06Ho/69LKI5vtseV2XRv2p0m+jbq6VWen+qarq91Ff+/qXxm3+srKVVFU1OyLeGPWpfQ9FxF971Xx8RLwypfRgSumExj9gnhsRr436H8Z3Rf3lWBMatz8y6tM674r6Gsrv9t5WSun3KaUPZ+7T2VHvs6dG/QL4eNTXG5dgWHqvqqqlUX8h2Qujfjy+FRGH9noh03tPvD/3V1V11/L/oj4F+MHGqeMRei/be1VVLeiz/5ZExMPLD/wLMVzvfdE4oHx1RHx/BbH+e6KJUX8i/EjUB8EXRn19+nL6r/l73/ERsSDqY4gFEfE/mdsOt+F67/tr1P1zeuO2Z0TE56qqOrtxE733RK0eqy+vq1N7b4Oo/6H8cNRf+rpFRLy4cRxWguF632v1NfyY6Lze875X4Pteqqq+ZwuNDI2p8YKI2KZq7bseVrTusyPinVVVlTKNLl6zfZZSqqJ+rG4a3soYbHqvLHqvs+i/sui/zqH3yqL3OofeK4vea48RNbRJKR0UEedEfYrcV6Kequ5ejaQ70aE08Mim90YuvTfy6b+RS/+NbHpv5NJ7I5veG7n03tAo7fKoZl4a9SlMd0T9u9pfq3lhWOg9aB/9B+2h96A99B70MqLOtAEAAADoFCPtTBsAAACAjtA1kBuPTxOqiTF5qGoBVmJRPBp6D4af3oP20HvQPvoP2mNRPBpLqsWp788HNLSZGJNjn3Tg4FUF9Mus6hy9B22g96A99B60j/6D9phVnbPCn7s8CgAAAKBAhjYAAAAABWp6eVRKaUZEzIiImBiThrwgoDa/mhO3x9yIiFgai9tcDXQOvQftofegffQflKvp0KaqqpkRMTMiYkqa6veDwzCZlqbHtJgeESu/vhEYfHoP2kPvQfvoPyiXy6MAAAAACmRoAwAAAFAgQxsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKJChDQAAAECBDG0AAAAACmRoAwAAAFCgrnYXAAAA0F9dG26QzZdss/GQbn/cDbdn8+s/ND2br3VNyuZTr12Uzcf8/fJsDowuzrQBAAAAKJChDQAAAECBDG0AAAAACmRoAwAAAFAgQxsAAACAAhnaAAAAABTI0AYAAACgQF3tLoCRY8Gh+2bzWV/4Rjbf8aQjsvlmX5ydzatly7I5natr802z+fqnLcjmf710x2y+/dfzy3dffX02H+3GrrdeNr//BVtn87VPuyybV4sXD7gmAMr10Bueks3vf+GibP7BJ/8hmx865XcDrmkgvvPQZtn85Wucmc3XftXElrb/4k32aGl5YGRxpg0AAABAgQxtAAAAAApkaAMAAABQoKbfaZNSmhERMyIiJsakIS8IqM2v5sTtMTciIpaG7/SA4aL3oD30HrSP/oNyNR3aVFU1MyJmRkRMSVOrIa8IiIiIaWl6TIvpERExqzqnzdVA59B70B56D9pH/0G5XB4FAAAAUCBDGwAAAIACNb08is7RtcnG2fzTH/92S+u/5u1fz+YvOOHp2bxauLCl7TNydW24QTb/1HlnZPPtxvVk82fdv2E27776xmw+2o1db71s/vrzL8vmT5l4ZjZ/+1VvzRdw+dX5nBFr7LrrZPPrj90smx+wTb43b3/G0mxeLfa9DbAiY3bdIZtf947J2fzvzz0um6839uL89gv/XPnNa97a5BYTh6UOoDOU/YoIAAAA0KEMbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABepqdwGU457nbZ7NnztpaUvr3/2S12Tz9R65oaX1M3J1Tdskm6952mPZfJfxY7P5dn9+Wzbf5rDLsnmnu/YzW2TzV6/+h2y++3Hvz+YbX37BQEtihLjnyKdm80+88wfZ/EWTzm5p+weve1A2X3b7HS2tH0arR7dcI5vf8IJvNFnDaoNXTBucvGB6Nv/xLXsNUyUrtmbc1Nbt015jdtsxmy/acHI2n3dwyuav3PvibL60yh93n/vDvbP5Rn99KJtXl1+dzTuRM20AAAAACmRoAwAAAFAgQxsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAoUFe7C2D4jJk0KZs/76jzh3T7E366dv4GVTWk26dcD+63aTb/5RYntbT+HT56TzZf1tLaR75q312z+U0v/mY2f8ZVr8rmm55yXTbvzqaUbOy2W2Xzb7/3uGy+2/j8YUjPQAvq485vrJHNN3rrhtl82Z13tVgBrJquaZtk82s/MC2bb3BByuZTfnJRNh+zOH9MdsPSJdn8tmVrZfNNuxZk88P/dVg2f/DadbL5Bhfn61/rgtuyefXII9l8zQU3ZXPIqfbbLZvPeXt++VP3/VY232P82AFWNMiOnp2NH39f/vVj5oIds/nX//mMbL7Nm6/N5j2LFmXzEjnTBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAJ1tbsAhs/ip+6QzT+z/ndaWv9jPUuy+ZRTL2pp/YxcXZtvms3vfemilta/55ffkc03vO2CltY/0lX77prNP/rj77e0/kd+u2E2n3z/nJbWT7mu/eDa2XyX8WOHqZIVm7XHqdn8hgvz71sv/+F7svn0z16ezXsWtfbaxug1dq01s/nev52bzX+57q+z+X6XHDngmnqb8PuLs/nRLzo8m3dffX02H7vDNtl86vU35/OeG7J5M8taWppO1/O03bL5vCPyy/92v5Oy+VZdqzWpIP/e+qfH88t/+JqDs/mCW9fK5v86+GvZ/GN3PyWbf2nDS7L5rqvdks2/uvdp2fxD7z48m0/7/Mj7d4EzbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAAChQV7sLYPjMffnYIV3/K288uMkt7hjS7VOu245fPZvfuPf3svlH79ktm2/y3auzeXc2Hf1uP2ByNt9vQk823/mCw7L5Zl+7YMA1MTKM3XHbbP7nA49rsobVsukX798hm1+yYLNsftpWf2iy/bxtx43P5t96/Tey+RdPeWk275l7y4BrYnQYM3FiNl98+prZ/MPr/iWbb/eLI7L59mcO7fti99XXt7b8tTe2WAEMnTmn7pbNf7zvt7L5HuOb/Zsr/974urnPyeYXX7dlNt/+nddm8/Uezffvetk04m17PDub33PU5tn83d/I75+PbnBeNv/74xtl8yuO/Fo2P/hH+ffuZbfNz+bt4EwbAAAAgAIZ2gAAAAAUyNAGAAAAoEBNv9MmpTQjImZEREyMSUNeEFCbX82J22NuREQsjcVtrgY6h96D9tB70D76D8rVdGhTVdXMiJgZETElTa2GvCIgIiKmpekxLaZHRMSs6pw2VwOdQ+9Be+g9aB/9B+VyeRQAAABAgQxtAAAAAArU9PIoRo8X7fXPlpZ/qOfxbL70mA2y+Zi4o6XtM3JVVcrmS6vubD7r/i2y+djH7xloSSPKmDXWyObXf3bHbP7Ll3w1m/fEuGy+2auuyuaMXvftvU4236Ir/113M27bP5vPf8oj2XzM5Mey+R5ve0c2f9///Cybv36N/GvH/hOzcZx1xq3Z/JoXbZjNl915V34DFGvs2mtn8+s+vW02v36Hr2fzS5t8pcj2n5qTzbsffji/AhjFxkyenM1v/NSTsvm1zzgpv/4Ym80vXpz/RpHX/+rt2Xy7T16bzbddcEk278mmrXvSGrdn8z91bZnNL/m/PbL5Ol+dlc0Pnrwgm0fk/90xEjnTBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAJ1tbsABs/iF+6VzU/c5FstrX/+snw+5q+Xt7R+WJnfbf/LbP7m856ZzW9duFE2X/KdDQda0qC66+lVNn/hPldk819v/PUmWxiXTfe74rXZfO24scn6Ga26J+Tznsg/d6/85pOy+dS4ML/+Rx/N5ht95YJs/rOD8u+Lr1vjN9k8qp5sfPfiNfKLL1qcXz8j1h1v2CGbX/+yr2XzXz+6djb/zoufk8277705m0MnW/CS/HvPX1715Ww+JiZl83Mez785fuGIw7L51mdflM27s2nrUld+BDBmu62y+bd/OTWb/98Pvp/NnzT+nmweTfb/2JQ/7+RJs/5fNt/knpH3+ulMGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAAqU/yXtjCh37zVuSNd/0G/elc23iVlDun1GrvW/tlo2P3fmxGz+zNUWZfPvbHZuNh8TKZv3fLXK5kOtaX3RWn0/WbhBNl/nw/m3gp6Wts5ItsYr7mxp+Yee92g2n/rdllbf1Mc3/3WTW7T22dXfL98+m2/74OyW1k+5Fu7zeEvLHz/3wGy+2g03t7R+6GTV2Hy+qMofdzWzsCd/XHvXPuOz+eMv3zubb71Ni++9i/LH1a/a/LJs/va1fpjNL1mSv3/7TWh25DipSZ73j0X59W/ymfzjWy1e3NL228GZNgAAAAAFMrQBAAAAKJChDQAAAECBDG0AAAAACmRoAwAAAFAgQxsAAACAAhnaAAAAABSoq90FMHjGP/nBlpa/dslj2Xz7E+7L5t0tbZ3RrOsvl2bz45/2rGz+6adukc3nP7fK5jcddHI2n704ZfM3nP22bN6qbX6wOJv/9uentLT+L13zvGy+yT+vbmn9jF4Lz9gof4Od8vHhO87K5n/ba+9sfu+TV8/m1YsfyOY7j5udza9dujSb7zRufDY/8wVfy+YfeMr/ZPO46Mp8TrF+st/MJrfIfy56+o4/yub7fvW92XzLXy/J5mPPuyybw2i29q/yxzUzDn19Nv/R9vn+fMnk/HHnK/7369m8u+rJ5s0srpZl8wmp1X/i55ffb0Jr9S9r8q/GA658bTaf+vb88tWc0Xdc60wbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKJChDQAAAECBDG0AAAAACtTqL3FnGC168d7Z/JK9vtFkDWOz6fVL18/m3Tfc3GT9sGqW3XV3Np/0i3y+7S/y63/h23YfaEn/vf6Y3dLyzYzZZft8Himbf+a+nbP55u98KJsvy6Z0sg1/PTeb3/ChJdn86HWuyeYf+OW12bwnqmzezGtuflE2f/yo9bL5y35yXjZ/45TbsvnNR+U/G9vqomxMwfaeMC6bL626s/naYyZm8+tec1J+/a/Or3/nc96Wzde8OL/9R6ble2/KnGwc6175aP4GTdy3y+RsvsF592Rzx6ydrWfhwmw+4bn5fMYGL8/m1x6zRTZ/7h5XZfMbHsr/m+uW29fN5mPH5/v/Jdtdmc2/tOEl2Xyo7XjujGy+3Xtvz+bL7s73/2jkTBsAAACAAhnaAAAAABTI0AYAAACgQE2/0yalNCMiZkRETIxJQ14QUJtfzYnbo/4+iaWxuM3VQOfQe9Aeeg/aR/9BuZoObaqqmhkRMyMipqSprX0jINBv09L0mBbTIyJiVnVOm6uBzqH3oD30HrSP/oNyuTwKAAAAoECGNgAAAAAFanp5FOV4fN2x2XxcyufNvP/Sl2fzLePKltYPrNitn8j3bk/kr0w9+7P7Z/PVb7towDVBRMSyO+/K5jOOflc2/+6Xv5rNtx03OV9A1ZONtz77f7L59kdel817Hr0mm3/hLwdl8zcf/I1s/sU9f5HNv73ri7J5zz+vzea0z5Zn5Z97N7z45CHdfrNjvuuf/a38Cp49iMW0wewPpmz+rmtem82nvviGwSyHUab77nuy+bb/m8/nNVn/+Lglm2/TJG/m7DN3zOZf2vCSltY/b9lj2fzgr70/m29z3Oxs3r1s2YBrGu2caQMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKJChDQAAAECButpdAP23+OAFLS1/7ZLHsvm0b49raf3Ait03Y99sfuVTTsrm85Y9ns1Xu3fJgGuCwbD6z2dl8zfGe7L5A6/Ovy8temhCNt/h6Juzefejj2bzZrb74DXZ/MBtXp7N/7TTGdn8E5/If3a2SX71tNF2b788mz/v5zOy+aEnnpXNJ41ZnM1fPOnebD4ujc3mI93eE6psfv6Tf5zNd/q/o7L5VkdfOOCaYLjM/Vz+uPKyvY5tsobxLW3/lV96fzbf+KQLsnm+e1kRZ9oAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQoK52F8B/jN12q2x+yV4/araGbPr7R3bO5uP+fGmT9QOr4rHnPNLS8q+84i3ZfP1zL2tp/TBUVv/5rCZ5a+vvbm3xpnoWLszmD5+Zf1+NnfLxF3c5I5t/faMDsvmyO+/Kb4AhUy1bls2bHVP9ZPuNW9r+Ca98bTbvHpey+VPfNzubf2HDiwdcU0nGNPlcetqudw5TJTBwdxz91Gz+x9d/KZuvlia1tP3jH9w6m2/43SuyeU9LW2dFnGkDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgbraXQD/cfcz18/m49LYltZ/4rnPyebbxKyW1g+s2Df3+GE2v7P7sWy+znGTBrMcYJCs983Z2XyfF/y/bD5rj1Oz+Tvft0U23+q9d2VzRq/Jp7d2zHbWrvtm8y8ccnE2f6xaks33+Nv/ZvPNv50/pr3vqPz74iV7/SibQ8mWPnfPbP7LI7+UzTfrau248NZl+f769QcOzOYTHsu/PjD4nGkDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgbraXQD/sWhqamn5SxcvyeY7fHF+Nl/W0tahc83/0FOz+X4TLsvmFy2elM3HnptfHmiTnu5svM5X8r193w8fz+bXvvakbH7QqYdm8+rSq7M5nWuzPy7O3+CQfDwpjc/m1z7jO/nVb/6cbP67Lf6YL6DFz51vvWtqNt8m5rW0fsiZ9+Kx2XyLrvx7RzN3dj+WzQ9913uz+aTfzmpp+ww+Z9oAAAAAFMjQBgAAAKBAhjYAAAAABWr6nTYppRkRMSMiYmK0dn0d0H/zqzlxe8yNiIil0eTac2DQ6D1oD70H7aP/oFxNhzZVVc2MiJkREVPS1GrIKwIiImJamh7TYnpERMyqzmlzNdA59B60h96D9tF/UC6XRwEAAAAUyNAGAAAAoEBNL49i+Kz/rNtbWv7XDz85m3ffe19L6wdW7PWvy59G3BP5K0vffMnh2XzzuCqbj11najaP9dfJxt3X3phfHlglY/56eTY/4PtHZ/Nr3nRSNl/42cez+ZRXrZHNexYuzOaMXuMuyb/uP+Wy12Xzi3b/SUvb/+EWf2pyi/znyourpdn8xde8Nptvf9TN2bw7m0Jes+Oyy19+XJM1TGhp+wecf2Q23+rMWS2tn+HnTBsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAK1NXuAjpJmjAhm79043+2tP77l6yezavFi1taPzA0errz8/N7jnxqNn/RW/6ezX85Z6NsvsnLszEwRLaeeVs2/+GrNszmf3vS6dn8+bu+KZuPOf+KbM7o1bNwYTbf8B1rZ/ODTnlJNv/wFr/N5vtO6M7mZzyybjb/yO9ek823fvdF2Ty/dcgbu3a+P941K39ctnrK/5uwmS/ev0M23+Z/bszmPS1tnXZwpg0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAF6mp3AR2luzsbz7z2adn8XU+dl83Pu23rbL5JXJ3Ngfa4dv/vZvOe/atsvtPf3pTNtz7m0Wyef2UChsqy2+Zn85+97BnZ/JA/n5bN7zt6UTZf//xsTAdbNu/W/A2elY+POuqIbL5wr8ez+fYfvS+bb33LRfkCYAjd95Lts/lzJ52bzbvzh3VN/e6TB2TzyY/Oam0DFMeZNgAAAAAFMrQBAAAAKJChDQAAAECBDG0AAAAACmRoAwAAAFAgQxsAAACAAhnaAAAAABSoq90FdJJq2bJsvsUHH83mO3z+kGyerlhjwDUBrfvjR56Rza/50EbZ/MJZ22fz7Y+/I5tvddf12bx70aJsDpSp+9obs/lr5jw3m5/15G9n8zc/5Yh8ARddmc9hJTY44YJ83mT5/BEztNcr3vfnbN5d9bS0/q3Pels23/aMWS2tn5HHmTYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUqKvdBfAf3TfNzeabvWqYCgEGZOJZs7P5vWfll986LsrmywZaENARHntZlc1nXbBxNn9wu8nZfO38SxNAR9p1tVuz+diUPy/iokXd2XzHL92TzR0Xdh5n2gAAAAAUyNAGAAAAoECGNgAAAAAFavqdNimlGRExIyJiYkwa8oKA2vxqTtwe9fccLY3Fba4GOofeg/bQe9A++g/K1XRoU1XVzIiYGRExJU3Nf+MdMGimpekxLaZHRMSs6pw2VwOdQ+9Be+g9aB/9B+VyeRQAAABAgQxtAAAAAArU9PIoAADK033f/dl85rbTs/naceFglgPQEd714zdn8+v+5+vZ/E2nvCObbzrnggHXxOjmTBsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAK1NXuAgAAAGAk2PwTF2Tz531it2y+aeSXh76caQMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKJChDQAAAECBUlVV/b9xSvdGxC29frRuRNw32EUNopLrK7m2CPW1arDr2z0iLhvC9Q829a26kmuL6Lz69N7gUl9rSq5P76mvFeprzVD2X6fd98GmvtZ0Wn2bV1W1Xt8fDmho84SFU7qkqqo9WyprCJVcX8m1RaivVUNdX6ff/1aVXF/JtUWor9Pvf6vU15qS69N76muF+lozlPV18n0fDOprjfpqLo8CAAAAKJChDQAAAECBWh3azByUKoZOyfWVXFuE+lo11PV1+v1vVcn1lVxbhPo6/f63Sn2tKbk+vVc29bWmk+vr5Ps+GNTXGvVFi99pAwAAAMDQcHkUAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKJChDQAAAECBDG0AAAAACmRoAwAAAFAgQxsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIEMbUaglNJ5KaW39PO281JKz17F7azysu2UUjo8pXR+r78/klKaPgzb7ffjwsil//L0H0NF7+XpPYaK3svTewwVvZfXSb3X8tBmJDzIKaXxKaXTG7VWKaUD+uQppfTFlNL9jf++lFJK/Vz3fz1ZOkUr+2y4VVW1elVVc3K3SSlt0XhudA1XXSmld6eU7kopPZRSOiWlNGEV1jEa+u+ZKaVzG/th3gDX3ZH9FxGRUto9pfS3xhvU3Smld7a7phUpuP+mp5R+k1JamFK6L6X0pQEuPxp67+iU0r8a+2BuSunoAay7I3svpbRWSun7KaV7Gv8d0+6aVqbE3kspTUgpHZtSuiOl9GBK6esppXEDXMdo6L13pZTmpJQebuyLY/v7GHRw7znubFGrx52joff63O66lNL8Aay7U3tvlY/Th1uJvZdS2jml9MfGsWa1quvppDNtzo+IN0TEXSvIZkTEwRGxa0TsEhEvjoi3DtaGU0pjB2tdBRnSfbZc40161D1PU0rPi4gPRsSBEbFFREyPiE+2s6Yhluu/RyPilIjo9z8YB2I09l9Kad2I+ENEfDMi1omIrSPi7CHYzmjtv/ER8aeI+EtEbBgR0yLiR20taujkei9FxKERsXZEPD8ijkwpvXawNjwaey8ijo2ISVG/bu8dEYeklN442BsZrb0X9fvenhGxc0RsGxG7R8RH21rR0Mn13lkRsXtVVVOi3he7RsRRg7XhUdp7jjtb0GHHnbneW+7oiLhnsDc8SntvSI/TlxutvRcRSyPiZxHx5lZWMqg7pjGB/EfjE4MFjU8Rntr4+W2NT6UO63X7F6WULm980nBb30+sUkqHppRuaUzUP9Z7wptSGpNS+mBK6eZG/rOU0tQV1VVV1ZKqqo6rqur8iOhewU0Oi4ivVFU1v6qq2yPiKxFxeD/u7w4RcXJE7JvqT7sXNH7+vZTSN1JKv0spPRoRz0x9TqPqO61NKW2fUvpTSumBlNL1KaVXN9t+Y7mtUkp/aeyD+1JKP04prdXnZnullK5J9ada300pTey1/ItTSlc0Hq8LUkq79Ge7sYr7rLHN5c+TrzWmttellA7slZ+XUvpsSukfEfFYREzP7Z+U0joppV83nkezI2KrPturUkpbN/68WkrpK43n1UMppfNTSqtFxN8aN1/QeCz3bdz+TSmlaxv77o8ppc17rfc5jdofSimdGPU/gPrrsIj4TlVVV1dV9WBEfLq/+29lRmr/VVU1u6qqH0ZEdjK+gvvbyf33noj4Y1VVP66qanFVVQurqrq2nzXrv7rX7qiq6qtVVT1aVdWiqqquHMDy/2UE996Xqqq6rKqqZVVVXR8Rv4qI/fpxfzu59w6KiC9VVfVYVVXzIuI7EfGmftas9+r9d0JVVQ9UVXVvRJzQ3/23IiO4926uqmrB8s1GRE/Uw/dm97eTe89xZ0HHnSO19xrr2zLqoc7nB3B/O7b3VvU4vbHNju+9qqqur6rqOxFx9UD3X98VtfRfRMyLiGc3/nx4RCyLiDdGxNiI+ExE3BoRJ0XEhIh4bkQsjIjVG7c/ICKeFPXwaJeIuDsiDm5kO0bEIxHxtIgYHxFfjnpStXxb74qIi6L+hHRC1J84/6Qf9c6PiAP6/OyhiNin19/3jIiF/bz/h0fE+X1+9r3GOvdr3LeJEXFeRLxlRctFxOSIuK2x37qi/uTpvojYaSXb/Pe6on6Tf05jH6wX9RPxuD6Pz78iYtOImBoR/4iIzzSy3aOeMu/TeLwOa9x+Qt/HdgU1tLrPlkXEuyNiXES8prG+qb3u360RsVNjf6yZ2z8R8dOoJ5iTo/7E6vbej0lEVBGxdePPJzXWv0njPj+1se+2aNyuq9dyB0fETRGxQ2O7H42ICxrZuhHxcES8snEf3t24T8sfl80iYkFEbLaSffDPiHhNr7+v29j+Op3Wf72yZ0fEvAHe/8OjM/vvLxFxfERc0FjHWSt7rum/Fe6DUyLihxHx+8Z9OS8intSpvdfIU0RcHhFv03vZ3rsvIvbu9fePRMSDeq/fvXdpRLy6199f39j+mp3WexHx/xr7soqIeyNiV73nuDMKPu6M0dN7v4mIlzVqmj+A+394dGDv9Vr/qh6nd3Tv9drG1hFRDWT//dfyq7pgpoFv7JU9qbFTNuj1s/sjYreVrOu4iDi28eePR6+GjPp05CW9tnVtRBzYK98o6gbvalLvioY23RGxfa+/b9OoO7XQwD9YWdOtoIFfExF/73P7b0bEJ5o18AqygyPi8j6Pz9t6/f2FEXFz48/fiIhP91n++oh4Rt/HdgXbaXWf3dH7thExOyIO6XX/PtUrW+n+iboJl/ap5XOxggaO+sX08VjBgVGsuIF/HxFv7vX3MVFPgTeP+pKCi3plqfHcWuHjsoLt3RwRz+/193GN7W/Rn+X7PL4juv96ZYM5tBnt/XdD1G8Qe0V9gHBCRPxjAPus0/vv7EbdL4j6APHoqD9BGj+A596/H58Y4b3XyD8Z9UH9hAE8jzqx934UEb+IiDUaz+ubI2LxAPZZp/feZ6L+h8R6UV+aOKux/Y36s3zfxydGR+9tE/VZDxsO4HnUib3nuLPNx50xCnov6mHNHxp/PiAGZ2gzqnuv1+1X9Ti9o3uv13ItDW2G4gt47u7158ejrq7vz1aPiEgp7RMRX4h6UjY+6unXzxu32zjqSVs01vFYSun+XuvZPCLOTCn19PpZd0RsEPXUbSAeiYgpvf4+JSIeqRp7eBXd1vwm/7Z5ROyz/FS7hq6oPwnOSimtH/U/2J4e9UHkmIh4MFPLLVHv2+XbPSyl9I5e+fheeU6r++z2PrftXVffmnP7Z73Gn/vexxVZN+p/4N7czxo3j4jjU0pf6fWzFPXEtu/zs0opDeQxX9H+i6g/lWjFSOy/oTDa++/xiDizqqqLG3V8MiLuSymtWVXVQ/1YvtP77/Go3+R/HxGRUvpy1J+q7BD14GJVjNjeSykdGfVBydOrqlq8KuvoZbT33lER8bWIuDHqf5D8JCJe14/lluv03vtsRKwVEVdExOKI+FZEPDla+26JEdt7je3cmFK6OiK+HhEvX9X1xOjvPced5R13jqjeSylNjogvRT3MGEyjvfda1em9Nyja/WU/p0bEryNi06qq1oz6WsHl14jdGfVpcBFRX5cW9RduLndbRLygqqq1ev03saqvcx2oq6P+YrPldo3+X3e2sjeLvj9/NOrJ8XIb9vrzbRHx1z73ZfWqqv63H9v/fGNbu1T1F9q9IZ54nd2mvf68WdQTz+Xb/Wyf7U6qquon/dhuK/ssImKTlP7rW/971xXx3/svt3/ujfoUtb73cUXui4hF0ef6xxVsr/d239pnu6tVVXVB1M/Pf2+zcV82XcE6VmZF++/uqqruX8nth0Ip/deKTu2/K+O/7+PyP/f3GttO77+++2+4FdN7KaU3RePLKauqmj+ARTuy96r6u1heX1XVhlVV7RT1cdTsftS7XEf3XlVVj1dVdWRVVZtUVTU96sHXpVVVrfC7J4ZAMb3XR1es+PFZkY7svXDcOdKPO0vovW2iPsvi7ymlu6I+a3KjVP9GrS36sXyn9l6rOr33BkW7hzZrRMQDVVUtSintHfX1vcudHhEHpfpLrcZHfep27wf85Ij47PIvCUoprZdSeunKNpTqXzO5/MuYxqeUJvZ6Av0gIt6TUtokpbRxRLw36tPdli97Xlr5r/W8OyKmNWrMuSIiXp5SmtT4gqQ398p+ExHbppQOSSmNa/y3V6q/9KqZNaKeni9IKW0SK/5m77enlKal+ku7PhwRpzV+/q2IeFtKaZ9Um5zqLwpbox/bbWWfRUSsHxFHNe7rq6L+hPt3K7ntSvdP40DvFxFxTGPf7hj1dZpPUFVVT9TfZfHVlNLGKaWxKaV9U/0rD++N+osAp/da5OSI+FBKaafGfVqzUWtExG8jYqeU0stT/Svjjor/flFu5gcR8eaU0o4ppbWj/pT/ewNYfjAU0X+p/oK5iVGfqpsa2fhey+q/J/puRLwspbRbqn9d7seiPnNkQYT+64cfRcRTUkrPTvVvenhX1G/w/foy50FQSu+9PupTi59TreBXZOq9J0r1F0Gu03j+viDq32jzmV653stIjWOGxn5/StSvXZ/o7/KDoJTee0uqPzWPxmP3oYg4p9eyeu+JHHeO7OPOEnpv+fe97Nb47y1R99Nu0TiTQu89UWrtOD2iw3uvsb8nRn1mUzT234T+Lr9cu4c2R0TEp1JKC6O+nvFny4Oqqq6OiHdE/YVDd0Z9+t49UZ9OG1F/CeevI+LsxvIXRf3lSitzfdSn6W0SEX9s/HnzRvbNqL/I86qoG/q3jZ8tt2nU12CvyF+inl7flVK6L7P9Y6O+PvPuiPh+RPy4131dGPUXdr026snjXRHxxahPHWzmk1F/SdNDjbp/sYLbnBr1dzjMafz3mcZ2L4mI/4mIE6M+ve6m6P83ybeyzyLq69i3ifofSp+NiFeubNrfj/1zZNSnX94V9RvQdzPbfV+j5osj4oHGesZUVfVYo45/pPpb1Z9SVdWZjfynKaWHG/fzBY2a7ouIV0V9quf9jfvy7/ubUtos1d9IvsIJcFVVf4j6FM1zoz6175YY3gPXiHL6b//G338X9cT88fjvX1+t//qoquovUb8Z/zbqx2Xr+O8DIP2X77/ro/6E6uSo9/1LI+IlVVUtydQ+mErpvc9E/WnmxY399UhK6eRey+q9J9oj6ufwwqg/9Xx94zFbTu9lei/qTz0viPqT6O9HxAerqjp7JbcdCqX03n4RcVWqf9vM7xr/fbjXsnrviRx3juzjzrb3XlX/psS7lv8X9ePR0/j78rP99N4TtXKcHtHhvRf16/7j8Z8zAx+P+jk6IKlq6Wtbhk9KafWov3hzm6qq5g7jdqdFxM+rqtp3uLY50jXbZymlw6P+8qanDWthrDL9N3Lov9FF740cem900Xsjh94bXfTeyKH3hk+7z7TJSikd1Dj9aXLUv/7tqqi/3XrYVFU1X/MOjH02Oui/kck+G/n03shkn418em9kss9GPr03Mtlnw6fooU3Up6zf0fhvm4h4bTVSTg2CkU//QXvoPWgPvQftofcgY8RcHgUAAADQSUo/0wYAAACgI3UN5Mbj04RqYkweqlqAlVgUj4beg+Gn96A99B60j/6D9lgUj8aSanHq+/MBDW0mxuTYJx04eFUB/TKrOkfvQRvoPWgPvQfto/+gPWZV56zw5y6PAgAAACiQoQ0AAABAgZpeHpVSmhERMyIiJsakIS8IqM2v5sTtMTciIpbG4jZXA51D70F76D1oH/0H5Wo6tKmqamZEzIyImJKm+v3gMEympekxLaZHxMqvbwQGn96D9tB70D76D8rl8igAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAJ1tbsAgKE2ZtKkbL7HBQuz+SfWuyKbP/eal2fz8c+5JZsDAACsiDNtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKFBXuwvgPxYdtHc2X+33l2Xzas8ds/ncl0zO5k9/1lXZ/O9/eVI2b2ajC7uz+cSzZre0fjrXmEmTsvkNM7fL5r9cb2Y272my/dv+uVE23ypuabIGAABo7qZjn5LNb37Nydn80Fv2z+Z37/vwgGtiaDnTBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAJ1tbuA0WTsuutk8+7TVsvmP93mq9n87u5x2XzNMedl8826JmXzpg77W0uL3/OGx7L5HSeMz+Zv/dw7s/k637pwwDUxOsz5yK7Z/JpnnpDNXz/nBdn8/s9umc23+sNF2RwARpKuDTfI5g/tt0U2v/05VTaf+5KZ2Xxp1Z3N97vitdn83tvWzuY7fuGubL5s3q3ZHNppv6dc09LyP9g8/2+6p7/srdl80pmzWto+A+dMGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABWr6RcQppRkRMSMiYmK0+EW2QL/Nr+bE7TE3IiKWxuI2VwOdQ+9Be+g9aB/9B+VqOrSpqmpmRMyMiJiSpua/Ch4YNNPS9JgW0yMiYlZ1Tpurgc6h96A99B60j/6Dcrk8CgAAAKBATc+0of9uOH6zbH799t9psob85Wfrj80v/fUF22bzyxbm65v/6Fr5DTQxNvVk899ud1Y2b3b/Tvvo/2Xzt117ZDYfc/4V+Q0wYi1Zf1lLy1/5922y+ZZ/uLCl9QPAcEoTJmTzOZ/cPZuf+MpvZ/NnrPbYgGvqbWmV/9y4J/LHlH/f7dT8BnZrEq/zpmy+2avyy0M7/WDzvw3p+u/YP2Xzrc8c0s2zAs60AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoEBd7S5gJKn23TWbn/bUbzZZQ353/+HxSdn8C0cfls3XuPq+/ObvfSAbj3nwtvzyTVRjxmbzbb9yRDa/5tVfy+ZbjVs9mz/+0Yez+ZqHb5DNl911dzanXONWX5LNF/bk883+tHgwywEGSfcBu2fzro/nX7fP2u7X2Xxcyr9vLa26s/l+V7w2m6/zkXHZPM27PZvff9CO2XzqL/+VzXsWLszmjF63Hr1HNr/qkOOHqZIVe+MtB2bz72z+pyHd/hVPPSWbvyT2GtLtQ8m2fvdF7S6BPpxpAwAAAFAgQxsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIG62l3ASLJ0zfHZfLfx+d3ZE1U2P/q7b8rmm555QTbvzqbDoCdfwdbvviib7zD+yGx+5UuPz+Z/fdLp2Xy/Zx+Rzdf80d3ZnPYZu/WW2fzq/U/J5u+848D8+s+9bMA1Ac2lCROy+cKX7JbNP/H5fG8/Y7XHsnlPNo1Ymn9bjp4ma/j7bqdm890/dng233XD/Gdnv9rixGy+11rvyOYbfC1/3MDIVe27azY/5U1fG6ZKVmyX7x6Vzbf8dP59d/tj357Nr3vpSQOuCWCkcqYNAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABepqdwEjSffE1NLyu1xweDbf7LMXtLT+kW6bt8/K5r959kbZ/FWr35/NF7zk0Wy+5o+yMW10/TFrtbuEEW3xC/bK5gs3be2tYL1LH87m1aVXt7R+Rq7FBzwpm//luBNbWv+5j6+ezT/+mTdl83GPVS1t/+HN8599jX8sv/z733dKNn+oZ1k2X/3O7vwGGLGqfXfN5595IJvvMSG//p4m2z/zkfWz+SmHvySbbzFrdjavevLP3e3e/c9s/oJf/m82//TJM7P5nhPy23/2vxZm8z/vvEY2h6G01Wlvy+Y3v+bkltZ/07FPyeZbv/uiltbPwDnTBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAJ1tbuAkWS7D13d0vJjL11jkCrpTB+5+OBs/qpnfiebv32nv2Xz38TaAy2JYXLsPqe1tPw/Tt09m28YF7S0/qF284+fnM2P3+cn2fxJ48/P5huMnTDgmnq7aemybP7S09+dzbd630UtbZ/2qfbdNZt//hvfbGn9r7v5hdn84U9sms3XPvfClrbfzJpbb5nNd/v5zdl8h/H5z862/1W+d7Y9fVY2Z+S6Z6/J2fzi7U/J5uPS2Gz+UM+SbP6Jn702m29x4dD2VrV4cTYfd/Yl2fwNf3xbNr/6oBOz+dFT8737rZ8cls23fN0/szm04ubXnNzuEhhmzrQBAAAAKJChDQAAAECBDG0AAAAACmRoAwAAAFCgpl9EnFKaEREzIiImxqQhLwioza/mxO0xNyIilkb+C/mAwaP3oD30HrSP/oNyNR3aVFU1MyJmRkRMSVOrIa8IiIiIaWl6TIvpERExqzqnzdVA59B70B56D9pH/0G5XB4FAAAAUKCmZ9p0kjG7bJ/ND1jrT9n8hqWLsvm6Vy4dcE38x9p/nZi/wTOHpw4G39gpU7L55DH503TPfnxyNt/w2AsGXNNApHHjs/mSZ+6SzT/yje9m8/0nXprNx6Wx2Xz24gnZ/NDrXpXN37Pl2dn8JZMfy+ZfP/g72fy4U16WzbuvuSGb0z4PfuTxbL5H/qkXL7zu5dl87Pvyrw1jL78sv4EhtmCPDbL5J9b/WUvr3zTfeoxiY559fzbviZ5svrTJufFvnPOSbL7Fxy7Mr6Bw2/7v7Gz+taftlM3fM/W6bP76HS/O5hdE/rgAYCCcaQMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKJChDQAAAECButpdQEluPGytbP7a1e/N5k+78pBsPuV3Fw+0JOgIc9+1czZ/2sRzsvmO5x6azbeOywdcU29jt94ym1//9g2y+TWv/lpL2z/n8dWz+RF/PDybb3/8fdl8wg03Z/OTYtts/rVzNs3mv9n+F9n885utmc3HX5ONGUJzf7pLNr/6yd/N5vOXPZ7Nx3xk7WxeXX5lNh9qacKEbL71u/JPzjFNPht74y0HZvPVfjk7mzNydW2ycTZ/73Z/HtLtz/n5Ntl8g8gf8450p/zq2dn8PW+8bpgqAWjOmTYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUqKvdBZTk3S/4bTa/YemibD7+pHWabOHmAVYEnSHt8nBLy4+7ebVBqmTFrj9mrWx+3TNPyuY9Tdb/+jkvyOYPv3+TbL7NhbOyeXeT7bfqpjkb5m+w/RAXwJA5dMfZ2bynybP7lmVT8hu46MqBljSo0oQJ2fz643bN5r/arLXev+X/tsvmkyLf24xcDz5ts2z+ytV/1dL6Z9x2QDbf5Of5Y9JlLW199Nt5tfnZfPb0Z2XzZXPmDWI1wGjnTBsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAK1NXuAkaSb96/fzaf+JvZw1QJjC7br393W7ef9tgpm5/5tG80WcO4bLrTeTOy+TZvvjabp0X/bLL9sn38nr2y+cTzrsrmPYNZDB1l7E7bZfNr37FmNr/uoJNa2v65j6+ezde4YG42725p65Ts3t3TkK7/5i/skM1Xu8sxaytePPn+bP7VPTfM5qvPmTeI1cDg2vrdF7W7BPpwpg0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAF6mp3AcNp7FprZvM1xswfpkqA3qZNWpDNxzSbL6eqpe3fcNSEbL7DuHHZfI+L35DNt3r95dm8J5uWb9zqS7L5o8vy+7dn0aLBLIdBdMbc3bL50etclc2fPOHRbP70K4f2sd970i+y+TNXy2+/1d587z9fmc2n3X11i1tgpOqelH92NX3fa2K1X85uaflONy6NzeZLWzvsABgQZ9oAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAAChQ0y8iTinNiIgZERETY9KQFwTU5ldz4vaYGxERS2Nxm6uBzqH3oD30HrSP/oNyNR3aVFU1MyJmRkRMSVN9VzoMk2lpekyL6RERMas6p83VQOfQe9Aeeg/aR/9BuVweBQAAAFCgpmfajCbz37xTNn/9Gudm88se3WIQq2GgFr/woZaWf6xn/CBVwmDrqfLz457oya+gSi1tf6MNFrS0/R3XuzubPzjQggozdusts/nV+5+Szfe/8tXZfErcPOCaGB4bvuH2bP6SX74sm/9m+19l86PXuWrANQ2mp3/gHdm853X3Z/O/73ZqNl//Wy4rZ8V22WVeNm/6vseQWlp1Z3OPDzCcnGkDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgbraXQAst+xZe2Tznz75xCZrmJBNz/zigdl8zbioyfoZrdZ686JsPuvv47L5iZudlc33/eL7svm2J9ySzZfdfkc2H2o7nJav7+7ux7P5xOOnNtnCzQOsiOHSs3Bh/gYH5vNnveyIbH7PHq19drT2tVU2X/PH+df1e3+4OJtft9tPs/l3Htoim0+6+s5sviybAqW6ZdmSbL7avfkcYCCcaQMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKJChDQAAAECButpdAJ1j2bP2yOYPvPPRbL79uAnZ/Ijb98vma512WTavsimtGLv1ltl8/zX/MkyVrNiy2+/I5l989sHZfNcz5mTzf73hhGx+xDOemc3vfNHUbN59/wPZfMEh+2bzp71rVjb/+Ab/yOZ7/PR92XyrP1yUzRm9Jp2Zf25tceYwFbIS1z3r29m8J3qy+UnXPyObb3zbNQOuCRh6bzn47JaWf+l3j87mm517QUvrh5xDb9k/m/9g87+1tP6bjn1KNt/63Y7rhpszbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAAChQV7sLGE5T5nVn83nLHhumSkan1JV/Oi1498JsfsnuP83mf3p8tWx+w8d2yubjl16SzRk63TfNzeY/vWvvbP6yrf6QzTd/2q3ZfOyUKdm8++GHs/myOfOy+aVPzs+/9z/kqGw+9coF2TytuzSbzz1x02x+9f4nZvO7ux/P5nv89H3ZfKv3XZTNoV3G7rRdk1tcmk1vWbYkm29wwsQBVgS1Rz++cTa/5Ltjs/meE/LHtLf+/EnZfLNXXZXNR7u9Vssfl8xenLL5Fv/3z2zeM+CKAFbOmTYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUqKvdBQynyWfMyuZ/+PQO2Xyrifdm8xun7ZzNl82/PZu3W8/Tdsvmc4/IL/+KHa7I5p9b/6cDK6jv8u87LJuv9sfZLa2f9ln0linZ/KtnbJ/Nf7P9r7L5O8/ZL5vPPnnfbL76HcuyeTP37tWTzfc6ak42/8rG52fzMU3m7zMf2iKbf+/LL87mW51yYTaHUs35xPiWln/V5W/J5huee1lL66dzjfnr5dn87ccdmc0v/sDXsvmf9vlGNj/8mUdl87Ej/Lk996e7ZPP9Jl6azZ96+euy+dRHbxhwTdBfj71sn2z+g82/OUyVUApn2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKFDTLyJOKc2IiBkRERNj0pAXBNTmV3Pi9pgbERFLY3Gbq4HOofegPfQetI/+g3I1HdpUVTUzImZGRExJU6shrwiIiIhpaXpMi+kRETGrOqfN1UDn0HvQHnoP2kf/QblcHgUAAABQoKZn2vAfR6w1N5vf/Zsp2fySBzYbzHIG3Re2nJnNdxvf2tPl0iXd2fyQ2W/O5lv95bpsnl87Jeu+4eZs/reX7pTN1/7to9n82I3/ni/gU03yJsY0mX/3RE9L629m5/PfmM23fs992Xzq7RcOZjkwbKp9d83mv97n603WMDGbpnPWHmBFMDg2Ou+BbL7ns96QzS/Z60fZfP4B+ef+5udm47Z79BX7ZPOf7XNCNr9w8YRsPvUz+f0DQ2nL91/b7hIojDNtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKFBXuwsoyfe+/OJsfs87/5bNP7neP/MbaJa3Xf7psCy6s/k/l+TX/obTjsrmW37wwmye3zqj2bI587L5Lw/YOZuf8MaDs/mjWy7N5n98/nHZ/Hl/fFc2jyofN7Pdtxdl8y0uvjKbL2tt81Cse/aanM237JqYzXuiJ5t3LWqxeWEV9Vx5XTbf5CPbZfMzz5yazX99+P9l8+ev+55svs3bZ2XzZtIeO2Xzu/ddM5t/873HZ/Mdxuc/l97+rBnZfNuLZmdzaMVjL9snm/9g828O6faf/va3ZvOtz7xoSLfPwDnTBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAJ1tbuAkkw95cJsfvHfts3mX/3lomz+nrVvHHBNw2n7v74pm4+/alI2n/b5C7L5lpHfv7Cquu++J5tv8oV83sw7Yr9svm1c3NL6m6mGdO0wci1aN98dPdGTzY97YMdsvs63vG9Rpu6rr8/m33/+M7P5N2fme+MPL/5qNv/Z0/fI5j899VnZ/NszvpbNnzwhX18zz7/mldl8+28szOatbR2G1lanvS2bb/3ui7L5pJg1mOUwDJxpAwAAAFAgQxsAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIG62l3ASNJ909xs/ued18jnsftgljPopscV7S4BAPrtDQef29Lyp/zq2dl8i7iwpfVDuyybMy+bT3jdetn8bU9+ZzYf94G7svml7zg+m29/1tuzeTNb/qInm08498ps3rN0SUvbh1ZMOnNWNn/embtl863jokGshpHAmTYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUqKvdBQAArIoz5u6WzY9e56rhKQRGmO57783m487O53F2Pn5J7JXNt43Z+RW0qBrStQMML2faAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAoUNMvIk4pzYiIGRERE2PSkBcE1OZXc+L2mBsREUtjcZurgc6h96A99B60j/6DcjUd2lRVNTMiZkZETElTfRk7DJNpaXpMi+kRETGrOqfN1UDn0HvQHnoP2kf/QblcHgUAAABQoKZn2gAAlKg6Z2o2//C0fbL5Bpd0D2Y5AACDzpk2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFKir3QUAAKyKDU64IJv/64T88qvF7EGsBgBg8DnTBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAKlqqr6f+OU7o2IW3r9aN2IuG+wixpEJddXcm0R6mvVYNe3e0RcNoTrH2zqW3Ul1xbRefXpvcGlvtaUXJ/eU18r1Neaoey/Trvvg019rem0+javqmq9vj8c0NDmCQundElVVXu2VNYQKrm+kmuLUF+rhrq+Tr//rSq5vpJri1Bfp9//VqmvNSXXp/fU1wr1tWYo6+vk+z4Y1Nca9dVcHgUAAABQIEMbAAAAgAK1OrSZOShVDJ2S6yu5tgj1tWqo6+v0+9+qkusrubYI9XX6/W+V+lpTcn16r2zqa00n19fJ930wqK816osWv9MGAAAAgKHh8igAAACAAhnaAAAAABTI0AYAAACgQIY2AAAAAAUytAEAAAAokKENAAAAQIEMbQAAAAAKZGgDAAAAUCBDGwAAAIACGdoAAAAAFMjQBgAAAKBAhjYAAAAABTK0AQAAACiQoQ0AAABAgQxtAAAAAApkaAMAAABQIEMbAAAAgAIZ2gAAAAAUyNAGAAAAoECGNgAAAAAFMrQBAAAAKJChDQAAAECBDG0AAAAACmRoAwAAAFAgQxsAAACAAhnaAAAAABTI0GYESimdl1J6Sz9vOy+l9OxV3M4qL9tOKaXDU0rn9/r7Iyml6cOw3X4/Loxc+i9P/zFU9F6e3mOo6L08vcdQ0Xt5ndR7LQ9tRsKDnFIan1I6vVFrlVI6oE9+TEppaeOBfmQgD3jfJ0unaGWfDbeqqlavqmpO7jYppS0az42u4aip8bzp7rP/DliF9Yz4/mvcZveU0t8a++HulNI7+7nuTu2/tVJK308p3dP475h217QyhfbfhJTSsSmlO1JKD6aUvp5SGjfAdYz43ksp/b7Pa9CSlNJV/Vx3p/beKu+z4VZo753cZ/8tTiktHOA6RkPvTWjsi7tTSg+klM5KKW3Sz3V3au+9K6U0J6X0cOO1+9jhet4OVKG9l1JKn0kp3Z5Seqjxj86dBriO0dB7q3z81Km9t1xj316XUprf7lpWpsTe67Ptv6zqtjvpTJvzI+INEXHXSvLTGg/06v15wAcipTR2sNZVmCHbZ8s13mRG6/P0wj7777x2FzSEVtp/KaV1I+IPEfHNiFgnIraOiLMHa8OjtP+OjYhJEbFFROwdEYeklN442BsZxf33wYjYMyJ2johtI2L3iPhoWysaOivtvaqqXtD7NSgiLoiInw/Whkdj7w31PltutPZeVVVv67P/fhJDsP8KkTvufGdE7BsRu0TExhGxICK+NlgbHo29FxFnRcTuVVVNifq1e9eIOGqwNzJaey8iXhURb4qIp0fE1Ii4MCJ+2NaKhk6u94b0+GmU9t5yR0fEPUO18lHcexERkVJ6fUSs8qBoUHdMYwL5j8b0e0FjIv7Uxs9va0w0D+t1+xellC5vTM1v6zvtTCkdmlK6JaV0f0rpY70nvCmlMSmlD6aUbm7kP0spTV1RXVVVLamq6riqqs6PiO5BvL87RMTJEfH/27vzMLnqKn/855NukhAgQAggJBAIEDZBRgQE9y+O+4L7gguMEJdR3OfnjqKM4z4ioKKOK+M67oLLIDjKvovsELYEiAk7CYSk+/7+uJWZJiSnulPdqdup1+t5+nm6+1333lO36lRVn75168DWf4zubv3+W6WUL5dSTimlLImIp5VVDqNadVpbStmtlPKH1n9cri6lvHyYNezUmtrdUUpZXEo5uZSy2SoX26+UckWp/6P8zVLK5CHLP6+Ucknr9jqrlLL32u+R4RlyP/lSa9p/VSnl4CH5GaWUY0spZ0bE0oiYne2fUsoWpZRftu5H50XETqtsryql7Nz6fsNSyuda96t7Sil/KaVsGBH/07r43a3b8sDW5f+plHJla9/9rpQya8h6/7FV+z2llOMjoozVPhuOcdx/74qI31VVdXJVVcuqqrqvqqorh3F9e7n/nh8Rn66qamlVVTdGxDeifjE2nJr1X73/jquq6s6qqhZFxHHD3X+rM457b+g2d4j6xXzbF/E93ntDa9ghhrnPWpfXew+vb6OIeElEfHttlm+tY7z23o5RP+8trKrqwYj4QUS0Peqhl3uvqqrrq6q6e+VqImIw6n/yDKdmvVff5/5SVdW8qqoGIuJ7EbHHCJZ/mHHce2v1+qmXe6+17I5RD8I+OdxlWsvpvXr5TSPi6Ij4l5Es9zBVVXX0FRE3RsTTW98fFhErIuLwiOiLiE9ExM0RcUJETIqIZ0TEfRGxcevyT42IvaIeHu0dEQsj4pBWtkdE3B8RT4yIiRHx2YhYPmRb74iIcyJiZmvdX42I7w+j3vkR8dRVfvfRiLgnIu6MiMsj4s0juP6HRf0gOPR332qt7wmt6zY5Is6IiCNWt1xEbBQRt7T2W3/U//VdHBF7rmGb/7uuqJ+w/rG1D7aM+o7476vcPn+LiO2inqyfGRGfaGWPjXpiekDr9np96/KTVr1tV1NDp/tsRUS8MyI2iIhXtNY1bcj1uznqFzD9EbFptn+ifrHzo9Z+fHRELBh6m0REFRE7t74/obX+Ga3rfFBr3+3Qulz/kOUOiYjrImL31nY/FBFntbLpEXFvRLy0dR3e2bpOK2+X7aP+z9n2yT5Y0roe10TEh4duu8f6748R8cWo/2P996j/m7ba/ab//ne9iyNi/yE/fzAi7tJ/w+6/CyPi5UN+PrS1/U17qfdWyT8SEWeM4PofFj3Ye6Owz3q691bZH6+LiHkRUYa7D9eX3ov6SL8zoz7KZkpE/GcMuf/qvTVe91e37n9VRCyKiMfovWE/782KiIuiPrp0g4j4dET8vAd7r9PXT73ae7+OiBe1bsf5I7jPrLyf9GzvDanlnavb9rD35UgXGEYDXzsk26tV2NZDfndHROyzhnX9e0R8ofX9R2JIQ0b9pPbQkG1dGREHD8m3ibrB050Qq2/gPaJ+4lx5g94WEa/qsIG/s6amW00DvyIi/rzK5b8aEUe3a+DVZIdExMWr3D5vGvLzcyLi+tb3X46Ij6+y/NUR8ZRVb9vVbKfTfXZrDHmhFhHnRcRrh1y/Y4Zka9w/re0vj4jdhmT/Gqtp4KgfTB+I1TzJx+ob+NSIeMOQnydEPQWeFfWLzXOGZKV131rt7bKa7c2O+r8eE6Lukysi4v092n/XRP1gt1/UT3bHRcSZ+i/tv+9FxE8jYpPWffv6iFim/4bdf5+I+sXMlhHxqIg4t7X9bXqp91bJr4uIw0Zw/Q+LHuy9UdhnPd17q2z7tIj46Fos97+3T4zT3ouIqVG/NayK+sX/xdH6I2aY96Ne771dIuLjEfGoEeyznu69qIchXxxyn7shInYczrKr3Lbjvfc6ff3Uc70X9bDmt63vnxojH9r0eu89LiIuiXoY9IhtD/drLN43tnDI9w9ERFRVtervNo6IKKUcUEo5vZSyqJRyT0S8KeppVkQ9ELhl5UJVVS2NuvlXmhURP2sd4nV31A09EBFbj7TgqqquqKrq1qqqBqqqOivqB7WXjnQ9q7il/UX+16yIOGDldWldn0Oj/mMiVUrZqpTyg1KfWOzeqB+Mpq9ysaG13BT1vl253Xevst3thuRrNAr7bEHVuievpq5Va872z5ZRN8Gq13F1pkc9FLh+mDXOiogvDtnmnVE36ox45P2zihHc5lV9eOoNVVUNVlV1WUQcE53f5yLGYf+1avpZVVXnV/Vh4h+LiINahxKurfW6/6J+H/8DEXFtRPwi6hf/84ex3Eo93X8RcWzUfyRdEvURXj+P+oVAJ+/VHo+9F616nhj17fmTtV3HEOt7763c/trus17vvYiIKKVsFxFPiYjvjHTZ1RiPvfflqG+TLaL+j/FPo/6joRM90XsREVVVXRv1Ud4njmCxXu+9o6P+59h2rZo+FhF/LKVMGcE6VjUee6/T10+rs972XqnfxvrpiHhb+6u2Rj3be6U+R8+JEfH2qqpWDLOW1er2yX7+MyJ+GRHbVVW1adTvFVz5HrHboj4MLiLq96VF/eS20i0R8eyqqjYb8jW5qqoFo1BXNaSO4Vx2OL9fEvXkeKWhzXlLRPxpleuycVVVbx7G9j/Z2tbeVX1yttespvbthny/fdQTz5XbPXaV7U6pqur7w9juqkayzyIiZpRShl5+aF0r17dStn8WRf0fg1Wv4+osjogHY5X3P65me0O3+8ZVtrtha0h129Bttq7LdqtZx3CNdP+Nhqb031/j4ft/5ffD2R892X9VfS6WQ6uqelRVVXtG/Vh+3jDqXamn+6+qqgeqqnprVVUzqqqaHfWLwwur+n3+60JTem+l10fET6uqun8Ey/Rk7w2xNvssosd7b4jXRX3o+ah/gEEbTem9x0TEt1qP5cuiPgnx/qU+MX87vd57K/XH6u/Ta9LrvfeYqD9AZH5VVSuqqvpWRGweHZzXZoQa0Xsdvn7qxd7bJeqjQ/5cSrk96gHzNqWU20t9Xrfh6OXemxr1kTY/bO2/81u/n19KedIw1xER3R/abBIRd1ZV9WApZf+o36u60k8i4vmlPqnVxKgnwkNv8K9ExLGldZKgUsqWpZQXrmlDpf54xZUnY5pYSpm88g5USnlhKWXzUts/6insL4Yse0ZZ80fCLYyIma0aM5dExItLKVNKfYKkNwzJfh0Rc0opry2lbND62q/UJ71qZ5Oo3wd6d6k/LvK9q7nMP5dSZpb6pF0fiIgftn7/tYh4U2v6XUopG5X6RGGbtNtoh/ssImKriDiqdV1fFvV7CE9Zw2XXuH9af2T9NCI+2tq3e0T9YvoRqqoajIj/iIjPl1K2LaX0lVIOLKVMivqBYDDqty2t9JWIeH9pfSRiKWXTVq0REb+JiD1LKS8u9ce2HRXDmJKvVEp5dill69b3u0V9Tptf5EuNukb0X0R8MyJeVErZp9Qfu/zhqA91vLu1rP5bRalPRrdF6z787IiYG/Vbflbm+i9RSpnRqqGUUh4f9X3u6OEuPwqa0nsrXxy/LOpDvFddVu+tRgf7LKLHe2+I18Vq9t860JTeOz8iXtfatxtExFsi4taqqha3ltV7qyilHFFK2ar1/R4R8f6o32K3Mtd7ufMj4mWllK1LfWLf10Z9fo7rRrCOTjSi90pnr596sfdWniNnn9bXEVHvh32idbSJ3kvdE/WROvu0vp7T+v2+Ub81f9i6PbR5S0QcU0q5L+r3M/5oZVBV1eVRH4r1g6gnXPdFfej6stZFvhj1xPb3reXPifrkSmtyddSHw82IiN+1vp/Vyl4Z9YPWfVEfqvupqqq+PWTZ7aI+/8Hq/DHqQzRvL6UsTrb/hajfn7kw6k9KOHnIdb0v6hN2vTLqyePtEfGpqE+W1M7Hoj5J0z1R36l+uprL/GfUH6E8r/X1idZ2L4iIIyPi+Ii4K1rvzx/GNiM622cR9R11l6gnocdGxEurqrpjdRccxv55a9SHX94e9YvAbybbfU9EXBb1k9edrfVMqOpDMY+NiDNLfWjc46uq+lkr/0GpD0P8W0Q8u1XT4qhftP9b1P+l32Xo9S2lbF/qM5KvaQJ8cET8tdRnmj8l6tvtX5O6x0Ij+q+qqj9G/cTym9Y2do6HP5nrv0faN+r78X1R/+fl0NZttpL+y/tvp6jfFrUk6vvD+6qq+n1S92hrRO+1HBL1/ff01Syr91bvkFi7fRah96LUn9QxM7rzUd9N6b33RP1f4Guj/gPiOVGfN2IlvfdIT4iIy4a8bjol6tcOK+m9vPc+FRGXRj1QuDvqk6K+pPq/T+Qaa03pvU5eP/Vc77WOyrp95VfU9+HB1s8rj07We2vovao2dP8takULq6p6KKn9EUr1sLeYNVcpZeOoH2R2qarqhnW43ZkR8eOqqg5cV9sc79rts1LKYVGfvOmJ67Qw1pr+Gz/03/pF740fem/9ovfGD723ftF744feW3e6faRNqpTy/NbhTxtF/fFvl0V9dut1pqrf+6l5R8A+Wz/ov/HJPhv/9N74ZJ+Nf3pvfLLPxj+9Nz7ZZ+tOo4c2EfHCqA+NujXqQ5FeWY2XQ4Ng/NN/0B16D7pD70F36D1IjJu3RwEAAAD0kqYfaQMAAADQk/pHcuGJZVI1OTYaq1qANXgwloTeg3VP70F36D3oHv0H3fFgLImHqmVl1d+PaGgzOTaKA8rBo1cVMCznVqfpPegCvQfdofege/QfdMe51Wmr/b23RwEAAAA0kKENAAAAQAO1fXtUKWVuRMyNiJgcU8a8IKA2v5oXC+KGiIhYHsu6XA30Dr0H3aH3oHv0HzRX26FNVVUnRcRJERFTyzSfDw7ryMwyO2bG7IhY8/sbgdGn96A79B50j/6D5vL2KAAAAIAGMrQBAAAAaCBDGwAAAIAGMrQBAAAAaCBDGwAAAIAGMrQBAAAAaCBDGwAAAIAGMrQBAAAAaCBDGwAAAIAGMrQBAAAAaCBDGwAAAIAGMrQBAAAAaCBDGwAAAIAGMrQBAAAAaCBDGwAAAIAGMrQBAAAAaCBDGwAAAIAGMrQBAAAAaCBDGwAAAIAGMrQBAAAAaCBDGwAAAIAGMrQBAAAAaCBDGwAAAIAGMrQBAAAAaCBDGwAAAIAG6u92AQzfiv+3b5rf8KL85nz3waek+dxNb0zzCVHSfDCqND/67/+Q5r+68dFpvu0n+9I8zrsszwEA1oG+zTdP84FdZqb5tW+Z2NH2d/rmYJpP+NPFHa0fgHXHkTYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADdTf7QLGkwX/30FpvmSXh9L8Vfue19H2P7bVSWk+GINpPqHNjK7d8rufMTfNt/rlpDTf5IfnpPm2cUWaAwA0Qd/mm6f51UfvmuZXveyE0SznEZY9fXmaH3TB4Wm+3ZvvSvMVt90+4pqA3nDnr+ek+YrfTk/zrY4/azTLWS840gYAAACggQxtAAAAABrI0AYAAACggQxtAAAAABqo7YmISylzI2JuRMTkmDLmBQG1+dW8WBA3RETE8ljW5Wqgd+g96A69B92j/6C52g5tqqo6KSJOioiYWqZVY14REBERM8vsmBmzIyLi3Oq0LlcDvUPvQXfoPege/QfN5e1RAAAAAA3U9kgb/s+lRx2f5oORH4i0cOCBND/xjoPSfM6pb0zzja6dmOaTF+f1bfGNs9N8p7g4zWG8WvqiA9J8wQtXpPnXnvStND94w4E0P3rRnmn+/VOfnOY7vi/vXQBG11Ufn5PmV7/ohHVUyepNKhuk+YX7fS/N/+cv+WvKD3/gyDTf5IfnpDkwjk3oS+MT9jw5zV999dvSfKsRF7T+c6QNAAAAQAMZ2gAAAAA0kKENAAAAQAMZ2gAAAAA0kKENAAAAQAMZ2gAAAAA0kKENAAAAQAP1d7uA8eTJl700zf+41w/T/MQ7DkrzC/8hn6HNiQvSHHpV/46z0nynH9+a5p/Z5vg0n9Bmvn3q0k3S/KR7NkvzF0y9OM0/8NpL0vzxN789zbc68aw0p7nuOfTxaf67T30hzTcuk0aznEf4+8DSNH/epf/U0frvnL9Zmu/xmb+n+d+fsk2aT1k0kOaTf31emtO7Nrq5r6PlB2MwzXf7/Zvy7V+V9/Zgm1f4Pzjy82n+5Mn58r/87OfS/IDHvzvNdz36ijQfuPfevACga1Y8dZ8033fi+eumkB7iSBsAAACABjK0AQAAAGggQxsAAACABjK0AQAAAGggQxsAAACABjK0AQAAAGggQxsAAACABurvdgHjyWZHPpTmvz5tizQ/ZLML0/yS3V+d5gNXXpvmsL7qnzkjzR/38+vS/EPT/5rmv1yS9+7nPpz35mZ/vD7NBxYtSvOf73pQmh/woyvSfJMX3pbm8ZW+NF40d/803+r8e9O8uiivL6oqz1mj+7bP/7eycZm0jipZva36pqT5eY/9QWcbeGwe3//8ZWnebv+siIE0f/etT0zz/z5l3zSfduVgmk+97v40ry74W5rTPds9+8aOlj/ookPTfM7h+WvGTr3tr0el+eePOz7N9544Oc2vevkJab7vjq9J821fkfd2tSzPYSyVffdM84FP56+bNnjbhvnyV1wz4prGk80vL90uYdxxpA0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAA/V3u4DxZMUt89P8fT87NM2veM3xaf7QozZJ874r0xjWW1d8aEaa/3z6L9P8tAempPnX994jzTd58Jw0H0jT9gauvi7Nz3ndY9J84wceSvM7Dt0/zc/9cP7Y1M4Ldntqmg/ed19H6+9l233+wjTfZ/lb0/z+2SvSfMotnb0MGNiwSvMDn/G3jtbfzhu3OiPN95uUL98ffWn+xW3PzldwRJu8jTsGH0jzA//r3Wm+8zvyxybGzim7npLmy/PWiC3+dcNRrGbkJv/qvDR/98A/p/lOH8lflH5luz+l+YX7fS/NH/fD16T5Ni+7Ps2r5fnzInTitidumuYX7fbdND/goLy/trhixCWtU3fNmdjR8pvMXz5KlfQOR9oAAAAANJChDQAAAEADGdoAAAAANJChDQAAAEADGdoAAAAANJChDQAAAEADGdoAAAAANFB/twtYr5Q8ntDmAnfsOTnNp5V9R1rRiEy64No0H7j33jHdPr1r0ZsPTPPLn/fFNP/rQ/n6j9vvoDQffPCufAVdNnjplfkFHr93Gv/Hxz/fZgsT0/Tgv700zTe8/8Y262dtVcuWpfm2nz1rHVWydm79yNiu/yNPeEOa3/zMDTta/4uff2aaf3yrSzpa/xYT8vpOfdHn0vwdxx6S5gOLFo20JIbp5fMOTvOTd/x9mvff+2CaD4y4otE16ZTz03zewOPS/PKvnJbme07M/wS5YL/vpfnj/+mtaT79q2enOXRixZPv6Wj5TeavGKVKumO3116V5lctz1+7TDz9r2lejbii9Z8jbQAAAAAayNAGAAAAoIEMbQAAAAAayNAGAAAAoIHanoi4lDI3IuZGREyOKWNeEFCbX82LBXFDREQsj/yEXsDo0XvQHXoPukf/QXO1HdpUVXVSRJwUETG1THMyZ1hHZpbZMTNmR0TEuVX+KQzA6NF70B16D7pH/0FzeXsUAAAAQAO1PdKG/9O/3cw0/7dDTk7zwTafOn/O+7+Y5hPazNgGY7Cj5Z962cvSfNmP90zzLb5xdprDmtz96Py+u0HpS/PjFz41zQfuumukJY0rfdctGNP137kkf2vsjMpBmHRHOfOSNJ91Zmfrv/hTm6T583Y+NM2vf/8GaX7lk76V5jv1b5jmV31opzTf5e2L0py1d8F1O+QX2HFst3/rew9K88e86Io0v+I7u49mOY/w4v95c5pf/fSvdbT+e/O7fkzvaO30ur4tpqX55x7zkzR//MWvTPNpv79oxDU1yUb9D6X58ir/m7Nani/PIznSBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCB+rtdQJP0bzczzZ/zu0vT/AUb3ZXmR//9H9L8Vzc+Os2rczZL83Ze8Mq/pPm7Zv93mh9yzN1pPnhMlebPeu3cNJ90wbVpPnDvvWnO+DV9hzs7Wv7KL+2Z5pvGOR2tv+kWvnhOmm/dN9jR+jf+6SYdLQ/j1eCSJfkFLr0yjXf6tz3y5Z+UxzeuWJrmu37j7jTvrPPJbHLxpPwC/5jHix83Lc2nTdkrzf/nqM+m+cYT2tT34dPyvOH+7ZCT0/yT1x6a5lv9/Lo0H1i0aMQ1sf544HGz0/wfN8z/ZnrHRVuk+bTBa0Zc07rUt/VWaf6mrX6d5m/422vTfHo0+/o3kSNtAAAAABrI0AYAAACggQxtAAAAABrI0AYAAACggQxtAAAAABrI0AYAAACggQxtAAAAABqov9sFNMn9+2yb5nM3/UWaP/mvL0/zqc++Ps23jSvSvFMXfiqf0V0680lp/qEjZqX54591WZr/9rsnpfkJd++U5qcentcX5+Xbp3v6pk5N8z8+5rtt1rBBmm5y87IRVjS+TJg8Oc3f/q4fp/mmE/Llb17xQJpPu+jONB9IU+hd816yaUfL79A/Jc2vf+Xmab7jXzvaPIkZJ1+d5vsNvi3Nt/3llWlebf+oNF80WKX5xuv5v2VfsNFdef7R49N84Yfz573n/9u/pPk23/tbmg/ce2+a02y3PjF/3dnOzNPH9+vSmw/fOc33mZiPEB48a3qbLVwzwopYzx/SAQAAAMYnQxsAAACABjK0AQAAAGggQxsAAACABjK0AQAAAGggQxsAAACABjK0AQAAAGig/EPWe8zkX52X5s/71b5pPjWuH81y1rkV8xek+fYfzfNbP5qv/x/+v7el+Qte+Zc0//gP/yPN3/+GN6V5/x8vTHO6Z1LZoNsldFWZNCnN737RPmn+qk3O7Gj7T//vd6T5nCsu6Gj9sL6asPduaf6H13+mzRqmpOn1Kx5I812Om5fmK9psnbU3sPiONN/6S2fly7fbwF13pfHrPvjuNL//xfel+YxN70nzX+/2izQf77bu2zDNz/vgl9L882/Oe/+0uQeleTn70jRnbE2Ykj/2fuzlP0jzyx5anub3z5iY5nf9cO8033HL/PFl+uQlaf6NWX9I83YmRLu/mUqaDmxYdbR9HsmRNgAAAAANZGgDAAAA0ECGNgAAAAANZGgDAAAA0ECGNgAAAAANZGgDAAAA0ECGNgAAAAAN1N/tAugdMz51VppfevJ2ab7N7+5J82O+/rU0f/ux/5zmW3zj7DRn7VUPPZTm/3X/9DR/ycaL0/zmZ01O8x3+nMZjrn/2Dml+7RHbpPnlrz9+FKt5pJ2/NTCm64f11Y0vmpbmM/qmdLT+Z/72HWk+5/bzO1o/49em3zunTZ4vX/rzPwFeuMWzR1rSwwxut1V+gapK4wnzF3W0/Sv/LX9N+aeDv5jm2/RtmObvmnZVmp/7qR3S/L4P/0OaT/jTxWlOZ8pGG6X5yza+o80aNkjTMz91YpqviPx11wl37Zrmv1u4R5q/4KoXpXk7353zwzTfYkLeH385/LNpfvAd703zR30x/5uxFznSBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGqjtiYhLKXMjYm5ExOTo7IR6wPDNr+bFgrghIiKWx7IuVwO9Q+9Bd+g96B79B83VdmhTVdVJEXFSRMTUMi0/1TswamaW2TEzZkdExLnVaV2uBnqH3oPu0HvQPfoPmsvbowAAAAAaqO2RNrCurJi/IM1//IFnpvltHz0nzU/80HFp/vrt3p7m23/0rDRnzQYffDDNv/P8/5fmB/zh22l+xWEnpPmrnvKPaX75b3ZN8wd2zQ8Tnrxxnn9wr1PT/Ckb3pTm1y3P5+tzNpic5r9aOjXNJ153W5qvSFNYf5V/2DPNf/eGT7dZQ/628tsGlqb5rl/PHzsd/ty7+mfOSPMle2+b5pNOOT/NBxb+fcQ1PUyHyw90tvWYc3i+/dc9551p/uxPnZHm75p2VZr/cKffpvlLjnlumi97ShrToWpp/tj7rXvz/jlow3lpfsjJ707znU+an+YrbrolzSPy5Tt1/nVbpPmzNsz3332D+bPTk15zYZpf+8U07kmOtAEAAABoIEMbAAAAgAYytAEAAABoIEMbAAAAgAYytAEAAABoIEMbAAAAgAYytAEAAABooP5uFwDDteEvzkvzSy/cLs23+d09aX7JkV9M8xd8dL80Z+0NXHN9mr/iI+9N86e8/Zw0P3nH3+cFvDXP7x9cluY/vG+XND/mkuem+ZY/3jDNf/6Fz6f5YFRp/r6LX5Tms267LM1hfdU/c0aaL/30/Wk+o29KR9t/+jf/Jc1nnX9WR+tn/Lr7dQem+Ts/+IM0f/qU+Wn+nA+/J803/9bZaT7eTTrl/DT/07ltXlOeeVeav2qThWn+2R3+K81f/6p3p/nU7+eve8gNLlmS5v/1pD3T/Kcb7JPmO9yW98+KNB17fbvMTvO9Jv4lzT95x+PS/E9veXy+/SXL0zzi8jZ573GkDQAAAEADGdoAAAAANJChDQAAAEADGdoAAAAANJChDQAAAEADGdoAAAAANJChDQAAAEAD9Xe7ABgtK+YvSPPjLn1amr/pKfNGsxxG0ebfPjvNL/vBpDR/xtPe1NH2+5YN5PnpF6X5DvHXNC/77pnmm06YnObtbPaLjTpaHtZXV3xk2zS/bo+vdrT+H9y/ZZrP+ti5Ha2f9ddDm5Q0f/qU+Wne7nnjz8cel+bPXPiWNJ906vlpPt4N3HFnmn/rrS9M85d+68tpvmN/fvvsctQVab7w+2lMhwYW39HtEsbULS98VJrP6JuS5v/xp6ek+S5/yZ/bqjRldRxpAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBA/d0uAEbN/nul8Xcf/400P+HunUazGtahatmyNJ/42/PXUSVr5/4dNh7T9W/xxxvTfMWYbh26Z9GbD0zza557fJs1lDRdMLA0zb/9T8/P1z54SZvt06u2OuGsNH/CNu9J878dnt+3J7T7v61/66YW7TMpzftK/tjRzp+v2iXN58SFHa2f3vbQZlVHy2/7p1EqhGHzkAwAAADQQIY2AAAAAA1kaAMAAADQQIY2AAAAAA1kaAMAAADQQIY2AAAAAA1kaAMAAADQQP3dLmA8ueljB6X55MX58lt/6axRrKb39O0xJ83vPWZJms/sfyDNf3vYk9pUcFmbHNbObYc81O0SYFx64JD90/zH7/tMmk+IKR1t/8XHvDfNtzjz7I7WD2uy079fk+avfdo/pvl3d/hDmr/p8z9J848d9rw0n/Vvg2leXXh5mo+1m4/OX9Mf+bLfpvlrNm332DJ5xDXBeNG3rOp2CT3HkTYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAbU9EXEqZGxFzIyImd3jCPmD45lfzYkHcEBERy2NZl6uB3qH3oDv0HnSP/oPmaju0qarqpIg4KSJiapnmVNGwjswss2NmzI6IiHOr07pcDfQOvQfdofege/QfNJe3RwEAAAA0UNsjbXrJHW84MM0vO+JLab77GUek+db54o3Xv93MNL/p1dt3tP7Zz5mX5h/Y7vtpfs4DO6X5iz763jSfdv7ZaQ5rq2/3XdL8l086sc0aJqbpG25+WpoPLL6zzfqhmfq23irNv3fc59N8Rl9nb+ve5b/z5/U5370ozR2ezFgZWHxHmt/7vM3T/L/OmZ7m/2/K/DR/yUHfSvPlvxjI88jzsTalXNjhGiZ3tPT7bt8vzff40G1pvqKjrQPjjSNtAAAAABrI0AYAAACggQxtAAAAABrI0AYAAACggQxtAAAAABrI0AYAAACggQxtAAAAABqov9sFjCcblL40v/KpX0/zi28YTPNXn31kmpc0jXjy7OvS/Oq7t0rz0/f6cZpPiIvSfDCqNsvn1+DEu3dM81f98Y1pvsdHb0vzafPPTnMYK/fuMS3N52wwsaP1n/+7R6f59svP6mj9MGYm5M+rN7xp5zSf0Telo81/+O/7pPmcuZenebVsWUfbh7EycNddaf7NXWel+Sff8ao0n/WieWn+1hmnpfnTNnwwzZvurQuemOan/WmfNN/1hAVpvmLBzSMtCYZt6/1uT/O+kh/Xcedu+Qhh21+NuCTacKQNAAAAQAMZ2gAAAAA0kKENAAAAQAMZ2gAAAAA0kKENAAAAQAMZ2gAAAAA0kKENAAAAQAPlH7LeY7b4xtlpftCSN6X535+/rKPtf/vAb6T5/pOqND/h7p3SfDBKmu9+xhH58ndMTPPZP1ue5u1MvPC6NJ9z7wVpvqKjrcPYWbplZ/PxhQMPpPmsT5yX5vkjB3TPsmc9Ns3/Nvf4Md3+7098QppvsSx/XQDrq0f9+1lpvuzf8+W/uONz0vzzm22c5le/caM03/rP+fPq4vyhJaZel78m3uqce9O8XH1Dmu+0NH/s8JqVbnrURvn9e6AaTPNJd3llua450gYAAACggQxtAAAAABrI0AYAAACggQxtAAAAABrI0AYAAACggQxtAAAAABrI0AYAAACggfq7XcB4sskPzmmTd7b+Y+Kxna2grfvSdKe4eIy3nxvo6tZh7Ex8waKOlv/035+W5tWK5R2tH8ZK3/Qt0vy4E7/UZg0T8/WX/H9PR97yhDSf/q0L07xKU2BNVtxwU0fLz3lTZ9vf9OTOlm/X+x4bGM8uPX1Omj/9gY3TfKsfXZ7m/qYbfY60AQAAAGggQxsAAACABjK0AQAAAGggQxsAAACABjK0AQAAAGggQxsAAACABjK0AQAAAGig/m4XALC+O/MxP0rzwTbL/+bKR6f5znHxCCuCdePvL5yT5ntu8IeO1n/kLU9I8wWv2TrNq+XzOto+AIw3O3z47I6WHxilOhg+R9oAAAAANJChDQAAAEADGdoAAAAANFDbc9qUUuZGxNyIiMkxZcwLAmrzq3mxIG6IiIjlsazL1UDv0HvQHXoPukf/QXO1HdpUVXVSRJwUETG1TKvGvCIgIiJmltkxM2ZHRMS51WldrgZ6h96D7tB70D36D5rL26MAAAAAGsjQBgAAAKCB2r49CoDOPGfGYztafue4eJQqgXVr+qX3pfmfH8xfhnx30UFpftvrtk7zgWuvT3MAgKZzpA0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAA/V3uwAAYP1UXfC3NP/kTnu3WcP9HeYAAOObI20AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGqhUVTX8C5eyKCJuGvKr6RGxeLSLGkVNrq/JtUWor1OjXd9jI+KiMVz/aFPf2mtybRG9V5/eG13q60yT69N76uuE+jozlv3Xa9d9tKmvM71W36yqqrZc9ZcjGto8YuFSLqiq6nEdlTWGmlxfk2uLUF+nxrq+Xr/+nWpyfU2uLUJ9vX79O6W+zjS5Pr2nvk6orzNjWV8vX/fRoL7OqK/m7VEAAAAADWRoAwAAANBAnQ5tThqVKsZOk+trcm0R6uvUWNfX69e/U02ur8m1Raiv169/p9TXmSbXp/eaTX2d6eX6evm6jwb1dUZ90eE5bQAAAAAYG94eBQAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoMw6VUs4opRwxzMveWEp5+lpuZ62X7aZSymGllL8M+fn+UsrsdbDdYd8ujF/6L6f/GCt6L6f3GCt6L6f3GCt6L9dLvdfx0GY83MillMeXUv5QSrmzlLKolPLjUso2Q/JSSvlUKeWO1tenSyllmOt+2J2lV5RSNiulfLuU8vfW10e7XdOaVFW1cVVV87LLlFJ2KKVUpZT+dVFTKWVSKeULpZRbSyl3lVJOLKVssBbrWR/672mllNNLKfeUUm4c4bp7sv8iIkopjy2l/E/rCWphKeXt3a5pdZrYf61tzi6l/LqUcl8pZXEp5dMjXH596L33llL+1toHN5RS3juCdes9vbdW9F5EKeUdpZR5pZR7W68DvjDc26BXe6+U8tFSyvJW3638GvM/ztZGE3uvdb8ZWGX/PXWE6xj3vTfkchNLKVeVUuaPYN092Xsrrc0+W9ea2HurbPuPa7vtXjnSZvOIOCkidoiIWRFxX0R8c0g+NyIOiYjHRMTeEfG8iHjjaG28lNI3WutqkC9ExJSo9+n+EfHaUsrho72RUlsf76fvi4jHRcSjI2JORDw2Ij7U1YrGTrv+WxIR/xERw/6DcSTWx/4rpUyPiN9GxFcjYouI2Dkifj8G21kv+6+UMjEi/hARf4yIR0XEzIj4XleLGhvteq9ExOtal3tWRLy1lPLK0dq43utoO3pvfGvXe7+KiMdWVTU16tcBj4mIo0Zr4+tj77X8sPVH2cbD+eNsbayvvddy9ir774xuFzQG2vXeSu+NiL+P9sbX496LGKN9ttJ63ntRSjk0ItZ6UDSqO6Y1gTyz9R+Du1v/RTio9ftbSn1ExuuHXP65pZSLW/9puKWscrRGKeV1pZSbSn30y4eHTnhLKRNKKe8rpVzfyn9USpm2urqqqjq1qqofV1V1b1VVSyPi+Ih4wpCLvD4iPldV1fyqqhZExOci4rBhXN/dI+IrEXFga2J9d+v33yqlfLmUckopZUlEPK2schjVqtPaUspuQybDV5dSXt5u+63ldmpN7e4o9X+sTi6lbLbKxfYrpVxR6iM6vllKmTxk+eeVUi5p3V5nlVL2Hs52I+L5EfHpqqqWVlV1Y0R8IyL+aZg1r7yffKnUR1dcVUo5eEh+Rinl2FLKmRGxNCJmZ/unlLJFKeWXrfvReRGx0yrbq0opO7e+37CU8rnW/eqeUspfSikbRsT/tC5+d+u2PLB1+X8qpVzZ2ne/K6XMGrLef2zVfk8p5fio/wAarudHxHFVVd1ZVdWiiDhuuPtvTcZr/1VVdV5VVd+NiBG9+Orx/ntXRPyuqqqTq6paVlXVfVVVXTnMmvVf/fh+a1VVn6+qaklVVQ9WVfXXESz/MOO49z5dVdVFVVWtqKrq6oj4RTz8uXFN11fv6T2911nvXV9V1d0rNxsRg1EPANtd317uvbWm90bfeO291vp2jIjXRMQnR3B9e7r31maftZbTe/Xym0bE0RHxLyNZ7mGqquroKyJujIint74/LCJWRMThEdEXEZ+IiJsj4oSImBQRz4h64rlx6/JPjYi9oh4e7R0RCyPikFa2R0TcHxFPjIiJEfHZiFg+ZFvviIhzov4vzaSo/+v1/WHW/I6IOGfIz/dExAFDfn5cRNw3zHUdFhF/WeV332qt8wmt6zY5Is6IiCNWt1xEbBQRt7T2W3/UR10sjog917DN/11X1E/y/9jaB1tGfUf891Vun79FxHYRMS0izoyIT7Syx0Y9MT2gdXu9vnX5SavetqupYXFE7D/k5w9GxF0j2GcrIuKdEbFBRLyitb+mDbl+N0fEnq39sWm2fyLiBxHxo9Z+fHRELBh6m0REFRE7t74/obX+Ga3rfFBr3+3Qulz/kOUOiYjrImL31nY/FBFntbLpEXFvRLy0dR3e2bpOK2+X7SPi7ojYfg374MKIePmQnw9tbX/TXuu/Ib9/ekTcOMLrf1j0Zv/9MSK+GBFntdbxqzXd1/TfavfBf0TEdyPi1NZ1OSMi9urV3mtlJSIujog36T29F3pvzHsvIl7d2pdVRCyKiMfovbT3Ptq6jndGxOUR8eYR3GdW3k96ufcOi/rI5sURcU1EfHjotnus934dES9q1TR/hPejnuu9UdhnPd17Q2p55+q2Pex9OdIFhtHA1w7J9moVtvWQ390REfusYV3/HhFfaH3/kRjSkFG/FeehIdu6MiIOHpJvE3WDpzsh6geKOyPiSUN+NxARuw35eZdW3aWDBv7OmppuNQ38ioj48yqX/2pEHN2ugVeTHRIRF69y+7xpyM/PiYjrW99/OSI+vsryV0fEU1a9bVezne9FxE8jYpOoH0Suj4hlI2jgW4fu34g4LyJeO+T6HTMkW+P+iboJl69y+/1rrKaBo34wfSBW88IoVt/Ap0bEG4b8PCHqKfCsqN9SMHTwVyJi/ppul9Vs7xNRP5huGfUh4ue2tr9Nr/XfkGw0hzbre/9dE/UTxH5Rv0A4LiLOHME+6/X++32r7mdH/QLxvVEf6TVxBPe9/719Ypz3Xiv/WERcGq0XcHpP7+m9ddZ7u0TExyPiUXov7b09ImLb+L8/vm6LiFfpvWH33uyI2LG1zr0i4oqIeP9w+27V2yfGae9FPXj4bev7p8boDG3W997rdJ/1eu89LiIuiXoY9IhtD/drLE7As3DI9w9ERFRVtervNo6IKKUcEBH/FvWkbGLU068fty63bdSTtmitY2kp5Y4h65kVET8rpQwO+d1ARGwd9dTtEVqHS50aEW+vqurPQ6L7I2LqkJ+nRsT9VWtPr6Vb2l/kf82KiANWHmrX0h/1f6NSpZSton7R+KSoBygTIuKupJabot63K7f7+lLK24bkE4fkmaMi4ksRcW3UD8rfj4hXDWO5lRassn+H1rVqzdn+2bL1/arXcXWmR/0i+/ph1jgrIr5YSvnckN+VqCe2q94/q1LKSG7zYyNis6ibeFlEfC0i/iE6f6/oeOy/sbC+998DEfGzqqrOb9XxsYhYXErZtKqqe4axfK/33wNRP8mfGhFRSvls1P9V2T3qwcXaGLe9V0p5a9QvSp5UVdWyttc0p/dyek/vPUxVVdeWUi6PiBMj4sXpNc2t171XVdUVQ348q5Tyxaj/8/39dsu29HTvVQ8//89lpZRjoh6ajujtLqsYV71XStkoIj4d9TBjNK23vTdK+6xne6/U5+g5Mer74YoyvM85Wq1un+znPyPilxGxXVVVm0b9XsGV1+a2qA+Di4j6fWlRn/RvpVsi4tlVVW025GtyVZ+T5hFa70v776injKs2xuVRnwRupce0fjccaxrsrPr7JVFPjld61JDvb4mIP61yXTauqurNw9j+J1vb2ruqT2j3mnjk++y2G/L99lFPPFdu99hVtjulqqq2T4BVfS6WQ6uqelRVVXtGfV86bxj1rjSjPPyeO7SuiIfvv2z/LIr6ELVVr+PqLI6IB2OV9z+uZntDt/vGVba7YVVVZ0V9//zfbbauy3arWcdqVVX1QFVVb62qakZVVbOjHnxdWFXVwHDXMQqa0n+d6Mn+i4i/xsOv48rvh/ts0NP9F4/cf+taY3qvlPJPUZ8Y/eCqquaP4DrovZre03uj8bzXH6u/fVanV3tvVdVqtpvp9d5b3fbX5TlxmtB7u0R9pMOfSym3R/2OgW1KKbeXUnYYxnXoxd7rdJ9F9HbvTY36SJsftvbf+a3fzy+lPGmY64iI7g9tNomIO6uqerCUsn/U7+9d6ScR8fxSn9RqYtSHbg+9wb8SEceuPElQKWXLUsoLV7eRUsqMqN+HfkJVVV9ZzUW+ExHvKqXMKKVsGxHvjvpwt5XLn1HW/JHWCyNiZqvGzCUR8eJSypTW9PcNQ7JfR8ScUsprSykbtL72K/VJr9rZJOojhe5uXc/VfQLPP5dSZpb6pF0fiIgftn7/tYh4UynlgFLbqNQnCtuk3UZLfTKsLUopfaWUZ0f9CVyfGJJn+ywiYquIOKp1XV8W9X/ZTlnDZde4f1pDjp9GxEdb+3aPqN+n+QhVVQ1G/X76z5dStm3VfmApZVLUDwSDUR8+utJXIuL9pZQ9W9dp01atERG/iYg9SykvLvXHth0VD39QTq28r7X2++Ojfm/x0cNdfpQ0ov9KfYK5yVG/T7SUUiYP7Sf9t1rfjIgXlVL2KfVHxX846v9e3x2h/4bhexHx+FLK00v9SQ/viPoJflgnlB0FTem9Q6M+tPgfq9V8CoveWy29p/dGo/eOKPV/zaN1270/Ik4bkuu9VZRSXlhK2by13P5R3/d+MSTXe4lSyrNLKVu3vt8t6seuX+RLjaom9N7K873s0/o6Iup+2idaR1LovUfodJ9F9Hbv3RP1kTr7tL5WHrG0b9Snxhi2bg9t3hIRx5RS7ov6/Yw/WhlUVXV5RLwt6hMO3Rb1yaz+HvVbSSLqEwH+MiJ+31r+nKhPrrQ6R0R9wxxd6rNE319KuX9I/tWoTyZ4WdR3zt+0frfSdlGff2R1/hj1UTm3l1IWJ9f1C1G/P3NhRHw7Ik4ecl3vi/qEXa+MevJ4e0R8KupDB9v5WNQnabqnVfdPV3OZ/4z6feTzWl+faG33gog4Muozq98V9QmYDhvGNiPqO9tlUd8un4yIQ1u32UrZPouo76i7RP1i7diIeGlVVXes7oLD2D9vjfrwy9ujHrZ9M9nue1p1nx/1+1w/FRETqvoM88dGxJmlPqv646uq+lkr/0Ep5d6o7xvPbtW0OCJeFvWhnne0rsv/Xt9Syvat+9maJsA7RX0iyyVR3x/eV1XVqH9sbBtN6b8nR30I7SlRT8wfiId/hK7+W0VVVX+M+sn4N1HfLjvHw18A6b+k/6r6k5JeE/WT9F0R8cKIeEFVVQ8ltY+mpvTeJ6L+b+b5Q/KhL3L13ir0nt6L0em9J0T9FpUlUT/3nRL1/WolvfdIr2xd/r6o/9n6qaqqvj0k13v5686DI+KvQ+5zP416aL+udL33qvqTEm9f+RX17THY+nnlke56b4hR2GcRPdx7VW3o/lvUihaO9HmvVB2dtmXdKaVsHPXJ/3apquqGdbjdmRHx46qqDlxX2xzv2u2zUsphUZ+86YnrtDDWmv4bP/Tf+kXvjR96b/2i98YPvbd+0Xvjh95bd7p9pE2qlPL81uFPG0X98W+XRX1263Wmqqr5mndk7LP1g/4bn+yz8U/vjU/22fin98Yn+2z803vjk3227jR6aBP1YbO3tr52iYhXVuPl0CAY//QfdIfeg+7Qe9Adeg8S4+btUQAAAAC9pOlH2gAAAAD0pP6RXHhimVRNjo3GqhZgDR6MJaH3YN3Te9Adeg+6R/9BdzwYS+KhallZ9fcjGtpMjo3igHLw6FUFDMu51Wl6D7pA70F36D3oHv0H3XFuddpqf+/tUQAAAAANZGgDAAAA0EBt3x5VSpkbEXMjIibHlDEvCKjNr+bFgrghIiKWx7IuVwO9Q+9Bd+g96B79B83VdmhTVdVJEXFSRMTUMs3ng8M6MrPMjpkxOyLW/P5GYPTpPegOvQfdo/+gubw9CgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCB+rtdAEDTDTz1sWne/5GFaf6rXX+Z5gsHHkjzw15/VJr3nX5RmsNYuemYA9P8qiO+nOZPfcORaT7p1PNHXBMAwPrEkTYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADWRoAwAAANBAhjYAAAAADdTf7QIAmm7jjy1I8x/u/Os0H2yz/ptWTEnzRW9/IM0fdXqbDcAY+dyrv9ntEgAA1muOtAEAAABoIEMbAAAAgAYytAEAAABoIEMbAAAAgAYytAEAAABoIEMbAAAAgAYytAEAAABooP5uFwDQbUteckCaf3z74zta/26//Oc03/XrS9J82pZTOto+rK2+XXdO8+dOuSTNd/v6m9N81qlnj7QkoAfc//LHp/nCQx5M858e9JU033ODiSOuaai+kv/fe6AaTPMVMZDmz3ndm9K8/7QL05xm2/WCDdL80o/+Q5pP/vV5o1kO44AjbQAAAAAayNAGAAAAoIEMbQAAAAAayNAGAAAAoIHanoi4lDI3IuZGREwOJ8OEdWV+NS8WxA0REbE8lnW5Gugdeg+6Q+9B9+g/aK62Q5uqqk6KiJMiIqaWadWYVwRERMTMMjtmxuyIiDi3Oq3L1UDv0HvQHXoPukf/QXN5exQAAABAA7U90obe0bfHnDS/8h2bpvn/2/vKNL/lXTuleTnr0jSHtdU/Y9s0P/6zx6X57hPz+fazrnhpmu961CVpXi1/KM0npimMnXmHbtnR8hstGKVCgEZZ9KYD03zgWXen+Xf3+Waa777BhWk+IUq+/vu2T/MX/vaQNN/igr40n37JfWk+79358lc+Ob/+816SLz/HgTCNNvC0x6b5v2yVv+58w+LdR7Mc1gOOtAEAAABoIEMbAAAAgAYytAEAAABoIEMbAAAAgAYytAEAAABoIEMbAAAAgAYytAEAAABooP5uF8DoKfvumebXvG1ymv/2acel+U79G464pqFO+865af6ZN7wmze+dldc/dd4DaT7hL5ekOeuvxf9vVprvPrHD+fXntkrjavlNna0fuuQZz7mgo+W3PmNRmg90tHZgbV3zlf3T/NznfiHNN59wYZpPiJLm37h3dpofftkT03zTL01N84l/uizN5yw7L83bqdrkky46KM0P3+Gpab7rURd1tH3G2IS+NJ728fx1352D+Z/g/QvuTPMVadq5a07MHx+2uCi//lt8/ezRLIdwpA0AAABAIxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAA+UfEs+6NSH/zPvqgEen+fu/9900f9LkFW0K2LBN3pmDN1yW5jt950tpvkP/lDR/+60Hpvm1B+T7NwYH8pxx6+9PzO/7E9rMr5922cvSfKPfnj/imqAJ+nbdOc2P2/Ynaf6bpZPTfODq60ZcEzD2vv+ML6f5FhPy14QHXvKKNN/4C1PTfNJfLk/z6Q9ek+btVB0t3bmZv78rzRedmL/mrFa0e81ONy164/5p/oJpv07z9z39VWk+cMsNI65pNJXl+eviDV7y93wFXx/FYogIR9oAAAAANJKhDQAAAEADGdoAAAAANJChDQAAAEADGdoAAAAANJChDQAAAEADGdoAAAAANFB/twvoJf3bzUzzK9+T59e+9MTRLOcRrln+YJrP3mCDNO+Pvo62v0P/lI6Wn7vln9L8X/qenObV4EBH26d7+mdtl+Zvf+If0nwwBtO8+o+t2lQwr00OzXTlezbvaPm3nv7aNJ8T53e0/m5b9uz90vy+7Tt7GXXn41ak+ayf5stPOnV871+651+ufWman/7o/0rzZb/fMs03/++z0jx/1h3/Bi+9stslMIbu2bVK8y/+8nlpvuN1Z49mOaNu02vz4zpefPAlaf7fsckoVkOEI20AAAAAGsnQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGqi/2wX0kms/vUWeP/nEjtZ/f7UszQ864d1pvukNg2n+uPdcmOZf2ObcNO/UhQ8NpPm/vOVtaT5p+fmjWQ4Nct2RM9P855v9PM1vWPFQmm+4KM9hvNp6xl0dLT/tgvH9MmLZs/dL8/d+6btp/twpD45mOavZQB4/9Q1HpvmkUz3v9aqy755p/sPdv5rmP75/uzSf8b2r0jx/xQbN1rfnrmn+oxcel+av+fY7RrGa5nnF1EvT/PTdD0/zgSuvHc1yeoIjbQAAAAAayNAGAAAAoIEMbQAAAAAayNAGAAAAoIHankGwlDI3IuZGREyOKWNeEFCbX82LBXFDREQsj/wk08Do0XvQHXoPukf/QXO1HdpUVXVSRJwUETG1TKvGvCIgIiJmltkxM2ZHRMS51WldrgZ6h96D7tB70D36D5rL26MAAAAAGqjtkTYMMaEvjZecMivNL9vr62m+os3m/23xY9L8f955YJovf0Z+oNTrPvKrND9y01vSfKz9683PS/NJp56/jiqhacqc+zta/vt375fmfadf1NH6gWZ68G13pflzpzzY0fp3+/qb0/xRZ+fP/O/90nfTfO+PX5LmV5+axqzHrn7zhmm+VV9+yoMPnndImu98x8UjLQnGjetfNS3Nb1w+Pc1nf+PmNG/3N1+3TX7uwjTfoM3yS3fcLM0nXTmyenCkDQAAAEAjGdoAAAAANJChDQAAAEADGdoAAAAANJChDQAAAEADGdoAAAAANJChDQAAAEAD9Xe7gPHk5o8ckOZ/2+v4NmvoS9Ov3bNdmv/iy09J899/+7NpvvmEDdO8275177Zp/tCbN22zhoWjVwzjylf2Pbmj5X/8n09N8xlxVkfrB7pj2bP3S/Nz9vlaR+vf92NvTvNZXz27o/V//Jrnpfk5+/wkzZ8Z+3S0fcavvg0HOlp+4vXNfs0InejbfZc0P+W1n0nzZ/7ovWm+0y2dPfaPtbLfXmn+h73y58a9fvPONJ9zyvkjromcI20AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGsjQBgAAAKCBDG0AAAAAGqi/2wU0SZk0Kc2/+roTx3T7R256S55/+IQ2a9gwTS97aHmav+Tnb0/zZz7xkjT/0rZnpXk7n/r5i9J8xyvO7mj9rL8mlME036D0pfnMZ96U5lfvuH+a7zpnQZr/atdfpnm7+pZXA2n+syXT0vwTXzk0zbc97rw0r1asSHNoqgffdldHy+/7sTen+fSvNvt5afEbD0zzptfP2vviAd9P85tXLE3zHX98R5rnz0rQXaU//xP36rlbpHm7oxp2/fwNad70V00Tbrw9zS96aHK+goEyitUwHI60AQAAAGggQxsAAACABjK0AQAAAGggQxsAAACABjK0AQAAAGggQxsAAACABjK0AQAAAGig/EPse83AQBr/6I4D0vwJ257d0eb/PrA0ze8c7Evz5//yHWm++7/emOazd34wzY956WlpHrFhmr779v3TfOfPXZPm+a1DLxus8vnz8mp5mv9i15/nG9h1hAWtYrBN/vk7d0nzf9786jR/4UaL8/zdX0zzvbc4Ks13+GBnj20018IFm+cX2CePl8zI8+kjqmbk+nbdOc3P2ecnaX7Urful+fSvuu/TTH2b5727ywZ3pPnX7jwozVdsOjkv4KDH5HmH+i69Ls0HlywZ0+0zvk3YYlqaX/+Kr6T5s656RZpXty0YcU1NMrBoUZq/42/59Wfdc6QNAAAAQAMZ2gAAAAA0kKENAAAAQAMZ2gAAAAA0kKENAAAAQAMZ2gAAAAA0kKENAAAAQAP1d7uAJqlWrEjzec+blub7vvytaT5hRZXmW11wf5pX51+W5rvEufnym2+e5g986N4033zChml+84qlaX7V3F3TvFp8eZrDWLlpxUNp/p4bX5Lmt/xwdppPWTyY5lN//dc0/6/nPSPNBw9flOZn7P2DNP/rYcel+UE3HZXm0086O81prt0/e1d+gefm8VVHfDnNn/mRfUZW0Ajd+YXOlv/9KY9L81nR3fv2/lvdlOa/WTo5zad/VW+ur+5+Rv6aaqf+09L841tdkm/gx23yMXbM4r3S/NcnPDnNtzo5f14dXLJkxDUxflRLH0jzw29+Upofs+PP0/wVX/nnNN94Xv4n9vb/mT+2r5i/IM3H2tKLt0jz97/852n+8z2eOIrVPNLAVdfnFxgcGNPtd4MjbQAAAAAayNAGAAAAoIEMbQAAAAAayNAGAAAAoIHanoi4lDI3IuZGREyOKWNeEFCbX82LBXFDREQsj2VdrgZ6h96D7tB70D36D5qr7dCmqqqTIuKkiIipZVr+8UfAqJlZZsfMqD+V6Nwq/xQIYPToPegOvQfdo/+gubw9CgAAAKCB2h5pw/8ZWPj3NN/6S3nezlgfxrTg9bun+UV7Hd/R+p959lvSfMcL/9rR+mFNDv/dEWl+zQu/nObPPfOf03z2qy9J863i9jRvZ7BNvvGPzknzvtOmpfk3/7xDmh++6Y1pfv/2aRzT85gGG7j6ujQ/6tb90vy4bc9P85uOOTDNZ33k7DQfaxst6OrmY/Eb8/3zu23zx67dvv7mNJ8V3d2/jJ2p19yX5i+57tlpfuv9U9N88Q3580o7G83I63vDnLPS/CPTL8vzo/N8v+e9Ks23ftX8NB9csiTNabbB+/L73+0Hb5Tmb3z929N8wpz8ldtBL704zZ/wT9em+eIVeX+2M6Hk9Q1W+XEbe0z+Rpo/a0r+9rm5//2jND960Z5p/v1Tn5zmOx3Tpn+XLk3z8ciRNgAAAAANZGgDAAAA0ECGNgAAAAANZGgDAAAA0ECGNgAAAAANZGgDAAAA0ECGNgAAAAAN1N/tAhg9/ds8Ks1fc8TvOlr/b5ZunOY7HXZNmg92tHVYs4l39nW0/Gv2PC/Nz4qJHa1/rA3ccWeaf/6vB6f54U/6xmiWw3rkzK89Lr/A0een8VVHfDnNH/+4l6b55C9tnubn7PO1NG9n6zMWpflAR2uPWPzGA9P8mPd+M81/s3Ryms8+eWzrp7mqiy9P8weeki+/eSxsk4+t322yXZr/ar/8eSs+kN/3z9/3+2m+68fekuY7veecfPuMa4NLlqT5Vieeledt1n9jm/yWqXvkF5g0KY0HZ+YVLDxo0zYV5J5w2IVpvusGp6X5W55/RJpXV9+Q5jsuOzvNe/FvSkfaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADRQf7cLYPTs+Mu70vxdm1/b0fo/+NXD0nzbB8/qaP2wtvqXljTfoPSl+SZ9D6b5hCmbpfng0qVpPtYGnvrYNP/O/l9L8wnm96zB9K+enea7zXhzmn/u1d9M83P2+UlewDfyuFMLn7plfoE2+QYvXJTmF+7z5ZGW9PDNv+HINJ909fkdrR+6ZfC++9J80i35a9qnbH1lR9ufdIfnPbpn4N57O1vBovy5Z6uLO1v9Wc/cNc1fN31SmpeFd6b54LJlI66p13nEAgAAAGggQxsAAACABjK0AQAAAGggQxsAAACABjK0AQAAAGggQxsAAACABjK0AQAAAGig/m4XwPBN2Hu3NH/3Vl9vs4Ypafqcq16Q5jP+/bw0r9psHcbKzH89K833eOxr0vziA7+Z5l/5xpPSfKe589J88L770rydvt13SfNdPnN5mv/DpME0z9OIyYtLm0vQq2Z95Ow0P+Hk56X5W9+zeZrf8Nyvjbimkbjw6C+P6fqPunW/NL/u0FlpPunq80ezHGiMBw7ZP82f+/HT0/w9065O8zfNz5+3Z510VZoPpCn0tlec/uY0n7PwgnVUSe9wpA0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAA/V3uwD+T98us9P8DT85Jc2375+S5r9ZunG+/bdumOYDK1akOTTVjm9dlOan/yXvjcue/PU03+ukI9J8+s/z3lq+UUnzYz+Qb/8pGy5N89MfyK/fW35zeJrv8u9npTmsycDV16X5nCPz5Z8Z+6T5UdddlebPnfJgvoE2dvxNXuC0C/KXUdO/enabLeT7B8bKhMmT03zwwbx3+qZOTfMrP71bmv/5OZ9P82368te077ztgDSf94F8+/13XJjm0Muq32+R5ge+6so0v2M0iyEiHGkDAAAA0EiGNgAAAAANZGgDAAAA0ECGNgAAAAAN1PZExKWUuRExNyJicuQnBQNGz/xqXiyIGyIiYnks63I10Dv0HnSH3oPu0X/QXG2HNlVVnRQRJ0VETC3TqjGvCIiIiJlldsyM+hPFzq1O63I10Dv0HnSH3oPu0X/QXN4eBQAAANBAbY+0Yd2548Ct0/yQje5O876Sz+De+avXpfnOV56T5jBerbh9YZp/9shD8xV87eQ0vuzJX8+Xf3IeT2gzPx+MwTR/1fXPSfN7j94uzXc5Xe8zPr319Nem+XOf+7WO1r/1jLvyC8zI42U375fmk049f4QVQa1vi2lpfvvLdk3z+3bM1z/wqPztMZ858CdpfshGZ6T5XYMlzef88C1pvuux16R5/x0Xpjmw9t6x7e/T/Oi98+fmwb9eNZrl9ARH2gAAAAA0kKENAAAAQAMZ2gAAAAA0kKENAAAAQAMZ2gAAAAA0kKENAAAAQAMZ2gAAAAA0UH+3C+gly5/xuDT/j2M+32YNk9L0roGlaT7rlOVt1g+9qe/0i9L8c294dZp/4SOL0vyXu/0szQ+/6eA0P//03dN89scvTvO+B/PrB+PVnCPPT/Mdv3Zkmh//tO92tP27L9gyzWfPyx8bBjraOuNZ6c9fgs87Zr80v+h1X0jzL999U5ofsellaT51wuQ0X9Hm3vvu2w9M87+9e+803/mMc9Jc78DY2fbn+ePH/h/YIM2Xzpqa5pP/OuKSep4jbQAAAAAayNAGAAAAoIEMbQAAAAAayNAGAAAAoIEMbQAAAAAayNAGAAAAoIEMbQAAAAAaqL/bBaxP+jbbNM0nfXB+mu+2waSOtn/Z8ilpvsG9D3W0fuhVE/50cX6Bg/P4BbFfmy3cnaY7xNlpPthm7dCr5hx5fpofF7ul+aZxXUf5QJrSy64+/rFpft3zT2izholp+q7Nr03zB6r8/7bvW7hvmv/lMwek+dTvn5PmfXFRmgPdM7BwUZp/5s6d0nzuZ/8rzb/zq+1GXFOvc6QNAAAAQAMZ2gAAAAA0kKENAAAAQAMZ2gAAAAA0kKENAAAAQAMZ2gAAAAA0kKENAAAAQAP1d7uA9cm8d+6Z5pfvfHxH6//zg/nNdew/vT7NJ5x3cUfbBwCgc1ue05fm+894ZZof+Kib0vysbzw2zbf+zqVpPrh0aZpPjXPSHBi/quUPpfk3v//MNN/w8YvTfHpcM+Kaep0jbQAAAAAayNAGAAAAoIEMbQAAAAAayNAGAAAAoIEMbQAAAAAayNAGAAAAoIEMbQAAAAAaqL/bBaxPykCeX7P8wTR//n+9K813PeH2NJ8w7+K8AAAAum7zb52dX+BbeXxtm/VvGfn6B9ssD7Am2x17VrdL6DmOtAEAAABoIEMbAAAAgAYytAEAAABooLbntCmlzI2IuRERk2PKmBcE1OZX82JB3BAREctjWZergd6h96A79B50j/6D5mo7tKmq6qSIOCkiYmqZVo15RUBERMwss2NmzI6IiHOr07pcDfQOvQfdofege/QfNJe3RwEAAAA0kKENAAAAQAO1fXsUw7f9Mfln1r/jmIPSfKc4J81XjLgiAAAAYLxypA0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAAxnaAAAAADSQoQ0AAABAA5WqqoZ/4VIWRcRNQ341PSIWj3ZRo6jJ9TW5tgj1dWq063tsRFw0husfbepbe02uLaL36tN7o0t9nWlyfXpPfZ1QX2fGsv967bqPNvV1ptfqm1VV1Zar/nJEQ5tHLFzKBVVVPa6jssZQk+trcm0R6uvUWNfX69e/U02ur8m1Raiv169/p9TXmSbXp/fU1wn1dWYs6+vl6z4a1NcZ9dW8PQoAAACggQxtAAAAABqo06HNSaNSxdhpcn1Nri1CfZ0a6/p6/fp3qsn1Nbm2CPX1+vXvlPo60+T69F6zqa8zvVxfL1/30aC+zqgvOjynDQAAAABjw9ujAAAAABrI0AYAAACggQxtAAAAABrI0AYAAACggQxtAAAAABro/wfYIQusJXcTpgAAAABJRU5ErkJggg==\n", + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], "text/plain": [ - "<Figure size 1440x1728 with 25 Axes>" + "<IPython.core.display.Javascript object>" ] }, - "metadata": { - "needs_background": "light" + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1000\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] }, + "metadata": {}, "output_type": "display_data" } ], "source": [ - "fig, ax = plt.subplots(nrows=5, ncols=5, figsize=(20,24))\n", + "fig, ax = plt.subplots(nrows=5, ncols=5, figsize=(10,15))\n", "for i in range(5):\n", " for j in range(5):\n", " idx = i*5+j\n", @@ -682,7 +2509,7 @@ " probs = F.softmax(logits, dim=1) # apply softmax to normalize them\n", " predicted = torch.argmax(probs[0, ...]) # index of the highest probability\n", " ax[i, j].imshow(img[0,...].detach().cpu().numpy())\n", - " ax[i, j].set(title=f\"Image {idx}, true label {label}, predicted: {predicted}\")\n", + " ax[i, j].set(title=f\"True {label}, pred. {predicted}\")\n", " ax[i, j].set_xticklabels([])\n", " ax[i, j].set_yticklabels([])\n", "plt.subplots_adjust(hspace=0.2,wspace=0)\n", @@ -699,7 +2526,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 13, "id": "b447df87", "metadata": {}, "outputs": [], @@ -717,7 +2544,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 14, "id": "d6df7b33", "metadata": {}, "outputs": [], @@ -735,20 +2562,978 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 15, "id": "93a5fe94", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAJRCAYAAADrpquiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAl5klEQVR4nO3de7g9d10f+veHBEK4GZBAYxL8hZxQhVpvgUYRRYKCoAQ4YFNFAvIYPaZIa7EEteIp5ghe2z49YFO8pIUHGiKXcCmC0QAWIeTGJQkpURByiCQgtwRMSPicP9b8cOeXtfeeX/it/d2wXq/n2c9eM+s7M58131lrv/fMrJnq7gAAMM4dRhcAALDuBDIAgMEEMgCAwQQyAIDBBDIAgMEEMgCAwQ4eXcBX4t73vnfv2bNndBkAANu66KKLPtHdhy977qs6kO3ZsycXXnjh6DIAALZVVX+z2XMOWQIADCaQAQAMJpABAAwmkAEADCaQAQAMJpABAAwmkAEADCaQAQAMJpABAAwmkAEADCaQAQAMJpABAAwmkAEADCaQAQAMJpABAAwmkAEADCaQAQAMJpABAAwmkAEADCaQAQAMJpABAAwmkAEADCaQAQAMJpABAAx28OgCAAC2suf0N6x8GR9+wWNXvoyt2EMGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAwmEAGADCYQAYAMJhABgAw2EoDWVX966q6rKreX1Uvr6o7V9W9quotVfXB6fc9N7R/blVdVVVXVtWjVlkbAMBusbJAVlVHJvm5JMd39z9JclCSk5OcnuS87j4uyXnTcKrqgdPzD0ry6CQvqqqDVlUfAMBusepDlgcnObSqDk5ylyQfS3JSkrOm589K8vjp8UlJXtHdN3b3h5JcleQhK64PAGC4lQWy7v7/kvxWko8kuSbJZ7r7zUnu293XTG2uSXKfaZIjk3x0wyyunsYBAHxNW+Uhy3tmsdfrmCTfkOSuVfWUrSZZMq6XzPfUqrqwqi687rrrDkyxAAADrfKQ5SOTfKi7r+vuLyZ5VZLvTvLxqjoiSabf107tr05y9Ibpj8riEOetdPeZ3X18dx9/+OGHr7B8AICdscpA9pEkJ1TVXaqqkpyY5Iok5yY5ZWpzSpLXTo/PTXJyVR1SVcckOS7JBSusDwBgVzh4VTPu7ndV1TlJLk5yc5JLkpyZ5G5Jzq6qZ2QR2p48tb+sqs5OcvnU/rTuvmVV9QEA7BYrC2RJ0t3PS/K8fUbfmMXesmXtz0hyxiprAgDYbVypHwBgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYLCVBrKqOqyqzqmqD1TVFVX1XVV1r6p6S1V9cPp9zw3tn1tVV1XVlVX1qFXWBgCwW6x6D9l/TPKm7v6mJN+a5Iokpyc5r7uPS3LeNJyqemCSk5M8KMmjk7yoqg5acX0AAMOtLJBV1T2SfG+S30+S7r6puz+d5KQkZ03Nzkry+OnxSUle0d03dveHklyV5CGrqg8AYLdY5R6y+ye5LskfVtUlVfWSqrprkvt29zVJMv2+z9T+yCQf3TD91dM4AICvaasMZAcn+Y4kL+7ub09yQ6bDk5uoJeP6No2qTq2qC6vqwuuuu+7AVAoAMNAqA9nVSa7u7ndNw+dkEdA+XlVHJMn0+9oN7Y/eMP1RST6270y7+8zuPr67jz/88MNXVjwAwE5ZWSDr7r9N8tGq+sfTqBOTXJ7k3CSnTONOSfLa6fG5SU6uqkOq6pgkxyW5YFX1AQDsFgeveP7PTPKyqrpTkr9O8vQsQuDZVfWMJB9J8uQk6e7LqursLELbzUlO6+5bVlwfAMBwKw1k3X1pkuOXPHXiJu3PSHLGKmsCANhtXKkfAGCwbQNZVf1GVd2jqu5YVedV1Seq6ik7URwAwDqYs4fsB7v7s0l+OItvQj4gyS+stCoAgDUyJ5Ddcfr9mCQv7+6/W2E9AABrZ85J/a+rqg8k+UKSn62qw5P8/WrLAgBYH9vuIevu05N8V5Lju/uLST6fxX0nAQA4AOac1H+XJKclefE06huy/FIWAADcDnPOIfvDJDcl+e5p+Ookv7ayigAA1sycQHZsd/9Gki8mSXd/IctvBA4AwO0wJ5DdVFWHJukkqapjk9y40qoAANbInG9ZPi/Jm5IcXVUvS/LQJE9bZVEAAOtk20DW3W+pqouTnJDFocpndfcnVl4ZAMCamPMtyyckubm739Ddr09yc1U9fuWVAQCsiTnnkD2vuz+zd6C7P53FYUwAAA6AOYFsWZs5554BADDDnEB2YVX9TlUdW1X3r6rfTXLRqgsDAFgXcwLZM7O4MOz/SPLKLO5jedoqiwIAWCdzvmV5Q5LTd6AWAIC1tG0gq6oHJHl2kj0b23f3I1ZXFgDA+phzcv4rk/xekpckuWW15QAArJ85gezm7n7xyisBAFhTc07qf11V/WxVHVFV99r7s/LKAADWxJw9ZKdMv39hw7hOcv8DXw4AwPqZ8y3LY3aiEACAdTXnXpZ3qapfrqozp+HjquqHV18aAMB6mHMO2R9mcWHY756Gr07yayurCABgzcwJZMd2928k+WKSdPcXktRKqwIAWCNzAtlNVXVoFifyp6qOTXLjSqsCAFgjc75l+bwkb0pydFW9LMlDkzxtlUUBAKyTLQNZVd0hyT2TPDHJCVkcqnxWd39iB2oDAFgLWway7v5SVf3L7j47yRt2qCYAgLUy5xyyt1TVs6vqaFfqBwA48OacQ/aT0+/TNoxzpX4AgAPElfoBAAbbNpBV1VOXje/u/3bgywEAWD9zDlk+eMPjOyc5McnFSQQyAIADYM4hy2duHK6qr0vy31dWEQDAmpnzLct9fT7JcQe6EACAdTXnHLLXZbptUhYB7oFJzl5lUQAA62TOOWS/teHxzUn+pruvXlE9AABrZ04g+0iSa7r775Okqg6tqj3d/eGVVgYAsCbmnEP2yiRf2jB8yzQOAIADYE4gO7i7b9o7MD2+0+pKAgBYL3MC2XVV9bi9A1V1UpJPrK4kAID1Muccsp9J8rKq+s/T8NVJll69HwCA/TfnwrB/leSEqrpbkuruz62+LACA9bHtIcuq+n+q6rDuvr67P1dV96yqX9uJ4gAA1sGcc8h+qLs/vXeguz+V5DErqwgAYM3MCWQHVdUheweq6tAkh2zRHgCA/TDnpP6XJjmvqv4wi1so/WSSs1ZaFQDAGplzUv9vVNV7kzxyGvX87v6T1ZYFALA+5uwhS5JLktwxiz1kl6yuHACA9TPnW5Y/muSCJE9K8qNJ3lVVT1p1YQAA62LOHrJfSvLg7r42Sarq8CR/muScVRYGALAu5nzL8g57w9jkkzOnAwBghjl7yN5UVX+S5OXT8D9P8sbVlQQAsF7mfMvyF6rqiUm+J0klObO7X73yygAA1sSsb1l296uSvGrFtQAArCXnggEADCaQAQAMtmkgq6rzpt8v3LlyAADWz1bnkB1RVd+X5HFV9YosTuj/su6+eKWVAQCsia0C2a8kOT3JUUl+Z5/nOskjVlUUAMA62TSQdfc5Sc6pqn/X3c/fwZoAANbKnOuQPb+qHpfke6dR53f361dbFgDA+phzc/FfT/KsJJdPP8+axgEAcADMuTDsY5N8W3d/KUmq6qwklyR57ioLAwBYF3OvQ3bYhsdft4I6AADW1pw9ZL+e5JKq+vMsLn3xvbF3DADggJlzUv/Lq+r8JA/OIpA9p7v/dtWFAQCsi7k3F78mybkrrgUAYC25lyUAwGACGQDAYFsGsqq6Q1W9f6eKAQBYR1sGsunaY++pqvvtUD0AAGtnzkn9RyS5rKouSHLD3pHd/biVVQUAsEbmBLL/e+VVAACssTnXIXtrVX1jkuO6+0+r6i5JDlp9aQAA62HOzcV/Ksk5Sf7LNOrIJK9ZYU0AAGtlzmUvTkvy0CSfTZLu/mCS+6yyKACAdTInkN3Y3TftHaiqg5P06koCAFgvcwLZW6vqF5McWlU/kOSVSV632rIAANbHnEB2epLrkrwvyU8neWOSX15lUQAA62TOtyy/VFVnJXlXFocqr+xuhywBAA6QbQNZVT02ye8l+askleSYqvrp7v6fqy4OAGAdzLkw7G8n+f7uvipJqurYJG9IIpABABwAc84hu3ZvGJv8dZJrV1QPAMDa2XQPWVU9cXp4WVW9McnZWZxD9uQk796B2gAA1sJWhyx/ZMPjjyf5vunxdUnuubKKAADWzKaBrLufvpOFAACsqznfsjwmyTOT7NnYvrsft7qyAADWx5xvWb4mye9ncXX+L620GgCANTQnkP19d/+nlVcCALCm5gSy/1hVz0vy5iQ37h3Z3RevrCoAgDUyJ5B9S5KfSPKI/MMhy56GAQD4Cs0JZE9Icv/uvmnVxQAArKM5V+p/T5LDVlwHAMDamrOH7L5JPlBV786tzyFz2QsAgANgTiB73sqrAABYY9sGsu5+604UAgCwruZcqf9zWXyrMknulOSOSW7o7nussjAAgHUxZw/Z3TcOV9XjkzxkVQUBAKybOd+yvJXufk324xpkVXVQVV1SVa+fhu9VVW+pqg9Ov++5oe1zq+qqqrqyqh61v7UBAHw1mnPI8okbBu+Q5Pj8wyHMOZ6V5Iokew9xnp7kvO5+QVWdPg0/p6oemOTkJA9K8g1J/rSqHtDdt+zHsgAAvurM2UP2Ixt+HpXkc0lOmjPzqjoqyWOTvGTD6JOSnDU9PivJ4zeMf0V339jdH0pyVRwaBQDWwJxzyJ7+Fcz/PyT5t0k2nod23+6+Zpr3NVV1n2n8kUneuaHd1dM4AICvaZsGsqr6lS2m6+5+/lYzrqofTnJtd19UVQ+fUUstW86S+Z6a5NQkud/97jdjtgAAu9tWhyxvWPKTJM9I8pwZ835oksdV1YeTvCLJI6rqpUk+XlVHJMn0+9qp/dVJjt4w/VFJPrbvTLv7zO4+vruPP/zww2eUAQCwu20ayLr7t/f+JDkzyaFJnp5FuLr/djPu7ud291HdvSeLk/X/rLufkuTcJKdMzU5J8trp8blJTq6qQ6rqmCTHJbng9r0sAICvHlueQ1ZV90ry80l+PIsT8L+juz/1FS7zBUnOrqpnJPlIkicnSXdfVlVnJ7k8yc1JTvMNSwBgHWx1DtlvJnliFnvHvqW7r7+9C+nu85OcPz3+ZJITN2l3RpIzbu9yAAC+Gm11Dtm/yeJ6YL+c5GNV9dnp53NV9dmdKQ8A4GvfpnvIunu/r+IPAMD+E7oAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAZbWSCrqqOr6s+r6oqquqyqnjWNv1dVvaWqPjj9vueGaZ5bVVdV1ZVV9ahV1QYAsJuscg/ZzUn+TXd/c5ITkpxWVQ9McnqS87r7uCTnTcOZnjs5yYOSPDrJi6rqoBXWBwCwK6wskHX3Nd198fT4c0muSHJkkpOSnDU1OyvJ46fHJyV5RXff2N0fSnJVkoesqj4AgN1iR84hq6o9Sb49ybuS3Le7r0kWoS3JfaZmRyb56IbJrp7GAQB8TVt5IKuquyX54yT/qrs/u1XTJeN6yfxOraoLq+rC66677kCVCQAwzEoDWVXdMYsw9rLuftU0+uNVdcT0/BFJrp3GX53k6A2TH5XkY/vOs7vP7O7ju/v4ww8/fHXFAwDskFV+y7KS/H6SK7r7dzY8dW6SU6bHpyR57YbxJ1fVIVV1TJLjklywqvoAAHaLg1c474cm+Ykk76uqS6dxv5jkBUnOrqpnJPlIkicnSXdfVlVnJ7k8i29ontbdt6ywPgCAXWFlgay7/yLLzwtLkhM3meaMJGesqiYAgN3IlfoBAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABhPIAAAGE8gAAAYTyAAABjt4dAEAwFenPae/YXQJXzN23R6yqnp0VV1ZVVdV1emj6wEAWLVdtYesqg5K8v8m+YEkVyd5d1Wd292Xj6xrJ/4D+PALHrvyZQAAu9OuCmRJHpLkqu7+6ySpqlckOSnJ0EC2E+z23T87FWCFcWAVfOazr90WyI5M8tENw1cn+WeDamEX+1r6MPtaei3sn50I47av/eMfJEbZbYGslozrWzWoOjXJqdPg9VV15YpruneST6x4Gew//bL76JP9VC/ckcXol/2gT9ZXvXBH+uUbN3titwWyq5McvWH4qCQf29igu89McuZOFVRVF3b38Tu1PObRL7uPPtmd9Mvuo092p9H9stu+ZfnuJMdV1TFVdackJyc5d3BNAAArtav2kHX3zVX1L5P8SZKDkvxBd182uCwAgJXaVYEsSbr7jUneOLqODXbs8Cj7Rb/sPvpkd9Ivu48+2Z2G9kt19/atAABYmd12DhkAwNoRyCbb3bKpFv7T9Px7q+o7RtS5Tmb0yY9PffHeqnpHVX3riDrXzdzbm1XVg6vqlqp60k7Wt47m9ElVPbyqLq2qy6rqrTtd4zqa8Rn2dVX1uqp6z9QvTx9R5zqpqj+oqmur6v2bPD/sb71AllvdsumHkjwwyb+oqgfu0+yHkhw3/Zya5MU7WuSamdknH0ryfd39T5M8P87LWLmZ/bK33Quz+IIOKzSnT6rqsCQvSvK47n5QkifvdJ3rZuZ75bQkl3f3tyZ5eJLfnq4wwOr8UZJHb/H8sL/1AtnCl2/Z1N03Jdl7y6aNTkry33rhnUkOq6ojdrrQNbJtn3T3O7r7U9PgO7O4bh2rNee9kiTPTPLHSa7dyeLW1Jw++bEkr+rujyRJd+uX1ZvTL53k7lVVSe6W5O+S3LyzZa6X7n5bFut5M8P+1gtkC8tu2XTk7WjDgbO/6/sZSf7nSisimdEvVXVkkick+b0drGudzXmvPCDJPavq/Kq6qKqeumPVra85/fKfk3xzFhdAf1+SZ3X3l3amPDYx7G/9rrvsxSDb3rJpZhsOnNnru6q+P4tA9j0rrYhkXr/8hyTP6e5bFv/4s2Jz+uTgJN+Z5MQkhyb5y6p6Z3f/71UXt8bm9Mujklya5BFJjk3ylqp6e3d/dsW1sblhf+sFsoVtb9k0sw0Hzqz1XVX/NMlLkvxQd39yh2pbZ3P65fgkr5jC2L2TPKaqbu7u1+xIhetn7ufXJ7r7hiQ3VNXbknxrEoFsdeb0y9OTvKAX15+6qqo+lOSbklywMyWyxLC/9Q5ZLsy5ZdO5SZ46fQPjhCSf6e5rdrrQNbJtn1TV/ZK8KslP+E9/x2zbL919THfv6e49Sc5J8rPC2ErN+fx6bZKHVdXBVXWXJP8syRU7XOe6mdMvH8lir2Wq6r5J/nGSv97RKtnXsL/19pBl81s2VdXPTM//XhZ3D3hMkquSfD6L/2xYkZl98itJvj7Ji6a9MTe7Ye9qzewXdtCcPunuK6rqTUnem+RLSV7S3Uu/9s+BMfO98vwkf1RV78viUNlzuvsTw4peA1X18iy+0Xrvqro6yfOS3DEZ/7felfoBAAZzyBIAYDCBDABgMIEMAGAwgQwAYDCBDABgMIEMAGAwgQwAYDCBbE1V1S1VdWlVvb+qXjldvXvutHuqavZFJbdrX1XvmH5fv2TcYVX1s3OXtWya21Hvfi9zFfOYsYyDquqSqnr9Js/v1+ueprl++1YH1oFeV6t+Ddut95Gq6ler6tnT43ccoHnu+HvwK7Wq99/c11FVh1bVW6vqoP1pV1X/qKpeUVV/VVWXV9Ubq+oBW0x/flXt2eS5L28Lmzw/ax1V1Z2q6m1VdfCyYQ4cgWx9faG7v627/0mSm5L8zMYnp9tG7Mj20d3fvcW4w5Ls7wfr7ZnmQE6/5TwO4Lp9Vr42bn9zWL7y9b2Thq/3OdvQsvfV7XRYdv49+JU64Muvxe1A5r5vfzLJq7r7lrntpvm/Osn53X1sdz8wyS8mue/tLnprh2XGOurum5Kcl+SfLxvmwBHISJK3J/k/pv/+rqiqFyW5OMnRVfXz016091fVv9owzcFVdVZVvbeqztm7h62qXlNVF1XVZVV16nbtp2lus0djw7gXJDl22pv3m1X1/Kp61oZ2Z1TVz+0z+a2mmcYdVFX/darrzVV16Bb1Lpt+Y22bvcZNa1iybh+28T/tqnp2Vf3q9PgpVXXBNO1/WfZfdlUdleSxWdxYfSub9dOcZdym7ze8jtusy+n5f1dVH6iqt1TVy6fXddeqekNVvWea174f5LdZ31tsd/vW+NTptb2nqv77kudv01fL6plR4975bbveN9s+Nqt12fht1v2X35/T+F+qqiur6k+zuBfi3vlev890y7b/2/TXkpe077Y8p2/25z245bY4Y5tbNv2+Nf/bmj4nqup3q+rPpscnVtVL93edT8/dvxZ7Sh+85PX/eBb3D907jw/U8s+/L7dL8v1Jvrjx9mPdfWl3v32TdXwbW2wLsz7nNtt2k7xmqnWzYQ6E7vazhj9Jrp9+H5zFB8L/lWRPFve5O2F67juTvC/JXZPcLcllSb59atdJHjq1+4Mkz54e32v6fWiS92dxr8lN2+9Ty/VLxu1J8v4N4/ckuXh6fIckf5Xk6/d5bcumuTnJt03DZyd5yjb1vn+LdXebaZa0WVbDxnW77/PPTvKrSb45yeuS3HEa/6IkT10y/3Om/nl4ktdvUufS9b7VMjas9636frN1eXySS6f1cvckH5yW938m+a8b6vq6bdbV0mUveX0PSnJlknvv0y8bt6Nl/XuberarcT/X+7JlblbrbcZvs+6/vA3ts67ukuQeWdx/79kb18NmfbZZf221Le9H3+zbp5vVsO32vtm00+Ol0y9Z/glJXjk9fnuSC7K4f+Hzkvz03HW+d75ZhJ1L9ta0T713SvK3M96H+7b7uSS/u9nnzibb2vlJ9szYFmZ9zi1rNw0flOS6De1uNeznwPzYQ7a+Dq2qS5NcmOQjSX5/Gv833f3O6fH3JHl1d9/Q3dcneVWSh03PfbS7/9f0+KVT2yT5uap6T5J3ZvHf5HHbtN8v3f3hJJ+sqm9P8oNJLunuT86Y9EPdfen0+KIsPoy2qncrt2ea5NbrdjMnZvHB+u6pf05Mcv+NDarqh5Nc290XzVjmsvW+7TKydd9vti6/J8lru/sL3f25LP5QJos/Eo+sqhdW1cO6+zPb1LzVsjd6RJJzeroZc3f/3ZI2y/pqWT3b1rgf633ZMjerddn4rV7/vtvQw6a2n+/uzyY5d5OalvXZZv21lbl9M7eGOdviZtNmP6a/KMl3VtXdk9yY5C+zCKQPyyKg7c86PzyLf2KfsqGmje6d5NP7jFv2PlzWblO12It70bQdLrPVtjD3M2tpu14cer1pWn+3GebAcFLe+vpCd3/bxhFVlSQ3bBy1xfT73pW+q+rhSR6Z5Lu6+/NVdX6SO2/Wfv/KvZWXJHlakn+UxX+bc9y44fEtWQTSh2fzepe6PdNssHHd3pxbnzKwdx6V5Kzufu4W83loksdV1WOm6e5RVS/t7qcsabtsvc9ZxlZ9f5t1udU03f2/q+o7kzwmya9X1Zu7+9/fzmXv227T7Wizvtqsnhk1brvet9g+Nqt12fitXv8NS8bNeS8t67O563mj2zPNdjVsty1uNu3eem4zfe1zont3f7GqPpzk6UnekeS9WRwiPDaL8wF/cItl77vOP5Pko1lsD5ctaf+F3PYzYdn7cN92lyV50hZ1PCeLvYNbuc22MPcza0a7Q5L8/RbDfIXsIWMrb0vy+Kq6S1XdNckTsvhvMknuV1XfNT3+F0n+IotDP5+a3szflMVhgmzRfo7PZXE4ZaNXJ3l0kgcn+ZOZ0yyzWb1bTb/Va9yfGj6e5D5V9fVVdUiSvf/1npfkSVV1nySpqntV1TdunLC7n9vdR3X3niQnJ/mzTcJYsny9b7uMbN33m/mLJD9SVXeuqrtlca5Vquobkny+u1+a5LeSfMc+0+27ruYu+7wkP1pVX7/3dezz/NK+WlbPjBrnrvfNto/Nal02fn/W/duSPKEW39a7e5If2aTdMkv7a4mN/TO3trnvwTnb4u2Zftny35bFocK3TTX/TJJLu7v343Uliy9BPT7JU6vqx/Z9srs/lcX5chvDzG3eh0va/VmSQ6rqp/ZOVFUPrqrvq6pHJrk8i8+NzWy2Lcz9nNv0s23aPq/r7i8uG+bAEMjYVHdfnOSPsjjf4l1JXtLdl0xPX5HklKp6bxbnvbw4yZuyOIn8vUmen8Vu72zRfk4Nn0zyv2pxou1vTuNuSvLnSc7uJd9iWjbNJpbWu830W73G2TVMH2T/Pov1+vokH5jGX57kl5O8eVrGW5IcscVr2M5t1vucZWzT90t197uzOEzyniwO+VyYxd6Eb0lywXRI6ZeS/No+091qXc1ddndfluSMJG+dDrP8zj5NNuurZfVsWeN+2GybWlrrsvH7s+6ntv8ji3PB/jjbh+aN027WX/u2+3L/ZBEmtq1t7nvwK93eN5t+k+W/fZr3X3b3x7PYu/P2aT77tb139w1Z/BP1r6vqpCVN3pxbn5ax2effl9tNwfAJSX6gFpe9uCyL80o/lsXevBOS/FiSn6ol37DdYluY+zm31Wfb9yd54xbDHAC12Abgq8f0YXRxkid39wdH18M/qKq7dff1tfgW2duSnDr9oWAX0l+rUYtzXH++u39iOnz6+l5cYmjTdjPn+7Qkn+ju10/D5yd5Wi/OrV2ZqnpVkud295XLhjkwnEPGV5WqemAWe5ReLYztSmdOfXTnLM7t8cd9d9NfK9Ddl1TVn9c2F4bd2G7Z3v4l7f/ogBU5U1XdKclrNoSxWw1z4NhDBgBfhaY9Zq/p7k8PLoUDQCADABjMSf0AAIMJZAAAgwlkAACDCWQAAIMJZAAAgwlkAACDCWQAAIP9/xr1FN7hjdNnAAAAAElFTkSuQmCC\n", + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], "text/plain": [ - "<Figure size 720x720 with 1 Axes>" + "<IPython.core.display.Javascript object>" ] }, - "metadata": { - "needs_background": "light" + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"1000\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -768,8 +3553,7 @@ "source": [ "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", "\n", - "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", - "#### Arman Davtyan: arman.davtyan@xfel.eu" + "#### Data Analysis group: da@xfel.eu" ] }, { @@ -797,7 +3581,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.6.13" } }, "nbformat": 4, diff --git a/Supervised regression.ipynb b/Supervised regression.ipynb index e14ea8b..89ffc2f 100644 --- a/Supervised regression.ipynb +++ b/Supervised regression.ipynb @@ -14,7 +14,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 1, "id": "d0681795", "metadata": {}, "outputs": [ @@ -22,91 +22,31 @@ "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: torchvision in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (0.10.0)\n", - "Requirement already satisfied: torch in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.9.0)\n", - "Requirement already satisfied: pandas in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.3.0)\n", - "Requirement already satisfied: numpy in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.19.2)\n", - "Requirement already satisfied: matplotlib in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (3.4.2)\n", - "Requirement already satisfied: ipympl in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (0.8.2)\n", - "Collecting torchbnn\n", - " Downloading torchbnn-1.2-py3-none-any.whl (12 kB)\n", - "Requirement already satisfied: pillow>=5.3.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from torchvision) (8.3.1)\n", - "Requirement already satisfied: typing_extensions in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from torch) (3.10.0.0)\n", - "Requirement already satisfied: python-dateutil>=2.7.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2.8.2)\n", - "Requirement already satisfied: pytz>=2017.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2021.1)\n", - "Requirement already satisfied: six>=1.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n", - "Requirement already satisfied: pyparsing>=2.2.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (2.4.7)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (1.3.1)\n", - "Requirement already satisfied: cycler>=0.10 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (0.10.0)\n", - "Requirement already satisfied: ipywidgets>=7.6.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipympl) (7.6.3)\n", - "Requirement already satisfied: ipykernel>=4.7 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipympl) (5.5.5)\n", - "Requirement already satisfied: tornado>=4.2 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (6.1)\n", - "Requirement already satisfied: jupyter-client in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (6.1.12)\n", - "Requirement already satisfied: ipython>=5.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (7.25.0)\n", - "Requirement already satisfied: traitlets>=4.1.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (5.0.5)\n", - "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (3.0.19)\n", - "Requirement already satisfied: pickleshare in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.7.5)\n", - "Requirement already satisfied: decorator in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (5.0.9)\n", - "Requirement already satisfied: jedi>=0.16 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.18.0)\n", - "Requirement already satisfied: pygments in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (2.9.0)\n", - "Requirement already satisfied: backcall in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.2.0)\n", - "Requirement already satisfied: setuptools>=18.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (49.6.0.post20210108)\n", - "Requirement already satisfied: matplotlib-inline in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.1.2)\n", - "Requirement already satisfied: pexpect>4.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (4.8.0)\n", - "Requirement already satisfied: widgetsnbextension~=3.5.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipywidgets>=7.6.0->ipympl) (3.5.1)\n", - "Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipywidgets>=7.6.0->ipympl) (1.0.0)\n", - "Requirement already satisfied: nbformat>=4.2.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipywidgets>=7.6.0->ipympl) (5.1.3)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jedi>=0.16->ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.8.2)\n", - "Requirement already satisfied: jupyter-core in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (4.7.1)\n", - "Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (3.2.0)\n", - "Requirement already satisfied: ipython-genutils in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (0.2.0)\n", - "Requirement already satisfied: pyrsistent>=0.14.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (0.17.3)\n", - "Requirement already satisfied: importlib-metadata in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (1.7.0)\n", - "Requirement already satisfied: attrs>=17.4.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (21.2.0)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pexpect>4.3->ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.7.0)\n", - "Requirement already satisfied: wcwidth in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.2.5)\n", - "Requirement already satisfied: notebook>=4.4.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (6.4.0)\n", - "Requirement already satisfied: nbconvert in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (6.1.0)\n", - "Requirement already satisfied: prometheus-client in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.11.0)\n", - "Requirement already satisfied: jinja2 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (3.0.1)\n", - "Requirement already satisfied: Send2Trash>=1.5.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.7.1)\n", - "Requirement already satisfied: argon2-cffi in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (20.1.0)\n", - "Requirement already satisfied: pyzmq>=17 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (22.1.0)\n", - "Requirement already satisfied: terminado>=0.8.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.10.1)\n", - "Requirement already satisfied: cffi>=1.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.14.6)\n", - "Requirement already satisfied: pycparser in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from cffi>=1.0.0->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (2.20)\n", - "Requirement already satisfied: zipp>=0.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from importlib-metadata->jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (3.5.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jinja2->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (2.0.1)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: entrypoints>=0.2.2 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.3)\n", - "Requirement already satisfied: pandocfilters>=1.4.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.4.2)\n", - "Requirement already satisfied: mistune<2,>=0.8.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.8.4)\n", - "Requirement already satisfied: jupyterlab-pygments in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.1.2)\n", - "Requirement already satisfied: bleach in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (3.3.1)\n", - "Requirement already satisfied: defusedxml in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.7.1)\n", - "Requirement already satisfied: nbclient<0.6.0,>=0.5.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.3)\n", - "Requirement already satisfied: testpath in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.0)\n", - "Requirement already satisfied: async-generator in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbclient<0.6.0,>=0.5.0->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.10)\n", - "Requirement already satisfied: nest-asyncio in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbclient<0.6.0,>=0.5.0->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.5.1)\n", - "Requirement already satisfied: packaging in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (21.0)\n", - "Requirement already satisfied: webencodings in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.1)\n", - "Installing collected packages: torchbnn\n", - "Successfully installed torchbnn-1.2\n" + "Requirement already satisfied: torchvision in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (0.11.2)\r\n", + "Requirement already satisfied: torch in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.10.1)\r\n", + "Requirement already satisfied: pandas in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.1.5)\r\n", + "Requirement already satisfied: numpy in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.19.2)\r\n", + "Requirement already satisfied: matplotlib in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (3.3.4)\r\n", + "Requirement already satisfied: torchbnn in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.2)\r\n", + "Requirement already satisfied: pillow!=8.3.0,>=5.3.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from torchvision) (8.3.1)\r\n", + "Requirement already satisfied: typing_extensions in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from torch) (3.10.0.2)\r\n", + "Requirement already satisfied: dataclasses in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from torch) (0.8)\r\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2.8.2)\r\n", + "Requirement already satisfied: pytz>=2017.2 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2021.3)\r\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (1.3.1)\r\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (3.0.4)\r\n", + "Requirement already satisfied: cycler>=0.10 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (0.11.0)\r\n", + "Requirement already satisfied: six>=1.5 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\r\n" ] } ], "source": [ - "!pip install torchvision torch pandas numpy matplotlib ipympl torchbnn" + "!pip install torchvision torch pandas numpy matplotlib torchbnn" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "23feddde", "metadata": {}, "outputs": [], @@ -156,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "5d457cd8", "metadata": {}, "outputs": [], @@ -181,7 +121,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "30205402", "metadata": {}, "outputs": [], @@ -199,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "cc0b0774", "metadata": {}, "outputs": [ @@ -218,7 +158,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "6dccfac6", "metadata": {}, "outputs": [ @@ -226,7 +166,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "{'data': array([-0.5583114], dtype=float32), 'target': array([-11.577045], dtype=float32)}\n" + "{'data': array([1.1675025], dtype=float32), 'target': array([12.259927], dtype=float32)}\n" ] } ], @@ -244,7 +184,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "067b8105", "metadata": {}, "outputs": [ @@ -498,10 +438,6 @@ " 'mouseup',\n", " on_mouse_event_closure('button_release')\n", " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband_canvas.addEventListener(\n", " 'mousemove',\n", @@ -759,14 +695,11 @@ "mpl.figure.prototype._make_on_message_function = function (fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", @@ -776,7 +709,7 @@ " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", + " evt.data\n", " );\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", @@ -895,10 +828,10 @@ "mpl.figure.prototype.key_event = function (event, name) {\n", " // Prevent repeat events\n", " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", + " if (event.which === this._key) {\n", " return;\n", " } else {\n", - " this._key = event.key;\n", + " this._key = event.which;\n", " }\n", " }\n", " if (name === 'key_release') {\n", @@ -906,17 +839,18 @@ " }\n", "\n", " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", + " if (event.ctrlKey && event.which !== 17) {\n", " value += 'ctrl+';\n", " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", + " if (event.altKey && event.which !== 18) {\n", " value += 'alt+';\n", " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", + " if (event.shiftKey && event.which !== 16) {\n", " value += 'shift+';\n", " }\n", "\n", - " value += 'k' + event.key;\n", + " value += 'k';\n", + " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", @@ -941,7 +875,7 @@ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";/* global mpl */\n", "\n", @@ -951,19 +885,6 @@ " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", " ws.close = function () {\n", " comm.close();\n", " };\n", @@ -974,14 +895,8 @@ " // Register the callback with on_msg.\n", " comm.on_msg(function (msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", + " ws.onmessage(msg['content']['data']);\n", " });\n", " return ws;\n", "};\n", @@ -1234,7 +1149,7 @@ { "data": { "text/html": [ - "<img src=\"\" width=\"640\">" + "<img src=\"\" width=\"640\">" ], "text/plain": [ "<IPython.core.display.HTML object>" @@ -1265,7 +1180,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "d908ef86", "metadata": {}, "outputs": [], @@ -1315,7 +1230,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "988e1979", "metadata": {}, "outputs": [], @@ -1336,7 +1251,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "d15d655d", "metadata": {}, "outputs": [ @@ -1344,106 +1259,106 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch 0/100: average loss 378.81588\n", - "Epoch 1/100: average loss 275.14966\n", - "Epoch 2/100: average loss 209.67680\n", - "Epoch 3/100: average loss 177.45487\n", - "Epoch 4/100: average loss 161.36641\n", - "Epoch 5/100: average loss 151.22071\n", - "Epoch 6/100: average loss 143.62892\n", - "Epoch 7/100: average loss 137.58497\n", - "Epoch 8/100: average loss 132.61164\n", - "Epoch 9/100: average loss 128.38996\n", - "Epoch 10/100: average loss 124.72414\n", - "Epoch 11/100: average loss 121.49631\n", - "Epoch 12/100: average loss 118.62273\n", - "Epoch 13/100: average loss 116.04727\n", - "Epoch 14/100: average loss 113.73365\n", - "Epoch 15/100: average loss 111.67534\n", - "Epoch 16/100: average loss 109.85956\n", - "Epoch 17/100: average loss 108.26555\n", - "Epoch 18/100: average loss 106.88248\n", - "Epoch 19/100: average loss 105.69173\n", - "Epoch 20/100: average loss 104.67635\n", - "Epoch 21/100: average loss 103.80502\n", - "Epoch 22/100: average loss 103.06343\n", - "Epoch 23/100: average loss 102.43223\n", - "Epoch 24/100: average loss 101.89756\n", - "Epoch 25/100: average loss 101.43507\n", - "Epoch 26/100: average loss 101.03641\n", - "Epoch 27/100: average loss 100.68191\n", - "Epoch 28/100: average loss 100.35821\n", - "Epoch 29/100: average loss 100.06578\n", - "Epoch 30/100: average loss 99.79758\n", - "Epoch 31/100: average loss 99.54630\n", - "Epoch 32/100: average loss 99.31432\n", - "Epoch 33/100: average loss 99.08812\n", - "Epoch 34/100: average loss 98.87219\n", - "Epoch 35/100: average loss 98.67368\n", - "Epoch 36/100: average loss 98.48651\n", - "Epoch 37/100: average loss 98.31420\n", - "Epoch 38/100: average loss 98.15310\n", - "Epoch 39/100: average loss 97.99930\n", - "Epoch 40/100: average loss 97.85031\n", - "Epoch 41/100: average loss 97.71002\n", - "Epoch 42/100: average loss 97.57293\n", - "Epoch 43/100: average loss 97.44047\n", - "Epoch 44/100: average loss 97.31417\n", - "Epoch 45/100: average loss 97.18990\n", - "Epoch 46/100: average loss 97.07419\n", - "Epoch 47/100: average loss 96.96548\n", - "Epoch 48/100: average loss 96.86184\n", - "Epoch 49/100: average loss 96.76805\n", - "Epoch 50/100: average loss 96.67791\n", - "Epoch 51/100: average loss 96.59360\n", - "Epoch 52/100: average loss 96.51472\n", - "Epoch 53/100: average loss 96.43937\n", - "Epoch 54/100: average loss 96.36539\n", - "Epoch 55/100: average loss 96.29459\n", - "Epoch 56/100: average loss 96.22356\n", - "Epoch 57/100: average loss 96.15634\n", - "Epoch 58/100: average loss 96.08934\n", - "Epoch 59/100: average loss 96.02401\n", - "Epoch 60/100: average loss 95.96307\n", - "Epoch 61/100: average loss 95.90349\n", - "Epoch 62/100: average loss 95.84973\n", - "Epoch 63/100: average loss 95.79636\n", - "Epoch 64/100: average loss 95.74215\n", - "Epoch 65/100: average loss 95.69529\n", - "Epoch 66/100: average loss 95.64951\n", - "Epoch 67/100: average loss 95.60449\n", - "Epoch 68/100: average loss 95.56373\n", - "Epoch 69/100: average loss 95.52165\n", - "Epoch 70/100: average loss 95.48233\n", - "Epoch 71/100: average loss 95.44179\n", - "Epoch 72/100: average loss 95.39826\n", - "Epoch 73/100: average loss 95.35763\n", - "Epoch 74/100: average loss 95.31944\n", - "Epoch 75/100: average loss 95.27754\n", - "Epoch 76/100: average loss 95.23919\n", - "Epoch 77/100: average loss 95.20086\n", - "Epoch 78/100: average loss 95.16258\n", - "Epoch 79/100: average loss 95.12233\n", - "Epoch 80/100: average loss 95.08201\n", - "Epoch 81/100: average loss 95.04595\n", - "Epoch 82/100: average loss 95.01281\n", - "Epoch 83/100: average loss 94.97996\n", - "Epoch 84/100: average loss 94.94827\n", - "Epoch 85/100: average loss 94.91624\n", - "Epoch 86/100: average loss 94.88639\n", - "Epoch 87/100: average loss 94.85546\n", - "Epoch 88/100: average loss 94.82733\n", - "Epoch 89/100: average loss 94.79647\n", - "Epoch 90/100: average loss 94.77049\n", - "Epoch 91/100: average loss 94.74167\n", - "Epoch 92/100: average loss 94.71930\n", - "Epoch 93/100: average loss 94.69341\n", - "Epoch 94/100: average loss 94.66904\n", - "Epoch 95/100: average loss 94.64581\n", - "Epoch 96/100: average loss 94.61936\n", - "Epoch 97/100: average loss 94.59652\n", - "Epoch 98/100: average loss 94.57301\n", - "Epoch 99/100: average loss 94.55085\n" + "Epoch 0/100: average loss 463.27606\n", + "Epoch 1/100: average loss 323.28888\n", + "Epoch 2/100: average loss 234.26296\n", + "Epoch 3/100: average loss 194.53857\n", + "Epoch 4/100: average loss 177.44959\n", + "Epoch 5/100: average loss 167.27537\n", + "Epoch 6/100: average loss 159.72572\n", + "Epoch 7/100: average loss 153.60603\n", + "Epoch 8/100: average loss 148.43027\n", + "Epoch 9/100: average loss 143.90963\n", + "Epoch 10/100: average loss 139.86888\n", + "Epoch 11/100: average loss 136.22562\n", + "Epoch 12/100: average loss 132.94330\n", + "Epoch 13/100: average loss 130.02063\n", + "Epoch 14/100: average loss 127.45114\n", + "Epoch 15/100: average loss 125.22582\n", + "Epoch 16/100: average loss 123.31896\n", + "Epoch 17/100: average loss 121.69351\n", + "Epoch 18/100: average loss 120.31040\n", + "Epoch 19/100: average loss 119.12970\n", + "Epoch 20/100: average loss 118.11008\n", + "Epoch 21/100: average loss 117.21726\n", + "Epoch 22/100: average loss 116.42635\n", + "Epoch 23/100: average loss 115.71731\n", + "Epoch 24/100: average loss 115.06646\n", + "Epoch 25/100: average loss 114.46563\n", + "Epoch 26/100: average loss 113.90477\n", + "Epoch 27/100: average loss 113.37237\n", + "Epoch 28/100: average loss 112.87031\n", + "Epoch 29/100: average loss 112.39047\n", + "Epoch 30/100: average loss 111.93409\n", + "Epoch 31/100: average loss 111.49390\n", + "Epoch 32/100: average loss 111.06857\n", + "Epoch 33/100: average loss 110.65716\n", + "Epoch 34/100: average loss 110.25265\n", + "Epoch 35/100: average loss 109.86220\n", + "Epoch 36/100: average loss 109.48867\n", + "Epoch 37/100: average loss 109.12127\n", + "Epoch 38/100: average loss 108.76681\n", + "Epoch 39/100: average loss 108.42491\n", + "Epoch 40/100: average loss 108.09927\n", + "Epoch 41/100: average loss 107.78307\n", + "Epoch 42/100: average loss 107.47245\n", + "Epoch 43/100: average loss 107.17395\n", + "Epoch 44/100: average loss 106.88436\n", + "Epoch 45/100: average loss 106.60057\n", + "Epoch 46/100: average loss 106.32841\n", + "Epoch 47/100: average loss 106.06270\n", + "Epoch 48/100: average loss 105.80896\n", + "Epoch 49/100: average loss 105.56264\n", + "Epoch 50/100: average loss 105.32331\n", + "Epoch 51/100: average loss 105.09678\n", + "Epoch 52/100: average loss 104.87590\n", + "Epoch 53/100: average loss 104.66059\n", + "Epoch 54/100: average loss 104.45863\n", + "Epoch 55/100: average loss 104.25898\n", + "Epoch 56/100: average loss 104.06311\n", + "Epoch 57/100: average loss 103.87301\n", + "Epoch 58/100: average loss 103.69415\n", + "Epoch 59/100: average loss 103.52273\n", + "Epoch 60/100: average loss 103.35392\n", + "Epoch 61/100: average loss 103.19550\n", + "Epoch 62/100: average loss 103.04080\n", + "Epoch 63/100: average loss 102.88722\n", + "Epoch 64/100: average loss 102.73497\n", + "Epoch 65/100: average loss 102.58267\n", + "Epoch 66/100: average loss 102.43699\n", + "Epoch 67/100: average loss 102.30370\n", + "Epoch 68/100: average loss 102.17610\n", + "Epoch 69/100: average loss 102.05236\n", + "Epoch 70/100: average loss 101.93588\n", + "Epoch 71/100: average loss 101.82917\n", + "Epoch 72/100: average loss 101.72810\n", + "Epoch 73/100: average loss 101.63402\n", + "Epoch 74/100: average loss 101.54512\n", + "Epoch 75/100: average loss 101.45931\n", + "Epoch 76/100: average loss 101.37704\n", + "Epoch 77/100: average loss 101.29983\n", + "Epoch 78/100: average loss 101.22755\n", + "Epoch 79/100: average loss 101.16446\n", + "Epoch 80/100: average loss 101.09839\n", + "Epoch 81/100: average loss 101.03817\n", + "Epoch 82/100: average loss 100.97671\n", + "Epoch 83/100: average loss 100.91873\n", + "Epoch 84/100: average loss 100.86162\n", + "Epoch 85/100: average loss 100.80946\n", + "Epoch 86/100: average loss 100.75977\n", + "Epoch 87/100: average loss 100.71061\n", + "Epoch 88/100: average loss 100.66631\n", + "Epoch 89/100: average loss 100.62580\n", + "Epoch 90/100: average loss 100.58395\n", + "Epoch 91/100: average loss 100.54316\n", + "Epoch 92/100: average loss 100.50635\n", + "Epoch 93/100: average loss 100.47235\n", + "Epoch 94/100: average loss 100.43290\n", + "Epoch 95/100: average loss 100.39308\n", + "Epoch 96/100: average loss 100.35649\n", + "Epoch 97/100: average loss 100.32257\n", + "Epoch 98/100: average loss 100.28716\n", + "Epoch 99/100: average loss 100.25479\n" ] } ], @@ -1493,7 +1408,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "09646d29", "metadata": {}, "outputs": [], @@ -1511,7 +1426,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "7a06a4c0", "metadata": { "scrolled": false @@ -1523,7 +1438,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "bab0ce43", "metadata": {}, "outputs": [ @@ -1777,10 +1692,6 @@ " 'mouseup',\n", " on_mouse_event_closure('button_release')\n", " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband_canvas.addEventListener(\n", " 'mousemove',\n", @@ -2038,14 +1949,11 @@ "mpl.figure.prototype._make_on_message_function = function (fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", @@ -2055,7 +1963,7 @@ " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", + " evt.data\n", " );\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", @@ -2174,10 +2082,10 @@ "mpl.figure.prototype.key_event = function (event, name) {\n", " // Prevent repeat events\n", " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", + " if (event.which === this._key) {\n", " return;\n", " } else {\n", - " this._key = event.key;\n", + " this._key = event.which;\n", " }\n", " }\n", " if (name === 'key_release') {\n", @@ -2185,17 +2093,18 @@ " }\n", "\n", " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", + " if (event.ctrlKey && event.which !== 17) {\n", " value += 'ctrl+';\n", " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", + " if (event.altKey && event.which !== 18) {\n", " value += 'alt+';\n", " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", + " if (event.shiftKey && event.which !== 16) {\n", " value += 'shift+';\n", " }\n", "\n", - " value += 'k' + event.key;\n", + " value += 'k';\n", + " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", @@ -2220,7 +2129,7 @@ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";/* global mpl */\n", "\n", @@ -2230,19 +2139,6 @@ " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", " ws.close = function () {\n", " comm.close();\n", " };\n", @@ -2253,14 +2149,8 @@ " // Register the callback with on_msg.\n", " comm.on_msg(function (msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", + " ws.onmessage(msg['content']['data']);\n", " });\n", " return ws;\n", "};\n", @@ -2513,7 +2403,7 @@ { "data": { "text/html": [ - "<img src=\"\" width=\"640\">" + "<img src=\"\" width=\"640\">" ], "text/plain": [ "<IPython.core.display.HTML object>" @@ -2583,7 +2473,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "f8d501ff", "metadata": {}, "outputs": [], @@ -2647,7 +2537,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "id": "7b9beb21", "metadata": {}, "outputs": [], @@ -2680,7 +2570,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "id": "fbea6b0c", "metadata": {}, "outputs": [], @@ -2690,546 +2580,546 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "id": "b92ed4b0", "metadata": { - "scrolled": false + "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 0/500 total: 58.60563, -LL: 29.30297, prior: 0.49401, aleatoric unc.: 1.70738\n", - "Epoch 1/500 total: 29.89883, -LL: 22.77377, prior: 0.51578, aleatoric unc.: 1.74675\n", - "Epoch 2/500 total: 24.01581, -LL: 19.56905, prior: 0.54058, aleatoric unc.: 1.78531\n", - "Epoch 3/500 total: 20.88541, -LL: 15.23512, prior: 0.56686, aleatoric unc.: 1.82458\n", - "Epoch 4/500 total: 18.42086, -LL: 12.56114, prior: 0.59138, aleatoric unc.: 1.86375\n", - "Epoch 5/500 total: 16.78540, -LL: 11.47957, prior: 0.61184, aleatoric unc.: 1.90320\n", - "Epoch 6/500 total: 15.74639, -LL: 10.39981, prior: 0.63168, aleatoric unc.: 1.94387\n", - "Epoch 7/500 total: 15.23265, -LL: 10.92122, prior: 0.64618, aleatoric unc.: 1.98676\n", - "Epoch 8/500 total: 14.43628, -LL: 14.04801, prior: 0.65764, aleatoric unc.: 2.03084\n", - "Epoch 9/500 total: 13.75567, -LL: 9.28419, prior: 0.66495, aleatoric unc.: 2.07617\n", - "Epoch 10/500 total: 13.46332, -LL: 9.24567, prior: 0.67066, aleatoric unc.: 2.12401\n", - "Epoch 11/500 total: 12.68328, -LL: 8.02405, prior: 0.68236, aleatoric unc.: 2.17244\n", - "Epoch 12/500 total: 12.16965, -LL: 10.14399, prior: 0.69100, aleatoric unc.: 2.22149\n", - "Epoch 13/500 total: 11.89046, -LL: 10.02692, prior: 0.69707, aleatoric unc.: 2.27265\n", - "Epoch 14/500 total: 11.31826, -LL: 8.22698, prior: 0.70348, aleatoric unc.: 2.32503\n", - "Epoch 15/500 total: 11.15097, -LL: 8.46218, prior: 0.70463, aleatoric unc.: 2.37917\n", - "Epoch 16/500 total: 10.78811, -LL: 6.91465, prior: 0.70900, aleatoric unc.: 2.43505\n", - "Epoch 17/500 total: 10.27545, -LL: 7.55249, prior: 0.70822, aleatoric unc.: 2.49083\n", - "Epoch 18/500 total: 9.88403, -LL: 7.78374, prior: 0.70896, aleatoric unc.: 2.54750\n", - "Epoch 19/500 total: 9.49734, -LL: 6.96424, prior: 0.71104, aleatoric unc.: 2.60481\n", - "Epoch 20/500 total: 9.18567, -LL: 6.83609, prior: 0.71782, aleatoric unc.: 2.66279\n", - "Epoch 21/500 total: 8.77549, -LL: 6.85847, prior: 0.72051, aleatoric unc.: 2.72092\n", - "Epoch 22/500 total: 8.64839, -LL: 6.52611, prior: 0.71736, aleatoric unc.: 2.78174\n", - "Epoch 23/500 total: 8.43415, -LL: 7.78695, prior: 0.71795, aleatoric unc.: 2.84376\n", - "Epoch 24/500 total: 8.17714, -LL: 6.13595, prior: 0.72104, aleatoric unc.: 2.90688\n", - "Epoch 25/500 total: 7.70156, -LL: 6.61542, prior: 0.72217, aleatoric unc.: 2.96854\n", - "Epoch 26/500 total: 7.61942, -LL: 6.63054, prior: 0.72667, aleatoric unc.: 3.03244\n", - "Epoch 27/500 total: 7.42529, -LL: 5.76781, prior: 0.72993, aleatoric unc.: 3.09773\n", - "Epoch 28/500 total: 7.29471, -LL: 6.51807, prior: 0.72927, aleatoric unc.: 3.16509\n", - "Epoch 29/500 total: 7.12159, -LL: 5.48303, prior: 0.73176, aleatoric unc.: 3.23374\n", - "Epoch 30/500 total: 6.79870, -LL: 6.10557, prior: 0.73237, aleatoric unc.: 3.30124\n", - "Epoch 31/500 total: 6.60342, -LL: 5.65072, prior: 0.73511, aleatoric unc.: 3.36955\n", - "Epoch 32/500 total: 6.63333, -LL: 6.37231, prior: 0.73616, aleatoric unc.: 3.44177\n", - "Epoch 33/500 total: 6.25342, -LL: 5.67089, prior: 0.73999, aleatoric unc.: 3.51138\n", - "Epoch 34/500 total: 6.25324, -LL: 5.80523, prior: 0.74006, aleatoric unc.: 3.58479\n", - "Epoch 35/500 total: 6.06724, -LL: 4.63822, prior: 0.73928, aleatoric unc.: 3.65814\n", - "Epoch 36/500 total: 5.97354, -LL: 4.87066, prior: 0.73962, aleatoric unc.: 3.73306\n", - "Epoch 37/500 total: 5.75250, -LL: 5.21252, prior: 0.74361, aleatoric unc.: 3.80782\n", - "Epoch 38/500 total: 5.70047, -LL: 4.60235, prior: 0.74538, aleatoric unc.: 3.88453\n", - "Epoch 39/500 total: 5.65181, -LL: 5.21456, prior: 0.74527, aleatoric unc.: 3.96423\n", - "Epoch 40/500 total: 5.43323, -LL: 4.63033, prior: 0.74861, aleatoric unc.: 4.04155\n", - "Epoch 41/500 total: 5.28977, -LL: 5.04850, prior: 0.74891, aleatoric unc.: 4.11915\n", - "Epoch 42/500 total: 5.24329, -LL: 5.24680, prior: 0.74535, aleatoric unc.: 4.19924\n", - "Epoch 43/500 total: 5.17848, -LL: 4.70368, prior: 0.75037, aleatoric unc.: 4.28055\n", - "Epoch 44/500 total: 5.16991, -LL: 4.86729, prior: 0.74977, aleatoric unc.: 4.36667\n", - "Epoch 45/500 total: 5.00426, -LL: 4.76213, prior: 0.74627, aleatoric unc.: 4.45042\n", - "Epoch 46/500 total: 4.96309, -LL: 4.31775, prior: 0.75200, aleatoric unc.: 4.53622\n", - "Epoch 47/500 total: 4.89156, -LL: 4.62450, prior: 0.75400, aleatoric unc.: 4.62413\n", - "Epoch 48/500 total: 4.77733, -LL: 4.33423, prior: 0.75599, aleatoric unc.: 4.71083\n", - "Epoch 49/500 total: 4.70859, -LL: 4.23383, prior: 0.75542, aleatoric unc.: 4.79768\n", - "Epoch 50/500 total: 4.61107, -LL: 4.23617, prior: 0.75896, aleatoric unc.: 4.88461\n", - "Epoch 51/500 total: 4.53410, -LL: 4.05732, prior: 0.76156, aleatoric unc.: 4.97112\n", - "Epoch 52/500 total: 4.53218, -LL: 4.03225, prior: 0.76646, aleatoric unc.: 5.06118\n", - "Epoch 53/500 total: 4.47935, -LL: 4.09978, prior: 0.76704, aleatoric unc.: 5.15256\n", - "Epoch 54/500 total: 4.39028, -LL: 3.94386, prior: 0.76755, aleatoric unc.: 5.24289\n", - "Epoch 55/500 total: 4.38337, -LL: 4.36773, prior: 0.76699, aleatoric unc.: 5.33596\n", - "Epoch 56/500 total: 4.35281, -LL: 4.11247, prior: 0.77196, aleatoric unc.: 5.43080\n", - "Epoch 57/500 total: 4.29956, -LL: 3.87602, prior: 0.77093, aleatoric unc.: 5.52630\n", - "Epoch 58/500 total: 4.23197, -LL: 4.01298, prior: 0.77028, aleatoric unc.: 5.62054\n", - "Epoch 59/500 total: 4.24475, -LL: 3.99289, prior: 0.77126, aleatoric unc.: 5.71866\n", - "Epoch 60/500 total: 4.16691, -LL: 3.89405, prior: 0.77055, aleatoric unc.: 5.81574\n", - "Epoch 61/500 total: 4.16522, -LL: 3.96328, prior: 0.76699, aleatoric unc.: 5.91432\n", - "Epoch 62/500 total: 4.11586, -LL: 3.69259, prior: 0.76921, aleatoric unc.: 6.01400\n", - "Epoch 63/500 total: 4.07180, -LL: 3.89622, prior: 0.77077, aleatoric unc.: 6.11181\n", - "Epoch 64/500 total: 4.07462, -LL: 3.86786, prior: 0.77294, aleatoric unc.: 6.21290\n", - "Epoch 65/500 total: 4.01141, -LL: 3.77488, prior: 0.77207, aleatoric unc.: 6.31128\n", - "Epoch 66/500 total: 3.99999, -LL: 3.65617, prior: 0.77586, aleatoric unc.: 6.41138\n", - "Epoch 67/500 total: 4.02086, -LL: 3.71232, prior: 0.77457, aleatoric unc.: 6.51647\n", - "Epoch 68/500 total: 3.96727, -LL: 3.82445, prior: 0.77131, aleatoric unc.: 6.61852\n", - "Epoch 69/500 total: 3.91331, -LL: 3.59059, prior: 0.77492, aleatoric unc.: 6.71576\n", - "Epoch 70/500 total: 3.92368, -LL: 3.87038, prior: 0.77663, aleatoric unc.: 6.81692\n", - "Epoch 71/500 total: 3.91091, -LL: 3.71611, prior: 0.77434, aleatoric unc.: 6.91915\n", - "Epoch 72/500 total: 3.90254, -LL: 3.84058, prior: 0.77568, aleatoric unc.: 7.02362\n", - "Epoch 73/500 total: 3.86610, -LL: 3.79804, prior: 0.77613, aleatoric unc.: 7.12259\n", - "Epoch 74/500 total: 3.86877, -LL: 3.67038, prior: 0.77967, aleatoric unc.: 7.22509\n", - "Epoch 75/500 total: 3.83692, -LL: 3.71282, prior: 0.78043, aleatoric unc.: 7.32391\n", - "Epoch 76/500 total: 3.84445, -LL: 3.81955, prior: 0.77407, aleatoric unc.: 7.42552\n", - "Epoch 77/500 total: 3.82880, -LL: 3.67313, prior: 0.77377, aleatoric unc.: 7.52656\n", - "Epoch 78/500 total: 3.81437, -LL: 3.66513, prior: 0.77432, aleatoric unc.: 7.62591\n", - "Epoch 79/500 total: 3.78821, -LL: 3.75625, prior: 0.77875, aleatoric unc.: 7.71907\n", - "Epoch 80/500 total: 3.83347, -LL: 3.61354, prior: 0.77968, aleatoric unc.: 7.82734\n", - "Epoch 81/500 total: 3.78359, -LL: 3.59515, prior: 0.77631, aleatoric unc.: 7.92300\n", - "Epoch 82/500 total: 3.78367, -LL: 3.67180, prior: 0.77953, aleatoric unc.: 8.01834\n", - "Epoch 83/500 total: 3.75569, -LL: 3.61895, prior: 0.78101, aleatoric unc.: 8.10435\n", - "Epoch 84/500 total: 3.76833, -LL: 3.55765, prior: 0.78393, aleatoric unc.: 8.19697\n", - "Epoch 85/500 total: 3.76053, -LL: 3.68451, prior: 0.78236, aleatoric unc.: 8.28731\n", - "Epoch 86/500 total: 3.76217, -LL: 3.74953, prior: 0.78270, aleatoric unc.: 8.37660\n", - "Epoch 87/500 total: 3.73655, -LL: 3.64136, prior: 0.77914, aleatoric unc.: 8.45761\n", - "Epoch 88/500 total: 3.75396, -LL: 3.62085, prior: 0.77929, aleatoric unc.: 8.54510\n", - "Epoch 89/500 total: 3.74527, -LL: 3.68434, prior: 0.77997, aleatoric unc.: 8.62806\n", - "Epoch 90/500 total: 3.75304, -LL: 3.66249, prior: 0.77914, aleatoric unc.: 8.71503\n", - "Epoch 91/500 total: 3.72325, -LL: 3.60384, prior: 0.77980, aleatoric unc.: 8.78583\n", - "Epoch 92/500 total: 3.74192, -LL: 3.59396, prior: 0.78044, aleatoric unc.: 8.86492\n", - "Epoch 93/500 total: 3.71866, -LL: 3.61358, prior: 0.78299, aleatoric unc.: 8.93002\n", - "Epoch 94/500 total: 3.72444, -LL: 3.58171, prior: 0.78235, aleatoric unc.: 8.99536\n", - "Epoch 95/500 total: 3.72439, -LL: 3.60700, prior: 0.77858, aleatoric unc.: 9.05974\n", - "Epoch 96/500 total: 3.73727, -LL: 3.67353, prior: 0.77897, aleatoric unc.: 9.13145\n", - "Epoch 97/500 total: 3.73587, -LL: 3.65088, prior: 0.78041, aleatoric unc.: 9.19960\n" + "Epoch 0/500 total: 70.25152, -LL: 21.77500, prior: 0.53135, aleatoric unc.: 1.70893\n", + "Epoch 1/500 total: 31.65050, -LL: 21.02528, prior: 0.55477, aleatoric unc.: 1.74608\n", + "Epoch 2/500 total: 26.59239, -LL: 20.43588, prior: 0.57386, aleatoric unc.: 1.78440\n", + "Epoch 3/500 total: 22.83483, -LL: 21.70591, prior: 0.60339, aleatoric unc.: 1.82282\n", + "Epoch 4/500 total: 19.29930, -LL: 18.81559, prior: 0.63071, aleatoric unc.: 1.85982\n", + "Epoch 5/500 total: 18.39163, -LL: 19.47896, prior: 0.65367, aleatoric unc.: 1.89902\n", + "Epoch 6/500 total: 17.13096, -LL: 18.68217, prior: 0.67211, aleatoric unc.: 1.93924\n", + "Epoch 7/500 total: 16.97922, -LL: 17.90156, prior: 0.68758, aleatoric unc.: 1.98306\n", + "Epoch 8/500 total: 15.76646, -LL: 17.70547, prior: 0.70069, aleatoric unc.: 2.02726\n", + "Epoch 9/500 total: 15.40406, -LL: 17.11720, prior: 0.71126, aleatoric unc.: 2.07418\n", + "Epoch 10/500 total: 14.64107, -LL: 15.48578, prior: 0.71729, aleatoric unc.: 2.12184\n", + "Epoch 11/500 total: 14.02109, -LL: 15.42325, prior: 0.73019, aleatoric unc.: 2.17055\n", + "Epoch 12/500 total: 13.05929, -LL: 15.26133, prior: 0.74044, aleatoric unc.: 2.21917\n", + "Epoch 13/500 total: 12.94440, -LL: 13.63645, prior: 0.74257, aleatoric unc.: 2.27045\n", + "Epoch 14/500 total: 12.05735, -LL: 13.53255, prior: 0.74883, aleatoric unc.: 2.32131\n", + "Epoch 15/500 total: 11.57835, -LL: 13.11155, prior: 0.75640, aleatoric unc.: 2.37314\n", + "Epoch 16/500 total: 11.51349, -LL: 12.47247, prior: 0.75862, aleatoric unc.: 2.42737\n", + "Epoch 17/500 total: 10.95014, -LL: 12.53422, prior: 0.76783, aleatoric unc.: 2.48286\n", + "Epoch 18/500 total: 10.52485, -LL: 11.63550, prior: 0.76954, aleatoric unc.: 2.53843\n", + "Epoch 19/500 total: 10.20493, -LL: 11.15514, prior: 0.77366, aleatoric unc.: 2.59592\n", + "Epoch 20/500 total: 9.83085, -LL: 11.33587, prior: 0.77800, aleatoric unc.: 2.65377\n", + "Epoch 21/500 total: 9.43129, -LL: 10.59203, prior: 0.77934, aleatoric unc.: 2.71191\n", + "Epoch 22/500 total: 9.31535, -LL: 10.35122, prior: 0.78458, aleatoric unc.: 2.77312\n", + "Epoch 23/500 total: 8.99058, -LL: 9.78121, prior: 0.79155, aleatoric unc.: 2.83501\n", + "Epoch 24/500 total: 8.60071, -LL: 9.62699, prior: 0.79597, aleatoric unc.: 2.89697\n", + "Epoch 25/500 total: 8.18161, -LL: 9.25629, prior: 0.79841, aleatoric unc.: 2.95814\n", + "Epoch 26/500 total: 8.11976, -LL: 8.75236, prior: 0.79969, aleatoric unc.: 3.02171\n", + "Epoch 27/500 total: 7.69320, -LL: 8.54075, prior: 0.80662, aleatoric unc.: 3.08531\n", + "Epoch 28/500 total: 7.71203, -LL: 8.61242, prior: 0.80597, aleatoric unc.: 3.15187\n", + "Epoch 29/500 total: 7.33146, -LL: 8.37583, prior: 0.81074, aleatoric unc.: 3.21746\n", + "Epoch 30/500 total: 7.12741, -LL: 8.09264, prior: 0.81912, aleatoric unc.: 3.28449\n", + "Epoch 31/500 total: 6.82985, -LL: 7.96702, prior: 0.81739, aleatoric unc.: 3.35038\n", + "Epoch 32/500 total: 6.85332, -LL: 7.81610, prior: 0.82108, aleatoric unc.: 3.42018\n", + "Epoch 33/500 total: 6.48937, -LL: 7.29156, prior: 0.82439, aleatoric unc.: 3.48776\n", + "Epoch 34/500 total: 6.40705, -LL: 7.11866, prior: 0.82284, aleatoric unc.: 3.55825\n", + "Epoch 35/500 total: 6.28291, -LL: 7.16727, prior: 0.82726, aleatoric unc.: 3.62942\n", + "Epoch 36/500 total: 6.11709, -LL: 6.96031, prior: 0.83276, aleatoric unc.: 3.70237\n", + "Epoch 37/500 total: 6.02628, -LL: 7.04397, prior: 0.83415, aleatoric unc.: 3.77627\n", + "Epoch 38/500 total: 5.90711, -LL: 6.62934, prior: 0.83468, aleatoric unc.: 3.85172\n", + "Epoch 39/500 total: 5.77246, -LL: 6.40979, prior: 0.83356, aleatoric unc.: 3.92818\n", + "Epoch 40/500 total: 5.66154, -LL: 6.18940, prior: 0.83742, aleatoric unc.: 4.00555\n", + "Epoch 41/500 total: 5.59375, -LL: 6.11153, prior: 0.83922, aleatoric unc.: 4.08529\n", + "Epoch 42/500 total: 5.45022, -LL: 5.96574, prior: 0.84189, aleatoric unc.: 4.16530\n", + "Epoch 43/500 total: 5.34939, -LL: 5.82496, prior: 0.84235, aleatoric unc.: 4.24656\n", + "Epoch 44/500 total: 5.23652, -LL: 5.72203, prior: 0.84446, aleatoric unc.: 4.32835\n", + "Epoch 45/500 total: 5.14614, -LL: 5.59121, prior: 0.84935, aleatoric unc.: 4.41080\n", + "Epoch 46/500 total: 5.13085, -LL: 5.71749, prior: 0.85116, aleatoric unc.: 4.49678\n", + "Epoch 47/500 total: 5.01557, -LL: 5.53531, prior: 0.85169, aleatoric unc.: 4.58240\n", + "Epoch 48/500 total: 4.92441, -LL: 5.33155, prior: 0.85473, aleatoric unc.: 4.66906\n", + "Epoch 49/500 total: 4.84676, -LL: 5.42828, prior: 0.85388, aleatoric unc.: 4.75578\n", + "Epoch 50/500 total: 4.76905, -LL: 5.08875, prior: 0.85773, aleatoric unc.: 4.84416\n", + "Epoch 51/500 total: 4.72422, -LL: 5.05217, prior: 0.85497, aleatoric unc.: 4.93447\n", + "Epoch 52/500 total: 4.75352, -LL: 5.01116, prior: 0.85224, aleatoric unc.: 5.02964\n", + "Epoch 53/500 total: 4.58029, -LL: 4.88449, prior: 0.85596, aleatoric unc.: 5.12190\n", + "Epoch 54/500 total: 4.61482, -LL: 5.01953, prior: 0.85656, aleatoric unc.: 5.21822\n", + "Epoch 55/500 total: 4.51711, -LL: 4.77787, prior: 0.85969, aleatoric unc.: 5.31415\n", + "Epoch 56/500 total: 4.42652, -LL: 4.81638, prior: 0.85566, aleatoric unc.: 5.40780\n", + "Epoch 57/500 total: 4.39081, -LL: 4.59852, prior: 0.85573, aleatoric unc.: 5.50328\n", + "Epoch 58/500 total: 4.35142, -LL: 4.62409, prior: 0.85882, aleatoric unc.: 5.59930\n", + "Epoch 59/500 total: 4.37183, -LL: 4.65835, prior: 0.85917, aleatoric unc.: 5.70237\n", + "Epoch 60/500 total: 4.24384, -LL: 4.54369, prior: 0.86191, aleatoric unc.: 5.79825\n", + "Epoch 61/500 total: 4.23949, -LL: 4.55674, prior: 0.86728, aleatoric unc.: 5.89776\n", + "Epoch 62/500 total: 4.18089, -LL: 4.47382, prior: 0.86757, aleatoric unc.: 5.99668\n", + "Epoch 63/500 total: 4.14600, -LL: 4.36870, prior: 0.86710, aleatoric unc.: 6.09457\n", + "Epoch 64/500 total: 4.13551, -LL: 4.45779, prior: 0.86734, aleatoric unc.: 6.19636\n", + "Epoch 65/500 total: 4.08151, -LL: 4.42791, prior: 0.86745, aleatoric unc.: 6.29525\n", + "Epoch 66/500 total: 4.06487, -LL: 4.28903, prior: 0.87429, aleatoric unc.: 6.39733\n", + "Epoch 67/500 total: 4.03409, -LL: 4.24191, prior: 0.87228, aleatoric unc.: 6.49832\n", + "Epoch 68/500 total: 4.06712, -LL: 4.18360, prior: 0.87340, aleatoric unc.: 6.60592\n", + "Epoch 69/500 total: 4.06883, -LL: 4.27839, prior: 0.87231, aleatoric unc.: 6.72010\n", + "Epoch 70/500 total: 3.98950, -LL: 4.26492, prior: 0.87387, aleatoric unc.: 6.82558\n", + "Epoch 71/500 total: 3.99313, -LL: 4.22671, prior: 0.87400, aleatoric unc.: 6.93427\n", + "Epoch 72/500 total: 3.93554, -LL: 4.08919, prior: 0.87938, aleatoric unc.: 7.03637\n", + "Epoch 73/500 total: 3.88887, -LL: 4.16175, prior: 0.87978, aleatoric unc.: 7.13473\n", + "Epoch 74/500 total: 3.89049, -LL: 4.06035, prior: 0.87818, aleatoric unc.: 7.23365\n", + "Epoch 75/500 total: 3.90688, -LL: 4.08672, prior: 0.87830, aleatoric unc.: 7.33916\n", + "Epoch 76/500 total: 3.87086, -LL: 4.00104, prior: 0.87457, aleatoric unc.: 7.44130\n", + "Epoch 77/500 total: 3.87557, -LL: 4.00404, prior: 0.87575, aleatoric unc.: 7.54601\n", + "Epoch 78/500 total: 3.87118, -LL: 4.01505, prior: 0.87283, aleatoric unc.: 7.65226\n", + "Epoch 79/500 total: 3.87023, -LL: 3.98401, prior: 0.87265, aleatoric unc.: 7.76025\n", + "Epoch 80/500 total: 3.83903, -LL: 3.96228, prior: 0.87321, aleatoric unc.: 7.86185\n", + "Epoch 81/500 total: 3.83727, -LL: 3.96250, prior: 0.87293, aleatoric unc.: 7.96465\n", + "Epoch 82/500 total: 3.81156, -LL: 3.92226, prior: 0.87132, aleatoric unc.: 8.06236\n", + "Epoch 83/500 total: 3.82978, -LL: 3.97800, prior: 0.87215, aleatoric unc.: 8.16535\n", + "Epoch 84/500 total: 3.80776, -LL: 3.93948, prior: 0.87251, aleatoric unc.: 8.26426\n", + "Epoch 85/500 total: 3.80882, -LL: 3.93136, prior: 0.87188, aleatoric unc.: 8.36425\n", + "Epoch 86/500 total: 3.79106, -LL: 3.94773, prior: 0.87398, aleatoric unc.: 8.45723\n", + "Epoch 87/500 total: 3.76971, -LL: 3.92687, prior: 0.86911, aleatoric unc.: 8.54351\n", + "Epoch 88/500 total: 3.78953, -LL: 3.94034, prior: 0.87490, aleatoric unc.: 8.63500\n", + "Epoch 89/500 total: 3.78685, -LL: 3.89338, prior: 0.87492, aleatoric unc.: 8.72990\n", + "Epoch 90/500 total: 3.78132, -LL: 3.93788, prior: 0.87580, aleatoric unc.: 8.81905\n", + "Epoch 91/500 total: 3.77357, -LL: 3.89067, prior: 0.87284, aleatoric unc.: 8.90431\n", + "Epoch 92/500 total: 3.76655, -LL: 3.88172, prior: 0.87427, aleatoric unc.: 8.98560\n", + "Epoch 93/500 total: 3.77686, -LL: 3.95055, prior: 0.87286, aleatoric unc.: 9.07076\n", + "Epoch 94/500 total: 3.77278, -LL: 3.87056, prior: 0.87418, aleatoric unc.: 9.15368\n", + "Epoch 95/500 total: 3.77267, -LL: 3.88493, prior: 0.87691, aleatoric unc.: 9.23351\n", + "Epoch 96/500 total: 3.76005, -LL: 3.87830, prior: 0.87744, aleatoric unc.: 9.30644\n", + "Epoch 97/500 total: 3.75343, -LL: 3.86725, prior: 0.87701, aleatoric unc.: 9.37226\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 98/500 total: 3.72790, -LL: 3.58224, prior: 0.78028, aleatoric unc.: 9.25964\n", - "Epoch 99/500 total: 3.71771, -LL: 3.66020, prior: 0.77745, aleatoric unc.: 9.31000\n", - "Epoch 100/500 total: 3.72549, -LL: 3.62102, prior: 0.77761, aleatoric unc.: 9.36518\n", - "Epoch 101/500 total: 3.71956, -LL: 3.57595, prior: 0.77925, aleatoric unc.: 9.41201\n", - "Epoch 102/500 total: 3.72677, -LL: 3.57028, prior: 0.77652, aleatoric unc.: 9.46463\n", - "Epoch 103/500 total: 3.72387, -LL: 3.65744, prior: 0.77754, aleatoric unc.: 9.50802\n", - "Epoch 104/500 total: 3.71402, -LL: 3.60348, prior: 0.77234, aleatoric unc.: 9.54170\n", - "Epoch 105/500 total: 3.72198, -LL: 3.63285, prior: 0.77360, aleatoric unc.: 9.58104\n", - "Epoch 106/500 total: 3.71737, -LL: 3.64993, prior: 0.77597, aleatoric unc.: 9.61322\n", - "Epoch 107/500 total: 3.71005, -LL: 3.56981, prior: 0.77387, aleatoric unc.: 9.63459\n", - "Epoch 108/500 total: 3.71906, -LL: 3.58226, prior: 0.77644, aleatoric unc.: 9.66549\n", - "Epoch 109/500 total: 3.72139, -LL: 3.63789, prior: 0.77184, aleatoric unc.: 9.69481\n", - "Epoch 110/500 total: 3.70912, -LL: 3.60181, prior: 0.77226, aleatoric unc.: 9.71032\n", - "Epoch 111/500 total: 3.71838, -LL: 3.63031, prior: 0.77578, aleatoric unc.: 9.73120\n", - "Epoch 112/500 total: 3.71506, -LL: 3.61052, prior: 0.77374, aleatoric unc.: 9.74926\n", - "Epoch 113/500 total: 3.71562, -LL: 3.72471, prior: 0.77285, aleatoric unc.: 9.76058\n", - "Epoch 114/500 total: 3.71990, -LL: 3.74557, prior: 0.76846, aleatoric unc.: 9.78141\n", - "Epoch 115/500 total: 3.72581, -LL: 3.67777, prior: 0.76765, aleatoric unc.: 9.80824\n", - "Epoch 116/500 total: 3.72395, -LL: 3.66619, prior: 0.76687, aleatoric unc.: 9.82927\n", - "Epoch 117/500 total: 3.72196, -LL: 3.67000, prior: 0.76839, aleatoric unc.: 9.84076\n", - "Epoch 118/500 total: 3.70945, -LL: 3.61228, prior: 0.76902, aleatoric unc.: 9.84046\n", - "Epoch 119/500 total: 3.71781, -LL: 3.57591, prior: 0.77380, aleatoric unc.: 9.84767\n", - "Epoch 120/500 total: 3.70874, -LL: 3.66554, prior: 0.77551, aleatoric unc.: 9.83665\n", - "Epoch 121/500 total: 3.72752, -LL: 3.65136, prior: 0.77845, aleatoric unc.: 9.86153\n", - "Epoch 122/500 total: 3.73040, -LL: 3.62794, prior: 0.77837, aleatoric unc.: 9.88645\n", - "Epoch 123/500 total: 3.71462, -LL: 3.68275, prior: 0.78350, aleatoric unc.: 9.88238\n", - "Epoch 124/500 total: 3.71511, -LL: 3.59032, prior: 0.78381, aleatoric unc.: 9.87697\n", - "Epoch 125/500 total: 3.72409, -LL: 3.58439, prior: 0.78439, aleatoric unc.: 9.89114\n", - "Epoch 126/500 total: 3.71711, -LL: 3.66987, prior: 0.78606, aleatoric unc.: 9.88819\n", - "Epoch 127/500 total: 3.71188, -LL: 3.63467, prior: 0.78302, aleatoric unc.: 9.87889\n", - "Epoch 128/500 total: 3.72376, -LL: 3.58284, prior: 0.78485, aleatoric unc.: 9.88960\n", - "Epoch 129/500 total: 3.71365, -LL: 3.66670, prior: 0.78087, aleatoric unc.: 9.88381\n", - "Epoch 130/500 total: 3.72456, -LL: 3.66885, prior: 0.78370, aleatoric unc.: 9.89316\n", - "Epoch 131/500 total: 3.71323, -LL: 3.62470, prior: 0.78227, aleatoric unc.: 9.88930\n", - "Epoch 132/500 total: 3.71856, -LL: 3.66937, prior: 0.78154, aleatoric unc.: 9.88618\n", - "Epoch 133/500 total: 3.71670, -LL: 3.64594, prior: 0.77825, aleatoric unc.: 9.88424\n", - "Epoch 134/500 total: 3.72210, -LL: 3.60950, prior: 0.77902, aleatoric unc.: 9.89171\n", - "Epoch 135/500 total: 3.71507, -LL: 3.59651, prior: 0.77877, aleatoric unc.: 9.88918\n", - "Epoch 136/500 total: 3.71900, -LL: 3.65212, prior: 0.78622, aleatoric unc.: 9.89051\n", - "Epoch 137/500 total: 3.71307, -LL: 3.61388, prior: 0.78563, aleatoric unc.: 9.88130\n", - "Epoch 138/500 total: 3.71602, -LL: 3.60536, prior: 0.78637, aleatoric unc.: 9.88007\n", - "Epoch 139/500 total: 3.72967, -LL: 3.64175, prior: 0.78606, aleatoric unc.: 9.89858\n", - "Epoch 140/500 total: 3.71805, -LL: 3.57543, prior: 0.78286, aleatoric unc.: 9.90221\n", - "Epoch 141/500 total: 3.71457, -LL: 3.60350, prior: 0.78505, aleatoric unc.: 9.89543\n", - "Epoch 142/500 total: 3.71818, -LL: 3.66506, prior: 0.79071, aleatoric unc.: 9.89198\n", - "Epoch 143/500 total: 3.70745, -LL: 3.66879, prior: 0.79167, aleatoric unc.: 9.87098\n", - "Epoch 144/500 total: 3.71752, -LL: 3.59973, prior: 0.79228, aleatoric unc.: 9.87335\n", - "Epoch 145/500 total: 3.71323, -LL: 3.68346, prior: 0.78821, aleatoric unc.: 9.86594\n", - "Epoch 146/500 total: 3.69810, -LL: 3.62257, prior: 0.79184, aleatoric unc.: 9.83553\n", - "Epoch 147/500 total: 3.70289, -LL: 3.60558, prior: 0.79325, aleatoric unc.: 9.81485\n", - "Epoch 148/500 total: 3.71252, -LL: 3.67221, prior: 0.79652, aleatoric unc.: 9.81311\n", - "Epoch 149/500 total: 3.73219, -LL: 3.57769, prior: 0.79471, aleatoric unc.: 9.85562\n", - "Epoch 150/500 total: 3.72208, -LL: 3.67267, prior: 0.78948, aleatoric unc.: 9.87345\n", - "Epoch 151/500 total: 3.71389, -LL: 3.65466, prior: 0.79006, aleatoric unc.: 9.87153\n", - "Epoch 152/500 total: 3.72419, -LL: 3.67915, prior: 0.79090, aleatoric unc.: 9.87917\n", - "Epoch 153/500 total: 3.71665, -LL: 3.62692, prior: 0.79997, aleatoric unc.: 9.88276\n", - "Epoch 154/500 total: 3.72019, -LL: 3.58589, prior: 0.79751, aleatoric unc.: 9.88690\n", - "Epoch 155/500 total: 3.71445, -LL: 3.61408, prior: 0.80268, aleatoric unc.: 9.88311\n", - "Epoch 156/500 total: 3.70221, -LL: 3.68263, prior: 0.80404, aleatoric unc.: 9.85331\n", - "Epoch 157/500 total: 3.70698, -LL: 3.70702, prior: 0.80339, aleatoric unc.: 9.83723\n", - "Epoch 158/500 total: 3.72310, -LL: 3.59278, prior: 0.80445, aleatoric unc.: 9.85699\n", - "Epoch 159/500 total: 3.71378, -LL: 3.73156, prior: 0.80416, aleatoric unc.: 9.85512\n", - "Epoch 160/500 total: 3.70706, -LL: 3.63655, prior: 0.80595, aleatoric unc.: 9.84014\n", - "Epoch 161/500 total: 3.71271, -LL: 3.57877, prior: 0.80410, aleatoric unc.: 9.84335\n", - "Epoch 162/500 total: 3.71768, -LL: 3.63120, prior: 0.80659, aleatoric unc.: 9.85032\n", - "Epoch 163/500 total: 3.71903, -LL: 3.65138, prior: 0.80638, aleatoric unc.: 9.85763\n", - "Epoch 164/500 total: 3.71713, -LL: 3.64704, prior: 0.80705, aleatoric unc.: 9.86186\n", - "Epoch 165/500 total: 3.71419, -LL: 3.64462, prior: 0.80874, aleatoric unc.: 9.86155\n", - "Epoch 166/500 total: 3.70272, -LL: 3.60857, prior: 0.80695, aleatoric unc.: 9.83837\n", - "Epoch 167/500 total: 3.71688, -LL: 3.60935, prior: 0.81090, aleatoric unc.: 9.84529\n", - "Epoch 168/500 total: 3.70292, -LL: 3.60577, prior: 0.80637, aleatoric unc.: 9.82553\n", - "Epoch 169/500 total: 3.71970, -LL: 3.63841, prior: 0.80866, aleatoric unc.: 9.83715\n", - "Epoch 170/500 total: 3.71758, -LL: 3.67275, prior: 0.81033, aleatoric unc.: 9.84604\n", - "Epoch 171/500 total: 3.72500, -LL: 3.59006, prior: 0.81392, aleatoric unc.: 9.86759\n", - "Epoch 172/500 total: 3.70126, -LL: 3.64450, prior: 0.81116, aleatoric unc.: 9.84247\n", - "Epoch 173/500 total: 3.72101, -LL: 3.64824, prior: 0.81156, aleatoric unc.: 9.84976\n", - "Epoch 174/500 total: 3.71152, -LL: 3.69934, prior: 0.81262, aleatoric unc.: 9.84919\n", - "Epoch 175/500 total: 3.71467, -LL: 3.68428, prior: 0.81517, aleatoric unc.: 9.85176\n", - "Epoch 176/500 total: 3.70291, -LL: 3.63773, prior: 0.81583, aleatoric unc.: 9.83082\n", - "Epoch 177/500 total: 3.70896, -LL: 3.66547, prior: 0.81045, aleatoric unc.: 9.82290\n", - "Epoch 178/500 total: 3.71117, -LL: 3.68764, prior: 0.81337, aleatoric unc.: 9.82000\n", - "Epoch 179/500 total: 3.70928, -LL: 3.61341, prior: 0.81607, aleatoric unc.: 9.81955\n", - "Epoch 180/500 total: 3.70466, -LL: 3.65554, prior: 0.81575, aleatoric unc.: 9.80751\n", - "Epoch 181/500 total: 3.70420, -LL: 3.64272, prior: 0.81693, aleatoric unc.: 9.79344\n", - "Epoch 182/500 total: 3.71046, -LL: 3.64984, prior: 0.81584, aleatoric unc.: 9.79500\n", - "Epoch 183/500 total: 3.71474, -LL: 3.66882, prior: 0.81325, aleatoric unc.: 9.80760\n", - "Epoch 184/500 total: 3.71527, -LL: 3.61031, prior: 0.81348, aleatoric unc.: 9.82014\n", - "Epoch 185/500 total: 3.70042, -LL: 3.66272, prior: 0.81257, aleatoric unc.: 9.80154\n", - "Epoch 186/500 total: 3.71282, -LL: 3.61934, prior: 0.81781, aleatoric unc.: 9.80770\n", - "Epoch 187/500 total: 3.71327, -LL: 3.67081, prior: 0.81615, aleatoric unc.: 9.81168\n", - "Epoch 188/500 total: 3.70315, -LL: 3.66320, prior: 0.81042, aleatoric unc.: 9.80011\n", - "Epoch 189/500 total: 3.69962, -LL: 3.63048, prior: 0.81293, aleatoric unc.: 9.78159\n", - "Epoch 190/500 total: 3.71830, -LL: 3.68563, prior: 0.81299, aleatoric unc.: 9.80476\n", - "Epoch 191/500 total: 3.71706, -LL: 3.64913, prior: 0.81458, aleatoric unc.: 9.81613\n", - "Epoch 192/500 total: 3.70988, -LL: 3.62455, prior: 0.81865, aleatoric unc.: 9.81723\n", - "Epoch 193/500 total: 3.70870, -LL: 3.63595, prior: 0.81586, aleatoric unc.: 9.81325\n", - "Epoch 194/500 total: 3.71062, -LL: 3.63609, prior: 0.81832, aleatoric unc.: 9.81209\n" + "Epoch 98/500 total: 3.75489, -LL: 3.86650, prior: 0.87387, aleatoric unc.: 9.43639\n", + "Epoch 99/500 total: 3.75204, -LL: 3.88775, prior: 0.87541, aleatoric unc.: 9.49778\n", + "Epoch 100/500 total: 3.74928, -LL: 3.88524, prior: 0.87766, aleatoric unc.: 9.55119\n", + "Epoch 101/500 total: 3.75035, -LL: 3.89834, prior: 0.87757, aleatoric unc.: 9.60368\n", + "Epoch 102/500 total: 3.75176, -LL: 3.84637, prior: 0.87619, aleatoric unc.: 9.65913\n", + "Epoch 103/500 total: 3.74618, -LL: 3.85358, prior: 0.87332, aleatoric unc.: 9.70444\n", + "Epoch 104/500 total: 3.75131, -LL: 3.82844, prior: 0.87389, aleatoric unc.: 9.75208\n", + "Epoch 105/500 total: 3.75830, -LL: 3.85860, prior: 0.87168, aleatoric unc.: 9.80331\n", + "Epoch 106/500 total: 3.74013, -LL: 3.82363, prior: 0.87422, aleatoric unc.: 9.83733\n", + "Epoch 107/500 total: 3.75714, -LL: 3.87234, prior: 0.87499, aleatoric unc.: 9.88155\n", + "Epoch 108/500 total: 3.76437, -LL: 3.84260, prior: 0.87272, aleatoric unc.: 9.93000\n", + "Epoch 109/500 total: 3.75821, -LL: 3.83804, prior: 0.86936, aleatoric unc.: 9.97239\n", + "Epoch 110/500 total: 3.74620, -LL: 3.83302, prior: 0.87047, aleatoric unc.: 9.99439\n", + "Epoch 111/500 total: 3.74528, -LL: 3.82421, prior: 0.87420, aleatoric unc.: 10.01774\n", + "Epoch 112/500 total: 3.74257, -LL: 3.86775, prior: 0.87206, aleatoric unc.: 10.02876\n", + "Epoch 113/500 total: 3.74466, -LL: 3.84895, prior: 0.87320, aleatoric unc.: 10.04690\n", + "Epoch 114/500 total: 3.74745, -LL: 3.85205, prior: 0.87074, aleatoric unc.: 10.06460\n", + "Epoch 115/500 total: 3.73718, -LL: 3.84279, prior: 0.87076, aleatoric unc.: 10.06521\n", + "Epoch 116/500 total: 3.75617, -LL: 3.86068, prior: 0.86986, aleatoric unc.: 10.09347\n", + "Epoch 117/500 total: 3.74887, -LL: 3.85102, prior: 0.87165, aleatoric unc.: 10.10835\n", + "Epoch 118/500 total: 3.75465, -LL: 3.83214, prior: 0.87595, aleatoric unc.: 10.12994\n", + "Epoch 119/500 total: 3.74453, -LL: 3.83483, prior: 0.87396, aleatoric unc.: 10.13305\n", + "Epoch 120/500 total: 3.75249, -LL: 3.85369, prior: 0.87303, aleatoric unc.: 10.14400\n", + "Epoch 121/500 total: 3.74372, -LL: 3.82296, prior: 0.87450, aleatoric unc.: 10.14816\n", + "Epoch 122/500 total: 3.73883, -LL: 3.81294, prior: 0.87580, aleatoric unc.: 10.13818\n", + "Epoch 123/500 total: 3.76165, -LL: 3.83089, prior: 0.86827, aleatoric unc.: 10.16922\n", + "Epoch 124/500 total: 3.73840, -LL: 3.82414, prior: 0.87176, aleatoric unc.: 10.15764\n", + "Epoch 125/500 total: 3.74571, -LL: 3.84270, prior: 0.87256, aleatoric unc.: 10.15516\n", + "Epoch 126/500 total: 3.75008, -LL: 3.83471, prior: 0.87215, aleatoric unc.: 10.16320\n", + "Epoch 127/500 total: 3.74074, -LL: 3.82977, prior: 0.87414, aleatoric unc.: 10.15534\n", + "Epoch 128/500 total: 3.74676, -LL: 3.83996, prior: 0.87442, aleatoric unc.: 10.15799\n", + "Epoch 129/500 total: 3.75401, -LL: 3.83700, prior: 0.87262, aleatoric unc.: 10.17440\n", + "Epoch 130/500 total: 3.74349, -LL: 3.82789, prior: 0.87716, aleatoric unc.: 10.17104\n", + "Epoch 131/500 total: 3.74931, -LL: 3.82503, prior: 0.87422, aleatoric unc.: 10.17491\n", + "Epoch 132/500 total: 3.75705, -LL: 3.83076, prior: 0.87151, aleatoric unc.: 10.19173\n", + "Epoch 133/500 total: 3.74695, -LL: 3.85002, prior: 0.87422, aleatoric unc.: 10.18815\n", + "Epoch 134/500 total: 3.73636, -LL: 3.83064, prior: 0.88023, aleatoric unc.: 10.16924\n", + "Epoch 135/500 total: 3.75153, -LL: 3.86666, prior: 0.87499, aleatoric unc.: 10.17578\n", + "Epoch 136/500 total: 3.73906, -LL: 3.82249, prior: 0.87708, aleatoric unc.: 10.16144\n", + "Epoch 137/500 total: 3.74281, -LL: 3.84614, prior: 0.87192, aleatoric unc.: 10.15285\n", + "Epoch 138/500 total: 3.73507, -LL: 3.82791, prior: 0.87696, aleatoric unc.: 10.13826\n", + "Epoch 139/500 total: 3.74250, -LL: 3.82145, prior: 0.87161, aleatoric unc.: 10.13395\n", + "Epoch 140/500 total: 3.74895, -LL: 3.85658, prior: 0.87233, aleatoric unc.: 10.14499\n", + "Epoch 141/500 total: 3.74945, -LL: 3.83508, prior: 0.87410, aleatoric unc.: 10.16039\n", + "Epoch 142/500 total: 3.74703, -LL: 3.84708, prior: 0.87038, aleatoric unc.: 10.16293\n", + "Epoch 143/500 total: 3.74602, -LL: 3.85310, prior: 0.86954, aleatoric unc.: 10.16378\n", + "Epoch 144/500 total: 3.73776, -LL: 3.85131, prior: 0.87608, aleatoric unc.: 10.14276\n", + "Epoch 145/500 total: 3.74502, -LL: 3.86227, prior: 0.87469, aleatoric unc.: 10.14487\n", + "Epoch 146/500 total: 3.75178, -LL: 3.83493, prior: 0.87348, aleatoric unc.: 10.16400\n", + "Epoch 147/500 total: 3.73801, -LL: 3.84173, prior: 0.87025, aleatoric unc.: 10.15082\n", + "Epoch 148/500 total: 3.74166, -LL: 3.82734, prior: 0.86839, aleatoric unc.: 10.14235\n", + "Epoch 149/500 total: 3.75373, -LL: 3.82091, prior: 0.87186, aleatoric unc.: 10.16233\n", + "Epoch 150/500 total: 3.74526, -LL: 3.83084, prior: 0.87280, aleatoric unc.: 10.16059\n", + "Epoch 151/500 total: 3.73425, -LL: 3.85029, prior: 0.87720, aleatoric unc.: 10.13720\n", + "Epoch 152/500 total: 3.75034, -LL: 3.81246, prior: 0.87624, aleatoric unc.: 10.15177\n", + "Epoch 153/500 total: 3.74241, -LL: 3.84087, prior: 0.87682, aleatoric unc.: 10.14831\n", + "Epoch 154/500 total: 3.74580, -LL: 3.83439, prior: 0.87499, aleatoric unc.: 10.15077\n", + "Epoch 155/500 total: 3.74812, -LL: 3.82937, prior: 0.87166, aleatoric unc.: 10.16117\n", + "Epoch 156/500 total: 3.74080, -LL: 3.84487, prior: 0.87110, aleatoric unc.: 10.15156\n", + "Epoch 157/500 total: 3.74060, -LL: 3.83325, prior: 0.86850, aleatoric unc.: 10.14273\n", + "Epoch 158/500 total: 3.74610, -LL: 3.82031, prior: 0.86979, aleatoric unc.: 10.14972\n", + "Epoch 159/500 total: 3.74913, -LL: 3.83025, prior: 0.86887, aleatoric unc.: 10.15754\n", + "Epoch 160/500 total: 3.74738, -LL: 3.84690, prior: 0.87071, aleatoric unc.: 10.16020\n", + "Epoch 161/500 total: 3.74441, -LL: 3.83083, prior: 0.87562, aleatoric unc.: 10.16298\n", + "Epoch 162/500 total: 3.74127, -LL: 3.83037, prior: 0.86911, aleatoric unc.: 10.15245\n", + "Epoch 163/500 total: 3.73776, -LL: 3.85702, prior: 0.87000, aleatoric unc.: 10.13875\n", + "Epoch 164/500 total: 3.74046, -LL: 3.83894, prior: 0.87265, aleatoric unc.: 10.12902\n", + "Epoch 165/500 total: 3.74645, -LL: 3.85668, prior: 0.86959, aleatoric unc.: 10.14033\n", + "Epoch 166/500 total: 3.74859, -LL: 3.81528, prior: 0.87264, aleatoric unc.: 10.15082\n", + "Epoch 167/500 total: 3.73561, -LL: 3.81875, prior: 0.86975, aleatoric unc.: 10.13387\n", + "Epoch 168/500 total: 3.74583, -LL: 3.81903, prior: 0.87138, aleatoric unc.: 10.14144\n", + "Epoch 169/500 total: 3.74097, -LL: 3.82545, prior: 0.87102, aleatoric unc.: 10.13799\n", + "Epoch 170/500 total: 3.73085, -LL: 3.82076, prior: 0.86865, aleatoric unc.: 10.11129\n", + "Epoch 171/500 total: 3.73720, -LL: 3.83468, prior: 0.87468, aleatoric unc.: 10.10508\n", + "Epoch 172/500 total: 3.73434, -LL: 3.84906, prior: 0.87264, aleatoric unc.: 10.09243\n", + "Epoch 173/500 total: 3.73799, -LL: 3.84463, prior: 0.87365, aleatoric unc.: 10.08736\n", + "Epoch 174/500 total: 3.73862, -LL: 3.85773, prior: 0.87482, aleatoric unc.: 10.09258\n", + "Epoch 175/500 total: 3.73140, -LL: 3.84049, prior: 0.87401, aleatoric unc.: 10.07639\n", + "Epoch 176/500 total: 3.74932, -LL: 3.84273, prior: 0.87495, aleatoric unc.: 10.10247\n", + "Epoch 177/500 total: 3.74212, -LL: 3.84727, prior: 0.87307, aleatoric unc.: 10.10432\n", + "Epoch 178/500 total: 3.74354, -LL: 3.84564, prior: 0.86907, aleatoric unc.: 10.11403\n", + "Epoch 179/500 total: 3.73614, -LL: 3.83136, prior: 0.86890, aleatoric unc.: 10.10359\n", + "Epoch 180/500 total: 3.73570, -LL: 3.83556, prior: 0.86727, aleatoric unc.: 10.09912\n", + "Epoch 181/500 total: 3.73227, -LL: 3.82470, prior: 0.86786, aleatoric unc.: 10.08085\n", + "Epoch 182/500 total: 3.73792, -LL: 3.82237, prior: 0.87092, aleatoric unc.: 10.08044\n", + "Epoch 183/500 total: 3.73197, -LL: 3.84259, prior: 0.86857, aleatoric unc.: 10.07049\n", + "Epoch 184/500 total: 3.74259, -LL: 3.82540, prior: 0.86568, aleatoric unc.: 10.08699\n", + "Epoch 185/500 total: 3.73696, -LL: 3.85460, prior: 0.86807, aleatoric unc.: 10.08008\n", + "Epoch 186/500 total: 3.74458, -LL: 3.83057, prior: 0.86602, aleatoric unc.: 10.09612\n", + "Epoch 187/500 total: 3.73795, -LL: 3.86993, prior: 0.86651, aleatoric unc.: 10.09590\n", + "Epoch 188/500 total: 3.73716, -LL: 3.84042, prior: 0.86435, aleatoric unc.: 10.09067\n", + "Epoch 189/500 total: 3.74265, -LL: 3.80450, prior: 0.86052, aleatoric unc.: 10.09959\n", + "Epoch 190/500 total: 3.74872, -LL: 3.83485, prior: 0.86200, aleatoric unc.: 10.12078\n", + "Epoch 191/500 total: 3.74471, -LL: 3.86692, prior: 0.86335, aleatoric unc.: 10.12616\n", + "Epoch 192/500 total: 3.73707, -LL: 3.85219, prior: 0.86578, aleatoric unc.: 10.11676\n", + "Epoch 193/500 total: 3.74931, -LL: 3.81395, prior: 0.86345, aleatoric unc.: 10.13512\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 195/500 total: 3.72410, -LL: 3.62442, prior: 0.81648, aleatoric unc.: 9.83962\n", - "Epoch 196/500 total: 3.71915, -LL: 3.66803, prior: 0.81624, aleatoric unc.: 9.84151\n", - "Epoch 197/500 total: 3.71432, -LL: 3.64483, prior: 0.81001, aleatoric unc.: 9.85190\n", - "Epoch 198/500 total: 3.71493, -LL: 3.59165, prior: 0.81170, aleatoric unc.: 9.85324\n", - "Epoch 199/500 total: 3.70331, -LL: 3.60793, prior: 0.80896, aleatoric unc.: 9.83340\n", - "Epoch 200/500 total: 3.70812, -LL: 3.59062, prior: 0.81499, aleatoric unc.: 9.82334\n", - "Epoch 201/500 total: 3.71478, -LL: 3.62452, prior: 0.81519, aleatoric unc.: 9.82977\n", - "Epoch 202/500 total: 3.71517, -LL: 3.56803, prior: 0.81508, aleatoric unc.: 9.83826\n", - "Epoch 203/500 total: 3.69960, -LL: 3.63084, prior: 0.81742, aleatoric unc.: 9.81023\n", - "Epoch 204/500 total: 3.70639, -LL: 3.66974, prior: 0.81871, aleatoric unc.: 9.80200\n", - "Epoch 205/500 total: 3.70826, -LL: 3.62572, prior: 0.81504, aleatoric unc.: 9.79858\n", - "Epoch 206/500 total: 3.71623, -LL: 3.64392, prior: 0.81659, aleatoric unc.: 9.81016\n", - "Epoch 207/500 total: 3.71774, -LL: 3.65070, prior: 0.81498, aleatoric unc.: 9.82834\n", - "Epoch 208/500 total: 3.69666, -LL: 3.65249, prior: 0.81455, aleatoric unc.: 9.79752\n", - "Epoch 209/500 total: 3.70594, -LL: 3.67450, prior: 0.81606, aleatoric unc.: 9.79126\n", - "Epoch 210/500 total: 3.69925, -LL: 3.68792, prior: 0.81400, aleatoric unc.: 9.77435\n", - "Epoch 211/500 total: 3.70082, -LL: 3.60530, prior: 0.81230, aleatoric unc.: 9.76606\n", - "Epoch 212/500 total: 3.71195, -LL: 3.64706, prior: 0.81609, aleatoric unc.: 9.77611\n", - "Epoch 213/500 total: 3.70414, -LL: 3.64134, prior: 0.81544, aleatoric unc.: 9.77201\n", - "Epoch 214/500 total: 3.71389, -LL: 3.63395, prior: 0.81622, aleatoric unc.: 9.78563\n", - "Epoch 215/500 total: 3.71683, -LL: 3.66099, prior: 0.81664, aleatoric unc.: 9.80171\n", - "Epoch 216/500 total: 3.72204, -LL: 3.66836, prior: 0.81515, aleatoric unc.: 9.82727\n", - "Epoch 217/500 total: 3.70703, -LL: 3.63465, prior: 0.81890, aleatoric unc.: 9.82033\n", - "Epoch 218/500 total: 3.70247, -LL: 3.71451, prior: 0.81721, aleatoric unc.: 9.80064\n", - "Epoch 219/500 total: 3.71433, -LL: 3.63672, prior: 0.82165, aleatoric unc.: 9.80686\n", - "Epoch 220/500 total: 3.70779, -LL: 3.61201, prior: 0.82151, aleatoric unc.: 9.80850\n", - "Epoch 221/500 total: 3.72726, -LL: 3.65804, prior: 0.82183, aleatoric unc.: 9.83772\n", - "Epoch 222/500 total: 3.71228, -LL: 3.65686, prior: 0.81864, aleatoric unc.: 9.84025\n", - "Epoch 223/500 total: 3.72339, -LL: 3.64982, prior: 0.82202, aleatoric unc.: 9.85690\n", - "Epoch 224/500 total: 3.70915, -LL: 3.63755, prior: 0.81988, aleatoric unc.: 9.85046\n", - "Epoch 225/500 total: 3.70552, -LL: 3.63990, prior: 0.82102, aleatoric unc.: 9.82943\n", - "Epoch 226/500 total: 3.70323, -LL: 3.64443, prior: 0.82060, aleatoric unc.: 9.81781\n", - "Epoch 227/500 total: 3.70019, -LL: 3.65555, prior: 0.82249, aleatoric unc.: 9.79478\n", - "Epoch 228/500 total: 3.71216, -LL: 3.69579, prior: 0.82333, aleatoric unc.: 9.79841\n", - "Epoch 229/500 total: 3.71140, -LL: 3.62137, prior: 0.82447, aleatoric unc.: 9.80692\n", - "Epoch 230/500 total: 3.70575, -LL: 3.64446, prior: 0.82529, aleatoric unc.: 9.79880\n", - "Epoch 231/500 total: 3.71456, -LL: 3.75829, prior: 0.82439, aleatoric unc.: 9.80728\n", - "Epoch 232/500 total: 3.70966, -LL: 3.63882, prior: 0.82492, aleatoric unc.: 9.80583\n", - "Epoch 233/500 total: 3.71351, -LL: 3.61270, prior: 0.82613, aleatoric unc.: 9.81784\n", - "Epoch 234/500 total: 3.70172, -LL: 3.62794, prior: 0.81822, aleatoric unc.: 9.79805\n", - "Epoch 235/500 total: 3.71109, -LL: 3.64488, prior: 0.82053, aleatoric unc.: 9.80066\n", - "Epoch 236/500 total: 3.70431, -LL: 3.62616, prior: 0.82161, aleatoric unc.: 9.78883\n", - "Epoch 237/500 total: 3.70279, -LL: 3.68337, prior: 0.82063, aleatoric unc.: 9.77969\n", - "Epoch 238/500 total: 3.71613, -LL: 3.67027, prior: 0.82166, aleatoric unc.: 9.79706\n", - "Epoch 239/500 total: 3.70064, -LL: 3.66745, prior: 0.82222, aleatoric unc.: 9.78118\n", - "Epoch 240/500 total: 3.70537, -LL: 3.60819, prior: 0.82710, aleatoric unc.: 9.77992\n", - "Epoch 241/500 total: 3.71476, -LL: 3.61006, prior: 0.82356, aleatoric unc.: 9.79421\n", - "Epoch 242/500 total: 3.71145, -LL: 3.64876, prior: 0.82434, aleatoric unc.: 9.79779\n", - "Epoch 243/500 total: 3.70802, -LL: 3.58574, prior: 0.82809, aleatoric unc.: 9.79796\n", - "Epoch 244/500 total: 3.70571, -LL: 3.65710, prior: 0.82588, aleatoric unc.: 9.79101\n", - "Epoch 245/500 total: 3.70188, -LL: 3.62964, prior: 0.82486, aleatoric unc.: 9.77658\n", - "Epoch 246/500 total: 3.72030, -LL: 3.63991, prior: 0.82122, aleatoric unc.: 9.80154\n", - "Epoch 247/500 total: 3.71523, -LL: 3.61676, prior: 0.82447, aleatoric unc.: 9.81099\n", - "Epoch 248/500 total: 3.71168, -LL: 3.59765, prior: 0.82207, aleatoric unc.: 9.81821\n", - "Epoch 249/500 total: 3.71399, -LL: 3.63747, prior: 0.82239, aleatoric unc.: 9.82253\n", - "Epoch 250/500 total: 3.70465, -LL: 3.64624, prior: 0.82184, aleatoric unc.: 9.81008\n", - "Epoch 251/500 total: 3.69921, -LL: 3.60426, prior: 0.82150, aleatoric unc.: 9.78902\n", - "Epoch 252/500 total: 3.71118, -LL: 3.67592, prior: 0.82288, aleatoric unc.: 9.79504\n", - "Epoch 253/500 total: 3.70237, -LL: 3.62898, prior: 0.82680, aleatoric unc.: 9.78291\n", - "Epoch 254/500 total: 3.70794, -LL: 3.64745, prior: 0.82541, aleatoric unc.: 9.78084\n", - "Epoch 255/500 total: 3.70302, -LL: 3.62780, prior: 0.82535, aleatoric unc.: 9.77530\n", - "Epoch 256/500 total: 3.71729, -LL: 3.63795, prior: 0.82601, aleatoric unc.: 9.79276\n", - "Epoch 257/500 total: 3.70993, -LL: 3.63274, prior: 0.82741, aleatoric unc.: 9.79693\n", - "Epoch 258/500 total: 3.71243, -LL: 3.65305, prior: 0.82601, aleatoric unc.: 9.80389\n", - "Epoch 259/500 total: 3.70296, -LL: 3.64940, prior: 0.82313, aleatoric unc.: 9.79133\n", - "Epoch 260/500 total: 3.71093, -LL: 3.59715, prior: 0.82558, aleatoric unc.: 9.79233\n", - "Epoch 261/500 total: 3.71045, -LL: 3.63395, prior: 0.82771, aleatoric unc.: 9.79831\n", - "Epoch 262/500 total: 3.69963, -LL: 3.67210, prior: 0.82712, aleatoric unc.: 9.77961\n", - "Epoch 263/500 total: 3.71113, -LL: 3.65016, prior: 0.82726, aleatoric unc.: 9.78695\n", - "Epoch 264/500 total: 3.70665, -LL: 3.60633, prior: 0.83064, aleatoric unc.: 9.78443\n", - "Epoch 265/500 total: 3.71054, -LL: 3.65116, prior: 0.83137, aleatoric unc.: 9.79059\n", - "Epoch 266/500 total: 3.69886, -LL: 3.60721, prior: 0.83100, aleatoric unc.: 9.77077\n", - "Epoch 267/500 total: 3.70686, -LL: 3.65023, prior: 0.83398, aleatoric unc.: 9.77222\n", - "Epoch 268/500 total: 3.69995, -LL: 3.71522, prior: 0.83159, aleatoric unc.: 9.75908\n", - "Epoch 269/500 total: 3.70539, -LL: 3.64799, prior: 0.83221, aleatoric unc.: 9.75858\n", - "Epoch 270/500 total: 3.70420, -LL: 3.63578, prior: 0.83041, aleatoric unc.: 9.75445\n", - "Epoch 271/500 total: 3.70999, -LL: 3.68182, prior: 0.82908, aleatoric unc.: 9.76730\n", - "Epoch 272/500 total: 3.70793, -LL: 3.63381, prior: 0.83376, aleatoric unc.: 9.76915\n", - "Epoch 273/500 total: 3.70842, -LL: 3.64926, prior: 0.83353, aleatoric unc.: 9.77610\n", - "Epoch 274/500 total: 3.70973, -LL: 3.62482, prior: 0.83395, aleatoric unc.: 9.77950\n", - "Epoch 275/500 total: 3.71090, -LL: 3.60236, prior: 0.83533, aleatoric unc.: 9.78900\n", - "Epoch 276/500 total: 3.70221, -LL: 3.67710, prior: 0.83294, aleatoric unc.: 9.77734\n", - "Epoch 277/500 total: 3.70494, -LL: 3.64316, prior: 0.83875, aleatoric unc.: 9.77393\n", - "Epoch 278/500 total: 3.71155, -LL: 3.61530, prior: 0.83769, aleatoric unc.: 9.78493\n", - "Epoch 279/500 total: 3.72149, -LL: 3.63981, prior: 0.83667, aleatoric unc.: 9.81001\n", - "Epoch 280/500 total: 3.70467, -LL: 3.62610, prior: 0.83533, aleatoric unc.: 9.80246\n", - "Epoch 281/500 total: 3.70502, -LL: 3.66885, prior: 0.83573, aleatoric unc.: 9.79123\n", - "Epoch 282/500 total: 3.70405, -LL: 3.63700, prior: 0.83748, aleatoric unc.: 9.78283\n", - "Epoch 283/500 total: 3.70889, -LL: 3.63902, prior: 0.83531, aleatoric unc.: 9.78254\n", - "Epoch 284/500 total: 3.71741, -LL: 3.60456, prior: 0.83570, aleatoric unc.: 9.80172\n", - "Epoch 285/500 total: 3.71138, -LL: 3.68161, prior: 0.83478, aleatoric unc.: 9.80546\n", - "Epoch 286/500 total: 3.70675, -LL: 3.59507, prior: 0.83560, aleatoric unc.: 9.80310\n", - "Epoch 287/500 total: 3.70698, -LL: 3.61376, prior: 0.83594, aleatoric unc.: 9.79633\n", - "Epoch 288/500 total: 3.70635, -LL: 3.60290, prior: 0.83656, aleatoric unc.: 9.78862\n", - "Epoch 289/500 total: 3.71560, -LL: 3.64837, prior: 0.83419, aleatoric unc.: 9.80237\n", - "Epoch 290/500 total: 3.70476, -LL: 3.65473, prior: 0.83240, aleatoric unc.: 9.79643\n", - "Epoch 291/500 total: 3.70503, -LL: 3.67415, prior: 0.83116, aleatoric unc.: 9.78742\n" + "Epoch 194/500 total: 3.74560, -LL: 3.82039, prior: 0.87088, aleatoric unc.: 10.13949\n", + "Epoch 195/500 total: 3.74263, -LL: 3.82117, prior: 0.87204, aleatoric unc.: 10.13703\n", + "Epoch 196/500 total: 3.73787, -LL: 3.82781, prior: 0.87220, aleatoric unc.: 10.12694\n", + "Epoch 197/500 total: 3.73958, -LL: 3.82228, prior: 0.87277, aleatoric unc.: 10.12465\n", + "Epoch 198/500 total: 3.73709, -LL: 3.86563, prior: 0.87002, aleatoric unc.: 10.10822\n", + "Epoch 199/500 total: 3.73462, -LL: 3.81377, prior: 0.87348, aleatoric unc.: 10.10007\n", + "Epoch 200/500 total: 3.74196, -LL: 3.83315, prior: 0.87177, aleatoric unc.: 10.10149\n", + "Epoch 201/500 total: 3.74295, -LL: 3.82900, prior: 0.86735, aleatoric unc.: 10.11109\n", + "Epoch 202/500 total: 3.74102, -LL: 3.84751, prior: 0.87283, aleatoric unc.: 10.11312\n", + "Epoch 203/500 total: 3.73415, -LL: 3.82106, prior: 0.87166, aleatoric unc.: 10.09795\n", + "Epoch 204/500 total: 3.74028, -LL: 3.80506, prior: 0.86942, aleatoric unc.: 10.10092\n", + "Epoch 205/500 total: 3.74091, -LL: 3.87411, prior: 0.87070, aleatoric unc.: 10.10217\n", + "Epoch 206/500 total: 3.73768, -LL: 3.83774, prior: 0.86826, aleatoric unc.: 10.09931\n", + "Epoch 207/500 total: 3.73887, -LL: 3.80833, prior: 0.87087, aleatoric unc.: 10.09679\n", + "Epoch 208/500 total: 3.74039, -LL: 3.84832, prior: 0.87311, aleatoric unc.: 10.10020\n", + "Epoch 209/500 total: 3.72806, -LL: 3.84503, prior: 0.87395, aleatoric unc.: 10.07768\n", + "Epoch 210/500 total: 3.73440, -LL: 3.82243, prior: 0.87101, aleatoric unc.: 10.07020\n", + "Epoch 211/500 total: 3.73633, -LL: 3.81108, prior: 0.86629, aleatoric unc.: 10.06764\n", + "Epoch 212/500 total: 3.73923, -LL: 3.83664, prior: 0.86599, aleatoric unc.: 10.07389\n", + "Epoch 213/500 total: 3.73807, -LL: 3.84422, prior: 0.86756, aleatoric unc.: 10.07313\n", + "Epoch 214/500 total: 3.73945, -LL: 3.83458, prior: 0.86490, aleatoric unc.: 10.08496\n", + "Epoch 215/500 total: 3.74090, -LL: 3.82905, prior: 0.86707, aleatoric unc.: 10.09087\n", + "Epoch 216/500 total: 3.73818, -LL: 3.84171, prior: 0.86245, aleatoric unc.: 10.09037\n", + "Epoch 217/500 total: 3.74622, -LL: 3.84954, prior: 0.86237, aleatoric unc.: 10.10379\n", + "Epoch 218/500 total: 3.74220, -LL: 3.82079, prior: 0.86418, aleatoric unc.: 10.11133\n", + "Epoch 219/500 total: 3.74040, -LL: 3.85974, prior: 0.86777, aleatoric unc.: 10.11192\n", + "Epoch 220/500 total: 3.73723, -LL: 3.84683, prior: 0.86470, aleatoric unc.: 10.10319\n", + "Epoch 221/500 total: 3.73823, -LL: 3.85080, prior: 0.86649, aleatoric unc.: 10.10033\n", + "Epoch 222/500 total: 3.74458, -LL: 3.85009, prior: 0.86799, aleatoric unc.: 10.11421\n", + "Epoch 223/500 total: 3.72804, -LL: 3.82770, prior: 0.86696, aleatoric unc.: 10.08886\n", + "Epoch 224/500 total: 3.73275, -LL: 3.85922, prior: 0.86889, aleatoric unc.: 10.07470\n", + "Epoch 225/500 total: 3.73947, -LL: 3.85123, prior: 0.86994, aleatoric unc.: 10.07797\n", + "Epoch 226/500 total: 3.73466, -LL: 3.83908, prior: 0.86836, aleatoric unc.: 10.07260\n", + "Epoch 227/500 total: 3.74633, -LL: 3.85449, prior: 0.87059, aleatoric unc.: 10.09478\n", + "Epoch 228/500 total: 3.73569, -LL: 3.82477, prior: 0.87201, aleatoric unc.: 10.08870\n", + "Epoch 229/500 total: 3.73087, -LL: 3.84901, prior: 0.86998, aleatoric unc.: 10.07468\n", + "Epoch 230/500 total: 3.73849, -LL: 3.85777, prior: 0.86937, aleatoric unc.: 10.07428\n", + "Epoch 231/500 total: 3.73356, -LL: 3.85047, prior: 0.86571, aleatoric unc.: 10.06948\n", + "Epoch 232/500 total: 3.74225, -LL: 3.82129, prior: 0.86677, aleatoric unc.: 10.08225\n", + "Epoch 233/500 total: 3.73858, -LL: 3.83511, prior: 0.87041, aleatoric unc.: 10.08435\n", + "Epoch 234/500 total: 3.73545, -LL: 3.84898, prior: 0.87459, aleatoric unc.: 10.07925\n", + "Epoch 235/500 total: 3.74321, -LL: 3.87172, prior: 0.88229, aleatoric unc.: 10.08612\n", + "Epoch 236/500 total: 3.73258, -LL: 3.83945, prior: 0.88139, aleatoric unc.: 10.07778\n", + "Epoch 237/500 total: 3.73088, -LL: 3.85592, prior: 0.88219, aleatoric unc.: 10.06729\n", + "Epoch 238/500 total: 3.72690, -LL: 3.84330, prior: 0.88206, aleatoric unc.: 10.04798\n", + "Epoch 239/500 total: 3.72471, -LL: 3.81567, prior: 0.87896, aleatoric unc.: 10.02770\n", + "Epoch 240/500 total: 3.73120, -LL: 3.84921, prior: 0.87845, aleatoric unc.: 10.02429\n", + "Epoch 241/500 total: 3.73744, -LL: 3.84474, prior: 0.87716, aleatoric unc.: 10.02944\n", + "Epoch 242/500 total: 3.73518, -LL: 3.85295, prior: 0.87562, aleatoric unc.: 10.04032\n", + "Epoch 243/500 total: 3.73957, -LL: 3.83003, prior: 0.87569, aleatoric unc.: 10.05301\n", + "Epoch 244/500 total: 3.72330, -LL: 3.79862, prior: 0.87359, aleatoric unc.: 10.03373\n", + "Epoch 245/500 total: 3.73717, -LL: 3.84251, prior: 0.87580, aleatoric unc.: 10.03952\n", + "Epoch 246/500 total: 3.73337, -LL: 3.84113, prior: 0.87794, aleatoric unc.: 10.03982\n", + "Epoch 247/500 total: 3.73732, -LL: 3.82673, prior: 0.87200, aleatoric unc.: 10.04777\n", + "Epoch 248/500 total: 3.73092, -LL: 3.84884, prior: 0.87618, aleatoric unc.: 10.03941\n", + "Epoch 249/500 total: 3.73682, -LL: 3.83811, prior: 0.87866, aleatoric unc.: 10.04432\n", + "Epoch 250/500 total: 3.73329, -LL: 3.84938, prior: 0.87504, aleatoric unc.: 10.04439\n", + "Epoch 251/500 total: 3.72405, -LL: 3.83273, prior: 0.87539, aleatoric unc.: 10.02378\n", + "Epoch 252/500 total: 3.73673, -LL: 3.83746, prior: 0.87136, aleatoric unc.: 10.03440\n", + "Epoch 253/500 total: 3.73512, -LL: 3.85179, prior: 0.87069, aleatoric unc.: 10.03872\n", + "Epoch 254/500 total: 3.74583, -LL: 3.86775, prior: 0.87206, aleatoric unc.: 10.06437\n", + "Epoch 255/500 total: 3.73648, -LL: 3.82828, prior: 0.87207, aleatoric unc.: 10.07062\n", + "Epoch 256/500 total: 3.74652, -LL: 3.86064, prior: 0.87944, aleatoric unc.: 10.08661\n", + "Epoch 257/500 total: 3.74674, -LL: 3.83243, prior: 0.87490, aleatoric unc.: 10.10284\n", + "Epoch 258/500 total: 3.73108, -LL: 3.80533, prior: 0.88290, aleatoric unc.: 10.08756\n", + "Epoch 259/500 total: 3.73936, -LL: 3.82145, prior: 0.88110, aleatoric unc.: 10.08701\n", + "Epoch 260/500 total: 3.74065, -LL: 3.84406, prior: 0.88456, aleatoric unc.: 10.09371\n", + "Epoch 261/500 total: 3.72781, -LL: 3.85403, prior: 0.88144, aleatoric unc.: 10.07256\n", + "Epoch 262/500 total: 3.73517, -LL: 3.84944, prior: 0.88410, aleatoric unc.: 10.06823\n", + "Epoch 263/500 total: 3.72663, -LL: 3.82933, prior: 0.88237, aleatoric unc.: 10.04667\n", + "Epoch 264/500 total: 3.73305, -LL: 3.84147, prior: 0.87848, aleatoric unc.: 10.04373\n", + "Epoch 265/500 total: 3.74472, -LL: 3.86220, prior: 0.87989, aleatoric unc.: 10.06395\n", + "Epoch 266/500 total: 3.74537, -LL: 3.81982, prior: 0.87981, aleatoric unc.: 10.08481\n", + "Epoch 267/500 total: 3.73193, -LL: 3.81571, prior: 0.87682, aleatoric unc.: 10.07143\n", + "Epoch 268/500 total: 3.73677, -LL: 3.84343, prior: 0.87995, aleatoric unc.: 10.07501\n", + "Epoch 269/500 total: 3.73038, -LL: 3.83264, prior: 0.88027, aleatoric unc.: 10.05903\n", + "Epoch 270/500 total: 3.73205, -LL: 3.81584, prior: 0.87711, aleatoric unc.: 10.05225\n", + "Epoch 271/500 total: 3.72595, -LL: 3.82210, prior: 0.88014, aleatoric unc.: 10.03504\n", + "Epoch 272/500 total: 3.73350, -LL: 3.82732, prior: 0.87685, aleatoric unc.: 10.03423\n", + "Epoch 273/500 total: 3.73925, -LL: 3.81784, prior: 0.87958, aleatoric unc.: 10.04436\n", + "Epoch 274/500 total: 3.73767, -LL: 3.79338, prior: 0.88357, aleatoric unc.: 10.05611\n", + "Epoch 275/500 total: 3.74194, -LL: 3.84523, prior: 0.88517, aleatoric unc.: 10.06982\n", + "Epoch 276/500 total: 3.74030, -LL: 3.83185, prior: 0.88759, aleatoric unc.: 10.07730\n", + "Epoch 277/500 total: 3.73708, -LL: 3.83321, prior: 0.88411, aleatoric unc.: 10.07823\n", + "Epoch 278/500 total: 3.73453, -LL: 3.82810, prior: 0.88412, aleatoric unc.: 10.07381\n", + "Epoch 279/500 total: 3.72974, -LL: 3.84434, prior: 0.88644, aleatoric unc.: 10.05808\n", + "Epoch 280/500 total: 3.73375, -LL: 3.84109, prior: 0.88328, aleatoric unc.: 10.05523\n", + "Epoch 281/500 total: 3.73087, -LL: 3.82218, prior: 0.88493, aleatoric unc.: 10.04799\n", + "Epoch 282/500 total: 3.73445, -LL: 3.84461, prior: 0.88107, aleatoric unc.: 10.04239\n", + "Epoch 283/500 total: 3.74024, -LL: 3.85273, prior: 0.87883, aleatoric unc.: 10.05470\n", + "Epoch 284/500 total: 3.73575, -LL: 3.84200, prior: 0.88010, aleatoric unc.: 10.05948\n", + "Epoch 285/500 total: 3.73147, -LL: 3.84219, prior: 0.87924, aleatoric unc.: 10.05173\n", + "Epoch 286/500 total: 3.72579, -LL: 3.83094, prior: 0.87940, aleatoric unc.: 10.03240\n", + "Epoch 287/500 total: 3.72818, -LL: 3.82885, prior: 0.87679, aleatoric unc.: 10.02026\n", + "Epoch 288/500 total: 3.73522, -LL: 3.83685, prior: 0.87990, aleatoric unc.: 10.02844\n", + "Epoch 289/500 total: 3.74124, -LL: 3.85903, prior: 0.88043, aleatoric unc.: 10.04685\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 292/500 total: 3.69757, -LL: 3.58311, prior: 0.82735, aleatoric unc.: 9.77046\n", - "Epoch 293/500 total: 3.70371, -LL: 3.64588, prior: 0.82783, aleatoric unc.: 9.76296\n", - "Epoch 294/500 total: 3.70312, -LL: 3.62281, prior: 0.83122, aleatoric unc.: 9.76033\n", - "Epoch 295/500 total: 3.70929, -LL: 3.64419, prior: 0.83021, aleatoric unc.: 9.76300\n", - "Epoch 296/500 total: 3.70208, -LL: 3.64338, prior: 0.83049, aleatoric unc.: 9.76104\n", - "Epoch 297/500 total: 3.70218, -LL: 3.61723, prior: 0.83026, aleatoric unc.: 9.75453\n", - "Epoch 298/500 total: 3.70252, -LL: 3.64148, prior: 0.83147, aleatoric unc.: 9.74977\n", - "Epoch 299/500 total: 3.70108, -LL: 3.68672, prior: 0.83107, aleatoric unc.: 9.74179\n", - "Epoch 300/500 total: 3.70634, -LL: 3.67040, prior: 0.82994, aleatoric unc.: 9.75107\n", - "Epoch 301/500 total: 3.69355, -LL: 3.60485, prior: 0.82971, aleatoric unc.: 9.73195\n", - "Epoch 302/500 total: 3.70322, -LL: 3.63580, prior: 0.83051, aleatoric unc.: 9.73157\n", - "Epoch 303/500 total: 3.70026, -LL: 3.70596, prior: 0.82929, aleatoric unc.: 9.72599\n", - "Epoch 304/500 total: 3.70397, -LL: 3.65822, prior: 0.83103, aleatoric unc.: 9.72934\n", - "Epoch 305/500 total: 3.70864, -LL: 3.56731, prior: 0.83211, aleatoric unc.: 9.74369\n", - "Epoch 306/500 total: 3.70876, -LL: 3.59099, prior: 0.83176, aleatoric unc.: 9.75274\n", - "Epoch 307/500 total: 3.70129, -LL: 3.63883, prior: 0.82881, aleatoric unc.: 9.74951\n", - "Epoch 308/500 total: 3.70983, -LL: 3.63237, prior: 0.82886, aleatoric unc.: 9.75686\n", - "Epoch 309/500 total: 3.70741, -LL: 3.60030, prior: 0.83055, aleatoric unc.: 9.76448\n", - "Epoch 310/500 total: 3.70709, -LL: 3.59931, prior: 0.83434, aleatoric unc.: 9.76765\n", - "Epoch 311/500 total: 3.69747, -LL: 3.63639, prior: 0.83337, aleatoric unc.: 9.74833\n", - "Epoch 312/500 total: 3.71152, -LL: 3.62594, prior: 0.83660, aleatoric unc.: 9.76304\n", - "Epoch 313/500 total: 3.70416, -LL: 3.64673, prior: 0.83517, aleatoric unc.: 9.76183\n", - "Epoch 314/500 total: 3.69919, -LL: 3.58278, prior: 0.83536, aleatoric unc.: 9.75043\n", - "Epoch 315/500 total: 3.70675, -LL: 3.60159, prior: 0.83583, aleatoric unc.: 9.75515\n", - "Epoch 316/500 total: 3.70445, -LL: 3.64417, prior: 0.83832, aleatoric unc.: 9.75135\n", - "Epoch 317/500 total: 3.70155, -LL: 3.64957, prior: 0.83247, aleatoric unc.: 9.74824\n", - "Epoch 318/500 total: 3.70251, -LL: 3.61336, prior: 0.83256, aleatoric unc.: 9.74411\n", - "Epoch 319/500 total: 3.70864, -LL: 3.61781, prior: 0.83391, aleatoric unc.: 9.75591\n", - "Epoch 320/500 total: 3.69483, -LL: 3.62589, prior: 0.83023, aleatoric unc.: 9.73673\n", - "Epoch 321/500 total: 3.70477, -LL: 3.65918, prior: 0.83147, aleatoric unc.: 9.73801\n", - "Epoch 322/500 total: 3.71006, -LL: 3.68025, prior: 0.83056, aleatoric unc.: 9.75054\n", - "Epoch 323/500 total: 3.70612, -LL: 3.63204, prior: 0.82882, aleatoric unc.: 9.75776\n", - "Epoch 324/500 total: 3.70220, -LL: 3.63502, prior: 0.82885, aleatoric unc.: 9.75287\n", - "Epoch 325/500 total: 3.70991, -LL: 3.67634, prior: 0.82949, aleatoric unc.: 9.75935\n", - "Epoch 326/500 total: 3.70031, -LL: 3.67920, prior: 0.83210, aleatoric unc.: 9.74968\n", - "Epoch 327/500 total: 3.71157, -LL: 3.65393, prior: 0.83033, aleatoric unc.: 9.76567\n", - "Epoch 328/500 total: 3.70492, -LL: 3.64040, prior: 0.82936, aleatoric unc.: 9.76520\n", - "Epoch 329/500 total: 3.70176, -LL: 3.60859, prior: 0.83023, aleatoric unc.: 9.75874\n", - "Epoch 330/500 total: 3.70091, -LL: 3.61544, prior: 0.83437, aleatoric unc.: 9.74670\n", - "Epoch 331/500 total: 3.70303, -LL: 3.65750, prior: 0.83323, aleatoric unc.: 9.74530\n", - "Epoch 332/500 total: 3.70879, -LL: 3.59750, prior: 0.82948, aleatoric unc.: 9.75656\n", - "Epoch 333/500 total: 3.70656, -LL: 3.65474, prior: 0.82868, aleatoric unc.: 9.76092\n", - "Epoch 334/500 total: 3.69965, -LL: 3.63443, prior: 0.83218, aleatoric unc.: 9.74758\n", - "Epoch 335/500 total: 3.70277, -LL: 3.63288, prior: 0.83110, aleatoric unc.: 9.74762\n", - "Epoch 336/500 total: 3.70189, -LL: 3.66539, prior: 0.83201, aleatoric unc.: 9.74239\n", - "Epoch 337/500 total: 3.69537, -LL: 3.65592, prior: 0.82954, aleatoric unc.: 9.72731\n", - "Epoch 338/500 total: 3.69802, -LL: 3.60642, prior: 0.82822, aleatoric unc.: 9.72182\n", - "Epoch 339/500 total: 3.71005, -LL: 3.67063, prior: 0.82849, aleatoric unc.: 9.73660\n", - "Epoch 340/500 total: 3.70104, -LL: 3.60019, prior: 0.83237, aleatoric unc.: 9.73406\n", - "Epoch 341/500 total: 3.70567, -LL: 3.62259, prior: 0.83000, aleatoric unc.: 9.74208\n", - "Epoch 342/500 total: 3.70195, -LL: 3.65865, prior: 0.82917, aleatoric unc.: 9.73657\n", - "Epoch 343/500 total: 3.70123, -LL: 3.62708, prior: 0.83080, aleatoric unc.: 9.73533\n", - "Epoch 344/500 total: 3.70437, -LL: 3.61342, prior: 0.82911, aleatoric unc.: 9.73596\n", - "Epoch 345/500 total: 3.70366, -LL: 3.60328, prior: 0.83045, aleatoric unc.: 9.74204\n", - "Epoch 346/500 total: 3.70356, -LL: 3.62689, prior: 0.83147, aleatoric unc.: 9.73873\n", - "Epoch 347/500 total: 3.69629, -LL: 3.64269, prior: 0.82647, aleatoric unc.: 9.72898\n", - "Epoch 348/500 total: 3.69996, -LL: 3.65626, prior: 0.82871, aleatoric unc.: 9.72221\n", - "Epoch 349/500 total: 3.70417, -LL: 3.63705, prior: 0.82662, aleatoric unc.: 9.72849\n", - "Epoch 350/500 total: 3.70177, -LL: 3.65497, prior: 0.82323, aleatoric unc.: 9.72953\n", - "Epoch 351/500 total: 3.70254, -LL: 3.67832, prior: 0.82772, aleatoric unc.: 9.73065\n", - "Epoch 352/500 total: 3.70162, -LL: 3.63990, prior: 0.83119, aleatoric unc.: 9.72532\n", - "Epoch 353/500 total: 3.70578, -LL: 3.60402, prior: 0.83188, aleatoric unc.: 9.73709\n", - "Epoch 354/500 total: 3.70272, -LL: 3.62950, prior: 0.82930, aleatoric unc.: 9.73685\n", - "Epoch 355/500 total: 3.70043, -LL: 3.62746, prior: 0.82995, aleatoric unc.: 9.73355\n", - "Epoch 356/500 total: 3.69946, -LL: 3.61545, prior: 0.83072, aleatoric unc.: 9.72545\n", - "Epoch 357/500 total: 3.70071, -LL: 3.67021, prior: 0.83015, aleatoric unc.: 9.72398\n", - "Epoch 358/500 total: 3.70548, -LL: 3.63582, prior: 0.82771, aleatoric unc.: 9.73216\n", - "Epoch 359/500 total: 3.69811, -LL: 3.60202, prior: 0.82758, aleatoric unc.: 9.72475\n", - "Epoch 360/500 total: 3.69686, -LL: 3.64973, prior: 0.82581, aleatoric unc.: 9.71591\n", - "Epoch 361/500 total: 3.70717, -LL: 3.65881, prior: 0.82941, aleatoric unc.: 9.72619\n", - "Epoch 362/500 total: 3.70385, -LL: 3.65302, prior: 0.82832, aleatoric unc.: 9.73025\n", - "Epoch 363/500 total: 3.70743, -LL: 3.64934, prior: 0.82749, aleatoric unc.: 9.74160\n", - "Epoch 364/500 total: 3.70326, -LL: 3.58934, prior: 0.82753, aleatoric unc.: 9.74316\n", - "Epoch 365/500 total: 3.70402, -LL: 3.62665, prior: 0.82742, aleatoric unc.: 9.74414\n", - "Epoch 366/500 total: 3.70585, -LL: 3.68176, prior: 0.82632, aleatoric unc.: 9.74891\n", - "Epoch 367/500 total: 3.70568, -LL: 3.62934, prior: 0.82647, aleatoric unc.: 9.75294\n", - "Epoch 368/500 total: 3.69735, -LL: 3.63394, prior: 0.82584, aleatoric unc.: 9.73833\n", - "Epoch 369/500 total: 3.70665, -LL: 3.60627, prior: 0.82508, aleatoric unc.: 9.74506\n", - "Epoch 370/500 total: 3.70283, -LL: 3.64191, prior: 0.82496, aleatoric unc.: 9.74463\n", - "Epoch 371/500 total: 3.69990, -LL: 3.63656, prior: 0.82942, aleatoric unc.: 9.73714\n", - "Epoch 372/500 total: 3.70170, -LL: 3.65815, prior: 0.82560, aleatoric unc.: 9.73377\n", - "Epoch 373/500 total: 3.70135, -LL: 3.66173, prior: 0.82487, aleatoric unc.: 9.73149\n", - "Epoch 374/500 total: 3.70539, -LL: 3.60903, prior: 0.82451, aleatoric unc.: 9.74010\n", - "Epoch 375/500 total: 3.69980, -LL: 3.63325, prior: 0.82713, aleatoric unc.: 9.73296\n", - "Epoch 376/500 total: 3.69921, -LL: 3.60023, prior: 0.82868, aleatoric unc.: 9.72724\n", - "Epoch 377/500 total: 3.69869, -LL: 3.66106, prior: 0.82731, aleatoric unc.: 9.72021\n", - "Epoch 378/500 total: 3.69702, -LL: 3.62505, prior: 0.82719, aleatoric unc.: 9.71488\n", - "Epoch 379/500 total: 3.69819, -LL: 3.60678, prior: 0.82717, aleatoric unc.: 9.71085\n", - "Epoch 380/500 total: 3.69677, -LL: 3.62688, prior: 0.82746, aleatoric unc.: 9.70245\n", - "Epoch 381/500 total: 3.70501, -LL: 3.60229, prior: 0.82751, aleatoric unc.: 9.71364\n", - "Epoch 382/500 total: 3.69922, -LL: 3.57855, prior: 0.83100, aleatoric unc.: 9.71044\n", - "Epoch 383/500 total: 3.69865, -LL: 3.63590, prior: 0.82836, aleatoric unc.: 9.70802\n", - "Epoch 384/500 total: 3.70344, -LL: 3.59795, prior: 0.82755, aleatoric unc.: 9.71421\n", - "Epoch 385/500 total: 3.70533, -LL: 3.64661, prior: 0.82573, aleatoric unc.: 9.72334\n", - "Epoch 386/500 total: 3.70198, -LL: 3.61014, prior: 0.82611, aleatoric unc.: 9.72450\n", - "Epoch 387/500 total: 3.70406, -LL: 3.64215, prior: 0.82555, aleatoric unc.: 9.73054\n", - "Epoch 388/500 total: 3.70490, -LL: 3.63847, prior: 0.82456, aleatoric unc.: 9.73703\n" + "Epoch 290/500 total: 3.73078, -LL: 3.82290, prior: 0.88317, aleatoric unc.: 10.03864\n", + "Epoch 291/500 total: 3.73531, -LL: 3.84319, prior: 0.88349, aleatoric unc.: 10.04144\n", + "Epoch 292/500 total: 3.73754, -LL: 3.81090, prior: 0.87882, aleatoric unc.: 10.05152\n", + "Epoch 293/500 total: 3.73974, -LL: 3.84554, prior: 0.87938, aleatoric unc.: 10.05891\n", + "Epoch 294/500 total: 3.73681, -LL: 3.83876, prior: 0.88027, aleatoric unc.: 10.06562\n", + "Epoch 295/500 total: 3.73704, -LL: 3.83492, prior: 0.87828, aleatoric unc.: 10.06698\n", + "Epoch 296/500 total: 3.73231, -LL: 3.82193, prior: 0.87644, aleatoric unc.: 10.05933\n", + "Epoch 297/500 total: 3.72739, -LL: 3.79936, prior: 0.87980, aleatoric unc.: 10.04408\n", + "Epoch 298/500 total: 3.73196, -LL: 3.83840, prior: 0.88188, aleatoric unc.: 10.03749\n", + "Epoch 299/500 total: 3.73376, -LL: 3.84997, prior: 0.88427, aleatoric unc.: 10.03885\n", + "Epoch 300/500 total: 3.73323, -LL: 3.80997, prior: 0.88066, aleatoric unc.: 10.03964\n", + "Epoch 301/500 total: 3.72601, -LL: 3.83434, prior: 0.88612, aleatoric unc.: 10.02257\n", + "Epoch 302/500 total: 3.73202, -LL: 3.81852, prior: 0.88779, aleatoric unc.: 10.02244\n", + "Epoch 303/500 total: 3.73000, -LL: 3.83370, prior: 0.88513, aleatoric unc.: 10.01924\n", + "Epoch 304/500 total: 3.72759, -LL: 3.82018, prior: 0.88922, aleatoric unc.: 10.01199\n", + "Epoch 305/500 total: 3.73553, -LL: 3.83870, prior: 0.88858, aleatoric unc.: 10.01710\n", + "Epoch 306/500 total: 3.73251, -LL: 3.82719, prior: 0.88847, aleatoric unc.: 10.02079\n", + "Epoch 307/500 total: 3.73815, -LL: 3.82262, prior: 0.88536, aleatoric unc.: 10.03512\n", + "Epoch 308/500 total: 3.73279, -LL: 3.82678, prior: 0.88497, aleatoric unc.: 10.03456\n", + "Epoch 309/500 total: 3.73932, -LL: 3.84826, prior: 0.88323, aleatoric unc.: 10.04989\n", + "Epoch 310/500 total: 3.73145, -LL: 3.83595, prior: 0.88123, aleatoric unc.: 10.04353\n", + "Epoch 311/500 total: 3.73321, -LL: 3.83717, prior: 0.88390, aleatoric unc.: 10.04142\n", + "Epoch 312/500 total: 3.72959, -LL: 3.83596, prior: 0.88110, aleatoric unc.: 10.03537\n", + "Epoch 313/500 total: 3.73188, -LL: 3.84000, prior: 0.88260, aleatoric unc.: 10.03028\n", + "Epoch 314/500 total: 3.74220, -LL: 3.81744, prior: 0.88203, aleatoric unc.: 10.05165\n", + "Epoch 315/500 total: 3.73042, -LL: 3.82799, prior: 0.88232, aleatoric unc.: 10.04013\n", + "Epoch 316/500 total: 3.72984, -LL: 3.85550, prior: 0.88176, aleatoric unc.: 10.03514\n", + "Epoch 317/500 total: 3.73183, -LL: 3.81656, prior: 0.87717, aleatoric unc.: 10.03121\n", + "Epoch 318/500 total: 3.73261, -LL: 3.85981, prior: 0.87807, aleatoric unc.: 10.03441\n", + "Epoch 319/500 total: 3.73095, -LL: 3.82401, prior: 0.87428, aleatoric unc.: 10.02800\n", + "Epoch 320/500 total: 3.73588, -LL: 3.82786, prior: 0.87595, aleatoric unc.: 10.03349\n", + "Epoch 321/500 total: 3.73572, -LL: 3.84833, prior: 0.87874, aleatoric unc.: 10.04079\n", + "Epoch 322/500 total: 3.73743, -LL: 3.83180, prior: 0.88097, aleatoric unc.: 10.04579\n", + "Epoch 323/500 total: 3.73886, -LL: 3.86098, prior: 0.88275, aleatoric unc.: 10.05595\n", + "Epoch 324/500 total: 3.73219, -LL: 3.82601, prior: 0.88648, aleatoric unc.: 10.05257\n", + "Epoch 325/500 total: 3.73201, -LL: 3.82155, prior: 0.88320, aleatoric unc.: 10.04786\n", + "Epoch 326/500 total: 3.73172, -LL: 3.81521, prior: 0.88657, aleatoric unc.: 10.04028\n", + "Epoch 327/500 total: 3.73528, -LL: 3.80903, prior: 0.88422, aleatoric unc.: 10.04721\n", + "Epoch 328/500 total: 3.72830, -LL: 3.84799, prior: 0.88342, aleatoric unc.: 10.03386\n", + "Epoch 329/500 total: 3.72787, -LL: 3.82583, prior: 0.87974, aleatoric unc.: 10.02465\n", + "Epoch 330/500 total: 3.73035, -LL: 3.84009, prior: 0.87974, aleatoric unc.: 10.01949\n", + "Epoch 331/500 total: 3.72952, -LL: 3.83119, prior: 0.88266, aleatoric unc.: 10.01468\n", + "Epoch 332/500 total: 3.73463, -LL: 3.83972, prior: 0.88579, aleatoric unc.: 10.02100\n", + "Epoch 333/500 total: 3.73573, -LL: 3.85132, prior: 0.88518, aleatoric unc.: 10.03044\n", + "Epoch 334/500 total: 3.73782, -LL: 3.83100, prior: 0.88682, aleatoric unc.: 10.03967\n", + "Epoch 335/500 total: 3.73350, -LL: 3.84184, prior: 0.88841, aleatoric unc.: 10.03893\n", + "Epoch 336/500 total: 3.73208, -LL: 3.83762, prior: 0.89050, aleatoric unc.: 10.03780\n", + "Epoch 337/500 total: 3.73019, -LL: 3.83957, prior: 0.89159, aleatoric unc.: 10.02703\n", + "Epoch 338/500 total: 3.73397, -LL: 3.84011, prior: 0.89324, aleatoric unc.: 10.03091\n", + "Epoch 339/500 total: 3.73350, -LL: 3.82932, prior: 0.89086, aleatoric unc.: 10.03356\n", + "Epoch 340/500 total: 3.72820, -LL: 3.82996, prior: 0.89210, aleatoric unc.: 10.02680\n", + "Epoch 341/500 total: 3.73196, -LL: 3.81454, prior: 0.89177, aleatoric unc.: 10.02168\n", + "Epoch 342/500 total: 3.73540, -LL: 3.82618, prior: 0.89100, aleatoric unc.: 10.02984\n", + "Epoch 343/500 total: 3.73078, -LL: 3.85091, prior: 0.89221, aleatoric unc.: 10.02542\n", + "Epoch 344/500 total: 3.73540, -LL: 3.83629, prior: 0.89025, aleatoric unc.: 10.03324\n", + "Epoch 345/500 total: 3.73057, -LL: 3.85112, prior: 0.89017, aleatoric unc.: 10.02916\n", + "Epoch 346/500 total: 3.73014, -LL: 3.83488, prior: 0.89049, aleatoric unc.: 10.02050\n", + "Epoch 347/500 total: 3.73608, -LL: 3.84264, prior: 0.89203, aleatoric unc.: 10.03130\n", + "Epoch 348/500 total: 3.73567, -LL: 3.84484, prior: 0.89498, aleatoric unc.: 10.03739\n", + "Epoch 349/500 total: 3.72357, -LL: 3.82079, prior: 0.89434, aleatoric unc.: 10.02024\n", + "Epoch 350/500 total: 3.73541, -LL: 3.84696, prior: 0.89677, aleatoric unc.: 10.02459\n", + "Epoch 351/500 total: 3.73969, -LL: 3.82401, prior: 0.89731, aleatoric unc.: 10.04085\n", + "Epoch 352/500 total: 3.73720, -LL: 3.82906, prior: 0.89721, aleatoric unc.: 10.04858\n", + "Epoch 353/500 total: 3.73829, -LL: 3.83458, prior: 0.89393, aleatoric unc.: 10.05570\n", + "Epoch 354/500 total: 3.73489, -LL: 3.81912, prior: 0.89696, aleatoric unc.: 10.05356\n", + "Epoch 355/500 total: 3.73196, -LL: 3.82104, prior: 0.89589, aleatoric unc.: 10.04821\n", + "Epoch 356/500 total: 3.72923, -LL: 3.83192, prior: 0.89528, aleatoric unc.: 10.04053\n", + "Epoch 357/500 total: 3.73127, -LL: 3.84338, prior: 0.89679, aleatoric unc.: 10.03265\n", + "Epoch 358/500 total: 3.72917, -LL: 3.86333, prior: 0.89251, aleatoric unc.: 10.02645\n", + "Epoch 359/500 total: 3.73414, -LL: 3.84732, prior: 0.89364, aleatoric unc.: 10.02898\n", + "Epoch 360/500 total: 3.73101, -LL: 3.83801, prior: 0.89542, aleatoric unc.: 10.02329\n", + "Epoch 361/500 total: 3.73287, -LL: 3.83443, prior: 0.89314, aleatoric unc.: 10.02719\n", + "Epoch 362/500 total: 3.73435, -LL: 3.86091, prior: 0.89526, aleatoric unc.: 10.02911\n", + "Epoch 363/500 total: 3.73365, -LL: 3.82555, prior: 0.89690, aleatoric unc.: 10.03178\n", + "Epoch 364/500 total: 3.72439, -LL: 3.86389, prior: 0.89553, aleatoric unc.: 10.01470\n", + "Epoch 365/500 total: 3.72976, -LL: 3.83215, prior: 0.89460, aleatoric unc.: 10.01259\n", + "Epoch 366/500 total: 3.73202, -LL: 3.85007, prior: 0.89171, aleatoric unc.: 10.01205\n", + "Epoch 367/500 total: 3.73954, -LL: 3.83204, prior: 0.89550, aleatoric unc.: 10.03099\n", + "Epoch 368/500 total: 3.72965, -LL: 3.82549, prior: 0.89351, aleatoric unc.: 10.02582\n", + "Epoch 369/500 total: 3.73506, -LL: 3.82564, prior: 0.89420, aleatoric unc.: 10.02934\n", + "Epoch 370/500 total: 3.72704, -LL: 3.83145, prior: 0.89169, aleatoric unc.: 10.02203\n", + "Epoch 371/500 total: 3.73389, -LL: 3.81709, prior: 0.89459, aleatoric unc.: 10.02458\n", + "Epoch 372/500 total: 3.73686, -LL: 3.81059, prior: 0.89624, aleatoric unc.: 10.03357\n", + "Epoch 373/500 total: 3.73560, -LL: 3.82662, prior: 0.89119, aleatoric unc.: 10.03854\n", + "Epoch 374/500 total: 3.73360, -LL: 3.84537, prior: 0.89562, aleatoric unc.: 10.03877\n", + "Epoch 375/500 total: 3.73328, -LL: 3.82317, prior: 0.89219, aleatoric unc.: 10.03795\n", + "Epoch 376/500 total: 3.73026, -LL: 3.83765, prior: 0.88902, aleatoric unc.: 10.02962\n", + "Epoch 377/500 total: 3.73204, -LL: 3.83662, prior: 0.89147, aleatoric unc.: 10.02926\n", + "Epoch 378/500 total: 3.73036, -LL: 3.82936, prior: 0.89292, aleatoric unc.: 10.02385\n", + "Epoch 379/500 total: 3.72926, -LL: 3.82606, prior: 0.89050, aleatoric unc.: 10.02054\n", + "Epoch 380/500 total: 3.73048, -LL: 3.82632, prior: 0.89072, aleatoric unc.: 10.01658\n", + "Epoch 381/500 total: 3.72972, -LL: 3.83331, prior: 0.89171, aleatoric unc.: 10.01003\n", + "Epoch 382/500 total: 3.73252, -LL: 3.84965, prior: 0.88848, aleatoric unc.: 10.01669\n", + "Epoch 383/500 total: 3.72503, -LL: 3.85571, prior: 0.88730, aleatoric unc.: 10.00144\n", + "Epoch 384/500 total: 3.72739, -LL: 3.85552, prior: 0.88597, aleatoric unc.: 9.99612\n", + "Epoch 385/500 total: 3.73108, -LL: 3.83535, prior: 0.88979, aleatoric unc.: 9.99871\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 389/500 total: 3.69739, -LL: 3.60615, prior: 0.82374, aleatoric unc.: 9.72495\n", - "Epoch 390/500 total: 3.70646, -LL: 3.59768, prior: 0.82653, aleatoric unc.: 9.73402\n", - "Epoch 391/500 total: 3.69914, -LL: 3.65293, prior: 0.82449, aleatoric unc.: 9.72576\n", - "Epoch 392/500 total: 3.70214, -LL: 3.62112, prior: 0.82444, aleatoric unc.: 9.72820\n", - "Epoch 393/500 total: 3.70022, -LL: 3.57499, prior: 0.82906, aleatoric unc.: 9.72694\n", - "Epoch 394/500 total: 3.69050, -LL: 3.60771, prior: 0.82554, aleatoric unc.: 9.70561\n", - "Epoch 395/500 total: 3.69285, -LL: 3.68116, prior: 0.82755, aleatoric unc.: 9.69149\n", - "Epoch 396/500 total: 3.70537, -LL: 3.61828, prior: 0.82465, aleatoric unc.: 9.70394\n", - "Epoch 397/500 total: 3.69655, -LL: 3.61455, prior: 0.82317, aleatoric unc.: 9.70052\n", - "Epoch 398/500 total: 3.70530, -LL: 3.62109, prior: 0.82612, aleatoric unc.: 9.71183\n", - "Epoch 399/500 total: 3.70086, -LL: 3.61040, prior: 0.82481, aleatoric unc.: 9.71438\n", - "Epoch 400/500 total: 3.70211, -LL: 3.64791, prior: 0.82474, aleatoric unc.: 9.71751\n", - "Epoch 401/500 total: 3.70449, -LL: 3.66220, prior: 0.82469, aleatoric unc.: 9.72471\n", - "Epoch 402/500 total: 3.69559, -LL: 3.68538, prior: 0.82521, aleatoric unc.: 9.71284\n", - "Epoch 403/500 total: 3.70262, -LL: 3.61727, prior: 0.82641, aleatoric unc.: 9.71845\n", - "Epoch 404/500 total: 3.70541, -LL: 3.65800, prior: 0.82866, aleatoric unc.: 9.72628\n", - "Epoch 405/500 total: 3.70215, -LL: 3.66135, prior: 0.82954, aleatoric unc.: 9.72948\n", - "Epoch 406/500 total: 3.69729, -LL: 3.64724, prior: 0.82800, aleatoric unc.: 9.72026\n", - "Epoch 407/500 total: 3.69719, -LL: 3.63176, prior: 0.82775, aleatoric unc.: 9.71121\n", - "Epoch 408/500 total: 3.70596, -LL: 3.66872, prior: 0.82940, aleatoric unc.: 9.72126\n", - "Epoch 409/500 total: 3.70204, -LL: 3.63414, prior: 0.83020, aleatoric unc.: 9.72397\n", - "Epoch 410/500 total: 3.70021, -LL: 3.64946, prior: 0.83012, aleatoric unc.: 9.72245\n", - "Epoch 411/500 total: 3.69402, -LL: 3.61718, prior: 0.82774, aleatoric unc.: 9.70823\n", - "Epoch 412/500 total: 3.70567, -LL: 3.61743, prior: 0.82851, aleatoric unc.: 9.71849\n", - "Epoch 413/500 total: 3.70361, -LL: 3.64554, prior: 0.82617, aleatoric unc.: 9.72331\n", - "Epoch 414/500 total: 3.69468, -LL: 3.60278, prior: 0.82620, aleatoric unc.: 9.71184\n", - "Epoch 415/500 total: 3.70510, -LL: 3.64241, prior: 0.82747, aleatoric unc.: 9.72071\n", - "Epoch 416/500 total: 3.70178, -LL: 3.59014, prior: 0.83144, aleatoric unc.: 9.72354\n", - "Epoch 417/500 total: 3.69967, -LL: 3.63795, prior: 0.83206, aleatoric unc.: 9.71923\n", - "Epoch 418/500 total: 3.69828, -LL: 3.60308, prior: 0.82796, aleatoric unc.: 9.71243\n", - "Epoch 419/500 total: 3.70307, -LL: 3.66544, prior: 0.82524, aleatoric unc.: 9.71768\n", - "Epoch 420/500 total: 3.70183, -LL: 3.61180, prior: 0.82254, aleatoric unc.: 9.72192\n", - "Epoch 421/500 total: 3.69221, -LL: 3.63945, prior: 0.82239, aleatoric unc.: 9.70423\n", - "Epoch 422/500 total: 3.69980, -LL: 3.61604, prior: 0.82302, aleatoric unc.: 9.70583\n", - "Epoch 423/500 total: 3.69928, -LL: 3.63499, prior: 0.81947, aleatoric unc.: 9.70428\n", - "Epoch 424/500 total: 3.70064, -LL: 3.64438, prior: 0.82250, aleatoric unc.: 9.70499\n", - "Epoch 425/500 total: 3.69506, -LL: 3.61971, prior: 0.82166, aleatoric unc.: 9.69757\n", - "Epoch 426/500 total: 3.70398, -LL: 3.62597, prior: 0.82278, aleatoric unc.: 9.70802\n", - "Epoch 427/500 total: 3.70216, -LL: 3.65498, prior: 0.81911, aleatoric unc.: 9.71137\n", - "Epoch 428/500 total: 3.70190, -LL: 3.64064, prior: 0.81833, aleatoric unc.: 9.71579\n", - "Epoch 429/500 total: 3.70573, -LL: 3.66083, prior: 0.81893, aleatoric unc.: 9.72434\n", - "Epoch 430/500 total: 3.69885, -LL: 3.65177, prior: 0.82123, aleatoric unc.: 9.72031\n", - "Epoch 431/500 total: 3.70198, -LL: 3.67658, prior: 0.81868, aleatoric unc.: 9.72134\n", - "Epoch 432/500 total: 3.70692, -LL: 3.63311, prior: 0.81943, aleatoric unc.: 9.73138\n", - "Epoch 433/500 total: 3.70009, -LL: 3.59875, prior: 0.81951, aleatoric unc.: 9.72938\n", - "Epoch 434/500 total: 3.69864, -LL: 3.63859, prior: 0.82302, aleatoric unc.: 9.72290\n", - "Epoch 435/500 total: 3.69655, -LL: 3.66607, prior: 0.82137, aleatoric unc.: 9.71333\n", - "Epoch 436/500 total: 3.69973, -LL: 3.65163, prior: 0.81886, aleatoric unc.: 9.71366\n", - "Epoch 437/500 total: 3.69769, -LL: 3.68498, prior: 0.81805, aleatoric unc.: 9.70730\n", - "Epoch 438/500 total: 3.69672, -LL: 3.64131, prior: 0.81733, aleatoric unc.: 9.70155\n", - "Epoch 439/500 total: 3.69554, -LL: 3.62049, prior: 0.82319, aleatoric unc.: 9.69490\n", - "Epoch 440/500 total: 3.69749, -LL: 3.62081, prior: 0.82234, aleatoric unc.: 9.69433\n", - "Epoch 441/500 total: 3.70329, -LL: 3.59532, prior: 0.82169, aleatoric unc.: 9.70249\n", - "Epoch 442/500 total: 3.69808, -LL: 3.62759, prior: 0.82254, aleatoric unc.: 9.70274\n", - "Epoch 443/500 total: 3.70494, -LL: 3.65422, prior: 0.82270, aleatoric unc.: 9.71221\n", - "Epoch 444/500 total: 3.69976, -LL: 3.65673, prior: 0.82426, aleatoric unc.: 9.71188\n", - "Epoch 445/500 total: 3.70325, -LL: 3.64046, prior: 0.82422, aleatoric unc.: 9.71596\n", - "Epoch 446/500 total: 3.70594, -LL: 3.65127, prior: 0.82255, aleatoric unc.: 9.72795\n", - "Epoch 447/500 total: 3.70256, -LL: 3.65205, prior: 0.82299, aleatoric unc.: 9.72941\n", - "Epoch 448/500 total: 3.70255, -LL: 3.66160, prior: 0.82127, aleatoric unc.: 9.73019\n", - "Epoch 449/500 total: 3.70477, -LL: 3.65332, prior: 0.82186, aleatoric unc.: 9.73749\n", - "Epoch 450/500 total: 3.69821, -LL: 3.62343, prior: 0.82277, aleatoric unc.: 9.72872\n", - "Epoch 451/500 total: 3.69862, -LL: 3.61988, prior: 0.81971, aleatoric unc.: 9.72094\n", - "Epoch 452/500 total: 3.69956, -LL: 3.64692, prior: 0.82058, aleatoric unc.: 9.71754\n", - "Epoch 453/500 total: 3.68746, -LL: 3.61281, prior: 0.81960, aleatoric unc.: 9.69424\n", - "Epoch 454/500 total: 3.69136, -LL: 3.61534, prior: 0.82130, aleatoric unc.: 9.67839\n", - "Epoch 455/500 total: 3.70947, -LL: 3.63629, prior: 0.82276, aleatoric unc.: 9.70095\n", - "Epoch 456/500 total: 3.70455, -LL: 3.62145, prior: 0.82456, aleatoric unc.: 9.71287\n", - "Epoch 457/500 total: 3.69434, -LL: 3.64094, prior: 0.82408, aleatoric unc.: 9.70524\n", - "Epoch 458/500 total: 3.69588, -LL: 3.62607, prior: 0.82356, aleatoric unc.: 9.69614\n", - "Epoch 459/500 total: 3.69965, -LL: 3.67129, prior: 0.82353, aleatoric unc.: 9.69692\n", - "Epoch 460/500 total: 3.69278, -LL: 3.64340, prior: 0.82238, aleatoric unc.: 9.68522\n", - "Epoch 461/500 total: 3.69769, -LL: 3.66663, prior: 0.82365, aleatoric unc.: 9.68477\n", - "Epoch 462/500 total: 3.70174, -LL: 3.64461, prior: 0.82374, aleatoric unc.: 9.69469\n", - "Epoch 463/500 total: 3.69422, -LL: 3.62371, prior: 0.82634, aleatoric unc.: 9.68775\n", - "Epoch 464/500 total: 3.70086, -LL: 3.65318, prior: 0.82430, aleatoric unc.: 9.69298\n", - "Epoch 465/500 total: 3.69787, -LL: 3.66150, prior: 0.81959, aleatoric unc.: 9.69327\n", - "Epoch 466/500 total: 3.69348, -LL: 3.64051, prior: 0.81754, aleatoric unc.: 9.68517\n", - "Epoch 467/500 total: 3.70298, -LL: 3.65390, prior: 0.81789, aleatoric unc.: 9.69441\n", - "Epoch 468/500 total: 3.69817, -LL: 3.65901, prior: 0.81541, aleatoric unc.: 9.69768\n", - "Epoch 469/500 total: 3.69301, -LL: 3.63411, prior: 0.81612, aleatoric unc.: 9.68669\n", - "Epoch 470/500 total: 3.70037, -LL: 3.61972, prior: 0.81542, aleatoric unc.: 9.69086\n", - "Epoch 471/500 total: 3.70139, -LL: 3.60899, prior: 0.81560, aleatoric unc.: 9.69815\n", - "Epoch 472/500 total: 3.70118, -LL: 3.68662, prior: 0.81407, aleatoric unc.: 9.70126\n", - "Epoch 473/500 total: 3.70042, -LL: 3.64964, prior: 0.81481, aleatoric unc.: 9.70599\n", - "Epoch 474/500 total: 3.70516, -LL: 3.62561, prior: 0.81684, aleatoric unc.: 9.71484\n", - "Epoch 475/500 total: 3.69569, -LL: 3.62760, prior: 0.81538, aleatoric unc.: 9.70852\n", - "Epoch 476/500 total: 3.69344, -LL: 3.63575, prior: 0.81317, aleatoric unc.: 9.69601\n", - "Epoch 477/500 total: 3.69725, -LL: 3.66014, prior: 0.81203, aleatoric unc.: 9.69300\n", - "Epoch 478/500 total: 3.70594, -LL: 3.65619, prior: 0.81437, aleatoric unc.: 9.70621\n", - "Epoch 479/500 total: 3.69992, -LL: 3.61516, prior: 0.81284, aleatoric unc.: 9.70868\n", - "Epoch 480/500 total: 3.69582, -LL: 3.64135, prior: 0.81684, aleatoric unc.: 9.70021\n", - "Epoch 481/500 total: 3.69739, -LL: 3.60619, prior: 0.81517, aleatoric unc.: 9.70025\n", - "Epoch 482/500 total: 3.70488, -LL: 3.63401, prior: 0.81520, aleatoric unc.: 9.70766\n", - "Epoch 483/500 total: 3.69736, -LL: 3.61727, prior: 0.81478, aleatoric unc.: 9.70594\n", - "Epoch 484/500 total: 3.70235, -LL: 3.63803, prior: 0.81578, aleatoric unc.: 9.71074\n", - "Epoch 485/500 total: 3.70031, -LL: 3.64106, prior: 0.81726, aleatoric unc.: 9.71344\n" + "Epoch 386/500 total: 3.73416, -LL: 3.81177, prior: 0.88866, aleatoric unc.: 10.00876\n", + "Epoch 387/500 total: 3.72839, -LL: 3.81913, prior: 0.88887, aleatoric unc.: 10.00420\n", + "Epoch 388/500 total: 3.72809, -LL: 3.85305, prior: 0.88874, aleatoric unc.: 10.00104\n", + "Epoch 389/500 total: 3.72773, -LL: 3.82120, prior: 0.88876, aleatoric unc.: 9.99688\n", + "Epoch 390/500 total: 3.73334, -LL: 3.82726, prior: 0.88548, aleatoric unc.: 10.00346\n", + "Epoch 391/500 total: 3.73490, -LL: 3.82492, prior: 0.88685, aleatoric unc.: 10.01549\n", + "Epoch 392/500 total: 3.72916, -LL: 3.84311, prior: 0.88795, aleatoric unc.: 10.00856\n", + "Epoch 393/500 total: 3.73429, -LL: 3.82947, prior: 0.88792, aleatoric unc.: 10.01743\n", + "Epoch 394/500 total: 3.73181, -LL: 3.81629, prior: 0.88642, aleatoric unc.: 10.01939\n", + "Epoch 395/500 total: 3.72808, -LL: 3.83636, prior: 0.88873, aleatoric unc.: 10.01162\n", + "Epoch 396/500 total: 3.72751, -LL: 3.82526, prior: 0.88703, aleatoric unc.: 10.00507\n", + "Epoch 397/500 total: 3.73501, -LL: 3.82711, prior: 0.88789, aleatoric unc.: 10.01148\n", + "Epoch 398/500 total: 3.72396, -LL: 3.82852, prior: 0.88770, aleatoric unc.: 9.99962\n", + "Epoch 399/500 total: 3.72896, -LL: 3.83363, prior: 0.88469, aleatoric unc.: 9.99559\n", + "Epoch 400/500 total: 3.73358, -LL: 3.84655, prior: 0.88321, aleatoric unc.: 10.00445\n", + "Epoch 401/500 total: 3.73450, -LL: 3.84568, prior: 0.88243, aleatoric unc.: 10.01549\n", + "Epoch 402/500 total: 3.73173, -LL: 3.82600, prior: 0.88310, aleatoric unc.: 10.01693\n", + "Epoch 403/500 total: 3.73635, -LL: 3.83453, prior: 0.88487, aleatoric unc.: 10.02586\n", + "Epoch 404/500 total: 3.72528, -LL: 3.83294, prior: 0.88362, aleatoric unc.: 10.01279\n", + "Epoch 405/500 total: 3.72882, -LL: 3.80771, prior: 0.88225, aleatoric unc.: 10.00938\n", + "Epoch 406/500 total: 3.73199, -LL: 3.86916, prior: 0.87739, aleatoric unc.: 10.00910\n", + "Epoch 407/500 total: 3.72269, -LL: 3.82055, prior: 0.87675, aleatoric unc.: 9.99726\n", + "Epoch 408/500 total: 3.72756, -LL: 3.81504, prior: 0.87524, aleatoric unc.: 9.99008\n", + "Epoch 409/500 total: 3.72625, -LL: 3.84240, prior: 0.87482, aleatoric unc.: 9.98890\n", + "Epoch 410/500 total: 3.73310, -LL: 3.82112, prior: 0.87371, aleatoric unc.: 9.99657\n", + "Epoch 411/500 total: 3.73343, -LL: 3.81922, prior: 0.87862, aleatoric unc.: 10.00432\n", + "Epoch 412/500 total: 3.72648, -LL: 3.83221, prior: 0.87685, aleatoric unc.: 9.99893\n", + "Epoch 413/500 total: 3.73209, -LL: 3.83570, prior: 0.88170, aleatoric unc.: 10.00689\n", + "Epoch 414/500 total: 3.73212, -LL: 3.84502, prior: 0.88266, aleatoric unc.: 10.00734\n", + "Epoch 415/500 total: 3.73225, -LL: 3.82004, prior: 0.88298, aleatoric unc.: 10.01361\n", + "Epoch 416/500 total: 3.73441, -LL: 3.82674, prior: 0.87963, aleatoric unc.: 10.02181\n", + "Epoch 417/500 total: 3.72539, -LL: 3.81829, prior: 0.88259, aleatoric unc.: 10.00947\n", + "Epoch 418/500 total: 3.73125, -LL: 3.82794, prior: 0.88510, aleatoric unc.: 10.00791\n", + "Epoch 419/500 total: 3.72788, -LL: 3.83194, prior: 0.88230, aleatoric unc.: 10.00315\n", + "Epoch 420/500 total: 3.73432, -LL: 3.83581, prior: 0.88245, aleatoric unc.: 10.01237\n", + "Epoch 421/500 total: 3.72825, -LL: 3.83660, prior: 0.87966, aleatoric unc.: 10.00960\n", + "Epoch 422/500 total: 3.73042, -LL: 3.83286, prior: 0.88341, aleatoric unc.: 10.00669\n", + "Epoch 423/500 total: 3.72403, -LL: 3.82759, prior: 0.88128, aleatoric unc.: 9.99594\n", + "Epoch 424/500 total: 3.72736, -LL: 3.83538, prior: 0.87860, aleatoric unc.: 9.98931\n", + "Epoch 425/500 total: 3.73519, -LL: 3.83184, prior: 0.87881, aleatoric unc.: 10.00450\n", + "Epoch 426/500 total: 3.72966, -LL: 3.82760, prior: 0.88036, aleatoric unc.: 10.00496\n", + "Epoch 427/500 total: 3.73070, -LL: 3.81873, prior: 0.87821, aleatoric unc.: 10.00390\n", + "Epoch 428/500 total: 3.73247, -LL: 3.82698, prior: 0.87670, aleatoric unc.: 10.00907\n", + "Epoch 429/500 total: 3.73084, -LL: 3.84893, prior: 0.87818, aleatoric unc.: 10.00802\n", + "Epoch 430/500 total: 3.72784, -LL: 3.83185, prior: 0.87821, aleatoric unc.: 10.00394\n", + "Epoch 431/500 total: 3.72422, -LL: 3.81806, prior: 0.87927, aleatoric unc.: 9.99349\n", + "Epoch 432/500 total: 3.73010, -LL: 3.83658, prior: 0.87893, aleatoric unc.: 9.99328\n", + "Epoch 433/500 total: 3.73329, -LL: 3.82127, prior: 0.87941, aleatoric unc.: 10.00461\n", + "Epoch 434/500 total: 3.72406, -LL: 3.83071, prior: 0.87800, aleatoric unc.: 9.99093\n", + "Epoch 435/500 total: 3.73008, -LL: 3.83305, prior: 0.87833, aleatoric unc.: 9.99316\n", + "Epoch 436/500 total: 3.72957, -LL: 3.82030, prior: 0.88042, aleatoric unc.: 9.99453\n", + "Epoch 437/500 total: 3.72984, -LL: 3.83393, prior: 0.87976, aleatoric unc.: 9.99500\n", + "Epoch 438/500 total: 3.72609, -LL: 3.82555, prior: 0.87855, aleatoric unc.: 9.98869\n", + "Epoch 439/500 total: 3.73091, -LL: 3.82861, prior: 0.87551, aleatoric unc.: 9.99418\n", + "Epoch 440/500 total: 3.73153, -LL: 3.83980, prior: 0.87521, aleatoric unc.: 9.99892\n", + "Epoch 441/500 total: 3.72319, -LL: 3.83642, prior: 0.87585, aleatoric unc.: 9.98656\n", + "Epoch 442/500 total: 3.72476, -LL: 3.81737, prior: 0.87802, aleatoric unc.: 9.97697\n", + "Epoch 443/500 total: 3.73107, -LL: 3.82724, prior: 0.87879, aleatoric unc.: 9.98574\n", + "Epoch 444/500 total: 3.72469, -LL: 3.82348, prior: 0.87504, aleatoric unc.: 9.97848\n", + "Epoch 445/500 total: 3.72959, -LL: 3.83049, prior: 0.87477, aleatoric unc.: 9.98287\n", + "Epoch 446/500 total: 3.72359, -LL: 3.81934, prior: 0.87120, aleatoric unc.: 9.97612\n", + "Epoch 447/500 total: 3.73261, -LL: 3.83914, prior: 0.87673, aleatoric unc.: 9.98519\n", + "Epoch 448/500 total: 3.72847, -LL: 3.83839, prior: 0.87406, aleatoric unc.: 9.98692\n", + "Epoch 449/500 total: 3.72623, -LL: 3.82678, prior: 0.87109, aleatoric unc.: 9.98354\n", + "Epoch 450/500 total: 3.72840, -LL: 3.82360, prior: 0.87192, aleatoric unc.: 9.98230\n", + "Epoch 451/500 total: 3.73242, -LL: 3.83121, prior: 0.87329, aleatoric unc.: 9.99246\n", + "Epoch 452/500 total: 3.72609, -LL: 3.84144, prior: 0.87455, aleatoric unc.: 9.98621\n", + "Epoch 453/500 total: 3.72770, -LL: 3.83764, prior: 0.87255, aleatoric unc.: 9.98583\n", + "Epoch 454/500 total: 3.72808, -LL: 3.84712, prior: 0.87781, aleatoric unc.: 9.98613\n", + "Epoch 455/500 total: 3.73070, -LL: 3.82634, prior: 0.87533, aleatoric unc.: 9.98968\n", + "Epoch 456/500 total: 3.73363, -LL: 3.82287, prior: 0.87563, aleatoric unc.: 10.00168\n", + "Epoch 457/500 total: 3.72727, -LL: 3.81423, prior: 0.87800, aleatoric unc.: 9.99531\n", + "Epoch 458/500 total: 3.73414, -LL: 3.82865, prior: 0.87807, aleatoric unc.: 10.00688\n", + "Epoch 459/500 total: 3.72611, -LL: 3.83435, prior: 0.87671, aleatoric unc.: 9.99795\n", + "Epoch 460/500 total: 3.73275, -LL: 3.83322, prior: 0.87540, aleatoric unc.: 10.00565\n", + "Epoch 461/500 total: 3.72783, -LL: 3.82594, prior: 0.87547, aleatoric unc.: 9.99865\n", + "Epoch 462/500 total: 3.73166, -LL: 3.81160, prior: 0.87461, aleatoric unc.: 10.00305\n", + "Epoch 463/500 total: 3.72671, -LL: 3.81470, prior: 0.87593, aleatoric unc.: 9.99850\n", + "Epoch 464/500 total: 3.72499, -LL: 3.81690, prior: 0.87581, aleatoric unc.: 9.98839\n", + "Epoch 465/500 total: 3.73228, -LL: 3.82494, prior: 0.87802, aleatoric unc.: 9.99579\n", + "Epoch 466/500 total: 3.72764, -LL: 3.83893, prior: 0.87525, aleatoric unc.: 9.99090\n", + "Epoch 467/500 total: 3.72456, -LL: 3.81647, prior: 0.87726, aleatoric unc.: 9.98477\n", + "Epoch 468/500 total: 3.72660, -LL: 3.84040, prior: 0.87775, aleatoric unc.: 9.97989\n", + "Epoch 469/500 total: 3.73049, -LL: 3.82220, prior: 0.87773, aleatoric unc.: 9.98726\n", + "Epoch 470/500 total: 3.72854, -LL: 3.86049, prior: 0.87588, aleatoric unc.: 9.98729\n", + "Epoch 471/500 total: 3.73255, -LL: 3.82695, prior: 0.87574, aleatoric unc.: 9.99501\n", + "Epoch 472/500 total: 3.72359, -LL: 3.82691, prior: 0.88025, aleatoric unc.: 9.98528\n", + "Epoch 473/500 total: 3.73089, -LL: 3.82909, prior: 0.87920, aleatoric unc.: 9.99031\n", + "Epoch 474/500 total: 3.73378, -LL: 3.83185, prior: 0.87792, aleatoric unc.: 10.00215\n", + "Epoch 475/500 total: 3.73113, -LL: 3.84989, prior: 0.88087, aleatoric unc.: 10.00428\n", + "Epoch 476/500 total: 3.72500, -LL: 3.81862, prior: 0.87891, aleatoric unc.: 9.99466\n", + "Epoch 477/500 total: 3.72598, -LL: 3.82432, prior: 0.87830, aleatoric unc.: 9.98845\n", + "Epoch 478/500 total: 3.72689, -LL: 3.81920, prior: 0.87943, aleatoric unc.: 9.98351\n", + "Epoch 479/500 total: 3.72763, -LL: 3.85005, prior: 0.87979, aleatoric unc.: 9.98261\n", + "Epoch 480/500 total: 3.72894, -LL: 3.82676, prior: 0.88107, aleatoric unc.: 9.98493\n", + "Epoch 481/500 total: 3.72996, -LL: 3.82628, prior: 0.88181, aleatoric unc.: 9.98893\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 486/500 total: 3.70281, -LL: 3.65334, prior: 0.81765, aleatoric unc.: 9.71675\n", - "Epoch 487/500 total: 3.69665, -LL: 3.62427, prior: 0.81798, aleatoric unc.: 9.71068\n", - "Epoch 488/500 total: 3.69354, -LL: 3.60938, prior: 0.81778, aleatoric unc.: 9.69865\n", - "Epoch 489/500 total: 3.69664, -LL: 3.66371, prior: 0.81562, aleatoric unc.: 9.69401\n", - "Epoch 490/500 total: 3.70017, -LL: 3.61261, prior: 0.81859, aleatoric unc.: 9.69709\n", - "Epoch 491/500 total: 3.70181, -LL: 3.64116, prior: 0.81858, aleatoric unc.: 9.70037\n", - "Epoch 492/500 total: 3.69507, -LL: 3.62122, prior: 0.81482, aleatoric unc.: 9.69759\n", - "Epoch 493/500 total: 3.69890, -LL: 3.65301, prior: 0.81908, aleatoric unc.: 9.69581\n", - "Epoch 494/500 total: 3.70058, -LL: 3.65166, prior: 0.81909, aleatoric unc.: 9.69850\n", - "Epoch 495/500 total: 3.69788, -LL: 3.62267, prior: 0.81817, aleatoric unc.: 9.70015\n", - "Epoch 496/500 total: 3.69267, -LL: 3.64171, prior: 0.81855, aleatoric unc.: 9.68762\n", - "Epoch 497/500 total: 3.70465, -LL: 3.66362, prior: 0.81682, aleatoric unc.: 9.70045\n", - "Epoch 498/500 total: 3.70106, -LL: 3.66015, prior: 0.81733, aleatoric unc.: 9.70227\n", - "Epoch 499/500 total: 3.69741, -LL: 3.64281, prior: 0.81737, aleatoric unc.: 9.70153\n" + "Epoch 482/500 total: 3.72968, -LL: 3.83054, prior: 0.88382, aleatoric unc.: 9.99294\n", + "Epoch 483/500 total: 3.72980, -LL: 3.82583, prior: 0.88426, aleatoric unc.: 9.99362\n", + "Epoch 484/500 total: 3.73002, -LL: 3.82194, prior: 0.88617, aleatoric unc.: 9.99726\n", + "Epoch 485/500 total: 3.72822, -LL: 3.84083, prior: 0.88546, aleatoric unc.: 9.99438\n", + "Epoch 486/500 total: 3.72565, -LL: 3.81954, prior: 0.88737, aleatoric unc.: 9.98701\n", + "Epoch 487/500 total: 3.72438, -LL: 3.83046, prior: 0.88298, aleatoric unc.: 9.97804\n", + "Epoch 488/500 total: 3.73051, -LL: 3.84720, prior: 0.88185, aleatoric unc.: 9.98359\n", + "Epoch 489/500 total: 3.73112, -LL: 3.83173, prior: 0.88252, aleatoric unc.: 9.99134\n", + "Epoch 490/500 total: 3.72454, -LL: 3.83466, prior: 0.88286, aleatoric unc.: 9.98333\n", + "Epoch 491/500 total: 3.72815, -LL: 3.83819, prior: 0.88356, aleatoric unc.: 9.98163\n", + "Epoch 492/500 total: 3.72773, -LL: 3.80841, prior: 0.88449, aleatoric unc.: 9.98276\n", + "Epoch 493/500 total: 3.72504, -LL: 3.82441, prior: 0.88649, aleatoric unc.: 9.97645\n", + "Epoch 494/500 total: 3.73343, -LL: 3.82006, prior: 0.88583, aleatoric unc.: 9.98840\n", + "Epoch 495/500 total: 3.72690, -LL: 3.81129, prior: 0.88969, aleatoric unc.: 9.98657\n", + "Epoch 496/500 total: 3.72634, -LL: 3.83957, prior: 0.88817, aleatoric unc.: 9.98136\n", + "Epoch 497/500 total: 3.72504, -LL: 3.81558, prior: 0.88621, aleatoric unc.: 9.97691\n", + "Epoch 498/500 total: 3.72726, -LL: 3.83550, prior: 0.88450, aleatoric unc.: 9.97391\n", + "Epoch 499/500 total: 3.72785, -LL: 3.83303, prior: 0.88575, aleatoric unc.: 9.97703\n" ] } ], @@ -3286,7 +3176,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "id": "a3d244e2", "metadata": {}, "outputs": [], @@ -3310,7 +3200,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "id": "4a56960d", "metadata": {}, "outputs": [], @@ -3332,7 +3222,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "id": "4d01c41f", "metadata": {}, "outputs": [ @@ -3340,7 +3230,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Average epistemic uncertainty: 0.83653456\n" + "Average epistemic uncertainty: 0.7480032\n" ] } ], @@ -3350,7 +3240,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "id": "67d456a1", "metadata": {}, "outputs": [ @@ -3358,7 +3248,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Aleatoric uncertainty: 9.7015295\n" + "Aleatoric uncertainty: 9.977034\n" ] } ], @@ -3380,7 +3270,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "id": "8b9142e8", "metadata": { "scrolled": false @@ -3636,10 +3526,6 @@ " 'mouseup',\n", " on_mouse_event_closure('button_release')\n", " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", " // Throttle sequential mouse events to 1 every 20ms.\n", " rubberband_canvas.addEventListener(\n", " 'mousemove',\n", @@ -3897,14 +3783,11 @@ "mpl.figure.prototype._make_on_message_function = function (fig) {\n", " return function socket_on_message(evt) {\n", " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", "\n", " /* Free the memory for the previous frames */\n", " if (fig.imageObj.src) {\n", @@ -3914,7 +3797,7 @@ " }\n", "\n", " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", + " evt.data\n", " );\n", " fig.updated_canvas_event();\n", " fig.waiting = false;\n", @@ -4033,10 +3916,10 @@ "mpl.figure.prototype.key_event = function (event, name) {\n", " // Prevent repeat events\n", " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", + " if (event.which === this._key) {\n", " return;\n", " } else {\n", - " this._key = event.key;\n", + " this._key = event.which;\n", " }\n", " }\n", " if (name === 'key_release') {\n", @@ -4044,17 +3927,18 @@ " }\n", "\n", " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", + " if (event.ctrlKey && event.which !== 17) {\n", " value += 'ctrl+';\n", " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", + " if (event.altKey && event.which !== 18) {\n", " value += 'alt+';\n", " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", + " if (event.shiftKey && event.which !== 16) {\n", " value += 'shift+';\n", " }\n", "\n", - " value += 'k' + event.key;\n", + " value += 'k';\n", + " value += event.which.toString();\n", "\n", " this._key_event_extra(event, name);\n", "\n", @@ -4079,7 +3963,7 @@ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", "\n", "mpl.default_extension = \"png\";/* global mpl */\n", "\n", @@ -4089,19 +3973,6 @@ " // socket, so there is still some room for performance tuning.\n", " var ws = {};\n", "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", " ws.close = function () {\n", " comm.close();\n", " };\n", @@ -4112,14 +3983,8 @@ " // Register the callback with on_msg.\n", " comm.on_msg(function (msg) {\n", " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", + " ws.onmessage(msg['content']['data']);\n", " });\n", " return ws;\n", "};\n", @@ -4372,7 +4237,7 @@ { "data": { "text/html": [ - "<img src=\"\" width=\"640\">" + "<img src=\"\" width=\"640\">" ], "text/plain": [ "<IPython.core.display.HTML object>" @@ -4401,8 +4266,7 @@ "source": [ "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", "\n", - "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", - "#### Arman Davtyan: arman.davtyan@xfel.eu" + "#### Data Analysis group: da@xfel.eu" ] }, { @@ -4430,7 +4294,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.6.13" } }, "nbformat": 4, diff --git a/Support Vector Machines.ipynb b/Support Vector Machines.ipynb index abce0ee..40ad473 100644 --- a/Support Vector Machines.ipynb +++ b/Support Vector Machines.ipynb @@ -69,7 +69,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "id": "44ca341e", "metadata": {}, "outputs": [ @@ -77,20 +77,20 @@ "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: numpy in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.19.2)\n", - "Requirement already satisfied: scikit-learn in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (0.24.2)\n", - "Requirement already satisfied: pandas in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.3.0)\n", - "Requirement already satisfied: matplotlib in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (3.4.2)\n", - "Requirement already satisfied: joblib>=0.11 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (1.0.1)\n", - "Requirement already satisfied: scipy>=0.19.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (1.6.2)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from scikit-learn) (2.2.0)\n", - "Requirement already satisfied: python-dateutil>=2.7.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2.8.2)\n", - "Requirement already satisfied: pytz>=2017.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2021.1)\n", - "Requirement already satisfied: six>=1.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (1.3.1)\n", - "Requirement already satisfied: pillow>=6.2.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (8.3.1)\n", - "Requirement already satisfied: pyparsing>=2.2.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (2.4.7)\n", - "Requirement already satisfied: cycler>=0.10 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (0.10.0)\n" + "Requirement already satisfied: numpy in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.19.2)\n", + "Requirement already satisfied: scikit-learn in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (0.24.2)\n", + "Requirement already satisfied: pandas in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.1.5)\n", + "Requirement already satisfied: matplotlib in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (3.3.4)\n", + "Requirement already satisfied: joblib>=0.11 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (1.0.1)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (2.2.0)\n", + "Requirement already satisfied: scipy>=0.19.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (1.5.2)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.2 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2021.3)\n", + "Requirement already satisfied: cycler>=0.10 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (0.11.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (1.3.1)\n", + "Requirement already satisfied: pillow>=6.2.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (8.3.1)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (3.0.4)\n", + "Requirement already satisfied: six>=1.5 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n" ] } ], @@ -100,13 +100,14 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "300cf8d3", "metadata": {}, "outputs": [], "source": [ + "%matplotlib notebook\n", + "\n", "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", "\n", "import pandas as pd\n", "import numpy as np\n", @@ -123,7 +124,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 3, "id": "4959a292", "metadata": {}, "outputs": [], @@ -140,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 4, "id": "82929490", "metadata": {}, "outputs": [], @@ -159,7 +160,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 5, "id": "024fb65a", "metadata": {}, "outputs": [ @@ -192,32 +193,32 @@ " <tbody>\n", " <tr>\n", " <th>0</th>\n", - " <td>0.993649</td>\n", - " <td>1.630545</td>\n", + " <td>1.985442</td>\n", + " <td>0.987135</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", - " <td>1.907532</td>\n", - " <td>1.870662</td>\n", + " <td>1.128882</td>\n", + " <td>1.217191</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", - " <td>2.121213</td>\n", - " <td>1.848977</td>\n", + " <td>2.941344</td>\n", + " <td>1.856144</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", - " <td>1.504255</td>\n", - " <td>2.807217</td>\n", + " <td>1.956792</td>\n", + " <td>1.893925</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", - " <td>1.780940</td>\n", - " <td>0.967064</td>\n", + " <td>2.596261</td>\n", + " <td>1.949837</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", @@ -228,32 +229,32 @@ " </tr>\n", " <tr>\n", " <th>1995</th>\n", - " <td>-0.318836</td>\n", - " <td>1.025854</td>\n", + " <td>-0.031483</td>\n", + " <td>1.113162</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>1996</th>\n", - " <td>0.711106</td>\n", - " <td>1.369357</td>\n", + " <td>-0.904133</td>\n", + " <td>0.969933</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>1997</th>\n", - " <td>-0.827128</td>\n", - " <td>0.722899</td>\n", + " <td>-0.837312</td>\n", + " <td>0.674358</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>1998</th>\n", - " <td>-1.047059</td>\n", - " <td>1.136644</td>\n", + " <td>0.096271</td>\n", + " <td>0.977671</td>\n", " <td>1.0</td>\n", " </tr>\n", " <tr>\n", " <th>1999</th>\n", - " <td>-1.204980</td>\n", - " <td>0.570485</td>\n", + " <td>-0.842105</td>\n", + " <td>1.131658</td>\n", " <td>1.0</td>\n", " </tr>\n", " </tbody>\n", @@ -263,22 +264,22 @@ ], "text/plain": [ " x y source\n", - "0 0.993649 1.630545 0.0\n", - "1 1.907532 1.870662 0.0\n", - "2 2.121213 1.848977 0.0\n", - "3 1.504255 2.807217 0.0\n", - "4 1.780940 0.967064 0.0\n", + "0 1.985442 0.987135 0.0\n", + "1 1.128882 1.217191 0.0\n", + "2 2.941344 1.856144 0.0\n", + "3 1.956792 1.893925 0.0\n", + "4 2.596261 1.949837 0.0\n", "... ... ... ...\n", - "1995 -0.318836 1.025854 1.0\n", - "1996 0.711106 1.369357 1.0\n", - "1997 -0.827128 0.722899 1.0\n", - "1998 -1.047059 1.136644 1.0\n", - "1999 -1.204980 0.570485 1.0\n", + "1995 -0.031483 1.113162 1.0\n", + "1996 -0.904133 0.969933 1.0\n", + "1997 -0.837312 0.674358 1.0\n", + "1998 0.096271 0.977671 1.0\n", + "1999 -0.842105 1.131658 1.0\n", "\n", "[2000 rows x 3 columns]" ] }, - "execution_count": 27, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -297,20 +298,978 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 6, "id": "e63b38c5", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAAHkCAYAAAD1krx3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADHg0lEQVR4nOzdd3hUxRrA4d+cremE3ntHQLpSBEEBsaDYUFSwc20IiqCAFLFRLKhUQbBhLygiKEUBUXrvnUCA9L7tnLl/bFiy2YQESEgC894nz3V3z54zuyT77cx8842QUqIoiqIoSvGiFXUDFEVRFEUJpAK0oiiKohRDKkAriqIoSjGkArSiKIqiFEMqQCuKoihKMaQCtKIoiqIUQypAK4qiKAoghJgjhDgthNiey+NCCDFFCLFfCLFVCNGyMNujArSiKIqieM0Fep7j8ZuAepk/TwDTCrMxKkAriqIoCiCl/BuIP8chvYFPpde/QCkhRKXCao8K0IqiKIqSP1WAY1luR2XeVyjMhXXiwlC2bFlZs2bNom6GoiiKAmzYsCFWSlmuoM/b4/oQGRevF/Rp2bDVuQNwZLlrppRy5nmcQuRwX6HVyy5RAbpmzZqsX7++qJuhKIqiAEKII4Vx3rh4nbWLqxf4eU2V9jmklK0v4hRRQLUst6sCJy6uVblTQ9yKoihKsSIBoxD+VwAWAA9lZnNfAyRJKaML4sQ5KVE9aEVRFOVKINFlgQTU8yKEmA90AcoKIaKA0YAFQEo5HfgN6AXsB9KBhwuzPSpAK4qiKAogpbwvj8cl8PQlao4K0IqiKErx4h3iLrTcqxJDzUEriqIoSjGketCKoihKsVNASV0lmgrQiqIoSrEikehSDXEX6RC3EKKUEOI7IcRuIcQuIcS1RdkeRVEURSkuiroH/T7wu5TyLiGEFQgu4vYoiqIoxYBKEivCAC2ECAeuAwYASCldgKuo2qMoiqIoxUlR9qBrAzHAJ0KI5sAGYJCUMq0I26QoiqIUMQnoqgddpHPQZqAlME1K2QJIA4ZnP0gI8YQQYr0QYn1MTMylbqOiKIqiFImiDNBRQJSU8r/M29/hDdh+pJQzpZStpZSty5Ur8E1TFEVRlGLIQBb4T0lTZEPcUsqTQohjQogGUso9QDdgZ1G1R1EURSkeJKhlVhR9FvezwBeZGdwHKeTC44qiFC9ulxuL1VLUzVCUYqlIA7SUcjNwMXtzKopSAm34Ywvj+75LWmI6FWuV5/WFL1OtQZWibpZSjKg6YqoWt6Iol1hMVBxj+kwkNSENKSUnD51i6A3j0HW9qJumKMVKUQ9xK4pyhdm/6RCa6WzfQEpIjU8l4WQiZauUKcKWKcWFRKplVqgArSjKJRZZIQJD9x/ANHSD0MjQImqRUuxI0FV8VkPciqJcWg3a1KXjnddgD7FhC7ZhC7Yy8J3+2INtRd00RSlWVA9aUZRLSgjBS588zQ39OnHqSCx1W9Skfqs6Rd0spRiRqCQxUAFaUZQiIISg1Y3Ni7oZilKsqQCtKIqiFDMCHVHUjShyKkAriqIoxYoEDJUkppLEFEVRFKU4Uj1oRVEUpdhRQ9yqB60oiqIoxZLqQSuKoijFikT1oEEFaEVRFKUYMqQK0GqIW1EURVGKIdWDVhRFUYoVNcTtpXrQiqIoilIMqR60oiiKUqxIBLrqP6p3QFEURVGKI9WDVhRFUYodlcWtArSiKIpSzKgkMS81xK0oiqIoxZDqQSuKoijFjECXqv+o3gFFURRFKYZUD1pRFEUpViRgqP6jCtCKouTtyK4ofpm2GN2t033A9TRqV6+om6Rc5lSSmArQiqLk4dC2IzzXfgSONCcAf3z2F+N/eZmrr7+qiFumKJc3NYagKMo5fT3hZ5zpTt9tZ7qLeaO/LsIWKZc7Kb1JYgX9U9KUvBYryhVo99p9DOowgocbPsfsl79A9+iX7NqOdCdSZrsvzZnzwYqiFBg1xK0oxVzU3hMM7TbWFxR//OA30pLTee6jxy/J9W96pCvrF2/Gme4CwBZs46bHul2SaytXLkPNQasetKIUd6t/Wofb5fHddqa7+POzvy/Z9dvd3Iohs/5H9UZVqFKvEo++cT+3Dux+ya6vXHm8lcS0Av8paVQPWlGKOYvNjKZp6Jwd1jZZTJe0DV3v60jX+zpe0msqypWu5H2lUJQrzPX3dSQozI7J7P1ztQXbeGDUXUXcKkUpTCpJDFQPWlGKvcjyEczYPImv3/6JpJhkOtzRjs53X1vUzVIUpZCpAK0oJUDZyqV5+v1HiroZBW7Xf/tY/dNagkLt9HqsG5EVShV1k5RiQFUS81IBWlGUIvHfwg28ds87ODNcmC0mfpzyGzO3TKJ0xciibpqiFAvqK4qiKEVi+gvzcGZ4l2553DqpCan8Mn1JEbdKKS50KQr8p6RRPWhFUYpERqp/sRPdY5CWlF5ErVGKE4kokcuiCpp6BxRFKRKd774GW7DVd9sWbKXD7W2LsEWKUryoHrSiKEXi8QkPYhiS5V+txhZs44m3H6B55yZF3SylmDBK4LKogqYCtKIoRcJsMfP0+49cltnpilIQVIBWFEVRipUzpT6vdEUaoIUQh4EUQAc8UsrWRdkeRVEUpehJSmbWdUErDj3o66WUsUXdCEVRFEUpTopDgFYURVEUP6qSWNEvs5LAEiHEBiHEE0XcFkVRFEUpNoq6B91BSnlCCFEe+EMIsVtK6bfRbWbgfgKgevXqRdFGRVEU5RKSkhK5+1RBK9J3QEp5IvP/TwM/AgFVCqSUM6WUraWUrcuVK3epm6goiqJccgKjEH5KmiIL0EKIECFE2Jn/BroD24uqPYqiKIpSnBTlEHcF4EchxJl2fCml/L0I26MoiqIUAxI1xA1FGKCllAeB5kV1fUVRFEUpzoo6SUxRFEVRAqhKYkW/zEpRFEVRlByoHrSiKIpSrEgEhir1qQK0oiiKUvyoIW41xK0oiqIoxZLqQSuKoijFigQMtcxKBWhFKWzJ8Sls+nMbmkmjVffmBIcFFXWTFEUpAVSAVpRCdPLwaZ5p+zIupwuA0FIhTF3/NqXKRRRxyxSlOBPoJbA0Z0FTYwiKUoimDZ5LSkIqGSkOMlIcJJxMZN6rXxd1sxSlWDszxF3QPyVNyWuxopQgp47EYOiG77bHrXPycEwRtkhRlJJCBWhFKUQtujXFFmT13bYF22h5Q9MibJGilAx65jB3Qf6UNCpAK0ohenj8fbTueTWaSUMzaVzftz19nr+5qJulKEoJoJLEFKUQWW0Wxnw/FJfDBUJgtVmKukmKUuxJKUrknHFBUwFaUS4Bq92a90GKovio7SbVELeiKIqiFEsqQCuKoijFigQMRIH/5IcQoqcQYo8QYr8QYngOj0cIIX4RQmwRQuwQQjxc0K//DBWgFUVRFAUQQpiAj4CbgMbAfUKIxtkOexrYKaVsDnQBJgshCmUOS81BK4qiKMWMKKo56LbAfinlQQAhxFdAb2BnlmMkECaEEEAoEA94CqMxqgetKIqiKF5VgGNZbkdl3pfVh0Aj4ASwDRgkpTQoBKoHrSiKohQr3lKfhVJYpKwQYn2W2zOllDOz3M7pojLb7R7AZqArUAf4QwixUkqZXKAtRQVoRVEUpRjSC2eAN1ZK2focj0cB1bLcroq3p5zVw8BbUkoJ7BdCHAIaAmsLtKWoIW5FUQqI7tHZu+EAe9YfwOMulCk5RSls64B6QohamYlffYEF2Y45CnQDEEJUABoABwujMaoHrSjKRUtLTmfIda8SffAUABVrlefdv8cREhFSxC1TSiKJKKwh7nNfV0qPEOIZYDFgAuZIKXcIIQZmPj4deA2YK4TYhndIfJiUMrYw2qMCtKIoF232y19ybM9x3E5vzzlq7wk+fvlLBk19vIhbpijnR0r5G/BbtvumZ/nvE0D3S9EWFaAVRbloh7Yd8QVnALfTw8GtR3y3t6/axd4NB6lQoxzte7fBu0JFUXJnqBlYFaAVRbl49VrVZu/6A7gcbgCsdgv1W9UG4NvJC5g3+hsM3cBk0WjT42pGffOCCtJKrqQEvQiGuIsb9RVFUS4jCaeTGNb9NW6P7M9jTYewd8OBS3Ldh8ffR52ra2ILtmILtlG7eU0eef0+HOlO5oyYjzPdidvpxpHqZN3vm9m5Zu8laZeilGSqB60olwkpJcO7v8aRnVHoHp20pHSGdhvL3D1TiKxQqlCvHRRi571V4zmx/yRSSqrUq4SmacSeiEfT/HtCmkkjKbbAl4wql5miSBIrblQPWlEuEynxqRzdfRzdo/vdf6l6q5qmUbV+Zao1qIKmeT9aSlcsRWSFUogsQdrQDeq3rnNJ2qQoJZkK0IpymbAFW5GGf9EjaUiCwoIK/drJcSksmr2UhTP/IPZEvO9+TdOYuHQ0NRpXRWiC0hVLMf7XlylbuXSht0kpubzLrLQC/ylp1BC3olwmbEE27h3Wmx/eW4gjzYkt2Eqdq2vSvEv2zXgKVuzxOAa2fAlnmhMpJbOGfc4H/75BtQbeEsaValdg1tZ3kFKqxDAl3/R8bg95OVMBWlEuIw+/dh8N2tRl15q9VKhZnp6PXI/JZCrUa84b/Q0p8akYune/AJfDzfQXPuX1X1/2O86R5uDthz5k3e+bsAXbGPhOf7o/1KVQ21aYdF1n/hs/sPL7/wgvG8aTkx6i7tW1irpZymVEBWhFucy0v60N7W9rc8muF3s83hecwZusFh+dEHDc5MemsXbRJtxONy6HmylPzaJSrQo07dTokrW1IM0c+hkLZ/6JM90JwJDrXmX6polUrlOxiFtW8hXiZhklSskblFcUpVi59rbW2IJtvtu2YCvtbmkZcNz6JVtwO92+284MFxv+2HJJ2lgYFs1e5gvOAG6nm9U/Fvh+CcoVTPWgFUW5KLcO7M7JQ6f56YPfkAZcf19HHhx1d8BxoREhpCWm+25bbRbCy4RdyqYWKJPJv38jNIHJXLjTCVcOUSKTugqaegcURblgu/7bx/01BvLdO79QrlpZpm18mxdm/S/HQDVo2uPYgq2YrSZswVbKVilDz0e6FkGrC8Y9L/X2jRxoJg17sI3O97Yv4lYplxPVg1YU5YIkx6cwvMdrpCdnABB94CQv3TCOL45Mw2K1BBzfpmcLPljzBuuXbCUkPIjr7+9IUIj9Uje7wPQddjtlKkey6vv/iCgXxgOj7qZMpciibtZlw1BZ3CpAK4pyYQ5tPeq3bEpKcKQ5iT54muoNq+T4nFpNa1CraY1L1cRCJYSg+0NdSnQmenGlanF7qSFuRVEuSES5cDwuj999LoeLH95fyE8fLMKVJSFMUZTzpwK0oigXpGaTanS9vyP2EBsWmwXNrCGEYOGMP/h4+Oe80PnVgLKjipJfqpKYCtCKolyEwTMHMuqbF3h4fF+Q4HF7A7Izw8WRnVFsWrb9gs8tpST2eBynjsQgpbeE6c5/9/J02+E8WPtppj7/CW6X6qUrly81B60oygUTQtD2phY0uqYec0bM9ytYIjRBRqrjgs7rcXsYc+ckNv65FU0Ial5VjUHTn2DYjeNwpHnXHv82609Sk9J46ZNnCuS1KMWHtxa3moMu8h60EMIkhNgkhPi1qNuiKMqFCYsMpVbT6pgtZ5dXCSG4qkODCzrfNxMXsHnZNtwON84MFwe3HuH9/83y9dDB20v/6+s1F912pXgyEAX+U9IUeYAGBgG7iroRinKlW/nDfwzvOZ4xfSayZ/2Bcx77768bmPLMx3zx+nekJqYB8NbvI2l5Y3PCy4RRu3kNJi0fc8H7UO/6dy/OdJfvttvpIeZoLFq24iBmqyoMoly+inSIWwhRFbgZeB0YUpRtUZQr2Z9f/M17T87wBcX1S7bw3qrX/DZ/8Lg9LPtyFX9/t4aNf27D7XRjtppZNHsZM7dMJrxMWMAGGReqRpNqbPxzKy6Hd47ZZDZRr3Ud9q0/QJJHR3fr2IJtPDT6ngK5nlK8qFrcXkU9B/0e8BJQcuv9Kcpl4Ku3fvTrsTrTnfwybTGDZwwEQPfovNBlNAe3HvHNAQN4XB6SYpJZ+f2/9BhwfYG1p9+IPqxfvJkT+08iNEFoqRAGz3gSzaTx/bu/En8ygfa3taHjHe0K7JqKUtwUWYAWQtwCnJZSbhBCdDnHcU8ATwBUr1790jROUa4w0pAB9xlZ7vv31w0c2nbULzifPc7I8f6LERQaxIf/vcmedQfQPToN2tTBFuQtq/nYm/3ydY5Fc5Yyfcg8nBkuWt3YnBHznyc4LKhA26kUnpK4LKqgFeU70AG4TQhxGPgK6CqE+Dz7QVLKmVLK1lLK1uXKlbvUbVSUK8JdQ27135EqyMotT9zou52SkOZb6pSdpmm07tH8oq4fF53Asvmr+GfBOl+BE7PFTJP2DWh2XWNfcM6vrX/v5KPn5pCenIHu1tm0dBsTH/7ootqoXELSm8Vd0D8lTZH1oKWULwMvA2T2oF+UUj5QVO1RlIKSlpzO/Dd/4MT+UzTv0phb/9cDTSvevYGbHu2GxWbm1xl/YAu28eCou2jQpq7v8aadGuIXn4V3Xrh6wyoMmvYEVepWOu9r6h6djX9u5eDWI3w+/ntfjm2FmuWYsuaNi6rTvfHPrTgzsiaZudm0dNsFn09RikJRz0ErymXF5XDx7DWvcPLQKdxOD2sXbWL/5sO8MOt/Rd20PN3wQGdueKBzjo9VqVuJcT+9xIQBH5Ecl0Kja+ox8ushRJaPyNe5Ny3bxp61+ylXrSxd+rbH0A1e7DqWQ1uP4Eh3+g2xH993kp8/XETfYXdc8GspVS4Cq82Ky3E2SIeWCrng8ymXlkRtlgHFJEBLKVcAK4q4GYpy0TYv30Hs8TjcTm+Name6kz/m/cVT7z1conduAmh5QzO+ippx3s/7esJPfDbuOzwuNxabhSXzVtDprms4sPmQX2LaGW6nm1NHYi+qrT0e7sLPH/1O7PE4dI+OZtJ4fsaTF3VORbnUikWAVpTLhcfl8dvhCUAIMK7QmtQup5tPRn2FnllgRPc42fXvXkpXKpVjcAawB9u4ukuTi7puUGgQ0zZO4K9v/iEtKZ1WNzajRuNqF3VO5dIqiXPGBU0FaEUpQE2va4TFakbTBIYhsdgsNL62PiERV+bwqiPVEfiFRROUr1YWW7ANZ7p/9rfJrHH7oF5cd/e1F31te7CtQJd+KcqlpgK0ohSgsMhQPvj3Td5/ahanDp/mqo6NeOq9AUXdrCITVjqUynUqELU32len2zAkt/6vO7ZgK5+O+RaAWk2rM/r7FylbpTRmi/pYutKpQiVeIrelE8VR69at5fr164u6GYqinIfY43GMu/sdDmw+RKkKpXj58+e4qkNDwFudzJnhIiQ8uIhbqVwIIcQGKWXrgj5vqYblZadZ9xb0afn1ug8Lpb2FRX1VVRTlom1buYt9Gw5SoWY52vdu4zesXbZKGab883qOzzNbzKrHrCi5UH8ZiqLkizPDyYkDp4goG0bpipG++89kaRu6jslsos1NLRj19ZCAuWdFyS+13aSXCtCKouTp4NYjDO02FrfLjcelc8/Q2xgwri8ZqRnMffVrPC7vsjK308O6RZvY9d8+Gl9Tv4hbrSglmwrQiqLk6dXb3yY5LsV3+/t3f6XlDc2oVLtCwBaQJrNGcmxK9lMoynlRhUqKx37QiqIUY4ZhcDpb4RDDkBzefozSlUpRqlw4Qjv7YWroknqtal/qZiqXE4mqxY0K0Iqi5EHTNEpXKpXtPkHV+pUwmUxMWjaGmk2qoZk0ylSO5PWFr1CmUmTOJ1MUJd/UELeiKHka88NQhvcYD4Db5aHHw9fT8oZmAFSqXYGZWyYjpVSJYUqBUOugvVSAVhQlTw3b1uPzQ1M5vP0opcpHULV+5YBj8hucdY/O/Dd/YO2iTZSpXJonJj5IpVoVCrrJilLiqQCtKEq+hJYK4aqOjS76PO/9bybL56/Cme5C0wRbVuxgzq73KFUufztjKVcG1YNWc9CKolxChmHwx7y/fBtlGIbE7XTz768bi7hlSnFyZh20ShJTFEW5hLKXFzYMiZq6VpRAaohbUZTzEn8ygRVf/4Pu1unYpx3lqpUhPjqBUuUjsNqt53yuI82JZhIYWXbfdDlcNL/+4raXVC4/sgT2eAuaCtCKouTb6aMxDGz5Eo40B9KQzB39NSazCUPXQcJL857hurty3yry2J4TWGwWPK6zEdoeYiMpJoWKNcpfipegKCWGCtCKouTb5+O/Jy0p3bd1JG7d7/EJAz6kYbt6lK9WFoCEU4m80e999q4/QJlKkTwx8UH0bM8xPAaR5cPPed3UxDRijsVSvnpZv721Ny7dxvKvVhESHkyfQb0oX71cAbxKpThQlcRUgFaUEk9KyX8LN3Ly8GnqtaxNk/YNCu1aSaeTzwbnHJgtZo7sOEb5amWRUjKs+2sc3XUc3aOTnpzBG/2m0PPRbiyZu9y3brr3MzedM7Cu/OE/3n5wCiaLCd2tM/zz5+h4Rzv++uYfJj7ykTcb3KSx+JPlzNg8UQVp5bKhArSilGBSSt64/z3+XbgRw6MjNI0B4+7lriG3Fsr1Ot3Vjo1/bsWR7szxcY/LQ/ka3gCZEp/KsT0n0D1ne8xCwNXXX0WXe9pzZGcUNRpXpWmn3JduJcUm8/aDU3BmuCDDe99bD07hyyPTmT3iy7PZ4LpBekoGv81ayoDX+hbQq1WKipRqmRWoAK0oJdrutfv599cNONLOBszZr3zJzU/eSFCIvcCv163fdcRExfPNhJ/RPToWu4Xk2BQ0k4bZYuLuobdRo1FVAGzB1oCMbWlIQiKCadqp0TkD8xnRB09hsph8wRnAZDYRffAUrgy337GGbpCR5rj4F6kUCypJTC2zUpQSLfF0UuBuUiaNtMS0QrmeEIL7ht/B97FzqFS7AulJ6YB3fbPVbuGuwbf4jrUF2bjv5T7YQ2ze28E26raoRfMujfN9vQo1yvkllAF4XDrla5Sj+4DO2IJtZ68XbKXLvR0u5uUpSrGietCKUoLVa1UbwzjbSxVCEF42jMiKpQrlem6Xm6mDPuGvb9eQEp969gHpXc+8e+1+Wt3Y3Hd3/zH30LBNHXb9t4/y1cvRvX9nTCZTvq8XWaEUz330GFOe+RiL1YzH5eHZjx4jsnwE/cfei8lk4s/P/yYo1M7jbz9Ao3b1CvLlKkWmZBYWKWgqQCtKCVa2cmnGLxjO+PveJSkmmWoNKjPu52HnFQQBEmOSiDkWR6XaFQgtFZLrcR8+O4c/P/8bV4Yr4DFpSL8e7Rntbm5Fu5tb5dmGbSt3cWDzYSrVLk/bXi19tb17PHw9rbo348SBU1SuW5GylUsDYDKZ6D/2XvqPvTe/L1NRShQVoBWlhGvepQnfRn+MYRho2vnPWi2as5QPn5mN2WrG0A1GffMCbW9qkeOxq374L8fgbLVbqNW0Oo2uubAe7JdvfM+Xb/yINAw0k0bHPu14ae4zviBdtkoZylYpc0HnVkomNQet5qAV5bJxIcH55OHTfPTsHFwON+nJGTjSnLx2z+Rcs7TPzCefYTJrNGhTl4dfv4+Jy8acd88dvGucPxv3Hc50Jy6HG0eak5Xf/8eBzYfP+1xnONKdHNp2hITTSRd8DqXonNlu8kqvxa160IpyBTu+Lxqz1exdxpTJkebkyeYvMPr7odRuVoMtf+1g5ff/EVoqmAdG3sVHg+bgcrgwWcyElw7l9YUvE1H23IVGziUlPhWzxYTH5fHdZ7aYSIxJvqDz7V67j5d7vo6u63hcOg++ehf3vdzngtunKEVFBWhFuQxE7T3B1r92EhoZwrW3tcZiteTreZXrVsSdJTCeceLAKQa2HIrVZsHtdGMYEpNZIzQylBFfDWb7ql2ERobS67FuvuAspWTr3zv55+d1WO1Wrr21FY2vzbtoSvnqZQkOD8aZ7uTMqizDMKjboma+X/8ZUkpG3foWqVmy2L94/Qda3ticBq3rnPf5lCIiIdsKvSuSCtCKUsJt+GMLo++YCICmCao1rMK7K1/Dass7SFeqVYEnJz7I9Bc+xe30X1csDenXs9Y9BqmJaRzafpTH334w4FzvPD6dJfNW+CqNfTt5AU9MeIA+g24JODYrk9nEpGWjefX2CRzfF01khVKM+mbIBe0P7UhzkJKQ6nef0ARHdhxTAVopcVSAVpQSbtKj03BmmTM+sjOKpZ//zU2PdsvX8297qifNOjdmYIuX/Kp+5UT36GSkZATcv3vtPpZ9udKvDKju1pkx9DNufuJGbEFn567dLjdL5q4gJiqOJh0a0qbH1VRrUIVPdr3vK/95IVISUkmKSSYo1E5qYrrvfmlIqtavdEHnVIqOqsWtArSilHgpcSl+t91ONwmnzi85qmaT6vR+uge/fbzUrypZdla7lQ63tw24P+5EQo7HS0OSlpTuC9Aet4chnUdzaNsRnOkubME2+o28k/uG3wFwwcH528kL+GTkfEwWMyaThi3Yitlixu30cMdzN+VrqF0pPiQqixtUgFaUEq9x+wZs+3snnsxdoiw2c77KaGY38J0BNOvchL3rD7Bo9tKAIC+E4On3H6Zh28ClVHVb1EI3AjfRkIbk2N4TjL5jIlF7T1C6QilOHY3x1dB2pjuZ9+rX3PPibZjM558BDrBn3X7mjf4at9OD2+mdTy9TOZKRXw+hTKVIKtWucEHnVZSippZZKUoJN/KrwTRoUxehCaxBVv737oALCtBCCDrc3paHx9/HlDVvYLb6f38PLR3CDQ92zvG55aqVoWq9ygH3W4OsvNp7ArvX7iM1IY2ju4/7zWuf4XIE3pcXl9PN8q9W8+OU3wISiuJPJlK/VW0VnEusgl9ipZZZKYpyyYWXCeO9VePRPTqaSbvgYeKsKtYsz2sLhjPu7km4HW5CI0N547dXck08Wz5/NdEHTgbcbw+xkRzrPwRPlmBqspio07wmQaFB3oek5Pi+aBxpTqo3rprr9VwOF4M6jCRq7wl0tx6QiR5aKgSr3Xoer1hRih8VoBXlMnGhQ8S5ad29OT8lzCM9OYOQiOBzBv6DWw/jcrgD7vc4A5dwnWGxmalUuwL3Db+D0Xe8zb5Nh0hNSCMjxZH5uIWP1r1JratqBDz3z89XcmzPCb/kOICQiGAM3WD0dy/m92UqxZRaZqUCtKJckXRdJ+5EAqGlQggOC8r1OE3Tzlmb+4wzPeCshCbOOXTtdno4uus4Y++alMvjboZcN5r5UTOwZ6vxnXg6KWBZmMVm5tXvXqRW0+pElj//JVqKUtyoOWhFKQGi9p5g5ff/sm/jwYs+V/TBUzxU5xkeaTiIO8s+wvw3f/B7XPfofP/er7z10BS+mbQAtyuwZ5xdxzvbBW57adZofv1VWGwX3g9ITUzj9lL9mfnSZ357Szfr3NjvvJpZo1T5CPZtOIAtSA1tXw6kFAX+U9KoAK0oxdziT5YzsMVQJj06lcHXjeLj4Z9f1PnG9JlITFQczgwXHreHL17/gS0rdgDeOeDRfSbyycj5LP18JZ+O/ppXbnoDI4cM7axqNq7GbU/1wBZsxRpkwRpkZcBr9/Hqt96NN0yWCx9+1z06v0xbzN/f/eu776oODXl6yiPYQ+wgvNniMcfimDf6a55q9VKutcSVkkFKFaBBBWhFKdYyUjN4/6lZODNcpCdn4Ex38dMHizi849gFn/PwjmPILHtIGx7d1zOPPniKTUu3nV0GleFi99p9HMnH9Z5+/xFeX/gKz0x5lMnLx3Dv0N4EhwUx5oeXWJj+BY++eT+Nr61P6UqRnG8NCkeak51r9vjdd9Mj3ViQ/ClWm8X3etxOD3HRCaz+ce35XUBRiiE1B60oxVhiTDIms4Y7S4fQbDVz+mgsNZtUu6Bzlq5UitioeN9tk9VMhZrlAXA53JiyDVVrmpZjAlhOmnduQvPOTQLuN5lM9B12B32H3UFSbDKDrxvFsd0ncj2P2Wr22zzDFmSlUq3AJVNSSt/6b999hiQj1ZGv9irFV0lcFlXQVA9aUYqxslVKY8m21Mjj1qnVtPoFn3PE/MEEhdoJCQ/CHmKjTY+r6XB7GwCq1q9EmcqRviFpk1kjrHToRV3vjNU/reXxZkMY1GEkPR/txvRNEyhbtTRC8/8gtgXbuPuFWwmJCCY4PIigUDu1mtWg1xM3BJxT0zRa97ja7z0SmqDVjc0uur2KUtSKrActhLADfwO2zHZ8J6UcXVTtUZTiyGK18OaiEbzS6w0y0hxomuCVLwZRrmqZCz7nVR0aMm/fB+xdf4DwsuE0bFvXt4TKbDHzzt+v8e4T0zm49Qg1GlVl8KyBF72meNOybbz5wPu+ofPPxnyDpgnm7HyP3z5eyqLZSzmyMwpN02jT82ruGdqbPs/fzM5/9mIPtdO8c+Ncl5GN/Op53hs4k41Lt1GqXDiDZzypCpRcBtQyKxCyiN4F4f1ECJFSpgohLMAqYJCU8t/cntO6dWu5fv36S9ZGRSkuDMMgKSaZ8DJhBb7e+WJIKTmw5TBJMcnUubpmjjtQpSWlMebOiWxetsPv/uqNqjJ7x7uANxFsxC1vsmP1bkxmEyaziXdXvkb1hlUuyetQLowQYoOUsnVBnzeobmVZc+KTBX1advcZUyjtLSxF1oOW3m8GZ/aFs2T+qO9MipIDTdOIrFCqqJvhR0rJhIc/YuV3/2K2mDAMyZuLRtCkvXdjCsMwmPTIVP78/G+/pLQzrPazw9KLP1nO9lW7fYVHhBC89eAUpq57+5xt0D06Hzw7myVzV6CZBHcOvpUB4+4tkGpqilLUinQOWghhEkJsBk4Df0gp/yvK9iiKkn9rf9vIqu//xZnuJC0pnYyUDF67Z7Lv8QVTF/PXt2tyDM4Wu4UBr/X13Y7a518VTErJyUOn+WTUfB5u+BzPtHuZ7at2BZzn89e+48/P/sLtdONMd/H9u7/y28d/FvArVS41ScEvsVLLrM6TlFKXUl4NVAXaCiGuyn6MEOIJIcR6IcT6mJiYS95GRVFy9uvMPwK2pow7kUDsCW+G+LaVu3DlsDGGyWLisTf70a5XS999dVvUxh5ytlqYlrll5PfvLiRqbzR71u1neM/XA5aXrVmw3jevDd7dsdYsUNNgyuWhWGRxSykTgRVAzxwemymlbC2lbF2uXLlL3TRFUbLJSHPw5evfs27R5hwff7D20zzS+HksFjOaKbDXIg1Jt36d/O67vm8Huj3QCYvVjD3ERsWa5UhPyfDrVbudblb96D/IFlkxgqyj2ZpJI7JiqRzbpXt0tvy1g7WLNpGamJa/F5sPx/dHM2HAh4y67S2WzV9ZYOe90slC+ClpijKLuxzgllImCiGCgBuAc084KYpSpJLjUni6zXBio+PRPXqOx3hcHo7tPs7pIzHYg+2kp2T4PR4WGUJE2XC/+4QQPD/tSfqP7Ysj1UH5GmXpW+VJ0jn7XE0TWKz+S86enNSfQe1H4HF7EEJgC7Hx0Oh7AtrkzHDyQpfRHN11HKEJzBYz7//zOlXrVbrQtwKA00djeKr1MDJSHUhDsmnZdhJPJ9Nn0M0Xdd4rXmYlsStdURYqqQTME0KY8Pbkv5FS/lqE7VGUEiX2RDyTH53K4e3HqN64Ki/Ofuqill/l5sSBk6QkpFG9URU+G/ctsSfi/YqI5EbXdVrd2Jx1izfhzrKrldA0MtIcBIXYA54TWT4CMje66D/2Hqa/8CnOdCeaSSMoLIgbHrzO7/iaTaoxa/s7rFmwHs2k0enOdpQqF4Ej3cmMF+axdeUuKtYsT82rqnFo21FfwRWhCd55bBrv/DXuYt4a/vz8b5zpTt88uzPdyVdv/agCtFIgijKLeyvQoqiuryglmdvl5vmOI4k5FoehG8SfTOT5jiP5ZM+UXPdQPl9SSt55fDrLvlyJ2WrGYjVTo3HVfAVn8FYPa9W9GYmxyez852yZzrSkNKb8bxad7ryG/37bSJnKkfQZdHPArlm3PNmd0hUj+fu7NYSXCePuF2+jTKXIgOuUr1aW3k/7z46Nvn0C21ftwuVwE7XnBJuXbfOrhiYNbxLaxdI9RsB6XUMviYOpxZB6G1WpT0UpiY7uOk5ybAqG7t3EwtANUhLSOLLjGPVa1i6Qa6z+aS0rvv4Hl8ONy+FGCDi6+wSaSfNd148Ak0lD9xiYrWbCy4bRrV8nDmw94heg3U4Pq376j5U//Icz3YnZambx3OXM2vpOwNaX7Xu3oX3vNrm20e1ys+1vbyBu0qEBYZGhpCWlseWvHeiZJUAN3UBaTH7lQ81WMw3b1b3o96jzPe35ZuLPvmQ5W7CNm5+88aLPqyigArSilEi2IGtAkDR0HetFbrXocXs4vP0YZquZIzuj/PZzlhKSYpNz3+dCQo8B12MNtlGqXDhtbrqa/7UeRvSBUwGHOtNcvu0jPS4PybEprPz+X3oMuJ4TB07y2j3vcGzPcSrUKM/IrwdT66rAUqMZaQ6e7ziS6AOnfPPKU9a87t2MI1vvy2wx0aR9AzYv244wadRoXJXnZ1x8IYzqDaswaflYPh7+OakJaVx/X0fuGnLLRZ9XKbo5aCFET+B9wAR8LKV8K4djugDv4a3fESul7FwYbVEBWlFKoCr1KtHihqa+nadswVaad25yXpW3dF3n0NajeNweajevSVpSOoM7jSI+OgHDkFSsVQ6r3eK3lEoa8pwjj4vnreD91a9TpnIk/es+E7DJhmYSWGwW3E4PMstQsDQkrgwXbpebIV1GEx+dgDQkx3ZH8UKX0Xx28CNCwoP9zvX9u78SteeE37zyu0/MYNKyMXTr14m/vv0HZ7oLi81M6YqRjPlhKG6nB5fDRWSFUgVWzKRB6zpM/FNVKS5oRVHkMjMn6iPgRiAKWCeEWCCl3JnlmFLAVKCnlPKoEKJ8YbVHBWhFKYGEEIz5fii/zvyD/RsPUefqmtw6sHu+g44zw8nQbmM5tO0omqZRqnw41RpW5dTh077doU4cOEXNJtU4ssPbo3Y73X7JXjnR3Tp71x/AkebM8diw0mG8t2o8Hw//nHWLNvkF19Y9rubE/pOkJ6X7kq6kBF03OLTtKFd1aOh3ruN7owPnlQ9755WHfDyQOlfXZMuKHVSuW5EHRt6JLciGLcgG+M91K0oWbYH9UsqDAEKIr4DewM4sx9wP/CClPAogpbz4ZIZcqACtKCWUyWyi91MBpQPyZf6bP3Jg82FfgHM5XCScSvLbutHtcFOhRjlGfTOEhFOJDO70ar7OXb56WQ5tO5pzmy0mHm82BI/LQ2T5CMJKe0uYPjf1cSrVrsC+TYdwZ0tC090efpyykLF3TiI4LIin3n+Ydr1a0rRTI1b9+J+vh2+xmWl8rbfMqMlkos+gm1U2dQklKbIh7ipA1mo4UUC7bMfUByxCiBVAGPC+lPLTwmhMsShUoijKxdm/+RBj75rE8B6vseLr1Xkef2jrUb/ep8etI4TAbDm7EYdm0nCkOyhXtQy1m9UgPxvraCaNRtfUo9Od7bAFB86Hx59IwOP0gISUhDRqN6vJtA0TaNi2LlOf/4RB7UecLQ0qwB5io3SFUqxZsJ7E00ne+em7J7Nn/QF6PtqVrvd3xJSZAFa3RS0GTX0sH+9W7nRd558F6xjS5VUGdRzJX9/8c1HnU4qdsmcqU2b+PJHt8Zy+FWT/xTcDrYCbgR7AKCFE/UJoq+pBK0pxFn8ygZT4VCrVqZjr8qkjO48xuNMoX09y++o9pCWnc/PjuWcT12tdmw1/bMGZWYrTbDXTqntzDm47QvSBUxi6gaEbbPtrFy92HUvCqcR8tddsMfHPT+to1rkxAyf3Z8mnf3H6aAzx0YkBSW0el4etf+9k459bOXHwFItmL8XtzDJnLeHaW1vzzy/r/YbLnQ4X//26ngat6zB4xkCenNQft9NNeJmwi5pX/nXmH3zwzMcYnrPtPLD5EFJKutzb4YLPq1wACRRODzo2j92sooBqWW5XBU7kcEyslDINSBNC/A00B/YWaEtRAVpRiq0ZQz/l5w8XYbaYsYfambx8DNUaBCaB/fbxUr9ELme6k68n/Eyvx24gJSEVs9WMM91FWGQIZov3T/7el3qz7e9d7Fi9G6EJKtWuwPMzniDxVBIDW77kC6bODBc71+xBQI6bXmQnhOCfBev44NnZWKxmdLfOXS/cyo9TFpKWlBFwvDPDybi7J+NIc+a4dOufBev8am0DIMGc5ctKcFgQZFuedb52/ruX6UPm+gVnwLsBx3sL8xWgpZSs/P5fDm07SrUGlenStwOapgYpS5h1QD0hRC3gONAX75xzVj8DHwohzIAV7xD4u4XRGBWgFaUYWvf7Jn6dvgS304Pb6cGR5mTsnZP4eHvg50BOQ8+6R+fptsM5uPUIulv3LkOymhk271k6330tFquFtxaPJPrgKTxunSr1KmIymYg7kYDJYvLryeaVuX2GEN5krw1LtnjXTmf2zr+ZtCD3J0lIS0rP9WFnugvNJPyLfwgCEsYu1u5/9+W8thtvidH8eO/JGSybvwpHmhN7iI3VP69j5FeD1daXF6gosrillB4hxDPAYrzLrOZIKXcIIQZmPj5dSrlLCPE7sBUw8C7F2l4Y7VFf7xSlGDq07ahfspSUkqh90RzafpT4kwl+x/YYcD224LM7QdmCbQSHBnEoMziDN8i6HW4mPvwhJw6cBLy93cp1KlK9YRV2rdnLyzeNZ8rTH2MPsWHKnIs2mTVEPgKUyWIismIp+o26C7PV/3u/AAZNe5ygUDsms4YtxIZmyv9HT/bKXBaLmWrnsZwsP8pUjsRkNgXcbwuy0nf4HXk+PyYqjj8++9s3kuFIc/Lfwg0c2RlVoO28ohTRbhlSyt+klPWllHWklK9n3jddSjk9yzETpZSNpZRXSSnfu+jXmgsVoBWlGKpavzKWbIHO0A0GdRjBA7WeYu7or3z312lek4lLR9O6e3OadGjA01MeJv5Uol9G9hkms4kDW4743bd77T6GdX+N9Yu3sH3lLhJPJVGmciRlqpSmcfuGhEbmvCzJarf4eoe6Wyc+OpFvJvwcUArUZDHTsU873v/ndZ6Y+BBuhzvX3uq52IKt2IKtDBjf11uzuwB1vLMdja6pT1CoHWuQFU3TaNC2LqN/GMq1t56dssxIc3Dy8Gk8bv/XmJaUjtnqH+BNZtM5RwcUJS9qiFtRiqFrb2tNpzuv4e/v1mC2mElPyUAakowUBwDfTf6Vlt2a0ey6xgA0alePN38f6Xv+gqmLSY5NCTiv7jEoX72s330Lpi0OKChy+kgsZquZ1IS0gGB0RqvuzQP2Xk6JT6XHgC4s+2o1JpOGM8OFM83B7aX6o5k0hBAXFJztITZ6PtqNHgO6UPfqWuf9/LyYTCbeWjySDUu2kBSbQpP2DahUu4LfMUs+XcF7A2di0jQsdgtvLhpBgzbecqFV6lUkJDwYZ5oTw5AIARarmVpNAyugKfkh1G5WqB60ohRLQghemvsMH619i7E/vRSQoCWl5PD2s8s13S437/9vJneVf4R+tZ6iW7/rCIkI9pX+1DSBNchKz0eup0HrOv7nyiVeelwe305NOc3DZg/OZ1SuW4kZmycBAmlIdN3w/r9bz/dGGznpdn/HQgnOZ2iaRpueLbjhgesCgnPUvmim/G8WbocbR7qTlPhUXun1OrruHaWwWC2889c46rasTVConVpNazD5r3EBtcUV5XyoHrSiFGM1GlejBlCmUiRx0WfnnjVNULX+2b2Mpw76hD8+/cu7bCo2hbmj5tOm59WsWbABzaTR7LrGPDy+r6+QR1a3P9OTPz/7K9c2GLrhnZM2ct7/Obv2vVsz6eGPcKQ58v9CcyCEICjMjqEbXN+3AzHH4jh56DQtb2xGeOmwizr3+Tq8/aj3PciSiO5Ic5J4Otm3w1al2hX4aG1A2WblQqndrFSAVpSSYPQPQxne4zWEELhdHroP6EKLbk19j6/84T/fmmbwZj+vWbAePXPZ0K7/9rLu9805BugGbeoyYNy9fDrmG+9nogCk/7IqPYf57OyEJnhiwoNUb1SVXf/tu+DXCt4vIMM+fw6TyURQmJ33npzBiq+9RUOsdgsfrn2LijULrQRygIq1yqN7/N8DaUg+fOZjhBD0fvYmmnducsnac9mTRbdZRnGiArSilACN2tVjwp+jWTJ3OeFlwrhjUC+/5TtBoXaSYpJ9t4XAF5zBG7D//XUD/cfeS9S+aDYs2cKJAyfJSHVgC7ZSsWZ5Hn2zHxa7hdIVSrFg6mL2rD+AM91Jfl3dtSndB3RB0zSCgu2kpwauez7DZDFhsZppeWMz/lu4MeALgNAEybHJXHfXtbzYdSwxUXG+HpUzw8W0wXMZ++NL+W7bxap7dS1uf7YXP035DbPVjMvhQkpY9eNaANYu2sS4n4fR8oZml6xNyuVP5Kd8X3HRunVruX59zvNeinI52/nvXobdOA6PW0czCULCQ5ixZZIvm/mfn9fxxv3v4cxwYbaa0Uwabqfb1wsWQtCm59X0HX4Hw7qP8y7hyvan791pysrAd/rT67FuDL7uVb99nPNispho0LoO769+nTf6vc/y+asCjgkKtTN33xSmDZ7H8X3R1G9dm+qNqjLt+bkBx5qtZmxBVtKS0wPaWufqmkzfODHfbTsf+zcdYtWP/3nn7B++ntIVI32PHdp+lJhjccx+5QsOZsuGv/r6q5i49Mra1UoIsSGPylwXxFarqqw09pmCPi1H+r9cKO0tLKoHrSglwNRBn/hVC9M9KXw3aQGPT3gQgPa92zBh6WjWLFhHcHgwbXu1ZNiN43CkOZFSYraYeHJyf57vNDLXHakMXeJMd/LRc3NwpDk4uuv81vDqbp1d/+3DmeGkct0KOR4zeMaTDLvxNY7vjcbt8njndnNYfwzeJLWcksqsQRZa3tA0h2d4k+fcTjdW+4Xti71x6TZe7f0Wrgw3JrPGd5MX8N7K8VRvVBWAWldVZ/3izTluBpJ9CFxRLpYK0IpSAiTH+S+Z0t068aeT/O5rfE19Gl9ztmb/7B3vsvrHtei6wbW3tiK8bDgpcal5Xsvj8jBz6Gf52hwjO2lIXr//fcLKhGINsvqqiZktJtr3bku1hlU4eTjGV4TF7fTgcZ1fYNPdBuWqlQ24f/uqXYzuM5GU+FQiK5TitQXDqN+qTg5nyN30F+b6Sot63Dop8Wk81nQI1RtV4a3FoyhTKZK5o74KyKo3W83c8Vyv87qWkhc1B60CtKKUANfe2oqFM//0JYLZgm106N3mnM+JKBtOr8dv8N1OS073JYDlJT91t3Oz5ud1AJitJirXrUBaUgZlKkVSoUY5bxW07IE/lzZZbBakYWAY0m/ttO7Rmf3yF1StV4k2PVsAkJKQyis3v0lGinfeOz46gWHdX2P+sRnYs1RZA+/Wmhabt8jK8f3RfDJiPgmnk+h4RzvSc6gXLg3Jsd0nGHvnJN5b9VpAARghBD36d6HTndec71ulnEvJmX0tNCpAK8WKlA7AjLcOffHhSHdybPdxwkqHXtLs4TMee/sB0pLSWfHNP5gtZh589W463pF9m1p/Lqeb9Ys340hz0qxzY8pWLk2jdvXYvXb/eQdgIcR596g9Lh2T2URSTDJJMckc3HqEbycvoGyV0ugew1fvO6e2WGwWOtzRlnqtajHv1W98PfEznOku/lu4geZdmjD75S/499eNAccYHoPoAyep1bQGANEHT/FKrzc4sT8aa5CV/737MDOHfuorArN33QFqNq1GYkxSwAYdhm6wb8MBpj0/lyp1KxJ96JSv528LtnLv8NvP671RlPxQSWJKsSCNJGTCQHBvBgSEPoUWWvBJIhfi0PajDO06BnfmnGjPR7vyzJRHi/UmCI50J4PajyD64CkQIBBMXjGWSrXL8+4TM/j7+3/PK0gLTWAymXKtKna+wkqHkhKf83C7yazRpW8Hdv+3j+P7TuZ4jNlqpt/IO9m8fDvbV+3OcRmYxWbmi8PTiKxQCoD+9Z8l+uAp3+s2W0wghN88tz3ERq/Hb2DR7KVkpDr8e3GZPX2r3YI1yIrJbCKyQikGz3gix+VrV4JCTRIb/WxBn5YjDw8vUUliqpKYUizIpJfBvRXQAQ+kzkI6/izqZgEw7u7JJMWmkJ6cgcvhZsncFaxdtKmom3VOv0xbTNTeE2SkOshIcZCeksHkx6YREhHCyK+HnPf5gkLtPD7hgQJrX27BGbzLw5Z+vjLX4Gy1WyhVPoIq9SqxZfmOgOBssVmwBdu456Xb+Xj4F9xX7UmebPEiJw+d9vtSIrScRwX+984AfoyfS4uuTQkKtRMUZvc+kHmoy+FGd+sM+/RZZm2dfMUGZ6XwFa9xROXK5doAZK0HnYF0rUPYb8jtGZdM9MFTfrc9Lg9Hd0bRrlfLS96WhFOJ3rW3UnJt7zaUrVw64Jjog6f44f2FAfW1407E+/5bCEH+NpH0MnSDclXLEBweRHpy7uubL4WIcuFM3ziBJ1sMDXjMZDXR6/FudOt3HV++/j0b/9yKy+Em9nh8wLGayYTJ5B0Kl1JiC7Zx2/96eM+TWZt787LtnD4ay3sDZ/itKxdC4Ei9uEppyjlIQBUqUQFaKSZM5cCTdRtFG8JUudAud+LASU4eOk3VBpUpn0NGcFYVa5bn+L5o322z1Uz1RgW73WF+nDx8mqdaD8OV4UICM1/6jAo1y5OWmEbLG5rxzIePYugGz7UfQVKMf4a3xWrmqo6NfLfLVinN6aOx+b72yG+GUK5KmVyXaF1KqQlpHN9/iuTYwF54UIidx956AIvNzNpFm/ySy8w2MxjStx1m6x5X88jr9zH7lS9JPJ1Exz7t6DPoZt/xmqb5Co8snPUn+zcd8g2HC01wVadGKEphUgFaKRZExJvI+Ie8Gb4CMFWH4HsL5VrfvfsLc0d+hdlqxuPy8PyMJ7jhgc65Hj/6uxd4setYPG7vHPQND3ambRH0nueMmE9aUrpf0Dmyw7thxoqvV5Mcl0LvZ27yVbnKqs7VNRkya6Dv9pBZAxl9xwR0j4GUBro79x2mylYtQ4vrr+LV29/2JXYVKSHQPToN2tZl5z97fOuPTWaNlz55BnuwDSklJrPmH6AtZvqNuJNS5cIpU6U0rbs3RwjBmO8De+LZvb7wZSY/Oo2da/ZStmpphs55usC3vFT8laD0qEKjksSUYkPqJ8G1DkQw2DohxIUVmziX6EOneOyqIX4Zv1a7lW+iZxISkfO+x+DdB/jozijCy4QF7HR0MQzD4Ivx3/PnZ39hC7Hx2JsP0PamFjke+2K3MWxZviPXc2kmjbf/GMWrt73tTXDKZLKY+CZ6lt8GE1JK/lmwjhVf/8P2lbtyHAI+wxpkwR5iz3H7yqzXloZEaAKkxLiIZVrnYraYKFu1DLN3vEtaUjqv9HqDA1sOIzTBPS/cyqNvnp0nn//mD3zx+g84051YrGbKVi3DjC2TCAqxF0rbrkSFliRWs6qsOOq5gj4tRx8bVqKSxFQPWik2hKkiBN1aqNc4dTgGi9XsF6BNFo3YEwnnDNBBIXbf3r8XKzkuhS/f/IGYY3G4HC42Ld3uq3k97q5JTPjz1RwTj9rf1oY9a/f7VRTLymTWuKpDQ6o2qMyRHcdwOdzYgm1cd9c1fsFZ13VG3z6BTUu343K4cjxXVq4MN66MPHrOwhv0pV54X/jtITba3dySp99/xFspTAjueak37zw2Dc2k8eMHi0iKS2XwjCeRUtLmphYITXB8/0kMj0FSbBITH/6IuwbfohK7lBJBBWjlilK1QeXA8pESylc/9zx0QUlPyWBgy6EknEz0FrzIVqTDmeFi2fzVOW8L+exNxETF8dOU3wKKZQD0GXQLZouZd/8ex/fvLuTY7uM06dDAr1gJwO+zl7F5ef6Cc34ZntyHyAuCxWZhwGt9ufP5WwDY8tcOXu39dkDC2vL5q+hwe1s+f+07Dm09gmY2YQ+2kpqQ5qtetnbhRt7+41WatFdBulhTSWJqmZVyZSlbuTRD5z6NNcjqXUITamfMjy9dsmHPf3/dQEpC2tkAm33DCk1gD855aF/TNJ6c+BBv//EqQaGB7d28YhuTHpuKx+3h/lf6MOzTZ7nlye5omv+f+eGdUQGFOIoba5AFkzmz3QJufrybr5SmM8PJq7cFBmfwFj1554np7P5vH84MFxkpGSScSvIFZ+/zXXw7acEleR35FXs8jgNbDuM4j93DlMuf6kErV5zOd7en7U0tiDuRQNmqZQJKQRYmj8uTa/aLpgmCwoK4NXOpT26adGhA3Za12bt+v1+g3bP2AHvWHmD5l6uYt+8DylYpk+Pz615dE5PFFFjcI2tvXnjne8+3TnZBGf3di2gmE5EVIqjVtLrfl4xTR2JzrWrmcXuIj07I8bGstq3axW0RDxFZIYKX5j5zwb1pl8PFPz+vIz05g6u7XkXlOhXP+xyzX/mC799diMVmxmQxMWnpGGo3q3FB7bmciJKTHlVoVIBWrkhBoUFUrR90ya/bqntzTGYTwptLhdVuoX7rOlRtUJngsCBuf/YmKtQod85zmEwmJvwxit8+Xsqv05ZwaLv/zkouh5vxfd/lvZXjffelJKRycOsREmOSiYmKy7Hylm9ttASL1UJQqI2U+NRLnk1rsVtwZrg4tvsE21ftolqDKjw05m5fjkCZypG57hyl53OoPTUhDUM3yEjJYHjP8cze/g7lq+f8vkspWTR7Kb/PWUZQaBADXutLo3b1cKQ7eabdy5w64i2AIhCMX/gyzTs3yfdr3bJiBz9NWYTb6fZlyL96+9t8fnBqvs9xWZKoWtyoAK0ol1SZSpG8v3o8Hz47h9gT8bS6sRlPTHjwvLdHNFvMhJcO5fj+6Bwfj9pz9v7v3vmFj1/+/JxLqcC/JnbWgHGpuR1uPnhmNmlJabgy3Gxetp11izczfdNErDYLIeHBDJr+BBMHfHTB18i6/EoI2L5qN13vzzlA/zjlN+aMmO9L5Nvxz27eX/062/7eRfTBk34JdO88Pp15ez/IdzsObT+KYfj/u5w+EothGAFTE8qVRwVoRblE0pLTmfzoNLas2EGpChG8OPup8xpajdp7gu2rdnN093HiTiZyeOuRgGphZ5SrVpptK3cybfA89m06WOJ6IwknE33/7XZ5iD0ex47Vu2nR1bsPdPeHurBxyRaWfrUKzvG9QzNpdLrrGv76+p+zd2bfPUtCSERwruf4ccpvvuAM3o06lsxbgdVuDchuT4pJ5pfpSzh1+DSNrqlPh9vbnvN1Vm9YBc3kH4jLVCmtgjNCJYmhArRyBZFS4kw7SdS+FMJKR+Y5lFzQxt01iW0rd+F2ekiOS2F4j9eY8u8b1GhUNc8P5JXf/8v4e9/xW1+c214dQkDU3miGdB5dkM0vUkIIv14vwIOj7+Gv79acc568WqPKrF+82e8+s8WMEAK3y40tyEqNJtVo3ePqc1w7+x3eSmItul7Fj1MW+vIALFYzmkljxovzcKa7sIfYuGNQLx4Zf3+u5255QzN6PtKV3z5eitlqRggY80PehVOUkkN4d9XpB9SWUo4TQlQHKkop1+b1XBWglSuC9BzFfaofeE5TrQzMGFsNEdz3ku1KpXt0Ni/b4Tec6Uhz8kTTFwBvta4Jf4yiWoPAEqJul5vX7n0nYPcpKb3Bw2y1oJmEb67YleHKda10SaSZBPZQO+VrlPMb+p06eG6ey7uiD5wOWE5mNpvo+WhXQiNDKFu5NN0HdMFkNuV6jnuH3c60wXN9gdgebOOmR7tRo1FVHnuzH7OGfY7HrVOjSTWi9p7wHedIc/LNhAX0G3EntqDcExGffv8R7niuF4kxydRoXJWQ8Nx781eUEjbqcw5T8Y7zdAXGASnA98C5N3RHBWjlCiETnkATpzBnfk4+NuIYr9y/kLW/taDdza0K/fqaScNk0TCcOQeU2Kg4BnUYyfxj0wM+zGe//EWuW0OabRZueOA6Gl9bn1+nL2HPugMF3vaiJDRB6UqRJJxKYmCLoUSWj2DistFUqlWBU0dOB1YsyzZ87cpwERoZQlpiui/zWyLp3r8L9VrWzlcbbn78RkLCg1k8dwXBYXb6jbyLGo2qAnD7s73o/cxNGIbBmgXrmfiw/7y40ATOdNc5AzRA5ToVLygDPC46gYkDPuTQtqNUqV+JoZ88TaVaBVfprkhdPgG6nZSypRBiE4CUMkHks0yiCtDKZU9KD+iHyD6KXKtRMkd2Rl2SAC2E4OHx9zFv9Dd+85lZOdKdRO2Npk7zmn73r/llQ67nNZtN9BtxJyu+Xs2hbUdzPQ7wVj0o3HoiBU4IQfzJRAyPge7WOXUkhofqPENIRDBulwfNdLbeti3YRkhEEPHRib7nW4Os9Hn+FhZ9vJTEmCSkIRk4uX++g/MZXe7tQJd7O+TaRpPJFJBPYDKbqNGoKmGlQ333GYbBgqmL+e/XDUTti0b36NRsUo3BMwdSrmrOy+Jy43F7GHLdKE4diUH3GCSeTmJwp1HM3fvBJV06qOTJLYQwkfmVQwhRjnz+JaoArVz2hDAjRRjIZN990hDEnw6ibZ9LtyvV3S/cRvWGVdi0fAcLPlzkVzwDQOoGoaUCy42G5pLAVKlORW4deCNzRnzJvg0Hc00Y8ylhwRkImHc+Iy0p3e+2ZtLoen9H0pPT+eubNb77pWHQ++ke9BvRh6SYZEJKhWC2mDi84xhSSqo3qoLJlPvw9rlE7T3BjBc/JT46gXa3tKLfiDuZvHwsb/f/gNjj8TRoU5fhnz3rN4Xy4bNzWDJ3Oc4spWbjTiQwqMNIPtn9nl9P2+1y8/WEn9m9dj81m1Sj38g7/QrqHN9/kviTSb6lZYYhyUh1cHDL4cujlOnl04OeAvwIlBdCvA7cBYzMzxNVgFauCKLUu+jxT+FI9aCZJOtXRBBZ7RauuaXwe89Ztbu5Fe1ubkXzzo0Z02eiLwBpJo3uD1+fY+LaU1Me4fkO/n/P1iALHe9o4+uRC61kZLxm7fEWGAHdB3ThmSmPcGv4g34PSWDc3ZNpeUMz7niuF7pH54UuozmcuXa8Sr1KTF4+5px12HMSF53As9e8QlpyOtKQHNkVRdyJeAbPGMisre/k+Bzdo7Nw1h8B8+aGbpCWmMaBLUdofE19b7ul5NXb3mbbyl04M1xs+nMrG//cygdr3vDNl9uDbRi6HnAum+o9FytSyi+EEBuAbngnYW6XUu7Kz3NVgFauCMLWCVP537EEbST6iE6969vR+bFKRdaea29tzcfb3+HnD38nPSWD9r3b5Lokp8m1DXhy8kN8PPwLhObNZi5buTS/TFviGy6XhkQI4V2yI8ixEAngzUAWguAwOxlpTpC591ILQ17X0swaZrP5/OqES/h9zjK2rdwV0OvyOD1sWb6DXWv2snz+Klrc0IyDWw77RhsObD7MM9e8wvSNEwLmiY/sPMba3zZhC7bR9f6OfqMb//6yHrfL7csNcKa7WDL3L56f/mSuSYeGYeTaKzQMA6vd4rt9+mgsW//e6Wuny+Emas8J9m08SMO29QBv/fhrb2vDv79uwJnuxBZs5aoODS+PKmSSy2aZlRDiGmCHlPKjzNthQoh2Usr/8npukQVoIUQ14FOgIt7Bt5lSyveLqj2XE6nHgXsdCDtY2xfKto0lkTBVwVaqCjVLFf61dF3Pc+i0WoMqPPPBo/k6312Db6V196sZfccEYo7GcuLAqYBjNE3Q5/lepKc4WDjjjxzPIxDY7FaCwoIIjggmIToRo2iqeQYwWU30H3MvLbpdxXPXjsg1MS5HEk4ePEWpChEkx6YEbIjicrg5dSSGzUu3BUwFRO09waRHpjJi/mCklGxatp11v29iwUe/Y+gGmklj7qtfMWja43S4vS1mizlz7bJ/ABF5LF22WC1ce2sr1v6+GXeWNljtFhq0qesXWD1uDyJb0oQQwq9SmhCCV74cxO9zlrNvwwFqXlWdW5688ZKsSlDOyzQg6wbyaTncl6Oi7EF7gBeklBuFEGHABiHEH1LKnUXYphJPuvci4+/DN+FoqgZlvkaIS1/W8koUffAUI299k2O7TxAaGcLLXwyizTnW2J6PjFQH8ScTA+auz9DMJmo1rUGNxlVZOPOPHHtrUkoc6U7fpgwmiwmTxYQQInCXr0tMExrd+3emVPkI2vVqwb+/bjyv5+seA5vNgsmkkdsrKV+9LEd3RfmXBJWw+ifvktR3n5jO8q9W40x3na337dZxOdy89cAUajevybt/j6N97zbMfvlL3E43hm5gD7Zxy8DueQbHV+YPZvbwz9nwx1YMw6BagypUbVCZ/37dQC/7fZSuVJqRXw+mYdu6VGvo3TbU7fRgMpsILxtGvZa1/N8zTaPXY93gsW7n9V6VBJdRLW4hsxSPl1IaQoh8xd4iC9BSymggOvO/U4QQu4AqgArQF0EmvwIyFd+ns+cQMu1zROjjRdquK4GUkpduHMepIzFIKUmJT2XsnZOYvePdAimK4nK40LLNNWtmjcjyESScSkIzCT54+mPqXF0Te4gNR2rea6F1t06ZypEkxiTneWxh87jcvP+/WZSuWIoNf2y7oHMERwQTfeh0jo9pmsbTUx7l2WteJinb69V1g/2bDrFs/upcs+w9bp3DO46xcOaf3PFcL6ZtnMC8V78i9kQC19zckt7P3JRn+6w2C/979+Gz1/XoPFDrKeJOJCClJOZYLC/3GM+nBz5k0tLRTH1+LnvXH6BG46o8PeWR8y4JW6JdPgH6oBDiOby9ZoCngIP5eWKxmIMWQtQEWgB5jskredBP4v+b7QT9WFG15oqSHJdC3Il4v6FZk1lj99r9BRKg67euQ1BYEI40J4ZuYLaaqd6wCiazifjoBF+BjH0bDhIcEZyvAA3eLOLiQErvdpw5VQ3Lr1OHcw7O1RtVZeTXg6lUqzxd7mnPzx/97ve4xWoh/mQiZouJc71rrgwXp454r1GuahlenPO03+O6R0czafkeZj59NJbUxDS/3bmEJti/6RCtbmzO0E+ePsezlRJiIN5M7pF4P5yXAk/k54lFXvBVCBGKt6rK81LKgK/xQognhBDrhRDrY2JiLn0DSxpLS8CS5Y4ghDXPgjWXvX0bD9K//rP0CrqfgS2HEn0wcA73YgWHBwXs/GToBpEVIs77XDFRcbzYdQx3lnuYZ699hah90QSF2Jnyz+u0urEZFWuVp0PvNkxcNprTR2P8rpt1CU9JIw15wcFZM2ukJqYH3B8UZuf1hS9T66rqgDdYW4P8e6KVapenztU1c90l6wx7sI0mHRoF3J+WnM6w7uPoZb+fm4Pv59vJ+dtvOjQy5Oze4Jk8bp3wMmH5er5SvGWuf35HStlXSlleSllBSnm/lDLnb5LZFGmAFkJY8AbnL6SUP+R0jJRyppSytZSydblyl7Z2ckkkIsaD5Sq8gyMmCL4P7LcU2PmlEY90LEe61iNlyVhYmxyfwtBuYzmx/yRup5uDW4/wQpfReX4Y59eRncd47KrB3F6qPxFlwrDYLdiCrNhD7bTucTVNOwV+oJ+Lx+1hSOdX2bZyF8lxqexZt5/BHUeSkZrBrjV7sdgtNO/cmEfeuJ/w0mHUb13Xr1SlPcRGeNkS/AF/ATlOtiArIpcnOlIdvHj9GN+/d89Hu1KneQ2CQu0Ehdqx2C2069USaRiM/WkYYZEhCE1QoUY53lv1Gg3b1vXO1ZtN3PF8Lzr1aRdwjcmPTmPbyl0YhoHb6WHe6G/477e859DDIkPpO/wO7CE2zFYz9lA7197airotauX5XKX4k1LqQLn8Vg7LTuS28bnvACGewRtAC3QcLLOA+DwgXkr5fH6e07p1a7l+/fqCbMZlSxopIKwIUXBrIqV7OzL+ocxbBlhaIiJn4f2SWHxtXLqNcXdN8ituYQ+xMWPzpAsqr5hVRpqDB2o+RXJciu++0MgQHhp9D5VqV6DdzS1zHO50Zjj5ZdoSTh2Jodl1jenYp53vuGN7jvNU62F+9bSDw4Po+UhXFs7807fuOSjUzswtk7EGWRl24ziO74vG0A1uGdgdj9vDb7P+xND9h07PKzO6hNA0Qf9x9/LpmG9z/dJlD7Yxc9tkXxlM3aOzbP4qpjw1C49b9y5LE9C9fxeem+rN17Dazo5EpSWnY7FZ/O7L6s5yj/j9DgDYQ23c/MSNPP7WA+es9Q2wadk2Dmw+TKXaFWjfu02JycQWQmyQUrYu6PPaqleTVV58vqBPy6FBLxZKe89FCDEDb8b2ArwZ3ABIKXNeMJ9FfuagKwLrhBAbgTnAYplXVM+fDsCDwDYhxObM+16RUv5WAOe+4gmt4HtQMvHFzAS0TK4N4PgZgvoU+LUKUlhkSMAHt8et51i1Ky+6R2f2K1+y7MuV2IKs9HykKykJqX7HONKcNO3UKNdekNvlZlCHkRzbfRyXw83vc5axf/MhHn7tPgCCQu3+WcZ4h8qXfv6337pnZ5qTPz5dwQOj7mbG5knEn0zEHmwlJCKE2BPxrPz+PxypDjwebwA6V3COrBBBg7Z1+fccZUWLq+AIb53s7EU7svJ4/P+9TWYT6xdvwZnhOvu+SFgybwXRB0/R67FuVKhZnibtGyCEyHMDi1LlwwMCtCPVya/Tl2B4DJ567+FcnunVomtT31aaSqbLZB00cCLzRwPO64M5zyFuKeVIoB4wGxgA7BNCvCGEqHP+7fQ77yoppZBSNpNSXp35o4JzcWaczHaHA+k5HnCYNNIxksZgxN6KkfAsUs/+vEurbotatL2pJfYQG5pJwx5io8/zN1/QPN+cEV+yYOpi4k4kcOLAKeaN+SYg8HlcHmzBuY9obfxjKyf2n/Stx3WkOfn67Z/xuL2Lg8pWKcP1fTtgD/GOftiCbTTr3DigWpghJZ7MLx5CCMpUivRVxCpbuTSzd7zLk5P7Y86j9yY0wU2PduO5jx7npblPl5jeG8I7svDI+PtIOJUYMP9vsZl9/953DbmFsMhQv8cTTiUG7hBmSLb+tZO3HvyAYd1fY3zfd8lPf2TIrP9hD7Fhsvi/1850F8u/WnVhr0+5LEgpx+b0k5/n5iuLW0ophRAngZN41y9HAt9lrlt+6cKbrpQo5obg3gKc6anYEZar/A6RUiITngT3ZsAJnv3IuE1QdjFCO/8e68VKTUxjzoj5JJxOpOUNzajXqjb1W9Wh7U0tcn2OruvMfPFTlnz6FyaTibtevJV7h/ZGCMGyL1f5LcPR3TpC4B8cBJSuFJnr+TNSHTnOs7qdbswW75/ki3Oe4uquV3Fg8yGqN6xKj0eu57Ox3/L9O7/61jDbgqx0uSfnDRwAIsqGc+vA7kwbMjfXY8AblL56+yd+nPKbN9GtiNa3COEtBZp99CA39mAbI78eQlCoPeAxq93CExMfIi0pPfMLWuC/d/vbWrNt5a5c13+7MlysXbSJtb9tzHNDlSbtGzBz62SmD5nHv7+u95tayJ6QpuSD5LJZZiWEWE4Or0ZK2TWv5+YZoDPXb/UHYoGPgaFSSrcQQgP2ASpAXyFEqfe8c9B6NKBDSH+E/Xr/g2QCuDcBZzKJdZDp4N4AtusuaXu9Q8kjiD5wCrfLgzXIQkaqg34j7jzn8z4d8w0LZ/3pW7Y0e/gX/PTBIj789w3s2YOByJzbzfxANpk1GrSte84h0WadG/slNJmtZuq3rk1Q6NliMkIIbnywMzc+2Nl337W3tebk4Rj2rj9AZPkIHn2rHzWbVMvzfWh+XWPWL9ni3+xs89GGbpCR6iAjzZHnB6MwC6Sn4D89pYQaTaoRH52ALcROXFRcQIZzduFlwqjdrDrlqpbx+3ducm0DbnuqB0IIEmOS+HHKb7idbtr3bkPluhX5/r1fWfvbJirVLs+x3Sdyb5NucOpIbL7aX6lWBQZNe5ztq3eTlpjmLZwSZOXxtx7I87lHdx9n2pC5xJ9IoG2vFvQfe6/vy5pS4r2Y5b/twJ2Qay0dP/n5DSgL9JFSHsl6Z2Y1lIJLD1aKPWGqCGV/ByMGRAhCC83hKI3AT3gJXPpEsj1r9xMTFeervOXKcLNj9W5ij8efc2u/v7/71xecz4g7Hs/4vu/yxIQHeb3vu2eXMkkwdG8d7NDIEFre2IzB08+9xLF0xUgmrxjLpEenEncinibtG/DC7KfO+ZyZL33KgqlLAIkrw016cjpb/9pJw7Z10TJLQhqGQdyJBGzBVsJLnx2+73hXu4AAnet8dD7irvRIhAaFkcR/cIv3Y8ZkScu9njigmQT1W9ehXstaaJrG+6tfZ86I+RzdFUXDdvWwBVnpV+N/SCRpienoHh1DN/hs3Le06dmCtYs24Ux3opk0wsuG0rBtfdYv3hy4xEtA/db535qydMVIZm6ZzC9TF5OalEanPtfQvEuTcz4n9kQ8z137CunJGUgpOb4/mvjoRLUG+jLpQUspsyd2rBZC/JWf5+YZoKWUr57jsXztyKFcPoTQwJT7hvBCK4W0dQXnX4ADsIJWHgpgLbb0RHmT1My1/eqLSyMNPPtACwNTbd8cqnfYOXAsWRrnjiy5JY/t33SIa29tzavfv8iYOybidp6tp3xmnnLk/MH5ei11W9Ri+saJ+Tr2wJbDLJi62O9LQ9yJBD5/7TscaRn0H9uXxNNJDO02luhDpzF0g16PdeOZDx5l74aDfPjMnHxd53wU9gq7cwdnjR6PXM+zHzzq+3ISWiqE5z56DIAf3v+VT0Z+5ZcFf4bHrbPyh399H/6GbuDKcNP57mup0bgKP075zdtrl94yqI+//YBvc4r8KlMpkgGv9c338WsXbsTj9vh+h5zpLpZ+sZIX5zxVcvIBCsHlUupTCFE6y00NaIU3+TpPagxFKXCi1LvItI+9Wd7mmojQ5y5qww4pJTJpODh+A2EGEQqlv0SYqyE9+5Fx/QA3SA/Yu0OEN/A1aFuXyAoRuB0uPG7dtylBuWplz3m9gZP7M7TrmICa12Uqe//Odv6zB90TOELlSHNc8Gs8l9NHYzGZzZydNvBypjv5YvwPfDvpFyrWrsDxfdG+wLZk3gqqNazCwpl/nl+NbQHBYUGkJ2cU4CsoWHc814uBk/vn+vgfn/6dY3D2yaVG+RMTHuLOwbeSFJtMcHgwpStE+EprGobBmgXriTkWR4O2dWnU7vyC9rnkvPHGlRuYL0Mb8P7WCbxD24eAfO2SowK0UuCEMCNCBxbcCR0Lwfk74ATpBJmBTBqCKPMtMvF5kIn4PnUdvyEdiwEPZmt7PvhnPDNe+oGju47TqF09Hnnj/jx7JU3aN+DDtW8xps9EYqLisFjNIGD4Z88B3uHurElAZ1xdSMtkajWtnuMXgjNcDjdHd0b53edIczL9hXnnXZXLarMw4Y9Xef66kXicxWSbq2wcqQ6+eP17dqzeTbWGVXho9N2+7PX4kwkkx6bk+lxbkJVKdSoQffAUznRvbXOLzULbXt6NhcpUiqRMtgQ/wzB4tffbbPlrJ4ZHR2iCJyY+xG3/61Egr6f97W2Y/cqXeFxu77x1sI3emfPnV7TLpActpbzgqjMqQCvFnvTsAZm1R2eAJ7PWvOcY/n/JHnz5F67/CLWNZ+icj877mrWb1WDu3ilsW7mLtMR0GrarS+mK3g/utje3YvnX//hlc5evXpYRXw467+ucsX31bl6/710STiZSo0k1xvww1FdUo2LN8gyb9yxvPTAFl9Od8wkE/m9DLntC51WsJDgimPqt6+RaleuSydy3Oqe2/v39v7gcLpzpLjYt28a6RZuYvnkSaYlpPNzweTJS/Mt9WmxmLHYrUje4/v6OPPXuAL56+2fWLdpE2aqleXLiQ0SWz70c65YVO9jy104cqWdHSKYNnkuvx7oVSCJXeOkwpm+ayGdjvyH2eDztbm7JLU92v+jzKsVDZsXM/wFnsmRXADOklLn8MWd5bsHUHLk0VCWxy5uUMsdeg8z4CZk0GjgTpAWYGoGlpnfY+1xEKFqF89u2MD++nvATn437Do/bQ4fb2zJs7gAscpn3i4StM8JcPd/nij+ZQP/6z/kFAJNZY8q/b1C/5dlyAx63h+2rdzOh/4fEHIvzO4ctyIrQBJrJhGEYuDJcAb3noDA7jnSnL+M8J0IThEWGkJHq9Jtjv5RMZhOPvnk/FpuFBdN+59iu3LOsz3h6yiP89e0atq/0T4sJDgti6oa3qVK30gW3Z8XXq3n3iRmkp5z9kmi2mvkmelbA2uorTaFVEqtWTVYdlL98jvNxcOgLRVFJ7GO8GyTMy7zrQUCXUj6W13NVD1opctJzDJkwEPT9SFEKIt5BWJuACPbOXdtvA8dycC7PnIO2gbkWOP7MdqYzc3lZeo7i3BtVSMcSpPNv0CogQvojtPB8tfnel27n3pdu9yb2yGRk7G1IIxEwIHUSRM5DWK/O17m2r94TsMWh7jEY2m0sXx6Z7luyZbaY+eubNQFbJZqtZuq2rMXo719k/6bDBIcF8dm4b9iyfIdvmZIt2Maob15g5C1vnnOdszQkyXGpuT5+KZSpHMktA7sTFGKn5Q3NeLbdy2SkZgQUIslq1kuf5Ti64MhwsuaX9VisFrrc256Isvn7982qYbt66Fm+7GiZdbovpBKdckVqI6VsnuX2MiHEllyPzqLId7NSrmzewiYDQD8ASO866sRHkKfbIU9dhXG6AzLjB0Sp9xBlf0BEfoIotwzcGyH7xoC2G8BUAwgCrIDdu3lILozUWcjEoZDxDaRNR8b1Rho5Byepn8SIH4BxuiNG/ABfdTQhBDJtHhixeHv4mXPkyaPz/R6s/W1jjkO50pDsWbefCQM+5IHaTzH4ulGsX7zZV4HsjPqtajN5+Vgiy5eiTY+radK+AS9/Poi6LWqhmTRMZhMPvnoXbXpcTdubWqCZA//sTZbi81Fw+mgsg9qP4OTh01RvWIWZWydjtp67L5H9PTnD8BjMeulzZg79lEebDCb2RHye14+JiuP3T5az/KvVZKQ5qFizPC/O/h9Wu7cOd2TFUrz5+wg1R1yIhCycnyKiZ628KYSojV8vIneqB63kSuonkUkjvfO9lkaIiNcQWum8n3heF0kA/RSQdTg2y1+SEQPJY5FY0IJ7ex9178x2fCbXRii3COFcBkYK2NojzHVzvqyUkPoB3qVgAG7Q48G5JKC2uJQuZNx9maVOdXDFIeP6Qrkl3h6+EeN9flZG/veWyUjNOfvb8Bh8MvIrDmw+jNvp5vSRGN9ew2empsxWM006NMBk9g5te9w6FquZiLLhfPDvmzjSnVhsZkwm7zr0Fz4eyL1Vnwy4VnBYMI50J+5cAt2ldmTHMV66cRy3PNmdX6b9jtuZj0z0XD6ADd3ApRvoHp2v3vqRZ6Y8iq7rvvckq/2bDzGk82jfUrzI8hFMXD6aaYPn+iqcpSam88P7v/F0HvW1lYt0+dTifhFYLoTITJyhJpCvX57i87VZKVakzEDG3QOuVWBEgXM5Mv5BvLunFSARSt7pmk7ImO9tl+NPb3A0cqjuJFMQGQsQQXcgQh7KNTiflT0YSW+WeHae/ZmZ4mdeuw4yyXs/IGyd8RYIOsMGtk55XPuspp0aBZSDNJk1Ot15Dfs2HPDNBUsJZpsZW7DVu1VimJ2yVUpz38t9+GbSAnoF3c/NQffT3XQPNwffz3fvLMAebPMLRDFR8Zi0wD97t9PNY2/2w2wpHjuTGYYk+sApPh72GScPBe4DH1DRLR90j8GBLUfoU/ZhbrLex6NNng/YF/z9/80iIyUDR5oTR5qTk0dieKrVMJLjUnwbrjjTnfwydTFGHuvpFSVTGeAq4DlgKbALSMrPE1WAVnIkXZvhzJwqAB7wRIEelfuTLoAQVggbjjfAnWNAJ3PbTO/QsYOcR4ic+d6YQwgBtq6ALeudYO2Yw8F2yJ5wKdOQKe8ijXSE/QYIGwQiGLCA7XpE+Kh8tQPgtqd6cN1d12TuOaxRvnpZhn36LINnPRnw1UXTNJ6b+jiDZw5k6CfPMHPrZHav3c+nY77xy9p2OdzMePEzfp76u9/zQyNDcvw61KBtPfoMupnR379I5boV0UxajkPhl1pu886fHfiQMlXObzTHareyZ+0+UuJTkVJybPcJht4w1m8zjPiT/iMfZ+bks5cclVLmaxMN5SLIQvgpGqOklMlAOHAjMB2Ylp8nFv1foFLsSCMFkl7m7PDvGQZcRMGR3GghD0LkXHIctgbADiFPYrg2ZX5pyIUIQljzn6ApSk2GoFtBqwjmxojITxHmHGpbm2qR4+4WrtXIpBczX8OjaBU2o1XcgRY5BSHy38PTNI1h857lu1OzmR81k88PTeX6vh2x2qzc/sxN2IK9XyIsNgtlq5Sh893Xcn3fDnTq046gEDtb/9oZkGR2xpxXvvS7XalWBbr37+I3pxtZIYLR372AYRhcc0tr5u39gK+iZvDFoalUrF0+36/jnASUrVomz32R88sWZGXSsjHe/bzzMRJqC7bS8c52WLLs5yylJD46gaTYs0l3Lbo1xWI798yfLcjK9X075DhEXpBOHYlhy4od+Zo3V4q1M9/ubgamSyl/xpskkyc1B60EkGnTMudVs9K8m11o+apQd96EpTYyx09aE4SPh8RB3mHlwGdm/mgQMjBw845zXVPYERFv5OM4kUvbPJklTfNPSsmpIzEIIShfvaxfolFIRDB7Nxxk7/oD1G1RizKVIhk4uT+1m9Vg84odVKpVnruG3OqrbnVGmcqR2IKsZ+uDZ5GREji//fz0J2jXqyWHdxylSv1K1GhUjYEthnL6WCwRZcMZ++NLNGxXFyEETa5tQFxUfEBVtfMm4fq+HVjx9eqAJWLny2K3kByXStV6lZi37wOO7o7i0caBS3Kuva01IeHB9HykK827NGHbyl3889Na/2ZJ7/sO3mVsZauUxmwx5zrnLYSgba+WvDjn3LXTL9aPH/zGx8M+x2Kz4HF5eGHOU1x/b+47l12OLpdSn8BxIcQM4AbgbSGEjXx2jlWAVgJ5DhMwPysiEaWm5CtzVUoHMvElcP7p7XGHDkILySMnQkSACPcmjWUV/AikvptLcAZEEIS/hbDfgBBmpH4cmfQa6PvBVA+EBp693hrdEeMQ56gjfk7Wq8G1loBevrDldHSOHOlOXrnpdfasPwBAgzZ1efO3IViMr8BziEWfJjF9RDImkwndkIxfMJzmXZrQY8D19BiQ+xePXo914/c5yziy41jAUGylOoE9YCEE7Xu3oX3vNrhdbu4s+4gvUS0pJpnB141CCIHQBLc8eSM1m1bn8PZjF70u+uePfi+QJLTQiGDKZhnert6wKvePvJMvx38PeF9f134dGf7pc37Pu6pjQ9r0bMG6xZuRugECnpj4EBart1f95gNT+G/hhoCNUrKyhdi45pZWhbrT1MnDp/l42Oe4HG5fdvqkR6bS9qYW59wl7bJz+QToe4CewCQpZaIQohIwND9PVAFaCWRtC87VnC0MYgN7N4TI35CeTB7nXbOMx1sfO+VtDMcKbxZ4LgU8hBBQ+hNkfH/vhhhIsN+DCBuCTP/4HBdLh6SXwPIDUiuLjOkNZA5Z6kfPHqdHeZPeyi32G36W7q1Ix1KECIHgu3LNUhel3kPGPQL6ziz32iFsGAA7/tnDiQMnqdW0OnWvzrmy39xR89mzbr/vQ3f/xj0k7r2VchUTACfX36KhO0rxwXDvMPtr977DW7+PZPlXq7BYLdz0WDcq1CgXcF6r3coH/77Bfws38sN7C9nxzx5MFo3gsGDG/TTM79joQ6fYtWYv4WXDaXlDU7av2h2QRS4N6V0rrcOCjxbTb9SdnD4SQ9JFBmhXDj38C/Hm7yMChsofHteX7g91Zv/GQ1SoWS7HDS6EEIz6Zghrf9vI6aOx1G9dhwZtvImEacnprP5xrS8RLDfSkDTp0KBAXkduTh46jcVm8Vs6ZjJrxB6Pv7IC9GVCSpkO/JDldjQQnZ/nqgCtBBDBDyLdu8CxABBgaYEIeyX/J3D8jf8aZQPca5Bxd0DZXxCmyjlf19IYyv8D+imkCEEYx0E/BKI0yHMPi8rEF7w7WuW6zaoOMgXcO8HqrbssnSuQCc8BTiRmSPsks31nN9OQ0gXOlSAzEKVneb/UZ/wMRjzC1hFha8/0F+axcOYfCCEwDINH3rifPs/dHNCCXf/t9/vQrd88kbCIWF+b7cEGPe+LZ/b4yqSnmkiKTWZQxxG4MtxoJo0fP/iNaRsmeOdds7FYLXS8ox0d72hHXHQCKfGpVK5TwW84fP2SLYzpMxHNJJASrmrfIM+SklJKvnrzxzz3Zb6UciukUqVupTwrhgkhaHdzq8AHpAyYy7aH2Ljt6Z5sWrqNg1uPEF46lJfmPXtRVcnyo2r9SgEbnEjpLSd7xSjadcvFhkoSUwIIYUIr9Tai/HpE+TVoZT5FaDl/c5f6KYzUWRhx92LEPYTh+Btkco7HIjOQGT/ncW2Ld1g6rrd3WVdsHzDXxC/bOoDbO4yd5x7oBogsSULJb+BNhJPec8gkZPrZpCpppCHj7kAmvYBMGomM7YEw4tBCH0MLfwlha8+RXVH8On0JjjQnGakOnOkuPh72BSkJgUGkZpOqfslZIWHCu31n1hYaAovNQAiwWM24MrwB3dANMlIdfDNxQR6v0bvhQ80m1fyCs5SSsXdOxJnuJCPFgSPVwcal2zi+PxpTXtnaQuRZKORSGnPHRFwOb2/cMAzSktJ8GdXrl2xh1G1vMfbOiexcsweA1MQ0Th4+fc7ecUhECK27N8ca5P39MJk1QiKC6TfiTqaue5vfnV/xTfTHtO7ePNdzFJSyVcoweNZArHYrQWF27KF2Rn/3IkEh57+0TCnZis9fnVLsCO3cpQyNlHcgbRZ+S54SN5B7Wq0B7r0YcfcDAhH6ROYa4sxH9XhInQoZX+G3taJ7B5iqg74v9/PmOWGlgbk+mBufvUumZTvG4+1ln3k4/TPwHDnbFgkyeSSizHe+Y+JOJGC2mv0StMwWE0kxyQF1mh976wG2rdxN7HHvaEBcbHms9li88/0SXTdxeJcNR0YwQWHmgC0fpSFJS8re5rPSktKYM3I+R3ZE0eiaejz46t2+IP3pmG8CtmA0dIPZr3xJyxuasWn5Nu8IgEcP3KlLSh6f+CDTBs8NeJvz2nyjMHjcHk4dieHQtqNMGPAhHrdO6YqR3P/yHUx/cZ5vDnnd75u5/r4O/Pn5SkxmE+Flwnh6ysOkxKdRpW5FmnZq5HfeV799gTkj57Nu0UZCI0N5/O0HCQ4LuqSv7Yxu93fimptbEhMVT4UaZQkKLZp2FCnVg1YBWjk3KQ1k2mzvphRaBCLsJYSlMdL5H6TNI3A9shvIba5aA+fCs+dO2AqRUxG2Thjp30HyqBzOB+AA41xD3PkIzpY2iNIf+8+j23tC+recXU5mR9huOPu4fpzsezB7q56dVeuqaugenRr1HXTunYChC/5ZUpXyOcwVh0WGMmPzRPau9xYUqt+6NpoWhUwaAfpxTLbm1Ogwgle+PMrr970b8HxbsJVu/a4LuB/A7XIzqMNITuw/idvlYceaPaz4ajW3DOxO9/5d+OnDRTk+z9ANtqzYQZvuV1O/dR2+fvungGxww5Ac2RHFp/s/5LdZS1n6xd/En0wkskIEj7/1AO//bxaOdEeOW3AWBsOQZKQ5mdD/Q19bY6Ni+ej5T/yGhp0ZLpbM+wtDN/C4PMRkOBnbZ6Jv2dpNj3bjqSzVwKx2K7pb59SROGKPJzC8x2sMmTWQrvflv+hMQQqJCPFto3lFUgFa7WalnJuRPAnSP8OXMCaCEWV+AucqZMrbBNTDBrwB+kyg1QAbmGqCvpuAvzrrdYjwMcjYXgSuu84q+36K+WHzDpebmyBKz/UWRclCSjcy+XVwLPIWIwl7CS3o7NyxzPjVGzx9yXJWsHdHK/WO33l2r/6e6pVGYLUZ3qlMLRhT+R8R5ty3gTUyFmWOPgAhj6MF3UT0wVPsXX+AfRsP8tOHv3HDndHc8XgMhiH48r3yXH3TcG5+/MYcz7fjnz28fNP4gGVVJouJkIhgPC5PQI88K00TWIOsAb3sM8xWM19Fzchxs4mTh0/z/bu/er8EXIKPkyGzBhIUag/YYSpH5/i1sQVZ+Wj929RoVBWAvRsOMKTzaL815Va7hZ8S5/kyvRV/hbWblb1KNVn9f0MK+rTsGzXkku9mdTFUD1o5t4yvORugAOlAOn5HWJp6g1/Ah58dwkZA+izQY0CEga0tSAP0XdkPBrTMRDALyHMF6Av45A8dCu4NIA1k/CNImQiWloiw4SDMCGFFRIyBiDE5P99+M7h3Qfoc721LC0T4uIDD6jf6GVxZl185kKnTEKUm5PxKHH9A0jB8X0iShrFnwxFe6LkKk0nD4/bQtc8pnhh9Anuw93UPmXwceyX/qYPTR2NY/tU/SClzLSiiu3XSEtKo36YOB7ccyXGtNHh7pbkFZwCTScOR5iQihzylijXLc/OTN/LTBzn30vOimTSEJgL2rzZbTd7kNOl/bPcBXdi1Zm+epTbNVjOaJnLdSMNsNXv3384M0KePxuY4H58cl0qZSpFIKUmOS8FsMeW7Z+tyuPh07LfsWbufmk2rM2DcvSoTO59UkpgK0Eqesn9gGeBcgQgdiLTfBhnf4lsbbKqHiHgNTJWR+nFInw3yNDh+Jedhb4EIfQy0CoGlNAtCag47WXn2ITN+ANxIEY4o9QHCdk2OTxdCIMKHIsOeBzwIkcs8oJE9Kc7IPVEOkGmf4T9a4CD99Mc408/2uHs9EOcLzgC2IAOZ8S37dtRi0exl6G6dFd+sxu1wIwGrzUJY6VDcDndAxrWuG1RvVJWu93fil+lLOLrz/Mu1lqlamnLVyuT6eMWagUP6+WXoRuDMhgChadiCzAFV0txOD006NKTTndfw1zf/BARgzaRRq2l1Hn79fhZ/sox1izahmTRvbzvrPiy6Qc2rzlaOq9O8ZsCXhODwIEqVDyc9JYMRN7/B7rX7QUq63t+JF2b/Dy2HuuZnSCl5pdcb7Pp3Hy6Hix3/7Gbrih18tO6tQl1HrVw+VBa3EkAa6UjHMm9PL+jBwAPcO5GuTaCfwO9XSD+G9EQhY3tC+kz8i53kMLcc8jTC2hZhrgFhL5D73HVBknjnlaU3azvxSQz3TqTMvTcmhCX34AwQdBveLS7P0MBIQrq35XLCwOFSl0Nmux34XjiS1vNKzxf4dfoSFs1eSkaKA49bR3frONIcVGtQma79OmEP8c94F5ogvEwYtz9zExXyWKqjmXL4SBDQ5Z72vmDkcXv469s1/DJtMYd3HAPg3182FGymtwS3w+1XHMVsMdGgdR3swTaEEAz95Gle/OTpgA0+zFYzr377Au1uasGor4cwaflYRn49hAl/vkqZyqXRNEFYZAivLRhOqXIRvudVql2BoXOfwRpkxWKzUKp8OG/+PhKTycRHz81hz7r9eFwePG6dv75dw4Kpi8/5Ek4ePs2u//b5Ms7dTg/RB0+xb+OhgnuflMua+hqn+JFGPDLuTm/Naym9c7No+FXQEibQj4FrDf5LmwxIedNbPCQ/nMuQwfciTBXQQvpjpMwCThfUS8kfmQFxdyNNlaH0Z6CVRzp+g5TJYJwGU2VEqffBXBdc60C6wNoKoZ2dixXBDyNlOqTNzew5G+DegIzrB6U/Q1j9l+aI0IHI+HVkTU5b+mMjhHD5lgt9+X4VXm97EE3Lkh1uTuGN+Qd5unt9smfKS+ndtrJTH2+v0u8xQ7Jg6mIiK0TkGUQtNjNCCP/hbgnz3/yRv79dwytfDmLK07M5vOOYrxrXiPmDSYxJLpTdnao1qIyuGyScSqTxtQ0Y/umzvseEEFx/bwc2L93GsvmrcDncWO0WutzbwbdWXAhBg9a+rXj5KmoGzgwnVrs1x6p4ne++lg63tyElIY2IsmG+LyU7/tnjV/7Tme5k+6rd3P7MTbk3PnBpNQjUJhtKvqkAfQWRRqJ3yZIIBUuzHD+gZMr7oEfjC8gyHbDgF6ClDuYG3t2b/IZyTecc2g3g2YmMvR3K/YbQIkF48p5qNjUA/SCBW0VeDDfoR5Cxd4GpBnjWnX1IP4KMf9A7DG9E4/3ItUCZb8FUxftFRVgQIU8jnf+CO2utZwcybRbC+qHf1YS1DZSei0z/FBCI4Afp/2Yldm54jbgTCQgBXR4ciBZ+AFLf48yXILMZatR3ElZKJyXR/0/XFmyj8z3XsnfDgRznmZ3pTua/+SPjfxnOxj+2+o4xW70B2Wq34HZ5uGdob+KOx/PnFyv9Kn9JQxK1N9q7V7KUfuUwJz06lQdG3YXhOXeADgrRGT71CK06p+LMEMwYXZkl3+Q+bG6ymOjarxP3v3x2f+4tK3aw7vdNhJcJ4+YnbiAkIoTnZzxJ214tObIziuqNqtDh9rbnbIct6NzlWc0WM5HlI/zuq1S7PNEHTmJkLimz2CxUqXe2YIzL6Wbld/+SEp9K8y6NqdW0BhVqlqNWsxq+/bzNVjNlKpemXsvckweVLNT3GBWgrxTSvRsZ/wDeQKuDpS1ETg8s3+neReCuUhqIyMwkLh3ChiMsDZBhozKXRrkAK5irgh4bWE8bk/dxcsi4lXHI052Qpmr563nreymYv9ysmeZn2nIaPIF7DyOdoB/m7GiBhkwa7q0P7okCDLB1JGBJFpDbFwlhbYnIrGgGUKUufHbgI1LiUwkOD8JsMSOdQUhh9ZZLPfM8IXFk+A9Dh0aGcNtTPbnjuZv549O/sAfbckz4MnSDpNgUylQuTdzJeKw2C9UaVqXr/R2p0agqpSuVwmQ2YbGaQQhWfLU6IEta142AQJyakEbM0Rz2587mhXeP0bJTKharxGKVPP3GcU4csbH9v9CcnyDxG+JePG85Hzz9Mc50FxabmQXTFjNj8yRCwoPpcHvbPAPzxXhu6uM8d80ruJxupJRUqFGOvsNuB7zBeVD7ERzdFeWbD6/VtDoT/nyVCX+MYtbwL7xJYldV48lJD6mM8PxQlcQAFaAvO1I/gUyZ7F2va2nmHaLVIpApU/17t6614PgZgvr4n8BUJoeCXE4otw5hnAatNELzfqBqwb2R5urg+he0SKT9Zu82lc4l2Vvl3VRC5rYkxgX6gfy+wnwelwcRlPmFIPuXkZzOnz3wGuDehjfAZ75ZztVg6w7sxm9ddfB9+W+S8M4V+1jbgblh5pemDHTDxtcfRuB2ng3QvR6/gcEznvTd7tavE8u+XMm21btxZenl2oJttLqxOa/3fdfXe3amudj5zx4ObD7M3S/eyh+f/kVSTDK6W6fno10pUzmS9D3+/2aGR0czm3xVuYQQSCn57p1f83x9La9LwWo/+/5a7ZIWnVJyDdC6R+enDxbRf8y9AMx88VNfz93t9JB4KollX6zk1v/1yPPaF6tSrQrM3TuF7at2Y7aaaXpdY6yZW1cu+3IVR3cf90tWO7TtKCNveZMP/3uL5z58rNDbp1yeVIC+jEgjHhl7R+bOT0bmcKsJmWNwzEB6jgbOkdlvAecK/HqXIgRNs4MWuNGFsLYAawuMlA/hdGtyDnAGyEQC5rKLkkwDQoCc6zrnLXsP1eEdog9/DdI/AUyI0CcRti4X3EQhTFD6U8j4AalHYba0oOvjjdm94xOSYpNpf1sb7s3sxZ1hMpt4Y9EIdv6zh30bDvLXt2tIT8nguruu4fi+k+cc/paG9GZUA4s/WU5OU6XVG1Wl453t+OK17zOPlZwjv85PSpKJkPCzB7udgqT4PD6CsrQh+y5THo8esNFHdi6HK3O51cXnw4ZEhORYxzspJjmgdjbAvo2HcDlcAduDKvmketAqQF9WHMvx9t6yfmLqmT3FMx9Qmb/1IghhaRJwCmHvgUz/3LupBLr3eeE5LFfKwnD+A2lT8tHAYhKcAe/7cKHBOSc2MNdHC+4Nwb0L7KxCWCG4r++LVJW68Pqv5964RNM0rurYiKs6NuKOQWcLr7z/v5m+Hm922ZcXuRzugBwFi81Mtweu47Ox3/oCeU5BvHTFUqQmpgUsf3r/pWqMnn0ITQNdF8SdspKQ2BVr0B4s1sw9mIU3qCK9vf7bnu7pe/41t7ZizYL1vvOazSZa97g6x/cgKTaZUbe+xZ71B9BMGo+/3Y8+g27J/U27CM27NMZk0nzvyRmaSStWNcyVkkcts7qEpON3jKQRGClTkAFrZy/y3J6DSMeSc68nFuF4lwNZIKgvZC1reeYQYUaU/gwR8aa3rGeZr/yqawVe9yikfZrLoyVlrk0DSpN7DfG8mMDSBBHyaAG2qeDdMejmgCVY4A2EEeUCK4RlDeQmi4nbn+3FsV1RAeuSswotFcLXJ2bRrleLgMc2/hXGc73qM3diVb6d3pxtO15n1LejmLV1MmN/fIlxPw/DbDpb/KZqg0o8NOZu3/NfnPM01919LeFlwqhUpwJjfnyJ2s1q5NiON/u9z76NB31lPueM+IqNS3NZ9naRGratx+BZA/2WqFmDrDw58cEC6blfsWQh/JQw6uvdJWKkToPU6XgTpaxIx09Q5pc8N6TID+neiYy/LzOJK7ffQiuU+hBhqgJaKEIrlev5hDBDUK88r2ukToXUablf09wQPIXzoViwDCCBCysnaoXgBxFhL+Z7v+yiUr1hFT5c+xY/vr+Q01FxxB2PBwld+ranVfdmPNP2lYBeIHjnmb87PZvQiBAmPPxh4OOawBZkRRqSoXOfJmrvCdYt3pJjG47stVO6ehsmLHnVd1/lOhWpULMcd5V/lPQsQ9YHNh3mo+fm8NxHjwPe0pwtujXFkeakdMVS1GpaHcMwcgyCO9bs9SvY4nK42LF6Ny27Nc3/G3YebnywM13ubc+fn3nrlF/VoSHNuwSOUCn5I1BJYqAC9CUhpYTUjzibbOQCPQ6cf0LQxQ+HypT3cphjDgdThHfDB+Etv6nZ2mVpk+4tROLeCub6iKCbEOLcy0/8runem/mFI5felKUthA2H+L7knN1c3GR+xRYR3rKkpORynJZ5bJD3E8TSEhE2JNfgbGT8Cqnvekc2gu5ChD4TsMXkpVS9YRUGTXsi4P6/v1uD1W4JyP4WAqrUr0RoZmnLW57szvL5q31zrmariVsH9qB2sxo0bt+A6g2rMKbPhFxLigJsWb6DW8MfpOeALgx8dwAmk4mEU0k51gpfPn+1L0B/Mf47vn77ZxzpTjSTxi/TlyANSaXa5Rn70zBqXXU2R6JUuXBCa8XT4Op04k5Z2Ly6LGUqRZ7/G5YPJw+f5u0HP+DYnuNUa1SFYfOepWLNnEuvKsr5UAH6kshc2uRH5lF7OtvRRrJ3XlgLB3Mj//lBmUMwsTRGK/MpUhoBAUFKDzLuQfBs5EyPUaZOgLK/IrTS+WuQfhSEOZcOpxnC38rcZKMkBOcsZDK59qK1SmDrCsF3g34aRDlwr0aebo9E9wbgsGG+YC2dKyHpFXxZ3WmzkcKMCH3q0rwUKdm74SCJp5Oo36o2kRVK5XpsamJ6LvPJkYz76SUA4qITeOvBKX4JUYYhqd6oCi26NaVC5g5eCaeSzrkFpaEbOFIdLJqzjLAyYTw0+h7/7PUsLLazH1FfT/AG5zPnOCP64GmGdhvLl0en+zKrx39Xn3KlloKUSCnYv8NBo+7525XK4/aw+JPlnDwSQ6N29Wh/W5tcj3U5XDzfaRQJ0QkYhiTln70Mue5V5u6dopLDLpbqQasAfSkIYULauoBzFb4ep9Ay187mzbuG+UG8QV4HawfvcPWZwGvvDZ6dWXrRQb6euRAa0rEU6fwHTOURwf3AtQo8W/AvTByLTH4DUWpSwPWNjEXefZqNBG/7ZRoQSq69ZzwQdzM5rnsu9s7xqWCqCpaGEHdmXtSG9z3InPdP/xyZsQhpaYAIexGZ8Qv+NbczIONnuMgALV0bvSMj5oYIS70cj9nw51Y+HvY5R3ZGYbFZkIbB+F9fptl1jZFSsva3jZw4cIrazWvQvHMTKtUu71eYRNMEdVvWZso/r2Mye79wvNxzPNEH/LfbNDwGHz47B5NZ48aHOjNo2hNcc1tr9qzbj55H4RJnuouFs/7kgVF3YbVZuGvILXwzccHZNpgEj77Zz3f7XOdzOVxEHzxFjUZVkVKnWqVZnE1KlFzVNhlNrAc6BL6fUvLvrxuIPniKWk2r89m479i7/gDOdCf2EBt3DOrFI+Pvz/G6R3ZGkZGc4StgYugGaUnpHN11nLotVEES5eKoAH2JiFLvIJNf8wZprSwiYpx3PjgfZOKQzKVTmZyrvRtQBN3mPXfwvUiZAulzAQEhjyAy1zcbqbMgdQpngqlMnQYhA8mxNrZnf+C1Hcv9d17yScQ73Gsmh4XTlMzgnAcjCZJf52zxkewJeR6Qp8B1Ghm/Hqw3EFgm9eJ2MjKSxiIzfkAaIDSJCB+FFny33zGfvPoV30782Vea8kyxj3F3T+adv8Yy/80fWfXDf+geA82kcc/Q21gyd4X/hYRg6CdPYTKbkFKy+JNlHNp+NMc26R4d3aOz9IuVtOnZgpqNqwUcY7GZKVu1TECAj49OYOxdk3hmyqP8Mv2Ps5fXBHWurkWPAdf77uvWrxPLv1oVsNwKwOPynO2FywyyrxgQQuS4p7iUkrf7f8jqH//zfQGQUvpGCRxpTr6ZsID7X7kTe3DgFJA9xIbH4/+35PHo2EPtAccq50EVKgFUgL5khAhCRLxxYU82jme7wwH6kSznFojQxyH0cb+jvHPf7+EfSNLB8R3ewJH1g0V4C5tkIzO+Jvd9ms98CAZxWQbk7PT87gIlvTW7TRUyy6GeKYhiR4S9eF6XzEhzcGz3cSLKhlO+cgyelG8xm12cGTwxksYggm5FCG9ASI5L4duJP3PNjTFcd1sSyfFmvv6gPKePW0mKSWZgy5e8ATvLh9+Xb/yAZtL8srbtITZOHDhFzSbVmTNyPj++/1ueQ46uDBeHdxzL3KkpsFb4pKWjeazpEP89qyX889M6XA43Mkstb2lI9m88xEeD5tDu5la07t6cQdMeJ6JcOGt+WU9qQiqpCWmAdznTXS/c6ivPKbRQb2U6/QhnS9bqYPGviQ5wYMthVv3w3zkz0zWTwJHmyDFAV61fmXa9WrJ20Sac6U5swTba9mpBlboVcziTcl5UgFYBukQw1wP3dnwfNsLuzZDOk0GOvVv9KIS9CSkjMo8RYG4MwY9gxPX1XkuLRERMwDuMm9c1cv9wu7y4yHHkIRfCVBrK/oJM/xqkExF0MyKHL0EA0kjyjopIB9g6I8x1Obj1CC92HYPu0fG4PAwYWYGed3kwZ1kR5XboaJ54hKUyAMnxqTz39hFuvCvWu123hOvvSOCx6xoSf8qCO4e9kc0WU8AWlYZuUKpcOLpH59uJC3yVw3yvTRMIIfzmgq1BVqo3rOItF2oz+z0nNDKE3Wv389T7j/D+wJkBhT02L92GKduuVFJKfvpgEQtn/snAd/pz2/968Nib/XjszX5IKVm/ZAv/b+++w5ssuweOf8+Tne5SlmwURQQnTtyKC3ErbsWB+3Vvxb0VldfJT31x4sS9ce9X9HWhqCgiS0ZpoSM79++PJ7RNky5omwTO57p6XSR58uROWnKee50z//eFDBjWl012Sl4xLaWPYJaNg9gskAKk6Da7alojy5eswOlyNPkX7HBaOJwOjhl4BsXdirjwP2ew8Y5D6l9HhMufPod3H/2I2T/OYcCwfuxx/M5p89yr3CAiewF3Y+cDfsgYc3MTx20JfAmMMcY83yFtyaXKKsOHDzfTp0/PdDM6nYnNtysjxSuAKPiPRAoua9WXQHzJfhCbmfpAyRRwrAvxhXbqTkdvTPl+iWHulV+sPiieAJXnsVb0kFu08vNuzf8ZB9L1fcTR035GfAXEl4CjV11vdyU7A9x+9hA6McCFlD7E8Rs9yoIGQ8LrDIhz/7sz8Prrg2LlUidWt08o7mYXnYhWf4BUnULSGkIDT0zoxhN39Ez7lkq6F3Pwufvy+DXPYeJxLKeDLffalCufOY9IOMro/KOTArHT7WSvE3Zl9KkjuXC3a4lG7BKMO4/ZjgsetufXJ5z8AB9M+dSujFUbwuV14XQ66DGwG0vnLqOqIjlJjL/Qhy/Py4plVUlVo1ZyeZy8EZjSis89mTGxZre/VS5ZzrHrnUUgkXNcBAq7FFDUtZCl8ysAQ6g2VDf87c3z8H8/TtBV2gki8o0xZnh7n9fXs48ZMPa89j4tv9x0XrPtFfuP5TdgJDAP+Bo4whjzc5rj3sUeXnykowK09qBzgDh6QddpiS1T+Yij6QpAKUrug6W7pt6/4nK7Jw0Y795QcFWj4AyIhZga6DIFU/MfCH+bWOUcTTvPt+Zry8WsGyx7W0+89llYcZ1dphMLSiZhpBSCL4EUQ2wJxJdRP9oRxay4ln/+Sp6vXjTPxc1n9ufie2bjdMKKCgfXnDiYu78qrjvGCt6TNt9K73WTg17XdcJ07x1mwRwvlz9zLhvvMISNttuAWd/Oplu/MrYdPZxATZAJJ99vXwg22CIei8aorqyhe7+uPPHXffz98zzyivPoPaj+AuD8h05jzEX7c97OVxGsDdm1nYmwYNYixly4H0/e8ELSoq9YNMbN71zJpy9+xcfPfcHsH5PnuyOhKDUraskrbNscfkt704u7FnHzW5dz3WETKF9YQe/11+Haly6i9/rrEAqE2K/w2KSLExHhx49/0QC95toKmGWM+RNARJ4G9gd+bnTcWcALQNNL/NuBBugcIeKENEN06RgTtRfEWCWIoxeGEuxEHA3EZlP3jRuaZpdxTJmXNmAVI64hSPFt9ffGazDl+0PsH+z57dwZhek8AUzVPeA/xA7OhOo+JrPsBJqe10+IL6dH/35JPWiX24m7cA8O33g6BaVC1TK44tnzcTgaBKE0I2IisHzFMDz+ACYeYMyZizj09CVEwoLTBb//9gYwhKEjBjN0hD11snR+Ocdv8K+0C7JM3PDZ1K+Y9+sC7v36ZjbYcj2MMbxy31t88PRnFJTkM/b6wxkwrB/BRrmyw4EwiDDh4+u4fNSNdfPhF04+k/4b9aH/Rn3o0rOYCSc/mPQ8y2GxoryqzQG6NYZsuwFT5j6IMSZpVMrpdmKlSeGZV9T+bVCpMrRIrBcwt8HtecDWDQ8QkV7AgcCurMkBWkQeAfYFFhtjhnbW6xoTxlTfB+GvwTnATjTR2v2/WcTEyjGBqXag9GyNeHaDyLeYilMSe6wF8i8G92YQfr/xsxv8M2A/nnci1EymflFZEUa6pHTITO3zdh1kDczNC0zFxP4ibWGNZnnBsytXvTA2aQ56z7G7cMbdJzD31wUsnVdOv436pCbfyDsOVlxM0uiGow8HXHA/W+7zBiWeC/HlG0TAk6gsNWTofzDxU+uqlAHcevy9aYPzSpFwlL9/mcfrk6axzb5b8M6jH/LUDS/U5cn+71v/4+Z3rqRb3zLm/rqgLsi5fS6G7bAhQ7ZZn+f+eYhl/1RS3LUwac/w1qO2wO11JeXyLizNp2vvNowcrYLGU0YOh4MTbzqSyVc+QzgQxu1z0XfDXmyVJo2pyhllItJwnnSSMWZSg9vp5g0bf9HdBVxsjIl19FqDjM5Bi8iO2BULHmtNgG6vOeh4xakQ+hz7i9IFju5I2Rspc4PZzMQWY5aOxq4SlfgdWr0S89SN6yq3poqUhZ0729Ho+V6k9GHEbV8oGmMwiwajwbk1/NgjEm1cROfaDimdhIibQHWAv2cuoLBLPj0HdMdEfsJU3W3vRfcdjPgOSgks8dqX7K11JgjePZDCywEwi7dJm9TGAOI7FCm8vu5ch/Y4icrFy1OOTWmqx4kgiMNKWQktluDyuIiEIpi4weFycNqE49j/jL1bPO+37/3IdYfdQc3yWrr27sL1r12alCmsM3373o/89OkvlK1TysjjdtJ6zg105Bz0wOPafw7651tanIPeFrjaGLNn4valAMaYmxocM5v6QF6G/YU5zhjzUnu3N6M9aGPMxyLSv1NfM14JoU9I2ssar4Dw9FYnDskGpvax5OAMie1Y6dJINg7OTsBlJ0sxNQ2OSRdIgpiq26HoRkzFvxJbVzQ4t4qjd908f5tEPsdEfkTcW+DL97HB8HUBMJHf7cWCKxfsRWZgTA2Sd2zS0y3/AeA/IOk+E1tIU4VUBCDwKsa1OeI/GIB+Q3q1KkA3XtC1/T6V7HpwBTUrHEyZ2J0Fs+v/VkwszozPf2X0aXu2WERi892GMXXpf4iEIhnPyLX5bsM6LIe3akLmilt8DQwSkQHAfOBwIClLjTGmLgONiEwGXuuI4Aw5UM1KRMaJyHQRmb5kyZJ2OGNTv/XsDDrGxDHRuZhYo/ceX076Nreip+w7BHwHpcnf3YTIT5jyMRD7nZxL3ZlJeaeRfsSsFTnPK89NucsEppK8mj4ANY+0ri0tTuEEoeZ+TNwePblo8pkUlqVPv9mUfY5eyoUT/2bE3ivY7ZAK7nnrN7r3qb/oi8cNX7wynfee+KRV5xORjAdntXYxxkSBM4G3gV+AZ40xM0TkVBE5tbPbk/UB2hgzyRgz3BgzvGvXrqt9PrFKwL0N9V+STrsMoyu1EHummfgyTPl+mKWjMEt2IV55PsbYAVi8e5A6ACLgaEV6wegCCEyh9auwI4nV26pNVpwPVlGaBxpe5DQxiBX/h3jFuZjID40eaBzwWzcHJuKBojuwk8o0MZUTm4upGIcxhm59uzLl7we49pWL8aRJ0JHOEWcvxuu3LxodDvD64ow8LHlxYrAmxB8/zCEcihAKrC3759WqENP+P61hjHnDGLO+MWZdY8wNifseMMY8kObY4ztqixXkQIDuCFJyH/iPtjMLeUchXV5ArOxbmWmWXwHRP7HnysMQnIapfRYA8ewABVdS/wXvBKsf0mUKOJsbjvNB5BPaZYuUczgtz5I4EnWo10ZxiC8lNYiu/KYQwA+eA9I/PfQ6pvxI4uH/2Uf7D7aT1NTx2Qv7WsnyjYQuL9D0795A5DswdlBd+Ocifvp0JtFwMzXGE0TA4Uj+BhQLnK7Ub8Vpj33I6Pyj2a/wWMYfcAvhoI7KKJXO2hmgxYNVeDFWl+ewim9DHGWZblJ6kRkkZwILQPR/dbesvCOQ7j8iXV5GujyLdE1UoyqdDN59Se0pubHnmdtpON/Zh5Z7cDHwpS80kNtau3ozXZ7ylQxIDPxjwL0d6S92wlBxKsZEEOd6SOkU8OwGrq2h8BqsvKPb1ur4kiZeZ6U44OCnz2Zy+paX8OytL7dY9MKyhNPuOp43n+pKoKb+cwkHLTbb5xKKuxclfVzLl1YRj8WJx+J88+4PPHLZUynnNKGviJcfTXzpocRrp7bpPao1hOmAnxyT0QAtIlOAL4ANRGSeiLS+O7A2cPYl+VfkAcd6SYeIOBDXhohrKOAivuIOWLwVBN8E15DEPOjKVadRmg8YbWRaGexrH2z5mJzTlv/tLpoLiiIOKH4YewV9updaDgG7ypO4hmCV3I/V5XF7MVhbWUU03XYveEYiVhEPnDs5qbpVk6dzWJx170n0HNiDx2/vyuO392DWj16+/zyPS8YMpPeQnbj40TPx+NLPJYcDYf73/k9J95nwd5iKkyHyX7vqWtU1xGufaeMbVbkuU0Pc2STTq7iPyOTrN2RMDAIvYqKzENdg8O6XUke5s0nhjZhlYxJ7muN2ecG845p+QugtCDxGXbKRyI9gdQXXdhD5lPR5pBPZrVIqM0HTlaoS4jVQcDFU3dzEuVfKwf8ZSVyk/3xaK4z9Wab5PKUIQxxMNU1/hnFMbEGr++xNMcZgal8ieR924qLP2Q1cw5n+yWbceORx1CxvvFUvPafbib/Qx3WH3gEILzzYjRcetLNsOZwWsUiMvKK8lIpPK1kOC6fbyftTPmWz3YZR0q0otUCLCdj78/1jWv0+p7/9HfN//4f+Q/uw6S6dlmJBqXa1VmQSM5FfMdV32yufffshvsOS9o4aYzCVZ9llHAlg8EHos6TsWZkgzj5Q9o5dvEK84BrWbOpCE/pvo5XZEYh8Q2qGMECKwDEIqIZomlzduGixt+3ohlglGO9+9sKz6Fetel+5Z3WC80pNfJbxJbDseHANtdN+mqVpDvIh7tVPjmFqn4LgM9RfMDnBswtWyUQAFs1ZwrWHnttsZafGLnj4NO46dVJSUpGV4jHD0QNOx+P34Pa4CIQb/w3a//fm/DyXu055EIfLwcTPb6BXj3R/482n7Gzo1uPv4ePnvsAYg8Pp4KCzRzH2+qzpC6jWyvXr+nawxgdoE52T6IUGAAPRnzDx5Uj+uPqDorPqgrMtAMG3MLFzWl2zucPE/8HUPgHxSvDuA/4jmi6S4eiNvTq9wRes1R1wQnxxgwMlURM6DtX/buKFnUABsKyJxy2IL8OsuLL127VUQsOedMT+ifxgz9UHX0nsTV85vOyA/NOQ9tijH/qo0e8qCrG/6m79+vUsHM70o0ZOtzOpApXDabHupv1Zb/OBxONp0osmql2Fg5H64N0gn7dlWRSW5VNVUVOXsUxE+PeZD3HLG0dhAq9S///RC/mnteotPnnDC0x7/OO625FQlOfueIWNdxrCy/e8RW1VgD3H7sLIY3Zq1fmygTExiP4GRMG5ASK69WxtseYH6MAriSHilYmQA1A7GRoGaFNjFzJo+D0jTojXtuXCvd2Z6DxM+aHY9YQNRH7EmAok/4y0x0vekZjgy4k0nACCFN2AWXFTmqPDEP2D9GknPXaPzjEoUTu68VykHzy7QOgdWu5dNvhWVjbJs+eVk4SB5Ui3TyG+CKQEiIJ42+8L2dGD5IsDAau+6ENpj+KUvNNOt5Pb3htPOBDB43Nz//kPs8+Y/7Lj6GV48+cR82yR8hyHy4HL7SRY0yizGILltHC6HfTo342e6/bgy1frMwMaY1gytxxxbQhdnsJUPwgmiPgPR7xpCr40snTBMp68LnXHiziE8QfcWjenPvO/s6hdUduqjGaZZkwQs+w4iMy0l8VbXaHL0zmZmrhNcnRRV3tbK1dxp/zmnesntq+s/Dgse2tQK4tTdJjgG40WYgWg5tEmDxfxIV2eR4om2Gkby95GXEMgvqDRkQaiv4NrI5JXeltglUHeyUjpI0jRJeDeGvsqxQGuHUH8djtCr9O6od+16X+ZAzsAeuzPybMrSH7qMZKX5rkCzk0QcSKOXojlR6zCdu0tSf5ZYBVj74X2geQjhZfVPb7RiMFsPWoLvPlevH4PHr+bM/99AkNHbMjmu2/MRiMGM/GdUvY6ogJ/fgiLJbhC13PDizvh8bnJK/Lj9rkZe93hFHdNs7VOYMzF+/PwjLuY9MMdbLPv5njz6vdYu70uNt3V3iIoro2wSiZilU5qVXAGWPjHIlze1DScJmaStnKFakM8d/urrTpnppnqByDyMxCwOxKxeZjl12S6WR1OOugn16zxPWjx7Yepfbh+iBsf+McmH2P5ofRpzPLzIfoXOAchxbdnwVBSuuDWfMATcYN3l+Q7nRtAbCH1PScvOIci/mMw4a/s4X1xgNUdKX0qqZyllD6MiVeDODGVFyZ682sg6Z5YqFXT4qErrUxjb1ca2xB8B9pDkNGZ9gp8944Q/RGz7BgwUewLvzzwnwjVt5E0euEcgrRyEdSqEkdXKHsTQu+BiYFnZ/u+lY+LcPmUc5j+9ncsmVvOoC0GMmjzgcknCb6V3G6CrD/sDx6ZeTdzZ86nx4Bu9FqvJ8Xdirj9hPuSnupyO+netyvd+9mvuc9Ju/PXjHm8ct9bYGCz3YZx6h3JaUvbYp31ehCNJM9zi8AOB2/D+1M+Tbo/kzUI2iQ6k+QUvNHEcLdaG6z5AdrZzw6+KxeJefdL+0Uozr5Il+cy0MJmePeBmgfsL9OVFxd5bf8Ck8LrMMuOtIdOTRzcWyN5x9qBpfj+xJB4GGP1xtTchwm+DVYRUnAZ4t4UsfLtEpaRGU29ApCHHdxy5IsviQVdpkL5AQ1yk7fMGIjHXThdbjCViHdv++LG06ACnWtj6PKyHRRxgW9fxColLhZUPwhEwHcYUnBO02sLgEg4wpK55RSVFZBXlK4H3jpiFdlpXpt6XIQt92pmQZqVn5TnJBqBlyd9QZB3GXtd/UKsxlunABxOB7sfs2PSa51x11hOue0Y4rH4aqf17NKzhHMeGMddp07C6XIQi8a49Imz6TWoJ5+//HXdkLvH7+GQ80av1mt1GtfQBoV9AFz29sm1QS5+lbSzNT5AA4hrMFJyf6ab0Wbi7ANdnsNUTahbJCb+o9p+HkcXKHs9sSDIDY4+dcFARBL7rcGsuA5qnwOCEMOe+yqbCo6+mGVHQ3xhEy/gr58nz0kWhL8D0/pc78bY1zpOZ8QuQhELYaquQ4rvSjlWnP3BmbzF38o7CvJSf5fGhAFH0mr9P3+Yw0W7X0soECIWiXHSLUdz4Fk72/PYVjf7QquTSMFlmIrTiMeDxKJQs8LBi5NKqa15nS333JSh228IkLbQRq/1e6QNwk6Xs36rPvDPX4v58ZNfyC/OY6u9N8PhbP1CkJHH7MSWe23K4r+X0mNANwpL7XziEz66lkeveobaFQH2OH5n9jx+lxbOlB0kbxwm/DWE/5dI19YHKbwy081SnWStCNC5TJzr2alJV/c84gTnevZwde0jxGNLEc/2iGdE/UGBF0kevrTTi+LoCZFfaXKfrmtLCKcrgOBo+jlZRaDmllYfHY1YVK/wUdylYW87au8GaCMTX26nbw19AZHp2J+/YHxjkcKLEREuG3Ujy5fW50Jf8vsE4osutH+nVgGm5FHEObDFffvzfl/If1//FpfXxc5jtqOgpPH8eMvEM4JY0RNMuep0ArUO3n22hMqlLjx+w18z5tUF6KKuhYhI3VCyx+9hx0O2a/H8P3z8M5ePutEORkD/jfow4aNr2lTisbhrEcVdk3OgD9p8INe/emmrz5EtRNxQMjlRRS4KjgHNbrVck+RiYpH2pgF6LWLiNZjy/SG2CAhjap/EFFyGlXd44ojGX4IOEFcin3QTC8IcQ5Di2zFVt0DgNeytMQ67V110OzjWhRVXQ+R7ILUWcRMnJTWwd2Swj0BsXusOlRKcpedRXLwEaiZRf0HjBlfbShKa+ArMkn3BLGr8CAQexbg2IMQ+VPxTWffI+pvUcsz58xGJA1GIB6F8HwwOjHcUUnRj2rUTP3/5GxePvJZYNIZlWTxx3fM8+N1tKYGsNZy+jXntiQ1Z1qBdIkKfwesA8M5jH/Lp1K+S5nk33WUjxly0f4vnvm3svUmrv2f/+DfTHv+YvU/crc3tXFPYo1z9M90MlQFr6SruNZsJf0O84jTiy07GhOr3hBJ8A2JLqd82FYTqW+sfzz8Te4Uv1AVZ736JSl9NzI+W3G+vNi68FvLPAve24DsAKXsLy7sLlqsvVpdHsHp80/Q5Ut9Bo9tCx/fEW1M8xLKHlavvtFdou4dj7zv32gsLCy5r6QTJAi82M6weg/CneHxufAX1K+3XGxaoX53W+PjgO5iquwAIhyJ898FPfDvtB4K1Ie4582GCNSEioSihQJgVS1fwwp2vta29DVz94kX4C332ym2vi31PGckmO20EwOuTpqWkCf392z95ceIbxJrIKLZS5ZLkqmnhYJjyBRWr3E6VwzQXt/agV4eJL7PTg8YDiHdXe0tTptsU/hazbCwre3Ym/BUU32VvVTG1pAQ6U99bsfKOIW51s1OGSimSf7JdSMRRhvGOhuALqS8YmwfOnnZO8PyTgJOaaZ2H9PuuG/KRXPMYsud/ViKIm2WwbAyUvWEPK5uYnSQm/Dnx2qdBPEjeiS3+PZh4Fc1eGDh6IiKMf+4CrjrgVhxOi/J/AjhcDtJnJgtC6COqK8/grG0uo3zhMkSE/OK8lGQi0UgsqWfeFuFgmO8/+Imt9t6Mrn3KGDVud3qt17PucY8/tQe/bGEl/7liCt9/OINrXryoyQVxG249iB8+/plYYjW22+tmoxEbrFI7VY7Llv/2GaQBehWZWDmmfLS9MpwYpmaS3ZtsOKebiXbVTKbxNhhT84AdoD0joOqOBo95wLNj0vMt357g2zP1xP5D0wRoC6yS1jfOsQ7E/mx058pEJgLiA++YRK3qlgL56vADq7tdLAyBqUjB2QCY4LuYyvOpuzAKTrMTSrg2bPIM4t0ZU3MvaUcHpBjJOxmAzXcbxmOz/s0f38+hyzrFuPKubWLOX8DRnUfHP82ivxYTSWT+CgXC9OjfFbfPXdez9fg9bLvflmnO0bxYNMb5u1zNn9//RTgYweP3UL6wgksf/1fdMVvsvgnfv/9TykVBqDbMN+98z6I5S+jRv1vjUwNw+ZRzuHzUjfz+7Wwsh8XY6w9ns13bNnWg1JpCh7hXUV36TSLYvaAgZsX1mW0UkPayMzEkai84mwSO/namKu+eSFHr8o2Laxg4BlD/J+Ow9/w6Bzb3tGSuISSnZnPatavd29rlMUunQt4ZiSxaK1m075+pi7YH53S9PUPDeXlTfS/JFxUBTO1jzZ/VNRSK7sYuA7rydbzgPRLp+qG9JSqhpHsxw/fYhAFD+0HRHdgXGY1PmIcUXs7fM+fXBWeAWCSGN8/Ljodsg9vrwl/oY+x1hzPigK2af9tp/PLV78yZMbcufWeoNsQnz31BRWLV9idTv+Lxa59Nm/4T7OIYkVDTCW6Kygq556ubeWXFY7xe+yQHn7Nvm9uo1gAdUMkqFxedaQ96VcUrSRlmNNWZaEkS8R+NCX1IfXIDL+TVJ2YRzzZI13fafl5xQZdnMFU32yu6XRshBZdA+DPigedBvEjeyYhzvabPUXCRPeRuarB7zHn2Xu/IdxD+AYJ7k3qB0Zq54dawAAe4R0D4wzY8zwX+4yD4euo2s+hfGGMSw7VphpxNy5nWLN8eGO+Pib3oMXD0a3E1tuUoxnR5ElP5L4gtACmDvCMR38GIoxtDtx/MjM9+JZToLbu9LoZuP5gzJ57IxY+e1cr3nV44GEGs5AsWy2ERSWTqevrmF+tya6e022nRtU8Z66zbo8XX8fg8LR6j1JpOA/QqEu9ITOAF6ntNXvDukckmAWAi07GDmgMwkHcKlm+f1T5vvGYyVN9tBx3vnkjhlZjg+7D8Yuq2BgXfhi7PNxmkxdEDyt6C8Gf28aEvofouOnY4eyUXFN9nXxy0OkB7oOASrLyjMAUXYpaOhNjf9Q+HP7GLW/j2B/8xsOJGGhZ4aG1msIZ70VtLXBshXd9L+9gRlx7Eb9/MZvrb3yEibLjN+px089FtOn9TBm+1Hh6/h2BNiHgsjtPloNf6PSnrbWefay5Dly/fyx0fXt2mfc3K9vMXv/LmQ+/hcDnY/4y9GDAsw2mIO0MO9njbmwboVSSe7TCF10D17fZCK+/eSMHFGW2TifwI1ZNI2hJVOxmTf3qzWapaPG/wPai6k7rgE3wXI/kQXrlvF8CACWBqnkSKrmryXGIVgHcvjIlA5Tl03j7pEKy4CMo+sofVoz+2cLyAVYj47K1BIpJY1NWACWAiMxDf/lj+McSxoPYpEDe4tsFU3YbBQvLGtTqfdHtwupxc9/LFVC5ZTjwWp6R78Wr9/hvyF/iY+PkNTDj5AebPWsgGw9fjnAfHYVl2r/+Q80Yz4eT70/aiQ4EwkVALJUxViu8++Ikr9r2JUCCMCLz35Cfc+cl1rLfpgEw3rUPl4pB0e9MAvRos/4HgPzDTzagX/RPESr7yNDX20LsUrPJpTegDkldWByH0IUjjYUhDauWrpsTp9EvkeDks3RXiMbsMp3OovXAtkMieVkfsXOUl9yJWg2Qezj4QqWzQbm/SHLzlPxT8hxIPvAPLL6g7p6k8B0ruQRotyOtoq7LHuTV69O/Gre+OByBQE2Ta4x9TtayazXcfxq5HbI/DYfHUjVP5a8bcpEpX0VCUtx5+n2OvPqxD2rWmeuzqZ+umK4yBYE2IZ259mcufOiezDVMdTheJ5SBjwpjQl5jQp3ZmsJWcA+38kw1JHqkVldrIKiPlWs4qBv+R9srrOl7Ed3CrTiniAfcOq9eutLzNPxxfDJTbecnDnyH+w6DwhsTznIAPnOsjXZ6yh+QbtrnoVpBi+/MUP7i3AN8hqa9RO5nUlfTNLxhrL8YY3nhoGuftNJ4rRt/ErO9mt/kci+cu5YytLmZv7xEc2e9UfvpsZtrjAjVBTt/iYh48/1EeveoZLtjlaj569nN2Omw77pt+C303TK2l/sytL1G+UPc1t0UoEEq5L9zEPP8aRfdBa4DONXY2sIMxladhKv+FWbonJmYvXhLXsESda08iiOQjJfev8vCmMWGMiSJ5x4HVBTuIuUF8SOHViP84yL/Arpbl2sR+LffmzZwvgIn8iokttdtbMtEebq5bJe2wq0p5j2hw30pWmvsaEuwA25oSmCtFIPQhln80Uvo4kn8OUniFXbIzZXQAO51m1/eQ4vvt40sebiIPdpr7Oik94/N3vsp950zmx09+4avXv+XcHa7k75nzW/18YwwX7X4Ns/73F9FwlCVzy7ls7xtYumBZyrEfPPUpS+YtJRQIE4/FCQXC/PushwG7MMYZE0/A5Un+LJxuJ+VpzqWatu8pe+Dx1/89evxu9j5p7c2stjbRIe4cY2oegOhs6oaSTQCz/CqkdBIAVv4ZGN/Bdk/RMcCe823ra8RrMZVnJRZzWeA/Abq8hoTetOfbPTvZBSAAyTsG8o5p+ZyRHxMJVGJgIpj8M7HyT0XKXsAE38eEv0YcPTHO9aFiHC2v5nbYQ+wmkVqUGOmTd6zcZ52OhYn+CtX3gGszJH9ci+9DrHzwbN38MfmnYCq+o+ECQslrLoFL+5l65+uEaut7XKHaMO8+9iEn3ti6IiuVS1aw+O/ypKFpsYRf/zuLskbbsqoqaoiGk9cQBKvrRw7W3aQ/Tpczad7ZGOg1qCeq9fY6YVeikSgvTnwTh9PiqMsPZpt9t8h0szqczkFrgM490T9JnueNJRLp1xNHD3C0vJWlKWbFtRD+CjsoxqH2ccS1AeI/vKWnpj+fMZiKU8A0SONYfR/GvS3i3sTOwpZYRGWWX0LLq7otcA5O1Mo1pA3MUgrOfuDeBYJvQuyXdC2D4DQMIcCbuGg4uRXvJ46pvgeCL9ujCQUXIp6d6l/aMwJKJiX2QVtI3vGIe3iL5+0obRlB8Rd4MfHki6F43FBQmjpNsvnuw3j8mmfr0ne6PE42H7lx3eMFJflc89JFXH3gbUTCUdxeF9e8dBF5hWn2cKsmiQijT92T0aemSSC0psrRIen2pkPcucY9vNG8rxtczdTvXRXhL0m+CAhgwp+txgmDEG807yhWE9WfWnPNGE9cqDS1AtwD/sOxujyD+PaBeLohVVfitYLY3wQBqL6TePnRxBdtTXzpwcTD39oFRWoew8Tqh4lN9USoedjeuxz9DVNxFib8v+S359kGq+Q+rJJ7koKzMWHiy68gvnhb4kt2x4Q+asX7bb1Dzh+dMhw68tidmnlGMo/Pw7HXjMHj9+BwOvDmedh4hw0Zuv3glGMHbT6QS588m9IexXj9HrbcazMuaZBRDGCzXYcxddl/eHLO/byw9JG6fN1KqZZpDzrHiP9YTPh7CL0LiJ0wpPCK9n0RR7dEUo6Vl7BusNZZjRN67VXkprLBfQacqdtExH8MJvhqYuga7KHsEjAV1AdkB1h5EG+csxvs3nU/JP8U+1UqTgOzuNGLlELe8VD9YKPnRhMlH+MQrYBlR2Bw222tvhNKpyCuwRCYSuNV7Sb4OuJu+ULJrLgKAq9jXxiUYyrOgi5TEFf7BK6Dzh5FXpGfaY9/TF6Rn2OvPow+G6Qu1mrOEZccyIZbD+LXr/+ge78ydjhkm7ptVI2NOGCrFjOSORwOSrp1zIpytQbTHrQG6Fwj4kBK7sLEK+ykIVbXdtvjWvcahddhlh1B3byv1Q3JO2HVzycCJfdiKsZhV4QKg+dAe/48OhtpEKjFtQGUPo2p+T8wIcR/KLh3wFSeC6EP7MVWVhn4Dofq20g7Vx2dDbEldvKP2B+NjnEh+afae7FrHmjwkIO6If06hrqMbCaCqboZKZ2cZnuZ1WhUoxnBd2hcc9sEP2i3AC0i7DV2V/Yau3r7rjfdZSib7jJ0lZ+/cPYiHrzgMZbOW8aWe2/G0VccrAlKlGojDdA5StpSpKKt53ZtkMj49QWI114UJqnbl0z0D0zgDcCB+PdHHE331MS9JXT9EKKzMJHfoOomTOhVO/DlnYRVUD80Kq4NkeIJyScovhti8zGxefb8eLzC3secNuFIBFPzAsbZhdSV3y5w9Lbn6Usexiy/yK537RwMkR9Jv9AMwNj7qAHyz2uQQc2yc2D7j2jyvSd/EF4wDROeOBErr3XPzZAl88qZcPID/D1zHgM37s95k06hpHtxk8dXLlnOGVteQk1lDfG44a8Zf7Nk7lIuePj0zmu0ymmCLhIDDdCqCeLoZqewbIK9KvvoRLlKwdQ+BF1eSOoNm9CnmOpJQNxeKOXdHeMaBstOAIJgEj3Jmocw3j3s4eOm2iOCEYHKMxO5vOPYRSa8pF1UFpkOgZ9Inqd2gXt78NhbVMS9RVK6zPjyK+wazWm3annBszsAlm9vjFWMCb6eCM7HII70UwDGxO22xCvAtQnkXwIrLk+02WXvJ/dlUbKbRsLBMOdsfwVL5y8jHotTvqCC83Yaz0M/3Zm2R7xw9iKuO2wC1ZU1mETBjFBtmGmPf8S5k07B4dBetFKtpQFaAYlyidV328PP/jGI/4Rmh85N1e0N5okBU4upvg8ptqtjmdDnmIrTqc+m9QMUTwDXUFKGpcVpL7hqJkADmOqHEgVJVg5Dh+x90yZNgI4tIrWudBTC72GqboGCi1PfX8GViQDdmBt8ByL5Z9Q32bMt4tm2+faaOKbyVAj/F3s9ZtyuJlb6ECb4AVhFiH8MYhU3e55M+uP7OVRX1tRtu4pFYiydv4x5vy2g74a9mXzl07z07zcxwJ7H78x7T35MdUUNqSm5Je3f06I5S7j/vMksnrOUzXYbyvHXHY7L7erw96VygPagNUCrRDBtUMuYqomJHNJjm35SfEXjOxK1sRPnrH2U1GxaDyOlj9u5qhsGVRMF56BWNLSKlP3Q4gPndhD5Cru3bNkVsoJvpzuBfUztFPtCwZdcylBMBQYHST1oyUeKbkG8I1tuX2Ohd+zgbOrLW5rK87C6fYq4217qMRPcXlfSnmiwt10tX1rFpAsf59UH3q7Lu/3ag+/aW+oafbF6/B72OG7nlIVmVRXVnLHVJVQtqyYei/P3L/NY8Mcirnr+gg59Tyo3SDOFV9YWus1KYQJTaVzLmNrnmn+SbzTQcGGUz67pXCdd71sQcdq9SCmw02XihsLxdYlPmiPeUSSn8vSBfzRS+ghSfBdScClS+hiEv6P5jGIBTPjr1LutstQFYK29eEgnNj+15OTKeewcMWBYXwZvNQi3z65Z7fG7KetVyiV7XsfUu19PKooRDUcxscYJZeDYqw/lzH+nLjL89t0fCAfDdRcAoUCYz1/+mnBwLUhjqVQraA9aJVYgN8q4lSbVZdJT/GPtPOC1T9l7mvPGYfn3q38870RM6HOSsmklMnWJe3Po9jnEFoJVllyQornX9O6CKRwP1ROBCHgPRvJOt+sne+0kDsaEIL6ghTN5wNE79fzihJL/w1SclAisMSi8qlUXD2m5NiY5/ahlp0XNIZZlceObl/HixDeZ/cMc8kvzePP/3ktblUpEcLgcSCxOLBrH4/ew+zE7ctgF6dcyWI4m+gftvCtB5SBNVAJogFaA5B3fYO+xAbxIwbnNP0cEKfgXFPwr/ePuLe251uqHsBeJHYd4dmjwfA+sQuCz/Idg3Fthlp8PgWcwkW+g+PYGK8jtXOH2QrKVvPZFxMqLEEdfJC99fWRxb5q4ePgHrNJWXzykP9eWmIKzoep2wAJHT6TkvlU+X6a43C4Ou8C++Hrj/6alnUt2up24vS6ufeUS3p38AYvnlrPlXpty8Ln7phy70hZ7bEJekZ9wMEIsEsPj97DzmO1we3QOWinQAN0ujIkhnVQMoSOIc13oMhVT8zgQRnwHtktqSnFvhZS271yriddilh2eyA4Wh8j/MOVHQtd3MdX/B7UPJ3q/FvYQfNzuXRdchES+sbc5ubdFxN10u8Vt76FuB1beCRj/UfYFg5S0+571ztZ3SO+Ujo2/0MexVx3GDodsQ7c+ZWyy45BWnctf4OO+6bcy+cqnWfTXYjbbfRiHnDe6/RutcpJus9IAvVpM9G87x3TsT4wUIsV3dHrN3/YizoFI0VWZbkbLor8lFpitnOuMg1mBWX4zBJ9IPtbRBym61q60JQKOzOQyFvG0OGXQkvKFFdx+wn3M/nEOvddfhwseOZ0e/bu1Uwtbb+iIwRx87iieu/1VXB4nlmVx8ztXssHwdVfpfCXdijj3wVPSPvb129/x8bOfk1+Sx0Hn7EvX3l1Wp+kq12iARkwOrZQbPny4mT59eqabASQKQCzdDWILqA8WPqTsdcSZOr+p2oeJ/I4pP4TkLVQe7D3RVY2OFqT7L/YcdTPigXch+CJIAZJ/CuIc2L6NXk2xaIwThpzDor8WE4vGsRwWJd2LmfzbRLz+1Qv8zVk0ZwmL/15K7w3WSUnVuXR+OZWLV9Br/Z748lqowQ2EQxGeuuEFZv53Fv2H9uG4qw/Dl9909rV3H/+Iu0+bRKg2jOWwyCvyM+mHOyhbp3S135dqPyLyjTGm3SvB5JX1MUNGNz/NtiqmTz6/Q9rbUXQV96oylYm9tg1WrYqjicxWqt041wPPCOpXkPvAu5e9lzqF0HwNaYjXPg/Lz4fQNAi+ZNfajs5p9jmdbd7vC1m2sJJY1P5bi8fiBKoD/Pn9Xx32ms/d8QonbHg2V+53M8cMPIMvXk2+MC7r1YX1NhvQquBsjOGK0Tfx/B2v8s073/PKvW9z7o7j66pgpfPI5VPqVojHY3FqVwR4+z8frN6bUjlFTPv/5BoN0KtK0i0eittbdVSTTPhrTOBFTCRd+ceWiQhS/G+kcDz4T0CKrkGKboG8NLWcfYe1POdbfS/1K82NnR880MIWs07m9XuIx5KDWTwWT6pa1Z7m/jqfyeOfIRyMULO8llBtiBuPvGuVtz8tmrOEGZ/9SihgPz8SirBg1j/89s2fTT4nEkrenhaLxZLqXCu1NtAAvYpEXFA4Hntfrtfe0+veAVw5M3rS6eLLr8IsOwmz4hpM+RjiNU81e7wxQUz4O0zkFztlJmDiFZiqmzChaeDoBd79ELGw8k+E/PEgPcHqBnlnI4XXtKJVjXtxcXvvcxbp1reMbUYPrwvIHp+bjbbbgIEb9+uQ11sw6x9c7kYjEgZ+/HQmb/zfND576b/N9n4bi8fiqeMYQkoClIZGHrsTHn/9Qj6Pz80OB2/T6tdUawDTAT85RheJrQbLPwbj2ggiP4HVHTw75/wq3Y5iIj9D4CUgUP8fpepGjO8AxPKnHh9biCkfY6f2NFGwumCcwxK1qquAGIQ+x0RnIUV2ILbyj4b89NunmuQ/Eqrvp35O24v49mvuGZ1ORLjsqbN5+5EP+O2bP+g/tC/7njKyw/7W+gzuRSScfJESN4bx+99ij2BYwqDNB3LbtPGtqlDVY0A3+g/tw58/zCESiuJ0OSjpXsygLZqe6z/p5qNwuZ18+Mzn+Aq8nHL7cQzaPLvWBqgOlKND0u1NA/RqEtfQRH5p1az4YnuOPuk/nZWoEZ0mQC+/DOJLqOvhxudDeH6jowIQeBZTeIU9orEKJO8UjHjsiwfJQwrOQ1yt2ybUmRwOB/ucvDv7nLx7h7/WOuv24PS7jufes/+D05X4nQkEquqzzf3+zZ98OvUrdjpsuxbPZ1kWt067igcveIxfE4vETp1wXNr9zl+8Op1HLnuKcDDMnmN3YfJvE5usRa3Umk4DtOoczsFgGg2LWnn2cHQ60T9JHX5OZ/XGrkTEzjneXN7xtdCok0eyw0HbsHT+Mrr378pBXZI/n1g0xrJ/Ku1/x2JMuXEqHz/3JXklfk657VgGb5WcHtVf4GtyO9VKP3z8MzccfmfdXPVTN9qFS4687OB2elcqp2gPWuegVecQRw+k5N8geYADrO5IyWQ7vWY6VkErzuoBzy7NJh1Rq66wSwEDN+5HXqGf9bcYiMNZ/3VhWcLQ7e3qY49c+hRP3/Iys3/6m58+mcmFu13D3zMbj3a07P2nPqkLzgCh2hBvPaIrt9XaK6MBWkT2EpFfRWSWiFySybaojieeHZFu3yLdvka6foy4mslL3eRCLTdICTgG2WUxi+/qiKaqRq556SIGbtIfsQSP38M5D46rmxN+4+H3klZYh4MRPp36ZZtfw+P3IFbyvLrbq2k/10aCbrOCDA5xi50b815gJDAP+FpEXjHG/JypNqmOJyJNbFFrfGCaLUTiB+8opPAKRJpOcqHaX2mPEu77+haikSgOpyNpgZqz0UIxyxIczrZ/tRxw5t689fD7BGqCmLjB43dzwo1HrnbbVY7KoSRaHSWTPeitgFnGmD+NMWHgaSB92Ru11pH802lcWlJKn8IqukGDcwY5Xc6U1eNHXHZQ3RYwyxK8eV52O2r7Np+758Du3P/trRz4r33Y+6TduOH1y9huvy3bpd1K5aJMLhLrBcxtcHsesHWG2qKyjHj3hBIvpvZpEA+Sd3JWrq5WcNDZoyjtUcyHz35OYZcCjrzsIMp6rVre7HXW7cFpE45v3waqnJSLQ9LtLZMBOt0mzpRfiYiMA8YB9O3bPhWGVG4Qz06IZ6dMN0O1ws5jRrDzmBGZboZSa5RMBuh5QJ8Gt3sDCxofZIyZBEwCu1hG5zRNKdXQvN8WMPnKp1m+tIqdDtuWUeM6LlGKUrma+au9ZTJAfw0MEpEBwHzgcEBXhCiVZRb/vYQztrqEQLW9eGvmV79TsaiSY8YflummKbVGy9giMWNMFDgTeBv4BXjWGDMjU+1RSqX30bNfEA5GMHG7SxOsDTH1rjcy3Cq1ppN4+//kmoxmEjPGvAHo/3SVMXN/nc+EcQ+yeM4Shm4/mH/ddzJ5hampR9dmxpiULS+5VEde5Sj9E9NMYmrttaK8irNHXMGMT2ey+O+lfPLCl1yx702ZblbW2fHQbXF73ayccvbmedjv9D0z2yil1gKai1uttX785Bdi0VhdbzASijLzq9+prqwhvzgvw63LHj36d2PiFzfw8KVPsby8ih0P2YaDzh6V6WapNZxus9IArdZibq8rZajWGIOzcS1kRb8hfbj25Ysz3Qyl1io6xK3WWpvuOpTu/brhSpQ99Po9jBo3Eq8/TZpRpVTnMdjrHtr7J8doV0GttVxuFxO/uIGpd77G/D/+YZMdN2KP43fOdLM61K/T/+CdRz/A6XIyatxI+g7ulekmKZWWDnFrgFZrOV+el6OuOCTTzegU3380g8v3udEu6Sjw5kPvMfGLG+m/UZ+Wn6yU6nQ6xK3UWuLR8c/U11s2EKwJ8vTNL2a2UUo1xXTAT47RAK3UWiJQHUy6bQwEaoJNHN16sViMFcuqdG+0Uu1MA7RSa4m9T9qtriwkgMfvZq+xu67WOb987RsOKD6OMeuMY8w6JzPru9mr20zVScLBMLFYLNPNSEuw56Db+yfXaIBWai0x+tQ9GHv94fQc2J3e66/DOQ+cwrajh6/y+RbPXcr1h99JsCZENBylYtFyLtnjemLR7PzSV7bqyhrO22k8owuOYZTvKJ647rlMNylVR6zgzsERHl0kptRaQkQ4+Jx9OficfdvlfLN/mIPT5SDU4L5gbZDyBcvo1rdru7yGan+3n3gfM7/6nXjMTk799C0vM3Dj/my3/5YZbplqTHvQSqlVUta7C9FINOm+eMxQWFaYcuycX+Zx9vZXcHjvU7jmkNupqqjurGaqRn76dCaRcP3vLVQb4vsPf8pgi9LTIW4N0EqpVbTuJv3Z56Td8eZ58Bf48PjdnHXviSmJXlYsq+LcHa7kly9+o3zBMr587Rsu2et6XVSWIaU9ipNuu70uHfHIUjrErZRaZaffNZadDx/BP7MXs+4m/eg3JHVP9YzPfk3KeR4NR5n9wxxWlFdRlKa3rTrW+Q+dxoW7XVN3u8eAbow6ZWQGW9QEvX7TAK2UWj1DtlmfIdus3+TjHr+nrpb0SvG4we11dXTTVBobbLkeD/98F99/OANfvpct994Mt0d/F9lIA7RSarX9/u2f3Hjk3SyZt5T+Q/sy/tnz6oZNN95xQ3pvsA5zZswlHIzg8XvY8/id8eX7MtzqtVfX3l3Y/egdM92MZuXinHF70wCtlFotK8qruHC3a6hZXgvA79/8yfm7XM3k3ybicDhwupzc+fG1vHTPWyz84x82GjE464ODyjADxDVCa4BWqoMZYyD4Cib8P8Q5APxHIOLOdLPazW/f/Jm0xTQei1OxaDlL5y2jez+7F+3xeRhz4f4ZaqFSuUkDtFIdzKy4BgIvAgEMXgi+CaVPIuLIdNPaRX6xn3ijjFSxaAx/oQ5hq9WgHWjdZqVURzLx5RB4Dggk7glCdCZEvs1ks9rVBluux6a7DsWb50EswZvn4eBzRlFQkp/ppimV07QHrVRHMkFSr4MtMIF0R+ckEeHqqRfy4dOfs/DPRQzafABbj9oi081SOU4XiWmAVqpjWd3A2R+ifwBR7DIATnBtktl2tTOHw8FuR+2Q6WaoNYkmstEhbqU6koggpY+Ce3uwysC1MdJlCmIVZbppSqkspz1opTqYWKVI6aRMN0OpnKJD3NqDVkoppeqIyF4i8quIzBKRS9I8fpSI/JD4+VxEOmy+SnvQSimlsoshI9usxN77eC8wEpgHfC0irxhjfm5w2GxgJ2NMhYjsDUwCtu6I9miAVkoplVUEkMwsEtsKmGWM+RNARJ4G9gfqArQx5vMGx38J9O6oxugQt1JKKWXrBcxtcHte4r6mnAi82VGN0R60Ukqp7BPvkLOWicj0BrcnGWMaruCUNM9J25UXkV2wA/T27di+JBqglVJKrS2WGmOGN/P4PKBhUfPewILGB4nIxsBDwN7GmPL2bWI9DdBKKaWyTobmoL8GBonIAGA+cDhwZFK7RPoCU4FjjDG/dWRjNEArpZRSgDEmKiJnAm8DDuARY8wMETk18fgDwHigC3CfiABEW+iVrzIN0EoppbJLhrZZARhj3gDeaHTfAw3+fRJwUme0RQO0UkqpLGM0Fze6zUoppZTKStqDVkoplXU0F7f2oJVSSqmspD1opZRS2UfnoDVAK6WUyjIGpGMyieUUHeJWSimlspD2oJVSSmUfHeLOTA9aRA4VkRkiEheRDsnAopRSSuWyTA1x/wQcBHycoddXSimVzUwH/OSYjAxxG2N+AUjkMVVKKaWSZKhYRlbRRWJKKaVUFuqwHrSITAN6pHnocmPMy204zzhgHEDfvn3bqXVKKaWymvagOy5AG2N2b6fzTAImAQwfPlx/Y0oppdYKus1KKaVUdjGAJirJ2DarA0VkHrAt8LqIvJ2JdiillFLZKlOruF8EXszEayullMpugtFV3OgQt1JKqWykAVq3WSmllFLZSHvQSimlso/2oLUHrZRSSmUj7UErpZTKLrrNCtAArZRSKgvpKm4d4lZKKaWykvaglVJKZR/tQWsPWimllMpG2oNWSimVZYz2oNEArZRSKtsYNECjQ9xKKaVUVtIetFJKqeyj+6C1B62UUkplI+1BK6WUyjqaqER70EoppVRW0h60Ukqp7KM9aA3QSimlsowB4hqgdYhbKaWUykLag1ZKKZVlNJMYaA9aKaWUykrag1ZKKZV9tAetAVoppVQW0gCtQ9xKqc6xZF45835bQCwWy3RTlMoJ2oNWSnWoWCzGTUdN5PNXvsbhsCjr3YUJH11LSbeiTDdNZSvdZgVoD1op1cHe+L/3+PK16USCEYI1IRb+sYgJJ92f6WYplfW0B62U6lC/fT2LUG247nYsGmPW/2ZnsEUq+xkwWs5KA7RSqkP1G9oHt89NOGAHacth0WfwOhlulcp6ukhMh7iVUh1r/zP2YsOtB+HN8+Av9FHSvYjzHzo9081SKutpD1op1aFcbhe3ThvPH9/9Rag2xHqbD8Tr92S6WSqb6SIxQAO0UqoTWJbFoM0HZroZSuUUDdBKKaWyj85B6xy0UkoplY20B62UUir7aA9aA7RSSqlso+UmQYe4lVJKqaykPWillFLZxQBxzSSmPWillFIqC2kPWimlVPbROWgN0EoppbKQBmgd4lZKKaWykfaglVJKZRmjubjJUIAWkduA0UAY+AMYa4ypzERblFKZ8deMuTxx/fPULq9lj+N2ZucxIzLdJKWySqZ60O8ClxpjoiJyC3ApcHGG2qKU6mTzflvAv7a9jGBNEGPgh49/prqyhn1P2SPTTVPZwIAxus0qI3PQxph3jDHRxM0vgd6ZaIdSKjPenvwBwZpQ3TqgUG2Yp29+KaNtUlkmbtr/J8dkwyKxE4A3m3pQRMaJyHQRmb5kyZJObJZSqqPEonFMo1W68Zj2mJRqqMMCtIhME5Gf0vzs3+CYy4Eo8GRT5zHGTDLGDDfGDO/atWtHNVcp1YlGHrMjHr+n7rbH7+GAf+2dwRaprGNM+//kmA6bgzbG7N7c4yJyHLAvsJtpfCmtlFqjDRjWj9veu4r/XDGF2hUB9jh+Z0afqvPPSjWUqVXce2EvCtvJGFObiTYopTJrw60Hceu74zPdDJWNjNFc3GRuDvoeoAB4V0S+E5EHMtQOpZRSKitlpAdtjFkvE6+rlFIqR+jMp2YSU0oplX2MDnFnxTYrpZRSSjWiPWillFJZJje3RbU37UErpZRSWUh70EoppbKLISdTc7Y3DdBKKaWyjxbL0CFupZRSKhtpD1oppVRWMYDRIW7tQSullFLZSHvQSimlsosxOgeN9qCVUkplIRM37f7TGiKyl4j8KiKzROSSNI+LiExMPP6DiGze7m8+QQO0UkopBYiIA7gX2BsYAhwhIkMaHbY3MCjxMw64v6PaowFaKaVU9jHx9v9p2VbALGPMn8aYMPA0sH+jY/YHHjO2L4FiEenZvm/epgFaKaWUsvUC5ja4PS9xX1uPaRc5tUjsm2++WSoiczrxJcuApZ34erlAP5P09HNJpZ9JemvS59KvI05aRcXb08zzZR1waq+ITG9we5IxZlKD25LmOY0nr1tzTLvIqQBtjOnama8nItONMcM78zWznX4m6ennkko/k/T0c2mZMWavDL30PKBPg9u9gQWrcEy70CFupZRSyvY1MEhEBoiIGzgceKXRMa8AxyZWc28DLDfGLOyIxuRUD1oppZTqKMaYqIicCbwNOIBHjDEzROTUxOMPAG8A+wCzgFpgbEe1RwN08ya1fMhaRz+T9PRzSaWfSXr6uWQxY8wb2EG44X0PNPi3Ac7ojLaI0aLYSimlVNbROWillFIqC2mAbiURuUBEjIh0xNL/nCIit4nIzESauxdFpDjTbcqUltICro1EpI+IfCAiv4jIDBE5O9NtyhYi4hCR/4nIa5lui8p+GqBbQUT6ACOBvzPdlizxLjDUGLMx8BtwaYbbkxGtTAu4NooC5xtjNgS2Ac7Qz6XO2cAvmW6Eyg0aoFvnTuAiOmgzeq4xxrxjjIkmbn6JvQ9wbdSatIBrHWPMQmPMt4l/V2EHpA7JtJRLRKQ3MAp4KNNtUblBA3QLRGQ/YL4x5vtMtyVLnQC8melGZEinpfzLVSLSH9gM+CrDTckGd2Ff6GsdRdUqus0KEJFpQI80D10OXAbs0bktyrzmPhNjzMuJYy7HHs58sjPblkU6LeVfLhKRfOAF4BxjzIpMtyeTRGRfYLEx5hsR2TnDzVE5QgM0YIzZPd39IjIMGAB8LyJgD+V+KyJbGWP+6cQmdrqmPpOVROQ4YF9gN7P27tXrtJR/uUZEXNjB+UljzNRMtycLjAD2E5F9AC9QKCJPGGOOznC7VBbTfdBtICJ/AcONMWtKovtVIiJ7AROAnYwxSzLdnkwRESf2IrndgPnYaQKPNMbMyGjDMkzsq9lHgWXGmHMy3Jysk+hBX2CM2TfDTVFZTueg1aq4BygA3hWR70TkgZaesCZKLJRbmRbwF+DZtT04J4wAjgF2Tfx9fJfoOSql2kB70EoppVQW0h60UkoplYU0QCullFJZSAO0UkoplYU0QCullFJZSAO0UkoplYU0QCullFJZSAO0UkoplYU0QCvVSURky0QNba+I5CVqJQ/NdLuUUtlJE5Uo1YlE5HrsXMw+YJ4x5qYMN0kplaU0QCvViUTEjZ2zOwhsZ4yJZbhJSqkspUPcSnWuUiAfO5e5N8NtUUplMe1BK9WJROQV4GnsMqY9jTFnZrhJSqkspfWgleokInIsEDXGPCUiDuBzEdnVGPN+ptumlMo+2oNWSimlspDOQSullFJZSAO0UkoplYU0QCullFJZSAO0UkoplYU0QCullFJZSAO0UkoplYU0QCullFJZSAO0UkoplYX+HzuFHMicu4ieAAAAAElFTkSuQmCC\n", + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], "text/plain": [ - "<Figure size 576x576 with 2 Axes>" + "<IPython.core.display.Javascript object>" ] }, - "metadata": { - "needs_background": "light" + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -333,7 +1292,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 7, "id": "0837b3ff", "metadata": {}, "outputs": [], @@ -343,7 +1302,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 8, "id": "8798f857", "metadata": {}, "outputs": [ @@ -353,7 +1312,7 @@ "SVC(kernel='linear')" ] }, - "execution_count": 36, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -372,139 +1331,101 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 9, "id": "fb5796e5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[ 1.09066717, 1.14168402],\n", - " [ 0.82332406, 1.36527456],\n", - " [ 0.81776713, 1.37941045],\n", - " [ 2.14372476, -1.62753273],\n", - " [ 1.90384852, 0.05469226],\n", - " [-0.11368861, 0.789209 ],\n", - " [ 0.82616617, 1.11588989],\n", - " [ 2.28846317, -1.99513747],\n", - " [ 1.57613484, 0.16334826],\n", - " [ 0.39242418, 2.29848453],\n", - " [ 1.77477496, 0.28227371],\n", - " [ 1.29584153, 1.06915897],\n", - " [ 0.43253476, 2.14776942],\n", - " [ 2.15130782, -0.38136193],\n", - " [ 1.24404963, 0.68464481],\n", - " [-0.66943894, 1.8424947 ],\n", - " [ 1.70019528, 0.10690772],\n", - " [ 0.65820134, 1.94559496],\n", - " [ 0.65197514, 1.47423124],\n", - " [ 0.71889249, 1.66606669],\n", - " [ 0.54716624, 1.41796298],\n", - " [ 1.66418911, 0.35386853],\n", - " [-0.24370191, 1.83063971],\n", - " [ 1.92193494, -0.4591481 ],\n", - " [-0.01246689, 1.81841512],\n", - " [ 0.14230354, 2.00778275],\n", - " [-0.57407395, 2.15081284],\n", - " [ 0.69795078, 1.52149236],\n", - " [ 0.77313377, 0.19529612],\n", - " [ 1.0699089 , 0.49092423],\n", - " [-0.04499205, 1.79759849],\n", - " [ 0.42244174, 1.89932836],\n", - " [ 1.86402354, -0.31719178],\n", - " [ 1.68568755, -0.08605788],\n", - " [ 0.53007372, 1.6956327 ],\n", - " [ 0.7482819 , 0.71811721],\n", - " [ 1.10436169, 0.64164828],\n", - " [ 0.56477657, 1.55624231],\n", - " [-0.28144053, 1.84688675],\n", - " [-0.17103228, 2.42925696],\n", - " [ 1.08065591, 1.37366239],\n", - " [-0.08140078, 1.88560214],\n", - " [ 0.57141437, 1.70865712],\n", - " [ 1.22455478, 1.11620089],\n", - " [-0.5250053 , 2.35099784],\n", - " [ 0.35460391, 1.55349622],\n", - " [ 1.55299373, 0.49569307],\n", - " [ 0.04845348, 1.8999392 ],\n", - " [ 1.02979383, 1.46465965],\n", - " [ 0.53910284, 1.72869093],\n", - " [ 0.69257168, 1.09717206],\n", - " [-0.61185 , 1.94694832],\n", - " [ 0.80517674, 1.37859254],\n", - " [ 0.05207144, 1.92697989],\n", - " [-0.44091693, -0.14314121],\n", - " [ 0.3458213 , 2.18418132],\n", - " [ 1.2746817 , -0.24731399],\n", - " [ 1.14039047, 1.15853143],\n", - " [ 1.85242314, 0.31655399],\n", - " [ 0.45506115, 2.14557721],\n", - " [ 0.05065789, 1.51781943],\n", - " [ 0.90229338, 1.40117837],\n", - " [ 0.47586902, 0.68596715],\n", - " [ 0.88609143, 0.66471744],\n", - " [ 0.37046201, 0.92874644],\n", - " [ 0.41302384, 0.82568861],\n", - " [ 0.55343276, 0.69603879],\n", - " [ 0.63646763, 0.90103162],\n", - " [ 0.61268716, 0.92707049],\n", - " [ 1.07331082, 1.08608595],\n", - " [ 1.96245234, 0.96689942],\n", - " [ 0.81958358, 0.98799638],\n", - " [ 0.53309449, 0.69113274],\n", - " [ 0.26581163, 0.83348761],\n", - " [ 2.96518503, 1.18077662],\n", - " [ 0.06531837, 1.44168641],\n", - " [ 4.41696839, 0.79937464],\n", - " [-0.60444925, 2.14858222],\n", - " [-0.14120945, 1.61739004],\n", - " [ 0.41221008, 1.42648702],\n", - " [ 0.41059811, 1.04130161],\n", - " [ 0.51574288, 0.99381266],\n", - " [ 1.27763708, 0.85457593],\n", - " [-0.02240963, 1.3151063 ],\n", - " [ 0.07047484, 1.69827259],\n", - " [ 0.33603564, 0.8945502 ],\n", - " [ 1.09745378, 1.10574367],\n", - " [ 0.27982699, 1.05646466],\n", - " [ 0.06501605, 1.10523488],\n", - " [ 0.57504584, 0.90009219],\n", - " [ 1.26444763, 1.01657972],\n", - " [ 1.09222108, 1.09096059],\n", - " [ 0.93232812, 0.67562761],\n", - " [ 0.48122901, 1.54210509],\n", - " [ 0.67035673, 1.42741487],\n", - " [ 0.12337459, 1.36431441],\n", - " [ 0.2481389 , 1.01757336],\n", - " [ 0.53548917, 0.97616592],\n", - " [ 1.31811412, 1.03821049],\n", - " [ 0.24225127, 1.1896406 ],\n", - " [ 0.08928115, 1.14749203],\n", - " [ 0.49954957, 0.68030963],\n", - " [ 0.01069113, 1.1712478 ],\n", - " [ 0.27542774, 0.95730289],\n", - " [ 1.76195726, 0.79282756],\n", - " [ 0.85304585, 0.69786989],\n", - " [ 0.44940283, 1.03305732],\n", - " [ 0.40352514, 1.03815813],\n", - " [ 0.3951345 , 1.00769699],\n", - " [ 1.40285739, 0.94924741],\n", - " [ 0.53126755, 1.08257856],\n", - " [-0.21746924, 1.49792791],\n", - " [ 1.35993437, 0.994109 ],\n", - " [ 0.09043072, 1.06090519],\n", - " [-0.14925131, 1.66656281],\n", - " [ 1.34437655, 0.95960832],\n", - " [ 2.48843562, 0.88913639],\n", - " [ 1.31765377, 0.93275639],\n", - " [ 0.8270858 , 1.13983751],\n", - " [ 0.43763474, 0.83976069],\n", - " [-0.0986339 , 1.60773091],\n", - " [ 2.19198434, 1.33107642],\n", - " [ 0.71110563, 1.369357 ]])" + "array([[ 0.21182516, 2.31157495],\n", + " [-0.94628217, 1.56916731],\n", + " [ 0.49511658, 1.79284285],\n", + " [ 0.21544199, 2.05959715],\n", + " [ 1.79720291, -0.02534731],\n", + " [-0.60494068, 1.88752766],\n", + " [ 0.90683768, 0.02059853],\n", + " [ 1.07219364, 0.61579079],\n", + " [ 0.06496264, 2.03481104],\n", + " [-0.36832911, 2.56731479],\n", + " [ 0.62529817, 1.72061667],\n", + " [ 1.91576719, -0.30539225],\n", + " [ 0.36531725, 1.09930045],\n", + " [ 0.5836424 , 1.70300831],\n", + " [ 0.01782901, 2.24397973],\n", + " [ 1.0717598 , -1.77776273],\n", + " [ 0.97767405, 1.23465754],\n", + " [ 1.53599348, -0.24527776],\n", + " [ 0.3795789 , 2.02205061],\n", + " [ 0.20979651, 2.44648459],\n", + " [ 1.0745818 , 0.35635631],\n", + " [ 0.6072389 , 0.50239065],\n", + " [ 1.35881189, 0.69592607],\n", + " [-1.20621041, 1.34001722],\n", + " [ 0.51173674, 1.40430944],\n", + " [ 1.68761639, -0.22626755],\n", + " [ 0.427487 , 1.49996763],\n", + " [ 1.03826759, 1.15746819],\n", + " [-1.22061729, 1.57485782],\n", + " [ 0.59552368, 1.84623625],\n", + " [ 0.34745253, 2.19606159],\n", + " [-0.25460654, 2.15938193],\n", + " [-0.28879334, 2.06559377],\n", + " [ 2.64768263, -1.23067633],\n", + " [ 1.00168985, 0.6942571 ],\n", + " [ 2.16417477, -0.53171722],\n", + " [ 0.23770248, 2.17975404],\n", + " [ 1.19030762, 0.88976073],\n", + " [ 0.08497428, 2.22516187],\n", + " [ 1.82315891, -0.82428639],\n", + " [ 2.03503212, -0.43966318],\n", + " [ 0.36332659, 0.94111582],\n", + " [ 0.46560162, 1.3333945 ],\n", + " [ 0.24424759, 1.11998107],\n", + " [ 0.62730317, 0.87509377],\n", + " [ 0.32563058, 0.96268418],\n", + " [ 0.43924068, 0.77533282],\n", + " [ 1.82455499, 1.13993573],\n", + " [ 1.00547526, 0.9470825 ],\n", + " [ 0.29246745, 1.03105307],\n", + " [ 0.03587892, 1.42900693],\n", + " [ 1.38439305, 0.81947032],\n", + " [ 0.45601145, 1.07196656],\n", + " [ 0.30638323, 0.97711115],\n", + " [ 0.45891117, 0.94668418],\n", + " [ 0.65236911, 0.86988703],\n", + " [ 0.80072879, 0.79872165],\n", + " [ 0.56238229, 0.86470356],\n", + " [ 0.41837498, 0.97397978],\n", + " [ 0.75785897, 1.54233478],\n", + " [ 0.61539624, 0.94130748],\n", + " [-0.11102726, 1.71542169],\n", + " [ 0.812513 , 0.776661 ],\n", + " [ 0.47913657, 1.14766801],\n", + " [ 0.60026463, 1.21218269],\n", + " [ 0.23554457, 1.21968403],\n", + " [ 0.07110031, 1.39395848],\n", + " [ 0.60623974, 0.60046301],\n", + " [ 0.28530764, 1.22130965],\n", + " [ 0.40255384, 1.01645976],\n", + " [ 0.72794211, 1.44631683],\n", + " [ 0.74914917, 0.90509902],\n", + " [ 0.55048689, 0.80809041],\n", + " [ 0.33953792, 1.01802976],\n", + " [ 0.86791963, 1.10610129],\n", + " [ 0.43545804, 0.94008493],\n", + " [ 0.37769854, 1.06156196],\n", + " [ 0.26890853, 1.09087437],\n", + " [ 0.47686887, 0.7498173 ],\n", + " [ 0.45791321, 1.14821281],\n", + " [ 0.42977444, 1.1675954 ],\n", + " [ 0.92787593, 1.35712678],\n", + " [ 1.13271067, 0.84080793],\n", + " [ 0.6319547 , 1.20117136],\n", + " [ 0.74754794, 0.89002571]])" ] }, - "execution_count": 37, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -527,94 +1448,992 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 10, "id": "cc8fc1f1", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACclElEQVR4nOydd3hUZdqH7/ec6em9EkLvvRepUkQBFRHp6Lfrrr3truuublN31V3XsvZKE0QQRCyA9N57LwmE9F5mMvWc8/0xIRCS0Cb0ua+LSzMz5znvnEx+85znfYrQNA0/fvz48XPjIl3rBfjx48ePH9/wC7kfP3783OD4hdyPHz9+bnD8Qu7Hjx8/Nzh+Iffjx4+fGxzdtThpZGSklpycfFXPabfbKSsrIyIiAlmWfbanKAr5+fkEBwdjNpvrYIVQWFiIJEmEhobWiT0/fvzcXGzfvj1f07Socx+/JkKenJzMtm3bruo5s7KymD59OkajkSlTpvgsli6Xi5kzZ5Kens59991Hy5YtfV7j6tWrWblyJe3bt2fkyJEIIXy26cePn5sHIcTJmh6/ZUIrcXFxTJw4EYfDwbRp0ygpKfHJnsFgYPz48SQmJjJv3jwOHjzo8xr79u1Lv3792LVrF4sWLcKf4+/Hj5+L4ZYRcoD4+HgmTpyI3W5n6tSpOBwOn+wZjUbGjx9PQkICc+fO5dChQz6vsW/fvvTt25cdO3awdOlSn+358ePn5qdOhFwIESqEmCeEOCSEOCiE6FEXdq8ECQkJTJw4kQ4dOmA0Gn22ZzQamTBhAvHx8cydO5fDhw/7ZE8IQb9+/RgwYACtW7f2eX1+/Pi5+akrj/wdYLGmac2BdoDvcYYrSEJCAn369EEIQW5uLmVlZT7ZOy3msbGxfPPNNxw5csQne0II+vTpQ0JCAgDHjx/3h1n8+PFTKz4LuRAiGOgDfA6gaZpL07RiX+1eDRRFYfbs2UydOtVnMTeZTEycOJGYmBjmzJnD0aNH62SNqampzJgxg59//tkv5n78+KmRuvDIGwJ5wJdCiJ1CiM+EEAHnvkgI8bAQYpsQYlteXl4dnNZ3ZFnmnnvuoaysjGnTpmG1Wn2yd1rMo6OjmTNnDseOHfN5jcnJyfTo0YMtW7awePFiv5j7qVM8qsaWtCK+2ZXBnF3prEstwOlRrvWy/FwidSHkOqAj8KGmaR0AG/DHc1+kadonmqZ11jStc1RUtTTIa0ZSUhLjx4+ntLS0TsTcbDYzadIkoqKi+Prrrzl+/LhP9oQQDB48mO7du7N582aWLFniF3M/dcaGEwWkFtpQNA1Vg4xiOyuP5fs/YzcYdSHk6UC6pmmbK36eh1fYbxjq16/PuHHjKC4uZvXq1T7bM5vNTJw4kcjISGbPnk1KSopP9oQQDBkyhG7durFp0ybS09N9XqMfPw63QlapA/UszVaBMqeHIrv7mq3Lz6Xjs5BrmpYNnBJCNKt4aCBwwFe7V5vk5GQefPBBBg8eXCf2LBYLkyZNIiIiglmzZpGamuqTPSEEQ4cO5aGHHqJevXp1skY/tzYuRUWqoehMAE6PevUX5OeyqauslSeAr4QQe4D2wD/ryO5VJT4+Hr1ej8Ph4LvvvqO8vNwne6fFPDw8nFmzZnHixAmf7AkhSEpKAryboKtWrfLfAvu5bAKNOuQahFzVNCICDNdgRX4ulzoRck3TdlXEv9tqmna3pmlFdWH3WpGbm8u+ffuYPn06drvdJ1sBAQFMnjyZ0NBQvvrqK5/F/DSHDx9m1apVrFy50i/mfi4LSQh6JIcjC4EsQBIgC+hULwyDfEvVCt7w+H9bNZCUlMTYsWPJz8+vczGfNWsWJ0/W2C7hkhgyZAgdO3ZkzZo1rFq1ymd7fm5N4oJNDG8VS/uEUNrFhzCsRSyNIqolnfm5zvELeS00atSIBx54gNzcXGbMmOGzmAcGBjJ58mSCg4P56quvSEtL88meEILhw4fToUMHVq9e7RdzP5eNWS/TNCqQ5tFBBBqvSR89Pz7iF/Lz0LhxYx544AGcTidOp9Nne6fFPCgoiJkzZ3Lq1Cmf7AkhGDFiBO3bt6e4uNgfYvHj5xZFXIs//s6dO2tXu42tLyiKgizLaJqG2+3GYPBtI6i0tJSpU6dis9mYOHEiiYmJPtlTVW+GgSRJOJ3OOukh48ePn+sPIcR2TdM6n/u43yO/CE4Povjpp5+YPn26z955cHAwU6ZMISAggBkzZpCRkeGTPUmSkCQJq9XKRx99xLp163yy58ePnxsLv5BfAo0aNSIzM5OZM2fWiZhPnjwZi8XCjBkzyMzM9Hl9FouFxMREli1bxvr1632258ePnxsDv5BfAs2bN+e+++4jIyODr776ymcxDwkJYcqUKZjNZqZPn+6zmEuSxD333EPr1q355Zdf2Lhxo0/2/Fy/qJpGntVJntWJ6t8bueXxC/kl0rJlS0aNGkV6ejrffPONzxuMISEhTJ48GZPJxIwZM8jKyvLJniRJ3HvvvbRq1YolS5awe/dun+z5uf4oLHfx3b4sVh3PZ9XxfBbuy6LYX1J/S+Pf7LxM9u/fj9FopHHjxnVir6ioiKlTp+JyuZg8eTKxsbE+2VMUhVWrVtGjRw8sFkudrNFPVTRN41i+jUO5ZXhUjXqhZtrGh1zRYhpV01i4LwvHOSX0Fr3MiFax/jmvNzn+zc46plWrVpUifvToUdxu3zyisLAwpkyZgl6vZ/r06eTk5PhkT5ZlBg4ciMViwePx+Dy5yE919mWXsjOjBKtLweFROV5gY/mRvCuaBlpU7sajVrfvUlSKHX6v/FbFL+Q+UlxczOzZs5k1a1adiblOp2PatGnk5ubWyRo3btzI7Nmz2bp1a53Y8+P1jA/mWlHOEm1VA6vLQ57VdcXOW5vDrQESfm/8VsUv5D4SGhrK3XffzYkTJ5g9e7bPYh4eHs7kyZORZbnOxLxnz540a9aMH3/8ke3bt/tszw+4FbVGz1vDK+ZXijCzHqOu+p+tRS8TbLr8qsxSh5uNJwpZfCiH7enF2N3+4RI3En4hrwPatm3LyJEjSU1N5euvv8bj8e0POSIigilTpiBJEtOmTcPXiUqyLDN69GiaNm3KokWL2LFjh0/2/IBBlmoUVDSNyCvYOVAIQf9GkQQZdciSQBaCYJOOfo0iLzs+XmJ3s+RwLieLyimyuzmWZ+XnQzn+SUE3EH4hryPat2/PiBEjSElJ4eBB32dPR0REMHnyZIQQTJs2jfz8fJ/s6XQ67r//fpo0acKyZctwOBw+r/FWRghBtyRv58DT8ilLgoYRAQSb9Ff03EEmPXe2iGFos2juaBHDnS1ifeqRsierBI+qcfr+QsV7x3Ekz1Yn6/Vz5fFnrdQx2dnZPmecnE1eXh7Tpk0DYMqUKURGRvpkz+PxUFxc7LMdP17KHG6OF5TjVlTqhZqJCTLecJkji/ZnYXVV977jg030beT/nFxP+LNWrhKnRTwrK4sFCxb4HGaJiopi8uTJaJrGtGnTKCgo8MmeTqerFPE1a9awa9cun+zd6gSZ9LRPCKFLUhixwaYbTsQBwizVQ0GS4IqGiPzULXUi5EKIE0KIvUKIXUKIm9PVvkSysrLYvXs3c+fORVF8izWeFnNVVZk6dSqFhYU+r09VVU6cOMHChQvZs2ePz/b83Li0jQtGJ50JEUnCuwfQODLwmq7Lz8VTlx55f03T2tfk9t+KdOzYkTvvvJPDhw/XiZhHR0czadIkFEWpEzGXJImxY8eSnJzMggUL2Lt3r0/2/Ny4BJv03NE8hkYRAURaDDSPDuKO5jE1b+b6uS7x/6auIF26dGHYsGEcOnSIefPm+SzmMTExTJo0CbfbzbRp0ygq8m2inl6vZ+zYsdSvX5/58+ezb98+n+z5uXEJNOrokhTGoGbRtIsPwaSXr/WS/FwCdSXkGrBUCLFdCPFwTS8QQjwshNgmhNjmazrdjUTXrl0ZOnQoiqLUScVfbGwskydPxuVyMXXqVIqLi32yZzAYGDduHMnJyT7H8/348XNtqJOsFSFEvKZpmUKIaOAX4AlN09bU9vqbOWulNjRNQwiBw+HAYDAgSb59h2ZlZTFt2jRMJhNTpkwhNDS0TtYHUF5e7u/P4sfPdcgVzVrRNC2z4r+5wAKga13YvZkQQuDxeJg6dSrz58+vnOpzucTFxTFp0iQcDgfTpk2jpKTE5/UBpKWl8fbbb9dJLrwfP36uDj4LuRAiQAgRdPr/gcGAP9haAzqdjjZt2rBv3z4WLFjgs5jHx8czceJE7HY7U6dOpbS01Oc1xsTEEBMTw9y5czl06JDP9m4EbC4P5VewrN6PnytNXXjkMcA6IcRuYAvwo6Zpi+vA7k1Jr169GDhwIHv37mXhwoU+i3lCQgITJkygvLy8TsTcaDQyfvx44uLimDt37k3dNbHM4ebHg9n8eCCbRQeyWXIoh/IaCmP8+Lne8VnINU1L0TStXcW/VpqmvVoXC7uZue222xgwYAC7d+9mxYoVPttLTExk4sSJ2Gw2pk2bRllZmU/2TCYTEydOJDY2lm+++Ybs7Gyf13i9oWkaK47lU+rwoGjezoVFdjdrUnxrheDHz7XAn354jejTpw/Dhg2jS5cudWIvMTGRCRMmUFZWxtSpU+tMzPv3709MTEydrPF6oqDchUupejek4e0CaHX6wyx+biz8Qn4N6dq1KyEhIaiqyq5du3xOT6xXr16lmE+bNg2r1eqTPZPJRO/evRFCUFRUREpKik/2ridqmM3gRQj/DEw/Nxx+Ib8OOHz4MN999x0//PCDz2KelJTE+PHjKS0trRMxP82SJUuYNWsWx48frxN715oIiwGphrYoRp1EkA+dBP34uRb4hfw6oHnz5tx2221s376dH3/80Wcxr1+/PuPGjaO4uJjp06djs/nejnTEiBFERkYye/bsm8IzlyVBn4aR6GWBTvL+M+ok+ja8/L7efvxcK/xtbK8TNE1j+fLlrFu3rrK031dBSU1NZdasWYSFhTF58mQCAgJ8sldeXs60adMoLCxk3LhxNGjQwCd71wOKqpFndSIERAUakfwi7uc6xt/G9jpHCMHAgQPp1asXu3bt8rldLUCDBg0YN24chYWFTJ8+nfLycp/sWSwWJk2aRFhYGKtXr76iQ4avFrIkiA02ERNkuqlE3OlROJBTyqaThaQW2FBq3RTwczPg98ivMzRNo7CwkIiIiDqzmZKSwqxZs4iMjGTSpEk+l9/bbDZkWcZkMtXRCv3UJVanhyWHc1BUDUUDnSQIMuoY1DQaWRK4FRWr04PFoPN3OLzB8HvkNwhCiEoR37ZtG0uWLPHZ823YsCFjx44lPz+fGTNmYLfbfbIXEBCAyWTC7XYzZ84c0tLSfLJ3K1DuUjiWbyW10IZb8a0I7ELszizBrXhFHMCjapQ6PZwsKudgThkL9max/Gge3+3LZHt68U1xZ3Wr4xfy65j8/Hw2btzIL7/84vMfW6NGjXjggQfIzc2tEzEHcLlc5OXlMXPmTL+Yn4fjBTZ+OJDFjvQStp0qZuG+LApsrit2vlyrk3M/LYqqcaKwnL3ZpSiahlvVUDXv2lIK/LM5b3T8Qn4dM2TIELp27cqGDRtYtmyZz2LeuHFjHnjgAXJycpgxY4bPA5gDAgKYPHkyQUFBfPXVV5w6dconezcjTo/C9lNFKBoomoZH9Yro+hMFV8wTNuuq9xKXBDjcSrVYuaJqHM33C/mNjl/Ir2OEENxxxx106dKF9evX10k5f5MmTRgzZkydiXlQUFBlRszMmTNJT0/3eY03E7lWZ43ZR3a3gt1d9yEWm8tDWQ0NwCQBFkPNwyJK7G5OFN54Yp5V6mDp4RwW7M1kfWrBLV2R6xfy6xwhBMOGDaNz5851trnYtGlT7r//frKzs5k5cyZOp9Mne8HBwUyZMoXo6Gj0en2drPFmwSDX/iemk+s+S+ZAdlmNGSr1wyw0iQpErqEKSgW2pBWTXux7uO1qkVnqYG1KAQXlbhwelbRiO0sO5+L0XNn9h+sVv5DfAAghuPPOO+nVqxdAnbSrbdasGaNHjyYzM7POxPyhhx4iJiYGTdPqZI03A1GBRow6ibPlUxaQEGI+r8hfDm5F5WRxebX4OECpw0N8sImmkTXXEiiaxr7sG+d3tiezBEWrHiZKvUXj/X4hv0E4fXteUFDA+++/z+rVq3222bx5c0aPHk1GRgZfffWVz2J+eo0bN27kgw8+ICsry+c13uhIQjCwSRRRgQYE3hBHUpiF7vXD6vxca1LycSs1x91DzTqEELRPCKVeaM13dg73jdPC11ZDu2FF82bn3Ir4hfwGIzw8nBYtWrBy5UrWrKl1mt5F06JFC+677z7S09OZNWsWLpfv2RQtW7bEaDQyffp0v5gDAQYdA5tEM7pdAqPbJdC9fjg6H0f9nUuZw33eTJj0EgelDjcASaEWdOeEWAQQG1x76E6t2Kg9jVtRSSsq50RhOa5rEM6IDDBUe0wnCaIDjVd9LdcDfiG/wRBCMGLECNq1a8eKFStYu3atzzZbtmzJqFGjSEtLqxMxDw0NZcqUKRgMBqZPn35T9jO/HGRJXLHqUYdHPa9tu1tlTYo3UyYx1ExkgKFSzHWSwKSXaBcfUu04RdXYmlbE3N0ZzNudwZLDOZwotPHdviw2pxWx9VQR3+3LIrPk6sbXOySEoJdEZeMzWQhCTDqSwsxXdR3XC3VW2SmEkIFtQIamaXed77X+yk7fUVWV7777jj179nD//ffTsmVLn23u3buX+fPnk5yczLhx43zeuCwqKuLLL79EURSefPJJjMZb01u6XLJKHezLLsXuVogPNtE6NhiTvmrmidXpobDcRVpxOaeKz5+BJEuCoc2iCTbp0TSN7DIn+TYngQYd9cLMNd4lbEkr4kShjVoiNpXoJMG9beJr3Ey9UtjdCsfzbZQ5PcQGG0kKtVzV818LaqvsrMt+nU8BB4HgOrTppxYkSeLuu+8mISGBZs2a1YnNNm3aoGkaCxYsYPbs2YwdO9YnMQ8LC2PKlClkZ2f7RfwSOVVUzsaTRZUbesfzbWSUOLirZSyyJHB6FNakFFBoc3HRgQ2Nyk1XIQRxwSbiLhBOSS201d67/SwEkG9zEhNU1Z5H1UgvtmN3K0QHGomoISRyuZj1Mq3j/HIDdRRaEUIkAncCn9WFPT8XhyRJdOvWDVmWsdls7Nq1y2ebbdu25e677yY1NZWvv/4at9vtk73w8PDKu4WjR4+Sm5vr8xp9xe5WyCx1UObw7b1dSXadk5WhAi5FJa3Y2/hs08mi84p4TY5pgEEmsJZe65qmYXV6KLC52H6qiNXH8zmaV3ZRIg7e6Ur6c7JwbC4Pi/ZnsfVUEbszS1h+NI9NJwv9LQGuAHXlkb8N/AEIqu0FQoiHgYfBO/zAT92yceNG1q1bh8PhoHv37j7ZateuHZqmsXDhQr7++mvGjh2LTufbR8Xj8fDjjz/idruZMmUKUVFRPtm7XHZnlnAotwy5YhJQbJCJXg0irrtb8vIaMkg8qkaZw4OiamSVOmpMMzxNhEWPzaXiUlQ0wKKX6dsoEpeicijXSq7VSahJT4uYIBwehXWpBTg9ahXhzilzIgtRLc0PvB64dtb/W/QyYeaqd2870ktwnLURqmgaacV2GoRbqnnufnzDZ49cCHEXkKtp2vbzvU7TtE80TeusaVrna/VHfDPTv39/WrZsyeLFi9m8ebPP9tq3b8+IESM4fvw4X3/9NR6Pb2ldOp2OCRMmIIRg2rRp5Odf/SHHWaUODudZUTVwV3QGzC5zcCjXt/mmV4JQc/WQlk4SFxWakATEBZsZ0SqW25tGMaRpNHe2iMEgS/x8KIdDuWXk21wcL7Dx08FsVhzLx+5Wq3nfpwX89OANWXg3F9vEBREXbEIIr4hHBRro3ySqWgVrdln1mL2iamSW+lZN7Kc6deGR9wJGCCGGASYgWAgxU9O0CXVg289FIssyo0aNQtM0fv75Z4QQdO3a1SebHTp0QNM0vv/+e+bMmcOYMWN88swjIyOZPHkyU6dOZdq0aUyZMqVO2/VeiBOF5dV7jWiQUlhOq9jrK9baKTGUFcfyUVUNDW9WRphZT1ywt296TJCRnLLqzbEk4R1X1zgyECEEYeYzwn80v6yK163hff/iPKEORdNoFhlIZIABt6IRG2wkwOD9DHhUFU2rHlI5jUGW8KhV7yxkUXMvGD++4bNHrmnaC5qmJWqalgw8AKzwi/i1QZZl7rvvPpo3b86WLVt8jm8DdOzYkeHDh3P06FG++eYbnz3zqKgopkyZgqqq7Nmzx+f1XQq1RU+us6gKAJEBRoY1j6FpVCCJISY61wulf+OoyhTDHvXDCTbpkIT3j1gAISYdLaKD6JgQyua0QlYdyyOtqLwyJp1vc9UY8z5fiEYnCULNepLCLDSKDKgUce9zUq0iDtAiJgj5HC9dCEFyuG/98P1Uxz9l9iZDlmVGjx6Nw+FAr/emmfk6Mq5Tp05omsYPP/zA3Llzuf/++5Hly/eqoqKi+M1vfkNQkHdLpS7WeDE0igzgZJG9SsxXFoKmkYFX/NyXQ6BRR8fE0BqfKyh3eePfGkiSoE1MEC1jgzmYU8amtKLKO488m4tcq5PO9cIItxjILnNc9AamhNervtzc7CaRAaiqxv6cMlyKSrhFT5d6YdVSKP34Tp0WBGmatupCOeR+rjyyLBMQEICqqsyfP58dO3b4bLNz584MGzaMw4cPM2/ePBTFt3Lu4OBghBAUFBTw+eefU1hY6PMaL0RkgJGOiSGVMV9JQKMIC41r6T9yvVJsd7M+tRC727uRqaga+3LKSCmwsTertEr4yKNqHC+wUe5SaBoVgF4+0/dF4PW428UFIwvQV8TBZQEBBolGkQEMaRZ92VWoQgiaxwQxqm08D7RPYEizGMItdZd+6OcMfo/8JkZVVRwOB4sWLUIIQYcOHXyy17Vr18oY/LfffsuoUaN88szBm81SUFBQGTMPC6v7HiRn0zgykAbhAVidHsx6GcMNOOrsWL61xoZRB3PKEGenk1QgC0Gxw018sIk7msdwIKeMPKuTEJOeVrFBeFQNs15G0TRCTHoiAwx1fod0Ne64bmVuvE+xn4tGp9MxZswYGjVqxPfff18neebdunVj6NChHDhwgPnz56OqvvXZiImJYfLkybhcLqZNm0ZxcbHPa7wQsiQIMetvSBEHam3V6t18rB43UTWN4Ir8cbNeplNiKEObx9AlKYytp4pYdiSPbenFbE8v5mSRbwO6/VwbbsxPsp+LRqfT8cADD9CwYUMWLlxYJxuM3bt3Z8iQIezfv79OxDw2NpZJkybhcDiYOnUqJSUlPq/xZiYprHopuiQgPthMs+igKpu3shAkhpprLAQ6kF1KntVVOblI1SClwOZPD7wB8Qv5LcBpMW/WrBkhIdUbI10OPXr0YPDgwezbt48FCxb4LOZxcXFMmjSJ6OjoOhugcbOSGGIiMcRUmdcNVM7fPJ5v5bRTrpMErWKC6F4/vPLYwnIXR/KsZJTYOZJvrT7bU/OmadaGpmkVm6xVj7Q6PWSXOm6oVrg3E3XWNOtS8DfNuvYUFhYSHh5+4RdegPXr1/PLL79UlvZLddSe1eVy4XQ6KzNbbjQ0TeNkkZ0ThTZ0skSzqECi6rjFam6ZgxXH8s+bPhhokLmrZSzgLes/VWxHQ0MSokpb2rOJCTQwoEl0tceP5VvZnVmCW9UwyBKdEkKoF2Zhw4lCMkrslVWgzaODauyk6Md3rkbTLD83CAcOHGDevHnce++9tG7d2idbvXr1QtM0li1bhhCCkSNH1omYf/vtt+Tl5TFlyhSCg6+vYp2LYePJQtJLHJUZJJklDjrVC6VRRN1lyJS5FGSpdkEGb3vbPJsLj6KSXnIm9VI9jwN3dhHRaTJL7OzIKKl8P06Pyua0YvJsLjJLvCmNp20ezrMSHWg8b0MuP3WLP7RyC9K4cWPq1avH/Pnz2b9/v8/2evfuzYABA9i9ezfff/99nTRFuu2227DZbEybNo2ysuuvhP58lDjcpBfbq6QBKprGzozi8wroubgV9bwiDVzUtXZ5VNJLHBe0Bd6UxAbhFkodbsqcnkr7h3KtNVTFaqQWlteYQZNyi45cu1b4hfwWxGAwMH78eBITE/n22285cOCAzzb79OlD//792bVrV52IeWJiIhMmTKCsrOyGE/OicneN6XaqSpUmUrVhdXpYejiXb/dk8u2eDNam5ONWqh8XatJfsE+4qmlEV8wNre2P/XScXQKSwy2sTS1g8aFcfj6Yw8+HcrA6PbhqOD9Qa1no6QpUt6LWOAzaT93iF/JblLPFfN68eRQVFflss2/fvvTr14+dO3eyaNEin8W8Xr16TJgwgdLSUr799luf13e1CDbpqOmtCwHGCwxcVjWN5UfzKCx3oeHdxEwvcfDtnkw2nizgYE4pW9OKWHwoh3WpBRdcS1yQkSKHi8QQE+KcTBdZEnRODKFzvTDaxYcwqGkUOWVOrC4FRdO8MzAdHlan5FMv1IR8zneTLAkSQ03VyvDlil7nSw7n8O2eTObtyWDDiQI8Pm6I+6kdf4z8FsZoNDJ+/HiOHj1aZ4U4ffv2RVVV1qxZgxCCu+66y6dikKSkJCZMmIDZfOOM8Aq3GIgI0JNrrToyr34NaYPnkm91VbaePRsNOFFoBy5tpFpGqZOMUu9Q7ehAA3a3SpnTg14WtI4JplFEAKVOBbVCuM/1vDXA5lRICDGTVeqkyO72fkkJiAk00jUpDINcwrECG5IQaBq0iglkR3oRzorbBU3Du8mqQa8GV69J2q2EX8hvcYxGY+WGZ1paGg6Hg6ZNm162PSEE/fv3R9M01q5dixCCO++802cxB288eNOmTbRt25aAgOu7rN6slzm3yPJEUTnt4oMxnqf7n/sKeq25VhfNIgOITQjF6nJj1sv8eDAHu0dF4A2x1HgPJUAgGNgkinybi1KHh1CLnoiKcvtO9cJoExdCZqmd/dll7MmuHgbz3lnYcSvqeRtt+bk8/ELuB/CK5MqVK0lLS2PMmDE+i/mAAQPQNI1169YhhGDYsGE+l2kXFhayYsUKdu7cyeTJk69bMdc0rSLNrzqniu00Pk+TrqhAY41hmYtBFt5rH2LSUVBec+fLw/k2Dudf2kakSZYINukQQhAVaKySRqlqGicKyzlRaCPX6jpvKuTp1/upe/xfjX4ArwCMGTOGmJgY5syZw9GjR322N3DgQHr27MnWrVtZvHixzzHziIgIxo4dS2FhIdOnT6e8/PotJ6/xrWraeTsPapqGLATdkkIvqbWuXhI0jQygU70w7mkdV+eNqWxuhV0ZxTX+/talFrAtvZicixDxIKPuvHcjfi4fv5D7qcRkMjFx4kSio6OZM2cOx44d88meEIJBgwbRo0cPNm/ezJIlS3wW84YNGzJu3DgKCgquuZi7FJWDOaWsTclnX3YpTo+3qlEIQXyIiZq0ODGk5tzq4/lWFuzN4pvdGezKLKVbUhhJoeYL/oEKoEu9UDrVC6NRRAA6WaL0CswiPZRn4+tdGaxPLajMoCksd5Fd6rxgVopOEhhkQc9kf3z8SuEXcj9VMJvNTJo0icjISPbt2+ezPSEEgwcPpnv37mzatImlS5fWiZif9swzMzN9XuPl4PKo/Hwwh71ZZaSXONifXcqPB3IqZ212SwojxKxHJ4nK9rBdk8KwGKpHMzNK7GxPL8FZIZDlboUtacW0jAni9qZRGM5NF6lAAN2TwqgfXjXE5PRcufBFeomdtRXZMkW1hG/OJsQo071+OHe3jq9xfJ2fusEfI/dTDbPZzJQpUzAYvLfovg5+EEIwZMgQNE1j48aNlZ66LzYbNWrE008/jcViqZM1XiqH86w4PEplqETVvB76gexSOtcLw6iTGdosmiK7G6dHJTLAUOsm38GcsmpFNaqmcSTPSlywqcZwjCzB4KYxNYpjTJCR4ivglXvXBflWJzaXpyJuznlHDLWJD6Fe6I2TcXSjUhfDl01CiC1CiN1CiP1CiL/XxcL8XFtMJhOSJFFWVsYnn3xCamqqT/aEEAwdOpQuXbqwYcMGli1b5rNnflrEDxw4wBdffIHDcfW69uVaq0/a0YBcq7PyZyEE4RYDccGm82Zq1NSWVsNbPFTq8NRYkalq1Qc0a5pGeokdu7vmcXyGOrr/FkLgqvhyCjPraxURWQhcF6pY8lMn1MWv1gkM0DStHdAeGCqE6F4Hdv1cB0iShKIozJo1ixMnTvhk63T2SpcuXVi/fj3Lly+vk3J+WZbJzMxkxowZV03MQ036GmPgwaZLDx/UCzXXWGyTFGomzOINz1Q7Tw1taVenFLAupYC04qrXQCcJGoRbqKuIi6ZRmcXSr3EULWJqz8Lxh1OuDnUxfFnTNM1a8aO+4p//a/gmISAggMmTJxMaGspXX33FyZMnfbJ3Wsw7d+7MunXrWLlypc9i3qxZM0aPHk1WVhYzZ87E6XRe+CAfaRYdVK24R5YErWMvvcFXi5gggk36yvFzsiSICTRSP9xCXLCJEJO+snpSVJynU8Usz9Ppfwv3ZZJV6qjxD08ISCsqv+hZnRdC0zT2ZpUCVHzJ1BzSCjTKlbnmp8m1Otl0spDNJwvJs/r+e7K7FbaeKmLR/ixWHM2rckd0K1EnbWyFEDKwHWgMvK9p2vM1vOZh4GGApKSkTr4Kgp+ri9VqZerUqZSWljJp0iQSExN9sqdpGosWLWLHjh307duX/v37+7zGgwcPMnfuXBISEpg0aRJ6/ZX1BksdbvZklVJY7iLEpKdtXDAhZj2Hcss4mmdD0TSSQs20iw+5YBGMpmnklDkpdXoIryi2OR3zV1SN4wVWMkocGGUJg05C1bzl98cLbORYnT6LtAS0jQ/hYE5pZUXm+ZCFYFTbeGRJ8NPBbEoc1cM5kRY9wWYDmSV2jDqJELOejGJH5X6ALARt44JpHnN5rYrdisqPB7NxuM9UwspCcFvDiJu282JtbWzrtB+5ECIUWAA8oWlarSkP/n7kNyZlZWX89NNP3HnnnQQG+j55/mwx79evH/369fPZ5oEDB8jIyOD222+/JnMit50qIqXAVtnMShLetrCDmkZd9noU1TvBx+bysPxoHmpFProsuGDTrItFCNCd1aP8QmYlASNaxWHWyyw/mlutHQF4vXVF1c5rSxaCe9rEXVa159E8KzsziqtdgzCznqHNYy7Z3o3AVelHrmlasRBiFTAU8D13zc91RVBQEGPGjAFAURQKCwuJioq6bHtCCIYPH46qqqxatQohBH379vVpjS1btqRly5aAtxI0MDCwMvvmSuNWVI4X2Kp4x6oGxQ43RXb3BQt11IqK0KxSB4FGHQ3CLRzILiOl0HbWa868vi73ETUN3BVOnaAi5iqo1dM3yBImnYSiapS7qk8FEni/qC/mC6HE4SYy4NKHbpQ63DVeA6uz5s3emxmfhVwIEQW4K0TcDNwOvO7zyvxc1/zyyy/s3LmTiRMn+hRmEUIwYsSIyhYBkiRx2223+bw+t9vN1KlTCQ8PZ9y4cVdFzJ0e1et1n3uXq2nkWZ3nFXJV01hxLI+icjceVUMSsD+7FDS42j0DNbybqSUXEMSUikZZ9hqybkw66aJa9iqaRsA5ufWqqlJQ7sbuVogMNGLR11wNGhFgRFdYXi2rJ8xy622w1kXWShywUgixB9gK/KJp2g91YNfPdUzPnj0JCAhgxowZZGRk+GRLkiRGjhxJ27ZtWb58OevWrfN5fXq9nkGDBnHy5Elmz56N2113edUuj8rh3DK2nSqq2ET0ConFIFdr6Qpez3lXRgmrj+ejaprXU9W0yv8H7wSh0yIOVEzcufoifpoLibjDo7LtVDHHC2w1Vna6VfWCnR5l4e0Iaa4Q6jyrkx8OZDFndybLjuax8WQhi/Zneb/QaqBeqJkgo67KNZcFND1PL5ubFf/MTj+XTUlJCVOnTsVutzNp0iTi4+N9sqeqKgsWLGDv3r0MGjSIXr16+bzGPXv2sGDBAho0aMDYsWN93gC1Oj0sOZyLonrbvuokQahZz20NIzDIEpklDjacKKxW4ANekQkwyJQ5lcqQg14StI0PxupUOJxnrXbM9Y4sACGqiXmoSUegUU92mXcykQRIkqBBuJnsMm88vXFkAE2jApGEwOr08NOhnBq/FGQhGNQ0irAa7mg8qkZqgY3UwnKK7S5vsF+DIJOOfo0iK78kbhauymbnxeIX8puHkpISvvzySwCeeOIJZNm3PxxVVZk/fz779u1j8ODB9OzZ0+c17t69m++++45evXpx++23+2RrXWoB6bV0NtRXpB8mhJhYdTwfaw2x45qQJUG9EDOnSuw35DQdo07C5ameORIbZCSjxEF6iR2zXqZxZEC1MMppdmWUcCi3rNaYeuvYIJpEBnKisBy7RyEu2ERMoBEhBB5FZcG+rCohFgFEBhi4vWn1IdI3Mv7hy36uCCEhIUyZMgWbzeaziIM3zHLvvfeiaRpLly5FkiS6d/etvqxdu3ZYLBbq16/v8/pyrc5axcatauzJLsVskIkIMGB1XdwQCEXVKCx3ohMC5QYrwdBLgqHNYtiTVUKu1UmAXqZ1XDAxQd70v8RQM4kXUaJvd9f+ziUBbkVj0YFsNE1D0eBovo16IWZ6JIeTVVY9d1wDCspduDwqBt3N31LKL+R+fCY0NJTQ0FAAtmzZQlJSErGxsZdt72wxX7x4MUIIunXr5tMamzRpAoDT6WTt2rX069cPne7SP/4WvVxjSf1pFFXjYE4ZnRJDSauYinMxOD0q3euHcyi3jJwaUvmuVxpEWLAYvI2xfCExtPY7EiEEOWVVh0crqsaJonJyrA6MOrlOKoRvZG7+ryo/Vw2n08n69euZPn06OTk5PtmSZZlRo0bRokULfv75Z7Zs2VLj69xuN99++y3Dhg2jVatWdO3alVdeeYXs7OwaX5+amsq6dev45ptv8HguPU2tTVxwjRuaZ+NSvH1IxCVoi1PRWJ1ScEOJOEBODd7w5ZAYYiIuyFitD7tOQK/kMIprKDgCsLtViu3V0xAFEGEx3BLeOPiF3E8dYjQamTx5MjqdjmnTppGbm+uTPVmWue+++2jevDk//fQT5+6r5OTk0KNHD9566y0mTJjAnDlzePPNN0lPT6dVq1YsWLCgms3mzZszfPhwjhw5wty5c1GUi4tjnyYhxEyvBuGEmHTV+qNUrlsI7+DkS7J8Y1Lq8FBqP/PlY3V6WHE0j693pjNvdwa7M0suOBXI6VHJKHHQNCqQJpEBnP096dFgTUphLU0AqiLwFiHJQhBi0t9S80H9m51+LhmXtZiMjT/jthYT1bY3YY3aVHm+oKCAqVOnoqoqkydPJjr60jacDh48yAcffMDy5ctxuVw0a9aMFi1aYLFYGDlyJJ06dUJRFLp3787gwYP5x8svk1nqJKvUQYBBpmFEAAf37uaOO+5g4cKFNcbYt23bxg8//EDz5s0ZPXr0ZcX3j+SWsT2jpNrjAhjTPoHFh3Jq9SRvJlpEB2LWSxzKsVJ+TthJlgRNIgPokBAKQHpxOTsySrC5FAINMvHBJo4X2BBCVMa/LxejTqJvw0h0slfIb0b8m51+6oSSk4dY/4+JaKoHxeXi6MJPSBowmjaT/lT5moiICKZMmcLUqVPJyMi4JCH/z3/+w7///W9+85vfMHv2bCwWCxs2bODdd9/F4XDgdrsRQpCZmYkkSbz88susSimgwOaqLKQ5mFPGoBZtePnll3nttdf47rvvqp2nc+fOqKrKunXrsFqthISEoCgKP/74Ixs3bkRVVTp16sTdd99dezGREDWXyVe4j12Twllx7ExJ/c3KoVxrrRuViqpxKNdKSoENWRJV+qJYXQpHTs8PrQOHMsJiICLg6lTxXm/4PXI/l8TqP99HSer+Ko9JBhO3/eNrQpKaVXnc6XRiNHpLr1VVRZLOH8mbNWsWf/3rX1m5ciXBkTEcy7fhUlTqhZqJCdDz8MMPs3v3bkaMGMGaNWuYMGECg+99gA0nCqtV98UEGukWbyExMZEjR47U2krg9BoXL17Mww8/TGJiIsOGDUOSJJYtW8bBgwf53//+x3333Vft2HKXwg8HsqoJuQToZQlJEiSHmdHLgrQi+y3hnV8rJAFDm8UQcpO3zfV75H58RlMVSlIPVH9CVSnYv7makJ8W8RMnTvD9998zfvx4IiJqjltqmsYrr7zCp59+ihwcyeJDud7KR7yT5+uFmvn4449JTk5Gr9dz6NAhZFkm1+qscfBCQbmLgIAoEhMTycrKqlXIjUYjy5YtY8yYMTz99NO89Je/UGj3oGkakx59hm9/Wc1vHn2Q/dmlPPOriVX6jVsMMp3rhbI5rbjq5QDv2DYFjuRZiQkyUnaROeV+Lh1ZwOCm0Te9iJ8P/2ann4tHSOjMAdUf1ukxhkbWepjFYsHpdDJ16lQKCgpqfM3WrVtRVZU+ffqwJa0I5ayGSx5VI63IjtWj8atf/YqcnBxCQkJYsmQJp44erHHT0ayXvT07CgoICqq9TaqmaTzxxBNMnDiR7xf9QMsOXRg3+SHe//p71qTkE924NU//5xPe+cef+Gl/Bg53VUGWhFTrpid4wy6Z5xlQrJMEHRNCajdwiyELb3vemEBvBsv5qvxNOolWMUGMbB1H6AUakp0Pl6LekIVYZ+MXcj8XjRCCRnc+iGw8U+AhJAmd0Uxsp4G1HhcdHc3kyZNRFIVp06ZRWFhY7TWnTp0iMDCQzl26MLZ7Mx7s1YxnRtzGomkfYivzbigW2Fw0b96cnJwcHn74YY4dO8a2lUtIP3aoii1ZCNrEBbN8+XKioqJITk6udW0LFizg5MmT/PLLL8Q1a0NIZDSph/fzz0cnMLFrAx4d1Imlc6YSFhXDlpVLOV5gq3K8r7NCjTqJQKPuorIyblZOC7YkID7ETO+GkQxoEsXodgn0TI6gdWxQlSlJAtDLgoFNojDrZTac8A6qKLZfWj+dwnIXPx7IZv7eTL7dk8G2U0UXzLC5XvELuZ9Loundv6XpvY9iCA5H0huIatub2/7xNbLh/G1IT4u5x+Nh6tSplJWVVT6Xnp7O008/zY4dO3C7XNz90KPc98hzBIaG8e1H/+Xp4b05vGsrgUYdubm5BAcH8+CDD5KSkoLL6aBgz1pc2akYZIkQk44eyeFE6FX++Mc/8tRTT9UqtDabjccff5zWrVuzacduug8ZyZ6Na0g9sIeYesm06Ngdp9POznXLST24l0XTPqL0nKHG8SEmVB+8OZtLYU1KwQ1Wz3l+T/lSUTWvOA9tHkPvBhGVoi0JQb1QMxaDjKpqlV92sgR9G0aw6WQROzNKyC5zklpYztIjuWSW2MmrGA59PlwelRVH8yh1etA0751TSkE5uzOrZyHdCPg3O/1cVbKzs9m5cydDhgxBkiTKy8vp2LEjOTk5KB4PP3z5Lo6CTEoscXia9WXr2hV88vffI0mCHdu2Mnr0aF577TWGDBnCqlWrGD16NP369aNhw4ZMnDiRFi1asHjxYl588UW6devGhx9+WKuQf/TRR7z33nv07t2bLiMn8sTooegMBiY+9zcatmxLfHIj3n3+ERq2as/6xd+RfuwQT/3+Bd785z8qbWw/VXQm8+IWQRLQIjqI/TllF37xJdhsFRtcbVReucvDDweyq2woC7wzQ20upcb9Eb0kUDWN2CATvRpE1NiF8XiBje2niqptVOskweh2CXXxlq4I/qZZfq47SktLmT59Oh999BHNmjUlpOAou46e5M+949GZzGimYOwT3+OnmZ9yaPsmgoODyMrKYt++fZUZMPv37+e1115j3rx5mEwmVFWlefPmPPHEE4wfP76aiBcUFHDkyBFkWebhhx/m4Ycf5l+vv0HDdl3YsWYZz775Gc07nmkHsHXFYma/+08MJjNuu43SwnzS09MJDQ1lc1ohKQXlV/WaXS+YKiomL6bn+MXSMNxCt3NK/Y/lW9mRXlJjN8kLIQtoGh1E+/gzexBlDjfFDjdpReWcKq4+4/R0DcD5wmWqprE/u4zjBVZUDeqHmWkXF4LuMqYcXSr+rBU/1xWaplVWYgohuK9XW8y7Ujh4XOMvK9MY0yqSNvFuDBtm0nvAYL758mNcLhcHDx6sksbYqlUrZsyYwTvvvMMnn3xCYWEhU6ZMqZwSdJqjR4/yt7/9jR9//JHmzZvjcrnYvXs3Bw4cwBgQxIbFC4lNakizDl0rjykpzOfkkf1kp6USFV+PV/7xV/7+l78wa9YsJv/q4VtWxKFuBRy8nnBNczZlSXgrPWsowb+QtCsapBbYaB8fgqpprE8tILPEUWvFrQBigozY3Sr7skvJKXMQZNLTOjaoygSjLWlFpBXZK79cjuXbKLa7Gdjk2nVa9Av5dYSzpADF5cAcGX9N5k1eTYQQ3HnnnTz33HMoioKWdZj1x/OQhcDmUvnPhgzcSjrG+YfRzJ8hhMBisRAXF1ejvfDwcJ555hlmzpzJvHnzGD16NC1atABg8+bNDBs2jHHjxrF//34SEry3ziEhIRQVFWEtKcbjdhMUGoaqKMgVzbSCQsNRFG+stf/dD5DcrDVOp5PPP/+cH5b8gk3T0bHPIDr1HVx5jJ/LQy8J4kO8Qq5qGqV2N4V2FycKqzfSkgToJcmb4nmRHM61klXqrFXEdZJAL0u0Twhh8eGcyra8VpdCbpmT/o0jiQo04vSonCwqrzbOr8DmpsTuvmYpkD6HVoQQ9YDpQCzeFNpPNE1753zH+EMrVXFZi9n2zjMUHt4BQmAOj6HzM+9Wy8u+GUlOTqagoADN46J+kI6BDYMJNsqcKnHy89FiYiLC+MusZUy8vSuqqmK1Ws87ts3pdPLhhx9y7Ngx+vfvz5IlS/jss88IDAzEZDJR7nDQd+QD3PfrJ/nqjRcZOfR2Nm/dzqyZMwgICsZgMpHYqBllxYXkpp9ESDLBYeF0HTCUI5tWcfDAfnr06MHEXz/C1qOnWP/TAgpysnjmP5/QoEWbWtfl58I0DDcTH2Jmc1oRHqX2eZ/RgQbyba4LVsvKAppFB9EuPoSfDmZTcp6CLAEkh5kJNOo4kGOtFsqJquhtXmJ3s/RIbrXYvF4S9GwQQXwNdxV1yRWLkQsh4oA4TdN2CCGCgO3A3Zqm1VA54sUv5FXZ+NqvyN+/BU05kxGhDwxlyAerkXQ3d8nxgw8+yIwZM2jUIJnB0S76JVrQVyRmeyQDH+TGciotDVkSNG7cmO+//x4Al8vFsWPHUBSF5ORkgoKC2LRpE6+99horV67EYDCQn58PeIt+/vjHP3Igs5BVP35HubUMS2AQk577C7PffoXVK5bRtGlTdAYDgcGhSJJMQsMmBIaEs3XFT5gCAgkJC8Na6LU3ffY3NO3Und0ZJSgabFn+E1/868/87Yv5xCY1uDYX8iahxpYH5xBu0VPq8FQT09PhFlny9m2JDzbRM9m72bnkUA6FF0hPlIS3IremNsUmncQ9beJRVI0FezNx13CXcHfrOIy6KzuRqDYh9zk6r2lalqZpOyr+vww4CFy/277XGS5rCfkHqoo4gKZ4yNu70SfbHqed1F9ms/Wdpzk07384ivN8snclOHXqFJqmceTYcT7bmc/4+cf476ZsjiohcM+LvPPxZ5xITSEzM5Mnn3wSq9XKSy+9RFJSEv3796dHjx6EhYURExPDkCFDGDp0KJmZmQQEBGA0GgkLCwMhsXL7Pu555A+8vWg9k//wD0oK81gyZxqdBtzBqPvuIyEhAbfTycB+fVi36wBjHvs92adS6Hf3A4z/7VNkpB6nvLyc4LAIymOas/usZlldBw5j8JjJfP/l+9fwSt4cXEzTrKJyd40FPKcfUVWNCIuB1rHBlRkrTaMCLzhDVNW8aYk1FXhFVBQcyZKgS1IYshBn0iGFoG1cyBUX8fNRp1krQohkYA3QWtO00nOeexh4GCApKanTyZMn6+y8NzLO0kJ+ebwfqqeqkOtMAXR45F/EdRl0WXY9TjtrXxxNeV4GisuBpDMgG4z0eXUeATFJ1daQv38T+sAQolp1R0hX5wP54Ycf8thjj3H33Xfzy/IVKKrK8MmPkHXyODvXrWTAyDFsW7aIosICkpOT2bRpEwMHDiQ4OJidO3cyaNAgJkyYQG5uLo888giaptG0eQtMweHs2LAa8Mbi9QYjbpeLmHrJPPvfT0ls2JQfpn/MnPde452F61BSd/DMk4+j0+nweDyYLIGYAwIZPvm3DB41ljcfG8fuXTtRFIV/zf6ZkIho0o8foWWXnpV7GaVFBTx7d1/e/XEjlsDaK0n9eL1XXwopBdAo0kJqDfHzKufBO7CiZ7I3E2Z3ZgmHKxp81XaUToBBJ+P0KCgalbNGz20BUOpwk1roHbxdP8xCuA+VpZfCFU8/FEIEAquBVzVNm3++1/pDK1VZ9cI9lKYdrtIBTjaaGfLB2hpL4i+G1GVfc+CrN1CcZ40bExLx3QbT+cm3Kh86uXIue6e+iiR7N+t0liB6/3Umlqgre1O1fft2hgwZgtlsZs/h47w5Yz6z332Nk0f2n+kRrmkk1E/m9888zWeffUa3bt0oKSlh5cqVvP7xVMKadMStqiz46D9YcNMoqR4vvfhnNE0lODySNxesYtHUD9iw+HtKC/PR6Q3ojUZe+nQuETHx/Lpfa8b89hkeHDmIYcOG8eabb/Lt0lVsXPYzLocdg9mMx+VC8Xho2rQpNqeLMU+/hCUgiAPbNtKkTQfa9uxXKea/HzWAJ1//gHqNm1/Ra3cjIwno3ziS5UfzL+t4AUQEGLi9SRTZZU5OFNk4UVj7SD2dJOheP4x6oRYA3IqK3a2glyR+OJCF5xz5k4VgeKsY0orsZJc5CDbqaRodWOus0avNFQutVBjXA98CX11IxP1Up/NTb2MKi0ZnCkBnDkQ2mun85FuXLeIABQe2VBVxAE2l8MjOyh/tBdnsnfoqqtuJx2HD47DhKMpl50cvXPZ5ARSXE4+9epGM4nbhLC1C0zT+97//8dvf/haH08nSI7m06tqbV2b+wDs/bOCJf71P3xH306Jzd3r3G0iXLl2QZZlvv/0WVVUZ95snCWzUHqeiomqwYfliGvS6g6mzvkbTNGSdjuiEJAKCQrhj/K+xlpbQuvttlFtLCQoNY9rrL2EymwmPjkEpymLevHkEBAQw/qGHefTld/h87UH+NvU77hj7K5Kbtwa81afZ6ad4+3cPs/CL94ir35Cje3eyZ+PqyjFjTocdnd7rmZ0ecOCnKqoG61IKsFzidHuBN35uMcj0TA5HCG+6Yvek8Crl++fiUTVOFp35O9DLEsEmPeaK8XTnHqmXvRWlzaKD6Nsoig6JodeNiJ8Pn1covO7I58BBTdP+6/uSbj0CY+sz6N3lFBzejuKwE9GiCzqTxSebQYmNkfRGVHfVUVwBsWcGEOfsWoMQ53yXayqFh7ejelyXvNHqcdjY9clLZG9bhqZphDRoSafH/oMlKp79X/2bE8u/BlVFHxzB3DkbWf7JP/nKYmbv5rW06nobAOHRcfQYPJzGrduzdPYX/PzdXMItBho0aEBiYiLLli3jv0/9vcqtud1mY9vKxaQdO4zJEoDH7ST92CEUj4efv/oMxe3i8I4tSJJM1slU0o8fYcbLz+AutxISYObrr7+mZ8+eSBWTfSRJQlNVfv7qUzxuNwiB0WgkICCAwqIiju7dwb7N62jQog1bV/zMkq+/pE3320AIYhK919ejaph0Esq5Lp8fnIoGlzCZSVcxnKLY4UZVIb3YTqPIQHSSQAhBs+hADuVaa573ibefTU0EVPS4Ofsop0djR3oJPZJ9m0F6takLj7wXMBEYIITYVfFvWB3YvaUQkkxki67EdOjrs4gDJA8cg2wwwVlCLRlMNB/9VOXPOqO5xqYZQtJdVpx854d/JHv7clSPG03xUHx8H+v+PoEdH75A6tKvUF1OVI+b8vwsHE4nOYs/Z2isyvx/PI6nvGq5d2xCPZ5/8reU22zMnj2bnj17YjAYiI6OISg4rPJ1OeknKSsqYMnXX2I0mwkMDkXW6XHYy3lsaBeO7tnBmwtW06Xv7aiqgiRLhIRHsHvLRoqKivjqq6/49a9/TUpKCkFGGbNexu1y8s9HxqE3GqnfrCVvfrsCp0dBHxDMU397HZPJDGicOLyP6MT6WAICmfvBf3DabWSePF65troumrneuVL3H6qmcTjPSnapkxyrk92ZJSw/klvZ4KpNbDAtY4Jq9MwlIWgSGVij3fRie7W8cg1IL6k9VHO9UhdZK+s0TROaprXVNK19xb+f6mJxfi4fY0gEfV6dR0KPOzBFxBLZqjs9XviciGYdK18T23lANY9c0htJ6DW8RiFX3C72Tv8XPz3UmR8mt2fTG7/hwOw32fnRCxxe8BHZO1ahus8aHqypOEvyyVi/CE05k8MrS4JAg0x2qYPByQGE6hT+/auRnDzizVgVQOMIM5vXrERVVR4f1B55x3fs3bqBkuIi5IqpxiWF+bz6mwdIaNgEp70cu9VKQU4Gbpf3LqS0MJ+M1KPo9/xI3Kl19EoOJURWKC8tJjMzE71ez9/+9jdef/11dDod33//Pf0aRfL9p2+DpqGqKn98fyZxyY3pO+J+sk+dYOHsGTRp24nGTZui0+nJSDmKw15O4zYduP/R3/Pqbx4gPyujjn6LNxZX4t5DEl6PXNXO2Fc0KHV6yCxxAN4N7daxwYxul0CHhBD0kjejxKyX6NUgnNBainR0kqix+df5QjXXK/5eKzcRJScOsn/Wvyk5cZDAuAa0HPscEc07nfeY4tT9bP/fc9jzswCNuG5DaP/rl73e/Dlsf+93ZG1dVi1cczl8sSMHSQimdIhGUTXmZ+j46WghgcGhhIRHUJieistRTqsQeKZbDPtybby2LoNAo5E3v5iF1KgzX7/3BrvXr8Jpt5F1MgWzXsLhVulZP4R9BS6KrV7PSicJdBL8umMMX+zMxeZW0et0DB8xgsOHD7N3717ee+89fve735GQkODtpRIWRkJyIxJbtOfAtg2cOLgXncGIy+nAbAkkIiaOjBPH0DSN2+4cxZTn/8HGJYvYv3UDAcEhPPTCqz5fo1sJCehcL5SThTZybGcyuM6XV946Nog2cdV7uauahqJqlaGX2ih3efjhYE6VkIwsoGVMMK3jgms97lrib5p1k5O3byMbX3sY1LM8X4OJni9NrzYc+Vw0TcNZWoDOaEZnqnmD1WUtYemjfVA9rhqfv1RyrC5+v/Qkz/aMp31sIAFt+yHd+xdyjh8gRPKQcuwoLz3/HG8NqkeYWUdWmYtpu3LZmV1O/aREVm3ZRfMmjXG7PcSEWHCVFpJR5l2bQfaWcPdu3YAlO8+EOk7HQ40yvDd5APb2d/P000/Tu3dv8vPzGTJkCN9//z3Hjx+vHAaMEMiyTFBoOHZrGe1uG0BhVibHD+xGU7035jH1krnnV09hsgRweNcWVi6YzYe/7MRoNtfwzv1A1V4pEtA1KYwGEQGsOpZHdpnzorz7TokhNI3yLdUzu8zBppNFOD2KN60xIoD2CSG4FA2DLF0w9/xq42+adRNTcGg7m177NahVN5AUl4MjCz6k2+8+OO/xrtJCsrb8gqZ4iO08EEtkfLXXuG0lCFmGOho7GRNo4PneCby+LoOu9YJ5sJWRVhnbkCxBfP75VH755Rde6lefMLM39BMXZGBS+2ic27PZfeIULZs0orS4GL1ez8nMUnTijDh4VPCoKmv3phBkkClzKZh13tamHhWCjDp+3HWCqf+dxFNPPUVRURHff/89gdEJRDVqxZ8e/xVhYWFYbeVIAp74w59oP2IST97Vk63Lf8ZgMhEcFkFJQR7hMXF07juEFQtmYTSZ6X/3A6z5fi5bV/xM7zvvxVpazPqfFpCdlopOb6Btz7606tKrsvGXURbezb9bjCrvWFDRx0Qhq+zi7/bqYqhPbJCJka1icXhU9LJEVomdhfuzcSsqQghaRAfSOjb4uu995PfIbwJWPT+S0lNHanwuMKERA/79Q63H5u5dz5Y3H0dVFO8XgaZhjkqgxZinSegxrPIDrKkKSx/ti7O05lFtl0ux3cMvKcWsTbNS5lIID7Lw66f+wP89/Bv2/fc31QY9Z9kFa7X6zPlxGR6PB1ExyV4vQZNwEyeKnZR7VDwqmHWC1jGBbM04s5EabJTp3zCcY64AmrfvxHfffce///1vjmYX0fy2Ifx54nDQNGylJUhojGkXx7rUQno2ieXrbSfRG82YLRYCgkPJqtjYDI2M4Q//m8b3X7yHOTCIrSt+ptewe3E5HWz+5Ufa9+5Po1btcZbb2PTLD3jcbp7413vcP6g3cYEGvjuQU6fX9EZDlgSdEkPJKLaTUeq4uGOEoGNiCI1r2ci8HIrtbpYezq3SZ0WWBJ0SQmhUh+fxBX9o5Sbm+wmtQK0hQ0JINBg8njaT/wRA4ZGdpCyeQdHxPaguB2GN25G7e12N4RLZYKLBHZMJTW6BITCUiBadyd+/mc3/eaTqhmYdI+kMJA96gNYTX+DU2u/Z+eHz57wlmY8LE4mJS2D27Nm0SQzH4Czj152iCTXpKHMqfLEzhxWpVQqLaRphpkVMEP0bhLCi0MzaQ6coKSlh0KBBfDLtK17897ss/noqBdkZtOzUnf1b1gOgk8CtggxU3u9UlGcHhUV4C40MRtBUGrfuwOFdWwGvxymEoMfg4dw1+RGSGjfn2L5dWEuLSTtygCWzv2DpsuWcEOEXVZZ+vSJBrR0FL5bTc0u3pxdf9LWQJcHIVrF1Wha/7VQRR2sYEhJi0jGsRWydnccX/KGVmxhzWAz2gqzqTwgITGgIwMFv3uH4D1+ies7cumZvX1GrTcXl4NjCj71mZD3GsChu++tXdPvDx2x89cG6fQNnoXpcZG5aQuuJL5C9bRkIUaXitdQNa9esITUtnR2rlnDgRBaJIQZCTRWtZ40ycUEGws0yRXYFWRLoTRbkgEC2Z1r54XA+Or0RTVVQVZXo6GgcwsDhXVuxW0tp2bkHD48ZwbNb16NoFSJeseEmC1CFN8dcA8qKCkAIPBVZMod2bqnyXh55+W3yMtP524P3YDCaCIuKISwqhtyMNCQhGDdhEi/PrP1u6UpTkJ1JYW425sBAEho0uazwQXSggdyL6ER4PgyyhEkvIwlxUQMkBNCvYWSd9zZx1/ItUtMUousNv5DfBLR44Fl2f/oSiuuc21JVZd+0VynPOUXq0pmXvVGpKW4c+Zns+PAFyk4droMVnx+XtYRjP3xJ/v7NVUQc4GhOCc3iIwgNDmJUQx1/S1U5UuBgQ1opPZO8mQb5Vhd2l9dPVDWwl9s4mGajY1wALSJC2JReRpfefVi7di1ff/01nXr15eSRA3QfPILC/ZvYOv1NdBJEmPSUOT2UVxT1KBqgee2GGGXKnAoaEB0dRWFRCR63i7CwMMKjYzlx/CgfvPgUzTp0rSxSmvL8y7To1B1N09i9fiX/fvpBvnrrFcY/8+IVv6Zns2/zOhZ+8R5pRw8SlVCPsqJCDEYTQ8c+xIBR1acqnY9sq+93Z53rhRJuMVy0YDaMsBBsurB0lTk97MksoaDcRbBJT9u44PP2RKkfZuZUSdX+LZKApDDf6zquNP7hyzcBoY3aENW6B3INhUSa4uH4j194PVsfKTiwCcXle+rhhVDdDg7MegN3eWn1J2U9xoAgcvespU2UmY5xAegkwRvrM3n65xReWnGKpaml2BWNkJAQTHoZnYAgg8SBvHJMMvxncH3+1ieO5PpJaJrGn557isGjxtOuSTLW3HTKnW48GiSHGnmup3fj93RxYIhJT4BeoKGh4vUOpfJitAqBLyktxe5y89u/v4XeYOTwzi1MeOZFmrXvxjfvvwF4Qy7tew+gSdtOrFn0Dcf27az+Pq8Qa36YxwcvPUX/ex7g/SVbeWXGD7y9aD0P/emfrFz4NZ+/+gKXEm719VMlgMxSB2a9TERAzSIrAMNZLQlPFJaz6EA2heW1f4mUuxSWHMrhVLEdm0shq9TBsqN55z0mLthEgzALsjidsioIsxhoHXP9N0HzC/l1jOpxcWrNd2x/73cc/OYd7IXVN8WKju1m1fMjyN6xEsVR++gxtY4E+Nx2u1ebpFADuw8eYe1rjyCAF25LpEdiIELAiWIX+3JsRAd60/4Ujxun20P7uACm39uEp7rHsS6tFL0Ex3ZtJiPtBJqmoakq9YJkbo8TFNhcODwqScEGdmbbmLU3HwF0TI4BoGmkmaQQE+YKZU8ONaKXBI90jsVgMKBpGh6XC0mSiIjzNh4LDA2j26A7ObZvF3s3r6t8LwLoMvBOls2dflWuXW5GGjP/+w/+/PEcerdvQeDXz2J58w4sn0yktdnGix/P4fi+nWxY/N1F2/Q16KBBpQccWYuQ6yTB2cOAFM0b7ticVgR4G2EdyCllyaEclh7O5XBuGYdyy1C0qsMpFFVjX3YNzkEFQnhb1N7RPIYu9cLo3ziSQU2irsosTl/xh1auA2w5aRz65h0KjuxEHxCMzmjBGBqJNTMVe34GitOOpDOQungGvf82i+CkppXH7vz4z1d08/Fczm23e7WJNAqaR5pZllLCnU3DkCXBsz0TGNzYxrubsil1enBWXI8A4Qa9xAOtI8mxuumRGMS+XDs/HikircRJfJCBHIfAWm7nvXfeoetfH+PxHom8sSaNuEAdgXqJ1GInIWYdGVowkMOOjFJGtwrn6312DBK0jbGwNdNGaoENnSSITGpIWXEh21Yt9U4YEoJV383hydc+YOab/2D3+hU0atkWl9PBqeNHePCFf/LaY+OvyrVb/u1X3HbnKBIjgjF98SuE21swJUpzMC55C+76E/f+5hl+mPYRve64x+fzqYrCnk1rKlIv9bTu2rva4A1ZEiSHe+8kk0ItHM2zVYmTSwJCzPoaPeliuxuXorL0cC5lzjN5sQXlrlpb5ZY6Lvz5DTLpCTJdm5Ftl4tfyC8SZ2khpWmHsUTXIyA6sc7sFqceYP3LE1GcDtBUHDVtWuL1zlWPi30z/kXPP39Z+bg1M+WiziN0BrQ6Kua51kxqF8WLy9MINsr0TgrylmhHByAEPNE1ljn7C9FJgjybG0WDNzdkYnV5c06CjDKZZW5k4U1F7N2xLTkOwZ49e7jnuX8RYJABjZRiF8FGieQwE1nlGsWpRwGvN7jwkNcT1AlvfrtHtfLj0SJ0skTDlm3ZuW45u9av8BYVIbztA8ptOMptHN2zg9/fN4ByaxlGs4U9G1dVthS40uxat4KH//pvdLt/BLWqoAmPE/3GGXQc9z8+fOlprCVFBIaE1WLpwqz/eQFz3nudiKho6rdoh9NeztwP/kPjVu34vz+/Rkx8Aoqm0TwqkNggbxVxRICBlrFB7M8uRRYCFQg16WkUEUCx3V3ZW+U0eklwqqicclf14gZVqz6gWUCVIco3E34hvwgOzXuPY4s+RdIZUD1uYjr0o9Pj/0bSXf63tqYq7Pr4RU6t+75yA+1iKDy6m6JjewhOaoZsMHrXdIGSeclgIrH3CNJWzrukc12vJIUY+Wu/evx3YyZz9xfQMykIoyzItbl5f2sObWMs7MxyoasIq+bY3JXembViE1QAdo/Gi5NH8uPO4+zbu5dV69bx8EOTaWgoZ++pAno3CCOkYVu2FQm2rVmOqig88Mgz1Du+lDeX7qdcgU+25VSm3ymqxrZVS3E57JgDg1A8HkBgkDQeG9wJj9tFesoRNFXFaS9HkmTmffRfXE4Hbz79EHdNeYSm7TpfseITl8OOJSgEcSIXoVQXP2ErQtbpMFkCcDmr53MbZIGmUW3MGXhFNSLAQE6ZkxULZrHoi/f445sfkdC0DRSmgykA9wuvsHbeNN747f0sWLKcFo2SMZ/TzrZ1bDCNIgIosLmwGGTCzHpUDfZklVTZDJUFtIgJotDurjVlUeNMxtHpni1trtPSe1/x55FfgLx9G9ny5mNVentLBhPN7n2MJiN+dd5jNVUhc8tScnaswhwRS/0B91cObEhZMpODX7/p9cQvByGoP+B+PC4HGWsXVnvaFBaDx1mOISCE8OadyT+4BUdFP5WbBU3T2JtTzq5sGx5V45fjxfy+Vzz/Xp9FvwbB5FhdbM8qRxbQJT4Qj6axO9uGW/VuDsUGGejTMJwNJ4sJM8tkuQx88vmXTJkyhQ/ffYvHnn6Ofv368fPPP2O3e3//siyfGXxxDr0H30leZjphcUkc2b2Vwtzsi3gXggYt25J+7BCSTkd4VAyPvvIOjVq1r7PrdJp/PjKOAfeMpVdSMMbF/0G4z3z2NEnG02oQWR3G8fz9g/jwl+3oDVW919ggI2EWPQdzrDXalwXUM3oY1rMDS1atI+3kCfQLXwaPE1QFpV473CNfYtv8z8nLyWHq1Klnzq9plDo83nRRWXAwx0qO1UGISV/Z2XB7ejHZZU70sqB5dBDNogLZdqqIYwU17w1Z9BJNo4LIszkJM+tpHBlY7YvjRsNfEHSZ7PjgedLXfV/t8YC4ZAa++XOtx2mqyqY3fkPh4e0oTjtC1iPp9PR8cSphjdqw8vmRlNVSjXnRCEGLsc+RtmIutpxToKkISUZTFZDkaiX7NzsfbMkmrcRJ0wgTXROD+MuKNIKMMiWOM9fhtJemahBilCh2qkhA00gTGaUuylzV71iMRiMPPvggS5cuJSXFG8qKjYkhO8e7+dw4KZEQvcqO45mY9RJ/GdqKhVl6Nm7bUWnDEhDIfb99Fqk0m0Xz5xPfpIV341PTQJIwGk0IBG63C01VqN+sNc+/P4Pg0Lrri71xyff88s00XvpkDqb5LyFn7AO3A/RmNFMAjgnvM2f659hKinmwhqZfoWYd0YEmjuTVLOQAP834GDX3BP98/Q12/WlY1S8LWY/S9DY6PvQSHVq34NixY0RERFBY7mJNSgFuRUVVKzYoK8oHBN44+u1Nogg7J3XQo2rM35NRo0cugI6JoTSNuj4qMuuKKzoh6GZGyHKNqXuSdP6oVN7+jRQe3lHpyWuKG8VZzt4v/+G1Wxe3z5rGkW/fx1Gch6w3ENKwDZKxomvhLSbiAMOahnK4wE6raAsbT5WBBi5FIznUSKBe0Ck+AL0ET3aLRQOKnV7Rjg3Sk13mFfGzfys6nQ6dTofT6eSjjz4iJSWFls2bYTKZyMnzDrLWGYwcS0tnx/FMAOxulT8u2ltFxAEigwPQr/yQhTM+p2uYh7x9m87kyKsqOp0el8uJrJPRNI20owd5clg3igtyfbomLqcDu82Kpml0GTAUh93OnA/+g2PUKzhH/hV3r0k4Bz2J/f+msm37NlbMn8WwCb+u0Vax3UN6ce2ZUQBH9+6gZ/9BKIfWV3tOKG7kw2tIio2iXbt27N69G0XVWHksD7tbwaN6Uzo1zlwab+8cjcWHc/l+fxYpBWcqLwtsTqRa/o6aRAXSJPLyJ2zdaPiF/ALU7z8aWV/1FlM2mkm+/YHzHld0dDeKq3qD+pKTh7x2B45BNpzbHU9gCIu+pPUpTjuKoxzF5aAs7VD18W63EMmhJgL0Mu9vzmLZ8WICjTLdEgIZ3CiUkS0i2JNdjqLBO5u9IY+GYQYEUFjurvTMhSSICQlAAEJVEFrVL8QDhw4TEBREcFgEAGGRUUjC6+WfHuprlAUBeglJeNuoSpLEg8307Mwqx6FoeFQVSXh7wZzu++52OlAVD5Lqqcjj1nA5HDw2pGtln/aLRVVV1v04n79MHsmv+rTi0UEdeWJYN76f+gGP//NdDmzdwJ/G38mS7QfZbWjM+gw7bzz3MF/880/8/p0viamXXKvtcrd63txxTVUx6nVIqDX2+hZoCOGdwqSqKrlW50VXhdpcCtvSi0mtEHODLNXYHkAS0Dw68LpvdFWX1NXMzi+EELlCiH11Ye9iyNu3kXV/n8AvT97Ors/+gqM474qcJ7xpB1qMfQ7ZYEJnDkDSG0i8bSTJg8ae97iA6HrIxuptTI2hERz57iOO/zQVJAmEQDKYK7x+DVfR5Xtgqsddc8+VW4j6oUb6NwjBqWiUOBUO5JUzY3cue3LKeaxrDDLebBO9BNlWD0KAq6IMXwVUVSOnxObNb9Y0HmofzcS2kVXEqyAvj5IC7+fN7XLxzrBGfPtAcxaObU7raDN/6pPI5E7xqJpGYGAgqqrSKspC3+RgusQH0jYmkByrmyCjTL/O3pmgLpcTAThcHgSgeDzojSY0VeGFB4awetHci3r/isfDey88xuKvv2DEg4/y5frDfLnhCL97+0ty00/y76ce5InXPmDsky9waMdm5n30Jmt/nE+32+/krYVra4zN28pKKMrLrsyuOR2eOhcBNG7Zhq3rVxPbsR/inLCtkHXEtLuN0jIrO3fupHXr1miadklFRWfngoea9QQZ5CrHS8Kbj34jzNmsS+okRi6E6ANYgemaprW+0Ot9jZHn7FzNtneerixJF7IOY3A4A978qdZ+2r7icZRjyz6JOSIWQ9CF07IUl4Nlzw7FWZxfGeaQ9EYMweE4CrK5mTYdrydWpZaw5HgxxwvsuDX41+1JxAYYCDHJrDxRwgdbsnGrXq/5uZ7xvL42o7IZlkkWRJhlMqzejA6zDiS8/XFt7qoZE5VxWSF4alA7+kc4EMDfVp5ieLMwkHW8uvoUiuJtoftwp1gCDBI/HS3G7lE4ku8gJlBHkV3BqWgYK4b+Dm4Uit2jsiPLRolDwa1qmAODUBWFp974iPa9+p/3/c//5G0O7tjMH96diil1M/ot3yBc5Xia98Pd9X4WzZrK5mU/8PL0Ref1WDVNY+PS71n69VTSjh6syGRx0mvoSIZPepgBnduQa3Xi8qiUONyoQHywiQTZTuf2bdm/fz9a2h52ffynyn2bgOh69PjTF7z90Wds376db775Bo+qsWBv5iX1M9FJgtHtvEkDdrfCppOF5FS0v00IMdEtKRxDLXM6b3SuaNMsTdPWCCGS68LWxXBg9ptV+opoigd3eRkZG36k/oD7r8g5dSYLIcktLuq1jqJcdnz4Aq7ifNBUJL2RwLhkotv3IeXnafhF/MrRKymI+QcLEJLAIgk2p1uZ3N4brgrQy5Wx10ZhRlamFFeKeLBBItKiJ+Osfth2D5z7u+qRGEiH+CBm7C+hzFZOYHAI7y7dRUT/RFpEWUgpchAfbMAumdHr9SiKQruEMGbvy+fv/RM5WlCOw+Pd0HN6tMpe5E4FYiwyS44Xo2pwT/MwfjxajMel4Si3ERAUwldvvUK7nv1qFWC3y8nSb6bxl8/mYd69CMO6aQiP9+9Ev3kO8ont3DXxLVYt/JrDu7bSvEPXaja8w4oFn7zyJw7s3Mao3z5Lx9tuR9bpKMzNYtm8mfxlyt10++lH+netfjzA73//e4YMGcLChQsZ8uE6io7txhAYQmC9ZkyfPp233nqLtWvXAl5R7tsokjUp+ZW/G6MsiAs2k2N1YK3oZ3M20YFnQp1mvUz/xlGV1aHX2yCIq8UNef9Rnl99JqLitFOWmXoNVlMVTdPY8OqD2LJPerNHAE1TMQRHoDOar2oV5q1GZpmL1SdKaBBmItvqwurS+OVYMUUOD+1jA1ieUsLpofYnS5xVvGyrS8Xmdtaak3y6UtDhUTHrBBZclAHWkmJMsrfXywOtImgQZiIu0EC+U8Xt9hbdHChwMjApmL+uTKdBqIkD+XaiLDJ55Wfi703CjfxnSANm78lj/qFCFh8rwaWoGGSBxSBTXFpMcHgkh3duoXnHbpXHpRzYzZpF8yjMzcJRbiMwOJTYhHoYFj5bKeIAQnEh5aUgZx2k74j72bR0UY1CXi/UxO4l35J3/AAb1q1lw+oV6GY/hbAWEtugM2Om/Ir7Bvfh7rvv5tixY1gs1fv7vPDCC5hMJrp06ULv3r3p1q0bVquVuXPnEhgYyPLly2nSpEnl66MDjdzTOp6CcheyJAg36ysnNK1NKSDH6sSjasiSqOhDHlrtnHUt4Lt27eLDDz9k/fr1qKpKhw4deOSRR+jVq9d1GXu/avcfQoiHhRDbhBDb8vIuPZ6tqQr5B7aQtW05wfWaVnteMpjx2K2s/esDbPzX/5Gzc3VdLPuSKUndj70gu1LEATSPm8LD2zCFxSDkG6v090bA7lZ5Y10Gf/zlJOVulaYRZu5o7A1/2TwqW9KtvLspi1KnUvmBP1vEJcCo84ZLOsdZqjyul7yFMKfv/Hdll2OUBfnlHnSSN8ziUjSsLpUvduURE6DjldXpPLLwEDqdDkmSsJbbWXLCRmR4KAVOFVWjiojXDzHQLjaAqTtz+SWlhDcGJRFgkHApoJfPNIxq3qErp457u0+Wl5Xy+uMTeecPjxAaGU3vYfcSGZdISWE+z43qz6mCmnuKSEXphEZEUV5W8/MZJQ7efOtt/vHP1+D4Zsw//hM5+wiSNR/9/l8InfUED4y8kw4dOjBnzpwabQgheOLJp/hp8x6adh/A4Yw8NElm2rRp7Nixg1atWlU7RpYE0YFGIiyGSqEUQnBbwwh6N4igZUwQHRJCGN4qliDjlfM/NU3jD3/4A3feeSdJSUnMnDmTb775hq5du/Lggw8yadIkPJ46GpNVh1w1j1zTtE+AT8AbI7+UY8vzMlj/8iTc1hIQAtXtQuj0gIbm8SAbzQhZT8b6HypDLoVHdtJizDM0HDqxzt/L+XDbShFS9e9HIcmENGxNYFx9ytKPXdU13cwoqsY/16YTadHz2chGGM5qcNQ7KZg/LDuJza3SMdaMhkS27MKhaHgL8b1FIxpgc3u939YxAWzL8qbYnR4OoZc0XIpXtGUB/1ybgSy8I+UC9KLyS0HVYFlKCQB9W9TjwwXL6NSpEw6HA6fLTWq+lbi4BEyuTByOM95yRpmLrMNFDGoYwhuD61Ns95BfMYBYQuDwKMQnNcDjdiLLOlRF4T/PPERCgyb8/p2p6PKOI2UeJKRjS1IP7OGO8b/ir68/z78HJRFpOctx0DSUmKbkrP2WkIioGq9nWsoxSkvLsEY3Z/8XU1DPbo2sKij2MjI3L2Hy5MlMnz6dBx+s3ps+t8zJymN5qEDHoaMAb8jGHB3Iz4dyUDRoEGahRUzQBT1pIQRxwSbigqsPA78SvPnmmyxfvpy9e/ciW/M4tXoBqsfFxDuG8+tf/5p77rmH3/3ud7z99ttXZT0Xyw2xI7D9/d9jL8jG47DhsVtRPS6EECT1H01cl0E0Hv5/qB5Xlbi54rRz6Jt36mxY8MUS1qR9jSXzittJYGwSt/1jDg3vmILOEoSQdX4P3Uc2pZfhVDQe7xpbRcQBmkSa+e+QZMw6wcF8J6ARE1hxvYU3UcjqVjHrvce5FI2pu87cLWoVj50e6q5o3gyXQP0ZD12WJOonxGGqGHKgaqDXyaw6lEH79u3R6/X89a9/ZfDgwWiaxokTJ3C5XMiyjNHgLXDxqN7zbDpVykvL03hh+UlkSUIvQXyIkRKHQq+77mPX+lW06NSdHWuX4XI6ePCPL2P6+Q1Ms5/FsPoT2h6Zjz0rhfiEeHr2H8TCI6Vop0f16U14mvTCE1aP1QvncNudo2q8nnZbGcHhESiad6/nXBRHObacU8TExFBaWt2rd3oUVh7Pq5YWqAGHcq2UODxYnR4O5JSyNiW/lt/qtcHhcPDGG28wa9YsbPvXsfYvD5CyeAYnln3Nxn/+H+lLpzN79mymTZtGbq5v+f11TV2lH84GNgLNhBDpQoj/qwu74M0WKT62p1qPECHpCGvUli7PvEtgbDKSVL30VlMVnKVFdbWUi0JnsiDXkDkj6fRk71iJzmSh9cTnGfbZFobP2Etkq5o3jPxcHIuPFTOiWVitnl2DMBN/61cPs17QONyELAniAvVIFZWD4UaJgvIzt8q1/UFEmM48Y3V7NytHNgulzKmQlpmNzmyhflISkizjcCsEBQVht9spLi5m5syZ7Ny5k7vvvpsmTZpgMpkQQuByu9FJXq8eoMChkml141agT/0g6gUbOJRnJyg0jEM7NhNTrz5x9RuyYv4shox5EH3qFnTHNiA8ToTHhU5xMKpFOJ+9+ATdxz3Oygwn9ua342ncC+fQ3+G44/dMfeMl6jdtRVLTmjfuwyJjyMtMx+1yosY0qva8bLQQ3qQ9hw4dIj6++pDutGL7ubNAakTRINfquqhuhFeLn376iTZt2tC4YQP2Tv2H925EU713Mi47RxZ8SIAORo4cyezZs6/1cqtQJ0KuadpYTdPiNE3Ta5qWqGna53VhF7yphdQQqkAIdAbv7VZQUlPUGioZT6clXm085WXVHlPdbmzZJ6s93nTkb5ANVW8bvV769behcj1ysthJ66jzT3BpFmmmzKkyulUk7WMD6JscTKf4QPSywGzQeUMoQL/6wbXO3zi3DCbIIPHzsWKQJISQsJaVkZ2VSWyAjF6A227j4ZEDeWj0CI4ePUpxcTGLFi3iv//9LxaLhQYNGtCkcaMKz15grujwZZBAJws25qqkFLvQG4z0v3scx/buoHGr9mSeOE7WyRQat+mAfGR9lRJ4gCENg+gSa+S/z/4fbo/CoXoDyO79W9afKuMfv76f9GOHeezVd2u9VhGx8SQ1bcnmZT/hGfg4mt6MVlHFLBnNhDVpR2TrHnz88cdMmTKl2vGeSxhAKgmqtJ+91qSnp9OiRQtsOSdrHK4h6QyUpB6gRYsWZGRUT7i4llz3oRVZbyCu8+1I+qp9FoQkEd2hLwDBiU2I6dC3SgGObDDT4oFnz9uhUHE5KTq229unpA4Jqtek2mOy0URYo7bVHo9o0YXOT72FKTwWEAidnshW3XzqrHgrIYmau/GdjaqBhoYkBB3igtiYbuMPvesxuHEoWVZvl0QNWHXSGyqIsnjv7gwVXn6IUaaool+LQRYYZUFUXCIuxbs5hoAmceFEmCRGtwjnlYFJaKqCNWU3J3esQVNV9Ho9D/7qYd545z2CwiPIzcvnX1/9SOtmTbB7VOqFmAg2yrhV7+zI0rIyJEnCaDKReeIof5/6HfUaNmHbsh/QyxKNgmViY2LgnFYRQgjG39aaJ1/7ELfLxbvP/5Y/j7+TZXNnMGTMFP788RwsQWc6AAboJVrFBGGQReVX1cgHH2PW269wwi5jf+gz3F1G42kxEGXoc3T9/Uf85a9/RafTMXjw4GrXOj7YVGNFZ00omlatf8q1JDg4mLy8PEyh0Wg1NEZTFQ/myHjy8/MJCrq+pgZd90IO0P7hl4luexuSTo+kN2KJrkfPP32J7izh7vzEm7SZ/GciWnQlpmN/uv7ufRqcp/oyc8tSlvy2Fxv/9StW/mE461+ZjLu89mZAl0LbB/9SsQHr/SOTjWbCGrcnsnWPGl+vqSpuazHezVs3+fs3eY+vTcyFhN4SXGMPGNloqZOxbjcKLaMtbMmo/ns7W9q3Z1lpEGZCLwvaxQejahrHY7oya8V2Xh7TB50sKv8QlLMyShqEG3m0SwyqBqYKj9mleHO/U06mVZxIw2gyY1KdjG8bSf+GoTSPsmDSy7SPtbAjvZTkMBOBeok8Rc+6FcvoPfIBug8ZyV8f/z+e/GQhETFx1GvelnoNGtGkVVv69vU6KFOmTGHfnt38tOh7erZoyO09OtMo3ESj+vXY9MsPtLtrPJKuqpBrOiPubmOx28po0LQ57/+8lQ+WbufFT+bQY8gIdPoznykJGNAkmrbxIdzRIpaGEQEEGWX6DxzAuCdf4O//dy8zPvuIw5GdOdl2DGtOWek3cBA//fQTixYtQqrhTjnErKd1XDCSOPMxlIWgSYQF+azPpSwJmkYFYrmOuhEOGzaMpUuXYnOr1LttBNJZd8qS3khEs46Yousxa9Ys7rnH98EbdckN1f3QZS1BcZZjCo/1KZfTXpDN8ueGVhl/Jun0xPcYRsdHXrtsu2djy0kjdeksHIU5xHYaQHyPO5DkmpOElj97B7bsE1Uek40WGgwZT8rP06ttnurMgXR64k12fvhHXGVV9wCETo9sMNUY3jnzIumm6EsOsC+3nP9tzuK/Q5IrhkJUxa1o/HlFGkMbhzKgQQgAqUUO/rYqnWefeYan/vgiqqIwdtw4lixZUnlLHWGS+eKeJpQ4PLy1MZNd2eU0izRxotiJpmk4FZB1OgxGE+07dyVl+zr+3i+xYtCExvhvj/L3/om8tjYDs14i1+ZBFTKq4sESFMKQBx4kPzudvRvXkNCwCTq9gYGjxrN1xWL2rltGTEwMH330ETExMbz88sv8/PPPNGjQAJvNRmFhIeXl5ezYsYMTqanYv/83oiQbjBZcPSdib3Mnrz48htHjJ9Fq0L3nvX6NIgLomlS1UrnU4WbxoVyy0k+y/Nuv2Ll2GU6Hg9jEJB777cM8OG4MBsP5Pelyl4ccqxOTTiYmyIgkvGP0jhfY8KgqDcIDiA0yXnc52VOmTEGv1/PxRx+S8tM0UpfNRnG7ieoxnHb3P86rr73O2rVrWbZs2TVZ3xWt7LxaGAJDIDDEZztZW3+pVlypetxkblpcZ0IeEJNE64l/vODrVI8LW0712LniLEdTPDV616rHRXC9JrT91d/Z+f4fUD1uNFVFNppoMHgCqttJyuLzzIE8W8QlHabQCJIHPkBYk/Yc++ELCg5trZp2dh3TKspMp7gA/rrqFE92iyMp5EzVX67NzSfbcwk1yvStfyac0CDMxKsD6zFr9qf8+53/0aFTZzyKiiRJKIqCJEkUOBRGzTmER4VQk8wLvRPoVi+Imbtz+f5wEQaDHo+ieHuFmAIx6CTsbu913ZxeRqMwI2VOb4m9y+EhIshMSIPWHN2zjf73jKUgO51je3bw+D//x08zP+XoHm+3xPbdejH/yw/p2rUrmZmZ3H///fz+97/ngw8+IDQ0FIB9+/Yxbtw4WrduzZQ/vEy///sSSfWArCft2CFmPDmF2PgE2gwcWWNTqbMptlfP6goy6jDpJaITkhj75AuMffIFwBtWuqdNfK0dB8/GYtDRILyqvEQEGGodsHy98O677zJ48GDuG30/Dz/1HNaHpgFwMOUofxz7ICf27WDN6lXXdpE1cEMJ+Y2Mpqpkb19O5palGILCSB44hqCERmRuWlLzAZJEeLNO6ANCOLrw48quhrLRTGLv4Zgj4jBHxBH06rekrZ6P4ignrvtQIpp1ZOmjfS5qTULWkdR3FO1+9bfKx6Jad6f01FFW/XEkF5V+cI0RQvDrTjEsOFTISyvSiA8yEBuop9Du4XihgztaxjO+fTQ4q7ZfTQw28ocesZS4IV+n0uHhV8jOyeHJJ58kKSmJPTt3EGnRMbxZGMOahFV6jokhRlyqRpNGyWRmZiLp9OzdvI4B/Yay9vBaogP1zN6bz9g2kaxMLcWjaBh0EhHx9XEpboJCwzm4bQOvzPyR+Z++zbyP/kvvYfdiCgjkqX++R4/6YezZuQmz2cwf//hHPv30UwbdcRfb0ovIPpGOTpZoFpXExo0badu2LTP++w/mf/4/6jVqSklhASUFuQweM4URkx9BrSGT61xCzdXDd0II+jSMZMWxvMrSdyGgT8PIixLxG5ng4GBWrFjBO++8y6RxY3E5HciyjKqq9Lv7Af45fSFxcXHXepnVuCWFPK7LIA58/WaVxySdnvjuQ6/YOXd88Aeyt6/wCrIkk7ZiLl2e+R95+zbWKJhCSMR27Edc54EEJzXlxLKvUT1ukvqNIqHHsMrXBSU0pPl9j7Nvxr/Y/MbDaB4P2kX2ctEUD9ZzQjoA1qxUJL0JtYY2vNcjQm/k3hYRDG8azu4cG8UODwF6mQ5xAQQFh5I08H5Sl8ys8S4jRA/hJietos3c1mc0L774IocOHSIiOpqCggKOFXvYkW2nS/0I1Mj6zF+zBaPRxJEjR2jSpAnPP/88jz32GA0bNOCzZcvYnHmKzvFBtI+18O6mTNwqDOjVi9Xb9xASHknzDl05vHMrP838hPGPPM2j389h+dxpPPTUH+jXOBKdy8ZTTz1Fv3792LdvH8NHjGDR/mzsbm/PEY9bYd5Pyzi4djHNmzfnxMk0GrduT7veA4hLakDj1h2qxMEvl1Cznrtbx5FvdaGiERVgvGX6mFgsFiY9+hSNho4nLzcbTdUIiYhCp9ejCm+jrutt0tAtKeTmiFg6PvoGuz76k7dSVHET1rgdbSa/eEXOV3LiANnblp8pWFIVFJfC7s//StKA0Uh6Y7U4eHBSs8pe1bEd+xPbsfaudzs+eJ6cnavPP7tTeFvmnj1wQtIbiGheNdxWnLKfnR88f8OEVsyR8ZgjEwiMS+bUmgV0jq86EcbtsFF0eAdxXW4nc9MSNKWGvGVNpTz3FDpTAP+6qxUPf3ySgjw7eoOB1SdK2G/V87NNx969i3G5XGiaRqtWrUhOTua5554jMDCQt956C6PRSLGmI677MN7bvx+P0NG9V3eWrN5ARGwcTdt1ZuSDj7H0m2l89/l7lJ86QpNGDdmzZw+PPTCCebOn8/rrrzNq1ChycnIYN24cWaUOXIqKBhTkZPHW736N3Wal/8j7ub9/b3bv3s2ejas5eeQAw6c8yprvv6GkIB9LUDDdB99Fh94DkeTaRaegvPY8bkkIooNuzmHFF0LgzYwLj67ufV+P32e3pJADxHcdTEz7vpScPIgxOJyAmKQrdq6iY3tq9JEdhTkk9ryLlB++8FagVnjmssFEi/ufvijbrrIicnasOm8Fq5B1BMQm4yjORXF4Y++S3oghMJSGQ8ZXeW3q0pkoN1BjL3t+Jvb8TIpT9mIMicRZUlBVrFWF4tT9RHfow+AP/syq54d7WwufjaZhDI1iwyuTMTrtfHBnA2btyWNZagmKopGTk0NOTg5CCJo1a8a7777LoEGDACgoKCA7O5s9e/bwzDPPUFpayrQ583C5vNXHmzZuRNLpUBSFjn1uJyq+HoPvn4zH6WTb1nWknfA2eouNjeWOO+7gww8/ZNCgQYwZM4aQkBCvJ66BtbSYV38zhn53P8DwyY8ghKBTYij1Pv6E5GTYsGEDn738B5Kbt6HHkOFYAoNY+MX7zHrnn7zx6UzkiMRq104AoaZbVgLOS0xQ9TRKgbfXuVF3fXnjcINlrdyo5O5dz9a3nkRxVI3T6ixB3PHJJmw5aRyY9W8Kj+zEHBFHizFPE93utgvaLU7ZT97e9Rye/0E1b1zIOk5XusR27E9AXANSfp4KGqiKm+Ck5vR44VOMwRFomsaptQs5/uOX2HLSavfGhbiu4+ay0UxATBKlaYerPRdUryn9X19I7u61bH3ryYoNYgUh6zCFRmGJSaLg0LZqI/ICmnej0aS/ERoaSmhoKDabDYvFUmO2haZprFmzhjVr1rB161Z2797Nt/Pnc0xEsubH7/jlm2mcOn4Yg9GEqnho07o1Ao3bb7+dv//971VsPv/88wgh+NPfXmbxoRzmf/4eGSlHefSVdyrPNeutl/npq88IDg1n+PA7Wb9lJ3ENGnF09zZadu7Jr158nfU/fMPcT97hlZk/EhIeWWW9OkkwuFk0ISZvKMblUcmxOtBJUmWmya1MYbmLtSkFOBVvdWeY2cBtDSMwXcOwyk2RtXKjEtWqBwHR9bBmplZ6zrLRTPP7HkdIEoFxyXR97v2Ltqd63Gx960ny929GQ6sxpCIkmcHvr0YfEEz+gc1s+c+jVVro2rJSydjwIw2HTuLo959y9LuPLjwmTtOQjRbaP/wK9qIcDn/zbo3j7K4ZmuYtHKvhC0cf4M1aiW53G31e/ZYj331Ixsaf0TQVe0EW9sKcGlMyRWkeycnJAFitVj755BPatGnD7bffDsCqVav45ptvKCoqIjY2lkmTJvHSSy/hcrmoX78+ZpOJbnGRSMPvo89do7CVlaIpbto2SMBYkkGPHj0YPnw4DocDs/lMXcRDDz1Enz59+Mtf/kKTyABWfPsVT/37Y7xzpGDRtA/ZtnopEbEJxNdvwIN/foO4Hxcx95N36DP8fvZsXMPX/3uN8c+8yNEDe1k6ZyqjH/ldpX2LQaZvw8hKET9VVM7Gk0Vncr8rBh4Hm27dwrRwi4ERrWIpc3qQJXFdTx26IQqCbnSEJNHrLzNIHjwOc2Q8wfWb0/7XL9Nw6KTLspe2ej75BzajuOxVvGch65H0BiS9kbYP/gVDYAhCCNJWfVtNpBWXg5Mr5qJ63FWyYi6E4iyn6NhuGg2dRPKgscgGE0JnQDYFEFy/eWURVF2gswTVOC6vVoREUt9RNc5YbXznQ5U/ByU0xJ6f5fW+T4/Gq0nEdfoqd0YBAQE0b96c9evXM2vWLDp27MgTTzxB48aNGTFiBBEREdx7770MGTIEm83G888/z6RJkwjBye1No2gUEUDLpBiGdWpG+/hgXn31VYYMGYLH42HmzJlVOiI2a9aMoUOHMm7cOCI1K0V52cz/36s8e08f/jR+GN9+/BblZWUYTWYGjXmQHJubhm07k5eVTmBIKK269GD5/FmUFRcx5IEHWblgdpWy8wC9XJmx4lJUNp4sQtE0PKr3n9Ojsi614OKv/U2KEIJgk/66FnG4xT1yd3kZmZsX4yorJrptL0KSW16xc+ktQbSe8DytJzzvs62MDT/WKLymsGga3TGJ2M4DsUQlnHniPLfI7nIrmqf6hpdkMCLpDNUKi2SjmcD4BghJotX439N89JO4bSUYQyIRkkTW1l/Y/v4f6mSz1GO30u5X/+DUmu+8cWa3i6IjO2t8rdAbCWnQgvoD70cfGMzeqa/gLi+r3G+I7VR1s7jkRM0DjYWsQ1O8rZENgaE0GfmbM88JwR133EFJSQmPPvooY8aM4f3336fA7qHU4WaoxcCf/vQnnnnmGYYNG8aqVavIzMykXbt2PP7444wcORKDwcDPc7/j3XffJSkpiW+++Ya0tDS++eYbZsyYwcSJEzGZvBWFn3zyCaNGjaJBgwYoisI9d91Bnmriu6++xONy4kDDYS8nN/0kpUWFuBwO9HoDt911H2sWzSU6oR7L583g7l89id1ahtNejskSgCS8MeDT5JQ5To+MrUKZ04PDrWDQSeTbXEiCKv3C/Vw/3LJCXpp2hHX/mICmeFA9bo7M/4AGg8fTctzvLnzwNeZ0mOBcAuMb0PCO6l5+/b6jyN66rIr4ywYT9QeOwRAYgj4gBGdJ9ZaiLe5/mgOz/n0m20aS0ZksJPa86yw7RmRDdOXP0e36IOn0dSLkstFMUr9RBCU04vD8D3DmZXobqJ0zYFoyGGl+35M0GDweIQQJ3e8gvusQ3OVl6C2Bldk/Z2OJjKcs4/g5dkzU6z0c2WAmqF4TEnoMQ2eq2pBLCMGxY8fo1KkT0TExfPTdCqIbt6yM5MSFmHjr7bcZOGAA8+fP54033mD06NF88MEHfPrppyiKQps2bXjttdcYMmQIkiTRrFkz7r//fubMmcPMmTOZOHEiRqMRh8PBvn37eOGFF/j0s8+YOmMmwRHReFxOZL2BhIZNOXFwL9tWLubbT94mrn4DmnfshjkgkA63DWTbysXs2biG20dPxOPxIFeU8xtkiXybk0X7swi3GIg9T6/vYoeb9amFqBVvUC8L+jeOqgzJ+Lk+uGU3O9e8OJrilH1VHpMMRvq8MpfgxOpNr64n8g9uYfPrv6nSf102mOjy3HtEt+lV4zFHv/+Mw9++5xVZj4uEnsNp/+u/IySZ7O0r2fa/Z73xe1VFNpqJatsbU2gkxSn7cJYWonrcRLXuQYv7n8YcEVvNvrvCc9dbgig4tJ31/5jg03uUDWYa3fUgUa26s+n1h8+814r2ArLJu+EoG0z0emkGgfENLsl+9o6VbH/32XMGeEdUDPCuvZuipmkkJSWxaNEi9pzMQYprXCWUo5MEXeqFsWPVYt555x1Wr774SVUHDx5k7ty5JCQkMGHCBD755BPWrVvHV7Nm8+e3P2Xu5+/TqHUHdm9YSb1Gzfn921/wx7FD0RuMPPry27wwdigBwSEEhYaTl5mOx+1C8Xho2bk7jnIb/5i6kIbhFk4U2VEq/u5FxZpFxaSj00gCYgKNFJS7cSlVvzgDDTJ3tfStTYafy6O2zc5bUsg1VWHRxDbVNsQkvYGWY3931acKXQ6n1nzHvpmvozhsyEYzLcf9jvr9R5/3GHd5GWUZx7FEJ2IKqZrBUHrqCCeXz8VdXkJQQhOOLPgAxeMGVUE2mglp0IpeL06rNv3IUZLPjv/9joLDO0BT0ZkD0ZkDsdcwV/V8eM/RmpKUvejMgTQaNplGdz7Eur9PoOho1XCKpDeS0GMYCT2G+dQpMm/fRg7P/wBHQTZR7XrTbNRj1a7LuVitVmJiYrDZbPx4IJtSpweP20VG6jHqN/WG5hKCTTQN8NC2bdtLHkBw4MAB5s2bR2JiIu+++y5vv/02cS07sTO9iH89PomD2zfx1L8/4oMXn+bdHzZwdO9OXn98IvHJDRGSTFFuFt0HD+fXL7zME8N68M93PuT5J36D0+lg9tdzCGvRlfSSqndLElA/3EJhuauyrWxMoJGYICN7sko5t7mkLARDm0ff0huh1wp/1srZCAmd0YLHYav6sKzHGBJxjRZ1adTrczeJvUfgLi9FbwmqMXxwLnpLEOFN2tf4XHC9prSZ8mcAVv3x7mrTlkpOHCBv7/pqaZGbX/8NJScPVW4Wum0luG0lNS+glvTFgNj69HllHnpLYLXnzm0mBqC6nQghiG7Xu+bzXCRRrXsQVUtHytrQ6/W43W7cbjf6iolEx/fvZu+mtZSXldKiU3eMOgm73X7BxlI10bJlS0aNGsW3335LSkoKDRs2JLXMiSYkgsMjadm5B5+9/DySLPHCuDswBwQCGgU5mUTGJvLmp9N5/c+/Y8Fn7xIWm8Dbr7/KvffcgywJJo4by3/nLcMSWbXIRcVbrTisRWxFBanGupRC9tYg4l60Wz418XrjlsxaEULQ8I7JVTMihIRsMBHbacC1W9glIiQJQ2DoRYn4pXBu7Bi8Yn5uKMqalerN2b6YTopCov7AsdU2XoWso9sfPq5RxAFCG7bm3CEbstFMeLNOFz7nFcBoNNKtWzcWLVpEy4qZk03adiKpSQv2b93AkZ1baBIVyLx58xg4cOBlnaNVq1bce++96HQ6pk+fjlnyjrU4umc7E577K29/v47bR03AWlJEaWEBomLIiqZ6+Nuzj3IyNYVvP/+Aovxcug65h7ue/Buv/vNfxMTE8PW7/6Ikv+pdgiy8k+wBzHqZY3k2iuwuapoRIYAgo57AKzgA2c+lU1ej3oYKIQ4LIY4JIS7c8u86oNmox2g8/NfoA0IQso7IVt247e+zq03ruRUxh1ePgctGMwFxyVUesxdko9UwmakmdCYzMe160++NRUS364MlOpH4nncy6H8rCIytX+txLcf9Dk1vIseukmtzg86IJSqBhJ53XtJ7qksee+wxXn31VSKM0D4+BKNepkv/ITRu1oLiw9vZsGIp7777Lo899thln6N169aMHDmSn3/+mV0rfkBTPGiayonD+/n9fQPZt3kdd058mMBQbwtaW0kRRfl52ModyDo9j//rf7y9aAODH5iCW9Uol0w8++yzZJ04yvr/b+/O46os8/+Pv65z4IDIAZRFQURcUFHIVNzNfUXC9KumuEDpN3XGymrmV42t86vfONqMzZSVNlMikrgk5oLruCSRDmq54oILCC6YgOwHOOf6/YFQpqZ4H1mv5+PB4xHL+dyXd/rmPvd13dcnbh05mWW9SfVCYGejx8/t51+kqdmF97gSB2d7W/q1rh3vWusTzb9WhRB6YDEwFEgDEoUQG6SUd1/fVUMInY52Y2fTbuzs6h5KjdNh8h/54ZNXf54ItLHF3tkdz6DbrzBtGz74lsJCp8c9sDd6gx09X13yQK+5du0aC/+xlGWbLmKnkxQXF2Nn78DsOWPoabZQiRXmVjVhwgQ2b97MyJEj+fjjj/mfwI6UWiQTOj3DX//6V2bMmMEzzzxD9+7a+rG++eabdO3alR8OJtJJglez5vz7vVd57W9LaNejP5nXr7InNoawuW/w7cY1CHMxHXoOIHH3VroNGFHR+MFskeQVl9KyZUvc3dwI8HKhKDWJ9r7NcXc00MbN8bbG1bb6u9828XFpQJ+WKsRrImu8P+oOJEspzwMIIWKA0UCNDnLl3ry6D8OmQUPOrl9KUXYGTToPpO1TM9HZ3H7P19is9V03/AIq7ofrbO2wc3al+8sfoTc8+AZMKSkpDBgwgJCQEP6beJBWrVoBcPDgQd577z2GDBnCtm3bcHS8+y2ZR0mn07Fs2TIWLlzI8OHDadasGV5eXpw7d47CwkLmzZvH888/r/k4rVq1YunSpcycOZOUlBSup13ExcnI9DHDmf95NKs//RtDJ4QTNGAYccs/Y3/Cd3QM6EjI1Fm3bZSl1wncGtqxPSkJX19fZj33vzg6OqK/x2Za/h5G9qdmVWxhC2VX7h2a1Kz2ZsrPNK9aEUKMA0ZIKWfc+nwq0ENKOedXP/cc8ByAj49P15SUO5spKLVPyu61HFv23q3H/yUIHQ4ezWg1fCpNbvVUdfBoXqmlalJKevfuzfjx43n+xbkcvXKT1KxCdELg596Qdu6OzJg+HYPBwJIlD3Z1/6iUlJQQHx9PdnY2TZs2pUePHuh0OqSU/Oc//8HR0ZGePXve8/V5eXmsWbOG5ORk7O3tGTlyJEFBty9KSExMZO7cuSQkJGBra0tpqRn/rj14Mnw2nfqUPej07jNjaN/Sm127dhES/jtGP/t7LLJsaWETox19WjQiICCAJUuW0K9f2X71+fn5rFu3jpEjR+LmdvtqnVPXcjl+NQezlBj0OoK8XWje6LebXCuP3qNctXK3f6F3/HaQUi4FlkLZ8kMrHFepAVoMHIdzC39S967DUlpM8ydG37E1bmUlJiaSkZHBiy++yK5zP5FZUFxxz/b4lRwKis0sWLCAtm3bMn/+fBo1avTbBR8hW1tbBg68c4thKSU3btwgPj4enU53x20WKSULFy5k/vz59OvXj65du5Kbm8u4ceNo2rQpUVFR+PmVPc/QrVs3XnzxRWxtbekYEMieA4e4cOoE+3dsIuVsEjdvXCftwlkunDrGyy+9xOWrV/H3MFJQYqaZcwOaOdnxyiuv4OHhwRNP/LzqqKioiGvXrrFs2TIiIiJuC/P2TYy09XCkxCzLGjOrVSo1mjWCPA1o/ovPvYHLVqir1BIurTri0qqj1erFxsYyZcoUbprMZBWW3DbxZpZw/kY+nQK96N+/P9u2bWPixIlWO7a16HQ6xo0bx5o1a4iLiwO4Lczfffdd1q9fz6FDh/D2aUFmQTF2Nnr+8pe/8NlnnzFgwAASEhJo0aJsIliv1+Ps7My0adO4VmpLj6EhFBcVcfPGdYzOjfi/y9Zz9fBePpj/HgaDgeNHjxIUFESHDh2IiYkBYNOmTbcFsqurK+Hh4SxbtozIyEgiIiJwdf35HrhOCOxsVIDXBtZYtZII+AkhWgohDMBEYIMV6ir1VG5uLq6urhQUm+/+F1QITKUW3NzcyM39jSbT1Uyv1zN+/HjatWtHXFwc5Q/BpaSk8NFHH7F9+3aEswexx6+w7/wNtp/JYGfyT/zvzNnMmDGDt99+u6JWr1692LdvHx382zNsRDA5mT/RyN2Dic+/Ruizc9i17isiP/8ULy8vHnvsMbKysli9ejV//OMfadu2Lfv27asIaSklaWlpnD59Gjs7O8LDw7FYLCxbtozMzMxqOVeKNpqDXEpZCswBtgFJwGop5QmtdZX6y8fHhxMnTuDa0FDxKPkv6YXAwaDnxIkTNG/e/C4Vag69Xs+ECRPw9/ev2Kb2888/Z+rUqTR0acx/b00qllgkZosku7CExEtZPP/883zzzTcVwerl5cWgQYP48MMPiXhyEEOGjeBKynn+u3MTG5b+natnjrJixQoKCgv5eOU3bP7+CGnXrnPhwgUOHDjAF198gZSSL7/8ki5dutC5c2dCQkJo3rw5L7/8Mt26daNRo0bYWqFNnHJvj+pJequs6pdSxgFx1qilKFOmTCEgIIAFCxbQoYmRpIw8zBaJoOztfvfmLhw9coS0tLSKfcFrsvIwL7+tsX//fubOnUtaduEdk0kWCWk3C+nT0ht/f39OnjxJ375lT7AuWrSIPn36oNfrmTt3LgFNjayLjWVj1FI++eQTJoVN5pk//ZWzWcUUXLrOhvQ0uvm6ER0dTWhoKN9//z3Hjx9n/vz5DB06FJ1OR2ZmJl988QXjx48nJiYGo9GIxWIhPz8fo1GtUrGWyzlFHErLIs9kxsFWT+dmzvhYcfJYPZ6l1DheXl5MmjSJsLAw1q5di6eTGymZBeh1Olq5OlCQfYPJkyfzxhtvYGNTO/4Kl4d4SkoKqampJCcn07bHgLuuFCj/msViqVgLDtC8eXPi4+OZM2cOPj4+DB06lOPHj1NaWspbb73NjLc/wL1ZCxa/OZfDe3fg7uXNP4oK0ZmLKSoqIj4+niNHjnDdBFtOZVBUasbD0Y5Zz88lKCiI8ePHk5ycTHx8PGfOnCEiIqJaJ5LrisyCYuLP36h4d1lQYmZ/ShZ2NrrbthPWol4+oq/UfB9++CHOzs4EBgYStfQT9DdSKLl8hgXvvUunTp14+umnmTlz5v0L1TDNmjUjMDCQFStWkHnxNL9e9KUT0KKRA1euXOH06dMEBATc9n0fHx82bNjAwYMHGTlyJN7e3oSEhDA+bAqXzp7inWfH4uXbmkUb4vlLzDb+sWEfMV9/Q25uLgUFBaRmFXAgJYscUynFZkn6zSK2n86gzxP9GDRoEFFRUXTp0oXi4mIiIyPJzs6uupNTR53KyL3jFqFZSpIy8qx2DBXkSo1ka2tLdHQ0y5cv5/Dhw4SHhzNz5kxycnLYs2cPb731VnUP8aHY2NiwaNEikpKSWL0ymkZ5aRj0AhudqGj40NXbhQ8++IAJEybg5HT3ved9fX2ZNm0aPXv2pG3btgwZMpTYf39Mv5D/IfSZ32O89eh+qUWSXarDxsYGLy8vXp/3xm2hIoFSKbmYVcDUqVOJjY3F09OTadOmUVRUxLJly7h58x6boCkPpKjk7nsRFZY82PYWD6J2vC9V6iUhBL1796Z3796P7BiFN65y9pslZJ79ESefdrR9aiaOnpXb27yyfHx8+POf/8yCBQsoKCjgjTffpGFjd+xs9IjSYv7f+++xfv16EhIS7ltr1KhRjBs3jm7duuHh6YW9Q0MO7t5K0MCfH9H/4WwKJpOJjz76iKEjRhL63MvYN/j5/qzZIskvLqVx48bk55ftCFoe5suXL+err75i1qxZai35Q/J2seen/OLbfoHqBDR3sd4mEyrIlXqrKCuDPa+PobQwD2kuJffSGa4m7qTfe2sq3aiisl555RUcHR154403OHbsGN26dSMnJ4cNGzbQo0cP9u3bR5MmTe5bJygoCE9PTxYuXMhLL8wBVx/27tkNCIIGlnUg2rdlfVlrvoAAWrX158yPiTzWq39FDRudwKOhHZt/tQrIy8uLqVPLugupEH94rV0dSckqJLuwBLNFotcJHA02tHO33vYSKsiVeuv8thWYi/KR5rJmCtJiodRUyOl1i+k654NHfvyZM2fy7LPPsmXLFo4cOYKTkxMHDhygdevWlaoTHR1NQEAA7tu28qe/fEhWYQlHD8RzM/M6F5KOcfbIITp260NUVBTNmrhSaipEL8oerrLRCdwdDTQ12vHpp5/y/vvv31a7WbOfe78eOXKEli1b3vN2j3J3ep1giJ87V3NNZBeW4GRvg6eTvVX3dFdBrtRb2eePY/l142lpKWuUUUVsbW0JDQ3FZDKRlJREUVHle522atWK6dOnEx8fT/ATQTh7eFGQl8PNGz8R2LMfb/17LTlXL/H2CxHY2dnx9lvvYPR0oqDYTFMnezyNdrz22msYDAaGDx9+12Pk5+cTFxeHo6MjERERamliJQkh8HSyx/M3+qNqoSY7lXqrsd/j6Gx/1cVHp6NR68eqfCyjR4/G29ubr7/+mqSkpEq//oUXXuDy5cucOnWK+f/8lD/8/Qte+tvn+LbvSPKRg0wLGcysWbO4evUqSz5dzNUTB9H/dJH/rF9N71692Lt3Lxs3brxtueMvNWzYkMmTJ5Obm0tkZCR5edZbcaFoVy97dioKgCknkz2vhlKSn4ultBiht0Fv14D+739NwyZV/8SoyWRixYoVpKenM2HCBNq3b1+p10dERJCdnU1MTAz5Zh3pNwv5YX88Z344QDPPprz//vvMnz+ftLQ0Nm7cSH5+Pr6+vkyfPp3g4OAHWpOfkpJCdHQ0zs7OhIeHV8s2wvWZar6sKHdhunmDc1siyTx9GGffDrQeFYGDm1f1jcdkIioqCoPBwNSpUys1yWgymQgPD+fAgQPMmjWL3r17U1BQwD//+U927drFzJkzWbRokeaJy/IwDw4O5vHHH9dUS6kcFeSKUksUFRWh0+kwGAxIKSsdvImJiSxZsoSkpCQMBgODBg2iXbt2nDx5kqCgIEaNGqU5zHNzcyvukz/MGJWH8yj3I1cUxYrs7csmxEwmE6tWrap46OdBdevWjW7dut32NSklO3fu5LvvvkMIQXBwsKbwLQ/x1NRUdu7cycSJE3FwUI0nqoua7FSUGspisVBYWMiqVas4e/asplpCCIYMGULv3r1JTExk69atVtmJr7S0lMuXLxMZGUlBQYHmesrDUUGuKDVUgwYNmDZtGh4eHqxatYrk5GRN9YQQDB06lF69enHgwAG2bdumOcxbtWrFpEmTuHHjBsuXL6ewsFBTPeXhqCBXlBqsPMzd3NyIiYnh/PnzmuoJIRg2bBg9e/Zk//79bN++XXOYt27dmokTJ/LTTz+xfPnyh1oLr2ijglxRarjyMG/ZsiXOzs6a6wkhGD58ON27d+f7779nx44dmsO8TZs2PP3003h4eKjmFNVA02SnEGI88A7gD3SXUqqlKIryCDg4ODB58mSgbOIyMzPztv6alSWEYOTIkUgpSUhIQKfTMXjwYE0ToH5+fhUNo/Py8rCxsamYuFUeLa1X5MeBscC3VhiLoigPICEhgc8++4yLFy9qqlO+eiUoKIj4+Hh27dpllQlQi8VCVFQUK1aswGQyaa6n3J+mIJdSJkkpT1trMIqi3F+nTp1wcXEhOjqalJQUTbWEEIwaNYquXbuyb98+du/erTnMdTodAwcO5PLlyyrMq0iV3SMXQjwnhDgohDh4/fr1qjqsotQ5jo6OhIeH4+zsTHR0NKmpqZrqCSEICQmhS5cufPvtt+zdu1fzGNu3b8/48eNJT09XYV4F7hvkQoidQojjd/kYXZkDSSmXSimDpJRB7u7uDz9iRVEqwtxoNLJy5UrNQSmE4Mknn6Rz587s2bPHKmHu7+/PuHHjSE9PZ+vWrZrrKfd238lOKWXNb1OuKPWQ0WgkIiKCa9euYWdnp7leeZhLKdm9ezdCCPr166epZocOHZg4cSJeXtW3f019oB7RV5RazGg0Vjwuf+LECZydnfH29n7oejqdjtDQUKSU7Nq1C51OR9++fTWNsXx7AbPZzHfffUfPnj0xGAz3eZVSGZrukQshxggh0oBewGYhxDbrDEtRlMowm83s3r2bqKgo0tPTNdXS6XSMHj2awMDAiv1ZrOHSpUvs3r2blStXUlJScv8XKA9M66qVWCmlt5TSTkrZREp59/YiiqI8Unq9nqlTp+Lg4EBUVBSXL1/WVE+n0zFmzBgCAgLYsWPHAzWCvh9fX1/GjBnDxYsXVZhbmXqyU1HqiPJmD/b29kRFRXHlyhVN9XQ6HWPHjqVjx45s376d77//XvMYH3vsMZ566ikuXLhATEyMCnMrUUGuKHWIi4sLERERGAwGzpw5o7leeZh36NCBbdu2sX//fs01O3XqxOjRo0lPTyczM1NzPUU1llCUOqmwsBB7e3uEEFZp/GA2m1m7di1JSUkEBwfTvXt3zWMsKCio2MNcNad4MPdqLKGuyBWlDmrQoAFCCDIyMvjkk0+4du2apnp6vZ5x48bRvn174uLiSExM1DzG8hBPSEhg5cqVlJaWaq5ZX6kgV5Q6zMbGBpPJRGRkJBkZGSQlJfHCCy8QFBREly5dmDFjBocOHXqgWnq9nvHjx9OuXTs2b96Mtd5V29nZcebMGdasWYPZbLZKzfpGBbmi1GGNGzcmPDwcnU5HWFgY/fv3x9nZmcWLF7N06VLatGnD2LFjee655x4oRMvDvG3btmzatOmBfwn8lq5duxISEsLp06dVmD8kFeSKUse5urpiMpk4efIkv/vd75g+ew72zduj92zDcy+8zIkTJzh79iyvv/76A9WzsbFhwoQJ+Pn5sXHjRg4fPqx5jEFBQQQHB3Pq1CnWrl1rlV0Y6xM12akodZzJZKJFixasW7eOo2cu4NSxDzobGySgF4JATydcRSHt2rUjOTn5gfc5Ly0tJSYmhnPnzhEaGkrnzp01j/XAgQPodLo7mkcrZdRkp6LUU3Fxcfj7+9OjZy/cOg9A2NhQXGwi72YWZik5euUmzo1dGTVqFDExMQ9c18bGhokTJ9KqVSs2bNjAjz/+qHmsPXr0qAjxa9euYbFYNNesD1SQK0odl5qaSkBAAHmmUsrffyfu2sLeDavJzc5CLwSZBSV07Nix0lvilod5y5Yt+eabbzh69KhVxpyTk8O//vUv1q1bp8L8AaggV5Q6zmg0cuPGDextdVhu3Urt2L0vFrOFbzetISc7CweDnszMTBwdHStd39bWlkmTJuHr60tsbCzHjh3TPGYnJycGDBjA8ePHiY2NVWF+HyrIFaWOGzFiBFu2bKEoPw8fFwf0QuDc2I1+T45Dms0kbluHKSeLlStXEhoa+lDHsLW1JSwsrOJe/PHjxzWPu0+fPgwZMoRjx46xfv16Fea/QQW5otRxXl5eBAcHM2/ePLr7uODfxEgDWx0eTZowbdo0fJwMzJ49m9atW9OpU6eHPk55mPv4+PD1119z4sQJzWPv27cvgwcP5ujRo/zwww+a69VVKsgVpR5YvHgxCQkJTJ0yBXEjlacCvBgb6EUbZxuO/Pgju3fvpk2bNrz66qua+nYaDAYmT55cEeYnT57UPPYnnniCiRMnWmVVTF2lglxR6gEXFxf27t1L27ZtGT58OL6+vrRu3ZrAwEDWr1/PoEGD6NixIxkZGcyePZvAwMCHvj1iMBgICwvD29u7Yn8Wrdq3b49OpyMnJ4ddu3apdea/otaRK0o9U1JSQmpqKvPnz+fo0aOsX7+exu5NSE6/SkzkF7g6OWJvb88777zDvn378PPze6jjmEwmVqxYQXp6OhMmTKB9+/aax75//362bt1Kly5dePLJJ+vdRluPZB25EGKhEOKUEOKoECJWCOGipZ6iKI+era0tQghiY2PZsmUL+bZG1h+/zMlsiXfPEfyQkkF+YREzZ87k7bfffujj2NnZMWXKFLy8vFi9ejWnT5/WPPYePXrQr18/Dh8+zObNm9WV+S1ab63sAAKklI8BZ4AHe8ZXUZRq9fnnn5ftW97QiUNp2VgklFokTu5N6T58DKcv/4SDgwNxcXFcv379oY9THuaenp6sXr1a8x7pQggGDhxI3759OXjwIHFxcSrM0d7qbbuUsnzvyf3Aw3d9VRSlyhw5coQBAwaQdrPwju81buJJp0FlyxDbtGnDqVOnNB3L3t6eqVOn0qRJE1atWsXZs2c11RNCMHjwYPr06UNqairFxcWa6tUF1pzsfBbYcq9vCiGeE0IcFEIc1PIbXlEU7fR6PaWlpeh1AsGd95ndPZvx0ksvodfr0ev1mnckLA9zDw8PYmJiSE5O1lRPCMGQIUOYPn06dnZ2mM3men1lft8gF0LsFEIcv8vH6F/8zDygFIi+Vx0p5VIpZZCUMsjd3d06o1cU5aH06dOHDRs20Ny5Ab/OcZ2Alo0dyMjI4OzZswghWLJkCXl5eZqO2aBBA6ZNm4a7u7vVwtxgMGA2m1m9ejXbtm2rt2F+3yCXUg6RUgbc5eMbACFEOBACTJb19SwqSi0zffp0YmNjuXTxPP1buWJvo0MvBDoBzZwb0Nnbhfnz5xMWFoaXlxdZWVlERkaSn5+v6bjlYe7m5kZMTAznz5/X/GfR6XQ0atSI/fv3s2PHjnoZ5lpXrYwAXgVCpZQF1hmSoiiPmru7OwsWLGDIkCGc+TGR0R2bEuzfhKcCvHjM1ZZ5r7/Gzp07effdd2nRogWTJ08mOzvbKmHu4ODAtGnTcHV15auvvtIc5kIIhg8fTvfu3UlISGDnzp31Lsw1rSMXQiQDdsCNW1/aL6Wcdb/XqXXkilIzrFq1innz5mE0GunatSu5ubls376dYcOG8fHHH/PL26AXLlwgOjoaV1dXpk+fjsFg0HTs/Px8IiMjycrKIiwsjJYtW2qqJ6Ws6Cc6cOBA+vfvr6leTXSvdeTqgSBFqecsFgt79uzh3Llz2NvbM3jwYLy8vO76s+fPnyctLY1+/fpZ5dj5+fksW7aM7OxsJk+ejK+vr6Z6Ukp27NhBQEDAPf8MtZkKckVRrCojIwOj0UiDBg001cnLyyMyMpLs7GymTJlCixYtrDRCSElJsWq96qY6BCmKYjUlJSVERUWxfPlyCgvvXIteGY6OjoSHh+Ps7Ex0dHSlm1vcy5kzZ/jyyy/Zs2ePVerVZCrIFUWpNFtbW0JDQ8nIyCAqKoqioiJN9crD3Gg0smLFCi5duqR5jH5+fjz++OPs2bOHvXv3aq5Xk6kgVxTlofj5+fH000+TkZFhlWWERqORiIgIjEYjiYmJmusJIQgNDeXxxx/n0KFDmt851GTVco9cCHEdSKmCQ7kBP1XBcWoydQ7UOQB1DqBunIMWUso7nqisliCvKkKIg3ebGKhP1DlQ5wDUOYC6fQ7UrRVFUZRaTgW5oihKLVfXg3xpdQ+gBlDnQJ0DUOcA6vA5qNP3yBVFUeqDun5FriiKUuepIFcURanl6k2QCyH+IISQQgi36h5LVavPTbKFECOEEKeFEMlCiNeqezxVTQjRXAixWwiRJIQ4IYR4sbrHVF2EEHohxA9CiE3VPRZrqxdBLoRoDgwFrLOJQ+1TL5tkCyH0wGJgJNABmCSE6FC9o6pypcArUkp/oCfw+3p4Dsq9CCRV9yAehXoR5MAi4P8A9XJmtx43ye4OJEspz0spi4EYYPR9XlOnSCmvSCkP3/rvXMqCrFn1jqrqCSG8gVHAv6p7LI9CnQ9yIUQokC6lPFLdY6khfrNJdh3TDPjl7ktp1MMQKyeE8AU6AweqeSjV4UPKLuYs1TyOR8KmugdgDUKInUDTu3xrHvAnYFjVjqjq/dY5+EV/1fs2ya5j7mwPX0/flQkhHIGvgblSypzqHk9VEkKEABlSykNCiAHVPJxHok4EuZRyyN2+LoQIBFoCR4QQUHZL4bAQoruU8moVDvGRu9c5KPeLJtmD61GT7DSg+S8+9wYuV9NYqo0QwpayEI+WUq6r7vFUgz5AqBAiGLAHnIQQK6SUU6p5XFZTrx4IEkJcBIKklLV9B7RKudUk++9Afynl9eoeT1URQthQNrk7GEgHEoEwKeWJah1YFRJlVzCRQKaUcm41D6fa3boi/4OUMqSah2JVdf4euQLAx4AR2CGE+FEI8Vl1D6gq3JrgnQNso2ySb3V9CvFb+gBTgUG3/t//eOvKVKlD6tUVuaIoSl2krsgVRVFqORXkiqIotZwKckVRlFpOBbmiKEotp4JcURSlllNBriiKUsupIFcURanl/j9SeE6JfdiR2gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "<Figure size 432x288 with 1 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.scatter(data.loc[:, \"x\"], data.loc[:, \"y\"], c=data.loc[:, \"source\"], s=30, cmap=plt.cm.Paired)\n", - "\n", - "# plot the decision function\n", - "ax = plt.gca()\n", - "xlim = ax.get_xlim()\n", - "ylim = ax.get_ylim()\n", - "\n", - "# create grid to evaluate model\n", - "xx = np.linspace(xlim[0], xlim[1], 30)\n", - "yy = np.linspace(ylim[0], ylim[1], 30)\n", - "YY, XX = np.meshgrid(yy, xx)\n", - "xy = np.vstack([XX.ravel(), YY.ravel()]).T\n", - "Z = clf.decision_function(xy).reshape(XX.shape)\n", - "\n", - "# plot decision boundary and margins\n", - "ax.contour(\n", - " XX, YY, Z, colors=\"k\", levels=[-1, 0, 1], alpha=0.5, linestyles=[\"--\", \"-\", \"--\"]\n", - ")\n", - "# plot support vectors\n", - "ax.scatter(\n", - " clf.support_vectors_[:, 0],\n", - " clf.support_vectors_[:, 1],\n", - " s=100,\n", - " linewidth=1,\n", - " facecolors=\"none\",\n", - " edgecolors=\"k\",\n", - ")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "id": "0ee97208", - "metadata": {}, - "source": [ - "Try the same using another kernel to see how the decision boundary changes:" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "id": "d98ececa", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAACvp0lEQVR4nOydd3gc1dWH3zvbV6tV78WyZMu9yRVs3MHGBpsOhoDpCQQICRAgCSH5ICS0EEowmN5DNcbghnvvvUi2mmX1rtWuts7M98fKAiHJVbJk2Pd59Fienbn3zmr3zL3nnvM7QlVVAgQIECDAuYvU2QMIECBAgABnRsCQBwgQIMA5TsCQBwgQIMA5TsCQBwgQIMA5TsCQBwgQIMA5jrYzOo2MjFRTUlI6o+sAAQIEOGfZvn17paqqUT893imGPCUlhW3btnVG1wECBAhwziKEONLa8YBrJUCAAAHOcQKGPECAAAHOcdrFtSKECAXeBPoDKnCrqqob26PtAAECdCz19fXs27cPRVHo06cP4eHhnT2kAKdIe83IXwQWq6raGxgEHGyndgMECNBBVFRU8Nvf/pZu3bpx33338eCDD5KamspNN91EXl5eZw8vwClwxoZcCGEFxgJvAaiq6lFVtfZM2w0QIEDHUVpayujRo9FoNOzdu5etW7eyceNGcnJySEtLY/To0WRlZXX2MAOcJO3hWkkFKoB3hBCDgO3A71RVdfz4JCHEncCdAMnJye3QbYAAAU6Xu+66i2uuuYa//d8T7CisZf2uIlRUEkJMPPLnvxAfH8/111/Ptm3bEEJ09nADnABxpuqHQohhwCZgtKqqm4UQLwI2VVUfa+uaYcOGqYHwwwABOoeCggKGDBlCQUEB28uclNhcKI1mQAJCTDou7BlJr169+OCDDzjvvPM6dbwBfkAIsV1V1WE/Pd4eM/JCoFBV1c2N//8CeKQd2g0QIEAH8P333zNt2jQ0eiMlthq8Xh9lhUew1VSh1eoIDQ+nd4jENddcw6JFiwKG/BzgjA25qqqlQoijQoheqqpmAZOAA2c+tAABArQXqqpis9moqKhg//79VFZWsn7DRqTQ7gBsXPINx1bnGgH5683UV1USGhqKx+Nh8+bNREZGEhUVRVhYGBqNpjNvJ8BPaK/MznuBj4QQeiAXuKWd2g0QIMBpIMsydXV1TaGEr7zyClVVVQCUlZVx4MABZI8TjRBotFomXXkDQdYQZJ8PR101QyM0PPXkEwwdOpSqqiqWL1/e1LYkSYSHhzNlyhR69uzZKfcXoDntYshVVd0FtPDbBAgQ4OxSUVHBzp072bNnD3q9nnvvvRchBMOHD0ej0RAdHU14eDj9+/cnLDSUASnhrM2tIiIqGhUQBgNjeydicNawbt06PvzwQ0JCQnj00UepqqqioqKCyspKKisrMZvNTX2qqkp0dHTn3vwvmE7RWgkQIED7kp2dzcqVKykqKkKSJNLT0xkyZEjT66NGjWp2/hNPPMF1113HsmXLuLRfMkdrnSiqSmKICVd9LVMvu4wHHniAkJAQAAwGA/Hx8cTHx7foe/ny5WRlZTFw4EDGjx9PWFhYx95sgBYEDHmAAOcgHo+H/Px8YmNjsVqteL1evF4vU6ZMYeDAgQQFBR33+ptuugmbzUZGRgZXXXUVl156KVqtlrnLlvH+++9zxx138Oc///mkxjJjxgzWr1/P5s2b2bt3L0OHDmX8+PEnHEOA9uOMww9Ph0D4YYAAp05lZSUHDx4kOzubwsJCZFlmwoQJjBs3rmmj8lRjvktLS3nrrbfYsGEDiqIwePBg7rzzTrp3737K46uvr2fNmjVs376dsWPHMn78+FNuI8DxaSv8MGDIAwTooqiqisvlwmQy4fF4ePrpp5Flmbi4ONLS0khNTSU5ORmttmstrCsqKggLC0Or1VJcXExwcDDBwcGdPayfBR0ZRx4gQIB2QlVViouLOXjwIAcOHMBsNnP77bej1+u55ppriIuLw2q1dvYwj0tUlL/ugaqqfPXVVzgcDqZOncrAgQMDWaIdRMCQBwhwBhwzvD6fj9jYWAwGw2m3tX37dtasWUNdXR2SJNG9e3f69u2LqqoIIejVq1c7jrzjEUIwa9Ys5s+fz7x588jOzubyyy9HkgLq2e1NwJAHCHAaeL1e5syZw6uvvkp1dTVGo5GGhgZuuukmHnzwwVajO36MoigcOXKEAwcONG0MSpJEbGwsEyZMoFevXphMpravV1WqHB4AIoL0SF10phsREcEtt9zC2rVrWbFiBaqqcsUVVwSMeTsTMOQBApwibrebmTNnIssyb775JqNHj0YIQX5+Pi+//DIjR45kxYoVLZJlZFkmNzeXgwcPkpmZSUNDAzqdjt69e5OWlsaQIUOahQy2RXWDh1U5lciNAilaSTChRxShJl2H3O+ZIoRg7NixaDQajh49Smfsy/3cCRjyAAFOkccffxyTycRnn31Gfq2bbw+U4lNUkkJD+Oczz9KrVy+uuOIK9uzZg8/nw+l0YrVaqa+v56OPPsJgMJCenk7fvn3p0aMHOt3JG2BFVVmdU4nbpzQd8yn+YzP6xXZpH/To0aOb3EQulwu9Xh+YmbcTAUMeIMAp0NDQwJtvvsm2bdvIrGzgYJkduXGGmVPlILeonBEjRmC323n44YcJCQkhLS2N6667jtDQUG6++WYSExNPO9KkpsGLT2k5o/XICrUuL2Em/RndX0cjhMDj8fD222+TnJzM9OnTu/TD51wh8DgMEOAUWL16Nf379ye5Wzf2l9RRXlrM0exMABQVViz6ho8+/YLevXuzdetWMjIymmVVpqSknFG4YFs2TwUkzg2DqNfr6dmzJ9u2bWPr1q2dPZyfBYEZeYAAp0B+fj6KovDmW2+zfGcmPp+MRqshoXtPJI2GgeePZ1hyBH16prJq1Souvvjidu0/zKTDoJXweeRmx806DVbj6X+dbS4v+0vrqXN5ibIY6BsTjEnXcQqHkyZNoqKigsWLFxMVFXVaCUgBfiAwIw8QoA08Hg9ZWVl89913OJ1OwB9umJmZiSr76D1wCKMuuoSps25DapR1jYyJo3f3JLKyskhMTGz3MQkhmJAWSbBBi0YSaITAatQyPi3ytF0UdU4vS7LKOVLTQI3TS3aFnUWZZbh98okvPk0kSeLKK68kIiKCzz77jJqamg7r65dAYEYeIMCPcDgc7Nmzh8OHD3PkyBFkWUav1zN48GASEhK45ZZbePHFF+nbty8zBg1nbW4ViqqiAhpJkBpuRo/Mu+++y9q1aztkjMFGHdP7xFDv9iGEINhwZl/jPSV1zfzuCuCVFQ5VOBgQ13HJRwaDgVmzZvHtt98GNj3PkIAhD/CLxuPxkJeXR3BwMPHx8TgcDpYsWUJUVBQjR46kR48ezdLgTSYTf/3rX7n11ltZuXIlF/eOIaeqAa+skBRqItwoMXv2bCZOnEh6enqHjVsIgdXYPuGGtU5vi2OK6g9z7GjCw8O56aabAE5bLyZAwJAH+AVit9vZt28fhw8fJj8/H1mWycjIYMaMGURFRfH73/++Sb61NW644QZKSkrIyMjgtttu48orr8RkNDJ/0XpeeeUVunXrxmeffXYW7+jMCDPrsXuczY5JAiKDzl4EjM/n4/PPP29KiApwarSLIRdC5AP1gAz4WhN1CRCgM1EUBUmSUFWVt956i5qaGqKiohgxYgQ9e/YkOTkZ8M8Gj2fEj/Hggw8yY8YM5syZw2233YbP56NPnz688MILTJo06ZyaVQ6Ms1JicyErfheRJECvkegRaTlrY9BoNJhMJlavXk1MTAx9+/Y9a33/HGgX9cNGQz5MVdXKkzk/oH4Y4GxQX19PVlYWWVlZlJWVcf/99yNJEjk5OYSEhBAZGdnZQ+wy2N0+DpbVU+v0Eh1soFeUBWMHRq20hs/n491336WiooK77rqL0NDQs9r/uUBA/TDAL4acnBxWrFhBUVERAGFhYfTt2xev14vBYCAtLa2TR9j1sBi0DE/u3Mo+Wq2Wq666ijlz5jBv3jxmz54d2AQ9SdrLkKvAUiGECryuqurcn54ghLgTuBNoWsYGCNAeOBwONm/eTO/evYmPj0eSJIQQTJo0iV69ehEVFXVOuTp+yYSGhnLxxRezbNkyampqiIiI6OwhnRO0l2slXlXVYiFENPA9cK+qqmvaOj/gWgnQHtTX17Nhwwa2bduGz+fj0ksvJSMjo7OHFeAMUVUVr9eLXt+15QY6gw51raiqWtz4b7kQYh4wAmjTkAcIcKZ8//33bN68GUVRGDBgAGPGjGkqaBDg3EYIgV6vb1KL/KmKZICWnLEhF0IEAZKqqvWNv18E/N8ZjyxAgJ9QV1eH1WptcpMMHDiQMWPGEB4efkbtOjw+BGDWB7aMuhKbN29m6dKl3HrrrQF37Aloj09uDDCv8culBT5WVXVxO7QbIADgrwG5du1a9u7dy0033UT37t2ZPHnyGfu9611e1uRV4XD7UIFQo44LUiMx689utEaA1hk2bBibN2/mu+++49e//nVg4/M4nLEhV1U1FxjUDmMJEKAZJSUlrF27loMHD6LT6TjvvPOa3CdnasRVVWVFdiUN3h/0RGqcXtbkVjK1d8wZtR2gfdDr9UydOpVPP/2ULVu2NFORDNCcwFoyQJfE7Xbz4YcfIssyF1xwAaNGjcJsNrdb+1UNHjyy0uyYil8F0O72YTlD/ZIA7UPv3r3p0aMHq1atYsCAAQQFBXX2kLokgU9rgC5FTU0NISEhGAwGbrzxRkJDQzEaje3eTyu1GfwIgRIoRdZlEEIwZcoUvv76axoaGgKGvA0CTqcAXQJVVdm5cyevvvoqmzZtAiA2NrZDjDhAhFmP1Ip3xqCVzlhNMED7EhUVxe233x6ISjoOAUMeoNNxuVx8+eWXzJ8/n8TERPr379/hfWokwdjUSHQagVby/xi0EuNST1/XO0DHIYTA6XSyefPmQPHmVghMPQJ0KkVFRXz++efYbDYmTZrE6NGjz1p0QpTFwOX946mwuxHC/38pYMS7LPv372fRokVYrVb69OnT2cPpUgQMeYBO5Zgq4a233tohFXVOhEYSxFo7xn3Tmbh9MjlVDmwuHzEWA8lhZjSt+ZLOITIyMtiyZQtLly6lZ8+eZ1T79OdGwLUS4Kxjt9vZvn07AElJSdxzzz2dYsR/rtjdPr49UMq+Eht51Q1sK6zl+0PlyI07vF5ZoabBg9unnKClroUkSUydOpWamho2btzY2cPpUgQeaQHOKjabjffee4/6+nrS09MJDg7+RSR6NHhkim1ONJIgMcSETtNx97y7uA6v7NcWB/ApKja3jyM1Dbh9CntLbEgCZFWlR6SFjISQc2ZfIDU1ld69e7N27VoyMjLweDzY7XYiIyMxmUydPbxO4+f/DQrQZaitreWdd97Bbrdz4403Ehwc3NlDOivkVDn49kAJOwrr2Ha0lvn7SqhydFwZtXK7m59uB8qKSn51A3tLbciqildRUVT/2HKrHB02lo5g8uTJVFdXM2XKFJKTkxk1ahQxMTHccsst7N+/v7OH1ykEDHmAs4LL5eKDDz7A6XRy0003kZSU1NlDOiu4fTLbj9Ygq/4ZsE/xG9H1+VUdFn1h0raUGJAEuLxyk3vlGLKicrjy3DLkzz33HN9++y333XcfVVVVFBUVkZOTQ3p6OuPHj2fZsmWdPcSzTsCQBzgr5OTkUFtby6xZs0hISOjs4Zw1yu3uVt0WTq+M09v+PmqHx0e9x9fiuCRoU0Omzuklv/rcMOZffPEF8+fPZ8OGDfQdfj6vfvU98/YWc8guce8fHuLLL79k1qxZVFVVdfZQzyoBH3mAs0K/fv1ISkrCarV29lDOKvrj+MK1mvb3Sx8orW8x6wboFmYmIcREucPT4nUF2FJQi1aSSAzt2n7m//znP/zjH//ApTXz+fLl7Nu6EW1oNK6YOErr3Vxy/hguvvhi3nnnHR588MHOHu5ZIzAjD9Ch5Ofnk5ubC/CLM+Lgj003aCV+bLI1AhJCTMc18qeDV1Y4UtvQwj8OYHP5iLcaSY9sPcVdVlX2ldradTztTXl5Ofv372fGjBnsKa6jx8ChGM1m9m5ag6qqyIpKXpWD2bNn8+WXX3b2cM8qAUMeoMOoq6vj888/Z8mSJSjKuRXq1l5IQjCpZxRRFj0Cv4sjOczMqG7tXx9zTW4lXrl1v3uoSYsQgsEJoSSFth437/qREmRXxGazERYWhlarxeGR0er09B12HpUlRZQcyUVW/dE50dHR1NfXd/ZwzyoB10qADmPevHl4vV6uvvrqX0SIYVsE6bVM6hmNrKgIQYdkj9a7vMeNhCmsc5Ee5cVq1JEcaqbE5sb3IxeLgOMmRimqP8pF25hU5JUVSmwuFBXirUb02o7/+0ZHR1NZWUldXR2RQXqKbS5SevXn8J6d7N20lsRu3Ym2GNi6OfMXtQ8DAUMeoIMoLCwkPz+fiy++mMjIyM4eTpegIzMrXT4FSQjkNiJhnF6FNblVTO8TQ2KoiZwqB5UODz5FRSsJdBrBoPiQFtfJisqOwlpyqx2oKoSZdfSKsrD1aG3TOaoKY7qHEx/Ssf51q9XKxRdfzPvvv8/sO35Dhd2NLDQMPG8slUUFWHSC5DATt732GrfffnuHjqWr0W6GXAihAbYBRaqqXtJe7QY4N9myZQsGg4HBgwd39lDOWUpsLvaV2nB6ZeKtRvrHWjHqmkee2N0+qhs8FNQ24G1Tm9dPg1em3u3DatQxPi2S0no3lQ43Fr2WpDAT2lZWTdsLa8mvdjTJ/lY3eNl4pKbFeevzq7liQHyHywD88Y9/5OKLL+a8885j+qAh5FQ6SA7tT+zYoSSHmnn+uecoKSnhiiuu6NBxdDXac0b+O+Ag8Mvb0QrQgm7duhETE4PBYOjsoZyTHK1pYOORmqYZdk6lg6I6F5f0jUUjCdw+mTW5VVQ7PJz07oNK06arEII4q5G4E7hT8n5kxI+HACodbmKCm7fnU1QKa504vTLRFgMRQfqTHW2rDB06lDfffJOpU6dy1VVXMXv2bCIiIti95gA3Pf88BQUFrF279hf3uWsXQy6ESASmA/8A/tAebQY4txk6dGhnD6FNnF6ZGqeXYL2GYKOus4fTKruK65q5SRTAIysU1DbQPTyITUdqjmvEJdGyeEaQXtNm5SNVVXF4ZNw+hfxqB3aPTGyw/qSMOPirK/1UdsDh8bE0qxyf4o8okYTf9TEyOeyMJAFmzJjBnj17ePPNN7n77rux2+0kJiYyatQoxo8fj07XNf+mHYloj+wyIcQXwD+BYODB1lwrQog7gTsBkpOThx45cuSM+w3Q9ZBlmT179tCvXz/0+jObfXUEu4vryCyvR9NYCSg22Mjo7hFdThnw012FrRrRfjHB9Iu18vnuolbDDI8RFaTD4VHwyAoqYNZpGJ/m11/PLLdTbncTatTRJyYYl09mXV4Vbp/SrE9No7Ftze8uoKl/AQQbtEzrE9PMQK/NraKwztnsOo0kGJca0WLm3h64XC5efvllIiIiuOWWW84Z/ZhTQQixXVXVYT89fsYzciHEJUC5qqrbhRDj2zpPVdW5wFyAYcOGBZThf6ZkZmYyf/58zGYzvXr16uzhNKPE5iKrwo6i0lTOrbTeRWZ5Pf1iu5ZHMNSko7rB2+yYVhIn5ZqQBMRZTfSNCabW5UVCYDVq8coqCzNLmwx2lcNDXrUDhGg1iUhWVTRCNEWqqCqoqPSLDabK4aWk3gUqRFn0nJcS0cJwlta7WrapqBTbXB1iyI1GIxMnTmTBggXs37//rBQo6Sq0h2tlNDBDCDENMAJWIcSHqqr+qh3aDnCOsWXLFsLCwujZs2dnD6UF+dUNLbVGVMitbuhyhnxoYigrsitRFL+KoUYIwkw64qxGJCGICTZQVt9SHEsS/nJ1PSItCCEIM/1g+A9X1jebdav4718cZ1Uuqyq9Ii1EBunxyiqxVgNBer/Z8CkKqtrSpXIMvUbCpzSPTdeI1rVg2oshQ4awbds2li5dSnp6epdcFXYEZ2zIVVV9FHgUoHFG/mDAiP8ycTqdHDlyhAkTJnTJuPG2vCddzKsCQGSQgWm9YzhUYcfh8ZEQYqJbmLkpBv28buGsyK6g3u0D1W+UrUYtiSEmQk06NhdUoygqqRFBJIWaEEJQ6fC06q453vJYKwlCTTqSw8ytvHb8v3GfmGB2FTX39QshSAlv2VZ7IUkS06ZNo7i4+BdVeOKXc6cBOhy73Q5AREREJ4+kddIigzhS42xmWDRCkB5p6cRRtY3FoCUjMbTV16oaPH7/twqSJBgQE0zfWCsHy+rZVFDTtPKocHgot7sZlhRGuFlPab3rpDcwJfyz6uSw04sP7xkZhKKo7C+rxyMrhJt1DE8KaxFC2d4kJSX9YtQ1j9GuhlxV1VXAqvZsM8C5wzFDbrF0TcMYGWQgIzGEnUV1gN9PnhZhpkcb+iNdlVqnl/V51U0PJFlR2VdWj1GnYW+JrdmDyqeo5FQ56BtjJT0qiMOVdjw+/waowL/52C8mmH2lNiQhGo28ilEnEW810T/WesKZd1sIIegdE0zvmGBUVT3rm4/79+9n7969XHvttT/Ljc8fE5iRB2g3unfvzp/+9Cc0mo6dcZ0JPSItdA8Pwu72YdJpzkpqeXuTXWlvEUkiKyoHy+oRPw4naUQjBLUuL/FWIxf3juFAWT0VdjchRh39YoPxKSomnQZZVQkx6ogM0re74esMQ+r1esnMzGTnzp1kZGSc9f7PJgFDHqBdORc2lzSSIMR07sYat1Vr07/52NJvoqgq1sb4cZNOw9BGd41PUVmdU0GVw4sQx1YoQUSeYdJOV2HQoEHs3LmT77//nl69ehEUdG6tvE6Fc286EqDLsnfvXlasWNHZw/jZkxxmbhH3LgmIt5roFR3cbPNWIwSJoaZWE4EOlNqosHuaKhcpKuRWOSi2tQwbPBcRQnDJJZfg8XhYunRpZw+nQwkY8gDtxuHDh9m7d29nD+NnT2KIkcQQIxohmoz2sfqbOZV2jk3KtY3+71HdwpuurW7wcKjCTlGdk0OV9pa1PVV/mGZbqKrauMna/Eq720epzdXlpHCjoqIYPXo0u3fvprS0tLOH02EEXCsB2g2Hw/GzXr6eCqqqcqTGSX61A61GoleUhShL++h/CCE4PyWC8noXK7Irf+gTcMvNNzpzqx30jfVvNm46UsPRWicq/nR5XxvhK25f68Y4u9LO7uI6vIqKXiMxNCGEpDAzG/KrKapzomlUX+wdHdyqkmJnccEFF5CUlERsbGxnD6XDCBjyAO2G2WymsrLyxCf+Ath4pJrCOldTGGBxnYuhSaGkRbTfg67eI6OR2jbI4Je3rXB48MkKhXU/hF4qx0kC+nES0TGK65zsKKpruh+3T2FzQS0VDg/Fda5m2bJZFXaiLYbjCnKdTXQ6XVOCmtvt/lkKagUMeQfhdDrxev0p1j9ehrb1u8FgwGzuuESJs0FsbCx79+6loaHhnL+XM6HO5aWw1smPi/XIqsrOolq6h5tPurCEV1YQP0qRb42T0Ury+BSKba7jGvxjCKB7uBmby4sQAotegxB+fZaWWbEqedUNrUbQ5FY5uowhP8bBgwf5+uuvufPOO7tsrsPpEjDkZ4jP56OyspKysrJmP8diqk+F6OhounfvTvfu3UlJScFo7FpfhBMRFxeHyWSitrb2F23Iaxr8RpCfGDhF8c+QzSdIiLG7fWzIr6a6wYMQ/go8o7qFt0iFDzXqaKOy2w99qirRFgNVDR4kaFUt8ZhSogR0CzezNq8Kp9d/psWgYWxqJB65DZ3FNvo/9rDyyv6CF11BlCwpKQkhBN9++y033XTTzyq2vF3UD0+VYcOGqdu2bTvr/Z4Jqqpit9ubGevS0lIqKyub6lFqtVqioqKIiYkhOjq6aQn34w/Msd9/eqy+vp68vDwKCgrwev2GIC4ursmwJycnd/nQvmOfpZ/TF+R0qG7wsOxQRYuZqlYSJyy+oKgqC/aX4vTKzWykALqFmwg16rC7ZaoaPLh9Cg0n2FxMsBroFROMVgiWZ1c2m1VrJMGQeCuSJOH2KcRa9KzNq27WpgCCjVpSwkzsL61v9uDQSIKkECNHa10tsmVHJIeRVVHf+FCDpFATI5LDTju5qL3Ytm0b3377LTNmzDgnY8s7TP3w54wsy+Tn53Po0CEOHTpETc0PlVFCQkKIiYmhV69exMTEEBMTQ0RExBlpjIwZMwafz0dRURF5eXnk5eWxadMm1q9fj0ajITExscmwJyUldTk9k1+6AT9GuFlPRJCOcnvzGprdWgkb/CmVdk+T9OyPUYH8aifgbOWqtimyuSmyuQGItuhxehXq3T50GkH/GCtpEUHY3DKKqiI3RqT8tF+HWyYhxESJzU2N0+tfaAiIsRgYkRyGXlNHdpUDSQhUFfrFWNhRWNO08aqq+DdZVRjdvXNdGkOHDmXfvn0sXryY7t27ExbW/kWwO4PAjPwnOBwOsrOzycrKIicnB7fbjVarJTU1ldTUVOLi4oiOjsZk6tj6hMfweDwUFBQ0GfaSkhJUVSUuLo6ZM2d2uZ34zZs3k5uby6xZszp7KJ3KhvwqCmqczQyyRhLM7BeL4Tjqf0V1TjbkV5+UP/t06BUZRKzVhN3jxaTTsKuoDqdPQeB3scgqLXzhGkkwJT0aq1FLpcODzeUj1KwjwvzDCtHvh3eyv7Qem9vXat+SgCsGxLeplni2qK2t5fXXX+eiiy5iyJAhnTqWUyUwI28DVVUpKytrMt6FhYWoqkpwcDD9+/cnPT2d1NTUTqs6otfr6dGjBz169AD8m6hZWVl8//33zJ07lzFjxjBmzJgu43ZxuVwcOnQIj8fTZcZ0tlFVtTHMryVHa530OI5IV5TF8FPX+kmjEf5VUYhRS9VPtMyPkVXpIKvScUrtGjUSVqMWIQRRFkOzMEpFVcmvbiC/2kG53XNcJcVj53c2oaGh3HfffWdtMnY2+EUacp/PR3Z2NgcPHiQnJ6dpYzIuLo5x48aRnp5OXFxcl3QVmEwmBg8eTHp6OkuWLGHNmjVs376d0aNHM3z48E4vc5WYmIiqqmRmZjJw4MBOHUtn0qq9UtXjKg+qjYUcRiaHsqmg5qRVCnWSoHu4mVCznm6hJnYV17VpyE8Hh1dmV1EtgxNCW3wn1uVVUVrvbrUwxU8JNmiPuxo5mxwz4rm5uZjN5i63sj1VfjGG3OfzkZOTw/79+8nKysLtdmMymUhLS6NHjx6kpaURHBzc2cM8acxmM5dffjnDhw9nxYoVLF26lA0bNjB27FgyMjI6TYs5NTWVmJgY1qxZQ//+/bucH7898cgKOZV2Kh0ewsx6ekYGYdD6w/XiQ4wU17lazFATQ1qPRMqptLO72IZb9ke1jEwOo6jORWGt87jFlQUwPCmUbuE/xKfbXO1nxI+RWeEgs8JBcuOmpU4jUd3godTmbrUU3I/RSv4M1PNTulbIn8/n4+uvv8ZgMHDnnXd2+iToTPhZ+8jbMt69e/emX79+dO/evUsr9Z0K+fn5rFy5kiNHjhASEsLYsWMZPHhwp9zfgQMH+Oyzz7jiiit+trNyj09hUWYZbp+CrKpIAnSSxNQ+MZh1Gtw+mRXZldjdPgT+8L4RyaGkhLdMCCqqczaTpQV/5MeF6VEoqsqqnEo8rcQZCmBUchgpP0kyWnSwjNoOMObg93NHWQxM7BFFTqWD7YW1xzXkIQYNA+JDibcau0QI4k/Jycnhgw8+YMSIEUybNq2zh3NCfjE+8mPG+8CBA2RmZjYZ7759+/7sjPePSUlJ4eabbyY3N5eVK1eyYMEC1q1bx7hx4xg4cOBZnRn36dOH888/n7i4uLPW59kmq8KOyyc3uT8U1T9DP1BqY1hSGAathqm9oqlxenH7FCKD9G1u8h0sq29hDBVV5VCFnTirsVUXi0aCi9JjCG1FxTEm2NBhhlxRodLuxuHxNfrNOW6JoQHxISSFdl1fdFpaGueddx4bN26kR48epKend/aQTov2KL5sBNYAhsb2vlBV9fEzbfdUUFWVwsJCduzYwYEDB34xxvunCCFIS0sjNTWVw4cPs3LlSr7++mvWr1/Pddddd9ay2YQQXHTRRWelr86i3N6y0o4KlNvdTf8XQhBuPvGGb2uytCr+5CGby9dqBIui0sKIq6pKkc2F09t61IheAs/x/DQniRACT+PDKcyko8rhadX9oxGi1ZVEV2PSpEnk5uYyf/58fvvb356TyWztMSN3AxNVVbULIXTAOiHEIlVVN7VD28eloaGB3bt3s2PHDioqKtDr9U3GOzU19RdhvFtDCEF6ejo9e/YkMzOTBQsW8Pbbb3P99deTkJBw1sZRWVnJ1q1bmTJlys/OVx5q1FHRSpSG1XjqftakUBOZ5S2TbZJDTei1EtpW9FSsrcjSrs6totTW0i+vlQRJoSaO1LStangqqCpNUSzje0RxoLSO/WWtZzK3tmLoami1Wq688kry8/PP2UiW9ii+rALH/oq6xp8Oewyrqkpubi47duwgMzMTWZZJTExkxowZ9OvX72cpiHO6CCHo06cPUVFRfPjhh7z77rtcc801Z63CfXl5OZs3byYhIeFn5yvvFR1MbnVDMwOrkQT9Y62n3FafmGCKbS7q3T6UxpJoMRYD3RqLFIcYddQ6vciq6o/3lkRTcQhFVSmocbK7uJYGb+vTbSGgoKbhpKNgToSqquwtsTE4IbRRB6Z137fFoGkWaw7+FUtulQMBpEYEnbEipNMrs6/URqnNRZBeS/84K9Gn0WZ0dDTR0dGA3z17rhVubpfNTiGEBtgO9AD+q6rqw62ccydwJ0BycvLQI0eOnFIf1dXV7N69m927d1NbW4vJZGLQoEFkZGQ0/QECtI3dbuejjz6irKyM8ePHM3r06A5fsaiqymuvvYbNZvvZxe2CPzpkT4mN6gYPIUYdA+OshJh0ZJbXc7jCgayqJIeaGBQfcsIkGFVVKat3Y3P7CG9MtjkW6icrKjlVdorqXBg0EnqthKJCXLCBnCoHZXb3GRtpCRgYH8LBMlszKdy20AjBlQP9cgMLD5ZS52rpzok067Ca9BTXOTFoJUJMOop+lM6vEYKBcVZ6x5xetJhXVvjuYCku7w+ZsBohuCA14rQFu/Ly8vjyyy+ZPXs2UVFRp9VGR9LWZme7Rq0IIUKBecC9qqrua+u8k41a8Xg87Nu3j127dlFQUIAQgtTUVAYPHkyfPn3OuadmZ+N2u/nmm2/Yv38/sbGxzJw5s8M3JMvKypg7dy4JCQnceOON53SI18mw7WgNuVWOJjeJJPyysBemR512XoKs+Cv4ODw+lh+uQGmMR9c0ZmK2B0KA9kca5SdqVhIwo18cJp2G5YfLW8gRgN+lIyvqcdvSCMHlA+JOK9vzcIWdnUW1Ld6DMJOOqb1jTrk98E945syZQ3BwMLfffnuXszFnJWpFVdVaIcQqYCrQpiE/EbW1tWzZsoUdO3bgcrmIiopi8uTJDBw4EKv11JeuAfwYDAauvvpq+vfvz3fffccbb7zB6NGjGTduXId9YGNiYrjiiiv44osv+OKLL7j22mt/dv7yY3hlhZwqR7PZsaJCrctLjdN7wo1PpTEjtMTmwmLQ0j3czIHSenKrHT8654fz23MfUVXBe0z0jMbSYYI2Z/p6jYRRKyErKg2elsJdAv8q42QeCHUuL5FBp+4Osbm8rb4H9jYkAk4Gi8XCzJkz+fjjj1mxYsU5s2nfHlErUYC30YibgMnA06fajqqqHDlyhE2bNpGVlYUQgr59+zJy5EgSExO7ZJbluUqfPn1ISUlhyZIlrF27loMHDzJz5kySkpI6pL9+/frhcDhYuHAhCxcu5JJLLumQfjobt09pVb4WVaXC7j6uIVdUlRXZFdQ0ePEp/rj0/aU2UFuXnu1IVPybqXUnMIi5jUJZzlaiboxaCVcbRaJ/jKyqBOmbmyFFUahq8OL0ykRaDG3K/kYEGdD+ZJ8CIMx8Zqu+9PR0hg0bxoYNG+jRowepqaln1N7ZoD2mYXHAe41+cgn4TFXVb0/2Yq/Xy969e9m8eTNlZWWYzWbGjBnD8OHDA7PvDsRkMnHZZZfRv3//pqiWkSNHMnHixA7RSBkxYgQ2m43169czdOjQczrG3ONTyKt2UO/2EW0xkBhqQhICs17jL3f2k3morMKuojpK691ckBrRtDXYKCKIEILiOleTEYe2Z8JnixMZcZdPYdvRWiKC9K2m53sV5YTVizTCX0ja1GioK+xuNhdUU+/2z/CP5Q/1j7XSr5VN5GPRPjaX70d+d0g/jpbNyTJlyhTy8/PJyck5Jwx5p2V2rlixgq1bt7J9+3YaGhqIiYlh5MiRDBgw4GfvR+1quN1uli1bxtatWwkLC+Pyyy8nOTm53ftRFIWioqIOm/mfDexuH0uyypEVv+yrVhKEmnRckBqBXiNRXOdiQ351q9mOGgFBeg317h9MvU4SDIy3YnfLZFWcejGSzkbjfxK1MOahRi0Wg47Sen9lIgl/tE33cBOl9X5/eo/IINKjLEhCYHf7WJhZ1upD4ViWa1grKxqfopJX5SCvuoFap8fv7Ff9Gurj0yKbHhKng8vl6nLFXc7KZufJkpaWps6ePRtVVenVqxejRo2iW7duAfdJJ3PkyBHmz5+PzWbjqquuonfv3h3WV15eHhEREefcqmtdXhWFbSgb6hrDDxNCjKzKqcTeiu+4NfwFGkwcrXOelPhUV8OglfD4WkaOxAYb/HoxdU5MOg09IoNauFGOsauojszy+jZ96v1jg+kZaSG/ugGnTybOaiTGYkAIgU9WmLevpNnsXwCRQXomp595RFtZWRk+n++s5mC0RZdK0fd4PIwcOZIRI0b8bITdfw5069aN22+/nY8//phPP/2UadOmMWzYsHZ/wLpcLj799FMiIiK4+eabz6kVWLnd3aax8Soqe0ptmPQaIoL02D0nVwRCVlSqG9xoW3HLdHV0kmBqrxj2lNRRbncTpNPQP85KTLB/JpsYaiLxJFL0f1oR6cdIAryyyoIDpaiqiqzC4UoHSSEmzksJp6Te3eIaFahq8ODxKei1p7+5rqoqn332GRqNht/85jdddqO+U0YVExPDlClTAka8C2I2m7npppvo0aMH3333HR9++CHV1dXt2ofRaGTmzJkUFxfz5ptvtnv7HcmJ6m3KisrBsnp6Rlo4leef26cwqlsYMZZzS8O9e4QZs17DqG7hzOgXx6T06CYjfiokhpraFNUSQlDW6KI5FqUiKyr5NQ18va+YfaW2kypCfToIIZg0aRLl5eUcOHCgQ/poD7rm4yVAp6LX65k1axbTpk2jsLCQV199lbVr1yLLMtXV1Tz//PNMmTKFcePGcfvtt7Nly5ZT7qNPnz7ccMMN2Gw25s6dS1ZWVgfcSfszIM6K5gQW2iP7dUjEKdgWt6yyOreKslbisbsyZa3Mhk+HxBAjccEGfmrLtQJGp4RR20rCEYDTqzRmvTY/LoAIs/6MZuPH6NOnD2FhYWzduvWM2+ooAoY8QKtIksSIESO45557SE9PZ/ny5dx1112kpqaya9cu7rnnHv72t7+Rnp7Oddddx5VXXonTeWr1JHv06MGvf/1rwsPDKSkp6aA7aV8SQkyM7h5OiFHr3+hrBY0QqJz9sMHOwObyYXP+8PCxu32sOFzB/3YW8sXuInYX152wKpDbp1BU5yI9ykLPyKBmKxmfCmtyq9sQAWiOwJ+EpBGCEKOu3eqDCiEYNmwYR44coaysrF3abG9+1nrkAdqP999/n9/+9rdcf/31TJ08gT5mN5KngaiBYwhK6sWvfvUrhBB8+umnp9y2z+dDo/EXZCguLqa0tJR33nmH5cuX4/F46N27N3feeSfTp09vVVZAUVWK6lyU2FwE6TWkRgSdUbTCyXKovJ7tRXUtjgvg2sEJLM4sa3Mm+XOiT7QFk04is8xOw09ixzWSoGdkEEMSQgEorG1gR1EdDo+MRa8h3mokp8qBEKLJ/326GLQS41Ij0Wr8hrw9aWho4L///S8XX3wx/fv3b9e2T4UuFbUSMOTnHhMmTODWW28lSHXz1X8ex6CBIdFGUiKD6TbpGtKvfYDU1FQWLVp02gJZsixz+eWXs3LlSm677TZuueUWzGYzGzZs4OWXX8ZqtfL11183i3RRVZWVOZVUOTxNiTT+cLVoQjpYee9QhZ1draSICwHXDkqgusHLiuwfUup/rpxAkhwAvUagkUQzXZT2Jt5qZFxaZAe17v98draialuGPOBaCXBCsrOzyczM5NprryUiazGTu5kxCoX1BXWsOFzOwSX/w1WWzx133MFbb7112v18+umn7N27lwceeABLSCj7imqo1IUz+bJr2LRpE6mpqdx4443Nrim2uZqMOPgTabyKyvbC2jO55ZMiMaT1aAyhwry9JazNq6JnZBD9Y4MJNXYtzY725GQMs0dWcXagEZcEDI4P6aDW/Wg0GlRVxeE4teLVZ4OAIQ9wQvLy8ujXrx86rYa6vAOEm7RcmBZCRpyFcoeXxZkVbP/+G4YMGUJubu5p9aGqKk8++STvvPMON/7mPur04cyb/w1fzPuadTkVbCuyMWfOHLZv386ePXuariu3u1vNHqxqOL1NQ0VVKbe7Kav318tcnFnGl3uKWZ1T2aIWplmvYVhSaMs2ALes4PTKHKrw1/SsP8mY8gCnjkbAlLOwAgOYN28e7777bodFyZwuAUMe4ISYzWZqa2tBSGhN/vqQkhD0ijQxJS0Uk0HPtxt2sWLFitMW39q6dSuKojB27Fj2VboZNfUyeg8dhc/jQUZQUOPE7lO57bbbePfdd5uusxha33Q8HR95rdPL/H0lrM6pZFVOJWvzqqhxevHICsU2F0sPlePyNjfIkpDa3PQEf3p+sa3tKvNaSZCR0LEzyXMJjfDL88ZY/BEsxyvzadRK9IsJZmb/OEJPohJTW3hk5aQTsVJTU6moqKCgoOC0++sIfr7rvQDtxrBhwzh69CiHDh0ibfotZC94E9ntj1AJNeuZ1j8aaeYs7rv/9wwcOJCFCxdywQUXEBx88jrTR48exWKxMGz4cDKzDqMoMqER0Uy4YhYNdhvICu9+sJT4+HhWrlzZdF1KmJm9xTZk+YdNNo0QDIg7tYxRVVVZk1t5XKEnvy64o5nuh9pYCKKFUNZJYtBKWAzak/Iz/1z5sbGODzExqls4Wkk0bWLXOj1kltubVl4C0GoEk3pGUVbvZkN+NWadhl7RwadUkai6wcPG/GrqPT4k/IUuMhJDkY4TXtq7d2+EEOTk5OD1elEUheTk5E5P5Q8Y8gAnxGAwcOedd/LII4/w+WefIen05Hz3Dj6nnch+oxh4y19Zv+sANpuN66+/nm3btrFz505GjBjB6NGjT1gDsbCwkPvvv5+ioiL69evHZbfejaTTs2npt3z1+gsseHcOtz7yBBZ3DTs3b2jyUwYFBaHTSEzpHc3OojrK6t2YdBID4k694K/N5VfbOx6KCvU/EZOKDzGiFJy+CXZ4ZNbkVp329Z2FdByJ21PlmLb6lN4xzaJNJOEvUeeRZRRFbXrYaSQYlxrBpiM1zSonHal1MiYlHJ1GwqzXtCkHAH7hsxWHK/A23oQM5FY1oJFEU4RNa3i9XjZv3sx//vMfQkJC0Gq11NXVMXv2bP74xz92WpGbQNRKgJPC7XYzffp0zGYzTz75ZFNkis1m49133+WJJ57gq6++4oILLqC6uppVq1axd+9e9Ho9559/PqNGjWq1DF9DQwMZGRmUlZUh+3x8+85LuKqKqTPH4es1jq1rVzD37w8hSYJ1a1Zz+eWXM3r0aPr06cOECRMYNWrUGd+boqosP1xBpeP4fnWNJBiRFEZK+A8Ppu1HazhU2fU2vzoSSUCf6GD2l9W3a5v9Yq0tSuU1eHx8e6C0WWSQwF8z1OGRW90f0TXO5mODjYzuHtFqxmhOlYPtR2taRBxpJcHVg1rXVKmtrWXSpEmYzWaGDx/O888/jxCC3Nxc/v3vf7No0SJWrVrVoaJwgfDDLk52djZr167F6/UyYMAARo0a1eVExNxuN88++yyvvfYawcHBWCwWcnJymDRpEo899liLsMPy8nJWrlzJwYMHm8kT/1hb5e233+bf//43vXqlE1J1mF2Hj/DnMfFojSZUoxXnja+w8MM3yNy+Cas1mJKSElauXMny5cuJiIhgypQpwI9cHKfB4Qo7O4vrjusnFUC4Wc+knlFNhmFzQTW5Ve1T0Phcw9iYMXkymuMnS2q4mZHdwpsdy660s6OwrlU1yROhEZAeHdwsmqXe5aXW5aWgpoGjtS0LVR/LAWjts3TjjTditVr548MPszOvFCUsHoREtzATg+JCeP65Z1m4cCGrV68+5bGeLAFD3kXJzc3l7rvvZseOHUyZMgWDwcDatWsxGo08//zzTJ48ubOH2AKfz8f+/ftxu92kpKSccDlZVFTEihUryMnJwWq1MmHCBAYNGoQkSYwePZry8nL+764bMO36mqdX5mBzy1zbL5IB8VaUQdOpTLmA+268Eo/Hw8GDB5tUGRVFQZIkcnNzWbFiBVOmTDmt2dDywxWU24+fai6AywbEYdT6N1EdHh/f7C895b4CtI5WEoxMDiM5rLkbLq/awbajtS1m3ie7p2DUSlw+IB5FVVmfV0VxnavNjFsBxAQbGJkczr5SG2X1LoKNOvrHBuOrr6FPnz7k5+dzsFamoMbZ9HCRhF9pcVz3cLp3786CBQsYPHjwqb4FJ0WXUj8M4Cc3N5cLLriABx54gK+//hrhdiB7XBjCY1m0aBE33HADb7/9NtOnT+/soTZDq9UyaNCgkz7/WL3O/Px8vv/+e+bPn8/GjRu58MILyc3Nxev1Yq7JY11OBRohcHgUnttQhFcuxPBVFqrpTYQQmM3mZgUpjinReb1e6urqeOutt+jduzcTJ05s9nCx2+0cPnwYSZJIT09vUQTacDJ6HAKqHB4SGmPH20tjJIAfnSSID/FvGCqqis3ppdrpIb+6pbSvJEAnSbjlk18NZJXbKbG52zTiWkmg00gMTghhcVZZkyyv3SNTXu+mdON3TJ06FWNQMEfyiqksK0H2+YiKT0JRocrhxeFVuf7665k/f36HGfK2aI9Sb0nA+0As/hDauaqqvnim7f4S+N3vfsf999/PPXfeyrbn76I6awcIgSk8hgt+/xLz5s3jiiuuoKCgoEOq9pxtUlJSuP322zl48CDLli3jo48+QpZlhBDc9tKXxJtgfEow47tbOVrnZtHhWmIiwvjrx8u4cfIIvF5vCyMM0KtXL7p3786mTZtYv349zz//PD169CAjI4O5c+fy4YcfYrFYUFWVBpeLcTOv46o77mNQaiKD4kPoFWWhuM513OW7oLnBN7aDGFOAH3D6FLYfrSE+xMTmghp8ctv1PiOD9CfczwC/ayU1wh8um1ftOO7fV1ZUkkL0FNU6W/QtqypZRRVERETg8spIQrBn4xpURWHC5bMA/8PF4ZUJDw+nsrLyZG+73WiPGbkPeEBV1R1CiGBguxDie1VVu67mYxcgPz+fjRs38umnn7L9pfuoytyOKvsTThxlBWx48mamvLqafv368cknn3DjjTciSRIFBQVkZmYC/miSYz/9+vVDr9djt9txuVxNx3U6XZfytR+rxdqrVy+2b9/Od999x/bt2+nbuxfXJvvoGSxh1EmMSAhmZv94Xi2P5S+3X0tqaio9evRoeqB5PB6ys7ORZZmUlBSCg4PR6/WsX7+elStXEhYWRnFxMaqq0rNnT66//noOFFez6ruvWf3N52xdsZh/fPANHjmZUd3CGdUtjO2FtW36fM06DRGNscp1Ti/1Hl+7VrEPALnVTo7UOE/4nvqlGEQLMa4folr8ui1xVmPT5umJFCtV/FEvOo3UqsG3Rsezcd33TaGi1rAICnMPNb0uqyoRZh379+9n+PDhJ3G37csZG3JVVUuAksbf64UQB4EEIGDIj8PGjRuZOHEiWsVL2b7NqD4vGklQ4/SRV+PCKTzsffwRzGYzr7zyChdffDHR0dGUlZWxZcsWhBB4vT9kGh4zctu2bWPVqlUAKD4vtoIs5NpSbr32cvpMv4k6t4LX6yU6OrpTZ/kajYYRI0Y0xZrvP5jJ3w5rURWZftFmrh7Vm76/epgXM0aR0bsHJpOJl156CbvdztNPP80bb7zRFIbocrn8syWXi6effppPP/2UAQMGYLFYGDIkgy1bt/LxvAXc8dgzzLjzATYu+YY3n/wjLz16L395/ROGJoaSHGYmKdSErKrkVNjZVWxrWoZHBukZ06ikt/1oDTlVv6wolbPJyTwYaxq8rR4/dqmiqEQG6ekfa23amE6PsrC1sPa4G9qK6g9LbO0BPfnCKbz7zz+RlXmQ4ckpbFaUpuS3Y3kL9bU1LFiwgH//+98nvol2pl195EKIFGAIsLmV1+4E7gQ6pB7kuYSqqlRXV1NbW8vH//sfy/dXMDoxiPhgPQ6vTE6Ni2CzINloICkpCa1W2+RSyMjIaKraI8syHo8Ht9tNUJB/CdmvXz8iIyNx1Nex5eWHMFWV43K7KVz8HqUrP6Xm/Ns4VOCXjA0PDyc6OprIEAt9QiV0lhCi+o1CSKcvDFReXs6mTZuQZZl+/fqRnp4O+MMUV61aRUNDAykpKYwcOZLXXnuNVatWcdlll7F02XJ8sszQCyZTV13BE4t3MqDmDY5m3ockScTHxzNixAgmTJiA1WrF4/Fw4YUX8qtf/Yry8nLuuusuVFXl5f++yhsf/I+8vDwANm7ahCU0jOy9O/n7bVcx8YrrGTZ+Clf++gE+++/TVJUU4+kbi04jIYTA4fJxsMKBJAlEY03OYUmhmHQaKuxucqobArPwM6Q9YtDTIs3kteI/B79Br3B4WJpVTmKoifNTwkkJN1Pn8pJVbkel7Y1SjQC9VoPbJyOrNNUaHZYSxZ/+9Ceuu+46li1bRr8oI1qnld7RFrqFmdErHmbMuIbbb7+dyMiOE+5qi3aLWhFCWIDVwD9UVf3qeOf+EqNWjkVY1NbW8tZbb5Gdnc1HH33EE088gXP9/0hUqrDqNU0aDlqjmSmvrmXWTTczceJE7rrrrlPqL2/Z/zjw0TNNGZgACAnrwHHEzryPsrIyysvLObh2MWVbljC9bywAawob6Db9NtL7D6Zbt24kJSW1Gv/9U0pKSnjwwQf57rvvOP/889Hr9WzatIlevXoRExPDsmXLGDZsGCEhIWzcuJG6ujqcTid6vZ53PvyY3WUNfPrKMxQcPoDP15h0o6oEh4Qw9aKL2LFjB2PHjqW+vp6VK1fy9OvvEtYzA6+iMO+15zDjJS05icf+8mdUVcEaHsnz81bhdjaw+fvv+OqNF1EVBVVVuPhXd3DJjb/hzgkDuOqOe/n4lWebZFQXHCjF8RNdFE99Lb0NDvLrPHhCE9GeQ6XpuhqSgAk9Ill++PT8yAKICNIzuWcUpfVu8msc5Fe3rYOvlQSjuoWRFOqPhvE2auDoJIlvD5Tg+4n50wjBpf1iKKhxUlrvwmrQkR5tIUivRVVV/va3v/Haa68xatQo+vbty5VXXsmyZcuYM2cOF154Ia+//nqHKiR2aNSKEEIHfAl8dCIj/kvB4/Fw5MgRcnNzycnJISUlhWnTpmG1WklLS2PixIns3LmTqKgoZrz0PzY8ORtfgx2EQFVkht33AkeKS1m+fPlpKQpWHdjS3IgDqAqeowfo3bs3vXv3xllViunbf+DrbsHn8rsLghUn+Su+oKLOwdq1axFCkJGRwaWXXgq0Xlm8uLiYMWPGMGvWLPLy8rAGmVFlH3a3l2HDhrF582Y++eQTBvbvx4yZM4mPj8dqtXLkyBFkWeZPjz2O1+Pmwf+8g0arpezoERRFYevKRUiuehITE1m9ejWffPIJw4cP56pbfo0lbXBT1MKG5Yu546/P8e7Tf0FVVTRaLdEJyQQFhxAUHML4y65DSBLvP/s43fsMIGvHFq7+9R8Ii4rmwIYVfPbZZ4waNQprVBzuH/nIC3Oy+OL1F9i1bjkGvR63242qqvQZeh6/+fu/CY1sO+xSKwlUldOKf/45o6iwLrcKs05DwwkyaX+MwP8QMOo0nJ8SjhCCOKuR2GADhbXFrSYGgd+ffqTG2WTIdRoJnca/UT2qWzjr86ubzc51mkYdoehgekU3l5gQQvD3v/+dWbNmNSUALV26lCFDhvDVV18xdOjQU3ov2pP2iFoRwFvAQVVVz75zqAvy9ddfs2/fPnw+H1qtluTk5KawOUmSuOyyywD4z3/+w4wZMwh//32mvLScqqztyC4nEX2Gk1tQyCUXX8wTTzxxWpXmgxN7IOkMKN7mYXJBsd2afi/btQYhpGbaEgOiTQjJxoUP/oHi0nKOHDnSVFvV4/HwzDPPEB4eTrdu3Zp+fve73/GrX/2Kv/7pYXbNfYzSbctQVZV5BSoD+vTipRf/wy2/ugFJdnFJrwiuGhHLFW/t4d0n/sB1Dz/NJTf9muryMp6663qe/PBb+gz1Z2vWVZTy5pMPs6TRgGq1WtavX09QQg82LVtEz4FDCIuKxelwsG3lYgqyszCag/B53RRmZyL7fHw+5zmWf/khvTNGotXpKc7Pwe108sETv8fbYKdv7zH+2OCDBwkJj8IT04OE1F7k7N/FP++6Hp/Xi4pKWmoaOq2GzEOHObRnO/dcPII7H3+WsZdc3er771NUjFoJ+adTvgC4ZRXkkzfi2sbiFLUuL4oChbVO0iItaCWBEIJe0RYyy+2tull+Gm30Y4Ja0bhx+1R2FNZxXkp4q9eAX29l7ty5Jz3+s0F7zMhHAzcCe4UQuxqP/UlV1YXt0HaXx263k5mZydGjR7nssssQQhAcHMywYcPo2bMnycnJbVaJHzVqFF988QWzZ88mKiqKyy+/HIPBwOq//Zt169bx5JNPnrJL5Rgpk64ld9H7KD4vqP5ZpqQ30vvq3zWdozWYWpWXE5IWg9FEamoqqampTccVRWHixIkUFBSwf/9+tm/fjs1mY8mSJbz99tvsePVhynatQfV58Skq87fm8NSlRmLy16B6GggP0nFpzxAaKktwud3od86nd6SJj598gH8v3kH2vp2smv8p0391J1+/8R82fPs5siwTGhrKI488wtKlS9m8eQvrFs5DBQoOH0SnN1BXVcHiT97GYDJhMAZRX1eNy9nAb6cOJ6F7T57+7HuEz8ODW9ZjDY8gPCqawpxD1NbW8re//Y3U1FT27NnDpk2b2LLme0zBITx11/Xo9HoSUnvyl9c+wRxsRSBwVxXx/F8eJP9wJu/88y8Eh0YwZMzEVv8G7Zn1eC7QUcJfiqqSVWFHVf3tVzrc5Fc3cGGvaCQhGBBrRRKCg2X1LWbmkhD0jLS02m5hrbNFXLkKFNaduGThnj17CA0N7TL7fe0RtbIOTqqk3s8GRVHIyspi27Zt5ObmoqoqERERNDQ0EBQUxKRJk066rbFjx5Kdnc3ChQtZs2YNPp+PGTNm8PHHHzdtYJ4OhpAIxv7jCzI/+w9VWduxxKbQ66p7ieiV0XRO7LCJ7Hnn/5pdJ+kMJJx/SasbnjqNREjuWkJXfYnF50XTbSCLCsoZkhJD8bKP2LpyCbuKbcRYdKgqGDQQp3VStH4BHlltKq6gkQQWvYZSm4ur+4Tx700lPHv7TM6fdRcL3nmVqLhENi2ex2233sKTTz7JbycPQrtzPgWHcjEZDcz6/V/56KV/cdMf/4+5f3+AIGsItZXl+Dwe6mtrkBp9lLZqvx9Ws3MBa/43lwsSTZTXV+Op8ZFfbcdisbBmzRp69erF0KFDycjI4ML8o/zpH8+CquL1eLjo2ptxOp0YLVZARRsezx9eeJunbplBXl49/3v5XwwePaFLhXh2Fh1hxCXhn5F7frTDLKtgc/sornORGGpCCEH/Rp2WzPJ69pXY/CsincTwpLA2FRG1kmh141V7PO1c/MEKixcvpm/fvl3GkAdS9E+DAwcO8Nlnn2G1WhkyZAj9+vUjKiqq07/MdfkH2f/xs9TlH8QS152+sx4govfx/Xa1efvZ/vIDOCtLAJW4kVMYfMcTaPQtZTm3v/IgJVuXNXPXrMirY1eJgz+cH0+p3cOhShflDi/lDg+bCu3cMDCKCd2tXPPZISanhXDPCL+L6e0dZUhCMCLRwrs7yxneJ43vDlVRU16KyRKMSa9DI1T6hcDvR8agqCq/+TYXrUbHs299xNP//g8arZ7qshIa6mspLy5EK4GsQK8oM8UOBVuDC/B/MbUS3JERw9s7y3F4FcxGA/+d8xovvfQS27dvZ9WqVcydO5esrCz27dtHSGgoIeGRaM3B1FVV4HI2oCoKlpBQhk+8mPCIKD555RmMZjN/+PebpPUb3G5/x18iEjAsKZQj1Q7KHD+EFx4vVr9/bDAD4lpquSuqiqyoTa6Xtmjw+Pj2YFkzl4xGQN8YK/2PI4NcVlbGnDlzuOSSSxg2rMW+Y4cS0Fo5TVRVJScnh+3bt5OQkMCYMWOQZZns7Gx69uzZlCbe2VTs28jGf90Jyg8yqxq9kfMfe5+wtAHHvVZVVdy2KrQGE1pj66sAj72OpXePRfE1z6g7XOXkuQ3FzLkktcnXLisqRTY3Dy09wm0Z0VyYFsoVn2ZxQXIwGfEWEq0GdBI8tuIowxMsCCF4+PZZ1I//LddNGI7JaOD//u//ePzRh3jhwiTCTP6Z/Mq8Ot7ZVUF8YiL3P/IYv/3Nb9AbTcSEmPHYqimq949N01iQID0xiv0FFU1jPbb0N2jgzdsv4vpXF2E0Gpk4cSJHjx7l7rvvZtSoUYwYMaLxfQGdXk9QSCgetwtFlhk34xoKs7M4sH0jSqOfNyYphSvuuJ/zpswIRLScJD92w0jAiOQwukcEsSq7gtJ690nN7ocmhpAedfKa961RWu9i05Ea3D4ZAaRFBDE4IQSPrKLXSK0qJ65atYrVq1f7SxJaWnfbdBQBrZVTxG63s3PnTrZv305tbS1ms7lJkEmj0dCrV69OHuEPVGVuZ9O/7gCl+QaS7HFxaN4cRj746nGv99iqKdnyParsI3bYJMyR8S3O8TrqEBqNP4/3R/QINxKkk9haZGdkov9LpZEEyaFGRidbqXbKVDt9CPxp7fVuma1FfvnTcd2sfHOohpGJwZTLBvZ8/DID+vcjJyeHp556isfGdyPM9MODckL3EGxuHx/sPcqDv78fn8+L5BEcKbahFT8YB0X1/xwqrEAvCTyKil7jf1FWIdig5cut2VyPv6BuWFgY33zzDTVuhXc++BhFUeiemkpFZTWK7OX2u37LwOk3sPCjt/jfS0+hN5kwB4dgr60mNDKaYeOmsPyrj1i/aB5/eP4N9MaT10I3aIR/8+8XRrM7FhBlMeD2yZScgoZNe+ihxwYbmdkvFpdPQaeRKKlzMn9/KV5ZQQhBn2gL/WOtzWb2mZmZJCUlnXUjfjwCM/If8WMp1E8++YSsrCy6d+/O0KFD6d2792mXMetoVj08E9vRQ62+ZklIY+Kz37Z5bfne9Wx5/h7/7FKRQVUxRSXQ59r7SThvWtP7oSoyS+8eh9vWsgjCrlIHL2ws5k8XJNIr8gcjVmr38NDSIxg0gkExZvaUO3nuomRUVZBb4+KdXeUE6TQMjQ9iZZ6N4noPkcEG7D6JnJwcDr1yL3V5+5v1JelNMOZGLr/rj/h8PoQQaAToJOgZbiS/1k2DT8GngFEDPSOC2Fv+QyamSSsxNiWUQtVK78FDmT9/Pg6Hg12lDg6X1fCbi4aBquKw1SGhcu2gONblVXN+z1g+31WETm9AbzCiMxipKi3yt2mxcsdfn2Hz0gUEWUO5/S//OuHfTOCfhcZZ9Hx9oOyE5/+c0UiCoYmhFNU6KbK5Tu4aIchIDKFHGxuZp0Ot08vSrPJmIaMaSTA0IYS0xn6cTicvvvgi48aN47zzzmu3vk+WgGvlOBybfe/cuZMbb7yRsLAwysvL0Wg0REREdPbwTsg3v+oHSisREkKi+0U3MGD2nwCoPrST3MUfUJOzB8XjIqzHIMp3r2vhLgG/W6b7xbMJTemD3hJKRJ9hVO7fzObn7kLxtjx/c2E9r2wppWe4kZGJwegkwb7yBjYctaGVJKKCtATrNRy1eegZbmR/eQOjk63cOiSKzCoXr20tJdykZWBcMGtKvFx3061MH5xK7bcvNVveCknDJ94+rN+0hdLSUgZ3i0LvrueOodGEGrXUu2Xe3lnGijxbs/GlhhmJshiIMGnJbtBQWG3H6XRy4YUX8unX37JwXyFP3n0Dh3ZtpU/GSPZvWQ+AVgKvAhr8inAICRV/RRpLaDj1NVVIjdXVYxKSKSsqICQsgvq6GkxBFoZNmMpF195Mco/eZO/bhaO+Dos1lB7p6Vw8sDvfH644pzNFJWhTUfBkOVa3dHth7Um/FxpJMLNfLAZt+yXfbDtaw+FWioSEGLVM6xPb9H9ZllEUpc1otI4k4Fr5CaqqkpeXx7Zt28jMzERRFFJSUnC7/Uu7zirZdDqYwmJwVpW0fEGAJcEfPnjwsxfJ+fYdFN8PS9fS7SvabFP2uMie/7q/GY0OQ1gUFzz+ESP/+Dob/3FLi/NHJgYzODaIdQU29pf7tZq7hRh47dI0rAYNu0ocbCm245EVMiudGLQSR21u7l2Uj0krcV3/SEYnB1Ni96Jqfbz55psUDUxhfKiPOIsOn6KiEVDvhXlfzyc+MYk+CRFkHiklMUTfFBETbNAQF6wn3KShximjkQQ6oxlDsIUim52tRTY0Wh2KLKOqKjU1NSxfu4GXn3uOqtIiLr/9d1w2sjc3b12PrDYa8cYNN40E/YaOYM/WTX6J09pqEKLJV156NB+A2qoKTCYz1933CHVVVfzfbVei1ekxBVlwOR3U11QjhEBvNDHxiuuZOutWouI7rqpMW1SVFlNdXorJYiGhe8/T2qyPtugpd3jOyM2h10gYdRokIU4qgUoA41Mj29WIA3jbeIr8NKRRo9F0aPbm6fCLnZHb7XZeeOEFDAYDgwcPJiMjo1M0EtqDwvXfsvuNx5A9LZelQqMldepN5C39sNWZ9KkQ0XcU9Uez8NTXnFE7qqpSUOfB5vYRYtSSZNU3MyKSzsgmfW9e/uALLk0PYXz3UHKrnewtd7KvzEGR3V/YYt7vpvHY93kowMOjExjR6KN/dXMxa47U45L9rrJjKnkZcUFEmPVsKqxn2PkXsHbtWlRVZfLUaaxft5a+w8+nu87JrPAKZn26H6tBS73bR0MrST1RZi1VDT4UIDo6ipraOrweDxMmTkYymFi9bAk+r4eE1J54PR5qKsowB1u59u6HGHXRDPIO7Ob1vz9EaFQ0pQV5PPjC2/QYMOSM3teTZd/mdcx/+xUKDh8kKiGJ+ppq9AYjU2fdysQrbzjr0VdjUyMIN+uZv6/kpDY50yLMDIwLwajTUF1dzdtvv82cOXM4evQokiSRlJTEHXfcwW133UNmpZOqBg9Wo46BcVbCzW0LxRXXOVmXX90sikUS0KuxypDdbufdd99l2rRpzfIrziYB1wp+Qaf9+/czYcIEAAoKCoiPj++yvu+TxV56hAMfPk3Fgc3IrtZLj0l6A4rnzIshaAxmZPfZKW+WW+Ni4eEathbZafAqBOs1hJp0uLQm/nj37bD5c+YdrGJ7sR2HVyEl1IBFr2VvuQNVhdCQEDxOBx6vD5NOwquoXJgayiW9wukzdBS3fbiJ3Lx8dHo9w8ZdhGyvIXvnRn41IJJXt5YwMtHKuG7BPLGmCK0EPgVCjDoECtN7hvLR3ioMEtw4OIbd+lS2btqIpNFw1V0PcuFVN3HX5MH4fF6GT7yY3RtW06P/YP4y99Om+6urruTP11/M1BtuZ+EHc3l+3mpMQR27gbbm2y/430v/5Fd/eIwRk6ah1elRVZXMHZv56D9PktKrP7f9+Z8nbczPNAlIAGmRQQxPCuP7Q+Wt6owLQKf5IZZcI/zp8olyJdfMvATwFxe54447SExMZNGiRSxcuBC90cQj//2QtP7+B6RGEkzuGdWmMVdVlW1Ha8mrdjTdf4hJx8S0SLQaiY0bN7JkyRLuvvvuziuy/Et2rXg8HlavXs3GjRsxGo0MHToUq9XaZYL520LxeSjasJDyPeswRyeRMvk6TOExzc6pyd7N+iduOuFsuz2MONCkmX42SA0zNsWdH6PA7uOPi3PZ+fU7xFr03Dcyjrd3lrH4cC35NW6EcBNtMVFW70T2eXF7fQyJC+LPYxPZVFjP3G1lXN4nnOxdmykqyAf8hmLs8IH0Mzbw683rWHS4hvhgPduK6imtdyOAjJQYtuSWkR5pwu7ysizX74PvF2NmXYGNi3sVsluvx+vzUVNeQpDVSmRCEqVHcinMzWLqrFtY8r93aLDX43Y6CAmPIiQ8kimzbqMwO5OeA4eybuFXXHj1TR32fpYXFfDhv/+Px9/6iiSTjP5/f0Aqz0G1RND/glv4y+uf8vdbr2DD4q8ZffHlJ9XmmU4DVWiaAbdVMEIrCX5cDEhWwd3QwOXXXEpUWCiDhwzhwadeoNTu3/x++vLruTnrEDdeOpl//vZXPPH+AuK6pSIrKvtKbYxNbX3lLYRgeHIYvaMtVDV4sRj8GvTHBNW2bdtGUlJSl3S7/qwNuaqqZGZmsnjxYurq6sjIyGDy5MmYzeYTX3wWcZQVkPnZi1Qd2okuyIrWYMYQGom9OA9nZRGy24mk1ZO3+APG/O1jrMnpTdfufP3PZ+wyORUU39kz5K2RbNHSP9qMThIMiw9CIwmu7huJVhJsKbRT4/LhanxoBQkvQq/hz2MTkYTg/CQr+8qdfHeohoI6N/HBespcAnuDk1defJH3H/8tD1yQzL9WHyHEoEGvEWTXuLEatRQqwUAZO4psXN0vnP/tq0YvQZLVwNZiB4fK7WglQWRyKns2rkH2+SgvPAJAeeFRrvrNA6xfNI+aijK2rliEwWSm/4jRjJw8nb/d8ga3/+VpFn44t0MN+fIvP+KC6VeSGGHF+PbtCK8/FV3YyjAseQEu+RNX/Pr3fPveaydtyI+HIsvs2bSG0oI8tDod/UeMITa5e7NzNJIgJdz/fUwONXO4onklH0n4Z8XVDc0/4xuXfoMlLBK3x4EmMpnf3HYLkiSR1n8IYy+9imBrDNff/xcWvPsq37zzX379t+cBsLlO/PkNNuoINjbfyMzNzaWqqopx48ad1nvR0fysDbnH4+Hbb78lODiYq6666rQK8x7DbavGVpCFOTqJoOjEdhtjbd4B1j9xI7LbBaqCq7VNS/yzc8XnYd8H/+T8P7/TdNxenHtS/QitHrWV6JRzkZsGRfGX5QWEGLWMSQ4mSK9hXLcQVuXbyIgL4kCFkyizFodbRgGyq12kR5hQVJVuIXpe21aGJCBYr2FMxkDKXII9e/Zw+QP/JEivQRJQ3uAjWC/RPdxEkV2mLj8b8M8G52f69wi0AuKC9fgUO98drkGrkUjtO5Bd61fi83qQJA2K7C9A4HY5sVVX8fZTj1KUexif18O3779Gj/5DcLsacLudlBbksfDDN0hI7Ul8Sg9Wz/+UnAO7AUjrO4gJV1xPRExcW2/LCdm1bgV3Pv4s2t3fgdLcoAmfG93GD8i4/mXmPHY/9roaLCFhp93X+kXz+PSVp4mIiqZbn0G4nQ18/upz9Og3iNv+/C9i4hOQVZXeURZig/1ZxBFBevrGBrO/1IZGCBQg1KgjLSKIWqe3WUWg9QvnYauuxFZdQXzOITLGXoiqKOxav4IvX3+BX/3+L5w/ZSbvP/c3tixfyI0P/o0gSzCRQSeWZG6NrVu3Yjab6du372m/Jx3Jz86Q+3w+du7cydChQzEYDNx8881EREScUQZm5hevkL3gDSStHsXnJWbIeIbe8yyS9vTDj1RFZtfrf+Houm+aRK1OhurDu6nJ3oM1uRcavcE/Ju/x3SaS3kjimBkUrPzilPrqqiSHGHh8fBL/3ljM5/urOD85GINGUOeS2VHiYGi8BYtOYl2BDa8Cz64rpM6tIKsQZdagqHBdvwgW5dTx2M2X8e2ObPbt3cuqdeu489bZpOob2Hu0ijHdw4jpPZRsfSLffvQWiiwzZsqlDPUe5uUVmTTIMHdbWVP4nayobFu1FI/LyQNXTECr0+LzevB5Pdx90VC8Hjf5hw5gMgfT4LAjhMT21UtRZJlXHr2H4JAwyosKWPjhXGoqyhl43lgmN87Q92xczSPXXsglN/2GGbf89rQ2JD0uJ+bgEER+OUL2tXhdOGrQaLUYzUF43C03zvUavzSvt5UQFZ0kiAjSU1bvZsW8j1nw9is88vxrJKQPgOpCMAbhffRJ1n7xHs/85hrmLVlOn7QUTLrm0R/9Y62kRQRR5fBg1msIM+lQVNhTUtcseqQ4/zD1tTU8/dq7xA0Z23T8gkuupDg/h3/dfQN6k4nQ8EhkRaauopTQECsDjpN6fzwyMjLo06dPl91P65qjOk3y8/NZsGABVVVVhISEkJ6eTlRU1Bm1WbFvIznfvY3i9TS5MMp2rSZn4Xv0nHH7ca9VFZniLUsp27EKU0Qs3SZegzkqAYC87z+heMviUzasisfJ2r9eC0LQbeI1xI2aStHa+S3OM4bF4HM3oA8KIbz3MMr3rPPnnP9MSAs38sq07uwta2BXqYMGj4pJK/jXhd3oFmrE6VXoE2XmxU0lWAxaZvQOYUismafXlyDwsTC7lsfGd6N64zd89W0m47sFM+uqK3jl9TeYPXs2c15+nd/e/wDjU40s++bDphDDDd9/x7ofxez/+K83+sJpVBQXEhaXzKHdW3E1+DeFFUXxr7gAZ70NZ73fvy57vaiqQkhENLbqChoc9az77isMZhP3P/Ma7z33OE57PWOmX8HQcRdy2W338NRdN2A0W5hy3c2n/J5FJSRzJHMfiWmj0B5eh/D+YKxVSYPcfThVZSV43G6CQ1vKuIab9YSZdRwss7d4zauoVNjddDP6+Pzlf7Jk1ToKjuSje/Va8LlBkdEnDWLS1Y8RovHy0r+e4N133/2hf1XF5vL5w0U1gkqHh7IyFyFGHX1jgrkoPZrthbWU1rtRPC5sNdV0S07G3MrmcHxKGvf+61VefuQu3E4HeoOB3nFhTOgT2+LBcbIcq3TVVflZRK2oqsqGDRtYtmwZYWFhTJ8+nbS0tHZpe8erD1O47psWx4PiUpj0/KK2x6QobHrm11RnbUd2OxEaHZJWx/l/eZewtAGsfHgm9W1kY540QtBn1gMUrPgcR9lRUBWEpEFVZJA0LVL2f+68uqWUCLOWa/v/sJn13aFq3tlZ7q9x2lgdPc6i4+lL+hIi3Hx1oIpV+TZemJrCd9k2Pj5Qi9PZXMbUYDBw9913s2PHDlavXg1AUFAQDoc/eSQtKYFQvcqOnGJMOom/Tu3H/BIdG7ftaGpDCMFjr39C9cGtfPL+eySk92XPxjXHXgVAbzTicfn7Do+J54o77uPjF5/ilUVbMJr9GjhFedk8cftVvLRwE3pDS2Gz47FxyTd8/9l7PDb3U4xfPYamaB94XaAzoRqDcP3qv3z6/ls46mq55dF/tLg+1KQl2mLkUEVLQ36MhR+8jlKez1NPP8OuP01r/rDQ6JDTLyDj1scY0r8P2dnZREREUN3gYU1uFV5ZQVEaK9gL/7xD8EO0SVhjtMkHH3zAv/71L1RVJbH/MG5+5B/IPq9fW1+jQQiBAB6+ciyGxhl0Zmbmaa3KZVlm3bp1DBky5LTqArQ3P+uolSVLlrBp0yb69evHzJkz27WosNBoQIgWs1lJOv5bV7F/I9VZO5qq9KiyF1n2sved/2Psk5+3T6yuqnLoy/+CEGh0eiyJPbGX5CI7Hb84Iw4wLT2Uv644ythuVuKC/Z+B6enhSELw8Z4KuocaOFztIi3cyMbsUraVOCi2efj7hCSW5dby1vYypB9lkR5bRrvdbl544QUEMGPaVNZs2ESdzT+rFpKGnKP+VH0BOL0KjyzY22JsYdZgnrl7FqgwLMHCgZ3rf/SqSlBIKA31tqbPWk1FGW//88/EJqXw/WfvcenNdwOQ0L0H3Xr1ZduqJZw/ZeYJ3xOP24Xs82E0BzF84lQWvPcan776HNf+9km0R3YilRxECYlDTr+A7RtWs+Krj/n7O/NabavW6cPjO37o6eG9O7jxumuRM9e3eE3IXjRZa0iOjWLQoEHs3r2bceMnsDK7oplMbeNb0vSPT1FZnFVOkF5D/1grWVlZXH755cx9401yv/2SXkNGUpyf0+zyIOGjqryckJAQHnroodN2rR46dIiVK1c2VbXqqnQN6b4zZPDgwVx00UVcddVV7V4ZvtuEq9Homm+QaAwmUiZfd9zrag7vRva0FKivO5Lpb3fStWj0PxVXEujDTi20SXY7kV0NyB4X9QWZLcu7/YJICTXyq4FR/Hl5ASty65rKtk1ODeWKvhHk1bhBhZ0lDr7PrWVEvIWnJidT1eDj1a1lmLSClNgoRvRIINSkRaPKCPWHB6IKfLNwMRExsSR07wlASHi4vwxZ4+t+dUVBkM5feUkIgSRJ3DvESmqYEa+qsq2onhqXv13RaGAUjwdVUdA0PuCF8Ed9FOfnsH/rhmb32b3PQMqPHmnzfVAUhXXffcVfZ8/k9rH9uPvCDO6dNpJv3n2Ve556iQNbN/CnG6azZPtBdut7sL7IyTMP3MnbT/2Jh158h5iklDbbbvAqxy0+oCoKBp0WCaW1miUIVITwV8pSFIVyu/uks0IdHplthbU4fP6Z8v++nIek0fD63x4g98BuFEXG63GRs28n33z6AZIkER4ezj333HNyHbRCdXU1AN26dTvBmZ1Le9XsfBu4BChXVbV/e7R5Iir2bSTzi1dwVZcRNfB8Mq66t0My0sLTh9Bn1gMc/OR5hEaD4vOSeMFMUi6cddzrgqKT0BhMLRJ0DKERHPr6NQpWzwNJAiGQdEYUrwtUFU9N+WmPtbNDA7sCF/UIJdai4+vMat7cUUaIUUOdSyYt3Mi9I2N5bVsZr12aitWgpcErszi7lq8OVKGX/DPqv420cuvX2WgkMOk03D08lqN1bj7cU9kUM52TldnUnyRp+Mv4JHKrnRg1EuuP2pg1IIoyp8qrmwoJDg6mvr6eflFmbD1kIs06hsdbeGFjMTqNYPTQAazcshun0/85kRW/oVRkGZ3BiNftYs/G1aya/xmWkBAKDh9k26olRMYmUJh7iMTU5r5b2efjv3++l/Lio1x2270MGTMJjVZLftZ+Fn/8Js/+7hb+NOcTSo7ksGbB52xYPB9TUDAjJ0/n/mdea1W50VFfh8flxBIShk5vQKV1nXAB9Og7gK3rV/Orfz3BvvefahZnLjRaogeOwVbv1zbq378/iqqeUlUaWVGJ6z+CN//vQZ588kle/2YVc/71N7asWMSudSsQQmC2BGPQaZF9Pj755JMz2qB0Op1IktQpuiqnQrv4yIUQYwE78P7JGPIz9ZGX7VzNthfvZ1NeJYqqMjI5FGNIBBOfX9imnvaZ4nM14Cg9gikiFn3wicOyZI+LZX+Yiru2ssnNIekM6K3huKpK6Zh6KgF+jM3tw+aWseg0hDZqmr+4qRiLXsNtGTHIisrmwnqeXl9MSoie5BAjE1Ot/G1VIQYJnp/aHbes8H+rjlLn/mFb88dGTEgSD0/LIF1Tw+ojNr7PruXqfhGEBBn5x+qjyLKMSSu4c2gsQXqJhYdrcfpkDlW6UPFHgnhkFYPG70fXS4IpPUJZmW+jziXjVfzFpGWfD0njvwdVVdAZDPjcHuJS0rj54SfoN/x8AL6a+x8O7tjMH196F2PeZnRbPkN4GvD1Ho93xDUs+PhdNi/7lifeX3DciY+qqmxc+g1L//cuBYcPNkayuBk9dSaX3nQnE4cNoNzuxuNTqHN5UYB4q5EEjZNhgweyf/9+1II97Hr9T037NkHRSZz3p7f5z2tvsn37dj777DN8isq8vW0XT24NjYB/3nIpv/vd77j2hhvZdKSasno3R7OzkBqqGdY9js2bNrB06VKWLVt2ah+an7BgwQIyMzN56KGHzqid9qJDfeSqqq4RQqS0R1utIcsyixYtYsWKFXg8HqTM1aRq7WRXO+kdaQZFxttQT9GG7+g28ZoOGYPWaCYkpc9JneuqKWfHnEfx1FaCqiDpDFjiUogePJbcRe8RMOJnB6tBi9XQ/CN+y5BoHvm+AEUt4+p+EU1a4Apw1ObiX+vqkQRkxFtwyyp/Xl6AWSc1qfydl2hhSHwwH+yvo97RQHR8Es98t41nLuzG+BQrn+6rJK/WTd8gCzqdDlmWGZQQxif7Kvn7hEQOVzXg8vk39LQSTb5htwyxQVoqGrx8k1XDbRnRvLXDvzqTff5QQUWW0ep0WMOjeXHBevZuXsPLj9zDfx68kzsff5bBYyay9LP3+OubX2DavQD9uvcQPv9mo27zp2jyt3PJjS+wav7/yNq1ld5DRrR4z/zFigVzn/wTB3Zu48rf/IGMCyaj0WqpLi9h2Rcf8tebL2Pkwu+YMKLl9QAPPfQQU6ZMYf78+UyZs46a7N3oLSFYknrx/vvv88ILL7B27VrAn7U5Li2SNbmVTdtQBo0gzmqizO7C7pZbfFtigo28//77TJ48maqqKn79619jSo2EQQnU2+p46aWXmDt3blMfZ0JNTc05ocHU5Tc7N27cyA033EBkZCRXXnklZrOZz777iNcL6hgUG8RVff0ys7LbSX1xXiePtjGC5h+34Cg94o8ewT+D0lsj0BpMZzUL85dGcb2H1fl11LpkLHoNo5ODSQ1rHtlhNWj514XJvLergru/zSXM5A9HK6rzEGTQ0C/KzP7yBmRV5aVNxeg1EjpJMCDGzO6yBlw+BZNWYMZDPVBW6M8CfXZ9EVf1jSA9wkRSiIEDJbV4PP6/9YEqN5OSrTy+spDuoUYOVDqJMmuoaPjB/94z3MBzU7rz9o5yvsmq5q0dZbgbX9ZKAp+iYrZa8TX60v/vjqt49L8fcd19j/LRC0/w0iN3kz5oOBZrKLEJSejn/6HJiAMI2YNUkYum5CDjZlzDpqULWjXkSaFGdi/5koqcA2xYt5YNq1eg/eR3CHs1sd2Hce3Nt3PVRWO57LLLyM7ObjVL+tFHH8VoNDJ8+HDGjBnDyJEjsdvtfP7551gsFpYvX07Pnj2bzo+2GLi8fzxVDR40kiDcpGtKi1+bW0WZ3e1Xv5REow55KMGGSNasWcMjjzzCP/7xD0aMGIGiKGzdupUpU6awfv36M/Jr79q1izlz5rBu3Tp8Ph/Lli3jrrvuYvTo0Z1e0rE12i38sHFG/m1brhUhxJ3AnQDJyclDjxxpe7PmGDt37mTKlCm89dZbXDJ9GlWZ2/E21PP+839nw8597ChxMC7FyjX9IpH0JhJHT6e+8DBaYxCpU28iZsjZT6etzd3H+idmtxCWknR6Bt7yOLvf+ttZ1Sv5JeD0Kry8uYR95Q2MS7ESa9FT7fSxMr+OeIueB8+Pb3Kt/Bi7R2bx4Ro+3ltJlFmHUSuYkhbKR3sr8SoKBo3AoNVg0Eq4fQo1Tr/a4SNjEnh6XVGzYCZZ9SfFTOkRSkm9h12lDpA0KI0x5yajgZTIYGrqbJTYmidwaQUYdRLxwXqO1nmICdKSX9fygR/bLZWxl1xJWr/BvP73BzEYTPh83saoFDNBwSEUH8nFYrXyl8F6koOb37OqM+KZfA8r8mzs27yOu598sUUfGgGPXnshL7/8MoOCPX4JiGOqmpIGfUgkF76wmBmXX8lVV13FLbe0lDQG8PpkduSX8sXnX1BemE98mIVLp13Meeedd0qGUFVVSuvdlNvdmPUauoWZ0Wuax2gUFhayZ88eJEliyJAhxMTEtNHayfX38MMP8+GHH/Kb3/yGGTNmoNVqWb58Oa+88gqjRo3inXfe6bTEoLZcK2ctakVV1bmqqg5TVXXYySbpHHvaThqVwbL7L2LLc3ez8aWHOJB1mKGJITxxYXe+PlhNvaJF0uooWv8tNYd3U7F3A9te+j25iz/o4Ltqiddha4pE+DFC0hCS2h9LXNfe/T7XkBWVp9YWYtBKvDkzjdsyYpieHsaNg6J449I0ekeZeGxlAQ3eluGYFr2Gy/tEEKTTUOrwUueWUQS4ZAWrQYvdq2L3yESYNFQ0+BrVFTU8tdYfbuhTwKgVTf5yn6LyfU4tu8scjO2dyCuvvIJWq0UIgcvtIa/SjikyAaOxZfy3y6egqjCxu5UgvdQU8aER/i9pfFI30gdmYA2LpN/w0ZgtVmy1Vfz76zUMGzGcpHALkqeByNh4Lr/jfh5fcYTKhp9MGFQVOSbdv4qIaP07WJCbjc1Wjz26N/s/+fcPRhxAkZGd9RRvXsLs2bP58ssvW22jvN7NV3tLyK1XyZh6JVNvf4BBV/4aU7e+LMosY8GBUvaV2JrJxbaFEII4q5FB8SH0jLS0MOIAiYmJTJs2jalTp56REQd4/vnnWb58OfPmzUO47FSu+h/K1q+48eKx7N69m/Lych588MEz6qMj6LLhhzk5OezatYsbb7yR7f99CGdVKT6XA63PydTUYAbGBTNk+vVMHNKbnbo0FJ+nmR637HaS+dmLrVa/6UjCeg5uNWVe9rqxxCZzwf99SurFN6M1ByM0WoSma++Gd3U2FdbjllXuGRHb4kuukQQ3DIgkKcTAkuzaVq/XSILrB0Zi0UvUuGTe2VGOVS9R4/SREKzD6VPZXeYP6cypcTM0LojJ3a1NIXMaSaJbQhzGxiIHXlklyKBnzaESfv/732MwGJrKgqmqSn5+Ph6PB41Gg6ExVNan+h8K1Q0edpY42F/hQicJJOEvTacA026+m13rV9Fn6Ch2rF2G3mhE0mg5MvcPFG1ZjlKei8lWiLMkl/iEeM6fcCHzD9lQj5Xq0xnx9RyNLyyJ1fM/5YLpV7b6fjgd9VjDI5BV/17PT5FdDTjKjhITE4PNZmvxutsnszKnokXVIBXILLdT5/Jhd/s4UGZjbW5lq2PoLFwuF8888wwff/wxhdtWcnDh+7z11lt8+NZcNvzjVgqXvs8nn3zCe++9R3n56UeXdQTtYsiFEJ8AG4FeQohCIcRtZ9rmvn37GDFiBFoUarP3NEtlD9Jr0Gl1hKUN5Op7HiGnrBZJapl6qyoybtuZFUE4VbRGM5pWImckrY7SHSvRGs30v/Fhpr25hUs/2Etkv9Y3jAKcHIuza5nRK6zVaufgn9HN7BXO4uxa2nIjTu0RysU9wwjSSWg1gmqXgk+Fo7YfZrQXpVqZc0l3Is1aVuTZ0GkEfzgvlnq3TEFxKVqTmeTkZCStFpvLS1xcHG63G7vdzv79+9mzZw8zZ86kZ8+eGI1GhBB4vF60EgTp/GOvcikU2/19ZsSZiQ3SYPcqgMBeW0u39D7EdUtlxVcfM+XaWzDrtQSXHeBonZO8Kid2t4/+UUbe+PM9jLr+HlYWuXH2noyvx2jcUx/EdfFDvPvMY3RL70dyeusb92GRMVQUF+L1uFFiWmZHawxmwnsOJjMzk/j4lkW6C2qdJ6UEIatQbveclBrh2WLhwoUMGDCAHqndMW7/nAtTLKRHGDla5yK7vJZD8+YQpIWZM2fyySefdPZwm9FeUSvHD6o+DTQaDV6vF6HR+uOtGzcOc6tdFNS5mdQnCK3eiNdbjSkkDEWpa9GG0GgxWFtqRnQ0vob6FscUrxdHact9gfSZv6Y6c3uz1YTQ6FBlH4HolhNzpNZN/6jjyxKnRxipavD5w/y0LQ2+EIJfDYxiVGIwiw7XsKfMgdOrUO/5YfKwsdDOqiP1aCWBJMFTF3bHLXQIqRwQ2Ovr8bqcxJglKuw+XLWVzH/mIRbtyuW1j79EkiS++eYbvvjiC2bPnk1CQgIClezsbEBg0oLTp6JvrBG6o8KH2y2DEIRERPHNO6/wj48WAlByJJeY5BTqaqp5Ynkl9W4FjaQwIiGIEruHsso6/vmbWciyTGbSRKLjE8natY3Fz1yDAB568d0236uI2HiS0/uyedlCJky6B93/HgLZi1B8SAYTYT0HEdn/PF6/5T6eeuqpFtf7TqEAqSSg3u3Dauwaq9LCwkL69OmDo8z/PY0w6wg3aalx+sNYJa2eurwD9OnTh6Kiok4ebXO6rGtl5MiRbN68GZvdQdywyUg6/zLU4ZUpsXtQhSB6yDjmz5/PxCnTiRkyDo3hh2QGjd5En+v+cFyFQtnjpiZ7t1+npB0JTurZ4pjGYCQsbWCL4xF9hjPsdy9gDI8FBEKrI7LfyDNSVvwlIYnW1fh+jKKCiookBAgJSWdAtLKC6xkZxL0j43hjRg8+vDKdB8+PJ1gvEayXqPcohJu0hBg03DE8nuKUifz1+xz/7FNAz7hwIowSV/cJ54mJyTjdHtxbvyakcCuoKlqtlmEjRvL0f14mODyC8opK/vnRd/Tv1ROnTyEpxIjVoMGr+B/fbrcbSZIwmszYa6uRZZmKoiMYNBJBJiNb5n2AT1awe2SSrHqSrAam9AzjbxOSefa60egNft2Wlx7+DX++YTrLPv+AKdfezJ9f/xRz8A+p5kE6iX4xweg1oikxZ+Ytv+Xj/zxJvlOD89Y38Q6/Gl+fSchTH2DEQ6/x18cfR6vVctFFF7V4D+OtxlYzOltDVtUm/ZSugNVqpaKiAmNoNGqjSJoQggndQxgcG4Qi+zBFxlNZWUlwcHAnj7Y5XTb8MCoqiunTp/Pcc8/x98eeYMd/PZTvXoPBYEAXpGP4g3PZs/8g69ev55NPPsFkNHB0zdccXfsNWlMQqVNvJKr/eW22X7xlKbte+5O/eK7PS1jPQYz4w3/Rmc+81NbAW/7Kxn/ehuLzoso+NAYTYT0GE9nGeFRFwWuvBVRUn5fK/ZvQGoNQG//fAiGhM1nwOutbaMBoDGa/NMDPSOnwePSNNrOlyM709OZJWo32FYDtJXa6hxnRaQSSRosqy6RfcTcJoy5m91uPU521AyFpSBxzKRG9h7Hrzb+i+rxc0M2KrKq8ub2chGA9xfUeVOC1zcWw5S2MQRa8Hjc6nR6j4uaygZGMSfYbSb1Wos7l4/M9pZyXbCXbplLd4OHgunXc8Ic/U15whMfvuY37587n0WsmkZSWjK6qBq/GSGxEKGvWrCE9PZ2FCxey73Aed9x8I/+65yaio6ORZZmF879Er9chqSrpkUYSrQaO1nnoFhlC7JQ7uKZHBW888Uee/Ww5ZmtIq++dBEzsGY3FoKVHlIV9JTbK7S4mTJpIbcWj/P22Kxh7yVWcP/UyzCnBFB4+wLOTLqTBXs+iRYta1S8JMenoH2dlb4nNL1mggkYIUsNN5FY7m4pGaCRBz8ggzKepRtgRTJs2jd///vc4vApJF8zg6LoFKB4XGkkg6Qwosb2oU/V8/PHHLFmypLOH24wurX5YUlLC+eefz+zZs3nwwQfRI7N18yaWrtnAwIEDueeee/jvf//LFVdccUr9O6tKWf7A1GblzyStjvjzppFx179O+X5aw1FWQN7Sj3FVlxE7dCLx513clJn3U5b/4WIcpfnNjmkMZrpPuYHcRe+32DzVmiwMvfd5ds55pEUhZKHVodEbW3Xv/HCS9LPQJQfYV97Ay5tL+PeUFIL0LY2CV1b584oCpvYIZWL3HwyapDcy9v8+xZqcjqoo0KiLApA1bw5Zn7/UdK7bp7Ast5b1BfVkVzvpFmpkwOBhlBmjqausxGLUkrt9HX8fn9hYaELlhi8P8/cJiTy7vphuIQb2ljfgVQWqomCyWJk661YqSwvZu3ENCak90er0TLryBrauWMzedcuIjIzEarVSXV1NWFgYhw4dwmKxUFlZidw4W7zlllu4YMwYwrZ9RF2ZXw5AHnMTzgHT+ced16IVCsOnXM6U61oPEQRIiwhiRHLzh6DN5WVxZjklhUdY/uVH7Fy7DLfLRWxiMr/9zZ3ccv21J9Q0avD4KLO7MWo1xAQbkISgyuEhp8qBT1HoHh5EbLChy8Vk33zzzeh0Ol5/bQ65C98jb9knyF4vYSOmsaZMZe36DTgcDpYvX94p4zsn1Q/j4uJYt24d9957L8nJyVx44YU4nU7Wr19PTEwM77zzDlOnTj3ldku2ft/C/az4vBRvWtxuhjwoJpn+Nz5ywvMUn6fJJ/djZHeD30/eygdd8XmwJvVk4O1/Z+d//+if+SsKGoOR7hf9CsXrJnfx+213+mMjLmkxhkaQMuk6wnoOJvvbt6nK3No87KwL0y/KxNC4IB5fdZT7RsaRHPKDwFm5w8vc7eWEGjSM69ZcuU7xuFj39+tJHncFva66F535h6VyaEof0Gig0WAatBIXpYU1hhtKxFj0vPTSC7y8/ADvPPs4wX0HotdKOL3+93VzYT1pYQbq3TIun8KhKie94yMw9zmfTd8vYNiEKVSVFpK9Zwf3PPUyCz98g8N7/JK3g0eO5qt35jBixAj+8Ic/cM899xAVFcWIESMICQnh8ssvp6SkhKeeeoqPP/6YiAFjGHzbO+gVH26NjoLsTD6472Zi4xPoPWw0mbuPP2GqdbaM6go2aDHqJKITkpl136PMuu9RwC8ncPmAeL+L6gSY9Vq6hzc3LxFBeiKCuo4rpTVeeuklvwDf1ddw5+8ewH7rewAczD3Mlx88zaFdW/jk4487eZQt6dKGHCAhIYGvvvqKo0ePsmbNGoqKioiKiuKuu+5i2LAWD6Yui6oolG5fTvGWpeiDw0iZdC3BCWkUb2pjiSZJhPcaii4ohMPzX29SNdQYTCSOuRRTRBymiDiC//ElBau/QnY1EDdqKhG9Mlh699jW2/wJQqMledyVDLr9b03HovqPwnb0MKsemXlOuGeEENwxNIZ5mdU8tqKA+GA9sRYd1U4fOdUuLu4bzw2Do8HdUn7V53SQv+x/VB7YwrinvmqK/48edAGWuFTshYebztVpBINjg6hs8LKiwEG5R8sDN1/N3CceYu/mdUwcP5W1WWuJtuj4ZG8lswZEsjLPhk9W0WslNBGJBIeGYg2LIHPbRl78biNfvfEfvnjt34yZdgXGIAu/e+oVzusWxp6dmzCZTDz66KO8++67XHjxJWwrrKHU5kKrkTB4VzBu3DiqqqqY+8QfMZiDiO+WSnlxIbaqCi6Z/RtmzL6LlfM/PaF8a6ip5V6MEIKxqZGsyK5oivUWAsamRp6UET+XsVqtrFixghdffImbrp+Fx+1Co/Endo2beS1Dzx/Lrl27yMjIOOOiNe1Jlzfkx0hKSuKGG25AVVXmzp3L0qVLiYuLIyEh4ZTbiht+IQf+93yzY5JWR/yoU5/dnyw7Xv0jpdtX+A2ypKFgxecM//3LVOzb2KrBFEIiNmM8ccMmYU1OJ3/Z/1B8XpLHX0nCedOazgtOSKX3Vfew74N/svmZO1F9PtSTjHZRZR/2n7h0AOwleX5FxlZkeLsiQmfgij4RXJoezu4yB7UuH0E6DUPiggi2hpI86RrylnzY6ipD8XlxlBdSeXALUf1G+duTNIx78jMOfvofClZ96S9+rTMwcNggCroFkRGbzJQpU3jiiSd49l//5O677ya1e3feXLaMzcVHGRYfzOBYMy9tKsarwMTRo1m9fQ9VDR4umH4laxZ8ztJP3+WGu+7n7m8+Zfnn73Hr7/7I+B6RaD0Ofve73zF+/Hj27dvHpTNmsGB/KU6vX3PE55UpqGlgyZKlTJ48CafDzg2//wuW0HAO795GaGQMF107G4Cda5eRMfbC03pPQ006LusfR6Xdg4JKVJChzRDPnxtms5mb7v4daVNvoKK8FFVRCYmIQqvT0WCroXzTIt59913uvvtugoI6RqTvVDlnDPkxhBDMmjWLd955hw8//JD77rsPk6ml9ObxMEXEknH3Mz9sdspewnoMYsDsv3TImOvyD1C6bfkPIYaKjOyR2f3W4yRPvNq/kfITP7g1uVdTZEVsxgRiMya02f6OVx+mbOfq49fuFNIxkeumQ5JOT0Tv5qua2tz97Hz14XPGtWKKjMcUmYAlLoWja+YxLL75ZrXX5aAmawdxwydTvGlJ6/IIqkJD+VFqjEHs/+Bf/iLbMcn0u+GhFu6xtU8+yciRI7nooot4+umnWbVqFRaLhRdeeAGDwUCtqiVu1DRe2b8fn9AyavQolqzeQERsHKl9BzLw/HHIPi/ffTCXhoJMeqalsmfPHn573Qy++OR9nn76aa688krKysq4/vrrKbG58MgKKlBVVsILD96B02EnOqkbQRYLsTHRfPyfJ0npPYD0IcMJjfTPEgsOHSRr11Z++9Qrx33/qn6a/fkjJCGIDj69YsXnOgK/smV4dPNi15aQMKbOns2R3JwuY8ShC4cfHg+r1crs2bOZPn36KRvxY8SPuIgpr61n1CNvMOHpbxj9l/faJWKlNWqy97Q6R3ZVl5F4/iVodPpmvnCN3kifa+4/qbY99TWU7Vh1XCMuNFos8aloTUH+uHwaJXUtYaROuaHZuXlLP0Q+h4S9nJXFVGdupXD9AgwhkS0zZRWZ2rz9BCf24KJX12AIbUXJTlUxhEax4cnZVB/agc/lwHbkIFueu5vqQzubnTp+/HhSU1M577zz+Prrr8nJyWH16tV8/PHHhIaGoigK7336BZt37AZg08aNSFoNsiyTMXYyGkmDOTiE+5+eQ25uLmvXrqW2tpbY2Fi+++475syZw9NPP43T6SQkJMQ/E1fBbqvlH7++lhGTpvHclyt54IW3Wb1mLWaLhTdem0Pvnmks//wDTEEWDm7fxNP33sjNDz+B0WQm3tq6MRZAqPGcm8udFWKCW4ZRCiAySE9CbAznn++XDS4tLaW0tPTsD/AndOmolZMlLy+PkJAQwsPPfvLPyVC+dz1bX7ivRZEJrTmYi+duwlFWwIGPn6X60E5MEXH0ufZ+ogddcMJ2a3P3U7F3PVlfvdrCkAuNtikGLzZjAkFx3cld9C78f3vnHR5llfb/z5meZCa9F0ISCJ1QgwiCAtIXEJEuLroKLmtbXVl3/en6rr67q7421AWVXWUXCypiAURQQKqGIoSWkAQCaUB6Jslk2vn9MWQgJIFAOjyf65pr+nnOPDPzfc5zn/t8bwlOhw3vDl0Z/NS76L0DkFJyetuXpK/9N+VnTtU/Gq+j5F1bQq33wCukA6WnUmo9Z4qK57Z/fMnZA9tIevXh8xPEDoRag8E3CM+QDhQc21OrRF5wwi3ctPidBm1fSsmPP/7Ijz/+SFJSEgcOHODz1atJE4H8uHYNG1d9QGbqEZfvuMHAvfPnU1pcRGxsLE8//XSNDI7FixcjhOBPf/kr3x47w+rlb5KdcbyG0dXZzHT+MGM0Hl5Gxo4ZzVdffY2HlxGd3sDsR//MwBHj0GsEVfa6vzONSjC6SzA+5xfkWO1OzpgtaFQqd6bJjUxhhZVtGQVUOZwgJX4eOm6JDcBwPmWyOsxbXFzMvHnzCAsLu0KLjae+rJV2L+R2u5033ngDIQT33nsvPj5158xeSnFxMStWrOC7777DYrEQHx/P/fffT9++fZukXxcjnU62/mkq5pwTbu8Xtd6DbjMeJXbsvKtuz2m3kfTqw+Qf/gmJrFN4VVo9o9/aitbLm/wjP/Hzy7+tUQZOrTPQbeZjxI6dR+qX73B8zdIGlYlT6z3p88DzVBadIWXVG3WWs2st1DoDpqjOFGccqnXA8e86gKHPuEzUyrIzSF3zT7J3rcd1ZHPWm5JpDI9lxMtr3ffLy8uRUmI0GpFSsmXLFlatWkVRURGhoaHMmzePfv36YbVaiY6OZtOmTXiGdSTpVDFOKUn+eTvJO7fwxB//RP8OAXTo0IF9+/bVslxNSUlh2LBhnDhxgpTCKsYk9uaRl5YR1723++xuz5YNfPmvN/ntX/6PQ9s3smPzRswlxbz42Q9XnOT01KkZHhvonuw8XVTBrswi94lhdcHjtrLqsrWQUlJWZUetEnjpap+9FBUV8cEHH2CxWJg3b16dtgVNSau7HzYXGo2GWbNmUVVVxQcffEBZ2WXyp8/z5ZdfEhcXx65du7jvvvt48sknCQ8PZ/LkycyaNQuLpWnjw0KlYsgz/6Hj6Nl4BIbjHd2VPvf/9ZpEHODU1tXkH/kJh7WyhogLtRaVVueamJv/DDqjD0II94TdxTisFjJ/+BSn3VYjK+ZKOKoqKEo7QNzYeXS8fRZqnQGh0aE2eOEd3dUdumkKNJ6mGqt1r4hQ0WH4nXXWWO004V73fVNELJX5ua7R93mb2bpEXGi0tc6M/vvf//LVV1+RmZlJ//79eeihh+jUqROTJk0iICCAqVOnMmbMGMrLy1m8eDHz5s3DhypGxQcRF+BF54hgOocH0j3Ik/nz5zNx4sQ6fbO7dOnC2LFjmT17NoHSTNG5PFYveYHf3zGMp++eyH9f+SvLX3iKaQt+T1hsPLfPW8Rj//cepcWFDSo07KVVu0Xc6nCyK7MIh5TYna5Lld3J9hMFV2znekcIgbdBW6eIA/j5+fHrX/8aDw8PVqxYQVZWVgv30EW7F3Jw5ZvPnTsXs9nMP//5z8tWBvnxxx954IEH2LBhAyuWv0M/XzsxlkwemjuV1NRULBYL993XaM+vWmg9TfScu5jb3/ieW//2BRE3T7jmtrJ3rq1TeA1+wXSf+TgjXl5Lh1svWiR1mVNkW4W5ztWjKp0ejWftZchqvQfG8BiESkWPOX9g7Du7uf31jYx/72du/dsXDHj4FVS62jat14K90kzPeX/Cv0t/AnsMwi++/rMlodXjE9ON6JHT6bPwf9F5+yM0WjSeJrrPeoLQ/jUni0tOHqm7nfMHIrXeA4NPIJ0nL6jxvFarpaioiBEjRjB37lwOHjzI3Qt+R+LoSSx6fDHp6el06dKF8ePH8+CDDzJy5EgSEhJ4d8mrmCrOEKyycPzwQYYPH05lZSVLly6t9zO988472O12YmJisNvt3DFxHHfd+1uMPn5898m/sVoq0V1kiWu1WNA0wNpBJVwx4GrOlFnq/ImUVdmx2Bw4peSsuYr88qp6jcduZHx9ffn1r3+Np6cnu3btapU+XDczHZGRkcyfP59t27a5K7M4HA7eeecdgoODiYiIICIigmeeeYZXXnmF+GBvNj48Eumw47TbSF39NjGj5/DRRx8RGxvL4cOH6dGjRyt/qrrRennX+bgxPIbYcbVH+dHD7yQvaVOt0Er0yBnojD5ovXyoKqltKdpt+qMc+fClC9k2KjUagyeRN0+8qB09al2w+35wwjBUGm2TZL2o9R50uPVOTBFxpKx+m6pzOecN1GqOnlU6PV2nPUzM6DkIIYi4aRzhiWOwVZSh9TTW6aviGRhOWXb6Je0YiBr6K9Q6D0xRnYkYPB6N4YIhl9PppLS0lB07djBs2DAefvRRNh3Pp8Ric0dywnwMvPraa4wcMYLVq1fz4osvctddd/H222/z7rvvUl5ejre3Ny+88AJTp0697OjZYrFw6NAhnnrqKd597z3e/89/8Q4IpsfAofz2r6+RmXqE1598kP/37qcc2bOT0+mp9Bg45Ir7VadWkV9exdeHc/H31BHqXf+Bt9hiY8eJQpznP6BWLbitU5A7rq7gwsfHh/nz519z8kVjafcx8rqQUiKEoLy8nK+//pqcnBxKS0spLCzkX//6Fxs3bsS29hVyUw6SZ7a6Y45Co6Xfopf46ntXeadnn332vDudq02n04nVaqV37974+PiQmZlJUlISVqsVq9WKzWbDarUyc+ZMAgICSE5OZtu2bej1+hqXkSNH4uXlRW5uLrm5uej1eoxGI2FhYVdc+gyQf/RnfvrHghqOiWqdgYGPv0lwr7r/yMe/eo+Uz990iazdSsTNv6LP/c8hVGry9m5mz5Lfu+L3TidqvQdBvYdi8A2kOOMQVaWFOO02gnoOptv0R/EICK3Vvu28JYDW00TBsb3s+J+5V/mt1USt8yBu4nyCetzE7n88cOGzno9lqw2eCCFQ6wwM+X//wRgec1Xt5+3bzN43fu9u1+WUWV3Au243xdTUVFauXMmyZcvYsGEDquCOHDlTxsWeXRqVYGCUH/u2fMvrr7/O1q1ba7TxwQcfYDabWbRo0RX7uGTJErZv387KDz/iz6+9y6fL3+LZ5Z+jN3i4vWQ+efslcjMzCAqLZMe6L3jkpWXEJ/R3t1Fda5Tzr4/19+Rk0QXPE3G+z0JcqB8K50ftRj0FFTasjpoHTqNOzcTuoW1ueX1boaysjPz8fGJiru432RDa5RL9a6X6B+bl5cXMmTMB185dtWoV8fHxdIiKZO+Jw5RW2dmddSGmLlRqMv77PvGDR/Hdd9+Rl5fHN998U6v9yMhIfHx8sFgs5ObmotPp0Ol0eHh44OPj4x5leXh4EBgYiMViobKykuLiYqqqqrjtNtdpfmpqKps3b3a3q1KpCAkJ4Z577sFgMGC1WtFqtbX+MIHdEul977Mc+u8/cFjKUes96D77iXpFHKDzpN/QcdQMyrLT8QyOxOBzIQ0vtP9tDPvrJ2R+/ym2ihJMEZ1J/eJtHHYbOB2o9R74xPSg74L/rVX9yFKSz74lT1CQsg+kE42HEY3H1adxurbRk5KMZDQeRuLG30PchHvZ/tzcGges6mLW4YljiBg8/pqdIkP73UbiE2+TsvptLAV5BCUMpcudi+oVcYA9e/ag1+spLS0lISGBtUfyuNR40e6UnCqq4Oabb2bhwoU1nqusrCQzM5MhQ648agb497//zSuvvEJ6QTl9bxvHju838OLD9/DrPz5PZGw8Erjtjtk8PmUY3n7+DJ14p1vEDRoVvcJMSCk4a67Cx0NLpwAvkk4XuUUcXIlNDqck2t+TwgorZVWuQs8hRj0hJj1nzLXTWittzjZlP9vW+Prrrzl9+jQPPfRQnTVNm4PrUsjrwmQyER8fj0ajITwikgN6TwIcTibG+1+Yqdd70mveLHZnmTEYDMTFxfH4448DroODSqVCp9OhVrtO1bt06UKXLl3q3WanTp3o1KlTvc8PHjyYPn36UFVVRXFxMVlZWeTn56PXuybrvvnmG9LS0oiMjCQqKorIyEgiIiLQ6XREDZtC5NBJ2CpK0Xqa6gwfXIrW04R/5z51PucdFU+vX/8ZgC1/nFKr2lLJySOcS95Ra/Lvp38soCTzmHuy0FZegq28tjc8UG/6oldoNMOe/6zOPP5LzcQAnLYqhBAEJwytezsNJKjn4Ms6ZF7KpEmTyMnJ4S9/+Qs2mw1tHWXHwOXNUllZWevsKjU1FafTSdeuXRu0vaysLLp27UpKWRVSqHjwf17lq/ff5n8XziIwLBK/oBCy01Ox26wMGXcHcx95ii7BJrx1ao6eM5OcW0a4t4H+kb7ulLkSi73WdpxApc3B+G6h51eQSrZnFJKcW1rrQOVC3vCpiZdj1KhRLF26lE2bNjFp0qQW2eYNI+QAAwcO5OTJk6SnpxM77h7S1/0bjep83Fio0JmMdLl1Eo9PvoOZM2ei1WrRaptv1FE9kgcIDg4mPj6+xvNdunRBpVKRlZVFamoqACEhITz44IMA2Ox2dEbfJu/XpbFjcIl5ccahGkJuzj3hytluiJOiUBE9ciaZ339UQ8yFWsOgJ5fVuxjLN7YnZw9s52KXM7XeA/8u/et8fXNiNBqJj49n0KBBfP311ySOGMfOzMIatSfVQtA5yMjyt5YzcuTIGu9PSUnBZDI1OEWt2h/b2z+K3FJQqdVMue8hJs5bwLF9P1NeVkLqgb3knj7BnQsfx1OnwahTk5Rd4u7TicIK8sqqmNg9FLVKEGTUY66y11igphauSvYAHlo1B3NKKKq01iniAjDptRj1N5R0XBXBwcHcdNNN7Ny5k379+hEZGdns22yqUm9jhRApQog0IcSVLf9aCYPBwH333cdTTz1F5zsepNOv7kfr5YNQawjsMYhbnvuIrdt3sm/fPqZPn97a3aVHjx5MmTKF3/3udyxevJg5c+a4wzJ2u53XX3+dDz/8kJSUFHe19qbAw792DFyt98ArrGONxyoL8pDO2kWN60Jj8CAkYSi3vvg1wQnD8AyOJPzmCdy+5AeMofUXpO4++wmk1sCZSidny22g0eMZFNGorJ+rxWq1snLlSk6fdhUgWbRoES+88AIBeugT7oP2fFEGD42KwdF+OMpLeOONN2rEwW02G2lpaXTt2rXBseWpU6eyYsUK4oOMNXxONFodPQcNZdCoCfgHh9Jj4BB0ej1SSg5eUtRY4kovzC5xDVh6hprQqi8u7izQa9R0DrxwID1VXFnPSBx8DFqGxQU0qP83MsOHD8dkMrF27dom/W/WR6MPq0IINfAWcDuQBSQJIb6SUtad39XKPPPMM4wbN47pM2bw/PPPM26qa3RrNpv5YMUKnn32WT799NNWm32uDw8PDzp3vlB5yOFw0L9/f/bt20dqaiomk4l+/foxYMCARlcv6T7nD+x/e/GFiUCNFoNPEGEDao4wtV4NW3wFrvmHoF43o9bpuWnxsga958yZM7z0+ju8/81J9CqJ1WpFb/Dkwd/dwU0OJy31DSUnJ3P8+HFuucV1NjJ9+nTWrl3LuHHjePPNN7mzVw/sTolawE8//cT999/P/PnzSUy8UI/1xIkTWK3WBodVABYuXMigQYOYO3cuo+O780tOCQUVVgwaFaUWO4Xn8tjw0b9Y8NwrqAV09PfiUF7tgsgOp8RsdYVUvHQaxncL4Xi+maIKG0FGHZ0uqU6vVdd9oOng68GQGEXEG4Jer2fs2LGkpKRgs9nc4dLmoinOjxKBNCllBoAQ4mNgMtAmhdzDw4Nvv/2Wv/3tb4wYMYKgoCCMRqN7Jd13333XLKs7mxq9Xs+IESMYPnw4x48fZ+/evfz444906tQJk8lEcbGr2LCfn9+VG7uE8MTRaDy8OL7mHSzFZwnpexvxUxag0tSM+Zoi4uo0/ALc8XCVVo/eJ4DE3y9BrWv4jzkzM5Nbb72ViRMn8nPSHmJjYwHXhOPzzz/PqFGj2LBhA0Zj8/jjVFNcXMzWrVsJDw8nKioKcE1Kv//++7z00kuMGTOGiIgIwsPDSU9Px2Kx8Mc//rHWWoRDhw6h1+vp2LFjg7cdGxvL22+/zejRo3n66addi4t8AskvMfPk317js3deY/Rd8+gx8Ga89Rq6h5jIKqmkuLLmugC1ShDodWHfe2jV9A6r/yDcLdjE7lNFtUJG3UPaVnmztk6PHj1aLIW50emHQohpwFgp5W/O378bGCSl/N0lr3sAeACgQ4cO/TMzaxdTaGmsVisHDx6kqqqK2NjYFvFKaE5KSkrw9vZGCMHatWtJSkoiNDSUbt260adPnwbbF1wNmZs/I/n953HarIAEocIzOILYMXcT0nc4AJ7BUVeVqial5Oabb+auu+7ioUce5WBuCaeKKlEJQecgL7oEGfnNffeh0+lYtqxho/troaCggBUrVlBVVVXv8mubzcb27dvdxleDBg2qlRuek5PDu+++y+DBg2vVuTSbzXz66aekpaVhMBgYN25cLZ/9pKQkXn75ZdatW4evry/5BYUEhEXQuVc/7nnyr+g9PFALmNIznNIqG5vT8nFKiVO6UgtDTHpuiQm4qu/g2JkyDuWV4pASnVrFgEhfovxaJgPjekJKyenTp1GpVE0SK282rxUhxF3AmEuEPFFK+VB972nuPHIFlwfEsWPHOHbsGKdOnQIgISGBKVOmNPm2ijMOc2rrapx2K1G3TK5ljXu1/Pzzz8yaNYvU1FR+SC+gsOLCxJtaQGyAF9EGO/Hx8WRkZFzTWUdD2LhxI/v37+fuu+++5oO8lJLly5dTXFzMQw895D7FllLy0ksv8fe//51hw4bRv39/d4psaGgo//nPf2qE0sAl+nln83l/4y6O7ksiceQ4OnTuBrgEO7GDH9F+npRb7aTnl1NhcxDh40Gkj+Gacr6dUmJzSFdhZiVL5ZqQUvL6668TGBjI3LmNW1sBzZtHngVEXXQ/EshpgnYVGoGfnx+DBw9m8ODBFBcXs3fvXnfapJSSffv20a1btybJc/WN7YFvbNOdQn7xxRfMnTuXkioHRZW2GhNvDgkZBeUk9Apn+PDhbNiwwb1WoKmoXlA2cuRIBg4ciK+v7zW3dfDgQbKyspgyZUqNOOlzzz3HmjVr2Lt3L5EdoimssKLXqPnb3/7G0qVLufXWW9m5c2cNHxaj0YhPlZW0Q78Q2iGGqE414+3q6vUTOg29wxt/9qUSAr1GEfDGIISgZ8+e7Nixgz179lBWVoa/vz+9e/du0oNjUwh5EtBZCBEDZAMzgdlN0K5CE+Hr61sjFS43N5evv/6a9evX06NHDwYOHEhERESbGXWVlZURHx9PhdWBCqiVFyMEVXYngYGBDTJJuxpOnTrFunXrmD17Nt7e3o0S8aqqKjZu3EhkZCQJCQnuxzMzM1myZAlHjx6lQuPFF4dy3SswfQwa7l/wIGfPnuXZZ5/l/fffr9Hmjm0/YtJr6D9sRI3vSyUg7DJL7RVaj+PHj/PPf/6TpUuXEh8fT1ZWFnq9nscff5x77723Sf53jRZyKaVdCPE7YAOgBv4lpTzc6J4pNBvh4eE8+OCD7NmzhwMHDnDgwAFCQ0OZMWNGs4UproYOHTpw+PBh7vfS1ViFWI1aCDx1ag4fPsy0adOabLsZGRl89NFHeHt7N4k51NatWykvL2fWrFk1/qzvvvsud999N16+/mw5kodDXjhYFVfaSDpdxEMPPUTnzp0pLCys4bM/btw4uvfqTY40ccZc5Up71KoZGhOAWiUotdg4VVyJWgg6+HnU69qn0DI8//zzrFixgmnTptGvXz/mz58PuMz7Hn74YY4ePcrLL7/c6O00ybcspVwHrGuKthRahpCQECZMmMCoUaNITk7myJEjeHu7zLgyMjLw8fEhIKB1Us3mzp1Lz549efHFF+keYuLoWTMOp0TgOt1PjPLl4IEDZGVlMWrUqCbZZmpqKqtWrcLf35958+Y1OhsmPz+f3bt307dv31p1Zffu3cuiRYvIKq6sVTnKKSGrpJIhMZF069aNI0eOMHSoawWrlBK9Xk98XCzxQJXdgd0p8dSqEUJwPN/M/qwSnFIiBCTnljIkxp8In7aVSnujsHv3bpYtW8aePXvYvvcgX3+/Fc3PGfh4edK390C2bt1KYmIit99+O2PGjGnUtpTD9Q2OXq9nwIAB7kwJKSXffPMNRUVFdO7cmYEDBxIXF9cgj+umIjw8nFmzZjF79mw+++wzwrwDySysQK1SERvgSUVxAXPmzOHpp59Go2n8TzgtLY0PP/yQ8PBw5s6d2+h5Aykl3377LTqdrtbqTnClLzqdToRwLSS6lOrHnE6ne78XFBSwatUqpkyZ4p541WvUVEfdrXYn+7OKqfa9cp1QSHZlFjK1V3iNJfWZRRUcyi3FYncQbNTTN8JXWanZDLz11ls89thjaE1+WALjuH1WPCq1mgqbg92ZRQyPC2Dx4sW8+eabjRby68KPXKHpEEIwf/58hg8fTnZ2NitXruSVV17hwIEDLdqP1157DR8fH3r16sV/3nkbdUEmtpxUXnz+ORISEpgxYwYLFiy4ckOXIS0tjUcffZRBgwbx3HPP8cQTT/DII4+QnJzcqHb37dtHWloat912W50Fem+66SbWrVtHlK8HXCLlKgHRfp7k5uaSkpJCz549Adi2bRsFBQX1LvYqqLDW6X8iJZRd5K9ysrCcnzKLKK2yY3VIskssfJdyFpuj+Vcf3misX7+eGTNmcOxsGUKjRaW+4IfkkJKjZ83MmDGDb7/9ttGhPEXIFWphMpm49dZb+f3vf8/MmTOJiopyr3QtKipi165dmM3mZu2DVqtl5cqVrFixgn379nHPPfewYMECSktL2bJlC88880yj2v/kk0/o168fBoOBPXv24HQ6SUlJoWPHjowcOZKPP/74mtrNzs5m/fr1xMXF1VjZeTG/+c1v+OSTTziXm83QGH90aoFGJdwFH/pH+vLyyy8zffp0vL29yc/P58CBAyQmJtYb8vHQqqlLiu1OycnCcrdQJOeW1nI/tEvJyaKKOt6t0BgsFgsmkwmLzcnZ7FNs+uw/lBUXuZ+vtDnw8vLC6XTicDTM6qI+lPMphXpRq9V07dq1xrLy48ePs2HDBjZu3EinTp3o3bs3nTp1wmBo+owJIQQ333yzu2J5Y3E4HBw/fpzvv/+eJ598kvnz5/Pb+XMp3ryCrcd/wbtDFx65dwGTJ09m5MiRdOvWrUa2yZUoLi7mww8/xGQyMXXq1HqzEcLCwnj22WcZOXIkq1at4o4+fSix2NBr1Ai7lf994XnWrFnDzp07AdiyZQtarfay9re+Hlp8Ddo6za5SzpUjgT4RvljsteXe4ZSUW2u7Iio0js6dO7vSS3sO4Nv0VMwlxXh4uQ7EKgFRvh7s37+fqKioRocIFSFXuCoSExOJiYnhwIEDHDx4kNTUVHQ6HYsXL0atVmM2m/Hy8mozqYzVlJaWsnTpUioqKti2bRu33347//PUE/z03CzslWakw07Z6VTykjYx7PlPeeyxx3jjjTdYvnx5g9q3WCysXLkSh8PB7Nmz6wypXMyjjz6KyWRi4sSJxMTEMGDAAEpLS/nqq68YNGgQ27ZtIyQkhLNnz3Lo0CGGDRt2xTZv7RTIjowC8i7xEHdISWp+Ob3DfQjw1NXyGNeoBMFezesFciNy//33s2TJEj7+ZBWFWRlExXZCq9WiVgmMOg1dgow88NQSHnjggUZv67qsEKTQMjidTk6fPk1hYaHbn+bdd9+lqKiIuLg496WxJl7XgtlsJjk5GZvNxrBhw5BSsmHDBuLi4hgzZgxr1qxBc2QTGevex3lxzVKhImLwODrMWEzHjh0xm81XPCg5HA5WrlzJyZMnufvuu6+qMozNZmP9+vWkp6djMBgYPXo0cXFx7uedTifJycnEx8c3yMgtPb+cvVnFtdI2BXBn73AqbA42ppzFKSWO80v4g4w6hscGtrmDb3vHbDaTmJjIuHHjMBqNjJp0J4GRMXgbNIR5G1j6z3/y0ksvsWfPngZniN1QFYIUWgaVSkV0dHSN1YeDBw/m+PHjpKenuycNExMTGT9+POASrubyeLfb7aSmpnLgwAGOHz+O0+kkNjaWW265BSEEY8eOBaCwsJDIyEiOfXOopogDSCclmccICgrC4XBQWVl52SwWKSVr164lIyODKVOmXHV5L61We9niAyqV6qrCO8EmPdRKagSjXoNWrcJHrWJi91AyCsupsDoI9TYQ7n1tS/gVLo/RaOS7775j2LBhWCwWAgIC6NQpi6ysLJYvX05paSmbNm1qkjRfRcgVmpSePXvSs2dPpJScOXOGtLQ0AgNdZeXMZjMvv/wynp6e+Pj44Ovri6+vLz179iQiIgKHw4HVasVgqFtYbDYbJSUllJeXuy9ms5mBAwdiNBr54Ycf2LlzJyaTyV19KSgoqFY7QUFBnDx5Ev/OfShM2Xve8Os8KhV+cb3Jzc1Fq9VecRS8Y8cO9u3bx7Bhw+jTp0+j9t2lrF69mujoaPr3b3gRDZNeQ3yQkdRz5TikRCVcufeDOlxY6GXQqukeUncBb4WmJTIykjVr1rB582b27NnDunXr8Pf35+mnn2b8+PFu24zGogi5QrMghCA0NJTQ0AtFKpxOJ6NGjaK4uJji4mLy8/NJS0sjLCyMiIgIcnJyWL58OXq9Hh8fH0wmE5WVlYwfP941gj52jM8//7zWdjp37ozRaKR///7ExsYSGxt72bz3OXPm8N577/Hq358n84dV2MrLcNqtCLUGtd6D+Dse5JV33mPOnDmXHakeOHCATZs20atXL3fBj6YiMzOTgwcP1th/DaVPhC9Rvp5kl1Si06iI9vPEQ9s0gqHQcKqzUXr37k3v3r2bdVuKkCu0GN7e3u5VitVIKd2pcd7e3owePZqSkhKKi4sxm814enq6xTQqKoqpU6fi5eWF0WjEy8sLT09Pt2gHBAQ06DR1wYIF9OnThylTpnDr378kff0HFKbsw6djd+Im/JojJ3NYsmQJW7ZsqbeN/fv389VXXxEbG8vkyZObNDQhpeT777/HZDIxcODAa2ojwEtHgJfuyi9UaBbKyspYvXo1RqPxshlMTYUi5AqtihAXLFJ9fHwum2pYHYppLGFhYXz++edMnTqV6dOn88ADD9Bn4gNkZ2fz3Euv869//Yvly5fTvXv3Ot+/Z88evvnmGzp16sSMGTOaZHXpxRw/fpxTp04xceLEZq0Zq9A8pKamsmbNGmw2m3tuqLlRhFzhhmTo0KHs37+fZcuWMXnyZM6cOYO/vz8zZsxg165ddOrUqc73/fzzz6xbt474+HimT5/e5CIupeSHH37A39+/XVSqUriAzWZj06ZN/PTTT4SGhjJt2jT3/FBzo6QfKig0kN27d/Ptt9/StWtXpk2b1uQiXs3JkydxOBw10hAV2j5ms5m33nqLhIQERo0a1Sy/j2arEHQtKEKu0N7YsWMHGzdupFu3bkybNq3Jsg0U2jcVFRXs3buXoUOHIoSgoqKiSYq11IeSR66gcA3Y7XY2b97Mjh076NGjB1OnTm02Ef/ll1/Izc3l9ttvb7bRvkLTIKXk8OHDrF+/nsrKSmJiYoiMjGxWEb8cyq9FQaEesrOzWbNmDefOnaN///5MmDCh2ex8bTYbP/zwAz4+Pspov42Tk5PDli1bSE1NJSIigrvvvvua0kSbkkYJ+fnCy38BuuEquKzESxTaPXa7na1bt7J9+3ZMJhNz5sypVQi5qUlOTqa0tJQ77rhDWWXZBjGbzW7nyS+//JLCwkLGjh1LYmJii3r110djR+SHgKnAsiboi4JCq5Obm8sXX3zB2bNn6du3L2PGjGkWZ8dL2bt3L0FBQXTs2LHZt6XQMJxOJ7/88gtJSUkUFBTwhz/8Aa1Wy9SpU/H29m6Q901L0Sghl1IeBZQRhEK7x+Fw8OOPP7Jt2za8vLxaZBReTW5uLtnZ2YwbN075L7UBpJSkpKSwadMm8vPzCQsLY8SIEe6FayEhIa3cw9q0WIxcCPEA8AC4iusqKLQV8vLyWLNmDXl5eSQkJDB27NgWHW0ZDAYGDBjQ7Mu4FRrG2bNn+fjjjwkMDGTmzJl06dKlzR9gr5h+KITYBNQVyf+zlPLL86/ZAjzR0Bi5kn6o0BZwOBzs2LGDrVu34uHhwa9+9Su6dOnS2t1SaAXOnTvHyZMn3ZYI6enpxMTEtIn498Vcc/qhlLJpypQrNAqHw4HZbHZfADQaDVqttt5rlUrV5kcSrcXZs2dZs2YNOTk59OrVi3HjxrVK6tjJkydRq9VERkYq31UrUF06cP/+/RgMBnr16oXBYGh3i7GU9MNWRkpJaWkphYWFmM1mysrKagh29WOVlZVX3bYQAq1Wi16vx8/PD39/f/z9/QkICHDf1utvnMowFouFlJQUDh06RHp6Oh4eHkyfPr1eT5XmprrYhdPpZOHCha3ShxsVi8XC9u3b2b17N1JKBg0axLBhw1pkYrs5aGz64R3AEiAIWCuE+EVKOaZJenadUlpaSnZ2Njk5Oe5ri8VS4zUajQaj0YjRaCQgIIDo6Gj3/eqLEAKbzYbdbq/3uvq2xWKhsLCQ9PR0fvnllxrbMhqNBAYGEhQU5L4OCQm5Ylmx9oKUkqysLJKSkjhy5Ah2ux1fX18GDx7MzTff3KqfMy8vj9zcXCZMmKCMxlsIKSVCCKqqqvjpp5/o3r07t912G35+fld+cxumsVkrXwBfXO37SkpKOHToEDExMdeNYNRFZWVlDcHOzs6mrKwMcFV+CQkJoUePHoSGhhIYGIjJZMJoNKLX65vtj221WikqKqKgoIDCwkIKCgo4d+4cycnJNQ4ovr6+hIeHExERQXh4OOHh4e1q9G6z2Th06BA///wzubm56PV6+vbtS0JCAhEREW1COM+cOQPQ7k7j2yM2m40dO3aQnZ3N7Nmz8fHx4ZFHHnHnhrd3WiW0UllZyWeffQa4LEWriwF06NCh3dp2lpeXu0dY1ZfCwkL38wEBAcTExLiFMTQ0tFU+q06nIyQkpFYKlZQSs9nMuXPnyMvLcx98jhw5ArjCNAEBAe7+R0REEBoa2uaWkhcWFrJnzx72799PZWUlwcHBTJgwgd69e7e5A1FxcTFCCLy9lWo9zYWUkuTkZDZt2kRpaSk9evTAZrOh0+muGxGHVhLy0NBQfvOb35CRkUFGRga7d+9mx44daDQaoqKiiI2NJS4ujtDQ0DY3a1wd064W62rxLi0tdb/G19eXsLAw+vbt6xa+th57E0JgMpkwmUzExsa6H6+oqKhxVpGens6BAwcA11lFcHAwgYGB7th79aUl0veklJSXl1NQUEBBQQFHjx4lLS0NIQTdunVj4MCBREdHt4nRd10UFxdjMpna3MHweqG4uJjPPvuMrKwswsPDmTZt2nWb+twm3A+tViuZmZluYa8+5fTw8CA6OpqAgAB8fX3x8fFxX5oz/OBwOCgtLaW0tJSSkhL37fz8fPLy8qioqABc4hcYGEhoaChhYWGEhYURGhraplZ8NTVSSsrKytzinpeXR0FBAUVFRVz8W/L09Kwl7v7+/hiNRtRqNRqNBo1Gc8UDtZSSysrKGqGgi6+rqqrcrzWZTPTv35/+/ftjMpmabR80FU6nk4qKiutqZNgWcDqdqFQqrFYr77//PomJiSQkJLTZA/rV0K5sbM1mMydOnCAjI4PMzExKSkpwOBw1XlNd1/HSS/XIt/pzXVxK7NLbTqeTsrKyWqJdnd53MQaDAT8/vxqCHRISgk6nlNMC18Hv0th79eXis5VLUalUaDSaGuJefV8IQVFRUY3YvUqlwtfXt0b2TfW1r69vmzuDU2g5rFYrO3fu5NixY9x///2o1Wr35Ob1QruysTUajfTq1YtevXoBF+K3JSUldV6ys7Pdo+RrQa/X4+3tjY+PD6Ghoe7bF18rgn151Go1gYGBdVZEsVqtFBYWUlhYSEVFBXa7HYfD4c6sufj2xfellERGRtYQbF9f3+vCHdDpdLJ+/Xp69uxJdHR0a3enXXNpHLxnz55YrVY8PDyuKxG/HG1SyC/l4vhtZGRkna+xWq2UlJRQVVXlrgNZ/SVeerv6WqVSubNEFJoPnU5HaGhoq1t9tiVKS0tJSkoiLCxMEfJGUFVVxUcffcTJkyev+zj45WgXQt4QdDodQUFBrd0NBYUGYbPZAFolFFRqsXGisAKnlET7eeLv2f7ONh0OB2q12n2mPGnSJPr27XvDjMAv5boRcgWF9kRgYCCenp6cOHGCPn36tNh2MwvL+elUMU4pkcDxc+X0CvOmW0jbnxwG15n3rl272Lt3LwsXLsTT05N77rnnhhXwahQhV1BoBYQQxMTEkJGR0WITcg6nJOl0MY6LEhwcUnIwt4TYAE/0mrY79+BwONi3bx9bt27FbDbTrVs37HY7oNhogyLkCgqtRlxcHLm5uZSXl7dICqK5yk5dOWpqISissBHm3TaFvKqqimXLllFYWEh0dDQzZ86sd67sRkURcgWFVqJv377069evxbZn0Kpw1pFu7JTgqWt7Ip6fn09gYCB6vZ7u3bsTHR1Np06dlBF4HShCrqDQSlQLUkuFVvQaNR18PTldXOkOr6gEBHhp8TG0HWuM3NxcNm3aREZGBosWLSIwMJBRoxQ37cuhCLmCQiuyf/9+tmzZwoIFC1rED31QtB9GvYb0AjNOCdF+niSEtw2vl6KiIn744QeSk5Px8PBg9OjR+Pr6tna32gWKkCsotCIRERGUlJTwzTffMGXKlGZfeKYSgl5h3vQKaxviXY3NZmPp0qU4nU5uueUWhgwZ0ub9idoSipArKLQiwcHBjBo1iu+//56zZ89y1113tcnivk2NlJLjx4+TkZHB2LFj0Wq1TJw4kY4dO7YLn5y2hmJMoaDQygwdOpR58+ZhsVh477336vT6aW6q7E6ySyrJL6+iOf2XrFYrSUlJvPnmm3z44YccOXKE8vJyAHr16qWI+DXS2ApBLwG/AqxAOjBfSlncBP1SULihiImJYeHChaSnp7tTEatd/JqbtHwze7OKUZ2fcPXUqhnZOQiDtmkzWbKysli5ciWVlZVERERw55130r179+vCO6e1aWxoZSPwlJTSLoT4B/AUsLjx3VJQuPEwGo0kJCQAcOLECdauXcudd95JWFhYs23TXGVnb1YxTok7NbGsys7Pp4sYFlvbAO1qKC0t5ejRo3h6etKrVy+Cg4Pp3LkzAwYMICoqSkkjbEIaW+rtu4vu7gamNa47CgoK4HKTtFqtvPfee4wZM4aBAwc2i/BlldQu6i2BnBLLNaVFlpWVceTIEQ4fPsypU6cA3E6mOp2OqVOnNkW3FS6hKSc77wU+qe9JIcQDwAPADelOpqBwNXTo0IGFCxfyxRdfsG7dOk6ePMmkSZOaPJNDrRIIBFyy5lN1kWPolaisrHQXU/nyyy9JS0sjJCSEESNG0L179zqtjRWalisWlhBCbALq8h/9s5Tyy/Ov+TMwAJgqGzBTcqXCEgoKCi6klOzcuZPvv/+e8ePHM2BArZoCjcJic/DVkTwczgt/W5WAWH8vBnaou7K80+nk3LlzZGZmcvjwYU6fPs1jjz2GyWQiNzcXrVariHczcc2FJaSUl11SJYS4B5gIjGyIiCsoKDQcIQRDhgyhc+fObpvmzZs3c+bMGcLCwggPDyc8PBwvL69rat+gVTM8NoCdJwuxOSQSSYSPB30jfQGXaOfn5+Pl5YWXlxdpaWl8/PHHbsOq4OBghg0b5p6Ubc54vkL9NDZrZSyuyc3hUsprL9GjoKBwWYKDg923hRDk5+dz7Ngx92MdOnTg3nvvBSAvLw8fH58G144NMRmY0jOMcqsD6bBzIi2VTd8lkZOTQ25uLjabjYkTJzJgwAACAwMZOHAg4eHhRERE4O/v37QfVOGaaFTNTiFEGqAHCs4/tFtKufBK71NCKwoKjcdisZCXl0dOTg5CCAYPHgzAq6++SklJCX5+fgQGBuJ0OomNjWXIkCEAvP3229hsNndJPYfDQf/+/Rk9ejSVlZX84x//QKvVEhoa6h7xx8TE4O3dtlaD3og0S81OKWWnxrxfQUHh2jEYDHTs2JGOHTu6H5NSMnnyZHJycsjJyaGoqAi1Wl2jeHlwcDBCiBpFr6OiogDw8PBg0aJFBAQEKIWs2xGNGpFfK8qIXEFBQeHqqW9ErhxyFRQUFNo5ipArKCgotHMUIVdQUFBo57RKjFwIcQ7IbIFNBQL5LbCdtoyyD5R9AMo+gOtjH0RLKYMufbBVhLylEELsqWti4EZC2QfKPgBlH8D1vQ+U0IqCgoJCO0cRcgUFBYV2zvUu5O+0dgfaAMo+UPYBKPsAruN9cF3HyBUUFBRuBK73EbmCgoLCdY8i5AoKCgrtnBtGyIUQTwghpBDihnO8F0K8JIQ4JoQ4KIT4Qgjh29p9aimEEGOFEClCiDQhxB9buz8tjRAiSgixWQhxVAhxWAjxSGv3qbUQQqiFEPuFEN+0dl+amhtCyIUQUcDtwKnW7ksrsRHoKaXsDaTiKpJ93SOEUANvAeOA7sAsIUT31u1Vi2MHHpdSdgNuAhbdgPugmkeAo63diebghhBy4FXgSS4tTHiDIKX8TkppP393NxDZmv1pQRKBNCllhpTSCnwMTG7lPrUoUspcKeW+87fLcAlZROv2quURQkQCE4D3WrsvzcF1L+RCiElAtpTyQGv3pY1wL7C+tTvRQkQApy+6n8UNKGLVCCE6An2Bn1q5K63Ba7gGc85W7kez0KjCEm2FyxWIBv4EjG7ZHrU8V1Ek2w6sbMm+tSJ1lYG/Ic/KhBBG4HPgUSllaWv3pyURQkwEzkop9wohbm3l7jQL14WQ11cgWgjRC4gBDgghwBVS2CeESJRS5rVgF5sdpUh2nWQBURfdjwRyWqkvrYYQQotLxFdKKVe3dn9agSHAJCHEeMAAeAsh/iulnNvK/WoybqgFQUKIk8AAKWV7d0C7Ks4XyX4FV5Hsc63dn5ZCCKHBNbk7EsgGkoDZUsrDrdqxFkS4RjAfAIVSykdbuTutzvkR+RNSyomt3JUm5bqPkSsA8CZgAjYKIX4RQixt7Q61BOcneH8HbMA1ybfqRhLx8wwB7gZGnP/ufzk/MlW4jrihRuQKCgoK1yPKiFxBQUGhnaMIuYKCgkI7RxFyBQUFhXaOIuQKCgoK7RxFyBUUFBTaOYqQKygoKLRzFCFXUFBQaOf8f1RZ3YHgA4HcAAAAAElFTkSuQmCC\n", - "text/plain": [ - "<Figure size 432x288 with 1 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "clf = svm.SVC(kernel=\"rbf\")\n", - "clf.fit(data.loc[:, [\"x\", \"y\"]], data.loc[:, \"source\"])\n", - "\n", - "plt.scatter(data.loc[:, \"x\"], data.loc[:, \"y\"], c=data.loc[:, \"source\"], s=30, cmap=plt.cm.Paired)\n", - "\n", - "# plot the decision function\n", - "ax = plt.gca()\n", - "xlim = ax.get_xlim()\n", - "ylim = ax.get_ylim()\n", - "\n", - "# create grid to evaluate model\n", - "xx = np.linspace(xlim[0], xlim[1], 30)\n", + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(8, 8))\n", + "plt.scatter(data.loc[:, \"x\"], data.loc[:, \"y\"], c=data.loc[:, \"source\"], s=30, cmap=plt.cm.Paired)\n", + "\n", + "# plot the decision function\n", + "ax = plt.gca()\n", + "xlim = ax.get_xlim()\n", + "ylim = ax.get_ylim()\n", + "\n", + "# create grid to evaluate model\n", + "xx = np.linspace(xlim[0], xlim[1], 30)\n", "yy = np.linspace(ylim[0], ylim[1], 30)\n", "YY, XX = np.meshgrid(yy, xx)\n", "xy = np.vstack([XX.ravel(), YY.ravel()]).T\n", @@ -636,6 +2455,1026 @@ "plt.show()" ] }, + { + "cell_type": "markdown", + "id": "0ee97208", + "metadata": {}, + "source": [ + "Try the same using another kernel to see how the decision boundary changes:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "d98ececa", + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = 'image/png';\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.which === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.which;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which !== 17) {\n", + " value += 'ctrl+';\n", + " }\n", + " if (event.altKey && event.which !== 18) {\n", + " value += 'alt+';\n", + " }\n", + " if (event.shiftKey && event.which !== 16) {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data']);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"800\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "clf_kernel = svm.SVC(kernel=\"rbf\")\n", + "clf_kernel.fit(data.loc[:, [\"x\", \"y\"]], data.loc[:, \"source\"])\n", + "\n", + "fig, ax = plt.subplots(figsize=(8, 8))\n", + "plt.scatter(data.loc[:, \"x\"], data.loc[:, \"y\"], c=data.loc[:, \"source\"], s=30, cmap=plt.cm.Paired)\n", + "\n", + "# plot the decision function\n", + "ax = plt.gca()\n", + "xlim = ax.get_xlim()\n", + "ylim = ax.get_ylim()\n", + "\n", + "# create grid to evaluate model\n", + "xx = np.linspace(xlim[0], xlim[1], 30)\n", + "yy = np.linspace(ylim[0], ylim[1], 30)\n", + "YY, XX = np.meshgrid(yy, xx)\n", + "xy = np.vstack([XX.ravel(), YY.ravel()]).T\n", + "Z = clf_kernel.decision_function(xy).reshape(XX.shape)\n", + "\n", + "# plot decision boundary and margins\n", + "ax.contour(\n", + " XX, YY, Z, colors=\"k\", levels=[-1, 0, 1], alpha=0.5, linestyles=[\"--\", \"-\", \"--\"]\n", + ")\n", + "# plot support vectors\n", + "ax.scatter(\n", + " clf_kernel.support_vectors_[:, 0],\n", + " clf_kernel.support_vectors_[:, 1],\n", + " s=100,\n", + " linewidth=1,\n", + " facecolors=\"none\",\n", + " edgecolors=\"k\",\n", + ")\n", + "plt.show()" + ] + }, { "cell_type": "markdown", "id": "df35963b", @@ -643,8 +3482,7 @@ "source": [ "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", "\n", - "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", - "#### Arman Davtyan: arman.davtyan@xfel.eu" + "#### Data Analysis group: da@xfel.eu" ] }, { @@ -672,7 +3510,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.6.13" } }, "nbformat": 4, diff --git a/user_meeting_ml_intro_jan_2022.pdf b/user_meeting_ml_intro_jan_2022.pdf index d8d247a5a2a51537eea0f7e5b75df33f0c9e8fad..83d588214d2d73bac145f2f7a5c53acd34a8bc52 100644 GIT binary patch delta 101114 zcmY&<V~{31v}W73ZQHhO+qU1fjcMDqrj2R$v~An=&R2V@?(UzbPAZjyq>?8mb&|1C z4m^BN4s1oPBql-6%)kyq-uF`U4a33CNyJ3tXkr7y$4A5{XYF8a>|*U>ZbroXuSLYd z$;QRS!9~O<MWjo_&dSC?#Ldh_q))`CNW{UxLc}Oe#L2<I%ud9pK*aJ7)&3j6#=*`; zBp{Gt4B`m(Pd!)C1_3BDGe=4g1!lU+1~s?1w1b(s*FSy#nPz2W|4*H?gM}jzGbigm zS5$}?RU94N{`GSI-<Ik>cZj&T|5;OVG57c%3+yS0z~}%bQ!_43b`}#>4mJyR3r<dM z6Jt(J4kimz3kwcYGYeJ$K2|1k4s%W}b7K=u7ItnnGZt=U6Aly8f2O$qMPte&p#RTR z7*{tJb7OlLuN+eoGoxKgBNHPdE@+a@2VpW+&`7gvcoOZhASnq%q;ZFTB56NK%m9gi zQQDpukqQlz*s>m2QWj(&S#cZbYG|hsE8&pT$WOa$KL-m_d~z`vH`&KvkmnE;_oDO& zIOt8dvde4Ir7Pq%JX|c0cQuM$JKi?+7Sw+;#of#Y`va29N({!#&c&Wi3_^~R;)8$- z&~;prKnl32&uFKp`n|pOK@tikokF5+ovIYo_BfEkwU>Ix#UjA=`4Mp78YI;DC+9c3 z22-AXf@NQBrv445bYu`)7}mJYCW>=Yhh-DQRmr$`3#uxUl5Dt%REO>ao|ES=Ph>D9 z2ahP!@UkRS(yHxT(DW{TDBJ<guO^DW0ECH5XvP5p4zt)0mo_uIa2AFGd^$@-i4j=t zL}|K-Bsl~V$|Q4I51@2lVjK9)U&Kscax^xg%j-Y`$?#qTt)$t(A-m#ZNFZxd^Pr4o z`9x$cHR5B3v7;Aoidt}3nd9D+{NXvfadzY65yHlU=2I+9lrt<;eur^faiqo^04#je zTY+c=3PO0K!FmDlSO+F@`+`_nr%>S#Yh5Y{(1Z@62`HJsC9B;Us{Ytlo|vZoR+DmH z-~=;1P)o_X$grW}v{zuq77ehu0oVp8;Oj{yLU2zEQ;dTns);Bh&X(Pak|d@%YZ(c@ zNNdw`5-b^kem;|5!=rQDGUKudfbvx2A}Bd0*2~=qh@dzIWe){6mVrC0McWB{u$k19 zVKfRYTi{E2vJxb+ab8*?eiTLCD7Ks+y;N+XFD*&oc&(<t`>F|tDWe(mO$pf2V30yh z8M0!6&FRpjnZ(39q-CR<oeV~B3Mef|WYckv#&AQ){91^yIiO}OSn;Eq0MZdAU~Cj* z2@b5U>@LsB)zTegfe>&{u|L}_rGgb)WhQ+AY70HSxfA|6R1Wy5jOCW*ytS6yUu78R zi08*8Hbyd@f(?x!;rEjOs~@R9!03`oC4WGxdsw8Li&=n-2dLs%;LV*;fgZ}QswbnP z^UIn~)cDR1Kbp0-3`X4=0D(?gdFuFiA@@Z*Z$Lx_>~+P)8nO1KQ6mLM4#CG+5ps%% z&Kj47rqM9Qmob%&i*ibNE6U9poqTL$lR!z!iODYd9*8m2K;j0*E>0<zC_`l_A^FQm zu1+cVeA#+xs|}hN-Ky4BV%rrZE8~aF(UqPo*gKeNV6pBT;N`z>00aF6!OE|_wM+xb z4!3R~Fx)$I%zp~JZsUk}0<}(5O-dhb-_Tf%Y96S;OAl_}QgeKIZdve-AZN;J(sUg& z6-<8?1DphpYViI}$SMU>Yz`}Lb)E@xdv6~s9y-}1gI=S=%*k{N#5G*XTT=EUlA*6C z3=orVFOvJZKWMH!0tQVQgzHt;_F~cYPsFXt1?sa8CS6qaO0F?Z?g{JGzYf~$N^RZM z>MiXd{SeWBFD=$+-JmSL#X;q$7;#w=hMMfFEhI!ldBTRu^6)f4y0|vCK(o%Pcz*=H z-_G(`@R@&ZLCg^BihcL?z&jioXk%oDSEz;$3<02&8X~en0F|yUM-D;3h&9HNT+DT@ z*R|WWXN3JW-JTqUs^TxmKv{cML#7Z(d2U~4ZH^_odz+)@ud+PDIz#&^hp6l5^mdOM zsM7geYCAXunjPzJjf<;Novqoeh4V)>+w@ih^ty7K4XSIGAe`W*i``a^4&4@bw_7V` z&X|Cdf)Lm#fV=Zq7`*QO+Sxt~VKd`Q0pv&>D35&aO4yT`fbfWe{DieC>Z_bue4ZV@ z?ZzagXLQkpfbGPj<-$0uI;W*#Tf5*fWM}55`z!DxqsL#bp6e3z^XoQOLR-R{{T~PT z?#!ysDC@7IKFuws*Bafuc{+E7v;nNRX_}3_-lFz=!0ATP=?^ZL2dY>fXBj-wSMM1c z%2(29f*648opg>c>Ram35pxcJ*v|M2f|DeeavCyyz}54>uxI&ZU!u(%a2-I}X`@dI zVdVN2q0(ROQUIUmKFy*1;-0veD3D(i(C>I>OZ-B-6T99uUH)Ve5`4@kiMXOWA_mfS zsxxy1uv@RHUO3lNf7ma{k)OHP-~asZh%b<zd@%U{?ZRH>2-x19cG7TSDK2Rm8butI z5SZFUA&><WAU=fC;P^}LT-953{1}NBJ1%l4&7Dpzaw^ZA##w`+$NdXLgKZ>wL~9O< z7ROZFw8knHJx*7Bj_E#PZPI4|^K~KYMUzb)t~Lf^Y~a>`{lG%+1|aJ5o(JnFcy`v+ zV;}tZ7`F}~rMNTnNg<`^D2GeL@4s;7k(Ad5yfZCI1!L}D_CM72Px_DJIXKcA$Ek@^ zZqbl{Ia7eq(E#4V{e%7eRYOFBK;T9kxS+g=<1VuYDKWt*(TTwzN=g0n8wIR1bCBuZ zdq~!DK7-h<uhk5grl8dnCl@0{H+nXxaP_!l=vWy|-i}5_Ol`2cv!+sAT*8sWrGceU z0~<km3u$#Hnm99?lij^jCQTA49;av=LBWc23icpX@BrLw)l6=&ShURj4stm%yacDF zdo>q+v*-q@^hmCb%0}@KW0C$j)?|w`JsSNL?ob4e>Z1`Y&Cg_MISbxD6iQ=<r*y`t zcei&j{iVRNA#EO<o>2HXcFVk@O_vvhQGt>UMKnsP6gYI3dBAMu7iXk7(2|r95Bz+~ z<ta`JdjO>T-~<U4$x|NSrEy*uUEdNfGy;LWj4ATQX6>s@zVcS^IG&^tZBIneBZ5Xe zn+4g9H?apACDHbEp0%MK7-UFHy!{l{Q#Kp7UrgiPZ?9qfBng=cx|)iPm`e5<7jfIl zkN3}au+fsf<{}g#`dg=T4nQwSJUjed9vP09U;w;>%o7%5tJ)Ihfl)>zM-b3S*;LtN z>7&#NhS{kjR5X1`VLZeZ4kP0mzVavqUBpJaF(0oF@x5dR=w_gh<7a3YVjSt2*JJJ$ z82V`hNXRW-?F$)(%t+BuuX3QC!RW}qM0ntcO)p^v-qR`Kk`yQ6q+G)Rb5N$kQhS?D zJ%B=3U7Yf*#X@Fl@#z&NLWtz(Fq{hpSrhDOBo;<<uBMwd4tOl{P-=BVyP{O+gmCNR z8oP_V{uT(#y+==HL|5T<i#3|oDyg}~{T;02E=qowur6k!om6MX?;OVE-{+Vy62>sA zh;e^aFj{pW2^#Ijz28UY&afES*02u!J^@A4-6T+G+{tC&ijI9uUYEcKNHVH4prXJb zHot%pk3mfwo!UBv`)6(?T%uxu>-&91#qvSbf4**NHc2rGsdh`8mInIvP^kJk)Wjh0 zT<CaO6gbAYs~>0hClm51@$!AYGyO`QTB986FzS5xUOF8C{WT)g-`uS)Ch@tc^K$xl zE3?06C}Q2ijY3#LE<&zD_T}H{y0~CN2~G(kJy&P6Mjs=dAlu`$LjQ)3g~~&!X8&#I zIq)H23Iav|BAm7-_}^WY!i<2CekDQ(o#KU62h5g2i5&{en$k~((L9Jv1_{iT4je#D z31DVo<^2CHokyCojt3k_y&sylR)kYdQg`kb7};R(Z4pEeIt8b~X-9ENy7Bm3*5CdS zXb~!CjvOCUI0eu|$)ta$UZ$PGn~VrEjnYw>aeyWJog-L-e)hQ2qjjgNrpcsWYC9Ov zQgmE_MxWVr<?HgXeOyTaoW|iZKM0`UFW!mf17XT=Er&YTFs+Z^o>N%Y)DtD#ZJ!4w zE*^z^pp)dM!Sot(z?c&(w|TyWt0v<C*}d7*rS1#n`a7lC51L!kS<eku77-g{>#1CS zBvrR&0u1&3qyTN2{w;3IpR|E6@!4px{)za#*)IRVZ1;DJgf7$wPy$^s3xUPZdSmzL zqD#PYG@7}%aMh@rdVzg<Cd!>+^6s@WPB8JT#E3c!_B7*x%Slly*fwf*<-R)NjXgQT z0OJ*n|3K!x|I=%i?GEC?tZJfj^Wxr&7$6(%>auM&krH1FDp#-0z_YuJ3x`Aivi8O$ zc-`*lzUJW((8KiuK)N)NyHbL8mPQblxo6qmckkN5x9ydwIA)@MYdW?az8~7D_L;sg zwY;DXHLE6yj~G7E*R3PG$xe-({Cf6!v6fLZE$hUHno%F4njgTzmjw$`_PwN&A>Jz) zc=%JGkea494g&kf6~0j6Z@@a&bHE2U{;4<mhz@KTC>$Op06{?0A)kkf5zWieK*>5J zeO2{}_A9Q2$kR5YbSu;re`gLW%>M#|TC5Fr?n#sACXt6@#=x}WHc@A<536s86v58G z>C_<=e@H%^?s}M@wtL|+2>dRdn;}k;Fj&_SoFbpr5`CMm13nZ%!Eu#6TMtqmv#Ses zHiY3>^>Zi#a69OGvkK7~EOzXi`?BjFUMw;mZR{HD=-bneM9!pCA}{(UloZ+FfMx-r zPUYHgAGdlI^Heuy-=<U45kVY0K5$m5s6&nmXb|m?S~(JdL0l=K#bq-RYt7*$91IO- zlh8UufIPUNGX{$LOnir%{l~z>APIY*wS9SaUDA*Mz#oa$hzF0-gMZF%mu{4DCqI@E ziGA@PvpIGesCyGZSNJ|FqxFm-_LAHp?&tl$Z*xdX-IGzLc^A;d{ncl_zu^raHMA*Q zyij-@|J|{I1x(>)&lroCEnUK86-4Mq1*9E1i)C3Nh7d-5y8={8TXHE@==N)NS_;ET zUZIK(0DPU=&&bjg=)Z0YCL>^_Z;nPb&NM#EN`u}t?cw9Yi8Ws>tRBjDdYgpAh(EBO zi9z9adCX1TK7nF}LCzEZb;U|RyZB_{Wu8Re#8fvzv*W>XlCb^Mu1V#zX6V?db5KbW zEX(8!J;%5@M#<=7sV(N!!~slkz)${(4k;?l-~hii(xF)pk63e<sJ;y@N>T?q@|xw4 z?-n}a|2qGQn3E|T_y3$Jh1kT+%Vc1{z#J(X<Pra{pA56vhk^|vrH>3Q1&$T{U$)51 z`Cqn3mhwV}4A^np;P{s<8agLzz)l~`kSd|s&X>|MnF%jMIEWMAX~K6?co<dazwF%b zuBl`jL!-Fnt;kE!CC}fz-d(#LQc_z={&IOvb%Gm45HA^{LP?7yL3I_P9yU<K+$T!? zgHj%u90lHUd!VA^;{s=nGUlDYl04}npzJhDnQ5|o0hpZ|M@PZ0)1m=CKs$Xv4hDw_ z2@Bs>hE@ui%%R);C6!aGfda9j9JIJrU;{RU*`wy>M=T79$yB99k?tq*2N>lRx}|HM zo+hY!ng(y2w|p?FJA!=J;(m@>E!1y<MsExjltcHPTsR{Wgf-N-cNc}Nxg4oR10?KJ zol8ZE36N|wKR38L*Z}6~1BMPBE}>=`-Hg_=0;3AY)CeRjhtP8y!+lXI)F`B+S7L_x z*daD9oM{A-L50Rsh^8F|TbfD~yGD^4)Sq72|2No}g;wq9R}9j#lW1V;@K7If1ruIc zG)y%lDBDm|L#u`xNFcRv;pt`wN3=!(?fDtdCO}#r$w|XqDzNeQ^{hG;6S)};!v%RE z3KQii5s(<7*Kf02-u)7(aGwG*TVtUpD1_>u$RwqQntLcj+~oN9*9PhGn9QbWo}Eac zHt_GXNF|Gy0FX&0-r+E^P{Msg(*i+|J}Y=rr(k#R1=GJawy}}gq<UZ;615jet-r)5 zV*olX*K-G>kB8$Y2Z!(bTTkcvIoq>`X6tR!Ho_^E)1z-S-fy3Qe|;J)k$~7Xvly-K z-%kw3qQ<et{+MAA82EK`>&f;78E)xZTW!y;^(w$sT=^?iKdS1yyd8VJI|ne^pG<-S zWK&eL_zZh>M4~AmCzm!Xz-!w+c#Fr0aR3w!-*ewV6r*h3Yg0OUw|}w%16|5a<E+-e zsvTGepdkm#3IA^F)Z=D-av64)k5|`yyESUHc^bJiVyH0#pBaJ5%vquFV=Xp{aAo}6 z_OyyG*PPzq-F4dO2m+U$IOM__(=Kjb($I=Oj%inyLc$4A)?@M3O~Iqr?3342*8=D< zVXygvj`*hB5AnJE3#Lw?zP!0iSFG#x=UesTvn999r>al&S4<mdK&V*QXF6v&yRa-{ zv22{vj!?iEI)U}C(CKA(`K~e13kVhmY@D%3me`7M_>1-5L7N&b^*ZU0XX>VnXf>tl zN*7O+)GtH1HNTn{%C6>@n@Lv--T;g9hkuqHi?~-)BeL(qvM!$#Px`8y-J2NeIwtFE z<*nSY+Z?^85BXZyvJsQD{v=v(7W7WVzWimjJ$syuWy@}lYuu^LdfVS}VYj_b1Gd97 z03a}oN7C!F7tMv$d!csi!bo7&+NY?P7hTrOUM0Yh5^?FM=3K8tQ}>dn{{~E`Sr<FE zDJtfn>#uV#cI)I3;n2<pOE#Hp{i&PdY8m9Pa>$}m%ZiNId&O4cfGV|7Y7G$mj^}%Y zR}QPyrKd2A8aI7nWHCZPWt)G2rva8Y69&hkacKVj?jc4usvPhJ4!>VQR_{uJU8Blg zGm0J<>qQo~G+QNo)smC+djWK}#%k%AL6wKv%T*zk>nM$5&vp=?!l6GCC<qmP`h-wl ztoJ!eal7Fr!jl=BPJSOyWA<b1ODE5rpnX7)5BT-o!N8%v5Gaz);CUZw4zkim>d#=O zSxHBUUdSR;Dc%l$lS8V*tffrWLY;kaRS4*$8OY@){Q3s~8AP=}fRGBjqd$^hPj1L| zg!=Yfh8%&6%+J$hy@%_kpb?;zJAm@Ce%Z0>pO|CuPsCYdST(elio0|)1CV~;uI-F{ zOFVNn_5GlIEFjXm%$zx#SaND*1Z)uTi+4+pr=mUEDfZ=2xBc?kQm7-Cisz`m{F^;F zS$$S?9H!3#Jp^!4o8iiU_EcHCiAUn|o#5&sv1|QUOKP}^Xjpo;#|*7qR^lbLTPlzk z<UnalYKRN9C$l3p#)aOHTJ?}y^>{^L2!#FBJ9CvEDdFG6fi$GMv*dp#ah)G<({`nK zhkQ+Ua7Qapg$b&6%`w_62>^oaYkB%#x`0X1ra=G43Ru9*|4{;ViU2D<V9f=s^ViJ- z`WqK2K36LvGN%LBc7yc>mR-M7F(HiJ>XN>JQ<`;$p`fL*2K5RJE+R7`CscK+487&b zT#^bHCaf|TBg`54=Y+@wP+t`jaK8H<oIv)VBz#|6<l{EF3JfT=p_Dkg2r;{QR9FiK z2C-2-h)gh@8503ZRU)$ppj{YK#)ghLOyyPpOqZ&d&P=bcX6U$A$-q>aO09sWaTer4 zOxX&%kc^}Q<2^{B6<w<c_6n~bRlYDJw6TcZt%RqJDf#?$km`U46~?qefiAW+FdHe% zS&3PMA2la5mZpXch6RTOgSD&y0tz*Zo{l4K5dE)2%_Zy!n1#q5pu;;9PKjMc+3OUC zrRg@(b2x~-B@)G|q)`+a%$+M#j0_nL8ZcpEUJ>Ch2JMCs?}F^T+X$hgV*|N_mZ-yn zO9a`Xfin^*Bl?$@j<ugu*c`)UUWjqR7-3YUUk0Bou)+w=l<wFFE`%*o#|S|v4rinR zVm9(05&$nVg{uNqo5PuNAibmec@wEm1#Pf~NPS6e^?d5drIX;mU}LF5f={4s0}FsG zi-eP$5w=0j%!LLeKuv*wW|#Z1X3>8QU?ts#X|NPMiY2m<12K#R9YTeaup+w<%v*sU z7J>5BfDxxk3HA#~S6M1E1%)Moj;BiffpRGXVz+~Bs$>JiM%|aBiqjd}mGZF=o|d)< zDF;2vh!P(f!6C_60e4UVVebrL@dOJ=?q;wA;vXt~(z`4TU=itSL6~YGH_#O*Q2iMG zyh<uN#9JI}WnXwJ_r5i}-Cw@87mqKMf2@t4zVEIbPd|23dDaQ;<S5oLMp_qnsit<N zbglVaxVQl{sk{P5HV)QKy2h_QkK-juWFU*xB!kh?C|~lA1sz7ky<w>N^0&Kt@`U;h z27@Y8LR5Wb8oKjyW*9Ap1N>fQ031eNx7V+)OLLBtUFGG0$zwraomN25-FBkZ1TdvI zfhz8zZ=aW!F9#_*Z3v12t9V36HyA<`96*CIU$+1$q*Mbhwaf66$J^b5I|`+%=|VKx zN(`O~3SBkT5T)P5RHBHEo_PSi4T-AUKrl<BafGVYRVv6es9zR9L_6@a)n7d+xuPbf z_(XHSN>;#T;lTHxK%EYO&m0K>JAy_6RqB4JO|sJJF-ay+a#s)qEn7+i{;NKB771?^ zHpze`an22(G5CAs4PY-HyOFhzq1uoHpqae@e1bLNv)|*AOrxT9HH+=2L|di=2<>eG z*QmH*fLNaOUk$Y?qr^>5SdEyFA0OqsWM2Vcw;R8_fix|U2$+EqF2gN9tSm2%WKB%r z39NZbs-P2fjn$5T_=<4zzD_71AtC8B++6`n#`P_ZAZ&K{Q-NQp{2Jd@CtkJ}=s+#5 z%Rm)FNT+4nVdyRbMs;Qh!h&C~&r8>k$psBE!8#t+VQ+4rcq#nPelK<xk5>ZNWjK8L z53-Y)+U$LBRvDMfC*{5yl$L~2!RNQH2!UB(Ah=9WGl3f<zHl#V-!U(gH){-?l52p{ zvQ$}at}ZD~CfZ2?*WTuj_t&L}9Rx)V#0wLI>LLy?dFFJfP2kASM7^ighxTmA8-Yt? z!mX;eKamhZHsFMibfuTBf;)ux_<a@v>ymek^k1}>Z-KOozL#&~$J^K0s^KoJv^(JD z3$6yxM}e%QzBQl6+kd~a)6Ir9X>b9{W>;0(vk0#UMWbVVK8-IvFR}VUrW&1rMU&u* z^h}yuh@wW%8Q-}HkdBCL(&YOxX;vUDgGWuEgA_h;Kg-*H9}pe;t@s?V;I*V$u-EkT zGWI&h5Kk*k8^1O_>hlQiQJCwJt1*T&rsF`{3?Em&Um$h6$_cF<Y6ce0n%e=>pV8ya zLU&>bnLC?&d;&5GE_&t!dZV#tI_F&7i%Aase~|ghe!MPTiqrYRHq>3}bf0Zz9}%bH zibn4Ne10$IW(j)zIG9~{{bg~4kBR<$f;f6RJ^>d-fDimXHp`JbZhvfaQeK!KMf(b2 z>MXF@C=GjKZ$?(~N1OKz*`5JcuMRG*3J+6#qn@1N-mdWeQ$M}b{V6nko0~hrJZ})@ z&Eqd1V88Jc85oQMFUHyLs_^!vU|&NTsrzH74EufXHK4;F2VU_LsU}2k=VE~B4KRUm zaxj30pZTZw#ox{x9^dNk{CK`uAeZU#ZmeRVmL!xkQuAZ(@gyLWqVEAkRE#k$DyaaB zBSUd+`U%=V2p~wa=zCjbkYQG#LaG~KVPU*)hKU>TH&7(H?~2G4BWR>!!vcu_Q4E04 zU)<IpV2ftt{`zQKnC&QdL$Ey#w>@G<Sa@r&`_RErD6)QxhWlWh&uv#;8SWeUwzgXi zHBu*enbHOfo~f9ednM_j;4P-GG#}CuzI4~}H{I*?ex`sV$<&sbm0b=s7^BliJeJ%0 zb-ht2Xj2?x;(B8<P2b5=Cj#h5c0ZX$#_;7?DIuPU6P3K3lq?=RK!$JbW28IOBZRH@ zQKSUH3qztbif@C0-7bM-KT6e}{cv8;VA%xkVFCEvi-@rz$i-d7Ts0nu9Qt!<fuyE! z@(F8=9GQa^8rPu%zo9c{nTmO0_JnE_(YK0p;;>=W(3A8cYp;{QiDsT5CAj4T<y{n_ zL$}7tS^1B=fXA0Spw_x4)_dSgi1a9FT0NUgHDhq!YN!;A(jXQ1^PoKn308iN{nmT2 zfJ|h!5mNSjFY_WXA`8d+gzO%HbFfC0N;s*6tD&Y)K2fGn8LA|H%85}~Dp+C+6go_G zwbUJFfYK>PBb4hDL@H=x1&Di4XQ+vE`gCM|Rlzm<(4(*x@UyAN@MD#-iu0aInfW9I zn92-PTZpGZPeQ<WhnS>Jg2Q-3Y!xGt7al4UOHzYG{KA$sYmn1s+x%M~?rP`DzJ`>A zk`oCQBjQyFc?CZ|HYwmOE!c_i(_Lz-3sDjjErma|w=dz_GM(YdV>c{OcY}BsK832T zr|(}7^SGc7$a*mZq_9_~dtoYpP+i#<4cxw05n06*DO92%t5bg!Sojn=N0+5uFmc(f zan}Z(D4RyU8mQ<K2Hwm`yFimws*!C;#2~10*<@mt*g}BQikuYqFB82&n1SqK49<rJ z#(`#%AVX=KVyNLSGaAU;vnq}8QRD1|>wbZ?i*WY?u5R#FJhB%4idg=e7;O`1Ck5?z zrK%bUYJgr<k$wrVg}k~f{VN*7k$*|%Mp616{ycSJ>w{Sh-Yuhsma;s)6t1_0>S`Y- zt&vsUQ>DUrrjOKHAX!@hGfQ0ZNGaN|7#)u5xttzRV)5|NruFx)E)E0sdmU^x5p8^j zv<ZAbR)rWv9!rISLH-3+#wC15GsJL`zd9yZ=EZ1<1W_Xwd5k%(;NR7wYAAc9BIRGj zN0lmxWWm$$UZ=s)Y$7A>@@y4s$|?z71fmBGDiCgN9SY|;9~BZVhm5#%`$_Ywn<6K> zN;qTNtR&nvdU-z6hORpZ2}yJ=5+C5^9c*)eh>1D)R9KyXA~N==Dpzz{GHD8H{3GcY z669g-n%cxFuJWN<js9*)`u;qydwTxA0&LC)Ygp>c>vOo&)_Xz<(4{;L*U^ttPesHB z101Q755LqL=%cun6xr9B_I=nHcWL_B@uaOeYFjCl-6g`sN&s(6+)m+vvY?g~ht#+L zSBbiMgd}jT_P_aUQU(gnKjrVud1lBnQsQP(4TpAK!VdV{#3<9O>w8kPd?_|K#a2n- zG)U-~I@Qwi#j6#+i{mRnC&1+m^2Gh`x{C^gsliDZF%WZnLUd-77#nw0E}h=Od0R*3 z7F(ulwf_8D*dow$9Jb6TijqLRh-m@9djv&Mg^gm5%so2!(!!w;wGIxCVjXp~fIKw_ zeDxjOBGs)zaiJ$i@<R0U5O+yaRIpii_fi1{Khw(G>A~eG8glCaWxm0z#yO=_CufP! zu6ZK~9Nf$$8FWDtm$%x@x_4QU`zePD4&J)A0=je*Of}Ko92`AfEm~Yshe9eKe3@IP z+~iu%)_^=YVh}l)jxbbTj*}~?BDIWX6H!rdd6A-{oXGw>lSr-t>amwwp6sv6W2cC? zR$NgS$T5or*=tA7a|=YdwCJ0eF>~rcbsiU?lZ;Vy&LuN_uHXG1u;fMv2<bo!X5!|l zrIN(g(2*VWoXLBxjgM$DwY+gaFqvXVUdUdlp_Bk9q`J$<A<OLF`V<QEiMQr}gVx^) zf?tmJjl54?)yNM)3qcam%f6LVC!`9o9HlL4l*m%SLhQ-UN&QDS>AJy2R+-pQ`3gzR z(ju2szb&OrZc|Hzz?<+4j4v1}4C$@@?89M0x=_R&W}tc8IECR@e@#dL)**Dt2bF?~ zG$XUw4_Q*Skbk9$F`^e!PM?jctSPvT96}V?Lv`fqA+8P=yx^(ifdn6tH&7Z`Un^KY z9$qEW{zX78{bkCX17WivBi-06NIh07B`A>0UBKp;#^`mQ8fU_r77ZjX7?e|y>LUvn zXU3IV)7GJse^T9vVYU(jC@jot%!`^}A#<QhPYQ}E2IDkfIAIRSN?TXh6oI_yX9ah~ zbJ2VaRu3ULljUQBrk@VtND`yU62sk-p-_UI!`C3I*z-Zd@h6c^nOpH|^U{N#&C2o8 zQd^Z(Si)FK+>fi=LUpH=kd?WZ<3b<wQ~#bue4E^O7e}1Li_oM7upLRqub~z^A$)L1 zAiFUnwuhl&>mV<}hz~T4Ia23@&4(CZge9>v1TnkC%7V&kK)C6nU`ArbgP?aH&)CNu z>qAP*G9dhR`?89Lcd?<?`+l(Awk-I=n||V*wQ%a)L2$AnjVi)Tbirv*eet;PLqXV; zvaTQJ^1(MNrFz*2usN_AKl56nqwfrQ3~A0{C1Xu>$rVG8|2=3OE|!H$&aI)55<YiN z=ERkzLB=xso)K)4#~}w7W=Rc%|2e-cv$=QIAtX#Hs;Y`a6{`h8f>VW$VkwnGR-T01 zW=%IdmuO)NvqE=wCB+J(BfhQ5JFR7!qf<iX-*W6+0-7KLXq}H?^Kx-$UbJZesvJfV zK(55La;09)7&O4ch*U2~u)(RM3apKqD0v&CAHva#>N;kaXF8nWp|@HuGVY)#Rncj* zlcTO{r-5_H>B!-o-f>ycnEfp<c~B(0d``BmWq=P8?Q0AzA&L2A_S6|)2vt?sz<cu0 z9*c6qeKa=?cvev|#BJ(VaJ<b4en8;Sp&){1#=5ZH9|n&sjRV4xRDO*6LYQe%TrY60 z2ImBEItXk-v9cwCLg-y>QFB2fjLZw|Nu!woP#8Hqoh(!d-Zy|KXQ>2S<jT3Tbqy=B zxUiQUW3k5x{~of%h}wn~392k^<vV_8H+W6ebvS-RoT>0{%=eH<@nu)8-?58J5fsG& zkc|9_xUwTvNe9gY2|&JTJ*egSvtf+}cH%D|<*_LdO9JL{M^_sE;T+u!qgM&F?yKh4 zGLY0sM45?&4JRHmZajj3$88%VA_08Kk0?GeoK#pAb_+AgO{(oeuWK#tkAUT@<9XTf zHSaF#3$;t;9G`>4Fd6wvB!#c?Fx37CurMEtNuO0No%<Za#3O@5ueJ0!IaEkt#6(93 zYzr1~dwUi{Mt#{bo^fk=n$B(DS4GFM8H-fzsrIqw;B*bbineLn8+f@(!Amd4YVbJM zL{#1~@h)7xs`QzIDH??-wzr6R0w2bsO&%GHx27#IU>~7Y2`=8G7moQ59H*8HXrZgu z{+mRgmgTxuQo$vRl}_KtAuo?y{ytg?m91D=UMiY*FQH1qoTe%k9s~lqv>egw_M3>v zyd%$pCHHl2Sz&LWoNCL(GGx-bK17m8F}_?8C+H&64wI5`@Rb!buUO=RaZ&#}o>yGu zLWf}7!PdP4JzckzOre0kVv(a7Fyrnv%q_dHjaDU5(IalgHA<ZjSCf+Ec9#&(>gFZo zAhN>{-v`KxuPb;d`t$*?5<XzJ-Ftw!pZVchcCHGAY@B`7Pzmnn>BmLi-;Z7$z4|y4 z)aS@cHcu{RcDn?4a}u=A9HlkiaoXkPPlx1{bFRFe+YD-d4%>Y`1+bL@W`cXS6D%K~ zF*c5XdtJJyJfmGay<_YBw0TD~dub+2GvK4|<(2bxjeGCym3xOC{EoDh176X~-zOYf zMg14QG9XeW$|MP31$T@casXK@s8!`^z-1vWe*W>p*W7p&LUjEm_lEuM1kr@r%I|*! zorqW7br%sW-YoGQlXx}(^3HS-uaYw*lx#;%qFFqA>>%1FzXhDS)Ews+j_!)*svMU` z8eWGK&!L%8zhIQu9I^Xj_yz-?X3c1#aa)nZiW;QhV|x8;RKLD1=YoGqegG=_=0{K= zerIH;o%2u(@LqMeM+uv4C45CEguSD*G&I~x%M504j7>t?-w7rFfkqP>crdrm$;&|i zI@mBuQcwexQ`Ft#>><gQwnN&@y5_tJ@ptolFsG5)7nY;VybAMKWl8BdWjaPEdr?<b zsF{*h&4H(ifQ}YT2d0ymh_Ksa04>jnh{h77y-i*QRO52|?)2$U{OrTp$=y><Z|WM( z)^+1e5Mp|9SIQlr`}O8%xSPAPgUa#7;qQ&$%nW7o#@VSPcNgR+Bz~gCfZwOTK|lx? z#WD8O(8AqMpef7oUfvvLR@cJZpBkwhCVPi%KS<5XOqSb-ojxhkIbC(GQq!=laW^?k zgWFL|B^S2eIPJZ7+xZD)DKj(9Lc<4U0=+((1(1!O4J01`xne$9DqQ;N8(Ny=3gKk3 zmD7d8qGRlVhb%9h;e~yA*15LZ$KEK5uZs)?x*l(?Ukyr=b8f;Xk@02i>7>sNlXq8k zAP5z7j1sR<4)^5`%HHk?1b2QcS$QF{xqLhK9v}o);EP$)lAgOa@h8POG$@c)CD9sE z*z0g`EmQRXRzvp6`PX=U%1PGu*;we}yeuX;6rsF1KdA7gL8VRvICs>c5pX1atfG&f z7Oc92<Y#D7dlOjF6_JYXC2d3jWj=NRqU49UFVNX!^y1Vc{8$$G?sGzwmtFL{97Xse zG5;Fcosh%;4dS?+<o2XC`I3tlokwE&d>m^bN>+9NqELbb=AdFU!lxc;-#a~||1tUJ z4ih_TBYg9_P+67M8s4M5j#m3|);r{^zn0*DooE7VP5Y?o?#0~^S-z2NGi`(@*SE4k z>cYJRcGfrvD_WX%0viLgU#wM^NeD}!bmj=V;?}~gjWZDEEpe!^Ul)@;s&tn6Tx;o& zJUbb{eNu?CPUw7Oj-Ne#>eFCEkbKg<6#lgq0!k?Nq)|HIeVR7+5UToX5;FN<E>tT8 z!e=k6-{ucH-QfO2H#q#c;i~6?kYEmkRm^+su1BXXL8|1@>Gk!o<H$GalvND4GzJ-6 z;Vz7i*u7kDTp89HeLcm>3oBFp!rP(8dvP~_z&|T~;^GdxR*{M$8;*96r588<;QaXc z7{M^1>>^u3r*`)XpJ2*1H?ej}=0K;7V8e!B?;CExMS7_9HrRZb^|#4<0U-e{Pmykb z*VlYMLCvL2@tshO5?<uw1@k14ikBp<(=_CYP?b5<#Y*`j@l#~$ADa>y=iUz71SK|r z^qF>^;|+!80edcYgPT`hrr5!as3~==E`#0Ia*M!PtYX|Puq<Vzo9GI*`TQn(x+aKn z+iMa^T@^0sZwKy%C)?h4r2v-!{h12$)sO>E_RRQe0;4phHX`^dMvjVE7uO5S-;c`1 ztwA?VuQtkPwzkfx4|nO~Ph6VYc~;T@pshcSvaQGU%Q&wsc&j6E+*{0rlB-$=I0n8` zb8FO+?Mxwlea8O!am%boi<T05@|{9@-8J>`nv-94dW6qf-GQm_9LOa8Uh)%tvs)bm z=?yt0TT|?%Na?d#4BR8WrSc2AZG5%MTZXw%>+D#R8eF=);k(pCUh+@^VBA4~J(}(v zT?v@W<wRC`%qn-`tp#Gvv7QANwE*CVJCxVgli(D?pmf&V<IkJyd*8R>&lgc8NN}^o zTo|`5L;R;-3k$zlA2AERi#BOr29`;nDMCHM?oAV0y&yXg;LUXFlrC&K3_~w53MRY1 ztGmg?`s&Zf#Uilw`H$Vky-nKyO!j>h-d#(KgSXzD(puMPeW0p_plvt6JBrf3e@Gy9 zzEjN(_z#6(qOuX|LeS_FD&4uC7)kzItxth-M*hJ($t<gD)9+uVpYDSyWV9_h01cld zRd_ENI&b^zT22d5j6mGRP2Uqu$UNhwLKNnad<Zhq@HU8l>p&c1A^<A_unHSh^{+%g zLn{Ie(Buzifd<lT{CiX)+j%+Kp*w(w9=+P`wT7L}6bF&$Ml0=Ya;;;hY-gzb5eFli zC-(0JVn=y@ajzuoS1HKYZPN4oG$?Xt5#_B}>At!ePaMwOfs+of(`vE5#q(S+dqT0p zmHDguR>jA#lS&Co`@#(l5R|q!&A@?%UlS1U`h~}imW$hf1e;lj5Jf)ZWf)-ESUHz` zeRZY5or<-$b~i%%V~cX28?Uef7@w6^eZ<f}TC!OptExd&7YMF!ob(i0ZN3LZZg+iS zFX)(pL0Di+%a|!BMbiIUT<WmW@pKYw*je>5%(;NkkERidE&JdKaDFm%UIUhB!&yQW z5wMif2n{iE6-dgUn`oaXYpIQ1>|qK1pb7fhFZ=tknSqo(;nwKo>iOE5fz)vX^Tj{u zPg=Hx2D>KPMGRE5q%PMvPrI4hk@O0heV`#c#gr>Zz3fI{%OA#3F{?R^tmnL?u9q3Z z8xHH3RC|W2rQktYn07jpupi6`y!VQfEIOie`&??=^a5)tFr<G)`EuqCmTp!oM6Arr zOl;}KP1tAv)_(=&EdO5(l3k~(Q`ycu1Kvgkm$!*8%iVC!>NDy_n|=0wu+f(C;QJzQ zBhcFSe*RsqeQ{pxtG=}qlcTjbvaUQnjWH%SGu1x~u7swpVzO^!0>Z@HFqo7Ay9WA% zKW$eN_Jkj#2c%wrEQD+YYh(coXkcPy9!dfYwX@s0oR*Wr2UZJT{9yr6qkD>*s+qb3 zrs4R-@z)}}42Zze(lWpjk`ltVd<X7_j2a{eNK%!ke{~843Mn~FH9Zj-R4Hnl3UoMd zS;*I4HZUh8s5FyUXkrS<>I$d?0&8Oxl<ub%2+qDHZt5E{1$3wnNQ)N~aE1Q^Y+>hU z3Z96ejDnPwrVJ7Z#Y_VY{8$?Yq_Y20qRY$U^o0t~=H~X9e|`!S|C2=b^h1jMDfynT zvi-D!0*c4V+CMfmi);kM#@rlk`boG=Rug9r)c0-A;nMVFxFQ&c_dNhv@E##*6No(f znr}rZD~s(<OB5(GHZrjc7)Q23Ol)HYS=R;qj_}3wZ3fW&;8r=BTbw=r;C=!~$?%?j zh(-I?4+-BhzU^6Dk=R|qamF*bzlYk3dr)t8EYx@Vd`aQiSX`UlJ$Y^k6~51^lHyuR zH-7l<@>Raw35tJ5=j7DDT>-*(4IPkeMR7@4ZBYY@4g~$qH*miIqqmIhIlXIrl&65k z&l@q|jGugl+8Zm!W0+Yplh=G?<M;d<0QuDqCOMVW!MX6v;1o=OrTGCEQ?pAGFxP5E z&o^vcVM-7G?E0Ny$&c#f&-o7y1<@?J6;%6gGt)7AtGszMy>ogMCRGS&Ue?lbxvpWj z-+XKCwNW-4Mm8k?U#BSF^3d#yU?HX}%l<CcMtbKJsUkv9F)p0^NHT;agF%045_;CV zx^=&l8Q)s?rOsfbfku|ppbmsCcR5|%r}W~?*UTh;4RUME!5EqmyvmpMT1=FGe-O;S z2Xta}vQg;u4`6{iBz2=$OmR{H=KU{CT`(BQxD6pr^6|w0+bqL#OJAg-TVL|MY@woz z`gk$*U7K#E7=CUTM{w<d1Cx|HhDI7Mc^(u(?)T)<q7!oZzImNtmZg-mt}fTvmRg<k znEJUK_MzOR1&|$j>?maMo-`8A<1`J}Rri#EEEVQtO7RX1R<%#~=q3MVGRA3rB7i~r z3yA+E(=Sti1T;dU6p#FjT)gG&0Ck}%=8$yYWl3e}ZAljmqmiO3J+d}*@uo=gzMDPY z6Ul_%hF)6=>8Zo|gP5@>z6FsC98BRme2H&Aq@vg2lBPw%zcNACxR#`Pxp*0sEpWSA zxDgZ%x%Iwe$$o+pxRiVQoC$90fP3#aZO;=DJ8}=emNIn@8)r^ok$~T6yOz@KE*Q1( zmYPn}j*M4)rEzbJ#w)oVSCLrGoy?Y`X7_*y<koHPWlcUBb!8$oWO%~1qo&N3K_4Sm zbhcfiXAZ^HKAWu5`K^Q6zRZ_Qyf*S}>$_|Msk*L?keRNw#~**t<qWNtWDr?M##D+= z<j5qz*b=~Vjyvb8cvwoIz$PGqt)d)J2OItuhFptVc>`-jj~A84lSJI(gw+}4(8_S= zT<L%!DVs)9?JVNwJufC^`~46%-kE4;!~2L@^>MT-(=<jrI@&vXnL#R9h*2Dip;EK? z*)YnFXSltGexJxd8A<C#aabgI`s_(+KW-pEF3SOQfkmtTa-&#cjY#q34|l!qNo+W% zf`&mPA&N7;>34IObPK+~WF78O4n1k#r~JSf;e4T$N$en2c&h&=q!?FWS!RRZ@wEMg zB0pO{37X66r%~>zb+&(A?52wN*A<DiA4=X%=!WQ<g<Mup&jATuvj?@S^{{WTREQLy zR%MsDxOMZ3EkDQtN_TP0@x)9rX<ZU>n3U%h>8cMEO?TfEyifEaN5q^!Cj!b7`P#$` z_O>^07q_A5Z~pHqE%Xj$+6y*;OJ!k~+qj|$n_r=ytk;Bfw1o<CS*0bN)<g1}%{4qK zhuwmoB<#`cbx})Ju@mBCp8`pR+$Pol8O{5qiQ?E@2cb*I!00*374|MSy46@w2NO+| ztk_D{DmArVVTz4D#ajfm<mZ3Qxo1Jbt0MEZDqEnVY^rUyBQnA6j}Fpgr~BxX<|91~ zJ<IYre8I*+IBcB?*6<_rZKUf25QGHA9~e`sZGtHd1+?Uqny%##uE-BxWL01R>02yE za69h!qLbope?#*s!R8nEjs8&l&UxWuBy1_ZgoFQXm}ZXGR>^Ayg0cG!xERJEe)S!c z;IWHqJ!(JU8pnr-0)%wwxIs;HOYxKeN9XN<0IydMACEWNA1QSwi|5VyP_a<-LSZ2B z!^O(`Yf1Z2qJl`^_n{5DRmP|Ryo+(_<`!@7->Z2uk{#oICEgyVZ01%9_fb!au6pv* z=wC5o0<j^wJv`JaQ>q3O%)}igVTz9q0C;t&nAm??9+!Wf83?U-9x9x!26>519jU+K zHCVK8Ky2s+C!`BAeW;g7HqqCJQv-N*><ZcUD-DT035$X~*NoF!SLB8Pd-YL=Vlc0? zA`r!EL>9F?a%6UNh!P#MFy6tBs@Z9+lY+UNmrMcvf2T^hb^c~|52zG|A+C1Jupj;8 z!awKb&^Wu499N@YDnQ$?N~HFi1jaG1apS2$m=y9i_HIgdIo@dj6Rob-qgzx35b#N> z97!i;^`svObD^MBTGR9Zo}|#rE@>ca$c5D??od!~9PA;<C#-lB-R`woSz-*hF#qu# zKR0sKx*t#mVLL)B+^=1F&mNLR7>2Ij1~gXAuXU_x(O<_UzuD=fj!s0jlV57f9Icr{ zKad4YrC`Z1k}y;1x2!8`#=;{1P<Np8vd=&0(3Qj!VMA<`o<ZpV{(zO!jyQa7+E^ow zA&^1a^eB~>iEWr`NwHyhe(^;lLHI{rtXbif;s&JzZ#3$LB%aehy3_>M`JFeH+4@XD zk}w*hHe>%;*T?Sjt51Tw{95O`TF`Vn-^?y9t1nICZE^ze<DbMV4zIm`CW-jIho>Pi zpq~@x03DOH_C!GeP_Ixb@nkr5!f;xOxH;Jja^ac&zy{x78}Jg)ksYP9My8JLJc^{a zTO!cc*cMj_(Wm%uM~oH*dJI)O#owR3M~hSSCI!XkA9hA_94eoAE*YrdoBU{CRb&F$ zdTZi?2`6MC7hfWIJ#Ks_k_vb+QskA@Y=;}Ws=-$6WjY`NJOga@ALS#U2ge5;-ZQSR zgs~ceoyL1V@v#uT{5LdqT&a$DIgecDRKEx?+@T6!PApjrnNh5~oC;uEMJc?8S{#&F z$+1{Zj%LjN<`+I*PC0Zd{8~FGFv=n)7`DBFH;6^GOuE}6ONsW%g?D-`GgcVn^y3RK z^IaL#N=Lf}^k6Dt_<kIBWtJs{(n+1|O>GoBVgQ8&)!8mv*$H>bdcO`wIJ3~qc55)$ zP*T&{u{_Z?=y{QEAg-oa;@gQ-a66v9Uw|hNL~!}WCjwEjO@9~QwQuc^F|kNxpo0H~ z*RA=L=6&Rb46X95fu~}Y_;6NKv=y8b??k~~=|;Z===>|M6~-X&(a%#%Sg5M08JD(r zga?(uNf+dA)0>IXjNf4oGaeCgv)32Ntu|5RQTE#1zlb?pM5987p;JgfZD9?z1drkk zgDQC1MQb;V(Q|{><(@LQEew7VP`oL)E&C&3;4^&?T8V2*mBa9RU8K(Y=DBF0S7HbE zz5k8@Acjran;PvAg23<&7Dn<jOLq7~pOn{*3lKAvG<3~9_x^6e9Q#?4(VxSJ!|+-A zy;pg{Zaj|8)pu#WBu)rnLgOmPh+&eLsOf!-lFNNIV~{ZPP?y|1co4Fm!cSx9+vVKc z+4B-mypLj=seX!GZc|^DulWjk-%E&Oa!dOcps_}U3Z~8+cUB0&u2bj6F6C(sZ!52! zY>>a%BF1efr>V?=e&BvINnhtaeSivc1_g=Q+M>lHhrjQc)Fcd|D5-SbMZe{!bD4tP zcU;EdvAtf!G8K!orhSR)T(|cO7CVgXs9s_slTV+K?<ZUth66j%K*;w(aRhdc?~qUl zXhi$0AW3r^Qe#CYL~cd57P~f5{RR~U8MH9%;kkYnep)0|9GJw>X7*EqvbjcQhn(W= zYeeFa?TZ=#+v<7xH52_YbMUJ3#S#E5z{D3X))aqPd+96`FikAvDq(V81;!m}Yu=9b zriGIiS@lKV>y4=Ykv)MOG3&c&1JR5L5DnusaJ7p{1I|@{U5!-C_x`mg2IDV4;tf5$ zeg52oOclNySLh?hgGkS~`*^^h^)ko*9gm=ZI;u{qr>j!nSvRBzS$k^REAhrw&>f7o zX_P(9$0>e2Q-N?4h=qcx4SYG(>EkuwT3;JkC&wx;IvSh1IuDzgy6@wWq!Vlf$jM*; zw?!<W`AIso4y@@_=pV>|J%<R`+7UL!4)9FZSWG^s0wsB6Eo$91voIsU60tb^<yMU0 z?|wQHHJi^ea-C)I?qVbz+MD1pO)}Qfl1okz47m~PkcEO%$`8H@ub=;<Xlc_lEw;ee z%=U~b`?&o0l)=3CDt!Mex`5OS!2K498_-tc>E?ydks9^>@_5oj#hDp}Sygo+)(ak4 z&Y1A7@a7CJ=>V>3Q#-zcORf5hrIvkcSPEBBJZ$sjAROR{2N{#;y*JA>O-+;ulF*}+ z(}&XP1Mi-g9z<eBU&3z!En~{?2n|XDPNXy)=<FfQn<0UWojJUJi<fW!$Voy4To*Z! zD+Z#}#wBxYZx{m$9DT_#=J9$L-};U1)C6>64wlsGb!!=|$`(i)f^Ks%r-r#9%DcEd zf_#S&Dk(V!sMlVIBI@kH#Q~cb`gzEPvf=q%-A)=g5a4mRVdQ?mf_LCmToOMzdcFXb zuBZXEe5-VA{M9V%Y6Dk*ORBo#ZsFD<s<*BTw@V*`+yKlt110|&#|OxNKVn<kbuy8f z<>q^;8AEW%kY357=04X=Vqdemyl{5~b$>G%D^7WT5ZGnt4k(Y!NxwTc79~<LWk(F` zQJggWgd0Sgx%){E{)FfiLUCT^Wg-$LgnoFZ0v=u=E8E)_E`8wuR#`XYFok7~aZjk2 zWV31UA0wRtQbHL%fwtC!a@AL47r(-Z|8f$)t(1kj&P1YERyrrQ>=hTbv^2;AwJK_# z_mokUbnNVUOE+39r3|*%QQFR$dIgwd&3TTno5q4a-5Nk2a-^c`bd|T6cKq>SXCpu( z)UWN1DDFLOFMIa_m_BZw8R)`=N~?u(Gp?s)35cQ8&{-HFpKa!=oGn?2GS0{aRcvxS zy`A0Y;*f_OY{vPE#rI@w<WbpRrQ%&bK?AEVQ~LCV=qY`37h6y-hd8;H4pk;GPj?M3 zv0X$^2G(4qi*b&-%0f{cKoyd#2$+foI;aNZ-1-wkwKPxzeqZ>->V<`M9}*lpTIQ@K z@9vUSUsx5aDDI<K4F1+rBO*;lXOmtg@07}xRHneHK;4>U`+o4N#7_?fdd9q8J)23? zgbrt_FT4;;f4GJqy0SVNl(OyD9xOPl97{5D+<Z8srh*&TQj$B#-!-+8%ALGZ_?HKA zjXSO4MR)lDkg~f!n2+%0s@<;I)WJh2%>NGnG(gM0<Ccr<+abU)c!qu#Kr=?Xd0+IQ zKg`aT^Pp{bz+z}L@-Y1u$Tw*0{W+HRM+m|Rj!`mYvNkP8S;7RrAXs_;l4EZ&Xp+yB zo5PV%n|iJwP16NmnJSn|&fRI>!Y*d|i1JIkzF~prMG$mQ{at^{c*^uKS4yW%M#3t8 zpSxjf(6H<9aCYj#i{9*)v}U>U(sCliytKUL{6th3S=)7k$Pwm~;c0va*y%zV)(yT! zE+rt3Y(*#Sy)Ys=D7pl#v1yt-WUTJYgX>3y;wdj*ppl(3B?WIVKIFz93x`l0u3^tL zeZONvoo<X?N&tVDh8nriXlw{v;VaW-!(^BTrXQbcG!_f^T`JrpDX*`}^^${78XV@p zr95(~-RXfch~Olx{4S|X{Nn?KBhQ?-@@;pI@GtMr%c~%%xunp>^1x@={mZ9=i1eD6 zX($ilLJlLDNplwWkK*}xN7_y2psyi|!N2$~i3xDU+*yBODm7N_6YhjbPAlIw5&Bg{ zHcm8UZWu~!puS3DC5vy6@6uHAkLypPAYWRJ$>~I+aup*@b+}5zlG<DFq}%thNtBo` zepPsSo#Vokysyk)^r9`ns%T!YQWa)pJ)&sjY&lh#?>z}PTvuE;ZE;XPiBqF<D}$91 zlBSkR7&d>od!`2K{v_l%sp27Q`p3a=t{8ZO1|2V^xhnM{<(yg&$jvybN*`!Vs)`)l zs#3XMlh5o)qC>R)gehb2pShHQu#ZPP&(b}lxEZ2Gd~p1pW3%pd7O;2!j=HU$#sz!R zm=5#J{~cCLEI2*0Mu5TEuXjNM+2#QEz3%&+$E|<y!)LJX5poU-P$cVubj6-Bj>>zO zm-4&8UvOxAdOc>8+X~0>ys~vpWgSwfw0_#kMxSXiL|BZG1a|ubJuwb*J+@>3dS9iF zdd+BYY*lU89Y?0F&ZNP?SrWBT_C|IiNNl|o@&h+vP`%|v>o%iM){zST+3F`H>~aju z)pmb~F-jeY9fvtwD2aCnr@HGcZa+*DN8u>j$n5NVYX71@?TO8kewF{a_i)&~Q!6r5 zPNMQlWrmfT*!2suQ|-%`|1TDzM9x-^*C}q;EDD1Ql`?^VUuQ)6-e7JT-%G7MJ;3a2 zwru=+zc#2xE?c<2j}hBmzc;al;*u7r{oa2dToCM?rRVvNeNA(X;cV7x>NsG_O|%w` z918q+Gh3ZLU{{LSS!$4g7YMge%zhXr*)9!(S=v7Lyk;{Ll%hHT6ctA|mleOM7D0bT z=}i+iT4ywwknO$;g*M;Ty)r_P_!D>0ra5RV;;pf6IcEnixNWMlTBx=*pWY9?jh25o z%-TySr79b8<?W`p3YQ!0f>k25SiU|M<0*#{_yCTax?R&YovFal%E0(Ho&T^+aoI~Z z{7BY9Q6%gSj_$wdRSX3&&FBJN=Y138TC9;s4r$$GZ?Yjy@T_qyu_3ke2m4%3)_9~O zuc<lN<SsMP+c?#MR7?%X4o+8N5@&x7fvmoU=!6v6LN_MXbTz288!?56HU`-%dz_w* zH9r<4WhvooNp+f)QcOu%?^VP7vD%rsdo-R;<JDg)XXEqI9@Bp@S>~2DXGv|ft)7@J ztw*l%kxZhw`5fD7f`PB}+zlpe2M+rcwt^ulFC$j{6cl>j{91XVKB>bTKudpyRtWxZ zTjZ9)SUp$#wWr%4u7llg^&SJxKJxRzhPc(0mfEg*^4!b179@y!eA#%_$Adf*iZG!u zMHQ3ncQ@W-iULlwENSzP#2qvG=Vrpn@%;WeJDz^YDtiH3$j>?<;8$AonYpqE!j*l5 z<N5k=sbbYzkvfciVgM5=qH%vIfX-x+qumGZH7sUBKgB7mU#o8Z;7Qrr0=k^3RDq^U z-9ca=$#zDNiAZ-D0A;sIl}T%4N5SI4+xv#?94F)g)jF8DfkiEFa#<(ujv`vl<0vGn z$GdJivsu-V5T(UtU;L`p5A|913%cV(Q;Z{K$N4N0D}ckfR^eLwXU%__7zF-x<xC-@ z{;cuf5~9*m6fUmnlcaE1nM-e+U9BtKVTHu#nfQ|5{^wz0xM(27VN?wr`yRzWr$z>w zE3r_Qz<T{L^~T{G>Nw=N&`7-4d!GiQGEu`T|IRRh<Md{3inNzy(yk7_7GQgaE{J0| zjbkqoi(#f7qO&L$e#(F4k*?cO<^g7aV95P4?=f{FzdeU<nM?%b_h-}>-kcUG2tiWM z+Ui}to-}kj+iv%1ov~cPnPH<4VE8p}@0`i-qX>0Rqo>wGg0v*FG@p9uuVjbl(+Ph# z0*shDu9n4NYN7ZjB||QQ@j1b#AvzEC*>%2*$DH)xwm&k_ETeySS9B%gK5xUE+6Tp3 z;|hieRAj!WU1CUgjF{5#{)w6i<1G2I6X?>9mlvDGBe4;f8{Oo5X5+&IB5%<@R53Da zcKCI!3`Q~j=^2P}H1YMquI6ua1fC8>2&{{t!NAQvg@E;(u_~K|5BAmIk{hxGqD_p_ zwcqY|AEtfYQ0#v#+6AM`2ysVCidies*!nK={<$>VyHJwZNr&j@OWk3%HdS;N<eH-5 z#);K_-TI~q-TYI*_5~g*kA5n#Ndy(t#nR7pE!0T_)F|-C_q<K_Sgj8gaOr7_a=%Qi zGRylLli>o~S!mfthkNl!aABV;okYT=_8OQ)B03@)l?Q(nnl*~dn#Rt)dZ}CgPE)VN z_uHaV2+x)<t~X(Qb%-sc4C<nje&@%`mUl^AR|;mUfyN~_|L`zWRF;eRsQ0&}+DBb5 zHFTo2wzD;vIwNeKv@=@qf8SxIj)}1dwuXcu#Po}f)5u4TP)A=fZmuT1J4V5<Y!<ca zZ9RG&IWK>-{lB}rd?dXskAgi+eh~!aCm*;;S-}f9FU@sxG)63|<KZ<zf!~m>E&O5I znOz!%Z7M^UWSV^pyY~IhQawEZMkdN-^|>-H3^7pcNq6y1A(}1%6&YWsF5a+Q8lH&J zG%&UhS?;Tcj!_fz#4|r8TzC>i!2OmmbXeueojZR=k#Efy13&r;7DHz^0t@q$>5U<l z@R1#w(xjgCT~jD#4PU_91rRz7VrDhmU~e#_^Zf`>5ghmif-57UK`5cZ2$9lz<q~fQ z->ysUD-=5Emcx(y6{J)(KFjNkwi}5*F<H?^Nh)3um{PZ1FfF^RMX<4rdh)DKf-;K= zhgW|w{YFEz%D@x*o?}l$ecY6yy0B!ZCm*98S0AizjUitS^KGja=`{_!vyjs6AJowz zH1Tt)z7D%i^wchH&;;+iT7(!IFn@#-y*hC7e_j0{X5x^!s;=zj({mPHTXPPDe_GdA zM&U2dC+hh;pP5oF^`TweZK`DK?`thAwc&p;yM1>IXNIuwmt}NGJrKa$ITw;&o{~yL zd~hx4v@F*eTPN?9`8{v?9y5VOEY12x!6oM~vw`@PVV2Qkoj!-Vvhp{l0m4Mj0Efar z_x;_fR_k=nCt&)PZK>YggfhqHQ5OwaTVB<kZQIvE{_0|31#3TfsIdI+AUCrMbkTqE ziSK~SXh~k-AI3;E1eG{k*+2?aSR9Rcsp2`Snrz9eFmuwt7m{xOFpdSPS&^=Mi9eh! zq}t<wIjK4keF8>e)n*OOzq;i0p}tDKamzmu%{&Z&Rnpb{f1@F<87AuIK}9kW>D}+t zg3rdkY5Ts|C)wUUBzJ%IUMc^5fMI`cY%PbY$d~s@FR6w%1(;xCxScUx!JJGV6D1>0 z>{?1JHhihL_^|#wA*z+5>zh#G>S2^CNE8@A<pt;`y*!&WPI8`y+@DP)qNQ;OHS~+? z@$oA@=7BQlNWq>xR!-=p?m>aoTXz^Vw#Db=VyOTM^$6i7fUD4U2B;94-S>Z?_n+J0 z{8mbb+Ss|Q55ha<C<td^vPc>}KY3#J_P(f&ugzF%5pq2Dpl~44C(lx#X11afKyn(d zPm|i+weA_DmE*DMRfAQ%=NHvM)R*?!SQ7EZZ<;TUu`NG5+pmrtC8u+gqO`@`Ttok2 zqpP~yZ-=)ufoVA|*Ib?QA_;$U5xG>9hxVR)1pxm*If}U3zAy$4_fuX<ifJ6u1;-)& z_+)@6-9(?e&&SxMU~mz3><oUkSrGekdVJB7V~yz1NrhY{YRw965`7&+@5X;3CxWkx zbnNEe-o^7r<1SzXFx-m1i_9U1>0<#UdQ@x{g|A?@nhJ=Jcy_lI!gGIs!%P4#pXI|E z9G}roqC-79P%7P1@ZY5c!-LJNk4A^pPjp7B06&C1I1>L_Na_N?;zMW+6hJ|T^_?<Q zE$8?8TO&Am!Tig8QrIT{4^CC0aCmBmmKYr))j`DkPVUZb)%stxE3=$bw0B8m;vYB@ zxwEI}yyKoaGOVYrUig1Cgf=A%&Ib;jjs3YLf=8GqMzkrRrEsky-sWc_ul;k&n=(~8 z;8+4%S0@#_on4T66eIl_d8!F(;90Qms~?!S>(YIL1lFTmZG#EF*Rw2wUZJD#B85_) z?F&!Wr}ll*wXw58lo2t$;ReG;KKq2-ql%%PyOUL_=$Ez(h(CWDxJ-D9Wtzid8`so_ ziMXF2c$vaivOP7wx(K)Y1m~F+$q<?!J4%u9W%`B^1f&kSGbzmIXh6@bpgS^JZt#uk z=Y<)%isTkBgG;5Le35L-4P91MQ^gS55->xB%yz2*CtcbjsIIO?ww$-0c|6V9(uwLN z$Lgh#`}e*{!jFH{IQ#`WJ>%N1F%+_RtJ2=;2Sj4&Ry=yS1*ImDk=or=k<;g<{U2Z- z+mQ+s0MOqEe1K#`506$@bShJtImOWPpANB`$Vm@aP6EMgJ4yu}Z5D|FIn>Zy2h8b2 z0(9l`ASS^x+5+*H@wS;v!<!G<7nJ(2Q<4)s+YgYsD}#RoD2PGb*Ex%XsS;zd#T*8l znG|xUMOTW{N{PJ&3SHEbE>6q_MivC_#W_2ERmG8R%^7p)w&7Nt578>8znc3_<16fE zVXB4$tG_3Jpg1kDfhVH$fG4DQ>+rCpW`oQU<UL<a?$SmaOptk70?zNhl})oVZxPCW z+LvHvLFRv_5a$`4Dmmq$_~1!Cd%#Jey|*I0m5z1-QQQ$eW1;2c&$=9xMbPokqqD_8 z)^Ia)?A8fZnM*=w?}KJs@tk&U!92GWjQ0&uN5^&cgk-%46;T2=s|nzr!*>!`@2q>o zYV|NE6=BQnz&d+QT@LK^>mmH?cb%0P&ZEs3Y<GW@WKvpb@mg@ed<?N!`82e#hbqSc zVKtqs$Vobo4vBx*$`81ld1{N>Kh@BN`(HzA3wdP2R^So*MrGDU1VShZ;;_xe2CMHY zB!?tvtaO*DNX2GLx=0T!96L*={3e4yzy#gbaZ=OcU>gndr1C0zf-xFlJMK-sQxey= z?tXuIC?gi~_E|^EiA{DTTiQ30AqKD+Ny%h_%E5yUljN8l59*q^@BX-j|GgKrnZZIp zCKMbfTlj%L8hcnabgnxqJyKF^>I-xHb6v117kuo%&G_n%IqODzk1*EjfWWkR9n&*v zQLk+#N>#jbE8?`NQ4XxsG_uo4g6>j%9eaNf?pMmWQ7`AV$_clE9H;YD5eRl{BNi5E z81nGGP7p10+7BiUmRd7c8+yka6tP(9qd7_><xe&b=7i9lU5jXDX}Wt0KW!A{JUc_A z+}Sm|n@x?SpY~Kn_QEgcj8WHfn$cO~4AK<=E5Mi<q`Ow+xLyU*kXzs9Rfb2u{%?N+ z<kih?H!d^`C5Z0OX7T|@jx5n(r<2B^;)N3e!bFd$`(qq_l0G+nX_eZ%uC&_LAg%~d zj`)t4Zvqcb+8CZ>T6+wiNY?O@v77U37>;qqzJrrLTo0hepaeRXF+o1Lr%w=-D?!bW z5@|d5nVI%F1EYkxT?E#WL2pX>2HSsV=)~PT9xcLX$uGTFN!WkRDb+4`^^95e7UJJz z#<LHDu2RmH8?aEUp^!*zjE*DP24@Z5KVJKKqS6Uj-$hx!YK)~k30REGs!c-0XU=R7 zPiv;WdIrCe?>~+3&ISE&kcX)EQvxr*V?sW@cyjA`vsjjO1LJR#=29`^N_2k+U9hia znKSFY*rzVG2tJ4ylz*w_@6?`}M^49RxLZEH#rxReDv1o!+Kj1WD7>I?!uMs{R&dyV zLobEQ{U(j2g6_YvDfbW4_3%Wp3J*l`kniS+;uhG+BYkiA$_YwjLizheNN88)ns@Ib z?&IPt9h~)a`9{{p7ft&!tO$QGV(~X|`5}0A5j#1z2Bc=fJ!?)FEWxW`r^TD)<H^K& zd5@p+zG*8~u5-AhuxEW5xZ5Hh!wHtb&;0Z1#>=>DWpdZYugUyd6Z}GBO{yk=;wuZ( zB;=dOEXhwQI7$e|*<_~u7wGL=Ck+tqzew#9Q}L9DA#|*;#4Aw`$Qpks^e5S?sPj+a zcN-=kN)r&Aj?a(ycxGhGMS4f5S(T7n?suFb;BY+!iKk>>cY_!VtoAPFt2Q&xE<D9Y zG?+EL>k_md>ibew$2#Bv=v;wg^#q$U8F*(DPA(egnTTT%nLiMDz8^v-fCK!_K>si} z3+{3bi1$-#0ql_{v+IBA>QTg@i1`7PXV0JmY%A|%jIbaoR59G=Y%{4c`az*7K{zv` zc-hYMl3Brx!xS%nB-^RT1_hKPUK@IQ1q=sxuBM;qtRFd}&Ha6C;}i+h1Ew#wak$ob zL>st0+I#-`IS{^R=0AO)2EL)jCq6(Ext5DH+qlY3YAO4(J9mHCZ#4#zeAJ$l;tCGL zTeyg3Pt05Q&ekqn$IQ)Gv!o1e;_!S>72Wl=+YFyxbhT8CVmsOvqT@*A*;`%IH<lhh zfu<!&&;fBSG^y(kaXbp|OZ)CB@}co@^H1?b8v>-I?<r3pFe6tZweQ_iE|^k_{XDIO z6V-dP8<HCvIM#oix&FLv*1|r~TsXAlMp2G6t|!RX6%6DxmNTjxLIF8R%QB4l+vtcl zqPmWW5Mh_B<Q7Iln>(t!;Ec+(SjGI^v161(>mzth>39pVP(fm(+2b(`uF*ciP7FW_ zQH@3Q^KJyygaF)Fe0RcM48Nw^TCP3FID2f?){RQj8p?m0v)SQHn`?AvqDAqSLVw~H z;k}tC=36oc`<p3Xx;~@P=IWOb9yb%?1kI##1v10nTG-uOSlY7F+E24#Q7__p)vD#p z(bV-9hzZz7NhK(*SaKB7kV1T?hCZM0Zz`@;H@&K0ROVJdhFT`eps6O*m#R+E&4hqB z65%qirB#1MJnktYRlQ94+VQ=eYcVk4M2B*YDRH=oNH}EyDRND}M1SdQI^_HYY7~_+ zSG-+n&-X7r^yMV{q4IPojThS2xs@#DMso>BbfkXF=QfU|gUo7xX|8GL`uOh$n}};j z=4(%bkdp*1*`fdt>Ih6iF1uxUHSJTGeYHkHUz~rS&OGm--$9(7W-IMG@-byI{OqRc z-dTRbI{dxQtD|w!I<W=R4Q<hRddgvO(UoLgh-UJLQC2)gCJdAaqAHM<@)5coQ$g4* zG>g?SCU067J>2esxFLT{{`(2z{-|&WW1@+}HeQ;0VVFY1XhM*E%OZJL{stpUzPV*N zyCHwEMkx(;O#AJ;sXzB-k|TPS+dbU;#+^^?kwnC?Tvw?r>$dZ=F64{;Jz2hUfrE#s zMp+W;!n4<+SBE9I#;~y}wXpgLa=)hn9FIEl*9wT9<zM+pmRMrN->_S6GX_=SD~va; zHAup?U;82hv(coOkNyeaOj>?qT*ohK-Isp^);G$-K9X8cR*X2e__SCji@U9As!FL# zn}1|3{DTtVaBa^vQ)MYDO&H6WFz2qoBl%pbHI^~*>gK9uqZMI;iR@Fw^vEs8^G9lY z(LPWQJ)X#a^ge|dn_;FOFHT-;lbS|_T6T#C1iO->2{hQC4U)Kdc-gHT6<-sOHX?t} zvd<enfT|~ow5-IoHCro)7mVP2G1kT3BL>lL=^gn+{veS%eRG1Y`)i7F$Rc?bo(Lbb z1OlU3S>*aB@o@Ca#(G#`0kCBOhgn8<_nFblQI9T$+Oc%JQQYca5#>m;AyJd&k}sJ5 z`6RUl$N>9+$*hFA(uQB3F&2-VYFU3bp@e>TWng>GQ|Zrd+Z<B)8jgDvGYl8-VGMtn zHhpr`NEiD62PABaTrDD;nzo)RSAW4wVx~uCNAN!&EmoyQnY@|DvKgHy<$&2W`~l}3 zdbF72{klAr&~dO@Q4<1w<QT%em10JxVk;T9FVo9Z9p!aWeaCY?@c5cIgPwoIepRwN z&%h6XBH#38Bwp`Y8c}o)e3c{?yVXf%DsMJA8G`jtG67dGkK;RHZoZlV_1$rodz6Vg zMA0~xxpY~8o|4CnBCy+=^Bgfq3O*~eo#NWEf{%xg_{IEcqVQgW%pu!`k&_FCU(R8X z43bZ}l7i`l`chhm;i|qmSYLlg1On4_h?p|hzcd4>zW8zemCZCZm(_B5W!9&}I*Itn zL2il;NEWb4AvPkvf)x@QKBM{u>{YPT>X-?7aHC6|JOmmh&E&(!6IIT#iv33G?>T8V zbggm5Uj6n^fyHeC{s=ZfeL&c?R42fnN&IUHtqp_QmE}(Un|@9np_zY_lYuWQgxXl* z1EAo0O>)$cEw_}}JFEw5^KiSV2HM9P{E0BdHFV^Vg#h{l^YDp#s2I)|rYbPipy}WI zeHp$&<5idROEV+=tl-$)?~G_Wz_e^EtXWopb%N;xveXKU+T<Pr7(Bb>&N`fR-|kl} zzuhm104e{8%AZ@^|GIy;i_BK$xes<`NkWWl(vjQW@V7T_zvj?z7%qxXGaEHNsjzvc z+YH~869&0Drp77d6suBPUIflO!-!QYLi>sRP%S$$ju0@YG7-QY+Sbm@$J|B6G;hX6 z6zZqQd=eD#rIiG$@$JGC-1)8qWZm6KshokQ$~EpT^zae?F{6JH`NeDV@{=Vh7b#{P zcOXhm>Xaxn`IGBy*!$>^Qkp>#*2F)9&A3$u-w!Zf7k7!XK=MRZl(V-X6HKdxJ<Om2 zB5>-HJ@K?Ms6ejf#C5>1`!I8cqqb}JMPHG(FjJm0)K9YKvt1AuYqB#O-cokEMus>a zhL=9*unf}Xhai8y77Go|-3q^Syn|IpV`dWN`S;75H<C)$QS74U(<Lx3=pIJyYX)yW zMH;*a6mn3HV{z7`(_0bp>8JJI%9cF|M8nFw@(n7+)=zCptusy6OP=*?uMA1s&U!PK zC1GM-j0WoWmx!MF(h~+z`K{^M2#Q)vBHYH$*GfD@K2d+*G9;pKHI!4J>};V&R7}x1 z%ARH+;VI_!!6`CUtT~i2#N+u<Fo_BSe*?u4*-w!S!6`)~kDZo8XvD93Bq2hsR7CXv zH{RAmn#2^Ujf)lr9SLVYkgplPmA+f3V!n`{-iw&{00hY-s~2AdNNsJ9{Bd0!DlaLA zwEcF6AVq&S)0k-{<rWb3wxCOi6>}|Ij+<-{6h-b{8I`^`0UkLVn3ar@t-R3oUC4rZ zR&k7xid8EVYEa0w(FsTRq=l@JU=2dFYv=l<^z#L}oO`s}tAf`*3n?uqN|W#e4|r8n z)_uwta45CJob}oWPs&&2W*qn#^kgk%J0t8VLpOizp6g~bjSlQtpHXOGw>-*1PFOfn z)UC{1rFryr1_+p!?8PxMjm3X!dmsEQ2-7<Z0&cX)x^sS#dVYSnh!QQW+45*au?CW3 zEA35H_RklRAA6#7?Hr!BLiF;2%s&3ip#zVz-J--FTHjQ679yYxC3&gDc<jzqWv52> z`Qd*;>8uW@R@kJ75F52J1^pa14iPwmH45&~AN-J0FsLX~jd*S3j<XGr2owQPvQ_pV zZJmL1jPj;3NOT-+=QQ4&=p@nw&4i@LdSd+1jIrZObNRNld`V8;PoGWdy_?)-{KyHN zDhP53?r@8DH({IZxn0pvz_Mq{{VuVC(Jg;$w%kNh!x`VX`%f2>eOV4hw?=xpmcY7Q z>!CR`Pm*~qMT`&o%k=a4m&y8=hKXyMD#2Jk30AlkyvuTe3Q-PFtUKg7-~?^eP@-zH z<h`ZOS*n*W*zUM;N;D4PM;WSr?MPV!4ZuINF+6c^YAVLWH70CRF`(p)STSVc)p>sf z&O~kX)l7}n@YwC2Y!i9Fnc}12RC1xeQDMe~@W!`kK<oz|WGw5O;r}JEUQ@s!@08u% z#TrTm=)WMcq@V7*6W-Sl*E~{5f5J7gAC$^q1Km7QV`a@@dNKhj!FQ<R3nG%`aY!yx zK#r$cX&Yqk>{4O$NTnYeJX;(Y%gukdp>ve$2N>3KOLE;_eZ&e_DwFiHru#6Pm8eN3 z$p}!{c+(wrtz0fbFRrwG=_Iw}@lUYOWsE@VK)FwUHZGe$>A+Z~uFT)!Qd8C<KdYxY z3G;SE=@%o%j`B+)pzPR`Q63nQ<EPn*qo5sAL>ti!l1>0FMcR+?hBUuTm^gntHHe|h zMTxdaHhuO#@Z_bi%4^$`K-1O1-XcS0W9?;z7Qq+W0^KTk?|Brt>Y$<|NgP6wPs(T4 zN+0ZUcgDQnVV*Ye$pxLoIm)@Ed@2>d`Hm*MRNs#T$Vn{R=322ZZ097L(dL72d9bGP z-|MfuqV*+Zf!(-H6q$BU>ob4tGhfQ74M~!%ZV5z$sXPqtj3uV<>_*FAT?BK2k^web zJ6RO+@zrK5w1%)lcAS;&{V8^*N6K;fgA`&~%m!Q9+}7qDAd$i2pg{x@w0YfX<xsb8 zMD7oFh1yNL=g<R%O$TumQc>>aT)8zD5AgZF3}DepW5qZ6sbjBgm+XIUt~ClLAnv2o ztq;%C6z6UtuQ`8w#Ab`yfT>ls!D`@hSCj9qV_(67Eoi5G>LL~P5ZqXhmjc;<Z0)YR z)a&ug2%=-SfD`ji?ywPiEtl_O!c&B2q=zCf8??$l%+<LRUb&3=E7THFxm#FixeypE z1Q!W5cw*k!p1r16A_sqFl7vtKTxjp`gtnWCNCNKp{kXMy;%%kg4Jp%2>`!M*nDX#; zp5)`s{CvsoH+8e&t(0Nz=DnAT%4}gVD>Q*JXV5uZeOu?L^a9H3;D2KF9`Ef6&xmtZ zLRlAKGtFrPO!KX2y&xrc*R!w%#f}CbA9I00pkm#mp(e32QAvNI?j#8TWK{M|Lt!xE z1UVpGoBRVu)vAK;b<_ipYokgg<*#oJ_7j}+5&LF;+>@Wwe<v4EHudPaaOP0w8t%To zg|@p7g;N;ub++Ar=A^J0$6U++Ia!BPhzKNT`t8vCOi0jdsq+px5(==ZaYO=y(gQgL z97W9H%R|WUvYLO~V;mXPuX5N`3-oy{A^N$P%<ma7)e?A=RbSVd!s&<nHTtz^Ot8Ba z#XwXrH_4gU*~6#2cxFVfkdu~hh**N)LuqxgycCsQ8ShKY!cU~SEZ4qq5Yvev@uXpN zXHbLl`Bf_*Vzu72ZoGR1&DX{_{UKCT&&Smlm44xyA&!4kPiy}vC-M|XiNIa>Syw%$ z`(wQtr$Jk27Fr&K<NF!DD~V7NKvS=j@!$Jq{37=`Tgt-1nPduKX(naTd7kRl=zT|3 zebf!>T<2>vPDBl^u;VFG*|HNZ=XM)ctIO8Wd~ljCS4_=!<{Ye(Y^k*Zslu~oqt9y> z(d~L&1k8UfPjPRAWD}~T-X&cQT$(6CAsRYeZ0VL6Q7NH-wmh~Ha+PR(4+P+-RsW&Q zTzYDiOxc(}?$k}S_~+5)d_5RXY)GQ9k@_fn2TP>NfXB5)V<p`s&U6K%265tFhp196 z`K%OgmWd6doZ<NH*dX)ozfZ$%qHxMyO=lO56m);9C{1N#l+WfD9>&Dr8S#^|HtEre z=6>q2CvBhNg@&4J_b@xy<;)5wVdCKPR!U<Z#HS8WkAeO5@&&^3op+t%2A;HO=2Xc{ zKP<27*%+ZcE5yj$Er~6Z8^)EM4D5QNtN*pMlshxS%U%|{bT8vWQKwf3P(s^(T?~U* z3qXHRgVS&S?$p6K8wDxllRXKm<*RF}pyEN2EqMpSRhEoe9^4r0*CWK8RPZ+UB9L}! z9s*B_a5G5^iZ}vDTXlZ#mShRFt)K6cz~p|Y@~pYb!x+SN`1OTCo@;~#zNonNJ3u<4 zlg!(svSKk8pi@g2E1PbM9E*(_l&^ge_f3EM(Oq(zJk>ghwvFp^``YTKkC|_|7E*qs z)_3d4WI9Y1DTlN55H3m0=3^Jxny4~{Pz?6osC~y`_%0;2jC=^WKF+_I{j~gpc`=`j z%ceIzDi8Af3-BRxP3An)AqygE6zqCI3#%daDLtq}d4!ii`w+tl6{I}Fwo1QMWz~O= zUk)-lQuKO{J3dU0XP@3pnpA?J&6(AElWZmFqpVBi$<xlb`Pr8%GC#TZK=&CDBh7(p z5U3(}-z|GODLI9YClmccxT~OOz4Ako#g6I#Hh^q0(+@X<-a{y{q;aW^x40(pm9eum zJMOdiQDmBD5Ju^Oh53cmdKi5e)4YES+a-(`$A`qKMS%0{SZ*JJup3gi7x#r2rY-}P zgdzBwAPi~GG>4p}csye=*9htWO$C&bSq6!Kj2;vt>={JFbU*hqF}X+gFfTiSk6q*e z86MX!f(o6UcJ$jZ;z<^3l;Y0uCD53Bp*6kR`ZY)?$t7*I?XzdjfaH@ru+o1$M;Vq6 z`HHOawGOwmf=aeY+8t5!=U-Z)Ck=moB60=MLFI0oWcu}SSmE1U1vK}SZmIvi7VgTG z`?*-vBxp*+F+dySKxcXG1T<Cn9$`YLpX#L=9Q^VvGqHPn@F_|jDxx5~<?uIV<rijL zhwcLLuMB#E>lICu_~kOTFw1|QGs!GNTkFO2r^S}+@@bmtT5RbBbjQl8+a4;9Nd4QD zg+p*~^0m3eeG<MTFitwDHBU)Re{P%zbB+8{KYyX(D2DvTRwDJ|3eui^n}^5jj|vyQ zYXM?OWKQ&kqtUeheLU`29aMBW@*QMmqw9i<4p*!{2AH!xp1VxQ)+B$^gAuqBG?W_X zHy6PC`d6!a{eB_e>?T%C5}Lh`so}=$?IZPnDZC!tXaFacC<Gyml@={YuD}==+vUnY z>0@MlYf!UIKco4D;E{yt)MP5wYsqy`6u4Z(JztE6!apat-S69E{pI#3-{C_`|39rH zX-3!P-8qoEoX%Cy5cq$gSfiswlk2dRw0R3znV;AaA_EOcger2nU!<IAb|5-<dMc(& z*RWo&;hsp$#U`M0vSl?T@+dDQ3B-3=cW8}5rv%UcVkThSx6Zp+=>7v;tb=qjT`%O} z;^-t=jflQo@U>+3JS@qCjl-%ua|(;T{?k8ZvjH0Y*$O&`3e0~R`}U?r;@HZR>cUT; z;<s!4GM<a-SfiX$#>VtRq>K+;I<8MweN!*^6YKp)bfbZJoFK+VUgQa$G}zY2s8l%6 zQxvI*s0-{wXuN|&HZYtERk)Z^Z<75|!yMdDeS1^p6K0>Wegqy=6|RY^1lSu57W@%W z_6cQG<GYHpir;^6pD@XF%}f#T+vid59F!#gFz|6F<Hw&6ZDF+2^%`t*WYumPI32z4 zn!`(>%)QZ!gGN?KXX=D)#ld$@Eu+pX<n9|JKwT@M{rqt4)Y8a-TAt03({991?3xJ~ zol$ti?2*;g#*W_<-9c8T8=SE8dtLAzT=lFTr0O+^T4I0yy}+(lD59K9uTU&Xh;@D= z!b^c|xl^J<zyobO(v(0-Th>+H5ndziu_O^2Wj`s~8YcNuXVD&|E|ayvH(eVx+9=OR z*Kg@bM_TFD!^}dY-h<{9B&1;gC{EB+Gt~$`=?~9$8@@qIi7FgH84QNp`O=2}qvk=A z|0oQaT>^gvde=i)s{iHTSERlFd_b?|z0B>8g>Cq$6F2eN()lD_!~1n=Qe?8>DfweI zK@)ZOl*Wcv`}B4vE?ykEE%dMMp!!sMXh&-&ME-4TP!8|T&Sy8V{M&xIBq+AJR+%N~ z%Hr|y180Ro<Wl^qvv%;+^q51>)A(;EpEJxRVvB#05F{V{*ph7h1A=Z}7~tQiMkEU8 zM6LamGetW)(dt*W`T*=GQzZT=Bp+Y*^u9N;t2AMg@C;F|`1E0qR~Nq`OU&@xfe;yS z8~g)24mfEa;@-sPOKl3X>^_$B$(}8G0W)A3EJ=9Sj*+rH>LqE8jBwi2iaR7|VL>{1 z>#l#~{pqNCvRU?zKBx~SYfF%(8Of{2W;NsAeBo4R6*_>_kp;gT%RYX50e+1Jtc;TM zG0$_Pq{9)A=av~qbnpXs4w*_~-mveK^JRn8)Zb^q^A>UDUbC>1S^Q3l;zL|Blvtlr zzK((irlav~AAORB*~s+BFdn1K(&}s32HJlmoC+kpr*%w1g^feIc2BCzIUh&Ai?RI| zxw?#<Uq*+9I&AYt+jp(PZ7iUhSBdfBiZ@Gxt7A-iSW6x>QTrWNa+%KbWoh|1=-5?- zXBb1m)5!<<>V|()m!f@olW|s$P_pGsOXKfmiw@y}qx4iik8J^21%<c6YCmOK{-A%Y z4gXwfr4{ZbjRzm@=V=sX#Q!U?wu`efkZ))v98(cDXSGI2oxT2vf0$MET1)W@;|>`K ziKvjje%mWY353$x32c6VvwGh)L2YlpqKsJj!2^9X!{^oPyt#`vd@8<Ol;vUh>cetz zBfIq=ZYf=x^Zf=HZ{xUzrjUK2JA;2+ez;P1-^lYNtCC-^Kz>$=<+j1c@A6B%6M9+| zvpSWN#qz{MXUa=gb=>9?ETk(NM?=*O_nm`bYdYW5hb47aab)5_q4t;6yHx;kWrbb+ zpJvW9Tb#NlsteXdu{<~PlmMYj9;PR2ZhmE$rFS<slc?U(hMzWK0cZQJ&T4-@Bp5*G zLlV>|dtNeA)GXO=EDy*T-4P*biqor>pAs5l-(+*@6yD8pWY-S$;HQ`O)YQ$=+BW6G z(_e2X5Gj2XPg*mB5G3ujc?<yg1YDG)%eFsW{mCLE1|)k+VzXnj40IwE6F>%JKBHuo zMd?d~C>*sFqwL0+;cF^CZnl4!JYdC+ABOn-Ea(HWV`LF!kF6tdm;`Ni<%@s0BQ4T} z47*e~7{D8Y)p><Z1>7_#7R$#*v?FTma&+u0!zMVp@HLEL?rHeB)urEJTIlYFz;Bcd za?y3W_QH9pS6q!$Eva^TXj$pA*b(8Eb6*<Ba3f)-*ru0nApG<HjVph}=*aK(F0L+A zWM3v%uK`6wjif+_IRZagxdkDvm({-&Xg;iS)D#L|#6x|OJJo%}B1sks`eyN1B|+<d z0Rhfa%oU26V<a^)`}2ChBKi`B`%<-g<-nLzJQ{<Qq(}egv^8py?@rh!Ik*P9Y*rFr zA6%}=#cgT6v+6tOiA8_sLU?q1yv+K=J}h+r!iq43?c|6yW4_t<;nvF}B$g3N9Li4# zYXii=2RvIDM}f*MYH)JAa7TNsh#K+qMg?ER^wS5DfRv>#h{RUvnqp5uwsc70FP7WF zTe9_85C4o5l<v~4)ol~ldq##x8mS}#97XnwUYh@5Ugs88a5;Y|vB}aBB5L1$D#a&% zGL)H;#$Oe`M^>LwwrqqRh&E4)8iw(+`vd_Szlqp{ss}f_$s~D;)mRco3BO~CmD@}y z_*9%hTcbyRsQ;26Hqu+w$ti+*wx)b@bM+{_xwUkAOVOOpE<$nT<b<MHbx=aYZ@GC+ z(rWss(1MX(EJS~!+Olzufag-<ZI*}HIHaUf$sdxF!~z*{qo28nD&WJdz6mVANvu)P z`CzYxoS=$?+z%VY4j!(eEZ!?ZYaE+H8aV%Yt5EVcW<{L>S{I->J7skMTOF+#XpRR^ z5+XGRH}WRPpu#7PnOebsuRkLGGEY2`@)UiL42#YAOFVxv*NV>1_%-aq$OeaQzzOmx zeeXjvLVi_X-3uc2t&7k6m53+t#Ox*}-sZ)lCHs5XE6IGFOxvg)iKeQ23lHns+UuU% zd6Rgw$VWA>n@-n5ZeG!oqWVmAXylLAb_9kk+_6wXceo-<kEnUdRpcXD3-y_oiOUTI zk$*R|<<5WMW`knwMRaeWMyn)(9^n>cfrQSk9`^Mu=zpu>*J@7I+4AimKb60;L8Pi} z_kM02l~1NwZ961|Gy5w|C5@_K%_aI1%TGbNWv`z~ix$G^w}+xy|8AZ|mD~>xg2A$+ zrnMWldNbE&^op__o7YfAdYoViw51W$I&nyvc*=hjWE0)wSDB_I>XFrkZzs*#ALM-Y z;Z5!ZMf#wB+<Wo<#HxKT8x|OB$}j@1eL*D&L!qmNxsu+5JPTvovxh4kJPWw$2#*-Q zz?u#T%k+y)i-wLh&U?FJ7$_iq&h)TnxaJ_U?`q(zUI>!CYKBWBc1-!rFpj?y2(G%+ z4%&Z1rc5`goIOity(-I6Mc@PJoXl(m(uWie+>cd}-l)W)$HF0Nf!C4(YyryKcMEG5 zg}<6J_#urJVE<1S=d>k?qHM{sZQHhO+qP}nwr$(CZLhLzSD${|_a`!Q&XExY{p*7S zC@WrU?D(HmH_)0AIo$uW=<yK9RI+vnYkq$#C(lC`Zdl9l0T7eI-m2N>-u;dT5`cpR zgJ}f~>%~SAc>9l+d&oTyEDYJJ<uwL67%uAiO2uialzvCg)j5xTx5vTN_S84~@`s4@ zIVniTg6p!e-2_8;Z{O{5$q7#}i`k3dAa?D;6QMUn;BI}*cY@V(<YgK;8oe0@mq>pn z>L_BDYCKdPEcapx3)s$g1LWz4%L;xWU)Da02vhyI4H@*h=;QUc;bTXza@&JGlT(yu zQdqd=Kt~$JU;B_r0qnsmyVa`<us!7*!vq8c@?wnEugK-yAC9TY-HnNZQ=aQ4NXPjV z1B}iqqLfEG#6y05{>e&>#-Ct*(cXV$-Jm8~#aqCBVT*6x9UBS@$T5GUrot8#+UB+M z+g;I3)jkYDc4VkwUz6e-gs*-wqy=$I?cRQI?lb`LW%LxL3W-TV0lrw2V|4;4xvh(r zi-n`kj=|e~fs;hDU}8joseeMU(6|U5+Dte+`r{0>y1SV>+!Bvc6-Pq^wUK|7(^+_Q zNr1NX0*_V_BwUOwB{LxGZk4*|22de!>RgBB9gB|U(%IujY`j?LC|0Z&%(kHV5o5FV zx!vXy2B2a@D6TYsqhf%bNxEpu<ClBvV2${XWe*_qHZZ{?=ga9f9ek54*Ab?7@$kLh z|H%hctd~Me(3c+vs`m+@k)eP3<$VqGH4G8TjZ8-;%wCcn1{n?dfIhMhFq@3e)DF)k z=BVs#*#^gxD}pjR{i;H{(h?{)FL>aWcWyY#nYv8yoMO&(6|i|N<n)A`{K2+Lj2oMm zhtxxTO_11YfgX&P2yBH*em{|x?4I2P2Yg=R6m8=ea=Rl+E!;QFFNc3rYJTaFPd?To zpJx|hCq2~xQJo{hA@$@szdWN2c$Q|u|N9TrD?)HB%Lf}2Tv)g>jywNnBnQuT-24OX z8_ZAz1n2DEd(eku)T7M|T2L~FB=>63?zQ(#wBhEkhUd||HnH|MO?H!ju-1X{6FiGX z&@5rvh!aP1@TiwjBr1Pv|JbYzz*xWcbE*eawBT9Y;O=LyzGMJXrg<!m{x0CSjV2^< zrL{76LoIF9Q`+d{w$vh`yuh^~o_>FrcwXy8(0z;aY7?i!f*#IyhWl&{rX-(G#<3K> z<w=RtE*(ut1yA2Cw7vml;V)$~e6l^b)-J=!2(#YQ_eT|Yu4I1(gn?*}1dvGb!um7o zu0SY$?pT<gZs;vWk((7iVv}WIklZ|>I-SY)DJx@~egD?5%w2KiNICc{GAF9S8O;To zQv~Q}wR8$3)GIE*2_?$r8fl=R@B0emmwv)h5;a}OTT}xhx-3z6ic_Mi>WUhtkU`CH z1X`3kjrUL@q@RC;XJH;-vKAJ-tkH)%q$Vx+nuRd@hdKXdQm0h-RT-ZcE^&eq&4*UQ zwa{0J!@hkDHV)4#=6wqEN~>`R6XX$I6eqK2^<@($CuYM^i+7Q%7G-z(Ar6W4Oj$*A zh>K@;0v)x5Eo|`c6W{PEnluuybVFq|piK%4)aNtulMsLRWJyyQ96p_yOivh8#h=qd zb98C`VRz+ScYR7P+1(P)frWlvphQ<)pv0LXfLGf^6#*}vsO!n(v-ou;Ka3`!-Xq*S zTw9@Eu{unrz|qw=xRI}fcDO*v9$Tz4VoP+m8RZvzJ~J6V&QFGV%I+pY9UNYlwh`nV zmmHxf*)D&QeK<DJ9i0T!Dx_r8t0q1?cui9W8otfrxPt?W5y=+24B5Yd_wc7CKXEo) zq$)!C-%{gB&u^l{b1tfF{^ZY+)K93&<flR1!<DE|z2HuDB-5i(N=+-4FCcJ=<gq!V z)anybVq1ujBMtfOrrI@9Q(LC<*u>@Eig9o1Fc5#$S7IKV67==_jHpTiU#14PMk$ld z8uU!+(Qm<!EsZvc@-q9i86;S}N?g5ELPn=`+lIB><(|)1yw}(h41&sEQX4VgucpGc z*!SW|SR5X?!P;<p`(+y<%Ro*{gKunvj?_>Lqi~t}PO{JE)9Zwr<;_odGIcy(sTKTV z2Ni!Bknuc&MH<l6AUDb@d$ICroeI%w`tQ)kByPc$?|d->`+ZHa-G$7M@9nI~>`osm zzN|~$5+B0{oNb+Y8K+(2#>zidH`~RIxg>BfJdaTsPyA~Qbo65&x)y!eO#=t!86F6k zDOq+bd!Jm(I7O1|w7$Bfs3iwm3FjJ-#FT&Ve_bm8ivjB@4V0u7xK~isT@m9RPohRk ztmu|J504bx#2i?|+_JEYPrkknH@XgXS0{eTEIo`yc@~{DI29pUd>hcW=a4IIWZb!L z>ejR+rVf3B>S#x#?Hg9eDz@j)tTjPK%*s4}cUIbvyoRy~dWDbUTt3BgO+OHVMHzp3 z7X4Fiyt?xXr(V!YyepEq5f}Al8ouz%$nKD(OO0_{#e#7?UsxPjEVP*LO|3>{4Q!v% zA5eXfFI)0aY%hS&vpFVo^#58JI6dcx1^SWZ9`S5(RbmQ(B+(6ngnA94wV!}T`|Wj9 zDW+<02FOkRfgoxxi^=vtj#0eN-DiKpE&TYJIjEW~Q>mXEQf_@(i8I5PqR?%ZuyVf| zl^}y23fkH34aXVkUl6OO;P1|x(`^D9j@Dmh?L%`kH}usJ9pho|WW9m~nC{~H3bC0x zkz|iVo>0zF{WvA}gmoHrLBX5p@V%NnF*ydzOfwF~|56uz9xT04vl&6Excq-3GKp8a zM8NWQ&GJyn57t|Ub|6&RQQCy=Ez+<}_~VJlZ#df!qmSr2jzqQAWJY8fGh*L(M~j%c z*9=q)o69iJJ*VK1J8YJ%s5DTqAwwke!S7qI-xy{I_v^&f(wEUrMR>c16KR};fIHLr zO-W>C9o9hqHSC)GIw&yH+unZ+Yg}O^&55Wx;4CmCbjv>{H<z$wQ|}Fa$W=uPLmAK+ zyV*`O@SKj7!0~{}L8+W*A2Lpo&z?&0Tet1OQd<ArGw;Rvt^r7Q*c5w~B(#5=vuDQz z8H~YTTw}z5Y3A7Z`W%wXzB)8yVmc19h7Wqs2O<)0C(kPBseu{kJ_LWXa_)lG%*aOm z%|^V@(x<x|l!FPzCcZqJVK($nPpvV;oT)7T(7`pCJq*Ynm?=EP4l{6S_y+BiB1J9< zan2xxpT~5i3jqi?YW_x_Se>!`J;X!(G$_nK(=`OHUJ-Ao;}ph5k9c7|VR;A%ZP;!1 zP!ku_JmmB`r%(-djQD@+IjTpd<B*@cn~<=ml{`8CUYY(`XxvPSs8(K<wn3<*U;$z5 zR=FEcoFdASK7zaMAKpEu9^lq_Vj~iy)BzYPFH=mumQZgKyFurVk-M#IsEqF7jvBgT z#yQ8m%k+X*idI+Zh;Zr&HI8g7XhxH28zR1l4@QRUOsr@pV4i>8_q;r;_Q=AwVs4_S z2K&ATW{8$*Y^t`EIUuaz<7OUy!~<zw1$hUTyef(D$f;H$-RPhSBqxTv#P-6?YwTwO z3|xn3>_s4pVM9*-d45l{zj=)jL5YqO8!y=S#zHFeXL0P$Cv4|R#SW*Ihty#o$mz<t zen8t4M%7j(H<^E2S?&(q4VB%ar6U_2yQh>o1*4c5EU<glS=9hf%XL=_@QA>y?u}2* zl2Z}@fL>X2c38q-1sTk0QAUWwF$78T-9+`{djUlXuN!WzW7f1L#jw0(^BH^(@dIWW z2Q$~YN@OK7M!lNv-Xa=gomu1KN1>2`lS`392r%L$^&o%7Km}?{?E|8sbwf$9>ed3P zR!eQt++4;S_7ECL+B^GU)1sHPDR|jcY_!OH`+_86uEDTzGad!Tg38;qV17Q1(G1rR zj<HmV)r^sw@ujDR*keV|#(kOX3~Agq5wDO?%HvJxOspY{YOf8riyLH4H$CC3?_z%6 zDAkVX?yrBeo7k>&Y#in)(WI_nD5elpF?G<fY9JDKdPi|$S;9GRmc@q3PnBT{g{j1d zOq6W80VYJ3RD-JrNH~%V<BO^hB}(zuk+tSUwx1oUyTwGjv*#@YLuXV1Wj05mzZZw} z1EB?)+(OvV{wr}`s(O(1F>2HufpHiBt8)E9;<$g){{E@kw4F7h8+2Qz9%r3Et#s*_ zp(y3)P1oQQw-&L-nNpqXpT}Q!6Hl4PW_8IR$)HFL(Ul7oVw78=^5Pjy%sy8LLgOP& z&NJ$$@cqf;_Tk>w=E)ly0-L1{q&lQSN7ot2N|E^d;-HJYxzDj&kAL{GTlYRLk|WA` z{Z4<cVr_8C?Vd;O>b`GB_0Ku5l>DVw-i0C3Bk=ohP>nudZW<h4KX4ndIOWLCBwO1X zx|<r2sVv!EX>xs5wDc;>&)H9V^_77B#Li8yB}6A#o;6g5o5s`*pGrI2hcjEEUIK_$ zB?YS9<N8jGHk#t93f2VThIrfX;CQ97sRDm2f*lsz{+mG$u=X~BE9{goaWT)gYxe8u zRmPRW!4Fp?s0wJV;;p{Ek{|v9r`Jl9O8TMNn=pMqzFpYStbGDj3h``M_L3u;wV9+| zJQ9(zBEi)05vQxt={lj%_|CIcB53hy_y1F|Cc-Gzo(&>Vvzd0Rb<dj5%Ay`d)1QB` zwEkQBb;M9h9dPSWI7+s-=MBg*rcSK7Y#$Z!?sq%Nt_3%=HodYpfAQLNRVW0Ywbs38 zptCZh*MZg~*^^471F@A#=~GhQ+?elYdXN-MPsNj0BHGpYq?Kcqo(}|{K*{T`cfN}B zo@SQ*0;lR5A(TU+yyW*;Jq7GHk$`_0$8D7vkk6sMkg+P7nX}#MtR@@TGU?XT746rs z^r$zvgo{n4xRi{U>yES<P`Rj*njuCujm^45Z$Kd_jf-a=2&TUw+LqOJUl7NFY%4zt z>nrm^r+ox-Lx`i{^M|(HQynvb>Zy<Cl)d<X0bhM|$u`v!bQiNhh4*K=)G~i}Z!=7w zH{)NiwF#&WCW!*@?)V`cp@0J_rD%@$qPTqdXxU=Vq(Qnk5mP;ggO24<X3&304T_kH zxP>ngppSBusDQbAyw#uukVuFO=yt&zPH$*=<QQhrlZq`Kn(FsGI<JIO%!sj6xUFW! z3H@xT`rL4RZ(J{)8(nVb{AYhA++j%uB=+MmK^@<?0dYR!0!(?(of*fp994WXHBMvf zL!HThl7f;h24O+aneYTq%T!zYYYj=`q6rVcQHg=lNHUpgL|s#KW<i&YZQHhO+qP}{ zi`}u4j?=Mib!^*q(y=Eq^Us=xy=v91dsn@k+PBU*dnZ$k${ixgsszc*!k<Sqz6^0r z<DN1+d}RWmiBY4}7Z_svD2`$Dk2hPAI{jtI)9)}K-8%bShl<q-$Zp;`NYzjj%4T9Q zbS~+uQ*3K^HYJR^d9MG<xt$^(5>(9J*&RJ$!l2>+)Zei0Z=PqVSqLZJ^!pemvyNP2 zU58p>u#Hi03nz6<_X;T8@ZSW>(8HY}iO2Oi=&PyQDY4YgK@Z`Lo+Qp>i(i(WO6b~? z9wEI;?k@}Ktg#pXC^g-IzJ5(922O;3WBS033NjA><3MHlFm^N}E}y`H+z>rdJ4D&= z&?oG~;u&k;6S}JGRax$NX>X8Wh8CZ0+5@hkze2unLLvV*pVr)Cb<gU(J~Wz9V@}H= zP$bBeeMq#pnXt~+_?zMFZ2B{`lA*CVW@xvZ^*hv4G1B=KfczTVIwhX)u`ubVe0nH4 z8ewOu@FSA8$jo2i`-#YLdgq3gaXg4Cpn$42A-nj!P7%{27)>&td8CC-_?z`q_v#e; zPx@AJt($owM7vNNbgUgh_U@>wJF4yVk=}v#7xKsA1$j<bWp&oCP%0F|e4qTa8t~{a z3#W3bU4nyk0O!6n54~=Y$TqX2SccC%OOjr$H7c(H)O+RoWlK87@bb5?lKMSFLYVEd z*u~5~VW_p~WJb2(c*O|Wl{@8!+R$ikX-i;RV!S(Ri;F}rgNwLb=DQ&6YYZy2z;7;K zZg)|?;B+)Z6uVT->bc3u)kt)?_?Uv=Vzq7QIIJTbKtN&xVLQ)z6S-MI#TfZgb}rxx zp-8=3!tx|E``uP6W`DN$a>gvpS9)Cd-v=+H^kK?fdiTfNvww{0Gd^s{Ih(HeqMBP` zvdRbWDSGd<j=+zVTz(ga*g@(QXR_*?k3WVS5~Y5sl)^Teml@?CJE!G@XRA6UFVfyK zS7pB!pu>~;xx4jCxz;F*lK%bMAwAcJ>R&axGbX<wyo3jHP#A=(aye0Rj7yq4b3fE) zuQ5Y_v-}4uuql%NO|}pC(m<lwKBZ|5Gw{VZeuM|1W>{%0$UBu(hJc5Z8zCIc1H}Ve zX?Wx<N<zSZBmW!OHBV-Yy8hIGQpzK!`%3UH01gh??Z58bd|2*Q5|Ezj;G?I~9B{%( zIm{aK=i3nbxzih(u3%SuphtmELD+KXYIXZ}Br@3pc-{W(x9@!s2Yd@fxWsuTMq}eo z?lC1xR6D&Oq9Vt-YYCMQ>Y4#fO`GnV7YJe4RSdi!!4G6XrD7oBonfKhPt09@KRNay zz>9v|)75fr9EoJTlMZVrk$N;+t?z4#nfSm@F^muXKxThGRf%N*6dXeCXTer}K#J}j zdObs~6Ih1EIB<r#A96$Ek7Lu4cdO6ue)FtuB@>0^f{p%)s!_JCKj|(Sd%);}tHX(0 z_TbAr+K3jr&e-XghdQ7NnmqNd6K~sa0MOt~F9iTY!;0i0yJL$yj`7J)-dcI!(*iiV zaTt4J^Vb6?0ry`o<LU~W$*AV|g=N9zILCGONRb>2XbDb8pKKnAo4z`9jw@BQQ-i@2 znU0#!E=oHQ7o5VTk9WC3le6|WC<#utZ`(gqB=#TCQ66)>knO<rlILhaE;eOO0E3N` zSIi5$mi!}JNq*nF_LUz0vb2g?Y(KjnjgN6i`N@D#nW~kc$JIPgO}>T2o{+Xbx$(&# zzPQ7}a^M<5b6sy3=J7#H!xG3x9DTDHZtxXqvE)xhilno-yUs2WOEkNbIoM03aX=FM z^*cl0U-Ru3ka~y)@dn`Yzz?$r00(dUym+#X&<0<MS+g!}rnSK@0Ob{tSCqtyJZ1!{ z;reXzHlcV5EN9jpUe0VY9vT)siavHh=RG}8=`_=^s9{O9*7VCj6jE|bD08x(4)=Mf zWgPREY4XzNdrmjmFoG6hZiIN=lax&=mi3rGXtCVE-qd>Uq0QgfFpVGnX@e%+HG)A! z7qB&Y_u^gq)x;iQXJ9q@tpXfbq!6c(ij7!40k%m}9)(zKRuit3d<G<Y`dqkX{l5Ir zvm{HRN%*TZz<bT3<EVW#YKN67wv(X=R*5^Hl@+O{Pbv3`Ymt0s`=s2vVFcO2#6dU{ zjt>?$XQ#nTD7_(&qK*a_0KvfkOi>PQ&KDldpq&~Vy8y@*T8iOZv@c3RENU!T{orZF zrwN76x348Go5TrSgcW_H9Cvn6I6y!(53Lo_#K0GHv}J4IId=?YkgiAROmuE;i*RW7 zr!fF~jVh7-?(5zTOvbhProNHm6i&`r_2^VN6B>Dto6JAt`4_zb;1-A+bZ_W+^4^Dt z4R)&7)c+=tvO1HzG_w6LnReugk?6ghUh0>pa`ggR?URYJ{32KHY%Wyrj)VkjY(E&t zh<7HFR<~y2|M}JV<(r*?T|b%~k@?Zw8$jHjr?rDI!qLl(MKHLDT`tk4<mj;2q?sR- zC2{O`@vYEEwl8rG2pNFwhcK{9+4#c>-Dh7-iKY6}!|xg!_f+gYC-tCWT-tDPq=fPy z-X;6b1u!v2J~hgyR$R@9wSn~`Tw!($bQ$(9ZgZp&55!Kx|CvVOhW%IDJts5i@9f(& zA{TaVy_U$^FyLndnK#Y+=?OwWOEi=kj%r}!n5dh4%z=p_K<Gh*<_`e^S9tD+3R6Mz zWpFNWRsNo)&aTQq>m`_+Wv+X2cXAIV@81=}y~0<o(fz@a!`?AXZwY;}M|zTUlY_I@ z9uI6(!-figs)1NV<)73I#SKaD)t~~P_{Ani6fJ>2MLwK<+I3cEp4=4~m1{ssSIb8w zPxkmVFFWpT0F{F7;!`jcVzbU>_ozRm7zJ^y$J#e+d_@ztBZhED4~W{QsEgVh5VI>7 zT$G%p?y*K^c@~;_2z6v76OXyBF%G=9(OVyM>4t(Q7Fi*?udc1Yv2)v7(lox4Qk|b9 zk-*HS`B~rp^v&W>*1#E6_g~kosz$l0AR8#Ij+`sJ0gP0}$A`Gpy~<?^_H|?sdxxYr zM@aji9^#3ORz*TQBh#%4zV)QERws_B=Li=XxK$_U?QC+ZeJ<FeX=dLz-his`4h=m* zw=1KJ=8G3k5wdcXcYH=3h>>#XBaGpZyh5y8T#v#BMtK6edTq~NCz22{r0T3~DX_zl zzK2s&0Any(MZAw^``mV!?=r#Oy>s$x+~r4lqP&qU^F+!yu?ldVrz1y)+`yArT+T%Q zmS5dvk#49~meBMW3(;sDWrCk7GPg9-2M-TcV+^HVQE_Kr;k6G+#5cV3U7kXR7n)jv z*%%_aQaQkKoXP>Y)?xBAmJ0pxt*)@@gDp6@08Zi|N^=+S96$@p`6%>oGAR6D8+8Tv zCGC+ibR3Z4FFfb4ASNfeQ3`z>3?TJ;nt%4vIS*oGodxc%bDAG<%keREZH|9(<kTHt zQ|vk!5ysnDS-97GKE)!|?wlyF-VSsdhxbZk<FNf!5=uer=J562DZbpv>o)rTrh@nE z03ur-z$t<941R=WlVW$9w1GqF@PtT~v8(mS5^5%zkz6D{z3#U-2r-~%z4IJYeU_+R z>~(0Kv1;$RPdhec_VcER=C~qO$73OeaKAeCGDUxjR;B;SYReaaf;m70$qhSAMAW39 z4u=r<W29SL;@^6|pr;_bKJaLFz<SLx2H2hUJ`=08iqe}N(If~|zWe1}->%KT=YRQd zmY?>A;h6rs-1)ce$|hGaoO4`ULfcK5A0fibl?|)fV)*ngGMV+%KT`%S>L7(icn(>B zUzF!<@`o4|y@PJM#*tUYm}MsMeVt-6m0wkHW9m$-7&S-UGiu`y&3dNz^bXun-GCt` zt;e9z^mc|cpkb?n{WD&&3DUF9zQ28arpVH28yh#Dc4g(vz1Mbin9Q$S-pG9opoNa4 z=LgL!uL6nC2N%5`MC}K}R%`_xhQ&tr%UB2zgy7K@T+Fxecn&Mr<xbFIf8c49dGH8w z9s}RULI}VyUJZX)S(|MY)l26Jt^+0*WO{7>xFDkbK_)(Rx-HI4-hQwB+z;wBuzVH} zkn9?u_=jQ*{s6+S)GIX?ypYw<s8hu1k+=4muZN&X{ulf{zCmX|R%yT-q%ck~OSJEM z!6#$s$rCw4%W$+{yE7!1z9)pHmz{aX1SIm$3zfJ42^JY<9-De;i;hN$4>4dNZYRQC z&kPf&Scr^Y{;xLX{ms?xoC@Y;l~)XH88i&9CO{1GM1=pHdY)9e(7Ra?z*U-^JWom; zhLpm*sCT(d{vm&wBy;6SFao}|+S}D05F|^#St@>vn60><oiudaxwD}~C@@^u=fCKB znPD8uF_pOTX~aUp58g%gmlqHxEtuSD$9oS!LXd(%XjW9;I3pG5@P7EN0o9C!F=0wx zl*|4IyP%#^&4yAczJc#WaSZX!VUI+T$Sa5_(g;Z4^ly0!lw(_M#*pkm+FTk3s;%2C z`qiEcsZ(mxA-0l8K(@W#&llq@0FI>uV#+z*0qfXdKJ}__TuvOc+W|QKCC$vaIbA7e zLt84t3C|ySz=>I~bsn&GR`|Kvx&f(lm`h{*6kQ)aUIGkfaAg)dAOUYD>rCc4CK3UH zzTL0qQVB{Ts|3l=F5{g{=xy6}KNes`i}SXJ+q+N@GpyMPp~Ucy0e?RSk@p~xGxWk< zOLiFA92Hz=-prm;r5I4ygEgF35yEv>n=fF#b#AXKIyO9sx)9IFiPD*irIQxqk4Dc8 zq0TBro%yT4mq{ua*vGWoZe^U-lVZ0dYC9z!PW3JoHioEZp5t$8VR6y~!5iH5To1X6 z7UQ6cC@(!3ER2e8!DA(a_g}J-nlhWbtPzQ1swol}KC3l4SR+7?(7!rHlNLSY8dsc} z;*ZUvyH5&H_?NB9_U-r2NBKnM0UST&D#yBI7fbi1zc>E#{CJVUED{~~oA$uleB1ZE zCR|1Bv^Gypm6-$kOtvB!B_t3skO<GB(1vuI<T}RF_oFKIUixCXcrTL8AdN`~3}G$= z<U~NIb?2t9j%|P?Lj)2%-HLxCSQ~kn6l8w&D+wcnPy%x&9_iMh;>V(^zmYh(J;;5I z|HAL>cTbi%0i#%zI%L!Kz?;$*awf&wO0Nq-6Hq>nAHwx%BU#$XgfuiZ%Vbky{>XQM z?q&oT^Vj^tq;}SNSB{upZ{o1%P5^)K@uR4=P}JI%I4uC!&+R#qjsc|qbf08M^a)mX zv5puU3GrwD)@PLP!XtovEXMjXaFTm>#lRaEx6CcnV6sR7gg3=(Gp56@bnNkws3X}2 zS`n`~i`~U}8sOV<oqd<fxdjFoqo;`&R(ch75#Olbu~pf8{)*yPTX4F88VV26BKw!w zF!)S*xpx34RQ#mCo=lU`Az7a|z-^G3ae7)Z_(o^_Vt=x*qf@l!H!>&*C;(c*ds;ki z&H)47t%lq`jDPtR+?$`p;My$4k8}#X=2(-Z`P@DZX7Yqb*;oAb7OxGyyZ*sJi<~_S zUAVR{$7vG|9b&KXZqN4~sVe+-c9I6R#7R$prpE;U%HA6zS(|F(Yl6e3pbKy?LMKM+ zzl(IHOi!Ooqko*-fDc(%ML7MiAo8Kkiu?V=o<8v5Na-TJY-r#GlulVDSu}^o9VA6i zIQ;_YiJrf?IVEIKV@qJ2eoW}lr}Q>a(tTT3cPMfAHycB&R~w&P)LL_+oZMwkd!Rao z6GseCRw~RG2){o^`wpJ(J|;w+lt~4E>5R0Yi3$wj>v|299+#=_kTOl!ab;y(6he8Q z@fkZd{RmFI?QR6aV(+b;&E=7P(QnD#b(1ZY9bj+$jMLaZNX`^i*$r1O(#1e34{Vcu z<80X`57`BBHZ0EOsWP$r#m+AMuN`xIy$uwQSrkZut6vJn3_@Uhl4k39y`;lubq->B zG!nr~%x`Ch8Z{VuWb0DxG%K8pxEg?(p(Vrn+<QyV#h>98C^|M1oQD)eer|C_!DV+) zFSJR_WCgS`BWqe$ldjd_zW8&57;R;@x=Yn8s(5^M^^%~<E>go6Kx`dk*-z{n2!a8S zp5HUMXPi}Ita=?{9)hz)ZlL5W*>UP>658kJTZf1{!&6<B#i-X<ann4>zG+}s9xR8T z9uK;A(@0t7ZnK#Sfi)>`Z{AdTt}Y{e$X=B_;=dnd@Zm#Tx@c!Y?SE<Hd0u~Eoqk7F zBcoLG-(&pc6C-q8ClliSv2Zpmv}^}Fj%_{?o9*q|)4Tb#*2n2R#!y<N4vQiE8cGhC zv)mo0PnY-a@~M9<*dAYN5_y-cvj(1#+}OSBXK%s@e14CWP-$Bbpz_-PDyj%>ln{%X zFe=ejgT_Y7(qcM<0OWBmE1<y_f<7Q;RXv~oE36ux&&P*+JuOgh-vH!#a~uHVE=TA# zxuQeV)X8}sxO|G)hh<)cwvV{;mszH_a4(u90oSV>{91<fX!SkC`i9fqa~kk36Oo3Z zK!Qwb0C+>Ix9^@@mF_0+SA;`IV|jE<R;?<=oFG+m(#euLS0E^9w|J{ZV~$;2X6}hC zyWIegl_;LlM#eK=lQlPg<Q>4=%>e^jq@Od)H5>^L<JWi58ht->2cz#8M+6*hrBI+= zZeQ?eeX$Q0m9{TFYpkmG`+~%;K9r<Nf+P5A$A+p{d#pw2Mm>;G>}{IxTZCq-UVnlP zF(WfhxDGZ$aWhuaZ6hMvzoCIHEUp2NI>p1kmmmoAFBvf_V=NOKPs#v;W3iJHQ9<II z(nMq&>_{Fe{Un~lcnx9op~vzfM9<9NxCz+ppM3dlnFm?DA1sS}X+cFweEiK#%h2N3 zmr95hz2%|T*>Uc)l4t#9yLL4sBfsr^dC<$WgZuTI4usG=Bo<_}vpZ-LM=6!<Qy7<n z3pjkV#xQQTX7sr!nSubis|W`B&nAqa^57j4q@n=SBJW+CTTW`1$qTO>p1u>73#AL; zd|fOiR8OoteyIHYi_@Bq<dRLmy?^V`GI@{wAr&X9u$|IuQ!ilL!RKPB<2{sx7H3z` zb3)utM%2tn^iErpwz`Kl`fny4)}swUWuBKXv8S`T!~s>-MF=2go|tk5s)uw_kJkU} ziTdcHE(oP#pRj!99RAE*0mp^Z8TyxyKAIA#w#ASKcVX4_jI`)X0(#<+Vs`tQ8M`y6 zRv2riSAqw~%layA>d6BWRZ9GL3ZG$9EzB%lRdZh6$g`tb6rc1=QqdtW<c`X~He7zu z3rf9s`>aTWO)r3WFSBl+9K>Ol=6he~3`9@YD22D8*4nq*Ht?P+D%jCT&rbf0pKTVI zMzd5-B)q7T@;tT?M`Sl14+NOsm&Jn80_fbZxT;J5mQE-dBUr<2dw8-fwvJJEqo-7q zb0m>4;A1igc?QYM=7S}bV3+Dos;E1r;1~5LCAo<}Zx-N!%0i+a)iP*M{gY&7{+kaD zW21#Ti7rbv=G7{)iP>Ott-rILz)wPIlfX-cRaF7OXB!j<&T6fD4%GoUN2``&&De7= zE=kq0HCY*D8*#6z|8}ckhSW91APvRm2|tytYWm|rOMJ(e)r7H>OCWd<VM}!dv3n5F zyVd((ZUmtH=rp&|+WR;FfR$DpU+T8Q%qkj`)g>2e)W}EGV!1aPiuT{<@AmSWh%qxq z5Lqq!-26s#eWU??`;`{M1u4LX1Dn5A0+~za@<LOf<q=PiXCgSZD60&Yyb=ae1B%5} zI8&@;_aP$Z6!!2(Uwy$D_E3CuaInFojxX*bQX3E#%w-lJzMje%F+&)CtM?GT^dbJ( zetB_&R;(7$)T__J=-92>43f)VtQ;iNjT5kl5LlAiDC(ZDk)o|7CDI?tXN4k&lv?f( zwTfRz&`6s2v_Pxnp$IYKV25z5ZTsXCV+{80P=YoI?<qj`Mts|jIzTm;D7ROV5C~Gf zObp=1>{_u~B~wvIgIy5nP3UJ5_6$V=@48IXfIQB0<6gDUwVgO6A6vjTRC`qCIi;D5 zEo1RwTT0)~uR;z*)6dvO$uheb;*4G$vy+FTAVK0g7g97^kUv)BfX=ncWFzZDfVU1j zL7-yw6l<0BvVHZxmqVxT{>Le<0}Vk+UkNC*k3eVOS-ouo$JH2rRC$}StY|ad2S(I( zSr{4Ze51g31WD}G^u1D>bnRjJ`;0U<U0HuVATUZwB5A@;A!uP+=Y#ZWCVD0DcLd!d znv#@TojgEAaTv=HT;3nb*|ER+jwfreA^^uIH$&<w#(v=iT+d2tcCZW$m`O^?UKij& zCCQFGBGZu;iHbV0ivXUZ*d325_#qcpHUHYVrHMK|<%mB(i`J)s#in&rSqEM9XN`)$ zB(y}s0t&H<18!6TK!bJ-7CE<M+-Lu}6NJXaP4EWsxV0*qAe0thQ^$sTRBs;_Dsn6B zd_QvAKqk3(LuGxjvP^tC8?kPh{RBWYB^hO~w=K>2KpVdy;WONlhEn-)W490~dwdY% z($^;5<4z6<Gvhj$ftO$E=uciBo-x98`_R>2-FE>xyOsxb#s*bSzl(aFB+}ZMhBt^m zIl2~%4jJ<?-Y@n%8ET<JLn3<v)pB@9tjL*c^9k!ojbttP5Q5wJ8g{*GUIE|?I^?Mp zB!D-Bz`3)S%(X~f*d=7=b&e0aDWjUpdEg%Vs~YNN;4|r<t<a;1Q<-n}(k9Kh+Z4^O z<|ImLU1!ulU<o~MDEtjl0}?7?xek5Wo7LpMc%((t8xGZd<IDb&y*(0Z>_<PT;m#$S zrh|x|1udgn<a|Vs*Wt7WNeZBPDck%@)daTokz5A=QE8Nt88@G#US5wLuOd8Ae0gFU zSa1<5wL`o67nJiCA1j2vS<X6l1%&_Q<8P{x{AU*ULw}4B#iy^yVe?aQY05JE!p+B$ z8YE_k<Nd-3z70^$J)UO)B7Y$3)FjDW)RsaHZ@B(eVT|cH9s@#r6&_%fw$Ch-4`2~# zJWehE=>-p0z53`iYJC4H%teV{{ddu=qXZ7i1~(H#VnJ>BEeDI0Mf@Lx{!0x^tNvMq z6}4?fg>~oW29v_=yIJMdh3Q>SYhA*{^vDI>v4<1TO>Nzh_y-PcG$JxZf(8yh$@!HZ zS_PO7pTb)zwY=gu890C-=E|Q<@^N?{M??U{Kl3wiTtC=Mo@D+L0f4DSWK6jY3Os=w zHCJ_;!~!Om1>ADx2nb)IL-_sV>(DCp5SW#h@3jnVbDK#^*#K5FJ=r$|(EiK%=hW`s zV#(#QalQU$)MWNqbp=-ozUWdB7Cr4TB09XY!9vPiSBOiyJ_g`7AwN>h7ihU|{q<ZQ zu6hNw^bnyb1?<Dw90xZ-)2Om(S!%o3SbwZu^BkbiIHlE8J_2D>F>wRugsLlkKhbtX zJoq(%I|E$&^&^c&k3uGH4Jc`9_<YA(E-;F|iA|VY!Y;Zm{$S2fn3Tx-a;B}&6->sU zwwiu+in6Vm>jl8@?z7=MpK(YYVsrg~f=iQPAKP;%u26^DGb4aOzFI<LLQQc{rfoIZ zIM_df+#W7R#p{^a8T(J)$Z_KVl<<jf@kg}_V_*=K@j6q^I7vmQ+JwVdgDT4hPqTcz ze#xaO{_!FY>|V(N1y|oAFaWB8;{)Gc;<?hD<TnRL(a-%CxhjXzrd5*)^TzoH&0EFD z@?_?n3S~05EVjo9L#nsn-fp$GeO6$cVY&~GTtYvk-9Sze2K{d(<h?TzWg4X*`^%e4 zy2@9Mc}mai>TkK_`unYZ^{vpOte|s`7#J5h_NnbW1zxXm|7JdDPjm%!7d53?;TX$w zjzT|!!*BrEbKm6NNn*cF>ER_|ZPS9ZvQl8Ec3!j2r=9KW?=R|1ruVNKklAzw)-Hbg z=BmmT5TR>JL-2pvohZmz^qiO53D@j~IY@w;^Q;5sYQarK7sFyymQ=KQ!#TEJ0_yBd z7LxkM$0bnbc4kFyAwY!Q1BZ>83%QL}=p7mSe+vOFz9vS45YlWY&_&h~v%1U5XqnCX z%*`xL7A67_{&;t4-2(l>;8O8vF~4Zbk^T|vL^)a3w~HK*KZ%2&)bPcnvROJ^l~SG- zpJ)R2B>^G0yLyloS!B;w6;MNbC!uKiG2<Th;&wKT;uUG1=Q<D*I8jhISGVVv+3sM< zQYHdcY1kj~XjH;43>Y<mQ4fwTm;M>|Fw8?3YVxe)_HL{V5Geu#mlk$Xt|q9t+LQL0 z!Nu7i;+;09(DA4oy7xRVEw@$svJV@V7aX<LKWVa*3yWljEOZ;WA|b_haWvJ{SgtVx zc;J34S$Y0R2j`5!M$MlERc6}mPiUHo;M)L{bPCF+HJJX<#L!f_+QJz^7-r=U_7U&x zy4+^Fa8SMbfha|@+ABW@per<5;qmH?$sIqEM8i&2FH^(LH(>-O3YQ!s*mZV4Xbvh0 zu}2_=#}M?3DQSF^elmyqfRw!A(CDmE^fPc@xN-eDOJt(cJbeIXa*`f13F=f+rwst` zjZQ2vQteWbL81j!AC5iPq9qmJ$nUsDIgw(tXti{F75-TG%pFP#@e!OU3MssUn7%>d zs@sG~L(S0&Pzl`_4|Lw(msm|nAX+eM)e;5m?Ovjmo)`vpDYL@K0!y`B661@RJ3JgS zKW2@QeNel|u>>$7L7pTZAf8(yuMGjVT|*#~*0)2X5*W#{NcPr^=)9&DV!CS}%gDm+ zyZ4}a<@q|hHWdOh-(V{AN=YbJ-hrRLQobW9AMv=<_%N3-(bNhN8e#p0Z}j~5pr@9d zR|eZ~55)A!NBZ$KoExN$!DOnH3)A|gTSj{HpO(-vM3pMHo-1Cl5*LFR1u6jfe+g{H zX>e`mn_#zNL|uU6jHQIVl(MlCIuZ-s4d$5eUL%eGSdVlB9@rO-JLYJ7I{AAs$BSyX zjRBO+>I!-~+A!p8;;JsYw@)iF1h&M@H1{QyM$V;pj~^l*AfljA5i-B&L}<;93}vV8 z;~?}we%(+>fAve41ZiMssyhI}ROB4^E|=?NMkI+cJ>_&_)D>o|O|4%}pc(?llVah4 zL4#*mW^{<I;gX5>5P-u?#Yed05x`*59N-AkroPP3^}x~cDh|NwE@%VCn3X6xrU-v) z17m5xrMSSkZzJ0i9ON`M@=<qBNlZpSRG{Jk<3n6+$_k&ti7xTeJV60Oq4bw6DYB-K znjc@EnhTjYb_er=gmPPmaKYb@;jl^Gw0r==JL~KnuAZ$fax2eN{h8S+1(#9ExVICb z)42P-;#gR}`X+m6LDYKaEgZLVG7sUG?kWFX)`<C^3gHL!AYhTbSE3c1!mR{m>aISb zu=L{g&f><amof(P5j+DFk%i+e=9x!*Q`~CY?$98FEgv2ALf&W>V3`Dl?TMhKtR_c^ z^+;XEu?SOMCY;R9zEp?dtZ{~!#$wl8KK4dzGSfu$5;S!yOSNsW$&{^VRgg=bA9gPz zI@VK!<^;myvnaxZdcrmj<}e5lGB{i)BvQ18Jfc<GLX4X($4>wo6(W1$FmfLnD~>(C zbPM_y_@EDdi$JOuR<d|Sh%_pCSI9wYCP(uvDH;i-LQVATUIeb<n!T*4!*$Bty@2Gh zFB!1&$`9FM+h#Y5hZ>BF1uVPWRFKa};HM{(MKigfh2l=vT$2-*8(lxX!8-E>LDve0 zHl#*wvu3NrsBQt2O&ev`rD<r=CR*S^xeOEIY|PiWx0Z47#JpsTS3N`p&D5y}t1(*I zU2i36`2S2A5u-@_hBj)?@s@paT4B-nv$H*77s!OP+FDrCBHur~m`O;-=8hxR68Z(N zZe@~eRT@{LdGD)W!+(Kp8CcLPenk0w)~+XyNpxo6q`C?4lj+t9PJtBrt4=8PMxii6 zB(O_J_BSXcoENotS@reU@OEy>t1sK232hwrR%AO(qO%I4;N1x1uYW@8fO@F>Q-DH# zS}<R7e8-gwk>s48b7!Ti@gAZb-VIgT<v8x*JM(w>UyOqY%$6_GK0XpF|07Fj%_H9I zl^^*l-uOqrF?;nkN00OMRAKHw6xMQLfeukjP0XfL`eezM0}tBrefc8wSN86&93}y_ zi-GR!dN9z|s*glI+?#Hiyyxr<H)>`u^l2P@zIikdi_=CyIBZKy@MOZj7#6&zvgq@2 zZ-f`@`Dz=2nmJj5_(*Es$2+*gwH_7iBlK}sTAZ!`U*@V*ZttuL65aaCE5Y@jHs{0J z18%=*ZLA67Q>#d*4RBzjJ=SzY-Lg}Wt!wenBni_Q?DZTirHPiivh)eKd?~2?`XL{* z=sfTw__blz*Qf+BDt0TwPIJUU*QxBN+5Euy3VSb@T#gE<w@`|1;}Lf?i+@q+h&r?+ zvgr4K%~`(lD4RUgktsu>j@P%<sLi`Bp$>r#W^{g@FV%x&Y9+ON&CT-H@j}X$;Ft&h z^!jjJz)AaS{3lF)`7Gc1FkMbM={Or^8^RrZ3wO<EmAg3z<EU)qvA;RcCmQuHIMqS~ z5@ZEf7<GNkSd6jgNuS1}pdED-s5(`(n?`p)a<h!AEJfXkU{d0smXaRaS_9b9Z?TP( zwAxDyN*r#wX1+XsEAvOS`)eyOfCxD{gOpZsLpk{q+C*5*5E}m?LcE@#aE9Rt;ed;T zH3#@H-i%CF)vU%fd+we9@k0&6%PPS^(&kfT+F6o%%fOQvIDO!?VvoZnzPMd<an&c_ zcPG>NwLqa9@(C?EA8OA=4dm40Ka4`><*mmlnjG_PiI=QEEETPu862ap-$G{%eZMo8 z&f^e*%LeB*{RukPHLVd?E_xEKn?N7IPUyV8dOXni%EN637hpxx9Y?_D!xQ>8+$fBX zufuVB*uyr-^0!Yxdu1T~MPGBVZQyMIp%}WjlvQpo-P39i62-s!ddx1lKv(j-oc5(A zL#Pr#X*J<bc_6{l*gl_1)XxFYxM1i}SEM2|O4`&<$TMjWeO(hG4OGKDBLnqIybn76 z%o1o>eAlP7Ko(l6nc}mJn_`^FKwkXatW=Zr$T^$)VgI3;%7>(Kp08v}bPb6CoY_&l zc}p#=#?mu>9dWOprzH=c!C{Fj2Dw}YAjT4rfsRSwH2JlS&q$1{eH@eiEq#}qsVCG9 zd>l-#tO6}SZ}*P=?K$LD!oBVz$MEN0af>Q}k(1NgYYG^Yh`G|A4;x#YJJS|9_UHg& zyP0@ok<1&p_9iovtZ2H?+BiKD!0RO=VmaN2E@N!820-{=-DIrkH64N`%HB@TZuG$1 zEw|Vay4P(@dDQTxkDU5(s50%tY@H_b*Z9PwGSthnt8H4S*q<ST>mcX&(X$q*U3^R@ z63`F6$%-jDJ`6a9)TujF?9?OD`^!WuA{~>uCt<ICo5lr7U9pjYk!V>c04e^a^>)#u z3Vk`UW^AIkJjD8)=ujONSgyW7b_0h)ArB<BuP3?TkU^1@q}0AG0ZsI`EUKP$6=P*= zm(~>6g(FtRe#!!Z99C7=6NKkrPf_bF`Zl({5Jr)=<dh-aud>A^)gvj>VqXN#inAmm zscK%vrObuwD_NO0K<MluAaBBaUbqd4Vb9o<ZayjUyJ>Q!ycFu{QXxS|!?@luon0{{ zRge_VglEhVWs^KGjVuy;M$%{oL?zE3VXu{<fOo8?LL0wI@vxeL%tQbyCKy#Dg7oPI zc)dJ3c3lWf&+>0=SJuJ`|MF(Iunq%=Ca5y^;Bjn1-5p5qjO6brK>WW_iLcd<j6lez zPxbPmgKUgXB@B;TKhj7`<mgtAj$cbzZ~($>=F{E`^=7Xra&CGyTnRO~cSzp;{oQkz za`s*0eVb`dXGc}~e6%iu@F;A&8`xHvsfkBZb$7iha~%JV-Qfwrx93&rT1ZiDgT<7* zf>!6XH;F(^8>bU7KqrrLN)8`9BArtION1zkO2amg*~vl8k~Y?AWhrYfvRy=URAB8Q zL}jO!SuOa(EA%oSc-6w{g3f_(2qlMy-eiZ|b!Cx+Ah2_v{C$m*{d!&lo8<2IX^F$% zGhyD2D+4eY6BFYs);IQ<4OWp-S)@Z2ijk(80_0GOUF3crzyRnaL(x!{4XjKh`JF=4 zERNzx9XhivpsQ?1(W%@8e%FurIjbQ&%0I%8qiG|noC~gBU19Jg6EL0^hx#_E!Dz+! z`H1q}oEo-XYap%cv)3MtmZwL0Oj;1d2W^LWF$Oj)*J?ws*;@Lj7lTy<DE}UR3et=G zNb)bf2~NNSoP#VInXX9IMvc5!J&sO0k=hfOkwuu$R`c`Nh=m<HEIm?Pb*HE9hQJLA zZ*-?roirx=Zh3PKED6wgG4oo`?kS!8AXRhCGASx#0j#M+CU}2`_`#*3gzQrnlh<sf zk_UW1gF;Z}p=&SnPUl}2b&a_yPxTBd{xzfv@Wb2$3_QW#Sf`N%ZzbqEu>&5mM8+L> zeVtq}(B!=BtvDA=^n_inhk4UvW6wk)@&U=iF7RpZ!<X@bV|0h=NuY5S%5PihnJUcX zTY!7kCXWe)U-K%A3Zu3Kc`HyWhoLzaKFIn02wsjd*Sm6bwv)uB8V&s#P>95k;VN+M z;rxYw7lUj>8vV$bu0rUI8iuheMjD-}Pq;w^|JM16`?HYsWc#r{XPs}u1Y8IUZ<HRY ze~mtdzY`=CV2WA%(E~?5<AjOJGf4MxQcRC4$~a@sQGabPySnZOnXu5%8GIY)d4PSm z_>1=X@{Iis#heB9nl_!62KS?8xbEY23H5QZ*nW1g+#hd^bef-do>kqGwr+2|Qr=<m z-CdPi<;}dx-Fo&_`G&oIiyLaW>ly4}!{c$xfI_IN2EJwHYR`qrVYv%xjG#ECr{rM; zn`dR=e}B6mtt1Co)xtXl8;o7M`vz+KPP9+HWFbnIcftB$?edva$(r&sjlv$7w8@wr zl<9Tbgs80-W7Ni=jT!~#;2`W=>BJ!9*vY!3cz_+p4GFk_9mD<+EK%F78&V~-jVx>| z3^4uV8pI){(YSr681g|4h=*Rra$a^%feqbR%zHVN!;yGN87pKOA<ZDCq+%dzd}(MM z+a#D+i%y72I%!Y^>?91lhCI+4ts7yrG(;#79q?1?LXKPnkkBP5Naz7upH<p~)Phrk z5I_ogHk_2Xwy7`<_317al=%}uv8tU&f<ZDgZ2}cFH;R_n>tHq~(|5@>XG{;SQ9$#H zS9{y%UB?z(-V>+0=i|9(V?gk0?N&vvZ6|wvMcLtxh-6de=k0aDc2Ke4!>xIv;nn)p z><v&<*xXq~oWOt@Q?IuUf?*5%q~n=p0^n58gMP@q4@LX{w6%!e=yh=$9?^HaOk!iB zm2}zj6BV0&65x3Abc<b;TBIG@OB@S@WsXD>_zHV`bD=Ma=n9%-cXQ$1m^UD(>im9E zn)j`Rr*gNUB$!(&x`!<AK}@KUdk|8)U@h>MTfmKs1kE1Alj3VoS?eA|1g1w64uA>L zc{>ByCJ@?x&bx046~>$r4_{r_r2K|iinOBwb>|W|&qwOE=Nv0PFbX~_JLyU=NC@q@ z<ggwzsHgW-smUqYjceiLtpB}Hb5U@`TVU~V=-zFO(5+`i{FtjO>Q_*0k?(dUw>_S= zowP^=!wx)WlJy(Jf4}S=go%;J6R>#quf%51hHf!!u?)63I|#X?m9m*WMo8oRn?b~a zUCO@#V$8lS!kP@(VSh?~X_G+N#}&y?jUvj)lMKrEZvQ*Qr~zkl3}tkty%0W!zh+!a zcI-z40vQbBIR=M9eGYqo_@Fo^OcB0It6B8E<IUQ;cRNo+(V>AXYQ2i05MY{c@h1Q+ zGOZmWv!thzQ!Z$tY2x_KS=CdlWeOCWjiDxzlwB_1>Z@Q!K(pR<{kmtTI;$%M)bXT} zPj|(cWiq9bapKQ=sb$Cv+=luT@nONgo2#0eo3&yV)!?zb+$(zesuefSgFPcGipn7< z7Amh3tyCMYExA@QE3#U&Y=Di|m{q3DFuC);4oE^)<K&V2JAr<<sH5L|s_>4;zh7fv z|CZov<1ZNGG;l{*7Ti%pQo4fSW>+&=%l$Nv(*3$1o~dlpr*=G0nazyf%eI{kRz>9i zfZ@#a%JcRY-7H|JLQuOE?gq75GxJ?wyUe(H6QE7!B7#%p+Pe3>v<k1(#nkE&k`F6} zzxc$d#s}yKP;PgR3_lX7=a9t8W(&55<n*ZMWs(q*@L{lnJbMusAqNW3kHH?;CH|w8 zp^@QEua_f54Uwpfkf;Ry0mu(Pe*pFa@E<_@0P+V=KY;!L%nx9H0M{x}3D2tn2$DLd zgL3g+qWMF`nWd*NdeXnK7m3T8k#Zz|ujWta!cKKiRiSzR($wJ~)yOQcuc%H(Y8-$* zqIj_1QIV}qIB^G(x0qjZUOUK`UWyp#%TPCxuFn-(tdi{?lwEuUzE!0Ix$Sw-k;MU( z3kQyy5+klnAKnLX5b6i2#V#5RQ1Q9tRK4{2Tp7EQ^b6h_h2iGHcR4KM-&qHZNeYk< znC7|+byV6=E^SA!VHIwNBs-nBiSjwiY&+rkXpDoQNLo-qNz7sSEM5WG9Y9V{lbQ-S zPvc3j3M!Usx9T&8S-^!`cwy^d7)kz3B+~7Bf=Fip4{7lD5zZ`utvT!tAdJBtqm{sa zv%1J?>mS9kd7}C*uq8pHvSF5z#HnxXM{kux!&2p;JLL=4+~tbN$*B|zxHmo??d0aU zs7k#6^O;N1xDIgkkyil;=P+@`a%4V7^F(n?VBvc)-Mi4p^V+_v9J);;2p~?<Re#XJ zDH6T6ma73v^J}NKkkBgxXaW~OH2nc-6`oE3;>{E*vQR*tjmELw_x^BIW|;5^J2El& z4)>NF@9)S>i8->-Q}na;($Y&4RRZncM)tm#72u1_ZyKE2Rg-Yz=;i4J<RBA8>3~w; zk9mN><U&*+3!aZE3K=)d>kM~=2|3q-DbdO)=-rD)sk`&p&uj1l&Wu<({w<jrRHd7X zei@|pP;Ih{w><?GV36KA&zlV@61MKWY`&bEtcU>z7R+Z3f@{-$ClZ0m|BloM-*4-= z1NziUje(NlH%$GWJlRQ;U(_efotWzqa5FMyR#CxcsMC3k2g6u)v&_Qs;??JXmtr0X z(OPm=@o5XFx^5)_MB?XmuL6gYc3uwcH&yh~|D>&KQ19AiR$>bM9*}y8USf-M+Cqj5 zXajst_i!w{*xp5dqi8J&xw|s%;j=9>VcT{daBmVX>fCLR!mkK{4iVmWP&sN`l>pfT zTnjt(#y3v<ak0`avRPUhb}Dn0{(Sn1I+~hNKYdAyG4?$H!0EPa;9DU<ThM#)wE*?Y z@C_&CoMjxFwFqD#DT{avT@4RcM7t<mxojm>Z}mEiD%nhVDGTz{7KVRdh3WhH?Hq?3 zISE#rsEh7KsFgW~F1xDESCNb=ejA(d;iDnea;RWc+!eyazRO<LZZ*b}v3lwLg+n~` z`m)98d~dA)_<f=U&K=J$<=~DJ>(O9A45M=1+qa&Ncnmcbzh&?1C*zpsw%ZzFK*Cw{ zEJU$?g1-B~7S^Q2;yuw)3_?hmJ4nLb9;%#(s;V&6yFS$T5q^53^@vitNb<d6pn|W& zg?${s4YCP`4arGxF@RzS6zL_fy0{&4+rMmDcc141G*x0T^#<#DJ*JbeUA$pt4%lk@ z!=WUDQfRy8=5AY#?lDNfd19@V)9dGonA;E<?KozYM)T@0H~dINOh-A^Y|4hV=<ZhN z!<{Bsz!xlwAOitlJyC~q{nYoDvy*g7bVRtCGbqHuAr~QQ`5cLTjB%00@;dXm`mS6f ze1oij9$XGB!RtE7CtvQ(AofUeHk7l+jO_}0+~(xl%x5fE0^83lJ6RFlmgaXd>Cx@f z{nBbM3_}VB3<HD9gV+zrWCHh<#>;?ifzMv={UeXw+3ge&)tZeu#p9u79oAU^Ti)=g zmnw2-nDOr-aOmA^(4cgsDeiTm=0%bjShh6)3$@yx;_(c!V(<0hQMB*1UtxcEW%~H8 z&}g!rr0z*<6REVP$o7M%!P}=@bnY3D<`<^RZv&Kiq@lzk5|I|<-e-tjxw%_M(e?yq zNX5hIs|7ymg$zbI$Z5x9P~J-GN0;I(ze_yrAOAt-v>wstEhDMVJ3{lw5nsYmtR_>k zUs+_PJdABh?~!$}L&q9!sJPgSvb?o}c;~c6dsdHE=G#X8GJ2SB^JgUGTLLP*GvrfM zcZ#3|Mfd??D=jFJzYs7-dbuc4>rbKiD3(&pn73_4>NqbmH)>wE;IHBFh`lwxfTc+c zz^@ei=?R<qo~@L%D|1mDd21QNm^FD~yXlFS3pbB;EzVMb$x_{{wLPEu9xVS{yc?ir zJtIU4eXgd&;aC5liTS5s2li^voA)!HdOIXOJZr4!){R#aUJ)z>>{p1oAwV?Ma>w3{ z(cbR$!CpUP)}9q!6E;CSnsXKEjy^~lnLoWB3|bG=j-5x!9Ci8>1id;4*+%70Fu(fU zhRO35`g5m*fP;x#MAk-Glm@(_oS(SPl`4<OQb>##3x*p5ie1)OiM+nIvhmtt)U>@h z{k>}U)%BW~z-r;et)I6Q3*fwH;8l$H&aJ6QyQe6!?v$IpNdl7^>pgPXQox+Z#w1o? zdZ=a1tdavMbN~tjGxxt#u%uO1jOBf}<D5ZzJ%B=SU(E~NlENf#W6`1?hBDyE6ZPd! z7;n$NkD6w4#8$;1fJ5E+Y!D&ecBFbjbVI@xd&^%ni1fJIFy*x$2XNEtcO1<Z?pHNR ztXqKxH`$kaiOJ9GG5cN?D??`|WypBa2+y`>S<x3ElG6jEpciPdgbP{y?zkKmhPJ0R zk{lFq)}+~rX~5E+&U%Q-K1<hilji?|^#FQw8G}^3@RW3LxweGGcZz*~A6J*jWW75v zZn2m8vTJysHKSIq0$QQ&b8S+9DN&gYgvzC#?*-4UCh~qYdn{nVyL1;$DoIfjkb(JC zNC#As^8ZO?nSM$&QF}=EH?!D58k4Iq&6XYl^=iRpO3|VS(u2~o1C)CsT+gmFQxtto zYbT`^$@mZ$T@%ZER3>(gFt&;|UW76u9Dt(ZgG%v_9o^}O1aJm)Rs@NrbH2;|NmFPF z)!v>Hjmpf0-0txs)TZWjHYNfHjbdY-=XDj=iz+;CtFkNu%#}sC<jUx8+rK77i1j0o z5}vbgc(5VV-dA+U$6MP4-$(Yk*>}gOjgj#kR;C9vfs<h4B+8k>bTi@dA}ydTi57=W zv#?tvw@uJU0U)v0TzrPW!o#O6TjvDC2He_+24sFhjp+R+$bIbStSN=h+tghc!IQKm z8T>4f#+=dohI2PNFPlZ<t$H-pVPvzj`Hq&=NUH{-EXh+%N|PPA(3+XUXm;s)8|n9a ziR9oTUGI*A+_z(*SNBfsL%J;0N(bbFngP!RUcRh4fHyeij48QEEc@$37)*^q_#jv{ z+K*|POMivcg?qMfRRhLTBCXF>gQXHJMHrNyPYYz}%xX+&x&K1DIhcA$4x|2HTux7e zyV|!D?9BN@qnK;;L26VUQf%7Vi7noJy8pL2jCUF}N4)*>Sv>3huUUI-x)|~Y$Ac;l zUiE_!1z-DT8BD$AtLp9L9CeCvvGnwe$HJMfMe)k2q}AN<DTv0~W%7qJJK6G*g7MQ8 znEj|R+NH;e+<_X>g1|Y)g$rNwy>dvV_-~;7_#nL25-Fq|aA*!9CL$FgW=_s@e+4A< z^nC>+BM>gGbl@Nqh6oo$q*fP2<n#Fdut;Zhbk!7Gc?O2D&bjylXig8ewHD5D&UdzB zo5kTdyLyA+?Khsp4r-4(%jHe+fqyhDf{NJ}Yb4b^8w#4MszpO~cg7!I`);sp5g_kx zg@_ReYBsJ^PK`|=`MPQs{qHs%8B?giKNjl}S2j!28m2}+2~`1Lj*A39VG6<LFq-e@ z-AeL`V?E?S6uOHW&+%yetsfzO9o5;*=m>U%<R0##$D(yj$hw@;H8AwsIJ~kVKPqm` zAmF0Rh=iA(5_ybz!SF!`NRJC738vgzX-fqXg+3vL8WX;c=z+){!X&bvsY5rS&aB8C zW_zab(fv|chA`~F!^Ig8%^T%h1g9yWq9L#X7u5@<#X=RV3ZE0$&m{sNVri9BD`(2y z5UQer7`Ri!XZmLo6=+|&)#Z^?tmw1vy15LL5N87^44$a$$BiEWC7Qnuwm9V8sn@&( z8$Wj!buG)3#quBuQ*d#FwRq}!m^JeSCvr@!W65plr&nUv&}9cWso$Wxvtzrs**_H> z7meYv>lOiQHI0VPTk3aeDV}tfD>hDe%rz-@P64eXi3AFiJr7!h3JzIksaoz<a#u(1 z+_349X2zx&7w=T7X6%@xS=|^I6(*qg*AH64bS_yg{EgHLar^eo4%?P9-9BG;@9el& z5NNARnGv^Wt@HsPNQJ?%6&d}KESqE+raBmJ3urx)8fulyyVOVJ%+QjPCqiiL7bta= zZ?6+TwINm!%EVHnkW@@1#8eDqwaKIgE)*k_k;I-pVh5hdhT?ARc8{h}9_Z7|#dknn z%)+4|X5FM?7P`J=lZ>h$%nFB@zW*oa(T?5U?A?Fl#=iw9z%(ka`%{Yb7wS!*W~&aJ z&VoUhjeTItvD_=L#3sVRrq<&9lJ$At{COXpZi{1%))0+1(*0Ydb}9=&0Hb681F?qn z*&x4oAcTm6Q3;gOgk=yP7>q*T&YkZy3`-URVcPtr`1ew=Li<xG5+c`(xKK3KnwNtu zryMjUBFiYiCEuSrp&buRtU4cMY~1MX6{h@(TN+rtdOv&ZDlo~EKy#h!WY?E?dc`0^ z=z3J+^GLrayvEs!NQ7Xr$0F9!@WcUaR2%DWrzmn+1PG<{K3Kd&x0I7p#&GcFI=t#K zMZ4VNQC2mU3y9<5^okexWh=fY>X=*GhC+|IE#Wr+xlqseBUR*t5|a~4RbWghoN^bI zvBn><;GJXWq89HG8sUPNpgzK$2kECgDZbM<dk_45@7z+JlHp`K5Su8qUGhBM6a73V zUJ*tsva4bHmt!GgyokM;79Rg=npPD#!n4sL*Whi~9xUoISKLHkSnC}(H>sp$?n1bu z)^a7_+WYP<1`r9II&Iv4l`x^|Wqo1}FVI$xF4g{zn`Kf%z>!!be<TC*5j&Y+Y*!o$ zy)g(zYPx;I;0o5y>!*gM1*fVdR(qe26K?Mm2D}zq8WCs*yeH;|MiSp&CP<{&U?lvi z{E-u$-F-9SIR3;ZyNw|w@lKZEsk8l(9oYpWuV5EBUk+#>a2i3^fk;sB6HZjFbCmxM z^V~M3<ErXl-$)C4va5VI`=OBO`w{9OG0B<PVPp4$KKsfPTNgEuYoC7pZ-D#13s(V! z-P|F^YOSVu12MME7G7gR#aAC!jg@4=!msfsQa}v+Z0k0DXWTT+i-obcY->LRvH);6 zkU@Uvyj@I<maoCoMQa9~@#i;)`qSvaAFD)a@hLi!iIi|XOzx#F*U*P1Pns^mlwQ)% ztU;+r>p!0-f9GeW?P0*_VbRdnb^OBZL%QM~X*JSP$>9`DRip74zb0Ipy<S15ZQW^0 z*?ZPL)A9$A2710O@Z8;%IBAQk6!#dXVJ!ES$e04`OHvk<%-~$b4-BuY&~J3rHH3GN zaQm?|&W0o;yiPU006+n@SM%x0b<}9BXh+COXxJ?O8{oN_|1+}wXJkvae??ABM|nfW z17=Sz2ti{`H+n-x1!n!9*q>hbhAj8<eD8`3D;@G3nf!-@(!c*)O)zu)&-aWL^i1^3 zL@dml|2Ji(XZo3P|Nr!7mF0go{dt+?zgJn9S})#_<Dmd-L;?aZu5K>o#`Z8?IY+n? zNw}?dJ%-HOVY(c|U4+u@dd_6_g(?UQZcgL#K?N4gO|J=34jfM_rMRF*fqQWOMb$gR zhxNVP+hJqdjnmjR8{1AA+s=v6*tTukjcwa%j3#gX&-XWZ2WPYgXSVnHtovH)CTjXs zZ$gyJ5@^AS`|oO)wu)c1vAr!nizbjJ@Ei*}FG(eU>IZc-y5WS{d3$@8X9LUWsBZW$ z&$AD2^`F>efT>b=srEOIQDb$hfvCB*ELOJ31d}iUB3c2-z}^A<SJp5drHqs0?H0U> zzrRDh7G>A^VTTyY0#s|VqQ&p6!%cl!PfAU4j}~pQV?CKstaWy=BW5wCphqXBt*#)( z<sa9^<cH7XVySJm>G)-N+xk{;-VlWCt{M9#D|p2^aP%58dT-kduTXP7ihH$S&ZX_! z{&91)h`1kZauMOi#S=uPl;On0VZ;OHhGv1|l_Q_r;IXqaZY3n~;Hf*kv>X{t5qIZr z*Z>(xRU~m;md|hnxWDYNZPcCDVL0BOr4K}sPjyHPgB9zidt^Ggq5^!Y(VUY_lo_!7 zam3kxo@y?)Gvw?ARTr@e_Q5YtkssuVH2Z(oPxGaa_pQBoq33BCF~1vm`a@E6qliL_ zUKY{l43VKI-G#^xj#2x$>;1EFnOry_4s%eo%g>wW-_+&%e6KPypQ3{8JXY;k@@TnD ztYws?)xhWqVz-x#+~r|z$Ty1QEW%Bb6k-hp7{$2i0yvD`B2jO}4Z>IwiE}A_gE5Oo zCLk<K9{4t-`44#*R5>;poXCt*2Z|@ye3u3zQ_Kb>JP|;EV6eC7j|@i^2wt?V!$qm` z=`PXveDR!U^w%bSEj32uEwG}@g%h%QFRlm|b`-8EOI1Wh@ekCmhDMWlUB1i$X0^fr zBKOB9NYQ`CH1<Jub3Bw^MWA~jsoSkaG31K|gF8{aP#KUTKf|3~1Nb-l!H(}wJ3Mlf z@vW0kO<McEcMr4H@;v{OJ#Qz=lTp_~S#-y$MJU1@hh8S`$epEkMavNM5ac%<L)m(* zCZUCs;pnYSBG-yYm9eHA4gH0pgPeg63_499+@Bzgj$+s=jYC794pTyF63T>on@Cnl zevop~k@qQck<tna`WD1`lN5YrJkUZ_22Pp?CLE3oqiw#5n%8&fKcVKzK;!u?F@Qs) z213~XfrJD5nYMvng`PGIpKq*$YWpyRULYn=iG#cj??kK>T<EjP$XS>i8zHg;JkLxU zU5aurUe;sxQ^KXuULG?lFi+)n+p77tW>|}W&Q=&9=WD3<XB|Qs@O!-2O;Z})TttsW zNVbYylUKfx!83w6o)*ikTVG+hH1HYGyc<ut?hQO~cx|DJCA!9r2|JGCV5f((C4Q3z z)gM6zy&4SgbuX)Bk@q3i32aLS=*nV9nsG9N$*50zIry~t1x0BO#aloj#~VeFsl|4o zz6<Q}SqTw-yDjpIfYB~X-Fa16rnTN(z|9(UqM4G=hg8T;sDbIUGfd+m>-qpgfGhu1 zKH7ceve`h9n5}ejl}->8o7BJ#@BSt_bijy_MSbHJ;&(@b$@$>Prnis)>}VP3dGqU^ z;TuL_>h;fPU38@5UQB4_ZzxI?BT}bT!M2wE66+KvPpFEdI`4z5mdy~JcD*&vH|d|p zy1_9(86C8}PMN>7#yEIpT;F1I%b}FzF;cWUe<+rZ%WE}=Zdn-I#EOuNb<IEWUNa;{ zt&cD<pnDWzuqN*OgRIvLWazvN!-+0>-i?I#Sd|VhocQWJ-44D|6Ehylo84`}qtZYw zCjahUPb-e+3B3Mhp`PB4T1}P0qo)uq6PS>EXGkZHSrFoURC3HmBLvU5L0||i$(Ms5 z7EczMM-ZM(;Bv_h3H7I;Eeg`hf}S8A%3G}Y&Q;qaKH2GI!-(@IFoE*wg!qPu%bV4a z=+m+Sb%`hF9_eNizc|@Ow}2WhmhjRke-+$9a1;N{ne=q^7lCKbLyA`~4sQG1>hxA$ zFH6CFWHtIcpKo1y(Gb5zJqUD6++&Sf#bPl>FjEjg-ym6}4K*8P!=W{k)mQCCP6mkN zI_ITJ41u80FJ{neU^%;;cJwxpnLd38Irlq)19H#?WcrposC0!}<jd6I3J7@Hx*IO| z4Dx5C{VprTKyG8z)QSV)f)`@nlF|fYg0<`ZkLI$hJ|lug-1$*T9L4oVdk$MI5(ALT zQr@ilzQiX0om;t-pM1;hr7HTnxO4a^z9y~|*+2uC#Jz755aK;+nVFKsl>8b5LxbE) zCR2EfF-DIX=my0ZHT+wG)|kpIYersE){)H&lAlp7*r|^1Z1;0@+j;O6J1~_lJsMJ= zcH>?`Fga-=wz4;P!Y^HkXWeZ}Whnr0+O-`1IrVBtVOs^O=%TVFC-b$qoHP0CamyLD zxSMZAq?LFLpg702zAYT|E`3cNQQI!=dF5Z(<BFGbB}%AY`!y4Ok-3qSt%*#p8mg;1 zG`*6P_rnEFyMuhhh^SNpDF#936H^M!Ec$hSo=H9E6r9~RQk{>_f6S)k!hy9J&!D8@ z(3D5h)~nHzw)NW8sQ;{RBL}iR!Y)6zYGcsrkD%ub;O~_`dOE3|^Ex4kN`ZDMPe1)U zb7vu`F7+)i`mwwi(yKF34ryoA@TI_uZ6h~lCP`*U@np$<q?X$8eb81GrKMFdHmytw zkE#Z&#`ombJYC^tF_Z)g!am%`3y#gO_O{!4*kMm+p2W!Y8cP|LH)1_y0zw6rbto7% z^C@f=0F0W>@7uM5UQrKhq<Pzn@xgrzOpL{XetGec4$~F-@i;LilhJS@chS2EI&7?7 z2;RpR`CK_KmAZ8JmL=T&(%h3QX&Q-FF|cy4hAyH<dr%yqCU7h7^N(Z^)qe=W>Xg1R zY_F<o6Z9llwN<`|>lVSb#~l`&k}s6i=cbkeuuHj3!7fvxCAg7(&aY2nK$2alRlxS= z@0ELn&Ghdw>CSO};_Ur1+lJg;I=7$bTwD6os`BMmLe%sUk&^R^-gfpX_-7jCkY6^r zjwc^C#R7OZ-B_L8qaZ^N&il^7HG!MK7ob2M13M90dGh*CRj`V3E?6drU9nt_i}dsW z)xYoQS#x@9n^$MIc;-KwTFaSF;d6}9aNk!g@IXjI1mR!!3S)+Ie)tGUZn5rl{x#GU z(iz!h*g<Y}O$`@b7@nqtL|GDCLn^+QVe8ActKe8%%oyVd9ERIqbs~4yhGj%o2LFSB z$p|Om-adsE=@<L6%rEYUmSDU2&OVe8=&uh)p~}HNfyUE&Eorn7hk)x}ZO|w3^mfa7 zyj(<vtI))bw>J^g!uNNipXtNiV&38i+DI!9Na5`8sNbRDHN!g*!w;)W+cyNSE`ANc z2IIgFk7yJz!<_t7W<&<dV#3YN(jPNy$G}cbMG4KGn$oVf`OZV4pW9oCr9ra<w6=t? zu4{M54MNO2(LS#j<xY-sX1u1@P1A%YG&id2NL;?1j@>^|gpXXm#l1xlvbMKpyUgkM zEv^xT2jrHyLgR-*7{Y$ehVF78qiPmZJwB8!pj!Gr^9IvtQwK|tGBJw7-*VA2%aX>f zz`<&|4uaUO{V1Npz4b^h4I>Q)Cc=!&Xy(u8cP(0;Fg0GO8(<Ry`|<lm@U=X$ig9D& z=Y7zxSfhHU-oySbvp+l6D5svA6V{PbhvivC&7)tq$Lo79e`8>^-x6>6Ri#%!MjyVZ z=>E%B_uW0V^)XME7D3E&?&7Dt=$0)^hV#o$M+6v&Wp$ZbfXP6ecUv_8)96LqdLYs^ zQ4f=FSK$?}<`a@54zZ=h3kg-vp6Ne<&dkdAe^Q#6^*;^G%=({@XJ-G;v0-Lq{ogrT z$}51Hl#=6zY6!~O@@3p0+W{;r|9^$8rR{{*g5mpAv(gzik2>rFYQ{^TZ$hJ{ERk-( z-AsgSX;X(GnO3-0+|#`cirJyzC@C3-Z$*(^=ZeM4+50kufu-k7?e1{nXU7Yf4K_V( zz8lQ`8>b4^0v@d&W4!$NdFN8C#Ovu-^487MV<#%`osKd8ySXSaA59fqA*zg~x{N6( z^Dg9mcDkkoszKQu#hs0*7NZRrlh>0!R>|`vasbu!Zw7zICHUTmyFKjAoNQkAXQc>X zmg^vDIsRre7MbK`PA<AFglu?;dgs9T^7hiNYZI{uN9ERvTc2TX{k76IJ?i$i!2BpR zJ1svjd_3#!$ey*VVpo2PYG=xrGbMl^kcn>#>ZWU;pLt+UHQ7ja4ZAUTDK}$NoZR>3 z&6|_G4Bd@S&0m^4ZrP3x%a2WYVAWg9(ui#gb=|hhKo9u7>>+Fo+8-nm;v<rKPLyqv zgTl%64Ee@OJCJ%0H1gf4tufkEr;-Wwd)ok^i#9&_1>Em$**~h|=ai6V;~l(;mcVw# zu!LEPs^FE~Cg2cYSoen|K=tTC`r*45*tJPNvz@pE$Y%+=gJyrxW*SthNWMPljQw0B z_`_UdP4c=PHM4~%wDq&bP`5ZSB$fULi4FS)dav}%kI~9lP=PDH-KQ5&7K-=u?7TW) zh?|wyn-8tiy&I%*y^m`)+VZL((x?7vNv6?k2~MVusX#?^FQ+e;bnvd6dlR8O5vM|l zxongDDC<^AZA_d&f2ug4f%{eFcz*RBC_E@XviWP93A0&xCW~YY7d$T7+kWJWx0y&T zzN9b9LHD-V{)6sFW68m%sXbGb?}P>jMJ{WZO|b?4M?t}RwMzmLTDz{(i!-G}jde6c zTg)PC4e9G2`$QF#PtjRL{>pFZ>Da7M`ARmEX`#90Zaqs=5@c*9>c(JY#yeh_@Zt{m zS1QHVgmuReBrI(VDleJsy9C*3X6eb5tH#8n#^cmfUy^Q9`eH4*`-CDID{=$vHCPi` zj~xWV!d4)>VK1~CEjnhf*~{g*>hko3O&O(S(Q*3`5r+Z!CqUf4WgpPVfR?1UL`Y3% zmcCm@hgCdh3~JJ4mJz$7#{*A#w_t{O7lQrsv6Ej^r6<JhzC8N0#{1>{Z~>p_#Ze;! zYoz5UiT3)FgxZfCm$QB=OQ67eSUF!pd1u6}Sd+}dBQO8-t5lYL`J!ix4bCDAL#due z0-WAMDiJz8Ucj~I0u>pJs&S6IJ|RAbXqDK{R%CctP*^mW?QkT%3FIrrK1K1TWvcOn z`P<4+229Z5--!Aiy4~x;HVUiHWTT`SX>|Jodv!ImQ;}tQMmQ1Hbe4ejo}4zpWSLJC z=8(xd>PE*#^*epXnuXazZ-MK9fhqJp`OY563GA)hcPH3ja>o0(Q1p8n7z8I~8Wfq! zo}cq{2otMMgJ@<m>nSGi-1dAzaei-d-%sF8anuvh&=875O&S!|anuB*>nX`yHH2kS z#C|BVIOdZU*uV{q|C|AY;DW0y0(LnhU`W#73tO4VG9L%Xxz5WHxd$X_(UpZo+Y<;G zcX|WzHKm&>%iM>{2f1m*eQh~LE^6mxLYS%Ix?bFnI7Sp^uXe=wlR-7cC?NQ*c7qs~ zm2XL!TPoaW#fnP$f>7QXbN#Y{OcF;mNORi*Rl`Z96|T(Trmp}k4dQB8QF@_ML$7Vn zh}FhxkV14Eh34}aoXTCYIM?~gSMUB@^G8s$I?ZusT8guqr?iQ0@EH_$<;!nLnA;2C zwT){y)(`>Z8-$w2{t)L!sHf`+lcSLpCVXLDye0FN-B%7EC!1xa2=4^mD;Wn$1nZdO zmbbDwQVEyXZKr^QMbGv>V#7&Y%GZuJ{EutRT4i;Jj^@ZV?loP?mDSC@Xqj#pEFd!Q znx*7m_bOU<LnOR3QG&{?sjQ_(Z`tK}&xkK8IBQii=Mgd>@HN5xwT1o;tTo1KLdAT= zf|TZZu`b9~Iuz@V@|O6}I*VAmYg*hU*{!Xg`C8>|D+gfdl9_Y&wp-6JF{((vXec&d z(j-ceaoQ?wft!HL2hvx)a|H|wyAG_;5u_U^MuL=zt<4Bj9Pxc4#qf4>%E(QS)x82q z;X4vuWsRx#;SPzQzT<J(NV8)s(;2GqLJ)HD$nj}rQ5Z2}d2dI3X)bJQQjK^sTe4lR ztl9W}nhg*xcd!IKZw=^GWsomVWn~>fnMXQUNagg%nTj=Y%{Rxm&fVMXICnM|&t|7Z zMKy|V?QQ;a;Bgnn1FSjc<`5BA7#sQig(JoR_{rWkHOCAeQ|xaR;nb2+F2a=merNPG z3}t!_zJZL(FM2D9$vN-IL+n4lTzGeCxd0yBt-yQmYqokpD{}fLB`W^VUB|7b)OxDu z>%sec{?@#1&ZH$j$wU`EzRDdnGpF5AV|sS9`Bm!EAC@%*xStEogYJ+_&U8d-^Se_} zgeU}6aZ5ytrs)M0(#5*UPM!SaHRAa6^yeAytfBAy0|^lkcNW}_ykpg3)+5@Wi!ZL9 z1OT^OXkiFZREh{%qZl2SE)~oYPYxEAh{>E?QLw?%b;~;mfz^@Mh7MC6EkTz5!*cBw z>MmwoaB|bf)yp;|eN;(#yd?3HXZc>(dUFHY=B-NAw`oJ6Q<*?-2-#0;SgZ?we&5t7 zf!RsqBJ$1?R(3);vxZk^KmMHPj;T(=6+n2NP%**CoaG<NM#X~jTj(>P>Uo3M<SVHd zqT|n3PCW(+vwe(6Zr{(JF7|)72x&Nw*R8Xw?L2c8eZO-h^N4h|_qo5^-7l{Z847Fi z&rh%=h|44n#63X3eP|&Kexr8>V-+fFTulrPbW6bSa=J0Bsj#M*q@K<4ITFP*;RoX5 zL=ofv(mcnaPMn^Iymq(ET-pt>*@}d&$rVcr#%G3IB^gZ8SGR*Vp3hBoD=NCDPYMO6 z)Xx7+FR=aVSb1<HejIdo<S_LB8K&&=Yt6ZZG*5iQR)cv{2BZ-Ah)+#`Dt4R-)Z+1b z`IAtoKm70SmLD>qra#&21=YSm3HbqTMFIZ;Wp3>C&s*KKdEKS?bZ_h>luNobw0DRY z4cENT)mZNHF;{t~@o-gK-KiUAU@+i%n*aS2ZVan5CK=;dx+{gu4y_Tl?h8=YC${5M zgFhbZlwXSHiaeSryhTsdvg})H%!XQ0a>uBz37_FA5eqKfx`i93AdHP#XjlMZbGb_P zRdFZp*<eV%fC!<rVji{078Q6$a}6r*AKutw#vpp&OMY?bS1|{djk<i7gWlq>`$C3Q zS_#(S78Ke%a(h8nTv)HxTsP0gXOjalBW@Mpc;Suey36rzA7}T|#o_DYKGGh_5VCpI zW|_qd=2eINN;8l67&nzR{Q<zAnP6LPfu!`@x~Y)2?^MK9mfe)ds}2ON#YWOnk>Mh* za)C1GnCQ;G3kGHIk&F4NHs-NUz2+uJnpo#$Xq!dT(9IBX)H;m?JySg(Px}<2kR1^j z0%V<}Q}WZF3O6L@!A6B6V5Zq$tobQV&ONg0P-_Ma=kX|I>l30r=IrEc{*pkY*tlAC zvRzHi#5%(u<d8(tjD45Cn?+n=EqY<?nh!#|QzN655#5>#3JDo8trR4ZR~pqR50N?u zXoVg&P0n^B>36wK{3IHW_#kN+enlm?WM==*duC?;&va&H|Ick^=J=mf=J=mf=J=n4 z=3q^MJVEnGi9bOzOmXBUWoRKeMRPI-Wlc#|MDGTM!t<vbCFQ0(hgdP9h$%}BE-yM> zgjro(*P7K&E&i?RoM_^0FRhDU<sf2NSTziiepITzwa#V@JscmN8Fk632sDioWZzqN zY-LYx=X7?1Zut27_$mz$W2hE;P}{S#Pztq_s`b6?J9c!-KzFA~vs<}!xOQbYv1^+i zpcw$?2(FFn4Q?_G$IG9-x9^m^w=extY+ig=oOKV!)qJ%(_vG1VGB;5FH`l~53|Ny< z+WneqvV*I|OoscP-)wVJr%lL>i;2RFO{jNaf}}*-ixn}Gl-ic<!(vj6HAZ~%27JO= zb)225&2rHGj6&Az)&J$xbKdNJIO6x(1)L|7X<)kPMI13LLh^l9X>$MV3q5bsO3A^M zAltR0tVyg)EtlRN)qqaH7o#uO3%Qe)S>wi>l#rIYJf|<$t`-onXLqgHi~C-H+)p}Y zSzv{~<s0SfcOl^)mO9{5LtA=4?1eHAtzAkGmFq$vK*762HGcRxgUF)7Z2jQb0>++# ztIa0jEWqYy`h6ZL-j}kE0vctiySLtOSt^yxme&^zH*Hc<PB$s_v83lHU>ECA+h-yj z%M4kd?mc%rnQ8-=2QR=N!LMLcu5)cj8rk?&Sfsx>r_26KUSOvVox4VhRFHE{fH9K1 z!TiS;-!G5hjBvOXA5tzZ`l=r<3aF;_qNobG`m3fLw11NI85#KdlYn7Nne6Jw-LOE% z6O$=#^g=B<_=P5-9pREWnOxe$Vx$AI+EhZjq*QHx2bJT3-RjBVM1mc_RiWMukyRv6 z&0RXQdH-mJ3dl3w$}^*Rrz$8Z)0G%Dkgg0H4pP<+D-=j!yR;$H%&_zi06fE@QdryK z&bCAqwq6<|-E+Fvq(AWu$*OP;g{4Yau`;9nURvU0tQGTp0nb5iT+4}Us`&C0vLYGX zI7QG{?WSnPZW<X9iV@Kp5kiCX3m0~1h+s5u^6&%ZrB3h#qD({JbowiC2~e-%l#~H? zFg<-nx(m8jsF`o)EZ235K>H@)NiC&7v95vWtni27Wxg5FT5y^r7V4yGN&Uz4Be%FL z_1yX+vQ%fyJoIb~nmg`9ZRPimlCno)b5gP56{2LC?O1*a9qnzXy&xXs%?Hpfd44L% zMqUw_r&~hDLD=8Uc)xyz#&ooqHpC5xTOB5|##)K6Wny*ZI~(gb12Ui3{2uA{Q)goW zdm(@&L;jq@M7|qBbDrg3UNd*->{yVKnEEjGYrU<`zt*)_e#G*BLshJ^2f>!YPGuAk z--6?A&$0vZG7YsVDT9qjJtD;E%@|I3D;IZ!Mx2$-R(XgI+|<=Oro29%ntHl|q(Taa z-pd$nJpiA@;oaAAV7-QKlHV74*54)VWa&7=)(6)Js-}%q__x&F4{?~BWR2gbHO)ZO zuBD~1f0GEF9Me4uy?U)AHQO6#lE-q<4X<8KisI4p_{WUxBl*3TUS?kU%^ajC{l9dF zd;4w9kNEP3MSR%V=YTl;biC2UEC;xd*;a19*&mgt5G_n}z$Fnf{f3q^!XR9T%xSh> z?|y3}O`f?<<q_9u?DWSl@?Enhd`{u7U9lf($1FWnTfYBNphT-hysUFe5lEHVEyBO4 z^DgKagfBfOMJ(AorSc5Is)&qEXwbS*4PonEQ$A5}T$S2C3T>9-1iAq<`OQlu1<`KV zAX#>l6MQq@z7=A)AkrzeD5;~1g8~!%Y2agx^Ey~KFFvY`e|W?uC-y>q&^RhS-yacx z&n>H}xeJ&JkOpP{zoDiKQ)_z4@x_Mfs=tY$L}-&8|Gvv10A=JdGS<l)>cCzt)qpkx zyl8KCdIv;wcO+RyafmR?eXazk6CM~f-ajU$=xMBuy(Z3U?oM=ajDBiql3gdxDY!>k zK~8bnC6!iDt8}stiZc%Ddh(P)KmDuv=s668FKPMOq+aj?;eWR~*Z&zHDeD2~X(>U0 z=wIf?f7A+k5PB$j5XRSs*@7N~m2m~&ey8B#$sFN8ik|!fX?U;+idTiNhIr1VfUT&d zR7HlOr94HTse16f<9<9R-=c)(dUJPMj~q*gEeFP$3H`M~L-eOykwc+1$*&EkG4Jon z6)23IyqMiIG7ja9(Ea>Ah6nK71pcIRJdS8w8I^u<TwI{5HS$P$gw%5A57E*Bj-Fe1 z#bvc2nb~pj3Hrq>hMNbK<<;%F|E5(=B$MPG@^y=Ky;kGW!J2Oh=$FH5dF9Wq#XK|_ zxT}#=>jJV;Y@Dzq09S8rCneeFVlZ3U{w`S%Ofnz&CkV86p=a?1z6bGCbM^!k2*La= zTj>R3D<c}`n{5y3w830MG{pdBC$j~TojJ7XQWbI0d4dNWf2iNgmkHoC95yL!Ae6Z- zOj&)?<<g5ri+P*$9l73B40^oK-J98aO*gP}V%m8k0hPiL01nz`nE7{1C4~XVT{Wd^ z7m$NjKTCq1J=}0U_qdzCJ_9%&4G@{G9dv)ExKA7W-DQ^fuf~-3Jy?ZcQhL3%(XpTx zWjFPV`b4%YCR!?9wI}vHMq0|NIoSHw4)48JZCgSrNQ%6bn-(nzZhSqc1{vYV6EhN1 zLvqrP!>!g$0Y6n@q+n_V%fIW)*lr2;i3XPS{G}B${SC63hxALGYg4x)gVP`dvD276 zdheIF;Dlv$X*J6k-+0`dnu5ghRto7bbvdVu4}QBgl#6%qxIKBsg0*R-AGT)!BP+>6 z_(+GSYpb2+6)dmLxzy5GN7LUd89rPU{3SS(1pm3T0nn2i-M`0QimOs0jIuXAHEfjh zj-Bw(7(kFDU))0XJ?~sLmoAH|l;o_q6h;Yn@%jzaK3D6gj7nSP#4w?mc&$+JXTr~& zW4?<Bp+B!W`K&7oN7w6VR^IAL1}GjL{K>C!JPfcrj@w@(#7TCni8IV0zWHgnzWg`A z1gW!s33xRd&(`yv$fi?a^zxGcxkJXwYpJcH4tz2~Vh5>70^=IngxDZe86cRtPD~%b zJ?A_;HX9zq$GuZ&a3B*uXWxqV0!uQQ$Ny$eb6hDM_O$*i`HBuoKM3N^>D+54`zw9o zJ7ln6osPY2!iq1Rz)LE0B&T7B(V@+4r<Z#U3}D<#ii8I@4>Lt=4>GAxnaJh4T<W+^ zbxT?`ClcQtr*=jBOM(1Jxq~KB8~S4)o02Ew>O+pqN{G(9g`E^@F8T%P6~qFj0PZ=T zs>MQ(r1w5rbSjWD!wP!}`~^2XosrO)(Xz`VHbbR7_AE9(yMa?HJJ#6I9^bb8nI;#m z7zpiP<mnga4Whm_+_BqH%MI(CVnLdysFlhUWW&Mjd3*{872FMs_-ZX*S)JwT3@f={ ze^(pm*m>{Wer6ri`}6n$i-d3PB&byD$cXTR@yyNDp0HWxf)vvEXm?R@*Oi;gQbUy8 zf#av3`B7dMgpDUrIMh)PH1(;ZJbwBy95BI00$!8Qax=b-aKD*59{6pEIC)lZZhGI- zuK9dId{;IMI|Ai=|95xZjK5tMVIstGs8WAjO7EOR=j7f<LP=@d=gAz>fD1zpu$B6; zO>*nrLv+f}tZ?Dtb$`&&YX!eg;cPQ)0Ak@8U#Jr*zz^yVhmp%PH8`t`1Bt|&4M^Ls zGLgF!?~I3`-b6}`$?Psje!C-)^5ef`Th@fi9=C>6s!yXb8cB-RG3Dy=q69ge&7~H` zcg9BDD;W4WVPV>Tkn@DS!K~cd@N?GTQa|Tbt6z6IL>_ZY7-rv+_RfmZ@%={o(=!+h z>)%~+1)FISEOlGB1mQ!-Y0~S*3@gnzStI4Pc%Y*DH7dNj_s`KP;&JRJ*w+0(b)ys2 zqdgG`9Wdi}8HQ%=exFaBM+Qmw&(su9Y#g)}M|bQY2!#JMJIjCkND8YDc3R4&54Hgq z%YU$8i;XY#TpGaf|M#sm*5&Xdk$sM7j%Js}vbv|gcD9)pK%k2fqQ<f-#Y2t28w~9e zH?PvZyz(vbZ93Hvn-VJ(iUp)qmsMAvmsz^Irrlng_#tJ3$@?FxE4UX&8HrcO;0^>) z)vKoI;&*PY-H-F76>+@#bXK0kE-{e+q|0G4+{xM*lH{rNV(b;2<3VVVJR}VpqM<{R zBD?GTjRtE!Q6G2Frl)Q%u|ufTe{J)cB_ZytlJEpyV3|QpBR2hEbqZEkT@|ZHHDqpC zUG;c0ygzm)xifOsOJ1H_f4{C{Enu!Z8kZ&5Vpm5fOW(r)jv8FPFJSGym~wXj=?r+) z36Aak88~#u<Kwp_4f}K>m**?$X1Z=)p7mtTSexQnf;&gqlEd}*sbjY}uREujw@S6z zp*I_*H)~Y39X@-FAk%O(zvF=ZW~YF+O8^H`Ho8<y^av_Xa^rOfKAdEWVa|aP@1Gt$ zn~}_<rHV<6gahQ7n)7f^YuS51ICQ(8X-E}b3j&1>r$rz#-L2IzZAQj|rt1vSNq7Kk zveiMBzh*44=G-y1{lSq5^ILXc+%#ewKY=0GTo83WDZk?naP3c-zO)1iN1N*6jPI{_ zkfq(4nQkc+4AVsD={B8?;@nXxtZl4`-ZTL<#J5>b&i4)R6R>IF8;rp~Z~v-3QYzDj zmA9u69=5#uV>>FZmnP}A^`C?ulu`GR65h1I>?MuHOE9ImiqYJyX9y-W;hJ8$47MpQ zY&rBxD5}FYa=?L(?YBB@`HJ{V7&Z#wUMPw`UDf`IR;ZH-m|8I(e@!si>Bj3}eg@TP zc5PIi4GFq)+K1k2>gqB8Qt{8z-cAvJ_c@EzNn&8)#{99*N`gx<0JpG2lVGdfGhGjl zhVRb)EXUjaHxKm=YmFW+8_(yR(VU-YsQ=j8qG|1@9rSdUt-wB!Z^W&;V9y!G(~TZ& z6tne<&#VjTMYbMTdrehs$5hd7vJ8gM|0!f(4RiB4(Yl0<U&;RiPOwKK#}rT9Ny3nR zM?V`n<DMo&KVuX0rZuJK8>0{ycERc#_4#h|=f4R{$^GC0kSyf&63POW)afvXawjoe zga<uSLVFUF$5r{3)-^v^`RRItm!1=J)}(so3k*;;9>jBKka(9(PRhGz;SfN?woxEt z(3<DTWem;;k{kMgV!65RQ|&n$2?4^|_u#c#m1Bp8N96+Q<cV4~%f|%dwTpje>(|ys ze2bkjqx@r!Niuy<FF*>lj~rRQHa5^WhNDQ#1c}H@;}z#ekWC1xgoYobgvh%-qX(T{ zK61w%%7lg%6EVNXgfv+N{YhgS9i`+6ihIl_y`V3eAe1Tt{FRiVec>vf7jTNnl*OVG z?uyTYXDd0NU|?c|U?TY_dfW~M@wu=$y+Xx=V8JtOUz0WrNux^FVc-N>{Mjo7vm`kS zPDW95xwvq<g+>gtz7;?5kb^eHYGRjqfa~ZBM>A9T>!S#g(r*!L-W6SQC^KrK;|yEV z+_AopCjGzyICCktgs=I_c%&b_$tpoy57LfGp*dtivxA8xcwXp5gq&plfe=TOuJIvk zJHcP<l&bWq3t1jf@0Fr2je-<iR(z^(USTx{YkV(XKv6^sU^k+y+PDlC(u(+@F}sk3 zm0wl9yvXW$^R+@GxCP6}Irp4X2Zx@kMTNWD`zo*!$Wn)%Q#z_e)Kp-Mo(JqTTdj7w zkLL&n?;gc}Fm)VxWpl*t#e%;Cw(Ia)JHA;FvO+?XD0g*0l%6;vEfUF2z#tv>iYc*! z&nq5rA@TC#fS||q<nKzJx7xkXA7fj=yfearKxFNFh`XhCO(JfYc0&t45(Rg)*6%{` z8?JEyJIcYjqH(8fKY3dz_R0kFgiSuII$~%c#GKj1i?6=+zzy#d>614=D$8D6H!K_b z5uLx#YtKG7Xo1ELD+@OL1Qq1)+_CjnCw7bb!voiDV7W%1=Er-*hu2#1Gpri4heJD6 zmrQ7)kMuS+`F=3(#lwG<l)2Ts4Zrpcp-93E;L7a9iy^lYovShStZ<zzB?wkWXSyO? z8fII=40g4)nhuYz?V<@zu7V)sAKu&mczu53zQj;$;#GHDe7G3D0uh7zm%fEvD8i&m zmz<QBkTp&C9Nf9h1;q81lCT``uQ?3RsZFD7&9%PP3&|gKsLL#=I`&mE`GZr~<by5% z@2_O40F2*n<HoTdnXclg&f+@L@tAS(3y~zvGHE92l5$pCKXg1d%3yy7<`MUC5Wq)# zL=*u=MPE;=W_~ZTJk!UjYtF7yNLRF*wpt<vIedjfa(kA{ZN&E4l^7)b`eSnWqFGWg z>1lFw(arJijr9b~OT%#V2g#0tenodGE7VQCjzkCq$zf!g+L1WbdMnjER9%tZJCTMN zdXLD4+n;2ga0e}eDRIK2Xe|~*I7r|K|G8c){|$&!Tu5-zQV2<L3_+RyBRQ){argkc z^*{e_{JWz~?#!0<1}Ro|LJ~gv-RIA6#HLXP((nA0F)c@uRoSQQCmxY0`=5#}8laI& zezK14M-yDzZBsLy?bYrs9(`Ww{uR9sEaL7(|L-N0`g%!k7CrTRTHPDiz6i^-BA$02 z-WrIXaFM0ZxQe5_nN43L=8yA=uNamvMSubC45JeTXfnl9njOo0fCXvzYE94W8Q)e{ z015T;nRKDf5v03|b{FI|Q8j&b*Fydrt$SX11yYqkh@@FX#nWO<K~EIr+{^6S%e%5u z%kz^)`fR7KR^`?8S;t$3sX5mW-3P5{hUd<eh|j+fXV(S|HkF#=dA6$wbD&8>HwNhN zY=YdV>+No(-c?AqIG=*F-E+lsZZL=JoGz&tvI*Q7uiGnl@#NF590`aihWUS?Csfkm zmD!%wT?Rs5k1xRTYS4WziLeV-dO~Bi6ABD7^P}`wl72|?S-cJ$PHl~f{aD7TGyE^? z*6zbf?#T*b4?p9OYQ5GNK%&KLi<C}BQY}o*s=PKv)nO)NUYd);k+-ySj2BQ2di-zG zJ7L4^s}Uye$?bf*M*ybjQUx^<zBdYo65(Yiomm>V83_{-7L+s%hJg3u6?J>_?u!h! zn`c98jvewh1N33__<F#(*Cp9!<#4YO0(}0?Ep2c!;)#;uhZI@>nT<qy8K?Da8MdA^ zTe2Jxnm!%b`UwKn#~G7*wu=*)+XCLWG%T;x#FVu}SLaZ}8p|Dofq85<1fP?P)~naU zGs8PIOqsUqNHC4?OIZD8-L2hib_ShksDvf~Hub%S_n=gAc<2IE*ITmNbhcPeqcK<+ zUZP!$1!93z$kzdYrr^SXhaq`&y7SjM&ipLtePItCZ8bWuq32(evR%ERUPpcttC%Y$ zn23SjFWOXAzl&phQ~WIn8VDVcxykuJDSW&teG13DqH?GrVbPoyN6v7hD@1A{Vk`ya z7h{?pGYzGNn#qOpyGYdLPtQ^#!D+A=EI6h{Hhudl`KuExa3Vnj#Y(oi;1|+el6MyN zl|v2xg*r)}wuoY%QG-&ft(|FtISSTAb+>gvb8w?+C)N_}wgCGlI}EoEoJB2jkz`#4 zf751vLy`lw-2wDdkW>NfgOOn58%UZ#_lt5ul(DCKYZg)%6Uqj&tcR==x|gPt$EE`6 z`A#CG6zyIqP=>NFk39Pn_{d1uw~d;$-VD-<!8)UF7Tb+CgG6W(WYcEPU#n!0ejL`> z)j{}M^kkv>9y{fO0_WE{8<}^9OaHM`DZM%zHDaKRjwb2O7NJR_Y{hXEioCyc2B8A> zjB0MD)ltA&3ZeVq&en?N!YMI}y$rUZ8>(5k%Y^zpKyy}1$@lKwb}U<g{D=)($L7DU zo#rOA66MuOGS=XDS?v8J%+v8q)?GO99Z^O9w00M!8nv++X}kFS(Mf!?L|a>|WGQab z{Hvi$|7M!v$|dfBmEAfKzYgx8o8rxfitomKg%|=(%VlA~1hL9#P;_U{vOEVlp(%2? zY#MI{fZa?Nhp{Tj`lcvPdX7Ju8+b*v06yobiXqz8YHQ~v=aNt8N+l;atpv|~vAuEn zqgh|w$z*l=G?D9`cIzOY<8*T?$h;T9Bf&b;f@wzvv=aR#9_tZWzdmo*rENVB8Sqcf zO>PaYS!YNgydSBBEp{N9SIjep<g6^)EFpdcI92j%RqZXR4!t$(p(G~25FY<z!G0R% zIw?k4EuwgobRh(Einw7Her7_%Z$l|*kGV-a=+8`OLMau6Xn|Y1HD2~Dy1mPZBz|>% zkB9IZ^&?b5&59D$?XoJeV&mFW6zKl_bPSENV0B~FamAKboVv4}c6&mYeDQ;;G{@xz z+6D^#iDt1ZI8+!vlD?+?3**<|l;4iYoY8(~jwPqvf3#;43@jIlxvXG9Xz<sqo>9Pf z#=Zzk-15?~L9Q~Krst@eD;=JsP)8ILr_@=uD6Gj9O1_(NTTL_-%_;vQexlX1l3`Vf z8Vka_61d8>{#TH12I}1ZoJ|NyeM1!qur?d|_aJDu7|1LLQo*2w#ZRV0C69!-a9e{` zHc&;c7~(+KUi?VVR#uXUt^yD~y1`6aPIrFm%<8`Fg^PA{wRn2=95^9UPccQ7V;J<S zahn5E^Cwm;nCBW-P-B#_U%cSdX%V_!yv@xZ2<4r*QQo3<G$70GEwEEW8<%+n$k-ZD zaxa;rz#_I)VKZE~+oD@0ua1ok#k;`&)x7YEvWtRaBiZw1>fyg4H=ZX<W;4{Yd2RX9 zlcl&xR4?zNf)w$bb_AXSuAF**wUmBMby@~V8=&vHl)q;Oe>W;}zKy(RS-c-_uhkz+ zWrn84{m}6kRLKQrxo3%ngXsASAbO#|F!${*x3?^2obAc_Br0CRGMu-aJl}xJltL4i zC#Q;$GV9y1L<zqhh6S%vn+88OXG!21iK3&SDRR}t6)3u6<kYVP^k);zafB$nUk!#j zyG$6f$uk91_?cTkOuCao^`o~4BO;)1x1dj_n=Z>|YZAs)m8DpG7Xp6;N}Cx)L;}LB zMCV8@XVPTvF5#VmOlnhL5LeIPgkzRqRo3wanQ<*nPD{6bU*grF-H~fXN<=id%C?gi z2isn9hocpz=$zCY_MWF$u*WcLXOoI|D;0GeaZ6p7Sj~TONb~AlOPpmWnUA@EpC7d4 zHYLMJYx3CRg>fSMu--ahC-OW|P`3;i_QcCzuxV0#@%Wa+*NjRL^A(NeEIe-fLmLBq z;lSltItc2)jcxcB_tYb~=qG6k3M~!}u&a7+VSCy```3s0iZ({DfzxQO=_>|(4(|lc zAg#8S#Cc!fkX(^9@hE-0b|wZ&zy3G5fXy?hnEccpE{3F<MrVOipfTbwk4!#03qo!} zJIP#IKl)%H*5lp@@(5y1Dp|{fT9JCsit*LNb8!@U<bz=j0KF)$lY%v|{pIAG0)>r( zkkU+xgZ1No9s>J+=o`!bP&gKLw*N!nSpGK;WZ_^;Iikf$N{OJu`3f^~{hthK!K25q za0g>%ObIE*AtVe9%n!pGuR6zesmujM2MnmjiU&lFb_)O>fQ5%8rLP!=7HC+sRMO4r zTwA@L)D3@hd;a`rjTgl2s~w97QQbf(a2bLm6<)XGMItedMmc+DW}=3nwYehM7Nfw4 z`|b4$%g)>-+-<rq%)a>*{rhnmNR{cL)sC;D@81)ddMQ-1w9=`X^uQneQPoon6%l<% zB_g&LJC4k4(QflGB{~Qc55T;0o#v8ThMR*0e?Q$vM)dMS|KIZN4_4fs40@7<h*9%k z9ySdbEIaw_Oo45b4I9X}`%d)GSW!zS+Fc53i8xz+E#fUAiHK8LshbOxnZ935=`!ji zk%;1we-#bpxzrNp0=G-^<y(5P`F#9&T)7*C5wmj~FEpNgv>7xEUIC@+{lo^IQ4aid zl&^M<k>bRk;T*f2l~L#2a<g*;AC;s5zYCkt#mFdCwo9A8JM2<ZgvX|bHfZmqLcql< z99klN)bW~F-jrcZx$i~ABC;2p=Ih~9<#+bD)9BmopIwh%4m*9EOq9igHGr8pN%E?* z!5;^MkQ)}`I`$g~f&wQTV;%_0{8g~*Y9Jq%a-Qo5rg9EYlPD&wf0Nt()>U;pJIx5s z`R|Cb=rI|GLzXBEhN9)GxMx%w)+uUfxZh866)eU`pO|q>P_7sb^3%>x3j8=Y40EN$ z7qZXT_=UD<*a6L*&@{!apWmzM-}`0NN>RU5hnUA1WMcQB4FZSvXXUP4qa@Ut;b2-C z&sAsTsjBImq}G1l(dn5*WBtr|xNYym(b-f%CDyK-iIOZp1s@Hlt!AK-PWh8S#aI5U zBAq|D@}J&9h0T}ZD?CDvArFWJjPi4}ck9u0mGh$oasGgs7GHnx<krGhjNAzpmOvsO z{`SvzJY`8@qnGP-)fuhf>=!y|BGRXip*SjyCb8P4aVhTLkUEZKmSq4cX3E2)rxVVi zA3kJ}cP7ax15(ahUaL`cN?sWb7qI11)5X7BHaCuH$vTwkKcWpGI7!kB_fjm8m~0>B zsL@NHm_3m<YL7%Q{q;`|X1D+*o17fxMD)5+ZQ+o+Q^04E>2#FtcY*MzUI#<V#upHE z3Lj&2oEgLKCO0#d{2SHEn!8UksFrTCF7w}GYZFK`7)4f1aPgsRpQ4)wV7|+hAFR-r z7b1`v%zE;q4Q;6qRZix)ap1^p8(=~ukX&)%@c<cxT1mB3c0T*=xnw2~8Q3@p`rs5J zGiyVY07CebaxMA{bl;hbsW(u?K=d2O+J9CwXBrMmrH(oDUsIX579^5h8H#8Birmw) z!kJ5lbAY5v4RHo5=&5u9c-n7@iQvS<E$Wb>f(<>FZE@)8@cP};>Zy>m+1zp7K-K+7 z;LWwZ%S_EtL{twaw^5o}isaFl$t<MDP}+NyyRC&FqUq5>ZakHg)@a6QYrD@H<RxE@ ztQ!p#n5e>4+pn^-cqJS-OpG!2KM>HYudk~H`qUU|;<Jb?_Pcoj){vOwxOQ*V5_*we z9ecOzi7qHHRJok_<m2wup6H|DCM{~eBw`w4evMNLJdxD53;2DOEg68w648#at~_ah z(~A%O{E)WeS*wE~Q=qi7L!%mD7qP=0cnGEQ%-Q|bBsFU2u~@>L<JWkSjG}KxuiLY2 z#juC{Nb<BYzSZ^(APW{y)0XpmewoR5jEq$jbyk+#uLxze4geL5L?)LC=e6P%tjOff zQ>8odmdVvqNirI2tDeGR#1>;wf!^=9Y+?ZKwx&>AjyN>^`{wu}L6?LlA75>wcOFN- zMqs?q_hOQIyVx*3Wy*RnW!b~klbeY8yS_iEW#41*S-FlM*nm^sCt`<)pB7^I#=kI8 zsAvfTaaup{2VNaZr0;p>`ucqbt<0BQXnapSd!qTzzmqS9$<wgDtfoM7eW9PTAn%kW zs+jCUJ{3WByE`JoO^3ho^(D{1`o^)os-z|EV0`o_0nl4Ado#|G&C44J>NzIh5F~*i zBDDvN5uyLu0mPLkWQdIc!ev73x>K-NGanPPuQH3?T0}Bz!ea~@7eGB~Vq=7LK4~uE z>v?;Wd+ZWzrT91&J&$RaZXrb`3@!1;0m+aZK7I!JSp*sR>KWoH)a3J|!}tNeL&XYJ zMXovvUYWTVB}R<(ow5M=yLV;kbD4V8K>uDY3_i{<fJY&_Vty9YC9ZK6NqWgNNUjeT z&YHFpBB@=ne8k?Vq!kK9uN!A#n8h^C-YMQW@XdjMaU2nSh?REzMQ&6c`}3WjHSD&= z$H^%1gBmIT=sM{OF|aeC@R*&?zpd~2m<h~Z%q1|WG}Bp(FEFDW=)4vRu$90HvQ0-W zC$Q`U+#ZY5yG1g5Sh`}JR`~}Xk@t$7&Fj|Z9^RgO1~3wxarWBP|4N0`Bzi9w{<2Ua z&VKC!p&n-J0u{wQ{U{PQkQNb9C}|t=#?_3YYcj`K6H2iBZ7z8;_)QAc^i8Kw1!7{h zp3wIf9Fk4+T{l+vO#4W@x#G^B9qjHs71K~$z)CqV61Mdk4v(72C<4Qa(e+@bXQXkb z9;WF*o=+qBbjbRp+3t@K@;1_H+z+^S@hhH!DtM>U9<$4IRuMPbNnM@i$0hd`yL#ew zy#84(CTS|#qmY`Kw{9iEXB^R}Z1(MwK74dn9!~;VMAf%V{<TzFY4^8;Wy+>*%m|f0 zp!Ho{taVa%I%aQ~nDKRb@BvC)Uxc>;E<8b@kVfUy_a%_1z)C_S5Wk%1vkRfB{z>Av z0}I(lx2s%EPc_f5lqcBiLGOBD0l*Ub<x={7ymF}S-aW+(zs7ua*IOB&_?ozLDR6y< zZxoDyho;cRlugRq2`w*+Brdw}kJvX5kPdyJzuf;yQ&?h3qpF7#6k!Ot^Fn!AZ7^@O z92BwKl}WyCJ|yJqK#nfW+%?9EvfSy%@Ubnn4D#C3#fcVba@SiD$}zRfz^@%JYCWs8 z368%YVJI4D;#!=p8+LIuM~!^7dFdImnpe(R?a>j_xm%r($*kxZ-Nqn%)9R4{IxO5@ zUa|TACeae8ELS~$xVpT47Kgvx`N;b!L(A4xhstfiX;l4~=eOkfTrcxzAe*s!(Vq>r z74n=luMhzx`)be;i0P{rTP*!6H5LgY;wdLO>=BGYV~#DngpFJ>>sl^D$`^C@V@`_S zRJd+ntkpB+mi3}5<Yx|+-tI##;2nn?kBGpB^^g-4HvS~pw%-Xh)&CoInc~g4#`wae zQAQI+y?^Fm*kQ_*_ne{2sy@ZdeygzMqUzy(CgDD3?&c4e?&m{5>rozYa>|^?-z(>x zpiaY4x4lCtL<AfO4z)-hHiT;TQPmJ5a?)l@aSmAqEtK76fu1*_v?`#xWwaLOfQa~i zQjzPw^aKmnfA9bc*Z(9V7kf(g%$HO&p8Yb+*#1+Bce6NkQ2_h@e-fp+ZoAHj+dZvp zer;_q5sxkzPH=C;!)MJi-`5CZ`t9VtUo}yql&+(>-e%iZAe&s9iw#D>fB{u%Vfxd% z(84u)_Tms_QyWJu<blQ2oZ^>U;U5-ya>L4rW*1l2`^TLbq!v_@?3>T4)&SvnBMnnP zWq`R_GEZgLN!(G@baAXa(n7qHeZ4SN$Z+?D|F6ie02Jajp~nyKNx9ogHi%J|G@rWI zil2U_;}_ViIobGpp2QjyVf32WS()U+WV^v*a&iq%34pv=ClzIhOV_RZBv7IwXZf_$ zxVgsX0@u@&zK`;mZh6eUWM=EbQiBP|p6B^i9BcEAO0G8^&m&RRAfdY{5Ah3}R*+(e zmhN>Y;?-_OxRP4&J@99=OwL)|46&9Zcy?4}Tqe$r@|thaRB9SZNU^<yO1-}CU1LoH z185mjV>&W=@?3I_M;pP4w2VGZ$DD^3YOhV!R{0p}$u?5q$j?SECf<JM)j|MMEy0JB ztYbP<MKCQ1XWp4sgJ#q*w{gIMu*0~QBr6)S5HfXB!p`!Kz$e>v&(qDOE6nrx%_<e= zRF1|2Tq%<JojK0FrNX#>lWuA|-)*PDjd+d4K#x-6UhYuh=6n$<Hf3Jx@M83;uqU&t z@_r9Q;u@F{zEy_uxBjZHnh^yozG0%H6n*s&cXiue9Y4%3ZDQSZho}oV<+#S|>I#1c z?H%d1J-RFl)oy7Z@AtaeNv|$beivyouo}j8CLzdbh-f}bcj;hx{4P?{9>GmcJ`sEt zSjv*uqm!j!aysO_l$q7mTD?AXYTUhQz5FLwFK*GOYim&)G)C{HJ~SF|ko(;UpZA1h zvOw&9;b*c1l`MKf((C(h@(U@SEOCVMW0{IC_FS1I+%yuMc@wmVpX7i;lT0+8E7iZ+ zQ3*3HBPUa*Bf`>97gDbRW?m%p6!XqD60b0lS?P_vUrrKx&L7Hs55!=c5cU~eSyM=~ zk6?i)JN6Iy?C>`j%Mew7>Sza7zB&d$bL#;Az=wdf_XV0?NJSBZ;DRD_<#l3!0=Wgs zIm$4x8)^Ixh*OMz_}VxTBO}`DI5-+;k(9m%Ak@^T_cV*OVq*jDa=8|tL{~KKq5k&% zSagcX@0&G;z8;}Un01j*Hr#Y=r(lkl6saa1VICd}Ct>|Na$pze366opfYz~FXF|de z-CRaFCiwp10Ri5bk@AN9YHPztg{(AjCpFTA+cj4Sb*P0?utjP5qx!E?qRUhdB{;&~ z^lAP`|0pzx7&h#F?5y_icDLj23@Qmi>f@Pkbj30j7TzqqpmM&mvEc#lWx_i0Eh!<g zzrSKGyj~20s1uQZvZvLK9??9EQIih^4-&&3R#|h&-?8M;4D5IX;zE?&o}XNFDC??b zNg2hs+vnIc_@6JPW-5E<UdL-?t{jb$Qsi%0iaiO;f+v{#=|S~h=%`3a4$A9{m5fFx z!J^Q>Z|q?rCs!DT>*`nL%mxKW93ur{uG5v;3>C4WszeK5qCG&Z$LZJuP&48(lrfb; zxp?A9?)zy%?M18V3emoTO%9x&*_=pqyzYDc8@1TilI!PAT#Oo0LV=CxvHaFJdvetC zZ=h6egD{$i>Kn~(=iIlL|BtG33XVhzw{Wb9Cbn(cwr$&XPi&*(Oq_{r+jb^SCbpAF za&zuE_u)S5=kBVm>b?Jet@W)X8d-sjjXZt0{p%T&z?~IHlC1hIJ;nq^D%=ncG%nxx zIhMS?_1Bwk)w%#j42ejUs4-lYCc`|Ajv*h`dpcccRB8!mju+FY-V9IuvQWgCj&_~A zme>i&upjs&lRzi&olK#4+mbn_mlHED`yXX#90vwX!8^CVrv3P<Gux|do=i?wHxY@x z5K+uhRs7s&<iB(uNl0B+&xq+XObb$yOPdz3M3D9EaxnqPpNmu0U4OM4X9#_{@fc{s zkZ$&4S6qD!94#4&z4-3#^7?lamQscBu)pfHC769-GH$>&$pIh$QB#A}tD?z=_x&E+ zw22ygJ`d3S{0osb8ZWFiYiaAtaycKjPzhI??QxRJf_0)vzb0uubgA%BX;!&;r{kO3 zer2r~Qd$6-PL=9XKvQPk8^M>w_mTUf=8tN_FU2fxr`e6oUs&Bc;MslTOwXz3?HkDx z)dJP6!*0jc?WU{^GR~qtzFIp?SYZyTchT=j0M}{!(&9)d#ijCz$sV=s%+Dk%HUw5- zESp^8<>y`5qZr9%At^POhWE951({$d@n}mHc?W>S3ZLWz&{maO_@2u*3%_g1uFggM zw3wF`CL5m#ORz~|NqaYCZP!^}B0XEmM$bDVLrvm*#cf(D0)Lqo>&GiJKcT_Sa(D5o zqKo5O#X-|%vHi<&dL^WA?;MIQ7%jN1G4#^pUEnlKe9TuW>4HwagLu;VNuyv?dy3~+ zeH8#xuAS+NC@LRk&kTOfh7wU!<;yWOfc*z5O*pzFT4YyWR|f~JY(;BPV)fNoOwkUQ zd-221e1y@q&TNH9S7<$%ehxO>sWX14lLCIxAHMY0yO$p!^KA}^zI8S3*!%wa{pS>l zC-5!qHVh5NWfLaH3!_#hLmEa~H|s4<eI3xhNHJAo<iUd`!CtQR7z7&|Kfdn^nJ7!+ zg6%0{4v*FEOQbS{A2yv_PzQ&VP}*e1G7od5en4_A#sMA$u3T>S{f6u&E`NTdtBlDb zp+ve?JltZr^cM>z-VHZaOB8Ry<fT+c$!SB6#-GddM_G+tbf$AjQ}hb__{VSCDi5+O zpwp_}(Q~I1nxaY6Z{u|O8d~0avLqNSV1hSpMqEUSBz670B{}IhBysP0${AVyQbTVl z;#A9+MQ-D(j0+b;q`&VuyFNjo-H(9A{nV%}mzFqNJH-E5)!F{TsIdJ9Okw+vl)}cs z0^F3sO$7!?;~Il9|N9<6k-^={0v!Y19O6y_vQ}DaA(O?VrueVO>*Pcrq|54sgBENW zbl8<rSEjRyRezi4)o47NQr}Y??))j&k-W+^+cuyGk5}L~<Pzue1|>W*utH=0O=0i< zGaI_mzMHMCpR6d4zzpB2lJJ!&fxbyqXDk1Qa&^o_cbuj8FqZpHVKCQjP~u_H!Cx;- zz<G&&MQdpM*Am8sxzSC#70J&t^B1d=1{U~;8``d@7<Er-F2O2K8Z@6bw`t?^*XOO% zi)T10`V7j5v)$#Ule8hg=0^rnA%>5qP-<38RbCeNf6^xq4xBx>-28f7l*@X!@X)9% zS=b?wajQ0}7xOV5lXL)wW8|eGH@+?bL|pF+;3(lQz?#;FhY*oRxq4`bKPiF6DZ?I3 z5Ri;ojJrkD{%9y>mS@}J+9L}2vFirUB!<NdrF-VT>%CA}Q;^xe&!UmnDrf+of#a1h z;o~(j=d2q+ay~)OX4R<~>I+yS%^;RI?I|P(kmCQ`5(QNc%o2b+aS8cuE-Ty%AS{eK zCNSV;)<7>rTn1IOW0q@fc<I`&O%C<zWQt5sIwT!3k^SpL2L?^fCFS0n;rBBoK8r`( z&_-o=$*nU(<1FB(0!KuD4wt*Zx@&T@MQZkGas^(Ndqeusk1h7<VeKkk<4*D)U;JOB zqpN6nv-MQh)bVF`^vodbu4-TffInckOd{26Na19y9pNHkJn*^3RGYA;*r!tNH;SO0 z|Bll{uo~mh^z)sCzM`XQTDrcX?TWsC<WR>JguTLokN^I1w9&etNo<YE+>Eq!ykw{L z@FlTrN30%Kalv@F!(c#-;N=4-Vnqy(*9e?kibDnA2vf$ra07^_)_2@ZfQ7n#h#0@2 zCeZ!7sXB9_Vp%H7{cw*uqu8_se3#2PYuX0UUx%Ktu#chKy{UYK7E|cpGA{M!7jh0V zwPdKH!=t%f!vbN~ibY*|-CNYT-^fcdaKn2)uA-fu4s$afG!|7-vNCZy<0Qo1v2}Hv zBmiqwk9YGoiEdGtyFNe%K=%Q&{!Bxg6VO0fAwdO4nFFW)+Gjng2ycw?<zR8joz=o` z(~Z5Cynq~IMgU7<$s;303Yx9|9W_elbQ3@pgWXxdP~fT$&%eWol3R0TBlAkxSQLzu z9nD$CL6=a#@8O};V#S)QYnyOdjGvH@$nkv~5Y<b%)$8<OjmOgtVByBhH_x5TRo}Xt zhCIz~kbt!|V-6nw(Z(NSYIa^Pi|=cn=9a~KZXtM1g;j_FY%2|!CZp=E#^>b>oV*gH z&?ONB86DhtxKbRrTyt03{abHP;(KS^<;vrhbfdwjFNZLx^DbJM0|N<!?&q`1H?O+P zHFbr$JWws%-MiEUfEefF;jaNwhibolGhRiB7y9HP)qOJ$5nXB*`eqn(auu_&uM#O8 zEU*RA>5i%=)Mm$Mx;C8tYh0;qL$gQywsuy}4UQ`;Qma>2Lxzkm<xirDSou49)&`3E zQtNN3DjUmOU;~Z%(wGbLH^-UGr6rO8WH+e<#SU-MDZI^AK;khJn-ANm&7$CMbqN&x z)}ecjS4!yN0YUF0Md|GCeX77g{UeAPM&-=a6@e@KS0Rs;Vk>v`D}}I<#onnaPwPB1 zA4Srk;8*Jf$I>fCp`9flySdyl4tUBsw9F4F@?{<*^2ukk>ox3KHm$qC7Du@EEO3Aa zcw}>HFv>nHpo6G@O$4nv-!qn;fuD8@gVOQawoDkoEn9Xf#1<G{6raf)>a^3iuvdTr zYn%|N^xRjRWjpI-^D#Ra8F`sIJ)s?%lu&u6&CtBg*cT(#HM}#x?5+WAld^)C+<_J} z$%~~njVS1P6j~3wCguv9`$BG$jcD_vw!c-V%L4onKnI#+^W$o0SgaL#5YJ^+s=Wvj z|0^VEneM9vg_^=HVQT-bkHI-xR#zDd@fslJxW+)b5&1l+9pm$lnp00+fWNlxi$acf zrQ$r128NJz!uF75ITDfBLp`7KryclvyGH(Vo9^bq1yI;Y9a^H-a+K?b(W;|bqQBgX zhJOsGgoK@Ry6kBJVPeR!ar^atq$W3_bMSyg0#t)bCH}=i0cV}VfNcpgfG0U;LJ2pz zpb<FdCaDw8iV2&vCP(HWhK;G2p+LKZt@c`uiaw1v&JNpsY@~3_yYA0Dc{SF$4<Beo zQ1G|mOW--evZTLAs}!SEK9=0)(&Wv(06r?OpB{q!1G<&8eXc&JcKclHPkQmqxVb$L z_tl0X54b%UbRyY`8jKmRC+221!+F<Z_8`<DM!%9tt<%y>V4*5BEIHD}-nD&q^!b2< zATz#d3B17F0VDo*9%p0wcRpwPk8Z%m_Al*#jg1rNa*Z4RMIl4E!L<P8{P$)oy}=bl z1e`f;aG`wW_5?l2L)kEVIn7&<d^d`Kc9<(1pdNwEglgjQAx-8h9@QIfXO3Zv(#?16 zJgqwnLL|;?c+-DJy_sY5zDpS3*Hux5Q-&X5{$wg>EYguCX)MVGnk^;FNIH5_@OMzM zKSKd}3^l-tpu<o@!cce1*u!APezB4N0vr*rTymKsjxC--Xk~WN`)Q`{saXg1Zvo5> zP`YyhiRV)fDvq*`Ah9wMT@&70q6-NX&?uwYlVn|P+BD@<jS<>f$*!XFC{&Fn_Uf(E zZmQmo#EuJK3!69S`ZxaYB>h3}?9Xd9fbQRO_4?3RTCvA$GvHi;+j5(0+FUx=2Mnzt zIw3(mKAXUVtEpl8QaL4m0X4JKaeLqDPuI1@uFXia=PEViJ2IU#)L>s=w0NPTmP?*{ z*?7BO-VdJHJ8#AsQ_8urVAAJyJ8>btf(761zJdkH&pu7~?h;rv9Hwg2&wCGtHe_eM zIVO#s*ScT1Gr5kmf(Vq94BwV104W3hZj_99$VyjH94(Wua*2NJj(&q4`&r3GFRZ>B zXdyP<uw<U-tp5aT+mae?O~6M#hyX>S`@o8i0?UY-P~KMm!02MXw?OvJX75p>Q|*MB zZvG8g4HKdR>UP)ZN@+36pcIYl6{cZa+46_3kB^CCAmv{to}-vfy<Uz>fJJa+>p%Il zlHXc3DZ`OtIj^q2@Yv%}4~(1Pec$d(KBy(J2uo%$TN&0*QF%rywM%Q!bLU2uT@O?% zS3_=AU?+c3Y(;XJLgEv?LI<;Rk<3vbO0ILgnMFM8IZDENF_91(jQ}+64l7^2gN3OK zWx;4@woKSy`~;B#MkD?Pki!E`%hy`mJ0yfUy+m_T$)k>zRmdSg5xim?t}aF<SI?AH z^2v{X-_5-Xhsylz^P6mPzHVev1HE|98&0?Vnv;={cUbY3C5@-AhWKRi5C<tIiO;bL zXEpXaQ%48vV}vN}J+Wu))+<T|g0WR>y0j~sT`Z={AHZe~p5;6N?s+bx7c)ON!->{u zL3e}qUt-Qa@w~EeYq@B=5N`np@Z^NdTE?gY&N|}oTy#rB{VMr;yRW_Js|_h3qo6l- zqor#CO~lVY7WxbX-2895Ih2T6)6v+J=+nl~y;n>xEM3Wc#)>LXnvHBO**zn#WXi}F zyXi<xIBUQIvJEeQm?|nlw~4$X4pHA;uHN}~2xRHtfTXrd5gB{pCUQ7_*VZmwDr?b< z#qdDtvDX<V9Kv#=wP&R<JXMKsIF-+9HT#is@F5g~d6g7J3|XI>mJyVl?_nc07NG8O ztO_>V7JALJ5!7wtYmwBx14v?tltFRYtIkhmvtK_?IHDJTEZXv`6k^G}Ve34&Aak=w zCcj#v(8Z@)>!OO03FAt{(>6~V<?kWrAe)!x3eY(V{3ctJkD-Z?&$J6($;rtej$MiY zc%@~l#r2KbPMs?SM(;~%k;QmFVO%@&=}vMfO#b$UabR&$Q6k>}N8}zYe`j6yOxo*G zLleC2Q#u4_Lj0<tY=FM=mw}PnNJeOy#_wjylXzJO2y}a;6Z0L_@He!tgHkFSr^1!n zQcOi3V!YuKz6l-RL`A?iZqh0IM!E|zjg?Y(b<7<k?<rok7mR%SaB}h$bo%&iIsKEt zAbbUG0?FLGE?Ye#q7O9h!LIJnAP{_V2Uib576uxyX}d_^8-Q?l`?}$?Fu7v<1Le9+ zuW^%No{7x*B<i8Q9CubuJeB$Ynoz(^DchBcy>v5vHztGF3$I;p$o0fIu<x6AkAWL7 z`f|w3CY>RUabsHZnX{te4AWrWI`bHP#kiSMpGUp36BYrKCSsp+Wj3rPf0!n1#Xfe3 zQ3U{~sxAk-gn>zV->&UZZ0VCpH0twcXRp`?Cla-d@4!1zY4{oLpo1zN3Qye|M=<{J zzQh`-d?w+VN5T6x5KU-x0U`&UGn}(aVc93l6s9MyE{#@-aoREP7M!{$g3UGbaecjq zwD9n_!rM=XQ1}aNug%(5i#myCNYubTlQsl!Bcf`o(imn&SOGEl^j`5<B$rOv8D83m zgsvp_)<uEEPkbhqKf$JPape@cuoY<}O3&zP$djX~$!rTSp#QUb(efDYv8LCoUd|ux zP;gx`E8<}S7ga^sI`6HZ!W5z$_5}Sok$e3d{hIyT`~=CJt^vXgTPa-xdzvU@%as=3 zy<xwnUm>Dg*@Ahfpj2@IuDO{8875UopzgDAG5)suRkkB5XT81-j|)xXRv+I0!k5Ye zEvYJebAY?R*qU0?A3*Q|rX&g(alq)+WQKPa8==_g#Scpl`@J`;n3>K;VJoSyWe~G4 zAI=~BPtdnsBqNbjS0(jnV+<9sfN2&0Qe*LTiclcfkkV&UUN{C=C=vxl$?jm8BwOoU zVRvsSOW0Y*`9q82$8zFD13C|hRux225GC{yinz-6haEh_wpB?HH;Yw8s%(4-a`s75 z+}5MWgrA@RjvS3hzEXG@;3U?Gxo$gEFOClIjYc2UN3>>?dgFaybYNfmsG=i)sdtSB z_L4&XQLFK!qgGGVSTmWMk#3Jd62wBdiqopB(XMIc)ZdZ2fy=={xpvnM0<)*P&4tgF zoaca!o`o$mVb!vY28G;jox@BHOjf)Wcr27jMYA8gog)Q$R3XDDP^awMJUAI6?CE+e zUkR9^!7rM>vrf@8nu6@u-$QLc0*LXtwGvxZ;;{QNiE@3W^k5t{`xnmN=WZHwz9CR^ zN5HD`yWh0&V4k(bwV~Y$zr8~awNXZ?)#rKg%wt1XTO0zbMp7!7ov&$5a?a=*u=`=` z8@}HC8ojS=YkEI<+l}bu%1}Ufd%!GXnzVEtA1`%w$P<NgbSFP~co-eADX&H^UbseN zzIsM95&|_i)`oUFu6W4X>Gu6!&J#{ASm4(a2el;@25*G``(Lvz+kcUDHqL)_2{ukv zpgkqt7mk$*@BfUu;RRH9UkCr|5VRCf5dyz|B^-Hp2>SuH%2t1Jl!k`XDbtPX8;6EE zTk-rkb4TZ6|ERlf3M}=+7h|j6R5>(PJU70tD$tjD4d(eYN1|3#aDDLQ_*Z77ow~E@ z?~lb~w!gUl-Q8P4*tvu|zl#>YlVP==Pz}s#&4JjY(?QxIERpZB`p!p4D^R|CR&Edv zNhptcOK${tKw<rI#rirt-)#y`=k*LHV<~3O7iyYD;v-yaeE%o6ewnNn<-3bJ_&BL+ z9lV;&T2+T~fNl}L(!w*ewYj_EUD7Jk^7Vj7i`l3#&=t~q5wR+1OcnMR>6}#(W_9pm zu`+7dsHRY7)t#ahvX{sz6_Puf+wOLp@?RQsZU8`nCg?BSO?3%{n1CapPcs#>oup}U z)gI2LbboT`Vq}=iXXWAL??Tf3z;+f{=G-sfoF9Nmr!FQYHB?Q<Q}}on_Y`nl$0+Va zK6rH-j)AqchEL8xG~OGVDBc-DqWyh4WtIr3nWRk|9Z7}Wz)`EXwVYA)IO(H|jPPXM z`3mssa>vcUfRVh$7?7mH>5Zpl37@eSvwe4gWz`-Wu~?E@m#>8iGJxqdBKfqx->`5M z=V*?)i6z-BU;FF6?RW`qHItyz723>1b!SxOaUNd?hZDGi+4x~yNo_Y|l=}m0QE`94 zK@|aI(D6Wd0HN0b?D!0u{$p4n97BR~9GXwG!W4i<KRdcC)@`fNYmD#yAverHuKO|% z_0yV>$=)gzAF(BZ>^WaX9P5lZEy_gp$Kmz70G9+y;kZZ(D?i}?DBxm1ioNLjT6ykL z1*FpKbZqzMt!%leR`ak!Vc*aT9$gF)jywo*gOy8=2@fR7fU**|&G83b?8B>1CDrE$ z#q_rbhuwviW<zeCdp~`rP$^X^#O*pHqi~Q?u`A~MsL%Uz#f1^K_fGg>F&04qYsCq1 z<{EMM-$)B+mxK^4<^Y!F%TWrM)dY}4rS_59q8tRq@pS`(#1Aclml++!@@h8K!?Cjf zZ5c9LG5x87#Cj2*pCx|AJAcfxwhRmoqw-1>En(t1%-{Z+w2QuQ*dw~9F8OptO$p&* zr@5;#o&o0M9^4oS;P1%$0U-Tn9Mhc+4drLb#Ml*jm4C@mS^>C+av4;)l5mB-Low!Q zazY{P97^wV1dFBfa$L!)qu}g`#!)i2Qpn>QS@UoMGFq}%WfK}iOFiHa9hD2}6D0t& zaS<c1$fg-$t#R-pYYU}<t2yj|9kEc<JI#7QL?#xh1D1&0fz3d$aOWc)oPc8@9~Do5 z<AK19s2wb{VeW2E%=hg46JBa72+YZ`&kHVYWdl|PbX)EIG6EuT0Vsy2PeySDCS~Ta zbUJI{w6aiT^`GsM3D4s#)k1{+piD^HyQI(|){Y@#mPJq6X(Ur-%&5`0<&#nI8H%M_ zyh5+#N9b-yVKyNNu3q2mGIfDEB80qLcbl@FTDdZ}2b<D6gPp3<DPkK_2eS#@@TQQD zUh^`KP2*|>H4)K9@C|ManBTiKK1*)43D2tlz-bXe8tnf@vHzq~Htv7jcx>EX0X|W} zRA7lHq4EC>W*lF*cN$PGV4wqG-`D0+)RAxs067?1kxnLJL-6PjX^KK4C6XGAlg*je z%z5Ugq1oWm?Tx~>dK-7eObctb<Eh`R^i!gZrTUFWUoF)1cYgfS^{kB@cil3+!u@8% z5t=6xqjDH6z;8tW<PrtIZM#CLaXKzk29J1i6GDaFeP~J4%mdLM{Yi&a6`<7@;JF~A zxYqiQQ!F;a*a>%^(n8P%smM)?SHqj&oXC5Q!+YWj4cn2i+`!eYSA((D%4k46m$*Y! zxA=$jeS36HH(1!cgmt8{tuv-uo3SNP*Ru_{<wRI2@J*Fj7&iIV`neAJMs|J#{{~wS z!m+A&L=jxDl~lA>eVD9NP8#LtoP)TQj$Qga-(W;oE;9NF3)<66im?jV?@Xu#=!-*h z9){q&?SfFjfuj%Et{%!hb4cTYxn%MWr(f0LI1IJ+G!}-SJ?k#iLt>~xBh+bUoB$GZ zHTB@Xm_hv#ftM0*3hul~5b+ENtG~Kb7Oyjt&6jwD2)2Y!ifUJ1Ergua`1=78C8CfO z((m2Xr8C9x&UYK9(w+U_cRT6~m~#$VaHngrE53S=VIv4DF1j`K55@|qoVA+;Tu{sm zP}$9CJG;__>Yn(bH?JC$vl;}nSC{JEXI5lOQs!lf-xZ6(ZqB!PX6*L{%5bq~j{GQ0 z?Z!mpqmvi7d1r?+G9(8Hm1Zau=@F1VA|YbUIFi#oUANxscMtx)O8y1+S4fb{^0}J= z2`JV-Us^VeL&Rl{C2ipOG9LZ*ct%zdht;sRx*S6p%<R9jR)WFFibKY5e`W}^*s3~4 z5Do(sE=Y#|+f#yGJc9+5NC}go_gWIkmFpAD2#zc2`?F1POpM00CvK0LCjc9nq^`I- zZa_pP(Ip|rtZ_-8@e?Zn0J32FmcZ~@`*<rpm_C5K_{c(a<nPOE-PMK1Vy&ZJD;&5U zf+9*n{CMyymtg%hMlU^pKnY`u`h}E96Un&Rlj-W$@<1oOfsc%}2)_)t%ng3AmnOAg zht<L_eIJoP>U}$<@-C!uzYt$cY7J1ByzQ>g#a&00ZVGCpx$E?AfH>FE1w*TtE&T&G z`j}LblCnp3KNOj;K$uc$OPactfI<krXLDxbKYff({?@L<^_`)f@pEovUa<!!Qa)v1 z1BbG{vc5AS9n#6VMIt5Tbt%Fk)0uj1)yAQHiDG$y21$QZZnIS6Tl~_P^z~TvYPR&= z%wD{8btaaY1A27c0oV(B!5in<o+nrNvG11IPjya7N``y5Vo1ZEf=&LfJ%Pg~uU?br z!Vyyny$HKh$a6NT69nydTb|bb+vQXWOP2+cFZEM=E=&5_@aD-rI^WDZ_Q&_xBYefL zBY?u#98fgwii;o)a(Flsb!2o<G4Wd|mUFq3yM}z_?Nxj)08$aKmAJ5gUhI_LK`_zN zAlzD9gsrv58>jN_w<U19M8km%T$l_$2#tc|j<c&U(hsRS`Hn)NWBDGieGQ1GUJqhx zF8FGQsVZ5SS=}j1{K-Or#%hZa$wNubmvfwCZ%)iY;co25yj0^1aeL8VapL(f{R;w0 zF1x8W#7SS7v&+J+`-c5d6nXIaMBhYMY@BQ8rtgQ)Qj@HbVz(spC%q-yxyA&>*k+?n z;cn3~6E%mmVDb^@Y%C{d%3Yhy@*C6rm|G@nT9r+<%k<waj+d*G$&Gz9qX?T(tp283 zE?nPS5c?ef)J_as`DLzZR!TnEWcduQEKjpUt>WCl0cR;~AEzR!CH{*ZYP>Vq(qQy0 zpM)A#7e(O`y7)d~zlt%;`9jCjWb)z2Er;od<L^ioM1*%4ty+hpP>@S=Ov)=0M;7X% z<)}9%NiNG+s;Z;1HM&}U+`Es^cH*ZnqKM4r=ku1Rz1d#h=Em~Uqgi24(eQ1YH@sz= zR2Och7^Iq;!**<O(XYi}z8yN+Ki(ovZ`^BivS-tr0PjC*h7&^FGhkm+ggdl|58qSP zya%+sDw29)PE=&9s8~EqA^&jIpkLXjw`ysA$L(8{Uzjiu^C|<Gp6LO-vi-Dgx%42k z2L12d%g*wz{>9Gn@4J_sg%xPz^>ukbdVgIW{{_}ky$NXn+)V%9f1@Sq_?rW{`%Sa9 z^pYTL_nQ1>S#pm^!bj>tG>{EiyrKzHUwT^L^mW_w8B3-kV6fW0R|tF%Ej)X7l2cK) z)|F!Qjnugotop|pXAw+E?4ATIMeHsJxh|)j^Zg0bLWOSIgW>btNj*#gD3%cc4!~&s zreB8w-N{^5qXm@3sW<e_%m524CLJks8?7YJmb9yO#t<TFe+?F=KyR$Ne~LqpXf-OQ z;M{OJZVS)WD6<0vjaL^w3Y+2E#Ppx@yMv<>IgCTIEjHkZ?aPx|rZlSOgu}*2&4oBg z6MDd2ym?n-NWk}%?ebTXwPIbuuina7LyLL(j=K|JLo#kJKiaCNr72g+pLL8GNCs)& zuhg0isn@o~rb{X^UoH)^_41iTTW(OgT8JN*-5SXd7VnEH){Vo{$W2H5GvtEyuloZt zn#968KVBp{nf5q86)7*YZejb8oK%i7dWaPq#h`Ab^D!SAmGc+GPhcEvK48>VO}z1- zKVZck)cFw0s`~4B{*=T!YZdgTztyVmq}rZeWaqmNJOgKRDC;~i%Wt%KubCSE3ofz` zf=V*n)B_AMa8m9v<lODJR_5K5Wg$Ev*bq)a9prQS_{VL!LO0K}q8W)jYDDO8n~^GT zHPFtu?<u}2tR>zuhvVVeqkvDFw({=RO&Vuqe642SSpb{`3j^xPheeMrCAEH2`&Pna z^P0i^UBFUaX#|2vu;UiqM%^DcI!s6<I)~HEQ<to9Xq-F+OOWG`6vJqJO-G=AOXS{T zpim=|K~kgMh{>&cR;c2L0Lfg5US%`-w&IUch`>RSA8?&&$nbkthybu(ZN)^-t9F2F z9A@c&H4T8bB-?>^`K><<V?)hSNk-{{tQ*hpYyj17e04!S!U&>Pw?9Kdc!S#r1-;$W z6EJ(>7XiaYJYKzxLVO(;0s<WlTa}zrd4!F#HVtb{KxPM3#hjxs+!cyK{JU@#T7SI| zw9cq3TEe-=o?(jJ1%P-FAG7ksT@-}oX1+@s-2G-?t^nb&$7VtX7pmTVv`PQf1v(cV z#&H=+A44lublGT)e@oRV#A4j|G)GAd3h6!lquKd2wg1tQ;wN1ux}!&n8Bdz%iOXiI zVU@0KN<5sl6YTK?N^0m8dtpcBIKQef8e>?Z_+F(7-*p!_H2^WW#7j*9Eu8wsX{xZ~ zc;v6mk8cSyzY8Bm(qgMKtr5j1ZNh+C4NiAdlX_6$42mDaG7MD%oDht9#I+Po>KJf< zi(Xrz{z0d4fx1G)+y?kU{}c76PA-%k!NCyQBc}x0#0gb11I-u2IO0~CBD(Y|mJhd` zf7%EoV%)4J0qOTrP@cxXsbOpOmk$A7de2ZecIDp|wtcdGRbolQ=t}GbR1C=k>G#jD zw;V~5&@KH9qU))@qkh<RZlVPK?0f68V`@q4HH?dxB?Ujp(7$tu^ZsF3E87MZ{z@yy z|Cu&`DJDW!C|tB+`ufu&W07LF>M0$D0Qav<bK-2GJz#*B40dfq<*!Eq(H^mLw3F8> z9``MweEW(%QvKV*>;31S$kL5>G2dSyDpehaIg`<zRp>_kOCJ3^fDEaq;2VIN5SYR# z0gkQ?^&He!;>O#saIAQC+zifLB1y>C=WBbhQ;fnzp9pb%$3P?FINLp~gG^o_P2!NQ z(hyB&31GTHBj(384}A*05f!oG2?|ZeSpI}c=oxEsFZpR6XwuK)mN(EOVL&-dA8nQx zGGJHf+LF8maN}@e%-eCXa^%((RkQviTdfVfW<cx9?ZhUSAe*OjP3|Z2V}gYPc>X+? zPcX+@hWl!@q2X?(*$%2BHiy`+mG}HA3Cjo2L%m>9DW)^Da03XzO%eVzQL?lBuSf&r z-Xrw=uU3Yg<6pgo{l7>KI|n;(bB|CnEf9qfXu3~G`}Ln5zfafzAU7u#XR+~Eru-uW zU1L#tYWCNKWr;XW5i?qG)9%H+VAE@^`m4mV!o$OLPPl?w@x^h?&mpj)!NZT!ks<AD z`t-u2dp85O26%QiHnO%$zk5l0{$WQIUT5U*MdKWLA-!1j3*lfhs|E<n34%rq-XF4P z&~l&%*>9uThHcgZFz;m(0))cf47Ui+dk(SXOXgN@cEuV-c;5WS`dJp@mlX?3pigw? z6%slh$?e5z)ACaMs6YB2X6u}6zY#-?AE?^%k)bZ7aK#8ONUVJZEJ!<P*5)vZT!tb3 zj6@Ufl>(eTUYWI-em38)_UL79mpjdP>C(aK!DO8HKuo6sELkv=CV6*;vecD)H75c0 zm>De@_3P|5iP2a?_d9<{i^Obf0=*Ou&CqeXG=^N%Ji_-c5_fIUh2I95kwxI7#(zZi zT|@R+gqX_`RFJasjOW(j^)r{|`qLAAYN6Ir-=yi*X-c@^GgcrN^77$GOrv>IDf;&4 z5tFhxp%vx>Oo5V`*X@-yYkt*kT|E^B0Tsd0o%SG}OE^R>jiU*NiCpZ$@W%{D1$^XP z-^Nd`Q5tyND_{ts>#H7QKoY|)WY-Qngi~U5#mS_Q_?>M(^i414upxk8ggx6{XNOvm zq(-G$>Y_i7RDJS1&gU_1)i1Hq;vW1{*F)TtbO|K^>8t*uNkD$^W~3q9iGlsnRZ@WV ze9lF?=H^UG>8CCwf#DPBSt_a8bUVItIpc;;{K4I?oY_)4x&%;{m%Dh-c@EkA!j(+h z+ASZ|6$BvO9FFGqHtbO0Wt5^{Fv4u3+lu|YM{X|JWrGRsstw3RC13qVGS-XYhbI%f z7Sc!n=nj&nzQgzsmy@3~S8TVEj72=aKOE@0<8XW9tJ?w_rUTuu;hJequmg_{cBl5G zwx0*u0N+D|>bJA1%jH{*HM}H0ZIwvb{6$qv|5`X{fhAoOjN5K9xV2`<(>W#X<{7w0 z={6ev%5t5#+Jx1pI)C{Z0QdKg`(4_7MG$N-!f!zSBSLD#{~~Ja|L*^QW=Dh>K!jsL zmH)+4hQ}QfejTE(L);Q~Op;CaHA2&(lePi^tqJ(3IDC)6SoL@&EWSOO|D7<S$suGM zzrFI%cxO$t(Br5m-*U`c3s{R<cFo?)D_>;~ni6IG5MWGG-?Z_kInvF}aMoYirZBW@ zksQpCJzuI+44>E2ebP8cYT-2I3|}sM+V8B^pbuU_B_BTY(AC(0jkw89cZ982reX#R z$9<wn=<)k^cfW?PrptBB?{7qkMf0rli<`_X#1AXL!D8NI^&|3WS*xy!I8`}Q4t?A0 zU9n{x6281%fvyfIs8q(BOZxU^vW~J(!!)aBO{;pI3q1=X>}uREEc~f{fmGqDeesBE zhREWYeHR^p8wV5j^CUsV5yCTJhd&O$wQ4l)!6}QY0+FGi;F}ciY+v=m|2NTJRQ(ia zQt*<9FY+i|pS_)l=q@2AcQ&=wWvsC(bt3Hwl-atI9Ai2ICmM7_-cVu}?HIk({pAhf zx|L*0J}s@;AXKMuT!&DGcGWtf$|W#Me1pIFuzYHy#9??dprbEWSl_aNex(B-8v8ps z_f#C))n>SY5Pj|ZaW&gx<egfV{?8k?V8yiJva1=Wvor{u6$4+VTALtktz~Y)aM$r` z*5L4;X+Fmta-&E+4R8l7up`MWvC}oSyv$>;lqe_Xzg|6c5ha=6%@0^~qQ$srY?8l( zanEO!|BmtjId-tUpo39+(KNRJ)PE&}*^z&B{chmpXpc@4@P~fJ@@X9U2oxNJT_HAF zF)UP18Re_4M|`BiLzf}I+G=RrSQ8JS3d|*@en8mZ(&=^AF<*UdY-$4_)*SZzS_B=W zu8i~Ln<|vrhrz;;Mg!X8fjGn6rcl)f%YL8A*Y|c1H))<TNd8eK{0@N&n56zLb{O`Z zrwFyn+2&(r&`1^$Q4pkie=1rMl252H#GFOyJ|Mx<_>IHPr8^E5mD*Te2Nsw6!uV{O zSkY?h2?dw~J!hBHB$f5VXt`IQrWbOu=9dHc_nqQFP<n`WdhpD-2Zgao>C~NadaSw3 zwh9Ed!vmQ^%p8Rpk>Udy5CoRMqhi{Xnlz-SXs>R73A6UCN-k}7LW;mjJ{(OO>^E)T zw(|k#n;R1rRgUl(iKK869z`2hkV>uj<3eADq>Q6)3(23p!T6B-W0*7>oz>^AtfQ3Q zB(libN$G4JH8W0hvm6m0$>QCk1J@iFFHOnZfX0<BgPWj<OYeym5q9;|ILRP+S*fES zS+CmyUb<+iTswKt<U2%^*0K$07u!*Rur4rr5i#<&vU-gBz~``-T~>WUw-DD)*H=ty zh>C`mY;4kXsQ=i7?EkR~U5Q9DfOy2D|Hm!_RuYq5f?@!(NJtj|%6l|w|Fi|fH2PwM zKz++}Mzsm<=2i@P@nF|quIH~|zpe`C=ED_ESWs_1AF_waW*GZRe7bZ#b8=ybh(ecs z;ayc5$Bq3$@5ps9RqUMa&)ZfFH(16lunv=qfu-Fyc{5uxGGS!)!<lKnh<M*n<@p@x z<6XY*G9#R#$)X<sQ*d?$%SzEbvBI^QE{5mz*kapPVTd{V;e$dQLiwB2cqc<)q4PY1 z-j;)|w;%*@(iKRz_q29F51C)K%h+&Y_WBJ^%66UuzAw8ZLXyT&TtJMS>T}JuQ0F)_ zWs>B4aZ4pwY8y;>G8#;%T5n*KA%+zpCI#FJS*zA9Sdt8oj@W|FS9#XvTTyM^EZr{x zT2mii+zsWcmN%Db-bYQibd*knshJDQz#|gY#OVYlVGA8Xx89omWTHQc&liCUd2j@Z z2W7CV666%zNYz$N`OCMc(a1~QA>4hU$c=x%$1Rt&tBWkF3FJ|JH4UAeE~>*p<s7+a zHy$}&sPh&e^KiK8u0O%Gmtdl^Mh98cHpKF>fAQcYKzL1_K;)&hlE_9+^sSVR`?54} zDAcT4dEc+IvvNR4rfr2=MQ-?xEsn2SYb)3I+$(_63E{TxZ*^Zcw;h;-u#+;(m1cCd zpyvKe3fj?vLthJVz_R%+7v)|@w!SPZcN@-(!@ND9-wAqA5}jPrXjCwb3imuq92V<P zoT1)$)U!goGSfA~-#PKL?_|m*>_(hEA<eRdUaMCml^V1k(F{J<P=Jud2}TZ$v+X_L z-J5w^WI_=QJFX<ImrxoN_C|vI=kG=C(@s3a(XdY}e{F{D7)DZH4?Jdv+??PkYG_>o zwn#8Qg{O}9Z}|k<_*eV*A>KX@-f-LMn0Kt-qEY<0ZjyVg#)|SvFpp)1#8%{ak3!u& zZrhrdw*g&IMiJRUHCZ}I$vjLzo9<?bbxLNIw*rfGwDAYq4{ew~UcVw8N-7-D)G)^$ zKFjud?;jnyPj!DgqZub^6UZY$zDTfZ4aA%Sw2hYsE`GGKwUdx@P@6cnL}ivWsaTRW zZn<ab9ZCpT&VZ)E-gnefqrt`4RHSNa?hOqkbP@eTD;9{`v+|V2UzI$sX@h!`Si+uy zM;Ig$s8Rj&oZs22u0|?Z;F+3ocp7sN-3k=PQEuo<Ura;L#=}!^qQNH2Z}XGU>a}45 z)Jxhr-{JMmxnN<}NS7JHKFeo1qf8hCw*$jY5Wv-+zcc*~3`{Kf8DSG0Gi5d5ewc55 z$ez(Wf1opA?S9+M<BeI0IY0NJWX+6%7>Ck9)^}b0VZDvYiI0PeH`mqI0aJDmYU@+w z!I+iLGCLf%%(5?Q;3cq#u4=DLWB`u_I6?eXOhewT5?pbuA)9UclVRw><B1TQKjmi* zC^*+(8pMM!NUS-S4_4F94^|<?tb;u0+F5;T1VJPsp+!ww1iy{MH@F{ZTkJZO2>Erv zo@*M9OoFr-u!v)@Vm}D9v1dbZdnW#ZP!jhg3Ww4j@J}hapny%z^fNWC8U?VcSwcmb zwBsq!T-1VLF61vS`w6XDZU5+kY#a)aA$|5&vZYCnTQ&g!2pBCY#WH=2T67W0`^%n= z)!RxpDd473$l~M|)~?$mvlK|+$Hx&2fFPyyhu6zFM;`FSmw?&FCp6PbmJG(S0_CYl ziIBF(G|O}$Od%f7zrIbu8_<u6lnyi#_=}3vkV5q$*coO@AwLgT#)aro?bB^N^+}v< z>-Z@Gv_TlEOA8k6mzjM8GEkF}sFZ+g3W9!~qDwWed2Xr^r_wLY*m74;7F6plmD{kT zx@!DHpxnHp0X5u-s1r44n){U*l4?;wI9vMYPP=}LS+2^||0hWJqJFa!Y+pg3Rxc(T zSU^o`ig&l06YBsiy?N{)I3x?<d!OiXMx5(5=`FG>FbE{3Aw>rz0CLih@&GKkUm(;` z$x343i%vQQ_^C$*t`cJ@p)b^ZD5qJ_^!W*U=eaFr#@VVIE7VS75|oOr9*Ii^s>Oij zO2wE4t#}+vNm~x!x`oyif%cBE9=NN4ZzyL_67msWu@@{Y;Kn&^NNZDPy#E;fWAX9x zr|=_roSl&-I207mud<^?S->&^raidmoFd_bw+wo^O}wdjz2fRSPDtSrEAM`KbY6p2 zqU~L*#h-o9iDs^_Q?N5!HKuWXvbesJK%(^wyk^#?l=B!c?N!Qz6H@4U%C<39tg&O$ zaDKT-=99%ZC5hsB0g7hY6y=^bCRE<I&=X&=dJkYeI~=_AhoAzoBmgHC(|=gvsOyj9 z;p26W3RNC5?!C-Qw4Dp33|X!-qlbS&*Gb2*y)BEWoTv16s`^&`m2=bih#wEm7u|+1 ztsl@}Zwq-=#rT6-KP~g;MuO3B5ch<5Qmh-zi|3Rw^`WP8<C49l{OK{#<T?xSXI2SD z9FMj&e{~e==S;M=+yN-2mf)L3N|houLF-VJS>r}saxk%m;H%+CBfQdvTBi8+kVy;J znZcVVm)#cOJv;2BtIVph>HiM@!0e&j7ws$n>$4#c#nA+vzl|`dF99F>{twh6(e2No zxNT-mF5jMSid|6mG`KdK>#J0X2J08q<45w>ns{n9QT?t*4IsDfQs;%}O#NyETmhr) z9~D&$zYDW7OwLI(Oz!tm(<)q^)RkD@tJ0=4MRESDFv=f+5?#lmZSeMc3231}R2dTH zvtL><h!NB;7KozBt)(ECegc1)B4!(D4|E^b`|b%m!NZICljiYjB0+>y6ktGU6|R(Q zRoPOPu%b~|j5|Jq`dW~_plnMpmceW~I^&%vjs1O+mO!ve76?U8N&%=Tkau18Kspql z^;D7Q)y8AKSvSl3a1Uw=Y*E!1PG!FDa#pF&p?jUU$~+fGWXSqw6Rh(O%wwOC=PL3H z4)cW?Y0AW$YC+Y)GKlpyjGTwvIzDAq$?4v7h%DD&r+P{~5XD}?4@E*ye%p<tzxtNb z@blXaeh1$F;yi#A^rU1s|HU6T{;QAW_%8;*@rCDDqbE%T1~8C*kwO0@cK{I?NpHXs zDuJL(q%#1H8s}Y{e?SwyTlCIyK`>vSi6Ds2RvdesZTt7zlBMe@tGVt-0e*?9X^FFk zd(n!ii8+h=qryd4l1GzNZTVSBq4E2$pfqaD;lr<}da?z4!_97$Yd@6eZ;%+TdW2@@ zdFsnv>IfFS{Dm51j<;aJZn;Hz=HDEds6%MC4}ilMs>AJ}3c_=}J|w=6iR`&QYbcf7 zIeaMlfsYBG?$!v^(S1PgI+C=^Fl!0C`1}^^d~(8`9hy8?<UXzYCrcxbQt0@8G4k<9 zz0%%iPhL@uFQf$B^bamgC@j+XUre?*7U-4KByCpp(uG6h=jHTXTW@1_`fEBkLaD8H zD*#gu1~GLACi<*_;CMjUd4%xcUR-7IkZT(9(OwAUkr4vxGa@68o?Iv2uU|>1%ZZ=5 zq3WVVkynBmDOz@lGBG@>+6_tw0z*P`FhWlUwfOE=wZ$?z;i*=O9NLXxyL1hWL}*e6 zX#tYlSSqzeC%>85zDr2*`<GMAKZ^kqbpeL477ZMUhK>S;jy@+JcQ!8p_W?Xv4&BRt z!?X*mqLOB+Ae!$*i1#2S?a^6+w2~wKDkV-JLoH7(UH{q>PqNYtS+8NYgn(!FggX<V zBPxvQ@~hv{;DUlo1XIca<@n`s3)P?|o|8a$v6+5m9Jd#m3Tl-W9e>91F8|ZW78O8D z(FZ4pSXr@|1HbUi(EeM10%kwnxObW1C3OhzsX&N3{ZTKTjhwDR&C1H1v^Y2zRr$dl zmdgg#L~kj?l?dcsCq{2rsS{4sI#rHe8&szKch;<c{(cLvnV5Oh(@YwZOWB3Q$BQ<6 z3nn2H#^>#oswCNHA!^%Xm)y8%{|rD(xz;Cf8I+7=3DinMW+a(fGGE}4XR1>#n4I=b z8g3cF`CPiD7A~`*J#GiIl>#|Wk3hxwAl0*6GwL^&k6%y>X)su`5I-NSrkCuqO(D%m zXVWg>E1fkHXCKK@AU`)^NELlmWB7zNZy6?2<lzeu3vxIy)<t1b@bO7ola~OkbhcQs zzCzj%(`G;GzN+YUUojGM#G50rIyaKeA<}<>5Iyi4ixl|NQuM-~>PS8B+O)-#Dd`Zn zEHeLWm&QNvYfqmp{p5xoO|PW2S;@Svrt{aI<7Kl6+Xh-bs>&&pLci)F5Hw<5j|AoK z55#wDr5F>{L8`9?s!o}R*8Buam%@P?x{omNK92MH&H_Bs`in?0It`p^9itoKlSViB zWYZO-4rZjP1$}3?<uv+2{=r8CwEaa}tOKS__F$t4DphkS)$W!${viZQozBfvg5d&T zuQ+5-3U1rEhoXR1J6m?eCHWhmKvvJL1S%@Jm{B~hD_lJFbHp+XwGVLB)N%@GUGvUW zw88BT?c)0ijiq*?w)>g0?%`g_W(9-uW#&w2hI}unx1SB%ZmudSVfS=GrYs+`Xwoq5 zB9Uf}9nSARU+f&Z?iI;!8uKJv6wBfN)ohYf3cIkbjZ7w*nzZg*s>tt1qtjik2z7Fo zZWA_3vx_~%gm)jN*#zkHPAQt0S~7EIjfE7Mxt@M16}9U*%&q?zRXHCVawga;CJa6H z5Ifb_{;brBdtq@J?W0>vE13vP3=ULRY=Xq^Ro@Kn&qaDkLwHQyv+^fE;wp$3-uyx8 z2_Clz&D9?BH|Gaw3rJ}^DIAxnT#8X)J&I(nt($yAfNqfd$p8Q&XDDnNW-u4(D!`}s zH)pgE9qWu2YhO^NS`1r=&kPN~4K9up5M9rMS+G-uwuhfWt3C>3gM6@isSB8&Cffjp zUD@P+><VYPp6v=Fip<H%7HZv_QO#kQ{nS$6cPd1i#fk|UUG-U1R2O4qASrB9G;0(a zn8d?&q-7qTZv^O=XcZ7aTQtlb^(vinu!-Y(z&<^xptUFrzU;)adj;uMBL-3mnWRS% z*+wSX#jkMFKYHf`1!$)jXx?E*s8U`CpWG+B@{hgxv**aD(r-Uur-p8SItcTZ)$#~( z!`>-YOsW<m?&YrF2HkpvTV;S;C{MY1c|7wN(65~BngQyx=?AdI5J>VzQcpps&1b|Q zBmM}cEeANz!)=!?EeMsX5kB5EAW<XCDN%ng5(X4;qtr*Z^9X);Mfl}DqsDjT)fLys z6M10E=jrS!5_&a*MGn^cZ=e5u{61B!A9+ixXE%<w*Us&<B0vv4+aJeM$nj2kIsge% zsnb)zEDf-QL01aJqXbFeA2ikmV=si=UiwLH2<4jlQpmmZn~m!)WE5yMep;T=IMz6b zBm~-bFj<uFk^0(`jX(0Pk0m$I`MVJJ=32C{t=}f|wN8blnZwn&`WM{O{=gLM&=^4= zE1`Zi>xQHB!%ScdOTYA|#cS+@0%S~BNwjRU@oxb>t51STvze8vK`Ktfh;6AsJb$dk zkhg9@vC$o{YY_51EYf|*s}U8II+bhIn0yJK3v4XXQJgr{aZR|mt;iha5pq`9dWwyy z)QX|%-w}%Nevca~uhGy^lOpotjqx_yPk4|CNCqoA)=pO{H%qZ4S8Y(L1RZjt`<+wG zUb6tIOFj-a7IgNg5<N1{h}sCN<pGXq&mL_(%3BdXzn{{)6*a*FZib-Hg*KEgoLulw zW>5DqSDAWS#g?op{Pp4KF&cGlyx~c7kB!xFA|shqB4(VEopFo@;b^oAK$tGBqnBGH z{Rk)-_M}W$lU7m8f9sL+<ajv>7uVF63Gu>F{bS|KkA1Q(2aa=*Iz#Xr?bZV8<Vewg zUzORI|FKXx{$rt9a+5l@9CMSNzyR3)znrXd=7>A;{d2l!?=@D$_bkWXG4Q7q@<zn& z&xEQ1(BFPWWyzC4NEt;*B>;cRM|a;vWfXf@CZmD*&8eyB>A!#K8hrPr+y}B&Py?JG zJHZSDi9<PMWJ^-*LcS_2**B`&GPAd_@0av5@_GNhAJ($~i1?Xik=bTpW-6Iu6MBoB zr~J@~z>#8nNmwgbjl8e(uRHqDn2I4`->$zoGTdz9vWfYu{3YPhGzZ(F%X*@Edy5{6 z)`Y_u>I7fY(|d@rrl_=LV8}vR=*es9Z$B|#*(~Z9a<mjt?09a}y5hWX_+(DhVC@_- zjDBH2;n2JRye`;%IM*rYId-gJT;02MX&L6dyWIRibc%<3JQPO=SChkjQ`@nyRt$1b zt_pezU-PN^>MY_(_FK1a*);Km^5dBprR>F^EwZvN`TUdF)A|0gG|}P(ZCRCU^ZG|_ zCxSh;gWO1Yp3pga2TY-#v+N>+vmc^~+frsX>t_uz09@NJ6AgTOH~vn}C8H~?A_65Q z3wjd+8Q2XvRK!AZe3=d%N<lT;6pzt)hH*wKV%t!>edn-L_2e&?ix(HJ$wrL}0h5#L z#SX?_GghgHz|!pi_CzL@FpNyX(q(Lb+SR_4p46{3r!}0zOh9T+f(?v%6Vc&7g;(64 zmCYCgV0$sT6=r}}yjl*0K!t-Wz$Y$Rtk)MDI%_**K_0bzGd4I`)xg0v>i=f#LlX28 z;aJ8;@z*`gpiGSjEos9&-CslnsuNRlCCKfksRKTv?9CA2uy)xJzfq@2(?Qyg#iu)U zRyRX}ZLneBqFW*Jj$Ood_NPCIdG#b(!OdYNAn3Yf$fE(#St^k;;^!_FnxBC@9vfp+ zp5*||hE7NvDhNSzJPYO8lXZVD^|i2?yR0$a_us6fO>k(iaj?|48<>LC*Sp~e6ldO5 zj`PKu=5nT%SW0x(op3K1h|b53m88em!C(5bv(z5gwVZ6ua>p4nCz(R|jfxlumZm~F zAVMC1Yrs7{5R6eCCT1a39#o3G91dPX0pSAzC#R)=^BQR3yLpdvWuUmnB04cgHV}N= zh=MxeTMCvx#ADM(D<2r_@thfiW%LRo8+j)nA13;<-!Fyt8D#1jN?7U+%%T*+TAF{7 zM;1Gb)({|Gw=AQ!!c@qu)Qq8$Wj&D#;NM2;vrpqo_ukTDKaxjEgRRm7qZK65dg|u; zu+U=Hi9IVI{StdbxC&K%d(DgcDzKAp-+w96y3&G5Cj{&^kWTr9<=~UX%6JI3gDKwg zD6Jj(m!8fUygZ8NpU@&<H<?by##}v&N;6sYD!IrD>c_?pOygMSdmT|y=jcU%G=den zYGq;us!1~HY34f`l0Ws2X46FT#FD;VSo<Fqq?^WBA~2?Rbg6NHmpR}+n?+>pX4m}| zdc4Mkp!IAa!dz+j(*{i|Y!4#os3)!M-{0Zy-I}|KtN=GM6E-nylQfCCUpWA!V_H31 z{T-v+WU$u3^3f)M-!i;958W*QbP;aBax{}B#(BoLsJCmzMhI#wTarJU<Xan}LIa{N zbprLQN?hZ^I4%K{-L{>JRwYwwlMuj%(!@dQh?(twxO&InOxmbhcw*a`*qqq5ZQJ&Q z9ox2@Ow5UG+s4GsB$*^9&-<SGs?Jwk)%X5$S6BbJ_Fk*^T1%%gY(7!?1=oPr$zHRU zfMZ$UD7HB_f%<+>+@jmScG*NL;1N&fG8v;0ZQqx3La3KAA6A}nkmtjIgYB0<?Jc1F z^US^pBa^$1=rmq)4`LOC7{h=DsUiVx*cdCVCSbMIvfURfccZl<Yu&Uk9=jk@-Son> zi~V34xy{h{1kXKW{-x;6AFH-p;|j}p#F7+i?Gqg*R9<|-w8FgcYq}V*Plz?N$K=>b zoYt?yY}iBmm_t_2oemAWTgB=)835|j0Hj#hgg%bGi#+zUt%k03_dkn=TN@};2==5o zZAcUB^@=Vh%~8=?vl5razH3{qe{H%f4$4Sm=X(@ETvt;}tdeL*ct6g*oy1FHHw&{| zDGcHe40A;|(7xbUOsZHnKwC`e-Zd+>$w)JPez_CNg;DGbO*ps61PegXl>^g%u;pGb z?QHnLQy<Oi&mrSWuw0ukwv4PX@GyPOe(WD|Y&}KBj<er>bHXUgQG2w_?`e@eP2_Sl zbx;42u8=Fj7X$nZk9Tq2FdD9tYnJCd)988A?ngfES&7Ci@?ou2S(l;G!n|{rNd2*G zAa#S12B;R@T0c5G%hif?eE=*L3bp1-NhtSxwu9;A?w5`Gzr%30L-KTgDcef1fJGL9 zx&kS=Lji{$7H=2P=iX-{Sc~SiGr?*z>Y3iRBeadplg{7eK1OOk`!uC?5I?+@rAtb` zjJ2_<hCZoyQL*2q{92-0H|&9|ZsZH`-{^`|o2f2;R!qcr@8OM|-GS!o7E(}%A9<al z9oPvH9wpFIPjB{aL0P9Av}Y<KHR`gsFShj?Q3ALfqt?D3M9G<GyA3}Ovh7(oBZl50 z2N+Lf{(6`&pF*!}y9v_wpY9j*95SxCRajp>kyl*#B)>Lq;FGNdyeaWz7h|~2UqCXE zZyIKeHK{<E!?#3h76bUwz0T!Lc&mX~y)>ME46!Ck^6_0v-#kTe#Ub%SVW~RSgXshH z98~K6ZI>mRFQfk=UL%J*u5v_;gg)1e7K)PreXWEbf_jB-MaEtcq`<66VqeL-M~NuJ z)j$Jr)sBjS<$Y*BU472+?%oi;?ffhcCl}d}nD!tVGI?pCJOY~dWdDrV5U>r&xn;2R zit#{RDJ&DB%}ZRbL-kng(HQZ52?=!MceINKv{w|rBsx9|-aCWz1a=?$>^E+BRdvrN zyjM%S?q#%iV(3aW6a7I|sAXuc<X7)~bvG@95?^~Ol>r$Q1V8y#O^4|%n7*GD=L(oQ zgxeF&Y)IHPPXbQsvxZK+wE5N<BpH%kvwtAF(M-sMEu_RG=T83~rtg8QjdqO(!%rnz zqfC{KND5A(B=AZpcp0zo=9v)e;c!Q_F7GxXxr8`mz|;qdQ~2_gK3jJbyJHd{uKv8y zyk4=@!PH(`o=GAX;x9cIyY5VkpT4=XB+%~$BJo~ilYlF?m7<FeFW=W+p8FG*AHv=) zFjLL;rn$_i-L^Q0p_MHsdvVaPFgy%$z*7)7a^zR^Oz^ZcPKchHUvAM@ENulGd2O_o zu-|mjBpgI~5-)4N66pJ75TxGm=*)egSSdPNV>nOgWLBJ*yu-G4@Pk|m#vzoP9BACg z3UMh{4gmV*oR`DHfZjx>=-T#FHM8dyYr<EXR!v7M!#O$ZsdXuOYv8w1tDn4EXs|8a z5?ZdzN}hfLZKPk<mwPv>pf0JE$IMNe9r8>OK)#);EG?4Yq)F=-O<5&sr?wZkj*QjE zsaqNrb{O|QQ1S`(uI4-NzwWWlW=3{jRamzyX=}GEnMM%6{QpjZxEuE0+aLK1n0%A` zF$Uhqg_N3B$+iqzw{-n6CGQv$MxIPd5;PJyw)}i&h{N!v!yC+2?ZH?D2XUtN_Sy|3 z7tRU`m#QdTnVGS1qI>$`e-)#ON+~&&K%2CzvoF0QaX>|Nw<lQo1n#^YM1tag0|PYZ z2vu#Q;^&cY;=wIT&X;1tc%+MatV}epbU$)Q1VsPyk0otD%CmHX+|dUk?O!{q3ezn^ zuxzf}2D$3#1nwS6OjF3FnU%T(2%%Mizw31gRPj%K@ESOpSXjupED1FCOtojS?ftrZ z%DQRlxhPv^<Ly`I*bIr7^27#!%Ct1Q6_NMVMV+6@jWw4)j`OyA_>ng&0)21!vHr7< zy;tmyStStt9nmD)xwE3zaYp{v`NwJXnthf#kA<tc#Mm>a%~x+v&h;&h>~8xwnZOe0 zN6TWUj&EFXL8Rr@^@s_CknIU`%XW6BeDP|)cgnO;U@sAs{=5I@$T%4IvX5n&$N$$F z3r$nFY>b|et>{~|-uZvU0asS7gG?}VU*Z5bynkIfx_0W9sA5Y|r*;eOCse&tm_XXp z?>|pL8QW{ZNCS~7n*s0<Urb$$Ez`Ix<&Kx9s1>w4>j8#JEaMTv%L=6^^(R}bpEGh^ z-p|*8%(=5S1j#diaaVj*EY3HfAP$qKT%WrT9}JaFiP7u!-HpY<`l<Q(W!srU<IR2R z<9iQllBFWUbJk_vxVQ-T$H32tWOqi~pD99|M+zn=)bh!U`Hpg&Y#wMR9crR{Phz3` zk<gRUHW4KAL?opF;9`!T<PR$EwGoUhQy;&P+<B4*7t*4EV@Y`O-GRBG4`e~{4MuVJ zW)$N~xA?HVD(>KDw?>DS4(v?IN=}>BDd!#g-{`4uO^lB0jH7K!?7i69)ceu5=0?!q z%Migl^q{j6<DUMFTr^UgtJmM23jHSph?)0PMJY7D1*@`tlU6K`QZ)jnBRUYx1Q8u2 z5RIN?93Ytl(nt_%8huGjNVSO~924f|7tS}sJs|?<4$eiATSoJH;pCLht3YwVnCa@K zsHXghq_sUq|3W8_u!bpJsPs+t&blQca_u)ghnvMGw`0a(PC!14m}L0J@4p_twN7<= zLbfZPYDL}ZH)?gj9hi0T4Nwvo<4w|?FWq^mU1t#i95u{`(S0mtXk~lw;Ahcw(8k2| z#4)1WS~r=|ii~(VW{wQ7tE{5m<EA(@9J4@>$C0$_@=%!NtIfiW2acfQn$TJ^c9GZ7 zw<t!0B$^%`oU@#e%xS8ke<49wfprBf_!Kt<hl!A9oxZ3F7Wx;UABDze{XyT)Uq&(3 z^4KZ`S`(E1(i^%5<9cS%hm*E27WN6=Cua$7T&_2k8nP;$?xNvqMJIA-PkIW81<ry@ zSsgpeE?p=tkZyyc3?Ef~AeK~_=Vh7scG(1$o5Ti+Cc<cnbkZs^K6yY(85i$_!5G2g zY7Y_62P2%ug)ve&rd&3T3#>0y{#xlE3y@6%ATN-iM^Gz0D4r`!PvZ-Px})G7J=Qcl z6;)U*>Z8k_X9!wji{gC<e?>-(cInzxgce0xI?4PpR`{jX@a-|ZS(@uORt7_VOTTi| zxT2q;M0))))@-jBm1)-iXVcn6snQx7oHXeOPN`5&$U+%flX6MI<U<@{J`ELD7CLMn z$c>!GllIoVCuXB&#;<r8q^64yNxjm))0!0rwSHSJxY7wezjD#JHU_tJpFLWdoeo)X z;jLM<jgkW=Q(%HV@0k<zv59>#loMTJDU%C+F^4}ZCD;!@4GH2l*k*#t%cX|Akl65r zGR^!-2Jq~7(FN=^E<c`cold$xAdq5#K#>rmm5UL^=IarUp&Lpe^1z)!R7cW`#ix-( z2JX5>)B6)K(uJm7bPn)ex%%Zo&MwROH4w>4^&Q6KHN^}L%;hH~Tlqe&G*{|a?jo6T zR;@4=inFGSo}&Djgt;?VyIYMGoHvYhoV*OS{nX&mNr#lz6g@R`0uW1E)OQO&>zG2C zdsb-Pt$F*mHKy}6DsTu()6md-`t=ULYtR;OA)}q;?Z4*?m{jh+EK2DFdnyW;6m$(2 z`<!u+vIub*M4#E`GG5VzDp&K_d6Nf$13Sg_qsDSc_l8@l#G~|PJDds=0Onzn?=2<% zeEs=XR_Y)&W?Tf%Mg42BQZ4Yq>$drA!Y%!t65dTfCrngndGz=mi+62GA^2d<r=xqF z01vAyq$uf6=ctY27z)C}!QX9qU3}@;U{#Loq?e9jM+tT<I=Vrdn5YFPX=>Io*meI4 zr}i4iKNj~<MT{Vy#;Ziuqk^Kry{wzQu#nvY;+M|GZLi;cn>V(acE<zaQ~D<Fa5I7T zi=jz>K&=ihNKf|hPmPwqcee<VVT|<)!H9?99&&e;E$kL9u?m{>e+gq<RYB`=vM1_k z;!QXr)o;4$aUO&r^gsXV*}P-CHHIVBczLH)r1G9Guz%LrWh8_2JI#HBu>HXVTY{RP zE#}hw$Jv9#))6CVzYPJfVa#SZ;S@i(e$|PoY8Rx1e@@>7$-v!w`-)}@Aaw!E(d(Dh z@vcz_2YPQJ!}oAtDb?G;c6R+VuRgKh#)8s=+$RU$v=Cz;2o$wPOD|f^*G$sNI4)uP zwB$I<Vnrsb<u~0T;r8o(tAH{t`~|q*1C*n(Xjq^Tyi7#4@c#f%NdC<5bnxCYy&yDC zYO_~pgeDl^TG<~M%rp;qi&%u)N8l)!<H)=v9?`E^4<2860b}2Ft-5-2$naP8srgDY zIb=?V9BYj*rf*nlP~np$8DY}{;A<m3xvNDGjY7@fNEN&5%8D%7?j0iRPJOj%v%mj+ z49n&JTtKZ2)m#OpjBSue!RGg)i8{-In0!n-SwrRnG$JRoKFtdPpAr#f&pA=V8vEhE zH|0`Fu|c6C2IWF4pwy>6m6;UdUs4Zf7lqqW2EK>t8%kk2oo(#-5N$k}N*vk%x>p$N z<!pDD3Fe&$Z=$kwyd#0NV34@{!%K^R&vRX78=4G9<vBps-J_TD(POp$;j@#pgDqrI zPJ5BG3|hU6uB{5a9xJTTMo<c#eEYK(1T9(yJ*H*d07aU<S@K%Oa7~$7HS>$JGY-FY zN;1ndQXEs-$%ceSF3mBfxkTAXi-_b*8jYqx)YMW>gPG~w=0W~*K1r*H^izIML4J2? zgLP^3qSWD}eA6rwWcpw9-9fxh=>h68ccw*kIIVHI*8wv*PwoR&55kxHIvZ(?-qYsv z-BG6Wo%a5X`QSy0VZhvqW<E(>B9QbhfIRd>c1;!*0cM0%y%#r3_cpr<e8^ec7I~Oe z#-k|Q@hlJW11fB!0_K0n!B)t1G8+(p^Zz&dY3Vq8Z~reBDP02QS6ioxWj>N!AvR35 zt;zROP%8p(t%$POp@gGH`>2m+ze9K~5d^lD6<Fka5V~ncM5LLQ=@fYSZp<c5o&s;u zfl)@k0eJfVnf@HVra!ZKJ#+(k{wK_LN7A_~m>z}`4B(qpfKf<LD8?pgkz3zadO+Hc z&k?anDvI^i*Yx)d6Z4wonk6Y(atOasA<xPw#^E|Yyw2=)ms-OKOq(uB=H_E#X-vU^ zjFzmP9BpVRO`TD!ZEk4E?bhmH<u*9W`HR)tWLH?KHK`Ggdi|w+&HlJ>RhpqabrYUv z?Wdt&3v@3YysiB!)#gw=iCV){ux_eZHW<mP-G21<rm0(~`hh2mS}|4Mi?A6RXpjC2 z?D~A|w>CR;Hx3-Pwry*aHIKO~E8HlDzZ&f%Rf)uBaish;;K{-_g7#fOnpom`7>{<@ zeya-%Guy9r#c6!4@#fK3$CzzJ-&Q&z`S1SG5x~6nIG-<R8`d+ADkN5?JxY>@R!PW~ zC84_-C`D3ytpAj#Nl_3;rn;sb^v9ub>9PUjalezmVxl(7uDL@i2b7yy0&Ag_aQmOn zt@SJ2p|V1CP=u8r^;GvcwoTzVG~6wATustm!S1B<==+l=9x78?3GuSxF(YdBsWLje zCg8GeI4F<S#aDd^8wyVS^Co=bmrK`_kCShYUYnWsKNRll4Z(MQWlNIiC-hK7BT$gL znB$_>kLQ70beNq88YviX3QQ&P@7H+ASuTa+ZF2*1&68trG!#Xh8YYmJ$cnNtSKsf@ z;la=<1pT^j(6vNBdA$<Ux`ZD@+4T-2!2!WwuVziVmYx$+cF{)cBA~+8>viMOxzP^K zx23y=@Hp$pnQ3Q<;V<kZ!LXuzOINo`#86psji|nLsViucY{?IPx!}U4q(%HH$X_-5 zu$DNFZT#ar9wN(Vf7(p~(52E*hJs1&tV_>2+W&eE50MLnv+a~^x8~$E&JC&j(*@A% zv_N~dvAUC?-v3o&LRl4;2x>Rsd;GBpo-I^*f3fB2F_?Cb+GXu{8y@$7nygmx;etDF zje<JS<Ko%)F^RKcQWFiABO1M?v3(OX-tl0M!6}oumdk}la`^^vW<f}c2($kBTu~}{ z8)|EeZC^>!=X~ExEQN<i9_z-dUkAVwE=|co<x60;I@NaISG%XFRAL$CLHWirX{3AZ z2b(cK<*VfvJum&%R{M14Dv3xL<i9Z=mPMtNu=%20X)yw5u|-VRnslBz#NJua9wV_a zleQT67eB8CJ~jnDFMxA&|6-yFyUHCXg$G;}%M<;Vw9F^oj|PgE&buCsN8oG}Ht#ba zkvx&^e*IG)5sT`<%Q3Ge0|&oak%})_4E;9_AHqbjFn*-Ou7P;r=Rc1g#6GJ%?k(Nk zP@WXkHiqro4OwuO6)=bf8Vj33SJ!px93v&vG1vV34Cpj)D1SjmFR#o!5G%FKBN2A` zqE967sEspw7yN#nx$kyhCcs<*p_MeYSU|$pIq)t|BgHJ4O+j<eC_8-|7@qiOms=-o z7rR+sWiFHL0&ep{fW8IY6wCe??k8e~B>f>8w`wL^FgupQ@C<zmAJ;bS6?|&?He@&b zU9qn%b>;@r!%MnT2+=F3aIhu9k$p!k>(NQM7h-*R>TI5Hb=@n?A1HSeZNR653t3Q1 zAH^-odV<673KZd83W&d#)eDyTnGhc$ht}9e@;xNm%vDbIt=4viNELooH$?m*-2RsZ zP8}+f^Hx%Vzi#pEoP!V2#$9;AmQjj32~3rM*<Z3Q%X2-ju1KLq2W6xyw@EPVmG?6z z-oLi>9g>JzQ0we#Qve5k^}Krq%5p9nAs;3PEZ!Nl>Ng5Ye9s`U+5m#l%b6diU_WM$ zQeFl7X-~k==);r$jJ+h7h&@yYoa|CGke|Aby_=N#GUu&xTtnJ@MRl)&(NQAO;B-C; z+H7%o9!)PNI}W`X3aqoA)cgYXZ#l!}kbn1fY$c#LiEc;376TpxoEtq(KkRlRyUZ0f z-VEg7Y5pucZ5$X!Fn@qvZ@|1Ve9}kzHFWhnpb2#8W$Zsf{uB5B8MBdkZ&q)t3WIwO zFL+wJ>j3*v2zi-*JN!@G|FrrhnQ}W97Se5DC*GpHWp%(nzQ07*n7!PXN)6NgjJ=DF zACr=BYkb}=WCv*UqSpoa^oQvj?w3;6JTm`@mzE%&?^3902ni#M_Svj=!a4|lP6sc# z6%vCN({J;MxilQnRsSB}jhjHK`%cDMRwcAnV0r8Kdt{VIJKYJZq!~}L>Zd6$$I-0T zZ+NP$v)5l_nO>$gXKLxtvvlu#-^^9*Bf0i*6Y8XR+)RN5AAtehKIUYqopwH=hfRG< zo>|EHaPjn4Csl``AK&Z2?o%4EA2Dq%ab4kLd44y)fy--dAMNYwAU1tqtE+t8-eEJ{ zL8;-gt|UEtIN7~^nn$FazYF_{z#_E&XjITW|4k+5bRqubR0lPr#zPLRas^m2^|iUq zo+=--ox}k!oCKlI?E+4c1^cq)(E%bqk+LQa;7LpJPj5h>4y~$)ELTZ8XNu5`C?at* zA5=52I1&`9w#kWnS0Z37ppG)Z4O}hvd~rv#vK{wb7_WGz1z7}&{;jI#y*tG=r@G6i z?_zLXNF4C0^AKEObvG|fKyW%t=tQeutIgZ}sZkcV8UNRP1)8z?RI)`U58=6gM&xL? zU3oYiwUzPZ;~Mv_8^E?~HPoRkMzgF|T;2C&<9bd;%DenG^cE=JjDY%Ylt62(IUoxL z0pUtxIU<t+mL8YZ=(T-lEN`EJV{_rZt~{eqOl6qDVyZUfU?v^g^Zm2KfgCY|%_K{o zpq`O?X@A$=I?w_m2#-NaJ;%QA*_QHU0_J1v0>rWiC78OVpOgQ7u#APP;$`F*%p1e( zYzL6^ukCXvv`>Rt*3-xbJbPGB8uTPo#}8^zL^kSH*_%W<7DY9hIq|=_ckd2Qr@Hx~ z?PMC9=uVw6TCcxTbY9jTEdCDG_`9Im!C2o8I|HOGxh;rSKD)JtaIo2AJuUpZyV%0t zMTB^I)FMPAj#xZy@0Hukh1lv$(>Nv*0eb8tvX9ptvXn{4eQw{5tb5N_^RZVEKXfF( zF~+Q^qa@|a{T6Kroc3V<+sb<D`Y-+mgREd20>Q8IxAvy3x?G5+STuh(fGX^<5UR2X zA})$kGYi#{E;gJ**wrni(-&dhX{e1tPgeQwC79}{r?f2ZV)qu!0O&Dq`q>PCkX=zM zigtu=V(~qVk@74^OEj7I!J*@^^e#ZUa+?Zgk7(+rzBz*k`M3#D*Jl3SN-7Y+0}C-0 z)wwrTbiKF^1GV&DCcV|`(*8wUEXb!&9l_F1!USH|Sc%-L0kQ5P&cI?cf}uOd4W)BR zb-va84<g8I>7wS`Oc0|uSk@D045Kn&dkgn#wo04oUTZStJ`3*!H0#pm5py9!nFaaZ zt)M&iMPXDJjrJP7aBnV@c1fSV=p|5sePx>nWUFtvRy`1qFY6|*+O;*9`ENCAm*?#5 z#x$huvy15rpWZ4OZ@~vG+dIRR4OuK~9Y`&tKIpX2oZ~VtmLng2gb)Dk^bu8-Sp4$i zhgV~C-|ulYb`mVOsmq$HLat6dJC1Ycdz!#MYwT`^YQrZE>FmVJxl9)o<m%nJs~%r3 zk8b(XwVUwlP!79ds`AAk0)-RAA+T}K@kws3R0}by_>%I%UL4v2%Fnv(1QbE7Ce0My zXm(Msl5&2S?!I#P-zMN?PRu|(SNlg8c~qvp6o5wW%-e@&QWm-Iuk#Qpgrm_cZse1X zl(dc-@>iULN%&g%>Il~(i+?Yc#tT!0iAjx;z9{15H!SMY#h>b-5EaUT@QyAVhf!Kh zl9O&Al>$@hUW4V@emG^FOQf_ifB@y80^R+TrHoubGlas73ION?y@_3y6%cI)Vx<3N zj@Byl!f0gd28QO^4T_2&j%8)e6J{+2e4MDnf~!yYJ-9p9V!Gz_Yx5Z{eac2Muk#-Z zE|}x<%o-dC)r(<^UJLj31qhkx_x_pC=DFY#&Uy3E*+v_k6bvZ)S1-v9CEmcrnz$5@ zK!+4=`a<U(9|o)nJ&~-5yiKWg3iGSEqt_O#&MAt$8l%BidTgWhLh2G$=CcG%S#1em z2!k+7tqM@A<_j_RCGW8o#8-0JhVtQ+Yn5G+Nyaw(u)xb1AguqFXZZ><;gXwAU<*$} z<#R1)Xx-0;&J-<hjPFy|=seHUdtp%M^3RIvFwPTocL69979#a|we8i^j=tR!;Rvd{ zQ||r?pVf?Hhq?7~=iH!$w;dT0#Rqdmu@uy*`B6%_X&8ff0D^FbLpM!GRRaDS?(~~i z?b7el%$x0h`}&!^z#NRE?{5%GB5F5|q`<xiW-e!5XN#C9m(!Qa3lkN+G@a7{C**S~ z95i96Ts^??ho3E2j>FjP(Z%oW!*iDGUKL7ygZJ&!^HSKLyp}A5pNO!}uIFs5FTHZ& zOyJYMKfr4e8M)rN-z{7t0<;}J97!zD40ZbcfVEwQ_TNAG-NXpC!xlMIIcwG4=AUz% z#}fp9D^9rX4;UFdK0tS{sq{*#rT%RPE%n<EWzrB3aT;7Ta|{+?c%#XMaX1EzTk<nZ zhy2xSbk%nNdjsG55bGx!&=@2e%i+ziry6~LkAR9yyLk`C89Q;?Lws0ngox{zWG~B= zjZoL3EnHy9=WOJ)<8~sV+^4jtN#!z|MeCBk$i%=IAaHp+79IByb}ewRSg2^mJ&Qf5 z{5%M}i+~H>ns={f<b&Wo+0|V|%v8am(#iur==Ro?0Hl*5d1Rv)WJRxn&$18ux2C^} z**?7~%VkJWIwQ@A{?FeKLI$siwEl-K_@`@zD}>GqF&XR*+2ek$D3Wf}6%tY2!+1qX zv-zr|o`up^=tMBPqQM3{i<G&Bm=H@g0;}o0Nqx)n(L}sgUu=Pyk2UO^*4~)*{uyI~ zBkJ8K<e6Kh<m|UDjjW0a>d--u1hV2RFY|@YY$L=vc=B<aBBP5=Iw(|2QM#gp(r&z^ z4!e!E%R!$Q%%W}M9K9s_2rGqFdHH?ti8o!xRj2$t6K%Qok%g1+1cCDTpkr=H;F@8j z6yT7-t9?#*Ek)0C-U`m{#I$TKrNg7FaF@(3y=edgK0;w2w<rlZe?3vsSCD60&$of5 z(5DC=WvJqyg|W&DSMm<zrxbmR6!n7KHL1v&;aKS&=@n;mP7UtI(x^G*yttm_fEHhS zDFwJIu9E#N6oI>5P(5J4f8oQiZyjgJ&&X5ySX0ZpZ47LV{jzHRiX4nCsvlp9wRkIW z(0lCvcB1DwF^7xjLxoyfW;EKV+o?!Y^WC-oPIX;DKZiX#-GgS&P8*;o3!OB{rZtQa z`SsJFN_OZqa`oGAn`~=PwBu>*%O_NK*3{$ww)m(^vTblsF19pcP;#=gxH~cwV8eMs z9MyM4V{$^hSlWv5S%xM>TL#wday^!0EjDKm2^nTVQ{@|6aOeEawH0!{eJVN16SGr2 zRRl|r(DNS_zBF->c^!)Mhgh5_h8fevzlgHmL#{_<2akx-7uqn%?m^xIjg`Lp6x9lf zL8>N~=C)NjWx>Zv(N_4sWtU6`0N{zqqsjjIFmuv0n;7J<vD)Y=+?kLe4WY21)M4g0 z^eO?#;v=eLCGjOCfsxQ{m3;&-9Ne&dO^?VFWDEL`=;#Z5d+G%lD2cDw=EXq-Mj3Oc zn&6s@sodV?cpp?K>9?ue9J2W=uUbaLTGHm<JC&K>9;qzNV<@xW8v~Msff$5hVQ%xH z!s%SDIdo8$#2bH73pQ1M=#w#N@{FiDsV{W~qZaj4CwqJm{5@t-fnhOH;43F)aA}~0 zkQH(TDBLgzQaQ|U5d>HeDA@rsY`y_4I-{4g4JPjzA{&(;R(`&qFVPyU^{r|?rsPww zgal3gkYK~eF74L_zB0xpKmjWZ-KNAvgN=z$;U6X@^ME^2h_$${1&)Xg8kJznfh|uw zrV7`C9LYN%oeaMQy<JjQJd=3hsVrGTE}ZY@Nc0<moHLKCOdV67m`w|0NEuflu|R~o zPWGn!`<3G?2uCm?6uu)2jZm01?;P6|f-pK)#a(Fjyi$Y@j_v>gfWHNTkBd5Hrc_7^ zix|K}7B-+LY4>aA@2y1YMZJLkcbDsU^4gt$h&#u*n|<6rK#DkXWLI^b78K-8By9aA zj_)5#_~p+#=?*bvVm0sDe3S~YWZcKClhu%EGG}yBFADqZ-hy7yQh6=LjM%H4gmi|! zf9|1tRM{O8pi2+20h%HwMGFV7KAH80R{B1MV^O95%BjX*S<;g);l}Sn=eVdW1S9mh zsLD8(QxVa^3(YDBOS^-h&=WhIV#ksus&NxJVs={M0}n}Rw)1?zqeBEBM(Rzg@l+ZA z8SjfBn`vArC^?#N1N~Q{F?F;j)Z+GaB`x{TF*>2;C*Veu0KT8)EU$t>!<@zLXpJ*O zR6?S62azPq)e>_octlVq_M>p1udz_1^CpALSbp_KmU>qm72PbH2D`S)2_d_1$5C;0 zZ0R3H6M|Outi2hF$Acp7UlmeQS&(K*9KBGHh?I6C0oJjkb|JB3tF9*)+2Z?!#(%;W zr26>@yKHGpfh!^H6)iPEHQJMWnlK3*tu(v~gm2tDRay-|Vr-*c!=Fcnkx$}tn5mD5 z;(HNVTsCY5ER0OSDA;LOFQvZtjGDlM{6_rj)D$Rugz`qORW4Alk2^<ziAW^#*L~^K zvm0N|dpy}e=ds0g1I&zkl9Kje5;IqZ?Mj)O*3lm_U`;-j^2o_K@fbqfGgFQ5UW@%T z3{{Q2reO^p)RUi&A-0wOKy?=}FUzK7Hyl0r1oAs{yQV0sF?i}&TjgW@Uh;HLrVRI> zR-cIrV=V94k%r`gO8|PR%IN$RSz>RynMM%S5r}T*h_Sy3Lm6Y8Sdk*jM1FgJ{P|e? zAlH~aV0fonx$SMYqco6dcVxV{tBij45VYt~wzPV4urFB%R#xt`l#b^>vcyFJmT7xk zq+{U0ylche49WT@C2uqOM2MbIYha)f<rmn5n_)X5-Acd_cbzU&Dv;NU>Lq-togymc zit(GIL;Ak0vuc*~{>S(Qeuj1;rhRBddA#KcpeEVmKpOx~*FWMd-smA#pWNC;%iHBK z*bYazI>CQDaB*{sNY?P1J0}c>p|UAmZh?k2^kfU0zh->l&;Bxv&G8!n!rJjRk~CGX z=(o~jwS8~m9yH^sdM8)zU>iHcg-#kAP$asMiy1Mx4c53S*H?bR>7QCLpPTDvt{26P zK($lg;jZEHN?MQaC#%48rTC?i`q6dE^SNsx(pcykBP}xQ%A&70dO4R_{{4xuX6&6Y z{F}Iz(#hk?Q<99nbPJ463PThgJ_~rP%hRzq$E(Bc%lq2gIfsJ%kW0Z`Yv)hZ$-Agf zA^oYdt!JwcO_Luvy&5m*ecnmZ)~*6_z=nLXe@8IJ085w~OieoombS#>+nO==&OgPE z<JuP{af81n5PP3q?tjmwrp@~I@_fVDSHg$0yMrt`;Af_c89#06lQy4d*L&{c5b_Rp zmm1$Syk}~7^axQe*ia{P$l9Rd{cqY|-h-*Vg8+doUoR6*0k*iU`TNx!zPM{mK*Rm{ zId<B@&Aq{(lQ!$|FV;FG%%C}xaTNQo6Mt2eOUsL;DuIRTH|`vH$~73TZ(#Hv9OVvu z^t&P$kHmFnxIGBXfZ@)~4eC^N{G@2%<Ng@&oO+{wqenxQe4gpcU*9Pb_p#LZOgoiS z9vs>ETiZQ29-bo{a0i{qc02l0z!FW@Wn;rLOvo!y!EhNupqkjSsw-RJo4VTuiT0_e z)5#g<r=MyxB~H;2!asha0{Sj%X{;v$lFQ0^6pN*aVdL5!+v?5@O?p$84U6ay4gF>| z{np3SkUtZvKTQOWzD}wz%-@&9V3k8|qz*csUfP}~UN?`&dFn`cK#NWWke1_dEF;fD zUmG`%AEg!7r@X$WVNX?iOP`t%+PdC7NVj<Q`%mj%1;V71wOQqL1bnvWCwT`;@_(TX z!#@z$f9nlhe@2cn*0TKg@cd`b+o6$7mq~PCK0a`FoWf9r5-dh1lc*z9>r5^GWhO@V z(}Ag^=%E;j;ujsq1G8dO1dyv^Ge{$2_*(*&?$`8P9QqHkKeu!V581s&kn{<2u$dba zMHt0-BQ4PAZo3ceYpp3?+Xkk`8#9(KJ%-{{*X6z;(ds+0Q!AsEkHZfb%-X(NRylLp z7EQ}Izud%aa^`+B6#viftBz??&G9e$8TmN@57#)8R4FyBa6~<zwaSw=j5cSU){{0I zp}?1w*Z&Eb+bUPlWA$4iflpKW59x7wR0Ba|p2Yy<Ny2@<7Y}X}^UxY+9rlX=q1R8A zzqVj}f4KNSoC9rM0nC{kwTYpdf%}8%zhAku2VgmH$dX3i(K#DMC-A!nzcb<#{u>6} z?`9fkB}5KWgB<*X0K1lOMEIZSC@uYsj0}V&jR=(ddy*F-T-w1K87i<Lj_iA_F)0&p zNIa3#<$wY{RU(f7UV~C5xK4tUJoVe!bT0qT;>%lZ0U4xK0_T&s;vQ;C$<~qM@z=!# z)ga4SJSHkLeK3V$5#*t;JmyT4hPq7(K|6vrH28BSS&kx!wSKs;kK{WVBjX_Ewrs=T zb}xIMMYv-suahwoA`p%`$eCyqY7k-63BS8&jy;jrdXqF1l7>MVW|U;6HftuKjx_9V zL+5iSxJ;oHVcM0D@)bJHMVllyybmwOE-~ys#&n};H=02-9S<=A2^QuGUVnR7I9#F4 zytk(>ai<;SL^7j~XMVRo*+6lP7o9QY9RY8^uZ^R52V+%#0Z>_n66(4$3L!!qrXJ14 zn`%j+ccu!JB9oQRp%-$B3X8b6ahgE4W$SW?9r&+tMkaFG@QN`ADaBzYu8Jm4MIxM~ zDbYsllMhEVXC@}EX_p@E4)p)<42Zla3-@2<mZlD`FRLauVOKN{ur5LtibgZD7(yyX zd5;v}l4`&=0d`G?6sMJGq3kV(tK5jfFwHfw>)fHu@J|c6@&`i#_0@gIqERg^5)6i^ zl?~$KwBo($;>bD5xx~w{#l!oAdc6jBv5~>*(i;zPrOb-Jl=q7m(~jT=8AU*Njj`jT zH~g{lL!*QDP##)1;VMK@?F8Y`rNqMnV0+>A85@W#03t|G1n}f6k`V_2{^B#7cgXF% zQg5lHa|1t!3bo{{J}7cqUHu=J51|BnxY2|QXUX1Bj~y>oTQeJGZ3;^$YBL)e^ws5F z^X`;#P-R|!Jw=vOWRnd(jXy}$pj5kTW4-ad(I!KkM348o+N78+Qo*72KAk!*_Xs$Y zdodYw10`omjDDTEE$<dYL&B1&AS5yIiOvZgvDDwhwhf&nlNc-ERcHne<IC!u5v}?! zm7ybKh{aMS!^e11++#++r#whf<f+LHnKE~ytAa--$o1`|GMK9{l^dcHTzr?6Oy1zi z@ejO|EThuduOSxWxR|h!j7XX8I8mAOXS$<?076C%r-jJN_&0yzMBMS5s4S1i=#(z3 z3e3%2aw~ArhEbRze0{;+AUhKz;;o3=L9|3XYdk(=as0{h0u6_2i1D6IRHVk*N{q^T zHI+swCOHcgBPEoC>X4P#)$&$#6<LREJ4>2^?^TTKpk7dRS$G*ceSQ#1B9EWhMOgEC z0!a97O(bg3Up7zped`Y6q_$I^8!Ij5K;!DqijYvaVowq+q*h0J*qSe@rI>e)Llbzo z&4Tgrgl<^^=lexfumo;rJ5I|owqmsPEY}LY>=ryw!^dw;#<#TB$fxV(vZT@ssOPaO zkW<$JneWtpk|x#!Osu9?gq~;e4K~AI0N1oF*+QypxmmY6`$b};;oGN6*F8j*V6-`F z44H+q=5a+O<a(NoEw|cr+R>~j{YlUtn@@gTO9X|(5Upqrb;hT&Y`8%g9SE6m%*k*p zgQu+jpk$Tmsr|H5)a~Hrt5uzCMKUo=)&p5-OBTqcD6H6}8l^Jj=4}(rlUO@cfcc9B z(2L{D^K)8SGU6CCnI8sK)!nLe5%sMea#|_uc^(E@^&d#mRr3vYLfR?Pp>~p0#<Du` z>O(%6O-seUDD2p*s-$$})~)B&J*0K&my_>~S*o{upeYdd-4}6?KGWI9StPdgC}+Ag zoe+jSu7YakA)f%E8EHbqjd+U^z-%Lsmo^oDW7gs*zlC@<a%q-qmLh;1rb#Ma4%80S zGD)yQ1=P+vaZ*gOXNv2HFkO#yh`*xMo~|JF#JA|-x$)>O>WYI8{XVbcFg}_6&WtNr zHFL`{<=-25QOUy3*DZft|C{@X_qkoor@*E8E`isNfBPMkl^s<tJWK9nfEr&%dHzzT zZQ$@$4<yGY97is<e)oQ`uYNa52>Y<52n8+S3vCd8&hy#Xvw1=0#96WaG?txP%g<SZ zCp(T>tfe697E6mIEj|O1GtY&tECW``9o#LpGCdb3kT7e%4?nJs7cpG=IB#bmv$dc= zHOTDYW-qD|d_HFB$EO`Ous-I-|LqQMAmrp<wnbmand85v5PJQF?xI4}KI)9rSVjV! zDUt&zsW%`W)g<=AGD~i8Jeg?D?(XS53>BvhB5_qmh-;QTU(eb7WG92TJ<k#g)ykO| z&D&WiX)IbnWE#Rpd!K9sAL8U@3_WS6tn9)N4GagL1veqO**Ie~ynR6FfZi7E7(RWK zT!bPc90(0b`*v_RiVFrrjI9$5=hA&=LNx6fnWRoc(87(dbvDi(Gv{>0akoXojql%Q zHGy?FgytqTglH%9-&;eoNfjqz*Rmz4H<=7TbV*bR7k1>VW^)P#Uk>Hu!Lc5*IW@b4 zo)~Aw@zmn5QP|dDLOcW$9^_6`z!Y&K$s=#!22>c4DQw`_!@)%Y>fPB>1Ci3#h(?uU zf~d(ThjWF+S69I!G3$+j8MvX`(rKk}>(C<!5-h5y3qwK+(wkZ7$S;{TxuqeAjV6MT z$Eg(}Py|A+(DBgMC8<e<QD>7Ae1=IH#cQxX8ZgQvJyQo88k4(H{&J1KCnlt4S7R5k z0?cP&Ig6o8#xeU}?lxSNU%N5bKVqH;=uLZ1{n43=1e=P}iRX5q7V48yM>NfwvQrxg z=oz$({xS-I4%`^Ao9qo7Qn3t#v7vsiE#Xxnj&{VRO)v_EJrS)4L;5cEb;}Bj_D3p< z`MO#BSDnNQJt-f}TO^k|fspqK0WwD>kcc;XukeP+LcW&Nv`w-GhBpCiN3~bmC1)t_ zp|E`zKV_Hh4gADHs<4Y6f)bsr7*1Tggr2V+ho7xj4wsGIS1!!9rZ9iawN`K!oZarP zftsuGX;x2XVVEzyU&B=r6c+t^LVCZh;4VIE<2rZjx2mN(Tds_@<T*%A0BqK2+MA4g zoITgOwAfYoa+(3<$7+WihYc|gwZ%R0ex>&>+=#b~HTA*+o>AbU7Q-|?+GSWYTsXp^ z<iaM}!YE2Xd$1E32@9c0SIO$YPUSG%$yN4h%&=ez%f<zUVYQfyF3|`mfiT|@MWU2{ zIPW+}F_ExQ#Gz1W=qr@~iG|Yci-%ezzO;Ah<b0_~Gc=|9&JEqFs=?9q*`NpRdb;vM zg@J0T;qaNrRNLNMLJ+x8L8Vl2jlMFGn*u7WiHS<w*FCw$q0#lZ%8J}qJ-Mh=tyucv z`Tw@hscnW1=+QQu$v3WiN2o2xJDz?~DWTb;miyg5<nzBZ8lHm#xr%dfAPw4L-bup! z(NK*~osuw5btZ~+3K1L#V|~Vt9$hr^#!f*5GB_Rf<aN&YTu4~=LuaO1d2IQ#+qR26 z-dlY9f6n9)*QN@B#5NxLk>FQR{x$Kzg9^{Y@%dxdxhymqr-ve5Boc6cYc&l;93HF( z^N;d8{k9J&2Nh@sI60n!ABV2_Yg5CU^lExu{LJvu3`nbh;u1{f<%WnaX8qgOM2%oB zrHXXk$E-qNKEOvG&{RSy#Z%c)qty((s=hyG?c_c$8CzK-0R`=Q|GVgH4C32<f$8x} zTp1vVNM5S&qgPir=w0$5I(~On1U-;|J3;s+XvGe;c1Y70=*-!}6?A7m$1UmM%lTzM zpGxSeGUq$=(V<V@GAlgMmfq;YwO@FqB|@7&=T<`q{rAt`F-u2^){dzHo!Z~_?H{F; z`qSKxug~URQFmvZ_7?YIZcIH3dhSt6)wvoTl?yNXO~1=6=sSO;MX5bEFA0d87>5ia zJ+4)0ZB#GW0xzX}UGKRmnV&VP6OaL*$Vg_!L0^-B25va}^*Qmv3GR$BB|7|^epU31 zPFji&aRW#23n=!MZ*;VNW~&~f7q#bA@LZJGW#E@g*V_0YVvbTg58L;Di_cDMy}w?Z z+K3xwKJPsTOzzOcok-yV=}z7UHa!KKptnXUz>M5<!M6yfyhe3>a>}Em&V=EvHsCzU zIpR%Zf8_DVi?2#2zwWS7tJYz<pUBV*Mdm^$P_YMV^BKLl;X`}zle*WDn$`z|agvY} zKJC~Ji%~c7Cr`khu~LWs-h5)F;m^Q5m{3aW-2W{EXt6&OKe|Bf^nIh~&<62|0f*u} zw`ZRC=Th_z-YS{xKmBQ`0Ld_B$!DAg85`W(xQJt(gIiqIQKc4#-O7&6w+4kQuchhr zw2*68G>1{AH+c?;qs?Z?ca`4NdA$!T|N0W7svJXGt8Mpy`Vz+$v}k(FX1Hj2`U)5m z%IF+M_x{!YTO{8iHHZy^{QKXQv<^+K1K2pANua-P8#wi-1|m&PpHCMFhiizCV&Iai z7XDIfc7k_v>P%Q`+S_^FY+gYJkICs{3x?>Q)|=V(KHg@DOKL`v&Gdmj#7UE+AlF5! ze`+%~&Kr}E%Qlh_nVVQrKC_h&_YMpFa`oU9r8vm;K_C5VI_E#L3y&KiD+`Uu0%X{t zK!z^;T%;7i1SARS5S4tKP1lHA?@WVwgFLdLT@g)P1ZUC5a7c5|xF+VglJ0SH8!1Ng zaYJ?eS@P)HP4_4V7y~6B4GT9x>}`$^;TaAlQ2xZvxFpt(9qi*HYks{6n5kVj!cD_) zT#(47cuV4y@<^XF;;mrxJQq;_pw2A;%PoB(+Gp%v%>oey(lCdP4Q2`tLmJ9rLQO{M zgclMGGCnf5tHdrl=Vb*R`9tbNGU3->DRiFl8-hkKf~q+|GwdK)@m?_L1}WUwM30}F zUecS7M$(RQ`?Lii;>FdsR3?&Z&{(#m7sz3Id~g2K*Z`t9vk~=(AsKlxzydiEZqZ~; z<U$nIl86uGZaETuE{L>6z7Rmj{nHZ^d=91EqIPavUK<jAK}p$mt^u2)h;dl5YYpzR z^DkIT42&K%@&FOJrI-=r8FezFIyP-nDB5fg4ilYa5T>yvG0Fk830NJI5AJvJzG!TA znF1}znv!|!6eo4*DWz}*0LFCCF;P=|C>k!Y{|n6IeH=g8RT9iQl;f0c5v$Gky<jw{ zqkz}pp&QO$_;8n;xSq(bybz3iDwKOIUa;NwoWH=RNwg{D#VX8(RlZIAGvy7F*?RYt zUjoA}<?uTt;Kz&8-h5oH3ir`UQKDVcgUD!C=b8j_<>wZ#-^q>vDqfwKy~UOmYJ45o zZPp2<gUr__<EGE%(t}sGu)BLK3GtiVXj?D#m-Sg}cy_%ZOXM=rT9y1XJ<S4q({12n z%CV>Bzd<OUzIhUBIQZ*$E+N1{ajt(i{DB!35<o=F06#V_wAFI(0uP-QA&|~dR8&t^ z!u_)?tUi`OyYfi^I8Qr(nmF$+K3r260i^Ft8Q;p%i*~pB!RYpi&*|&(XGTA$OFeh_ zUzt6=FLj+~bC8UQ{AS8*GAX&vjXB$yIhMQMH<w72m|8d%Xe;Dt>72oE)YF<Q1y6*I z!*R-JP{Z9@*&l~pN_wpwoA{l>%F>8QG&BKRo17)a*NbriX1yQ-+GccW%VsHCneZRT zGzO3pR_d5C|BSV{NKgC47tRbC|5>?wyTXulzK9qfZD|)YF?y-W_v8>OU=*XE9dHm5 z3rT6gR<+u)Rcr|OArzptRihXh0msBubhtWaA}uYi#{-3tjJJ`R&x^Wr8P!peEK#aH zbT64qYoSUF6qg^yw+{~Lm*|liSIt|Gcw~RUJ=ca3*L`SgT5bqDX<??ENFj)-d^N8x zxVQ5K_duaW2~?7Q0W0x^*VBYDl4Ddk9y4X>ASOd)=*iF_dO_0qT{&NHZ$Iar+U7_@ zrgTM9pg_?hrz{%-+!N^w?NyOg^6+leO4Ld}pa8M*2^ui}^<oT?zJqO3_2NbN*xyyf zyV<C<nTZU_Y~u_xiB};7VT>0?2G8d(JKteKJ5-q)s3!O!qgq`f(l>RP?I|!o)C_1a zR@8ubuC<tAlD3=sy^l(D(u~n49gYvnjmDK7wWSHEsvr8%W!66WIg5>BO%?KGt?TzK zK!(DZm0J~eF8j!m6<>y093|G}i_gDbOL19Aw-3#k*<Bg<JDsA=nMl<KxQqP+(J2c< z5Z8(}c>F=f=cQaSX;Za=F2gfQE~(3Q-!mIkrR>C9FoV`ZkLgMl^SPj=xGblITo5x| zX0wBiJJmB6Eaj-5t?#xxl6vF4BAO`~fEg7A+#OGwb~&flF@1acVpV+S24?<J)fLP< zy_1`Y<TEK>4{F6)A~vvCu)7>cI&i_mUuxRk{l{ffZYr52P`9;$R;4paR{uR;x=~fY zPR#1R=g<H5d{(FuE~+UZD@17*#mu1jPIYOOZnj@<tywm{3vRwC9udFac*=t}WK(=$ z8p<A2|6+{h{^J_Yo&Rko@{~+)+)CmdDfC~dY#q-Rbb(_!L*xy)cHc9a3w&eb<e2~8 zF5-do1#H;=12(w-(Ov-i|Dz+j)cVqqar}QAm@eWqUEsI&MJxY)wtaL-okJsf2W7T~ z<@l9~`)9sJeY;)scFpL@MXgat2A)H_X}m;lGQxD$7sF9c^i)os<k;$z`6M_Tv;1C2 zv*J@6v%+++aoMo~e6}Mxa<s+)pE+b8D;NcZg_|}GuRboF)@$Dql_r35C|sJX2w`(X zG_(lYf;rVFn-vGjfuAX(*D*p$4qQHuE@P5W{#zATHig2nB@^OTkSS;4BQ8ssDEla^ z3dMJ(s+mk%_H?K={Kf|&$P1$+dak09k%WPts>o1j0Z>uyLh9M1?deBKBx&?O_P7Z` zn2<PbRJhfuRz4hVz>Rv5F?lEq1|=<u$!%CX_*U3zexN?u5Vkv_5H#*5>g%^;V&>@j zi}-jlDd|ORnp6@U?1mz$1f)8VY&xk$<Ll&vF3Vzx`4cnY!#MA-%tWEVKqF~P8(9Cu z&LoLcWx;QOPRWTu48=5N;MD1WU<L}pZi%hw<*1GLsNz^MISa_d^c*OXWIP(`_gTYV zX19VPnSDXu8tPlbFNBaT3*o;BG<}0*FT@O5M75@#2#2q<(qj5MY&%qe_Nryd!TEQW z{}7R%Gu%MXLY|p0yf>SC7?B^|ODPD+glrs<KU!olFbIh>i`XCBws4RTcz|l;6aV?Q zPP_1AZvfUUFbv5i;o2Wl=fn)$M|1X|qr;=ZOB6u1Ec!#OHUqrn$SR|B!09LVYUVOv zJ_KHEoyS}+9L4LrJ!ZXB{myEYIdD*MlUzD@(t=~DBxtHSFb~mk`}7oA5@Agy{FwcS zsPwJOWp6}8vYj3epc6L(FuT8p_zEc#Au#gu3Y=}{va7!H8g!SQX&LnN=(cRBDZYX3 z3GsPv6|L1OWFExz?ztVnV%qXxpyYr=%}KAeqoj7d+_gc&%rim`fn$6D0{xEH4t)$G zCV8=ocaZ32n!$6kQ=<+`jj*!E>aPf$G~Kt`LT{hdr5x9ciJC6JeeJRLxz2$(*7*-c z6O`KuTNOFoWyw)rWez?&XbtzzCaAnAF-pbUPv?g;|5T~mY(vuBZfpvieBG$4uKG0} z2gkML)2*=~lN4Ryi{^38gy<=n4I8FCno89+lV%O^T8{`bAuRTilg6ifza{j#1>+g! z=|_+lp$WUd<Ff*w6i#GNs~&)&p~2fN$&b7bH5t55=cudfksoI~5|&L3Ac;v&bnbu9 z3xf4eSjoo&J>qDG?4~Qh`vPb)#ELE1N+t1y(&mGQIno{ChcVIzY9StY7%E>~V8`+6 z18IUhNUIf9nF@8eVe)7;2pZ^-yF6vSA<sPZIC+PS<Q(wG@&1jve%|xhClZHIoWCUB zb(1eIQRSNbKYTX*lHBZkkno3fS|NNxZ^SB*Cu!5u;A)j_#}dBlyA@$Mey6y=zg9@& zmmkKCe-A~w@9NHnp^oNGXmYnXH#t33U!VRWj26u&dD7mMvpVR+OAIl*Z^TRdM=r%h zHjk3U0TiCBV?|N~a(9-A5=p$jrS8JnRL1>I&F$tQ&r=JMmq`y>_ls8$Jp0c>Nna{F zEPt|Y{!W<1W}Sly(QFRm$Yv$EXV%f?VARphf{2c=DVr6hZnvRnSD@m&0+c?AgWq)3 zmcN(TNO3ZrtduDXPfnX|7`Sh}HlEAR_?1^`0Qd5Gowk^jT(z<1M?Q1vlu<leo+~xS zkA=Tg@afl!&WdvxgwhtwAI<%i@c@ShTcy05DT8T?cdf$XGKVyYR)Ky+QOLY!obl<Z zU=NQ`*qBqs*yLyz#0Evbot-(W4)S{Ke?LAE!qx6EBA50%?L?|myA^H4s{cFnHR(&V z7s=Eq>$xMAq^jkO-B7ENG`qBnA6XzOPRHtR^PuM$N`?MU6;~S6)D?wGB8yfOut0G% z6$^w5l{~V&ghduXQ3-W{Dp6YrB(zpw6wtcVNM#W$q6D~z4GM}8*+dy$C`;JOB1Jn| zA+gj^swptCh&n<7y$@`s{y1~K^L^)h=e&QJ$;|b-?p8s!n_W6_W3q3`XfRv9{I8I2 z2C8i<Hu<-FF&N@{J*uN*+a|%pzRVr6y1c;$rdc~?Ke*d(3~!?MWKtBC_9z@s&<Ta5 zV|_0%xf|T4!S3CFPK+J{<`md*3^+ok1dvNKo&Y`+IQu<lBAOF`F9lK(fD>%&vB@S{ z63Kc&B2W>nDI_#ZL9i{2ghpv#Be5kNC@Ii59XJx$IbckMCg;#>Mh?g(UduoX1>!O^ zU<XMk&OsYhr9e*X%mWLlP<8=LrOLq-D%>jvU|yOiAf+`0pq*$c0wz>AeHFA3XNyU; z^EzVpl#whfMP5P2E%FF@CD0)6o1legs{(3teHDTtB?&JPzzq&}0xROjS|Ff8k6Kjk zJ#KNDxTqqh`Wrwq!D}H~<C}pq;n@!2sBl?3y6aF6uw4KvI{_dX?*S1N2K69z(*saP zLH{2a_kj#U4#s72;Ke@hU>*|j{lMN}AqT^_C~yp#tAUFf&PFwFo?~JtN1$*;`v3U% zI6l%@NM}L58u&>ujGSVkDKewS*XP~dIglJqPDoHjTjw?)jT???vX|^bI*uIYdf#ze zG2+Mz$ZJua)5se6%z20qMm=2gmfW1tf5r&>y9{TOCkDV-HCS%IKChusIUJTO!ND4C z(*SQNzKXHYZ`CdjEIfjTbC@C)mo4E)aGWm+!*MPq371H?;SmznS`QW`=8AEiI81~y z(fiU7Ounm#D++hTS$q~7eahNB@Bd!O5(ETq{Wy8F=8c>5>@xo?m(Q-V4PF<TWtZh2 zoLIp0NvsY~UzM7rJ#i5FnTgGUt6nlJx<mXH6j@kA36nnjv{10M&&e;%dr{(xX_MG% zg@QH73GQc7G7b;C)XP~<-KLc75gEMlr@7BgTGl9^Xn9@ZC!Y;`d*Ew%)-BJ%TE{8t zv8o}>>s@KJ($mFa@OiH+@}u6v_uhV1KI50Xc5<2MNyE+t>Cz%v^e?fQ$|ccO&Mv7X zv@@OQW1f*0TZiP;g(|`1`unMxE6PZV=b2eaF@uVuL3;P$zp>Zng`r2d1+_PCdtJt{ zGTtp}Z<kSizv*JZmU{Wmn~(gFx}h_6eSYknT;&f3gG)!+Mjw0Gf2j(jtMlKEQ5113 zou%GrhW`7d)l#W$WtVN`5T-cv93Ls;clYz%U*)hBw8#B1qpO)k!j<WPxJdQNdZLoZ z&ew0aGkrHGFHo&ZJ*DLzTyo`bK}mV>LkB^(&?D;6X8Uo2sgd>!TCH$Q_`>%ZR-v6` zd&V^%*>_;tJX$4z$}sQ1Pqw!W`LtbN)LBhLe#gHc)nMJlHkH->GdIpWG7t1has5fJ zy_0*?IntW{W?OysuIS$w9qc&A=&Ks7V1mKgN`0fXx~ofyHypK@y4}i%($VX)ziQHs zjx!c*pWff7O8#|;{_&rUb;ZRYEB3oZbVwC7+jTVG9G9M*<Ht-whZfH!`OZ9?wsAhO Z)ONGX%h13@8Komu3;?kyJT(j~{{e%U+?@ab delta 99709 zcmY(qbyOWaxVO#5-QBf7ad&rjcQ#IOD9%QTySuwXad&rjclTlizCQ0ce|%@wy4FfY zl3y}O?zuC`;6W)MZKV_dqEZ%@WME<BfT!wtF8GA!<lrG?CUr2if#>HZWs<kHH#c#% z_A)mkW%(B)W#wY$V&�Ws)Y<BjsRY<sju@;UqO6Wl|#L<YXshk|1Sg<7Vd|Wl|*l zca2H?zX#ZuIax^s1>w!@&HhW4^#2}-ap2mJ@SL2?@f*b8JUprO$>=z#5qq?_0QN+B z0G>SSzl{H-FJo_J?(r|r|Kzc;vHi~}3kOmbE{=b4RY{pt9UNT$X<+%EnA$(dq&z&V zq)f`r=0E>e1zTb~01L!vV$RM21ah%6vzT-9aIvtPu$q{fv6%u*n7KJvm{|q+Ik`=_ z%-Q}G(~QFc$jQpa!NmhK<>F#y<K*OEwJ<joH2AMLF0RhzCU)>1SwK^>T}xwAV{SOg zR*V2hHi$UmOmIqVVaP(5IO7&*CkJr2k|9zZ5>zxu%Ax_bfM3S|()=sf`FC7dW=X98 zL~~<8su0?~ZpS<WX4%;+V}0gXMqH{>g}UkD+GH>-cogjx*+ber*#ByYr9l?q3p~*a z7cmt-oC*h=i~D~n?8}=98N~K~WL@dnIV?(|er_AF>|~Ukd%6E1BBPYfz=SJS5v5w6 zM>*dAMK{L7DhU78J@ayn7?6^hcF`1$m1R(CX_=diS9_9<YD%g=Ci$CKfjp6ZT|UJr zm%T0Q-He8L5M2!suDbXKxUQ5W4BD-kwxugL-US7SH$G~G93s1q&y_XF)@nRM{wL~m z2s7LpD@H?*WAh-V7%q-C%+wmjgcljizL_{T`U$BQy3PPAf};W?XLSGpE82uMGBVLO z+qD8<y_kQ*dc4AR-a#?OESy<G3Ys<<U#uc|X@e^(4|J53F`RTEaMY8ILS7LOGny(D zHxeHt#W;{N=W#EI9URRc8l^~ib4v%F^(<n>>Y0vaqLo{hJ-V7O92lP-c&7}D)dy~1 zrakD17NQ2;jBdW6;_qZ>i<V;7aEgW%IBVk>CBYzB9ZXF385Cc@fBmRUgM_TM_nB5- zO5=>j7lzH|g1RRzGw@^1!gcrhl${EjfL9DO7Jf#kc7I!LEW5vYN?2@WKBzVx76}Vu zNrBKVolccf=lC-ahpi!2d(n3M_YLe7Pq>l*#V~snW|zbaWbZw?yQZ)gWX{ihYY+5# z8b09{JR&HbC@WX&OfN_h$c7&T0*Pij&;ke$!~PsmmUs>GVo?L%Ps4jmd-1=8FF2Bc zCYz#6kT}r=;(}|3QXCsis4c>^g9Q3nC9C>YU%A|GRO{t>`h1a@Hqo%W7gGF6_tPRi z-kcPkuieO>t;t&5l)E!>lCK(b(y!c$%RH31s5Kxo+TR0Wh&E|@{)WDjlym3pmt{11 z7&mD}k(yFnHw}NsFeex<Km&WQyvm#aMMOv~tRZ|ScK>*9(AhE^a;@`s)Xvc$$_ctJ z;C+Q9ZD?<c7{;X<HYzaLY`e&7GbJOoB1=rZb6}Bx;zAx`U$iAm;_6zd(qMGJPv8KH z_mY-rV{GS&qy>{OG;wB5%tFsZqK4sn%5h;%-11;=D?@)y>r}H|2;;9TdN;lY=?t-R zr>&wuVF3zbOLo<t1y-5Mdf`d#u)g7r+wo`l_pb_OnJQZxz=*hl&5fwB%AQP(s7?C+ z3&P8e{0lmtUqz;x(DdASjO(_2j*1JGXZ;~)QJWqoYcUE$XW!!uIlnJ~IXWEjuNot> zO@MR{4{k~zeAU(dQ__$qA`ME2=u(L*8obCbtF`~6&lJ(dg>fYrN9IANnZxN@E1$VI ze)*lHKDwCd`HE7z@o~`n!#pgt+)KcgZ`YgqvDZGOkW|{!lVTQSqPaQ)uVgK_*F;Sz zhE7D6@cJ4c{M0V@n)~<h5@jvG%Etrn3C%jE;Nb!ALTIjEY=!g;<^b`(9%;=QQ_27G zJ&oyH`}>#BrYFJGP?}<;VbAxBsMV&$iz8cI>Kz3vb={(y6e2d$`Op3D9~EndQ{(gR z3IaWsrJNein%5B~EkAFV%POEbSSF<vyBCi2s#{V`-Nf9LDi_oor>oq`90eA*dFIBU zIAIHFgK#v<L?Grwp<_YV3{1m#Sy+GdgQ^%AyJk(~`1uU<_tf5w@D7FN-Fit+ytDO` zjxiw5mW#4DIRg5{k512)ADX*-JWFZX_Zmt%eFU>R)!khFxO%^<{frBFxT=G|HM)$t z`=gQAq3S+0?b~^s7P+&<cWYmkF@tzf`xSnkGLX6n@5`yWu8IeujJMNVv%enjd}!+; zYWwKv(^=`ef&uD6w2<H{QnZk?eT-g7*$X+p$8W@Lerh_to6b;=&-swe!DLGDc0G{o zaoxj68?yK<e4shIxfkR54;(qj0&*t;mW7v_>c`qQL{!DzoFm@QI)*kxuf@8Fo4z(9 zmi+4s36<mizMg_iKxXoTCXxAm4weg=U4qrq8XQcD<7<zdjEvJg4kwQ5jr>f_Le3d` zTf;N&rFhOz)O@nCpWblumDdA^jC*(I4yOa1B@x5Q^X?CH_}4<(bGYYC9O~>LtWR$0 z?9f16F$tg*cQjUXeF2Lm`*6hYzZ>ZAff5Ij8tleTn4(V=1uQQ;jDKAug2tYo5asp; zY=)m&x4%Lj5vLFw1kdoiI;(>o5ueuarDtZ%{D_JynM*k0a`N|F8>DB9<i&-35=E#m zQ(0N@$r7QkP(d93$DRO<jsF=rRGx|6{@&h-Dbjv0C}U0n2)?+n-?Imak%5U3ae?5< zXd_o`B9<BjD2yKyWWSlu0G5*{wO;yBa8<flwGffrj^zx@ohE6VeZ9Y?ya5nF_1O@i zf@13faO8-z7~1E!omjYn24`M=#dnjSuE~oD`fs-E)}e|f7}BjCFUkbDrbFVTrIUo@ zl8CWpd=jpdgqeKWp74G|9+cf(>VrTN6=38q39()k2dBb7BYH!VOK|VZA)jLRWM2$8 zbsGUF_9L{yhBV^Ysv{ii_er;ma|UGf`RWvcuEN6u9OR&2sdtUM5_Wj{%M54`ySYt^ zi_~VHeTzGSfwwyNPhP_Pc&9mOUO#iBT+`<W;Z#Nz;^3gj4QgkZDtWJCz7czCQL@;< zlBmoM6KAQc^+s|<Vn00a#aa4g@0D`BKA=fI88L07ESZ!gOHfi~XzDYQW4aYPhu#mO zT+=4)nnusQg^7(7A=k5%-|4U*x2D2|GUR@#o8xP{;Mbp`y>r(*$k}kgn_QenUA_=c z$3p|u!EKa+^{$F@&>1`eUw!d1s3Q>79NMdFBQ*<FHV0@QQ5~rckR`4Wr%<@;4NqgQ zR+J1^*+8|4#R@m1A9HJb9ph`_{Mc>IN&rtNG=LxiIC8ynkpA-NBx4>3y^btCT5H$> zz<fx>AnRA|YN$g*cJLTYJ>I!{bU^|hsUOU4icR_Z&N>Vin&=_XJ?#Q2svb!O$DN5u z`PaBe(}cFh-;9hYMEHB>ZtYUVGA;#pLHf%S=5bGt*Oy=kVz%s(Z^Uy-ydB(E*^@O9 zwIE7xjb1-1*A!;jWL+=NZJ5*Y026ksep~*SB=ynW5l&*tD+5&Ud`f3%ssk)NF8~=; zR_!~47$9hT!a+C#CakM(Z66&%Xn<gh3LU!>{DKI>1DOGY;~YC6kvGsN{1PAo0Rd4+ znwS<TA~_kdG(z!hGegf|TTAU>@YeHg=8vtPQL1|8u-TP|p(l^VYs5NX%kjzm(E<`z zo13M+QC?aPpP^#r8R7__54sqo2BjS(f@|pa<t{xcD6faK+e8RRv_P_Ky~%5e#!Ens z!AT?!<emBxa}nMP3C#@#h7jWp`Ck`H{2)b4)%Qe)ON_;>0dOV?;{8h0pu%Zb!=r>r zeEEi$niY#q2;yO3`9B@-NK4KEg9WwwMC)ah(A47c=|WpvPo*#423a~xtWkkXwZTpe zet(DUVC&AF>kI<E06iRY132UJFtrMVS+s;Yw*oK3E|;*WEr)qL+DWhH<<_XBrZ3N0 zs`)+6U5Zw?PQUbeXf`n$Y1?!{{P79mBcW{F5aCRQcEIAD9j1b7l1Yvk4{YX?&XREd z@&4p<e?IFKEJEO#oRLcxi7$;NU~%xk_T=OM;$<Vd&aUoe*x0Uk^;-M0&2&!Nzn!YF zpwOkq$T?N<%KyPGw7t(fOnsY|pt$WZd~9&wib!;sDbdh=>WEy5{U;@J%DD+-(kXEg z?_aYV$>;A5)~VPxjF_i(ZxbTPC(kh2cXfPk(`KbBMuLp8T~GFN$jgo;jLwK}^uxmG z?!dxrAtr`1wMFZhBDS1|xw`A1oD3aFt<B&^2^;xyVUtzwu3`|(gUGoZ^Lj>vvr>9P zip$se6>kMsYL8<@v%BWDP$v#Z*<=y*t{%zND3D~evD!24Dq>7I8&+wMKu2ahxHqMS zdcBRG+7A2A5o|kZFsC?m&z|RnwR%Hf#(+d7t?--q7loaKdV?%bkE#}nfmhX&YKbVb zKy3#rvQ}epn7SW~NEK|nyV+H`EMuM(awM<xTwFm>o9#FPYt3!B7+(ZL5)odbDyvd0 z6G>Ilh+~elWM#u3GhGgL%D-{JB9^c#tb&b%#V5quuRx5oE-h6dHx1$Q5TJl%GQe0P zA|)D0Sy3k8tU#%mIgKKIU9d*Ae>#h*P1K>XNbGF3v1E%TZDr+K5^bLf>*+**1~`)d zadUu}Sd>N)tx`pA*%d)}bZFqNXmoR^a})X79YlOBLoXR@&^$n2!{AI@BF77-LG*Hz z>f5>&u&W{~u^j#n49i0<T7k40>N~$So{t^YJD=^DLpmyTn=Rz50y*0*m`D94jF-Vk z2{Vo^lQR=ZaCWTFVJQbhr!pUjSY^BwaUM}~gZR-Y8f-IqQa4b1UJUkkdh9YqYN;6b zkf@9OVCjfVQ`1P<>TXOvfi5-pv%6h&M`A)D^!s9n?>E-Be`y$eW$X<o2kGVX?cX;n zH<ybtjXli68S0q@qutuB<i~O+pIUH892blnjv9{*G*~F#_y?opP%Mtsparzi!i6OC z2(b?YsNReM#bhXHk%op_HRBXbH7!Ofs`|;|SD}GE3S92r`++D%)*$enn3uW#dNY74 zHO`3&yWs~FBmlsj==3c#F_R53HPeX-p#g=O13K|a;eWj~7S{jgttI+15Q7vPHY8EI zPP8WLyQ+TvalwWS9G1z3rr9K&CbQcOs$veo*JFjGQuy-SQKrObsWY*ztgwdD+ppoy z^3C$h+LB_mluB{_lXOcIM#LFU4ooaF`@zZr^CNimVkVdy*1Ud@)^uVpu<&+IweIN< zcbYQpfp|lj@!}>tFi2<&vjKD+8oOK*cj`E#N{d_Cn;Xka?}$s!j~OfJk8pWx251rA zCv1vmZjFI2nud0x!0kS*DL6oYLv{odMwmN~QL_`00&;sh=(Y>cMmMU4<2zk!vPQkd zMSpxF$rckEEv*_3?qoJ@pfW;_N~dKWz}-V&>|^tW@3Wy$4l|6V2nPKkg;V5RpR^)H zpY&?Y+gobQ3+Rn#!0ZBdk!K<G0f%JCr=F(pgCBs3fC`O>OseX43{My~bOh&C;dT|J z{f&<!OWTjDn3$7Dnp!Sy{70IYg0f)EIjjOq_D@)@$05!@VSsoaKGKx2zoj^K{c=c7 zrX<BFGn`)>G@Jy%i#SL@<dzan+$vVR7X8*51;rQ-qSZKUpM9593yxdvB@eyf4UFS= z4xfiAC9O#>k}bzR+F@OmF>xRAh0c`-3IY19`0c<q0R!d;yX6N7%vJ0u1<2&J{?y)- zwE)@#VWC5C;I6u`Pcd~T8}*<bs+yTR5b3;Oz{85lu1U(wE*}(|C_%^bzPl&p^?3U5 zeE7D%^>n_UwLN<{<l1GgiIBl>Cpc|6HDM{`x|}Hx49MG?_mN3l5&9BUln(*oB$^!h z-0j^v13#cWkq9~tUNfeVp9cKbw_%!eg-WJacCzG!rkP4EUY+}P<`0v;&7{<()D?`) zIX^Y)^i|q@O@plNA&D?LK#!ojF*pT7&IXR3FQy7$`B}7HWV)PvHW^V;eF1l8p$|_t zD@Y1{SxnmthZ-Axo!ay(?#9mb*y=2RqdbUWt0W1%AYK*Ne~#Zf_SD#8g{L<R;WZyu zU7mD0VJH}nEh}SVb{*jijzeXfKfai<KC9<S93hid4@f~vLtCF2Z>bC7pi9QH15rT7 zkWs62WkF{_v4G*L=d020XM0Y~6ZMJ#?Zi+!lwXxrxbgJ*-zpBd){9ehisqX<Lo#^- zm}FPS;s@OCCMzOWguJ@p&Nm7Zp4THHM|1<k4C(V7!~EZ0tfUH8QcE^tKTMmlvN<oB ze+URjB7!oMY%}<KG7Q<Jw*JVp_|}kle=NM#;_C~nooH=pu0&HmuETFUcWOEld+AQW z$W5BkKIe5;MLpNB5L`6cNn}i|MAz?BXT0ujIdj-vYXE-8)e0rbv9=aBNV4;KVmp}1 z)fl@zHQK6F&?nhpu0O?_pavFl44rvZr|r|p7K1A3lR5D%-|r7~=86q2`YVqR>go&V zJuu~#H7=o}#h5Mwk1fJP&BI!8V{%2zA--z_RZJ0_yC0G{7-QKeGkh}&9|QhjVl_s` zNIDCJPL8TM=2Hd)M08B{fS8KG$vG&QNdNisDoqG&anTj&$ZCj^$k8;s6a)BuBc{50 z-k{xL^TES^vo+``Eaf?hO?e4y+D?yYsAZ0hya1^807adXPcgCad;@>ixL?r>p(kpL z{w%jL3H7hHJ_*KxMjlWB5ilnUWo%N}uUO~uUBM~d=^kp9(3kP>bDm1s<?ho(Tnm|L z#Zq}(M#UI5BVL*6`$kQ)ypGDyOA$cXO^|AneX*j0R^IbmlKUoQq8-&)kKy|gWAqoy zdTn$6jl}!Xu^q{Jt>)aN#Jfh&dg!0Z;>EHL$ty0K9+mg#b%#a2!awgy);$|T>k2Z^ zY-bwdNWLXZy3#k;Y&p_5!aF6j`gEQ4I9hs@h1UUFo-UrA90rU0HFDofaAPv?LLJif zWFy{|(MDbJA{v<bG&^#Lpf*e(_3XC)kgeK4G~x7VBH3X6C^RO3+MrpL?Bj%QR;h~) zw3`XEi;X>bg!(%l*~w>!su8~u>+-JF$&|D7u`sjs)0bM1Jlp*5XG9N2B!Jd^>v=6m z2n=?<aq*v_z)0*GL;7#p4hxc#la2F#Ou-5p3CLQBa4ccxS!;2`AX@&&S6WGlHMI`{ zm*7WG?y(rb`YhX&i535!_a_1=P50$BBnyV>$6vgBd~~s`tmLe$ba0H=1+a#g^K>sM z!70ey8YbYM%fV{I-3ohWZ43p-w^#7AWr0jZ1^D@Kyf&kQqPj>_fHzkWQAuo8no}(N zQP63<IF76=0-hR;IfdDe{3!q9KCE$G`n%wJb!yD-%Gugh`FWJ^{;Z-xw{yC{@b8US z+64$#gu=KA`9YAdg$%BZU`npR@#-Tul6d~qA^o@&7zjXy-EZP1gz8bsGmz9|h46II zfl(n*Ls7I<fPQfkgh+)#$KVDuy7zvb08qLzw>>c#1dS9ed@YBC*<N9wCU+etG^;en z2^lbseU>c`>B*RWSArcI9WJ(Oa9r3jKfp)@JioX%3tSdrDnA2U6{0#n2V55-8sd=s zFwProyjT-{g8mRO89?2Hu^Kr-hz!jEW<H3xn*=Qtp-ZYq)Cfiy*9TS-!a{EX0}_@i zMKwhNa>ptIjD$<_zF^~IVlTr<apt`#A*ACG19inQQC^6UqR^s5vQ*3nW1x#t0dNFJ zQGmw4W?^<X0~5R`wCtf~W=Zk0aA-&==}09J=U*c8>99N~){WrKbAU(90@OfCsojbM z^_c==a0D`#1lsrrv_nyV%__DTNX;4-;|T5$yZ%?b$Y=a3X@M*PCYDt#JEkb|Fj(I& zZ2!plK`30kGuT9OUfcn&pK)S$T+&W3KrkQ}MI5Yo@W5|>7t!{ww-KQTXJ1#L?e4Z5 ztfP*FrxohZ9wPY~L7`2O=$dE4svY^6Nau^U%VQsBUy&;Gp^k#hoXxEn5GSLQdvGAh ztcQya=qFcO_SWWHn7Xw?(z*X8=F!~1$y)4&lM1mId{3;ywvkfaj?<q1)8cMg4jVlQ z^-05ox2cfe`-u=iT{l0^>&NYBOY}#fTIK*m-~#yQAhfV{ISH}#0T_P)LC(QPms03O z50PEZMk;ub5JiR+8q#4INP%OmAOru`Jd$v^DOXad9+Ob^5AvlLVUQW>7;;7WH(}?v zX!OH&lDt`@+03o%!fIbrAQ9;tK-mgl76O2W0DHCf|GA9fx3dKltT6WxPhPhuvSCq0 z3@G0MOR6Cl4_b)Uy7`$FTk%cDz_kI%f0LBt36;Q(i=Ue0nd^@r2*Cf|;pSl$T6FP^ z#H1VPw+bTIVkz+-E>6KKbb`JD0TbT!lsbmY7_lFVTgu(*8(RX~<Y&)vzjm4zA-Lg! zZbtzg>RkMpFnR>FMi>OPx6&JA8VdfK=*1P#yYXAMm)-p98ymp-ipol4-(p{kJd-Qq zkVnhd6rok#%~cNw5SU#yJJ`80WINAIe_d84z>Ufq^X;zm*`ZlUCa|9s&gQI`>U;so zQU1^A!&PGR!E;AZn$4~2T53vW-DEf7B=cI~bgVmPtfHb!;Q8$fvVR67I1w}KjQ<9? zH|F!$b!Ds+i4Id6^;vOAk{pkfK@oxS$#1D_2fH2tAD6cc(C6HnpTT6`iIvzQrc3xB zk-ydGR-(Y$-;cMx&;_FXLOlzkC@Zj{lv^iZwQ=I9kNbnZzCFF;LSJ-}jrkt&+)MzC z_v7o_+w`9fU<fNe+<3`JC#I|rn0ai9(azes?{kK0nqJ93MwNjL6pRndTH&El59sM` z7fbo-#RIAW)P{^wcf^Cj<X=P*Cp=g9y3@Jt+2PwCQ^7Jps4;g`c8<*wYCtF?EI$WC zZ5F)h+Sw=yCrDM?{3bj>I1oTf=7rclJiR=z;GVZ`$f-_1@4mjjY*vKVoaWbS8bKUc z*Y<vVB*<iTz<TDu@*^FJWVW$D>KU}Tu`2i}j@=0jQaTwgu!~Aby9GRvdZ~ZCy?yS9 zI3FGSK0D>TY`3M2-h)bag@{QzWq}PP=ppH}kQ!i2blIA(2!gheeuyNV`m+8S$Sfps zR=3r^bXLnuv6_v2{%C}&k%Gyxzr3>dBMojB{ZS;B->e^Hf*j(vBG{T?x|-$l%Gym} zlpB2miUiHAwj6YfP4VaqfMRd#Bkqs!-_kyO)%+n0{MtNQgIw>C#;>V&5SR~+Je-~2 zAoP`L!nKZIKOlNZk`w?LT|OE~e03?b{IJ6}{^Bav1F{9Mx2JY!d3{c3!asxpCBBc( zxED6`3^$y;Odx8refdfO#mhJYe;4r6jl1B2@Pui{BMUm|$7NJLb&^0>M~yVKVEAB! zakS&L5^$(H5bzSOU>KN#dp8At4U>ex`u1ZZq+L?LOg^C&Mr+6RQARxrNl$`w5OzO? zIG|<*GnfJ$ZQF0-T7pB^!97LyfRO0M2-+l~41U*bM8#Rp*m`;%_!Vfa--=bW5r~cz zBosYqRQhVt`(?YZRdXiV7XH$@+Zp2u%}~hdF55a1e1~FoeIsJMy<gWKfrSI&n~>F- zm}z;BpE?r5g>m@E)-#1H&q@pPmYt~P<R-H45rXQv6uky{A-w{dI-SKSV!d%jDZ>S{ zsh1sNDU9KkZaGb7giX|rh@58wU%d0{r~{rn7Ed*h0VVM7s<VZa%wrFDn%~g5*x?DC zTXJe!3DnA2M-`6B#Zf`!l+yc5OM7pW=Xgfkxes(RwF!Z2M~N?kQe1}R7mrI{lq4OW zMWE$I!{N?d*Sz@q(c=n*1X_8MvBqQ7h!7leFrmNfXr_W{u1G$_95msm9+!Rde{Uz< zM#U7OJ6+H{L-iz<X_NA#RSC71m8qqRm1!X}VkRA#RHOqXM<L*X)mDq$@cXD8vowEk zPeR3kN5=x3e>H`eOJ&SO7uRPWBaS_ZdV@Y)gxdZVDw^7zs^yq1Q+%*kf~zX<6{w5z zYM&CYmx{A$r-8WTAm=eHxRYoS&Uf>LfZ>QKw2=`Tc#BpsZnfWtM8EZgOV`o-O7)uE zCXMdAOiX=Dp4rb`akZQBXIDlm58|mr%lRt$+EF{CVpMOE;)~=d9nk%8_$HVKF$!8# z9y(frX_q$ID)#((qSk5f3U>!svK4nJu;Z#2VL?`_*r|M%5N}HBR-W+6pW7-(x?tx1 zQOr~Af1&~md(l@lATdUkq8{r?EFz{jvu>Q;jmaN=416pRp+d`dnJro-eStpa>Sg#v zbr2H`k&cB1t9gpO*bGrrOqq*@6#}9zmTBFaLk`s2%NnL2<f*x0FU<~~Hj~O|7)0OA z`c3#z6{0*hy#PiWS5b`pS1k2jFagJ64)}<ChB@l&$;yxXf<sqTR)SolvnHpq+5-`7 zKWceju6UmACH?A8*_`)bhEEkOM;jKN#&x`y&MieM75=}?w$tXYi4|m}{F`_4domw8 zSGfF-&vHe>+zVXCO+<PH#4rjaFC579?b0Gi(t2*H3m}2f^y*L{tetX!N=l)5i&PwC z;0Gj`drAbm=&+jtJGXT~5%HaL{IE$e;%TFE_9D--O7x-C6|gQ$N*3sXkR2puO}a4^ zc39@*dCmcv^yTA6X9vyTU7aND&5M(Kmr6C9wuVBOTx71C)~Jf7OlQBKQEH$;7s(n} zhcA!##6xs|dSPA!f0W5{3zSj{%wpz0Df%wS=S8kUxth7B4wKVC{&DOz7k6(=G=AhM z_q`=WJnOtPqe_S6PaKXT)-HZb5qstGI+Kc<WQ2H8k53vQw-~6mIDk$4J}H@pVnr)- z6g*4ssE{EcRc+I$N^m)meqM*uOuFun+e?IzmnR8*iS2w(y3#Gt2EWj%FItWCyK0kW zVv$t6rkfOz8cY%bH&0dzw-J9WvbD0T$XMhnieguv&Wtis-LC4T<J~X5rr~&N-9tBK zZPwcO)81le4GT~KoPu!8fDMVSFNTVGQ>h`<>qo-5wQ~v<!$WqdIdp_zI%Yt`k_Wa8 zrbnsD93O!-An<K~r|5Thpjn6}vB;FSaZTa8)Ws<#TGIg?7gHJC6I;<HfhwtEm>3## z2m_xCxV#QK@lwOj9BVToMgTVw@)Lh)M3H!~dEBj4NFWGIGh$d;pITPTR<l}-#l423 z_GL_L&q^r;rGI(~2_HRqUOn{P<iSi~s#gHUT5Sf>L{wr|Hex}1pI#!DPW{&sjV_Hb zBTzChcEeWb4wDssoEj<8gvaP<@YVlYK$G+QNF(B(F&qr(VSHRlfbQV0Nph`3(S3~X zAT1}xi9%4*GnPyle<GAj4)h0dNa`KgD<UE31YY8VFkg>sMv3xt?h--mqTAa!C?R%> zr>6s-g@l{Ps>tdpC&F2<z@(A3xDFv)7#*@A-hu>9U+}<L0TnSAk^F9f)|pc#j7Z|& zL?mKP8Wwi|edxG$2g11)f^I#x*myve3<Xbj*cON{ic>s7qAsC1z!aHTJx`i)-vX&^ zvdH~cu}lFDMj`do*@)_zqRa3hd_gsAYpxG*U4+ODPZ2+q`<R@uQg6bQqV?n9RRY~K zGFoxUfpZqL&4#SCsU->RXtlJFU;=L*yF)UQ$G-+<$~T0ud76H&MN0j>czd3j$0CT9 zPYzUBRPJ}~EeIVwYOT92`xcKY`Ab1!{(fbaNd(CQ+Yx6#PR6>-rU3laAOrj<hWq=+ zX61k*h%y&1X!f)pUuus@Zja`k5}g`ynn0VPXx*cNz>8ceZ9>`m{<0C%QG(;DstByC zAcvNpXpCAeK=@X3o{}Y*ZbKRuMsd#0ZxTf9aB(6)?@ai;l)3PqCMEx6zRL|<iP<*c zZESqjMRIOBOejGLq2gIeSrjjwMyfm~xTp=VR`%H<bK@Gheek<}l|1lRKS#YnPZ*i` zgvcO91EY-n&Me*ax0hG;8@Ac~?1=~dHTE|F{n&@fBDj3Qxc}b^l>uGVNVfSATNTm9 z=r=hv9=dk^NJ-fgeiN<yXCDxY^{L~<7WDVn#mLtrWnz+-*axgU(Ye_b>Co}4eC0)0 zlroJ%M6VjtQU8kW$Zl3Yv<iz*iIvd8VoK5j(2$nwQ`y+#DNEzgnyu*v=Vm9DF>7>o zH{vZY8zVYPe`eGVbAvdPbl$9{4y=&*X_sVY7Iw$lrc^6cAd1k%Uc`$m@}m2Vf$-i= z+N7ERf)&<91yisJ>Luw+o8(n}$*s26<Va$lRSSWW*hm8$w8`@k5<pp}E)A2ogTbRs z>(8W)=D_7A9bz1$-<s5O!}sUP%9{vs%)Goe)Ri-Ch!V<3cA$JmLC`pjQ;r&Owkwm} ztd$u4>KR8ft(E)i94o*&tWR4h1OtaOh11QLP-2ej4<G-8;1qQ9hDB?6P^NGrgZKu& zh~w>0NpV8qi|`}mWwpBJXPSTCQm#_v=jZ^uxV7wSxjXC9+$Flu#OP9525^xbdWy)f zLHf}U6<(gG8g#^xEA-S~x@iim*(vxl<hM?X_dKp#yZs|rk%x3yM>l%qmL+4!`K!92 z;+}Kq@(zE9e>f%d>Ia2tDnvTCAKFvXft|*XULhvriGWSG*QR6?Ii&L)eR0gYQ$#1c zemU&Al%|jTP<%TnbviB{qD17F$uKe@k8OacB;Zj11tc*(7++8le2YH9L!sl$pl2=N zi;U}}>wek#(eEbb4ZBO}6qAL@I1!d2n)pNAxxe||+PW_id&)w!^n*Mq23_1mlS9ap zdl3>b<cPvJdKZ;g5H5i-IGYm>;}h|Nd?ZpSc_<_kZT~UKMra#p+Q2v@(0d9ej%d@Y zG}wAL5+taLeVC-FBXo*M5Rv;}N^=)Tll8XWnXgQ(1Xn;R^%Gmg@t==mqZm)0x;NBm zOqEQ@FkzeGQUsHHtj|gNT@iIyLas`ogtnj@q#IH9n&hR+dr0fRUW~5BBT<A)!>nxQ z%PmJO0j?TyVNJbo#$bPiNo*Q9&+wD8HS3wz0|a@0xau<xt3PAb!R?7QoQro$h_w#N zzrMHJq)pIWxtIQ_S2<AKx>*6`1b!t_+^pkUQ%JE+ui&l5%^`Y4OFqD(==sAedojj+ zedC1euJ_>Ab_x+lC^M!e@44Xbn<E>+gXiG=Pe`}3Dss!VRpFqGvjJa~oGpEW=!pCK z5zy7qi<e*X@6OzqYbL!Dx{0-;Essq>pw4z|kIBW~EUHKTuC`$*EsW`Xx#)vhltS9B zus=^GK0=ws^#+8)^jwk7l{76lQmhjzO%&-znFaiiw#rF25%;ht7AZH8_YgT#^hy!; zk6Kx?^gT<+R;tfHeEIL0e)rn*FN4t!Gaxk!(I+|$Fc;;R+L`!O0T=<SFeoeePe}cf z{Fiv_Vu!!}2yOG0hC*pWBfQ(>ZmpU7+Q@feJ=QsKV|yWHy!;&fwg_c4D4UE+nJsdj zJ_>E;nU=sbP*fx$?zkTmO+^dht|zfcuU8o>)=;!AEV+tyafqjpU{kr^A)Dqj2B^14 zO^7ESDixZ4C7L<0TnQ3K0Q5pwTUO?{usprjA4!k;^~L;<o?gy@I(x^}fbjJlHjIiK z!o+YF{oqV0G4io~^ZU+Oby2bCU&~@Bhu*R`mhHu&V$*pS8M!4TMg~}0aU5#6vAjC% zk(nZ&-*xJaGkc@I0#8$XwOprzt3VY>4drbU#HQ6meVKEi(I*q{4R=pb+evG<Ti116 z{UoV{9ffyQFE_!gM!EX>NiFVNCn%N;4`Ux!u8)PCATVIKWTgf(0Vp?lhZJD$htlrN z`$@uV0VKYL>XK>~ATrp*IU_20ddj>p?lz)<Ao2N<z@Nam{@aJuOufL;1xg-fG7=u^ zJGI&L>hW~v%ut**-1iR~nfu}MlrLP_;89QRtx(7>Lqot&`Aqjcp-d!!(&f$5S*4-m z)?0#~Vc+^LCEZHT!)r&p;q#|Fb;>qBv7F<z3%kKAPeI|?)lry0fwPad5TH~d1&87< zT+PzSgNo;qzv1E!){LAW0#Hh4@%>M5!&#`s_T1>}UMc(;NgfSK<aHUW>NwWM08A@u zZOd*O)#AHmU&R!h#{xVINdYdCG)jN|!dF~G^Wc1EBHZ(DA<?$qy_m&Q?>t%biKwnH zB-aPAC2N9}KdKvueF{A6eS|433qz&ysOThVDfn>BGdz}zp0E4p_(6QR_=y-NK;L@- z_%j@=`4>M20_zR&cE5K?lKK0#cxYEvjR)Ar(RNfnRoC5<jF+Vw(^EC3y|0k+^a#7M zB`H>oA=#5WhlT!jbK7$!;b)T%#N`mb>H2L#rGVPd)Wpr+<tjR+e9tL;!=#0Ki~6h? z&4<PWqiA+UIG?Dp4v=XOYrahSu(|q{g-08=Kfw!bKXbQ1T1^<Gj)tq<nXo*P%$DkG zbYw=mlj}@01zS(*-OQM?-V`+d4hp#PiRX{`LO&sSYMy@Qulx8z4^}eGqJSK4vN~NS zr06)ts0k}&&_H)4^xGY~u)$(26xYO+b1grOl)F0@i0w~qAE;mohf>G5{8u2|DcTs@ zD`$o&dtGOSzR+gSTh{cqmIacdr_%>lb;DRDD__yO&LVBJl)J4LLM^TqF83D?b_0W^ zc^fDPyt_QZi(fygHStqNo=!C%AfGMMQV{TKe&NtJ7|voPLVw(@rctyXg|5_cUiOVM zYT?HY!Vd+sc7pI55Xpnx8^Kq69FdCtji7#GawMus+IsX-73e3C9e1!2iQfb!9<H_y zZ8{6sU^0*$OcKlf`dZN!yG;aF?_4cYXWq4;Z3EAWXt&ZXqFARku~N0bRhnN+5o#(3 zpbc6GSKrLdd})L_c56x&SugwUIx^&?++$~DarNRt{(y?`)vemvo)8S)%Ifs{+_`<4 zXd;@LxW`{#CJw!_l(uuMWc=GAZz%SU`aDQG1C%BL>^9RDh%meYV>oK|nnnn-tDRjD zun*snW>$`@y1+zyO)$5U5C(?`{+@d@ZO#l+St<=7NUs@Vkj;m#6#YfmioS4yn~+%t z=&8Uv!GWsJ5`djr>+D$e6ALz5%FE$-1_4f{;SEQ&u*497E5CMuaTvHY{d@y=Hdb}X z9Eb7~!8Qhk&px9_&Nr=u$ws{<osfc`JST@*yGH_!E`OdCUc3IPe7>`k4M3VL5^c}@ z!2dban3c0URni0dq;;g&hR}{J!%Wslmy{b=)dUJ*46LTua1PeRS^Xe4;{r1{elj{@ zAbazbU?SrkM7?3biMXb$2Cn{z%xKa3AV)Mxx%hRY_{zup#9;i6cKeZ4^v+~@d!;19 zxh;lV6xaH?%PT#1pQfv2^+m3_Su?5c7^LkpH_d)xvjO#Ei|Qj1_3bw~ub?rkK*1ai zkuIp^Xs4-$&_~eccDogk<So5Cr^~sA5Y{Ry`Q#{VCUmw9jaL+07k<;HPQt?&68nX6 zj__S9zdP4QDe!{}{-;=#Q*6tOW<GL*bW<2tK6{Ew$q`C(P2yh(b%NwVytyNUSu(Ou zWt=AfJ=8dK%}~=w(36`2(RzL7F_yzj2qnn=*+Tk$CIo*2(%p$qr)(u}R#_i;oa@Ns zwT3^Vvbh2Cj#4N8L0&k62}9MxN0ipnl7^it4;y{1ds+#D%I-zk4<aAnt6fNCK)We0 zqip)i(t+TMK*UaMq($Cm=gZ`@h_)S8F3hIM23=!0{ClqO;`0#<>7|UP?BJEY3ld0P z+X8Cj7$-3mg|4_&f4Xp}s>bPJhNtIVW*cKs-sy{$9)d097^dv}r1W>9eHBYZgM|-i zG&`(Rw}p>ubmN#lH*XZxd5j=l-&B%tXff5+qfTmkie+QVho8$kcWS)*L1bvR<Nka$ zYh}hn+L8q1P$2{16Hkk=>yhBfw{=#q9(?(<BS^#KW`K2MEpGU1K{b0d*3DgLEYprX zmvv;4UCqf-R=?acEqd@5j(+f;{r~rW$oHPE;dCs8CbfqMK;2M$k5AX4PX;)J0_SA@ zpJm<#)Bs|T-M^Ish@ag?eX%SN%k9q;%9y@mh=>S*H8LwGVl1OE`>>HzVw%v8JF$z| zgxNEHurDJ${YEKB63D3<VWINqgt=u@{TpM7AgeiKpd=d%gEUf#0HugB2*_*G0q#-W zsKG}NfpMAuulus-(jYJsj(L&5+YCl;sNc+oTefka-^R&+a(W8vqWD1Mm~dsY8xh{2 z?~rF4<#k};34s*x5=lZ`z6cMoM>V>Q3MdbiLn{+QSCtoD4L<8zNmEM~OiOQY$3k3{ ze`@TP{biNMjf}g?It;$f@-KzwN!opMt~3q0t~QY4DwuH%lIJATz>m3<CO$`+178_F z;L)!@D<$80u(ZF=Iqv<Og<;$|@Ax#4LR-r7ezxCzEB7TY4t}kD+Cu&WvmICxrpt*G z86{OGeIPo{ov108*z}iaoH=S=kG{^8b9#SoLFr*Ymb;TP63k%=?WcIU4SkBc*B2OE z^BQ$|nyp7Av&OKo+!rGJ#lb`)t$DLM05!r0`uh-&fMQ?wLh{Md+J8De5`wL=PV*5d z7Ul~}W~iu~VHv`xf5L;JDp6jzx$+#=QR$`je0jY8+n}raY@#N&Z^-S{y^Ha^-R@V$ z-PDD%8j)_Bc5wMq6#hP2V_LvGYtWc(+h!;wt_Cy)8Uu4lLVYgoIXgfeLmJ6VA4zQ$ zgnB6strvIzWDed!^cW-R&oR!V7BP#W`xJmnKO}uBC!}m4qo69^g?58>@fKeu9#izO zSAcR)bBk{C*!vQL|2Ec_Egx{H?;}agETyI6LeuJqCrd0oorM3*Z5eN$?7%FmSP7|9 zd&&2y#G|Lv=ti-gnk`)`W4&rvREl~9r146F%CMqKnQ>pU=?JGE$XGctqOhi1U#)-z zL4cz*7*8nK;q^RgpWAR+(cb3Jp^;qTY<%StFKLU990J$+R$rCTqpMjYW3NTk5f{3f zyHR6zqf?B&^eYkPT3u96SKHxqEjl#F1h)yBVhrqdI@}>8?6w^*H^E=pkk&5(bek~e z6>*!uEl}S#9JP7KV$-R_Y+~wZiK+IhB~0;02vmaEU<YtB639-iWIt%EdRd-Mv8inb z+@t7EUR?N&bO9K`RM}+YlklKD9UQ(*w4F{+qu>Jl!k_8MzTcfwvQmajuiFi1Supch zPK@x(nRuANo6bSOqs_TUJO2C>`{cOXzgU(Eze^<R&N)~FX2sl;Zg-6gKar|ukw?j8 z3bh3h_NeL;lM|8iA9J8Td*m1&`wKFR!5_F|2Yi94)5~(D&OK6Lgi6x^{sI0Eh<`x- z1L_~p|A6@i>_6cC0sjw#e<1z?sYRL&nNJmj7{924dU#)<A+KW3-j)?N6Vx(*#`Tk# zb|Uk*{7vxCMtN9AqxSgD+HEV&0_ZcCTcIu4|Mz=L?(mSC23MtE$^n#Mxro7%QK%84 z5((I|zHuy5ha;>^G3Prtm&^u2yG|2w=gqJihaD<E9y})vPULT0!~mpWxL4>pn-EM; z@#C&T$?Dx(ZQ?=f3*<mNma`-8;i!stcM}XY)kl<1meVTSPF{1Nq6^WYMW8c^^la)5 z#?w5T(~R4TB@vc9Woa=bIgk09OszyO2S6rxk-yBo93mWBdORr-TEB$3tB*Na>EObd ze+`a&vBUkd*L2x&S7XKj7ntN^uKx_GPmAv~UCfVdt_dfIipsZ$y(ek^cJE(+9pqYs z=1rjQ<Sib+Qalhi4fKGDX&4=AlRe}jv54u+ENqz8ZBxv{VX!{B#wlH)q%yXmzz)5` zE>v`)W`Us{2ol2XwtosgA?ndZBstr|A#c-=h%IK}WzQWxlr<hp-7vKnr1An`G1~~+ zes?4|l!vQJlwr3y#spNC#ed5g5yCn8U8SYXc>Ls$)>1@Rbs^KHT{HYNm>Lo~WX=Q0 zk(Y@P--3KKFaRsdM~I|oE^hfy`S3o12S`BQ>o1~MixKWy5a!sIB6@|Rk=N9nNNYi* zxlRVN2_6f#?WU=(h$&TAub>7I$xCW=drd|@{r)k!Q#p?l+))C%Ld?8q3Mr_V@#E#} zfRiwnz{ub-g9eOQo!6z6)b>aS-7K#hV{TlTaD|IFFSpVe4N!hkd7u0GcjI?>yX~M0 zPsU0pGCjSdY{dYSCf!$jZ-2(MJO+eA=|l;D_Sgfpl2=g{WhHj$LlY8IKhS`~*XwAO z+NGVP`P6b$A}wb}PW=4prIHj&ypIE!>!gn0UbkvH<bWceKY$o(0V-1iuf#92zozO8 z8pi(yv~%YV<@=>e=jUCthi{el0yM-qnyTo+%)4?>OuBNUb;y0TGuEzg7+)Rtt991Q z{BwiU6&+o?`c9431-1dgsq?7h*d#_=)%^R@_+v<yYcwZyD{tMghZhx5Rn?{Sc6`1i z$Y1W(Yd-1s`G`%Iv|YcCsv=i$nr}KIWD^)nLl;)hmWTd8anvwLsrVLV!^7_ipqPL8 z&ye^#S7rXrb!n5b;mGgI*G%<2KW79JCU@=7*!c4fUTdu{uXidy_fKkIl9_T^F7`B` zj^)O<xJsLoEn5{N8(1?5=ME9>3N}fe$2Gn>gv@ELiqy-GD3=cmVePuC&a1U)hy<j` zZA1*ciE`N}3Nn3z({mm7zK<s=FUZBCM0baJ@|gO3*!QVyhzpQd*lc)vt%%w$QO+XM zqjTveje9PoPZi!ELm3uBN2Gzzbsjm3(IZ;^*o97L0&+qq)tXyLsez4@8ND#fQ|1y0 zgJH?o;a%Rz-)q8RWT1Y-9}m&6(PSHDmHF824TDB4xcw{>nDV*N#9*IjFW(ZRU`i(& z#Mm0t8~lIh3&{O~M5;lt2wE2h@8Kp-;Ix+U{yDWr_<%SAda++M{%9Q_Ub{JRgjps{ znUgMB0eV$7+bt^gTW$mCJ*u8;e>1>ctu9|DQj&RVMdUW4Yx|_P>Uen8$Fkj%D0nRz z%=~_TdVBmj4o}_q5cO7rS7@^z5KPBev6&Knue!qJJZMOvq@nqW#isOkK!!9F<v6hl zT2zhXXPPwwO%y4oCwvDc#2s5FlB@l-<O=ciNbvVur&VXaia(ZECRh2LAu|Y}2Jf8x z-$GB)qS9=&y^lPfMAQgm3bK;)Ke;0JF3$GxwEdtQsR($Wp6?qlpfkozPBS5y@=*yG zUr99cDR;AeeuTp9Frg<{O;%B~gYKFpx{4!TN3F!MKE+CVme`iqFXLg0j@#2*e7G2A z{^$aA&+UM9qnoTHvVuy`cba<kW+>@V0Z=^X2@Ta~OzpG8#0V7*LjDIzi*OLCjWB>C zwQ>Np1#}f0&yt6o_^`}Om+Wrp{7n!Egdd%ZGSKk)w<4Y46Q7nZD|N}#w}ZA}V<Mz6 zV?L=HyCG9_H7oUQ<?PbA-d@o+O{s;wVc^Nsm*tJ0XB%+c)=Mnk?r233{qPQ+T6_hy zWuptT{k-sGx<=~3J<puw(DE?!^A~d#>phZjBnV5T%57k$ufK0=WFQEIePE8;ijAL` zc3+#iy91J5=1unnlg0<Fd+m~@P>nGYNw)%0x>@Vrh`!F}#N_%2r(!cp$j(SEDdVUl zSq*j#iC-SAw)RL$fq&mCU02T?7tr2;pHJl1mF<8ac`<eMH+JfHCX)n?2N;sN@U%AN z0cv3EcyN8WIXk!EabV48o;du=DC3{>R}XpR%C)}J6Kx+-?29*XY@Cwx92!hod3og8 zwHf_suvLr%^dKKE6ho>K`a!!I?YbvI9kgT`wOjna)3^dro`t}hdn*5s!eYMH$9%WN zM5n(05n}o!3==O>gc5NTY=zS!(7aHR1zMOd)?;M&KFw=e6s<`ry^#_jwfIO#+%Teu zpIk>9UhZ0o4w+pUzRdcjJbxdW#M~8#M#(#X6Z^nvaJkjVaQ3GtK3iO@Le$tg_ZlH^ z9aPapMXMmc`+m~#giaGY0w`_@SRhh=RA^tZ-j1j!YD0ORH*jg!0w$;CMCj4|0WtJ< zmg1ZDjzLaxE8EO}{8jRLzqbTdZ?Q`T>DSV*VX8*JzyWe?5_Zm|W37v$8hnd!u>^|# zvNc_g7L+EkO&yVncH>Q@g<mE5*Z#WU@;~ub{(-dkP*(5`Pk@fKk06j&KnIlP`5xac z#>yFdUpD9xm-{Pa`&YP+0+fE6G>BLD?GzB4!t0^X6LE?wYR_1@FOH}vUb9tfMS^AM z^?R1Ygj^x&aatcutDuaR@dEGMh~1_jt5h}BU9bC)Or>sMG_*Y`nkahUqO-z&0f?Wu z%fHWLpjS(w!3u}+dTvf?7a$!XNx6_F$}~BQJjgEbgi4#=ARoO(dHoxH9wZ{!oMp%o zke~msX4i-k&rHM^R+o^{crxqL)5}l6`j{4;<LBa&AL=`gB?G}8roo=}_*36u3ORa> z-Y1zHn#a^me~k-!{jPdxAR(-aj*3AKPMI^E;Qshb@Orez^=!^jVB)5QVBt%T((vY) z?&Ao3yy+SskeoWr3v;Tv1d7=;<(;Htm@E16L<J<v%(m_(k&{HRDXu(4=_5bVHz)UJ z$5Y*ABu{>aGM^PjK}ivI<JDzNa=Z1?tTvYANR+s2WyMI<P`uct74h0^!=gpz6hL=g z0K~iC6HWoMT^ucwMRUv}rhps1ZwFBx6s~&M6Q*z<8{Cy!ic2qd3Wgh9^H5rL-jyvJ zmdP^T=Z>f>x=tH}+~&SlQZ|=5H}uhWy21JKZm8N=m$AMz1$vm?%er+{l-6BH(-=Q) zJiZx9c$@<!4}{3y0~k_Ou1PRjIz~|^p;A+)Q5E4?{%zR)Z;vz!cj}xj6-Mg)G^!dn z4|D3A3O-|~+YD-p+YH)y?EijL?pJ&-q2bEV*H3USBpJc5zdZeI=b-BF$9i(9EV^*b zv@5FX$&K7i?Q(ynsx9)@k;V^D4(CdPgzi&wc1>NWWaQfZz{|(b8MY$|)So8_5@fRS z#bf1N3u_pWma^rb=OtH`OlnA_;lSwirHbt8;a<swC?D`2%VZ!4T7kD{+COgxwbZpc zrYOT0bcd&|lkvd4S3xghmHD0cST^L?ey*~svITvZru4i`2=vEff`S~cZ=Cv}U&|_e z;y-m2$rIE{dQO{QTfdQ($7R4QF}RV=fy<;j&w(L|qRd;6hTtL=cDTXHaq5=te(>uV zjSv?<s&Ly=<CKD06LGo59gir?k6fnWUgZ3#g2=g-df{-RC>~+R|9Mi$@C|K9gAt~r zgkOsQirN&|)t~EAw$w6jMbv^Lc1U1nWj|5XQSpXS7o5VFAuAMw4fI<kG&Z_!afxzi zHWH25%}+xyMOP+R%H~c+IdVVneod-1PCHM(w92lTd9Hz`fh{`wYgWrULvx`?q1aBV zUcsO3*6~QiGwna?bEdu3axGG?3akr%W&&!cg28;1Z$hVFK@kh=rPIAyF1lDfJJzj| ztauCq(mi^m%soT&bK70L;$&2BrlB*KKPzWS!qM8G&pw|y5xUZcJC~X+e!87x`#5UR z=0;B1YdwJo<KXeEB>V7VmD5e4RECqCKI|9bBOGD{*E+u0GuNkO2ou@|`6`}dIGgx> zTNEwwXJyHekIDHi#FztSxyY&pF5WJf6vLV|VGEwah332+3n7tAW3o#(gWLjZqkxng zhi9LHOX}{CQ7FEIq96u!;`vI_u^F|y-nr}Co^uVFMW|EPUQk0ch4dv^v0sJ9W=kc_ zz~8%WQRnYfZ4zT^(rWPilkR=@+xrea#Xj>inJI#3upLysVxa&-5~*qu3A2*!&7`cl zCxV)ZQx@?5arI8om2L0SaBSP@jyksObZpzUxno;9wmP;tX2-T|b?i6icg}b5|Hc~Y zVy(Hx*mtvP*Hcv!pDBGO76c4E_lY~_O*ony9{Q->eRk4HsZ{4xIUG9ch~%4Cv<+`d z6Mji>6f~|0fNQ#o;ExUxT!ETGgo$bGlTXO}LspT0iQ3J?xtrh!Qyh(LqVshp%8~U~ z5rVr(#mC=jMUf>=UX<_1X8J5c4K>ajaQn0fyBqm1^CAIBWR8Ing?eP1oHE8jb{C;k z)=4@gFHRF`2wVXiR!7zyXb)?#`4J}E>$X3(>YL&|0WgZyj2}|@w@Fd>(Nwu6l>O+} zA=pb@Vbi{uyZ7oy4-jGZC~?dE?1bUMTcg7pwG-EY?+*73CFnqB`yPb&(RI@M;ooqs zlfyqCX+`xkuZB2gfD-xa)U>fVKGL*{Xkp%rR#}Emeb*td)&#?*J$-9WSy>5%EK`>K z9JFVufX9xfr$K>%V5y_pZMQF0+0l4g4@JDb3|FM{On_@fliPwqHElc|^%5-^XL3yv z9l0V1Np`euT=M|Q-%-0vuZ^gtJw$sGhac+T5)!x+T?Fla1-2#j_jo(r)9ojzG#mV% zp#@zE6AK4lM*Q0kB($eN)PxR6a>8Y{&tl_iz{pwj45ynRO&ESHga#;SQcm1~s%_@{ zWFOBJBNl<$MuzQ}uy^x<Z#|jGmGn(Nb->`r_(b3SvmxINWzwbVQqZ|y7yo;==kAG{ zz|3ZrkaPK3o&3&VlNL+IzR|4P$HR(hVqV_curnD5kO<F~t?P~;MaxQY2r<JZ9iv<U z;AA+C_C?@kG2j$va5gdPA!O#{0;s+B9hDpZBo~-r)tO3(R7Yi5ZE^{Ft@2=QB9CsN z3Qri44Y1CAI2)aqAF+o7rb0%-+0ya%Hw)<vzhKggjiQB?)=>?{Vt*dAX?47T9yPV6 z%;9aF`$<n5!Wim*x*}ar1+{B_H}!>Ma987mub~LIv8E|53MDa4qrv;MlBn?5DzAro z30;O6s+D43XYLc}{`(330e|_meSc{PEm)>#iWso0|L*TxEI@xxv=n$|CYJxbU}j<k zqIjWw|4Jy;Rg*HMT%n@@rxfuRfyG{EGG8y>ZOL(faNcO-U$G@r3IU+KH<}PXGvmJ% z8fJ8ibWGovnf|E*`Rdm&qhq3D{Km}uU%|#dk6)|I|NhX|D)awVnZM#sOfAGdXnHXJ zzxeQhwzl)y5T@T!jbN^n?CAX_!-Wa6>_ypqD{}06yxci-Y6&d`iDi<?#@*5*5B#|i zXdnq2iMH%t15^!yEWXFJzK$1-o72<4M?c7~OTaipeU;LzvAl>$21dWieBplZEE|}! z&d}fz(j7OP0x=7K6IUU_Qyl5ZYD!TFq&llOA&HcM==I1mJ(NMy@M??m!A{4L!I%8w z=QCA-?D2pWUAA4pfa;XMvAtk>57pZ3>wR<1b3i>2h+XdGy@6(y=F;r-n*ZW>cQjV# z;&*4r{yMKS@##u6VWGA)0bEn{ZR)g4#X{HFo$_h_g{=lyy1&}`F_-yVAK=B7S?Oph zKKA@~@8GqC!5zZA(m=n1ZZMy9ZZTV`6?RRsC{vPV;MJ!-Yl|K2?NaGx#-=l8VhI=+ zM<Mw)rsoj8631BLs&$9q((mbVkVYqBtWMqQ?yu5r40)%!L?C2|{^=tba98MWj0rSW zWn+R(bs8BUK-5bXdLduG%xw6WaIXhh^6*EN^H8y4en%F4IRX>?;;^^jDdG?u^`ZH) z{~Y>YGRb_Cn=Lu3^6IFT-1u2JXhi+X*{M?63{X6#VugZhw4<#(eZ%jC0<IAQBkbIC z;nG!$JqHcTFg;BD##tk%ah$8IkR`4(5YpHx+j0<4DVnjH=t*wf<VzAG`on>ilOAT8 zxj#UL5!(gPm91^f=J2`|1_7ONx^E_AK^0V%UR%Tsc6wYCR5TB;gfg3qk_vl-HXuJ? zM+kGh^m4>Qf00W++{dj$%_f=+6CR!K8z2m$xwqsit)j(zsY{+EBpwVQpwE~e92>V* z@stO+Pi(zDw}&@*Kca!?TYA=<9(Pif9A2+kuN}_N=42|EvG>=65T6vTHIF_a!p~wZ zxmxt?{rN;~J|rn3=_6}u0JwRrV0W<`3aP3zEQzJRMl`mXvhaI+hLrcK(_Usx=J+$* z2SE|#qg-Mtb^x{Oe>1L?5*cwpHXKh9L~{sm_V<u$3Lt!^hi*g4YUTzlSbqvn#_V;W zbYC3*O(2kwXUa*U>M)89af&ap&yu~n<zv7Tjx>%bm~;@vjix&+Y*F8-jf`fXlf=HO z-F^POhmcIL0P7s3r+si@MqF`VT-;UInxd00)3EXQQ5(uB6Fq-KO?IZM5^_B`wQLZe z$mWNORfkxfn|2o)p1?1rJo48NHYm{%^ghh%h=C)?c1{o>14k+O*t)f)6YLP${&V7l zHTn-xD}QFF_MKw?5V8dhBOJn#@2Z(|OWMLYlm3i=VndQ$S9kl7WNAb_Xt525AE<=$ zudw=Si~(*#oT4PWmv?QpEU{CbQCAg!^)vmw<RCeaNKB<Upa!~9R8Wj$Nqh+rPEjMm zNT))MK+u;A`azg5^ldgk8d7_S5%oo8i_Ygq*#f)rqMA}{mzAKYWS6POW*?mUPw#$2 zJT{dT)ds-CVnYDmjF*+^tM>y+0X4QQUigP(DAf%$r0O4k4%j1s`R(z=iW?&UyQQ#n zd6Yc1w1`1LbDuM(R+R6O621U@PP#*KLVA$+VFi*7bG=*_1?gN>Y%5Mr$h4X6@TA*~ zhMDUSOY${jZP~felKa?+TbI?{lWAAyuNr>YQ^x_L=IkmCk<jQvVTcu_q}D5&lKcyq ziId8HQuN3MRRg+*PQ_)?&SMHdrw>nCbP%@5!ph-e)6?Sd(D?DC8#@^~@$X=9N&v6s z9TsIJLOWfOk-LNI5BI=jL|gS#<EUv%pts_5Szlm7%GkSF4&TsuLwarw@_8`9wh3n+ zYP~1_8c?#H=)tiFiu3f<Rt~AG;Y+ReUefg<yNbYsJfhRyAgN0J`)dK<5T8bReuVK+ zMN6W~2?Vq(KfZ7XnvA;JCM?vn@p(ni7K~h6#BcJ<xXCBG)W+DDC%Lk`X8U%5PnzX< z^L%na;jF_?%Hv4=T2C@R)6_cm*2ePxlWh6v)SzVxC5<yYfGRvbx_qc+%%newecNuf zf)E00v0A#Mhxh~vN2(5>yl(uM$CivJt=OBa#es!0{V9kBXO80~07+Z50gL(rXbcTH z>ab;rkeBe;0XJbO6VR)npY5>Qv2;nESaqagXtr^FsEnr!Eiu7enK3%@BVBRr#zDZ| zt0X#5pYz>e_A#~Nvv59L`CjC&um0vCjFC!i+GaxWo(z2B8aE@ryIZqR?=E$dW)kQ3 zgD4~o3<@5@-#Kbi?1;h&@I(spV$xKm)s4J!W%i`maWQD(ES6L#R-%~ePaGm{C4h|N zxO-?Up{K&{UzA9mGni1DbdCv()5@#cVUwBdod$Ug+2tVoW?psnc2+!9=ROuWSw|%$ z&a?};ohw-~dmaV=e~019sm(g~fh71_-;Eaj=2y4=jmKWpsRZG_kFdXvWgnmtvXg$> znW)KF&7rGrUBf$KT8M`E;a#|qrydGszaKAuLui<Gbwu^x<tLQx59Zt68x~y%!&WH1 zax*7rx?-=LTX1T~rfmUN<5Odn<N0NPsI{dJ8QH)xlV3Fk7~oO)2L6PS<ALPWQV}O| zS(HAV{_sQHyo30uv8aYzLULGKxj~9oPa0W%d(iN?(41{nF{?IZazc@%DnUp=9b+H7 zlr6i1JX^@rjQVU^kFEa2@LPfA5NZXoDLt8kth0AqPVLQ2z7@q!EMYzpw2w`O5(E<I z)|xa+1zZg&fCaY$SKiQ5#Dd-QSwr{-+RKA3?^oAV5WmODGGp;zXF|eXEX8j@JZaMP z*aUy{j(GAoFKyi9A7*tw*V8K<iQV>;YIdp02cWYTiKLaFwdtJuIgvxk<G9sMLX@LG znCVe`+2Zw%sl&of+{F7K*>V23g&D;~6OMkj;0(*i1z6^GyRat0rg5u+T>xVxppcVK zE{-DMLVmZD2y3y<-XWuEadMZ8VPOl1bi87eZm+GhbD8Pcnt$q4`SB|u4|<4Lj|dLe zcy-M9v5=89tONIAN`D?jba!w)HMxAiz(fo;>E9K&#|ta4@4|dQcO7p$o}BsqCK*fr zC?Qe6060lpt`3JRBCni(-&0-6ttOfhlr1mSjTtk4N(`M2H%B%Gk&70Mejz$2j53$X zl}u7^;$|@V(z4GQ-*7>NRs~Zi>)Czzf2I9JG8NF_Qn2VNu`gd*7(Anf3gU*-S-7$i z)keaRD+aX+f!r*>Ob6JrL<>vp>lhaEOP7{j0K5mjtBKwifl=$*99!V%4gDT(HjrW+ zZ428<^V)UEM!q>s8@3~o#_I+vD#mPdMkExTE{+$GCd<~2Jj&RtzTyQFOSVDm{0T3~ z+TyY-_&YtHT&Sl>be7^`HbV9GQw2fEz+rNif1nC1MLVXao^f_|Zl{BMjl<-}KD-i6 z901OGA;UxZC;aBBFB(OMo>Bf97I+PDNsFh?(_v$V2a5D#`59$bZnYf1I>Uo^D{h}d zY#QSf>S5#xY;o0t3{K1$ABK~TiUQ$Xf>>xv&;l*yp8cV4)#?uH#1Af&Z)tQtB^d`j z)Fqca{SXu5A+iu!76+vy2$kY0;j%P664019B17q>k*>ypD?hf0AAV=LgINSE!X`Y< zHLpK|E-f+g%uVH<q28mZ!*tUk%m2PbwTaj<t^upwH~lzdDd)y~#=vKtgw54z)1dvZ zXrY?XTy#QdC$<jcCo;+JwB#6*j>vg)BjNmRuUYV2w=GdbWN0Q1Q~9MEXIm;&2iufV zk$KnJ@UG#m9vu}arTgTun|T{Kt;IJEP0!)`zqNJDtjzy1b=LnFJL|txo|&C91p)nw z$$ypV{X@T*+1XOE(9J;E|0mkCFoB})+5wn3|8GBtmZmd42ih0IPU}c$lE!)5Nwyv< zwHcIJOekm9ZYIXDvYDi3NK)xo(a*Ir@b5(kOU4+fD?g{UHtP`wf4`3i!Xk#(A|Rfb zOzKVQy+v=F7N!<T#(-3hWHgI%)%4-?YM49O<ck>Mc=GnvLyZSO;i!FMt=x{qse-4+ zL0!d4Y72|z5-;mFGg5(|b-QHVGNr&xh$L-jxw3Qw?auc9*0-|TP?}W=YQaP^>HnB? zTL{e%Ohx9H8nOE(!onohIy3kzcH?&K!MQtxL_g}J+O67+*oK$9Q=w%8+_B}U$~-jo z2oYE?LB~ra?z;uJ@TRLpWt_Tl>Gfyg(UuPm@4Vh75pGw*pWogRAbpRRKdkPFS-*tX zU~NL!G~W|rt3dT(!f;WjUNUVWV&=w?*thN}=W3)ZhQ2B*m|_5U-n_AO)b0F%<Ko11 zI<D*S1H#Zcyzt%aB{$&joRwaL&*{8cDhqLf?H*NVSK0y2(CHR>0cYWPB-C_Js3Wio z>Q;0h)$kM%@fokbw0F}WV9D}FAwl)%!(<Tom)NyQKVy};S_Nl_I{Xuuu~Jd3MUy`W z4|o-tpl1hQ2_rrnNgLfo;+5AWYw1l}g-fiXe{Kxr@_C?g_ePkl?@45fyzvvF7QfZp zoZ#bE`t}2Y)Sbnn%%%NZIXER&6(@X?>*5wS(jr_$d7zYQMPX6npMV_4AU6fH3=ct* zo<pM!eZ?2Oyu?!|{YiTK@)aYEvHS}K8S0-B<Ult26!*g5k)rY?zGybeED5k#_Q$p3 zAsie{Kc)@V^T)Fxi?qUDdoO0rTnygR*jU0v>tcZ1HKZ3R3f|M5J`ki5_cqGNNu%KV zTN1nymcV7WCr{zkLX_x?>ObLK$Qd~@z%kieh(xrJiI`!tPA8|kyU^oHQ`?x*h-O~m zEBkLWN5?dk_9oJ;Y8*Go7cL!$*HvRtW0GwrH>jrJPP?o8e|`5`sE5~hTyPMJ3*Vi3 zD-8kNTZXI_h#-$f{1X#&OX(m})+*B#KhEY>W#?6f|J+zL=^0_X6PtY6>I=^GXy1yA zf@zv$Y<qNeoFle_QIoE*4A&e!9DA|5hfFOr$KJS_y6~H5+<oKio=QENZl&6R3<N-y zAja`DN|cG`1-}|SEZ1(?$H9fW686Z~tttcRMzv$q54acCqOP+ZQn<TQGcQ2b600%w z^1O<vushC~1Qa;sA-3+z5*&?0>!*G?0p8lw{Ez#zziU{IrUnO=FP3AHMNF<Kvg z5Se)TFy%a6hlu&lRt^I7fmhXzG-WnA$@||m(%E<NcO1)TC!>Gq8BrmwWGpm`R?P#L z)0A)VXe0k#50*8w>9+a0H7!k^21rc&*&P4Yfaf2@TtgG?j==l_y%qw>cmKOsRI~!> zSOc2S!Uy~tJ|3g_61x1iPO3bn@5laUOwkbYO<+RSjIw1tSvZ!A<Z#&`tBbV=jRW3F zMp5M9mJO7}R^mg=CiAlS9-1s8Gl9YY^<smk1x2s~6(}VQToSpko!#U+6{)HnaE(Bi zA+QZkWSs3DghEY`rs`iZL!&+1w4#3H?il-8vkv-DV)aX(Cp%`aDvhtL5m^4Ar6_l0 zVd%kaIg!|c_G(wP7zaqu#*u`xfwkq^2DlV>)*#7Ewai2Y#r1s+omf~X>bRl+`p^?Y z_bpJY2FESXcr**am1+^|+JOj>)tH9UTUbc3hTF7SJG#00w7h-+b7n%Ec8c5jrPmM> z{e=hv%O;LxMwoIRcaxv=h^UpBh(-1xY(Es6Q|~#?Z*)`+jMnx*^4w`=@t%0D4NDWH z51J<s=67{-rIIFMbnXjXmajeliM3`m=<gT4NS}|i%Mmnzy2?X3gcsH5=XW0lVHCN2 zgZg{hVdGR@t)0f$?s=kR$r1{eQmXcV&hoSC11s%`_sR1P`B#L%peJ$OcWa<0(Ygem z*(lkvWn#+1X<CrockyVPKgM>2yBq1kiOuN=8)P?bf-16$9`pE3T9fjClXr&|{KI{e zYRf20B;W#Cx=qIco;Z1u0Ut<!ZoqFqREW*+DjQKoPXP{Co{6IfK#SfBAr$_4<C0y7 zCUbQil-_$BvcZzb^wkA{o_aoa-qE^iv&adv`;-kr^4a%cWl@kW*Y^7C=YB@w;iB5a zWv=F$ZbO$-P?4{f&ebH~+b%S+cd?9gbtezc3G_5hz78(1TkcS-nQN{w?qT-Me!H=w zxg;UBY*Jh+vBiT2O$9k;cZe7_mTW1=nEB3D-fu``KQ}ZK>Er$UIj(3;-l;5+6Z^<x zmZ1!fSC_t4q7}LJLxY~ebUXOR$4^G2TzT`oiIVrRhJ%BeWp_0|Y@e{j&6c18-sIKL z8e9ug!rjgJUj63WhTIVw@!^pj)bK$80)m;PT;{1!uydGa96>K4Tb!tDSTx7C(8`0L zg~sk%&^Z6t<oHG6MT%5tCd=@~Uxyy9TKX}ZntF>IxDH6qAz{N63zd<>Ii)L2;Ts-f zg09so0BFKt5hXEz{P0=+-_<@WC|yR_MV{P>1%<Mw%$aX#ZeeuY;lmlvL>!pGurU(m zJulK4H31Irb&$ZO%gg7jAM_*2A>XrZf^w)S2W&T1GweLeF@nqugl=TOeIYVFxJ(w; z!2RA7==gUhP`-0{%!pa={yMyUaRCv?jb58vXR@JijH4_D;H=94U@lF`Ha~>AN)O!H zD>VT<e*%yqh|SjyOt?4w6~nG_Yms6%*NhL~2Glm@?yI4xcc8NRoXlZr+!*yfmEP4} z3n$vBByBQS2SoV^EW>Jh^e;f_0`7A_G6a>@ZASZg*G57+`27IWs%|MIkk(WD&LoJY z{A8p^T;aC>hHa5RRGJ{<k=H}vmTpYoIuvpfT^!J#lN)uDCV-9S_bJkJmo!J1cu1eJ zE3|2BP<DoO?CODOME<GxQE-WOma{Ktp9)<D`{qS>*-jlkZMq!=ND;~|L8V`wAiEIQ z{JEpTRYFYw28Ph`8!Ym~w*`N2v^_!yunsn`bK*Y$ocqV7$*%&o8T@n0&M@sP?uU>j z$Tx7Aa2F)F3a-08tel(%QScN(UdYC6Sj?Ml_ICwg3q#G}pULi(M~d(r*ZPt+;vMSx z-)jWa?v4f;<<&%Jqs{Uq`;vO+jo>R~&pdmy;Ph~>tc6|7TFc^>d3<{7BfLz&?|Iop zEzCRs9g&5<x+p>iKodBB&bbViKW9V+5S(Je<-#9@IWdA%fl3<;l)RF9ve;_N^DyTY z_LZq?6fRO~n`DeEMx%2HJ!ZlCu@hK4F+G%g3^)8<7>E(&E~~a4@ddcPR9WsmIBh9y z;s_a+o#Fntht#T~n!{-%41x35WbF<7xf5as;1xJP%b!tuef_2&Y?aXU<6C|4?3GMN zY8nn{*b^aidJz`oF+|9q&pwFZ>dq)%ENb@;ORPF_S(f@`R8u7x^jz@{7XLf4Te$h4 zKD^!|f{x;lZi^0#l+8k?AHN{UZs|q^GWX|v<??C@J%=JYNW!W)<do|7Bmp-q6rTA( zQnwVp$?XxnSvbk`goES{hfRmZlK3-vm6WsOPYHhzq;rt;_5~l%QL&N{ZD@e{5=ad? z|3bqYgRBFMwoBD(B<XX#O8x|$bNwj%pEaUo+Y24;f`sE={h68lU*VaV<6p&@nd3jE z%)tUAu)y$zXXg6vLoOy@vIT}2DD%JEn935v+2V^RXU|}C0aj4NvJVoovhE`-sqsYQ z<VMz3+;2lH&d(cdYi8$OTH2-?*t@D)!sz)4>1P+sA|&24YaSd6d7{py#uf&>GRyp| zfIPe>D{h^9x!nSuzTmB|V6SgQp(51fGPf$*W_I#{c8XPjkHZIUzUe4FOhB8(OScOz zjw74q@jpL$0E_tN7Pe+rX=YP3pYOZR@*calAt_c5Ui1z|XH&Y~2E8ZJyg$;mk^eW= zWa)!wN-ygB8f)4@RT5>QgD>rLyQ(m!XQxJmqa~-;c+r8`!KkZHlLnrqa#tG!6v+Ix z=y_ZU3m+5XIP!Yn3dqvArlzNf+Y?*5(6+y9z?K8d+q5NapD~k}Czw&L0z1K01&D$_ zCkpl(9pG+C@bi6xFMML~>_70f#|@-}5W^N@is~(S3vy%27I&=m`px3}mOUP<`f;D@ zz^6IJTuXGxE~6rSV;}h)k_(3%%f6KzpoSB7`B=0N`<A)EHiqJy;#t0fo`7VKp>-&` zb)*2U;B}|cNarAm)PrBoWuL0}CLk@-b$mM?*~~PGC#zd3`rFs&8RmY=chRR7$zqi2 zkh|pL9w_yjAsyfM-2aRlg&Rd_fX6^+{h`nq)EqIr_@ppFi#u(}{#{dPt&BjbTb@yv zYetqLoV-{2?(rv_fa)|`vb8i`IUec>AVLL@p-SN(iW#qKpi0qpDIi&kqhXL2E*Rph z$q7V%LkKj18NuMV7IG!n{(cbL1~sCi>5Xp^a;QItC8h8LBUR0Nqhhj?Z8OrRV7M;0 z01Ci?SV(}-+PK6*c3Rw-LYH|<8iydJNS;?2vs^xhX?Dc9iKt|nFGCa8wd<$3i@pY2 z$1)|%4z{3XuML;45iQo$xGcTGph@6JT8p>Eqft*lniu-~)*32lwnV<L6WH;aWHXh; z98Qv)n=Y{zr|Ju-UKv;>Ts%~qFCcw1LaBpidtD0->KW}r?`On2CFrMAl(`Wc!*<)> z59pd1iP-k(v#-^_b_M>1IQn=Q_qG8v*|k7(pO3^@V&f<_#sf5dAFqVD<zI;Yj<=}h zPPqp(FELpuC2Tf_DeU@Yi--GV^~@QBnnK<P$TlGh;ZrdWe$?tbhu$&mtiJH0{8$e- zu0}rg{VOC{aDZ#n9`_hes-{r1_DzJ_XMKV#Glqa&i>9S0KnK5kr{fs27=I5?VEi(C zJu(;Utfu~f%JHV`jhYf`jMZsfi>OM9)U?1AtwxbW)6P6J4RqZ*9bO2%b5yusuq%$B zU{FENkY>|lrHqbNf5bpIK$tV)qr$)+(Pnkx@|HX@tb#)3E=f|F+Jyby{kwhDb@R2m z=KX?Pg_+=eTi!Qf>h-LG9cc-mzTtOa`EVl=j#N1&+QPr(ayEy;<1tZ;s-%J@&m{HK zIG~j5(e!S83f9bwrNPs<gCQcY=LDHqq|`vHknXMvH??=~iEA3$eU5x#rZ3!mG>BUc z%b+W`KU;$<f&3V=$M8!_e<B|xh5=_Jzb!#$1GmKhC#C`%C%cbY$N~S$So8t9(^n<7 zB-ml_C;9ROk~em&6)kdT&?+Yh>G|9qfyusN_*zm5OE1~TmH&3_^kNC%DY(zwI1ClJ z%1BcDRVLyvC~^UrY7wK~X0hQG*CtXa$d)`FJ?Ips6g_kA=Vb4+7Yk=jJYSW;<nh=- zVrA{ied=)pJN@j|w+;?tE2yOyrhOpXqP~P74hk5AhfcOEZKG%Y`&w?1;2xQgK8UES zwqJ04GQk5?R8vuT?KkZw4#PM6Il0%317KsAT4}4O2OsN;MY7)V89E#NL>f4aP4P5E z+OyF~G5Znu`M0IZ^BDr$*PUhs&puSI=(7&8hWF2)#mNN~LuYM$$~{$SLtnb5ed1?R z{U#YzasD;V5?q$!CbgorYMF;^c#J{x?>jdI)XP`xcK~RW0m9wCSfIRu5l;oY1;b2* zXJPtR17Tre0|tX*{(mA!7%l|n*NydcW4GW!;ACC`ta?be2qyP3cO1yX>0wB(kd`g> z8J%!y0{X&d6RpT2rZb!_|CEy)K@anU`L!oxFa}Kxj|mHUeO32QJCN`;4Slh#l%a(B zh<L{-s@njWD)FA{YmKLB#=&2+BrvacAqgzYJYW(<?)wx@?3$pY&Q4(U`ng0MyveDQ zr-VR({kskh8D&F6E<Vy+if$S6zV;DKRbAJHm)u{|Nz_%RV!ve?9_mTiAZ2z6>6apE zdFA)6#5^?_xT}#>>jKk(PPaG`7-l})&PuYeC17&2eQmNJSY*EPN5F|&9BjbVfZFl) zmM3-kK%OD0Vj#1#`8?WosDoHBGfBo}*%2JCLb7Epfk&t1?{P>@(5k2t1pW$o)hN|4 zx8LW1f1A2IZoWOaSw}AQ(fq`=4MBpfha)$Wc_S?d(D*5Yh#jmg*|`K7e+FLex<1H+ z=6y}FbMP9<^4AQO^FmE~Kid^BYYu*sR_(i<QaW^N5r{?~@YqE~k5c}nh7Z6adzLb7 zRiD~3#T^lDmA7xs!&n37ZcTsd;#Ef`|CL=(t8ndkJ;+Dtr%iU)C>mgW8xQ`ev&Ify z3Fk?<4pvOjO&8?IAt?`ALU9(<4oAnkmaJNBG*NLu0FZe@V1#?Nxj6$2ZV?G=C*Var zdv#jYI&r8=Q({EQt{TmR?D2|MTX0lZsr+_!t%0VBx0i0vX}P_^S*uUmE6@?<%EY#H z70*RdG5t07wjy{jxP?T04O5C%)=iI{|1_lT$hFmY@1!`M^h#VIJ9^e(XS@r!{hjLb z(m}_*t9q?{qfvF#@&Fn@-4<jnf-`<9fF5NwpkQD86=OB>SR~`jLti=}5(*8Zylyyp zX+DDE8uc>0iM^6Si>Ce|fn}?!PG9Cm#HDwUU`X|dhx>pF7FX2#uIpES9-zLg^=Y#* z7ZtbC5CUh0d<|njWJG$0#ja+0t#{rFwcVujO`<K+-#gffv;P^8t>mn+$0zsvoX*4) z*2lYGLl8038q>0$(<58=3mLpM#d(o@;MH<HkzdRoo(Y5qi||^TFr9+sr_gr=TI{Sf zvgX_&I%4zy)F0ytl^t|B?i^Pvh6o<}hDP~3y?T&XdARg6rm<TK<?D-5Z$B&U;*0Ex zQoLbs*AriVZD0-o=pa4~r;-Ro+yOrloAR(4wKEgoEr;L0ef=AQ7a@HVlh@|Ip&EEe zkQ@n}Pq48b1^6I}$>Jb$<1}r4_2*FQ{&fARIHhSrC;x|uixcUG?i<{3;K>f{UF<b< zn!*7e>l<Pg97e*h=V5>!rZ_A{t8D1d#)r-|3Z;(&N_r?XfQN@W4BIhfBh;R)1AY?u zEk<6XGQ=jg=DH_<9hwZ16nZWmtjf<E`p9r}kY7pAoJfxlQ?4|nFjUM0-8~2**o<gY zdb;E>!NWi<JTEclZXn;Yt7n~*`I_4kUjM@`?-ELvh_x1}E*dJ)k7&ueLD!re&R%#x zBU*!4{SGk%faG&_pGU^YpNy8;36aWv!y1+OL*7y1qflA^VX5=&!_)W$5H+y(?pM^U zAzZh3F_Sa}R>KsXsnEn11XXk*ndn65=K}_YO)Y4g6;V~n3`gXl1Kh4RmO7Q`1)`E~ z<E130_x(zexuFF;ZCuhZCv2r}!2CI4RuE38F6ERCIJmpa1}TyV(nj6Q6G=iL&c24E zJWrc`KH`FE8OOM$RdOMCT{7oQby#fJNeZb~=zC&MeQrYM@@rk{*4qh;`tTfUVKYmC zqi&0kCb|#3#C#ix($l2K=X++wi|+FV=JoE0NYNu|ezo5A;1YMBiPSJ-6LasP;p~}v z)v2PwUcNf7bf>$0uD6&x;VeS{W!`bVc4wA<&4ny1T)>TY98)mXe~pDLP9He4=>XRM zD^Y9M%HwmPd`#9X$3@6FzIUA^$t|eTm4*9R2(?Su3KSUzl&#Rp_T3-Xbeo?yJ(356 z21%tL!MgET$C>Bg3b2Hl197Kfk)F1xt}#6PLW0fz@qmnec|gKRv{P0Fd)KPOy4RC5 zz52I?&m#RBdjR3ld8p|wv@PsOQjDfiHfo-Kg3+US&>Gf7dv<s8|Js^rG1`(*y<SI{ zA3eDtNF>wL+xwZNuy3!B@Pu4qn?p|_speQ7!sXXDL@hG*o7gop+@ALzPu++f4jy;V z)?~IkZy8&Po8n9WGr2o#tML@s25COV&CkA-G4$O|xB%SP^w}HaMo-}E%^I^97>08v zV_W>!u$R@%bvcvGRuAPN?dBiIjw$B2ue-A7kD{P@`|EZKotmhRD(bciEk(OPZS;hU zq6vNXL%Z8O0Z*q8_C~x^$wY*4<Z85*8;GFrvMq+$`%1hp`u5GnlTv3Bhmn$C18Zkq z<wV{TUV!|5`<=91YACwI@YLuvVsSbUJC^+PSv9XY_`~2(=nTib3?ID|D*dH{Z?0zt zMzjd=K}l0cb><T3{_OdYFar|wrfG{?$_|G`5e@9>bFvEWF<>fNw3EO47l22|a1-qM zT%_6J)EPQ>QeBucOA1euq=b%YiJIS867Wk<GywkZ_x`wh-9x3=%>g%o<~20E4L~-d z+KGL~%c2?nld?F8{0XXyG*>VR3jztkJTH+IYokTIrKmMi-HFmDSCbUS%sFB%V5ZRd z;#@fyqv4P!jDbPm<{2JA6U73;u<+T8{zqDf*jT*{7@DPx8Usg#7n1@J`+B~wn)*^y zB7pUSWov!+$<bzxha?U*VYC<Lv^1nl72qD8Y#L(y=Tz6zv*DW?Xxi<S!IRgDKfA3S zKZi&5Qo@mda={kG@t@m6vdORPqU=5~*k)Oky5XCtrt)|f-RSL@3-?;t`LsJ9VxwkC zrqcq1&ks!|F#(mskUFF(0ujR9`d4KEZh$y5cqPOzx{!~8%K&oWoJFq7{P3~=WaR<| zVbn3qnd~+*^2h66)E#&#uHyYSz9PPSiaA&<{U#lZAa?Ef2-GuO7{CvOF;%|BHO&v! zG_16c*{7s$woO|RlqE2iUR6^mKXT5PRTlJ8L%_D%y#y`$+#-W5BSr0zXl$s-5CJ=t zuWfu(l=Wi7pZ8{}^b8#8@6FT+^H#4On~q@3)cn+H-gk95Cj{Pw#QSY9-nkG0J;$kS z1g`On#$xm{J1|xb7PGfzN;BkWW_jf-5vxG6obz#Ig_4$vGeICrHrM=H{2qW+`L|qn z7HpCr|4M#zB{rd{JFe*iqZDFvBEacRJFQ%|1(+y<$>lbgS%A&mpodRJh7yE&>?Px8 zKODjCG;ROD9u<l4!m*J|)7CF>s?dVIcrBNQNaHY0)<fy#C8{nT>lGI($wb#*^vJ^& z&=9YAT<Y1ctuGwQj1!=b%1Mf}Nw{%a9G6LzMi+^o+nnNQ^_DQ23{NnQ4q(W4znZrt z_r`&x5hOf5<dO@<FA<sQk1x#j0qzJov%YVCiz-{?Biw3$Kc6mB$x|0HJEWd1!&n^Y zDY~fmRN=gYZZ_3GDW6YJKo4NI`cbuc5h|n=MWLZMmyKP(r&?2CNxO|*(GF+Na7Zb* zRM*0+<79Vo{IusxY<kfl1c*;z4s-t#80dKZ5%jxH_x*v-{UI->1zRd&k!{PlI{+(; z;199N{$InGwXMGfRFs?-r#ooz1=D=<ei%$Yc(a4BN0t$iVwnYQdv23Jg%X}<;Bp#c zUn8%aVyjdCAZLU8oQAz*a4B6`JKwfFL>Bt<QCN$`!Ttt<UXl$ipbF3sLrc$zVufxI z<;5g(QAqz>ttLhOj+!0fsN`;FEU|Yz8<)5i_>1D<@%fCa$Nk<1SX1`0T;>0BkIFzR z**_1T$DygGBL25%@MPd6Fhea2l`_uTr2m{6j)XPsY6Hs*_;Y&S|L1xUCZD5)pPs=( zIKrhSJ@kcN|4d;gfg4~O(Fit%^2PPbtxu2FQ1~~JWXN}5wN-qpU^dqNf?p9m)xBxD zcA=+#xHaQ7u2kMp{0mMWL#-LQ0UK!_TO>Cg-NYyMMbm#=c^)LKnU=I-@d-876wx)C zNJ8+T-p8=P?p7gU=ql~;n~Fax25u1Ov2|#Y$m*EI5giFQ(gEZV1|hpzWQg0A=E0KQ z12?pqsN^H#WkzEunr<m~jhESAvwM@j@;Gs<(0pd{<$zrpFT`qIalP5(u)Mcud%3pv zxcufCXC5skV!Dd`*Q}FDO-WRKH`>~r$Npo@9mR8}4N`NdF4DsaPrhQ8?~*}o4P=oI zMGG_AWgV^&mlQd=k_Dkf#(yw1_WsbU+*41W=}JU`4Asgoct_V>2_$|(K3xugwdm*K zeg_A}7vO#Y>ep#$|BQTD*ja$z3vtbWV4&y>z~(|+K0w?*2Ffk{-WDkf)|^*JF;v#t z&axeT&dqOBv%G)mJ7~;{n~FEupC8{R<5>ul<|k;tqZa*Ttvn9LxwhJp4i{VpE5_hA zf5YiOR_E6B(b!_JXsOQPPz2X3-k$akW>(3{Uyjml>}(C+N_~N6cw`=G3c|Riwj_C4 zeOCq@fYgKpW(b^)#T?DR(mD5;orNxqJu&V51;1u<Z-s`kAh4!ObkvmJU%h2P`}$+& zbazGiU;kwL%QW0S{>gSP{dew{H4l<(;?CSD0XFw2KwL5I#F>87!n>}oJ7A8MuC#Sf zAZn#Vuk}?y|C1?ugH{c3;q2KZhKEH9K&Q5}w^glY3+hf=%TO)#4}i8i2V}NpLvGM& zfnMF7SUIkJdvdCLvgp#A!an;4K!v{mv~D1h$?cB8?kOrvU$4s}hKDJ~qgbM52#rUr z@hZR{vQ*&IH&NOVtxNH|CoqLQa)N6PPrjfd(A|TNoszq`U!V93K{e@20jPAiEzlEc zq;@p_K&bc%AH1*#<U}iM6O_OfiV7m<)zx9<epl4tB|KlZ_UFgDWSMPgqJasB-8iS^ zABM$b&6g+vaRf9lDP|fn1Cagi?Q2KyW->k*)sA%`wDi2MuS(aa&xF$}a`h2zvkti! zU#*MHhl>F#->7$L$z=BcMeitEGQf!qmpSh{yLQd-)3y7zj5kNVEgLNN3bUiPkDWP< z^ci<Vu7Gz3{ZE5v*UmF094+vzn=OR?)OR}sTZ9k1{u8s?c)>9P-|s$$QD>R2P(zti zJBk#`6!1E7#QwXDLN{|Smm7B*yKauTZyt4R67%pZTCCw<H}q)$NKx4wY_;8T$*{Lz z($zLr`s9`d(*+WRN_n^0d1#qNbGfKn!rC!f0w|$n=U??gE|drb7)fAIs90RT9Z%(h zCmVpX*e<odMt{Z5+K7-!>y7^o6dw&8N=5=9o?s=;Mb0AQbY{koh**sWR9W)O!cQeD zra-2aM%lSVd=NkbUS@_t5hdB#^75}N%eZ&#$7D&;MH{5eTp`vEt%FY%vCPxO>IE4_ zJ2+n9xO^71XR7uHo51RS6o_B<L}Qva{b5I!a9`tepN$E$)9DeIhM5l*kQuH66{JYB z|Cl$~OCut(I|4V7foPFY)=NSg)LYci<47Lh<~)c%3*!U@^g!OTir&5F@kL8qw}>7! z)6o{d;T_ko{M<r3hK^(JYu4c;=A>era2DO%)I}B}aj}y3ik1c>A=F>sp>=I=@7!{! z04pFd!+P1PD^VTn<Cs@V7H${AOM8lCktq?5sTDTaoP{o=kvp6m>}9ZAz5XB&po`CE z52RZW-eSH3FkR=8{N6m;jwCBk%n(ABGkR{S#+6Y@9Ff&UJ=LlSN8O1V8=~ZQrAHBV z1@BXkz~voM@|=C2*biEAS)}+kR;jt0V$a3Bn`~bK0gEc3*qZXj28H|KRPnDF=a2b! zJ$qwF-!-Po3n>EY57dsrBYFlGR0O_LSmV|x=W^r$Fx%N;&=&1@5DRj|7r7FJpf?oD zpo{Lysl%NdH;CNjTnmWYDCGpFln}Vb?Jw^z)@mx+>d&uSMhU#I?44#Z@9gY_S+_$w zB-tk$aU4p%S`vLm;Jt$xR;I7p*Dr*^y9H$xq}ThFE`ZX=FUA^>bFFbFWz%(F1dH>R zb11$50%}DZOdW1(E@G_pUepG`AU>zkJ^;?K4#u9AtLUbsebBe7X+o$Ifgb_;j{)<k ze>W80v00rL15|$HFM{mFHuJT<#BN!JGvm)BY=!b0^&w_K&xjJ&?XW7c;^5g<6jD6{ z+WP;nX7Fgy^F)_Y9(fMmZupAa`t?Anu_9&z)^}$7NaS%&TNjva!}-mKW}xAZPHz9e zb`COtYxXhQA*+M4mf_vu=*L*5A<DD~i>PiJGon&;KDssuHHPvj+Zh!r#$<k1M-mjb zZ*89YsV@{ndz5`uPc;$FubL1u-DFkAv7|u$4b-F-y1}{mAiygRc@cccIuI$RwSs6F zFd6ZB7O+_kZR!uArr${K^Rq~yi;q)bxLd9Wsij>McgXWNW7U1XB*#ff;oWn2i=4N@ z_lRx#;w}bS&mp-%`uFe>zW9%}cGe&VukTPkok>^@a0n52*_#arrjY#*>JtMy?TB7A zvCtbb1b+ql<vlC@1SEum#dV3v(z2W+0p_Q_3GOjTfkkbp!ezR0x5c(hTpk%4ig#ka z=-+yV+k`_gcJ<slcsU-6OjpaZdw2a=JokKUi`UsC^wf)!21&jwx<ab{T-os$v6f8W zy8VSpAD|k%^y{xTR$zF_?4Wy5?ynO4#gKQBp=2S2nZHM)q$OaTj9-#$tKc=w6@W47 zXFM!X_hM(&rV6(GsXFexiihTv*l?IYPjDnkfmMWVBgySO`y6GFeym1om62Mw{F-mk zmkX|r2{i>Dp9?QU{YG6)TVeTD<Yh=9ax42OzB<-3>yS#^0TYF;Di7CwUodS~?N2_r z@KNfn=G^5A&^%Sb#QM}!>*usTKcJj$d^+*lE?$Dm&)+U)b3Q!%1ctcd%)Q^eeT9x^ zGy|->gEYiR>G%j2wCj9H-Hf`(qHZke7ON#&1{$ZU_<lI{JtV@v+i+dK7_Lt2^|u^_ zC)B7|*0jaWzMib!eNLdoExjhZlwf2yZS-(?GFVg{^eHVOtwWK>NyGKyzXQUEynfNJ z2^n|BOaPl#%ip}AQuxGSlhl<=We8@kT>jA3z>K#NfXnat^AbigK1bhqrxyRD(HtKz zl1|ZdO?qxT?Sw3<i7flZ^F?=zX7WQ5ax`A_v7Y&H-BZ=`{;|QWs^xyThIR%3$!Tt+ z2wrA5#}?$wUW?6b?+ZYHlD3{>GkBd+a|w4&@B(7I>aAt+A2UR$z(ih8cQj5Wd)0!v zE}fBI-*1nP;Lc%-QfQk-RSHxFmJII3?#h!;W8b@fenLVm))fOQDsicC{~hpsovQjD z-}z5SVCMjSRN|(<vvB_R!B<o<whGr2>}$~X6<K6xA*;r<@Bm|C2gXw15fSq2<x%bq zIh}Ef6Vh0K3=-o+)}LI*dp;fOZ*64(M=9`V0W1qvO1jw{t1EXCx)E;fPoE#HiGp~& zwWATCs_ThbXOZyY!R!kjmtsS-r1R~jN)=?ajcrk1`4AIP>dScDj{F7kO+IMSzKqkP zuq<=1#thY(fY*`dkwO+l^+b(+QCGhO0vS}jv(vZwcAU4bDvTyv9XX1n8@rdA<ceN0 z0Iw`|rfKV1N0js}s@=_&O9vACScSv8C95BYu4ox{(hQutRc#vmW=<Cupo_G14esH@ zlj<J>+kIVdW-Xyu`?E!e2Y`UCq=B-xL0JeoX~BwFH~Y)MMm{1DAbX^tD241-7|Fl! z;q`C_dAWQt4a4Q(H(F=B^I)585O4yJULK}0cTcPlXeL*4zKD~hN<g!J^VGy&^35(N z=6S=FhQO4xri%P2SJtIyE415glnC>yP2l(URLR<Ju&V41*Kr3_%0co%oO=;0!raTz zB~i7^T4J66N42i?p@l8rTFl<tO!@&iq#4AdS&~OJ7{XBq2)Usv+kSAbKkqcaKKT}8 ziNESEyBf&Hg`C$KqM4c_`~<41^8u~%fswZRjd@K-5%`zOZM&9zK;r=8W+#~PV5_7; z-zNDGo9Nwn(&By(?PUe=7S;`?4jKM#L>|slvw-ea0%e_yV@1?`nZ9GvWP0UL8l#mO zWj=CVg*?RvTTD06AZtGGNB9`vWI@%TbA*Iia}`Vr=c($nJWVxYSqleQh*HNS{2S<u zo9p^+45gMjB!T7cIbW3$NRXAFUzI{vswFaUqadU*`{!ZzUOc&XPv8TZ6$A<oFy$0% z*sv6@`^PU{O)ljxGAO%61ibjROJ^q*j-pI~*l>h=$vF6TuXOr&*p7T$XXbOV<K;<; z(F*i$k0H2{(Iz1pu5tNRDA@X@W#1P($Z6^OC%l|-7yJnzi+!?4P8g7LXA4@5nt|n1 zcwB%<-<oXxrC+mSXjZI)8i;WmF#Z{0HrRh<<0uh#P!4MSc?x*b#gYt(WpWT--v63F zK^U*{3z$+;87Z~|BOJ|rwr3d6CTU|xgd}#l>D#q6v82u75<wqj#qqn#O^>EVqA6#( z1UA4JYPB14y<Rw4gAzc>aO=a%j%9WfUj7A4_c@Eg=Ua$ae;8oR=55)3FB4)bPds)^ z8aru)P3?Nqs4h4PfyX1)P^?s5Dtx}LobtngwoC#)Jt9gkSW|EX^H|sKLf`pln*>s+ zPZaQ?!NlqHz1OTdh2qjkB%}LDP&MEe6F4HX{3SESc+`^4U960wvFK%$8E1JJ<8A>I z!kfR;DKs9i-(j-N{Wgngt_CfK-81bg5VW4(HicM#qzv>gf$Z9+rYo?plu7q6$`Cg$ z+rD*GNr$Jn_AGbz3T20uBZFLiEG?_jOi<Uhn9<3P-3U^1pRO;5RByG;1a`vy<)kph z*?Eaoy|}O~@9kPDLx@c$vD#_*9SR1pMvE!*T_U9)noiqSIHTc49-ySl;{+og^QiW^ z`x9Z<vS=(3(->zmMj`M>!rU(4_W5f_0X&0W!{4&@iVaG~3N`47p)=cJjVzwKs-sgf z4`mG@TNh!8xcS&CG--jlIOISz_fY3_ra)WJr?bhW)32s2+&C?2-I(6{2VOh?<3ocn z>+bqCpX1`>TVeR2E4j5gM-dbH9Ws+}G9}61<P(r8r_ErBrnGCO04YV)NL1_J-1a>N z7!#bm$d}Da)gVvx>7u#}shJ~JV+X`S)Eqfvx@#SwhV*#Z?P}0JfPU@RC8^mH77JA~ zcFul6ROA?tA$0b`x8;tdM!u~8Y>I7Sc8J6=Ar>~%K~_AmRKak1@2GJHS0;>T<d2WZ z7~X_^b97c3yMqy%sLHr57j}5~B-z$jGh5}`py<$&3Z@LBCjmcdR^L~8yUnkE^rsYI zfpxuOBkbe0q$9wji64(02<ETG*|Pch!@<9g2ss3aZgRgnfX0c?Q%Z3HFa-S&4nVm~ zsUJ2A7i#9>;=t{ccT*$h+1GHD!!cAO>4PG4D>(`gpHBuegL0O*s)c%Kc;vK2Ela2p zV7?Q4ALb8UVf-mfx``|#xV(qnN}T#GauvJae6Cc5tH9OJJUca<CeDjBbDbOQ<L^*s zw0o#46c#clgwDwvy)=~usI5c7_l~KZ$CX$#4wtS*L$jplwWg5$Q$0}yC~kZ})>$PP z>Ekv|wDpMb2t(XOVI12;4`HQUYbP3+!1{bcnvc4v@kKXEey4^G1auzvh8ozLP<YPF zW!=;_d`t%wEMyQGRGKR+Bo-Re_IF$f1&T{x2is*JmJ?caxSy5)GO9(EUQ0arkLrEH zC%zBJo=h9H6rVj_y$(^A9WxKO*6gRC=u<scOODJI`S7}uf?`Db*@1_%j=xI_Dga?n z<}K|Qa-l%Pw5?`l9|K*>sS3#R`>gWF3`?fOq{Mm%5YKibny;r1Ij_7EV5+=nBd{Q2 z?_zhT<y5Z}jBTv|@rt02zJ?;?;x<fQvHVzqbzmBn4tsv{$1m_P=FT*_t%n$OtAR%m zHx(eHAL(OuzFKITi+;VEY(_o@$Gxu3)5D@iOHCbr`%-YBqfw}W#yH}Z?xSxm?=^V1 ze-69;Q7-|88;=(uEtcx*2LIChM(p*&kFS&Ss<EO}I$PHPkD{#;x>IqxOC*f#$OAjd z6&2reLWFk*uutGr+qFNop^jITwuoP?#(gbCO3&YB+AkqR_0?<2lhjk}afC~+Y0q8d zWH+!CMb)B40kOJvAxCGl{dshS^vL7XIK|SilOMPI!{603>X<-N@b|b#`r$w4?+ipm zH;8waemCX<&S&}ctc?UG3?z3)9U2=+VB(Gh?PIiuUQ@GN%;?!9TX=ZePO^bE{yC)~ zWEttNcIRcky2uaxgGA91%ufE4dvXr03$s`xy<6-koAS|}@hgf(m|7MU+lSpBE>jTk ze9z^HQLL#GuZd_0ZrrZQPhvFmju_-)$FcB8cT@iSY8ztm*{9L`@`h>OykDH&eafOg z9=+zgm7ru8=^|%$VApCXm*~znUw)lqY9^Vt<<y;fyAkM8FeCm7_R}f?je#$&w_a$W z?61^lG^~i1oam5e2r6lr2`>09>#AIeWzmr%znIp@@IPq@T=gsFoY2lCl#|;&nk=GZ z8Z;lkY<|~K!DSL^-7`OxdzN}ny1wGas!8spYjkI7DizI+6i)jl=j2MP`FpXu?1K~1 zWaeFJCz}j1q2wbbV%+$gD=|Zlyq`t*L9t6t2M^&_UP8ku+vDH7L=2{}x@-`Qo>NM` z#z;79-*L%_7!Aq#Lzw#~xFr>!3(nLoNt7I=<(Ls~h8XofrpWc5A%KewxT=7c0?*3y zZ<>PjixXNY;+Z8S;4-y<D&f_{0GR*p{0Vo&ZcY5|vc|w3O+nTyw824Xf4WjO14GiL z2r`iXBcnO|XA#Ma?B7RUdo`tkmSrfgI|F1cpW6pl(T2HbvnizG$x#E-TE76o4A^vZ zs=v|Fk~lQ=vMJdF9V<L{b5)`{=x^Oz)p_wnIH~zo8bbiY87Wg<b24=?wd%^zG{a!L zbqX!0kdXf0e;yNH#e?_5&)+372>V;Gzx}j}Jg*4R5d&k@HVgBA-I?j_ENz>FV1gWL zC`=kiBh#rkKj!onc=qMqYfmFkUsx4b_>^nQQn{?MYhUDZh3{_4=qG)v7^_;dkY9hX z(xX2e66pj~9^!i>CY9L9l@iD4ol{+wNBTO=t4q*_E4(x(<JWFPx{+G*-Sg*g+|OEH zpRkrDSvCARok*S;;kDSLsnqL@O}6?QAoa3;o?9xf*N2`t8L1<qC&QIxalMX9jm7Be ze#CijuJzJngKvbPo@y%<fpR_gckBsdNjAvHfam{FbxzThZ%wq1ZQHhO+fF*R?eva~ zj_r<Z+eyc^ZM$=GzH{y!<36m1{k+HeSJkRHfAa-E3pZv(P>E3=z7t$7J9)%b%|ao? zfY#E9ImiS|0wq%9gz~{{w$qhatmExb)h_PS*_9IcbRQbO;hzw`pjUuu%M^2A-`xZP z>Exn-wvRoJlV(D7p9)G+^ogU<k^W%9dBtzQoWXA|jQ)<z-aEzjq>bq3IA*GA6wU&t zr6dMG>pwlNIs4O=yR4|{W^mgDUIQ}ex3vX%jRJxK^s>_O*vb9mXveB6;yI14x4Ebu z2~c9FWjBFyCBe^5Y$(1sYhEqjADyYNFHn$%cFFgqJd-<_)}*YgzcCi5R#ec_)097c zU^b}Xq(2a;8Fij*UWY+<yryRKKEXN`I~E5(bs;7xhwXHOViY6NMKJO7{=7diMJymn z8sYkDmPGLDTy;Q<RRV@(lb}d|WYj^0QY?WxEuh+2<z#fSMxpvryREhwMBfIARW$4r z<K8|RR|;GF_mf|6b|8}!B*9JqD3I=xlD{HzvK0xNhf)oG((iN<2)kc-=Cv?GczTzB zvBx^$l#wh@uWc}RM}a^^q$2h_(2g<UW`TP{)N~8}JXyHHKXzIY5NWz_a;04#2%xO_ zf`UxMd1||~*QBK>OXmWwART44dCk@I+N&z<SsuyL4hHA;yZg(yE}R-(uJzMeF|^y; zLiwwjER8x6VzR+{T*j)STzDUv?^;TLfZoGq{QF<R3x2pxTfhn15={Oc_r{n(CvEJ; zN<vc1)3o@{)+fp4{8Y>1dESIO1&nttROeY=QV=+Ux%1+2A%)0dkxW$4q7pUOfR6E5 zP371P&8cow>H-yuP(J+JkaGUB@e`wNo46GehY%u^JJYxepI4_~8Y)7TIR+m<ODa_~ zN!y=m8bz{;<6>yi2n6lD8`~}kb{L-9#rMrd{}l$_iVe2K7k$Vo$Cs-`4E4QppX0SM zbKXX28S;*7<(@<lq7w`OBN1(lip~6qX(+!F42sInSnC?25UfzaqYD)ME&T^GE(>9F zQ=}l6gv1DV-eMXWyCON0CGbYTTQ=|XdjrY@v<Zu9Wbe-&6YOX;tyPn<deWIyoaB$L z3XXi*%W_4#_f@NX6@`ADq{Wya6=WC!z$~0);p`-!BP^fC$%pG_9+Q@`6lC$2R(1VB zL)YhO8xz789WvC<D&l(T^T|h$J8-k0nOG2uYoo?LlyMl{KHJ|i)BqVkl8T&ueA(w) z?H0q@<4l7szT9st{FQ@8G!Tm|w|op9K8K2Wemm>bxL^MGBsa3HB#!cVBkZg*j<2Vt zo_0XW^me2C4iJ5Zs`x+o>CVfkX`hWxS2huZnmxstrK<S3(a6hmpGZWHYL`W8wPGSf z6bLjFOppR+hK|~DK9m;$Ba3&cP264IoVeCXEP+A9W&P<%tETj}q`lieiU9Z^UUf_e zC)3JQQS6Xa(a~s|6NXp(7hJZZwV#yY_V$EdleJlZ%bhw{CW6KvO4V$Lq@46rlRuKB z<Em${6fSl1_Zif1p;!&<P!w_Ih!1{a%gyb~>>q}R8VO5kC|Sk;q}AVFt-rHCW)kJk zT|TxSkG+53FW>LvEqAC2clSbafu{QR)flF3=45$1I`y#^iz?3J<4)1MMLxLK`Y-o0 zxn^h7c*y=;<o3wIz>3c)SI3;{S<uV;3dFL+F%M)a^%|vn+hskDhHMs+Dn)Aj1oxpd z^M?q*KxCDVZLrA!h)$&9R%Qu3F!?0ncaGWCIjf(g^U^|b@%Hw<Siz}fqi6Nw6D*qr zk45}G8J~bt#jZ1$=T1U$*Sa<YIwO4W^$fs$PdO7D>$+r2SawfsJ}fk;w*~>0gk3?Y zWih0`5Msag6|w+}i;lC)cTZWdhvK{3f}wKOXh85r=Lob0q<BsTEF7$0h#Ho}3z6Av z)>~aoF=>ALdMqVuz^{krScC$+W5n%(t8yhD2Hkg85k@uLKk6}L-QnxOfAg=RWcx$M zKG*Ho^b2i{IA*NHg|#4)3R2C59JMEG2-e7dIi$3<ZEz-W{+{`DE^#v0091jdAo8mT ze#@hB4nxikfC2z-n9mnlEEQRWrLgo>BiNQjYRe-@b)r-o_9yOyBr)4Cn(<QUBY_y5 z|ArS?1wXSmBfFDi0uSX-nKg%dCU}PB&0%(x3h_$WqS(&%@sfWO+ys&eK<=kFL6SA_ z&Q+JaT~w2A;m`jZgJ}f`-L#}LY1*ItxvN{QkF~=mncRX^W$!GWAh)V%e#&BZ7{M5! zwE^=nI3KX<&lfSs)?b{RhC>p&si(X*DIhiUt|Csgg!$WXe1(2~l899Ak+bUyD0BTd zQHUI^<?9${a|ij~?Ht>Gm=rb^=G4zo-0vQQ?O&Zb8yib%%owgYFzdf^bdqu0txRB} zRA6(wKLFjCR)#b(5$h{2#t1VM5-E{nc$6%S%*FD6@=o_Hy6ioSeeb4nO~rgpYDiAa zMIP^GviBzzZeQ24*M91~G1!~Mt{E!hR{6CzA#Oy=bzdvv{QdBU`JhVBm`71Ui25RT znF(Grrt##u&E?z5QLI7)UsohbJ*N7sq%6YgK)`0B4SLHBa{-(tLud*E>~p}i0;?Ou z6pYDES}cigIMrdx+&rl6$elkWqeV1^;J3k}qloJMQaVnnEZlqxRrQ-JOw7iNG_<Rf zes^Hql)l)d_R<4>XX4qV&mf?ln_<<^y*U-R=!&BUR?w))q)pOQdqCO(9FmHkl)&Vv z3J`m7B7`rEJq>1F6&3k~GQ`bWQQ%VwG*TLTZ-$6$%4)_VruFbrJ<K*6z8@Zh1QI&W z+>2y1h-F*#9C9q*&>d+F6E~sdxA)hR+0=SRnBjaEUvk8bII@<}=b+$LAN}gnEY36( ztL!V*`-S-N!v_&u4cz_>?e_$-L=rtXFaQwEQ{dxyIH;u_&7%b=S2x78I(76MJD`AZ zciT@UB9a`37DazMPzQyVv_rJGYJL}>B4B@p=2s?-tvP>du2c0Mz_UsO<FU8kWi>6& zkfH8eu2}7CyEJK>1M0opieu4q6>^&b#1P%UpVh<25pShArB1WItZoTo{@AWx4S0IN zF2qq!K<_9TvE|NG=SKQ+qdVVkQHx8C(A^8GLd3K8`gL}=feqNIJU_J?M`<{>x@@mt ztn*yX%$u~*sd3owMwWY*th`mHdE=(Oybb4^Sm8IdYl(*~QB!-JiCMXR9O)A1HA+^7 zyw(bcn6rD_$D&9Su*5KgqBSmD2UM0v{VF{^KdX=JT2goMTEwwxsMg~nZ*aYEC&Ht& zpVywuSFAWRV_Ok#s@8b)J_HHh*sMcA6Z)vjn``v+Sf0{Y9<L<ElP{)`=5?S_z=FG` zapZN_a8hpxIV|91%X8X031`3KWzDX=gvZp?9z+Dqv?<BdHH})Rtv*+b0t^uf;~JP1 z%{#c8E<%a#{#MPG736|{jUbj2=^8+pLdB^d^{9ydTiQj$T`Vl5a+GL#AdIAwqKljk z&af31%pBygDDGMvl@IwL(SPsuLtgqTIK}lQz~z==DHL3#abybN48zXc*#=&vs}U51 zWsXARRT0^95EpAo5WZNF8DMMX%pfwsm(O3(xtR^Sz-<wOGB;`rkqqqO12!_cVwTGD zv_^Nz;juFLb48g+f}X)e5jtC1$@d4ZyFEzyc9>kV*iWEe5q;;|xuKg4=cWCxW?gd6 zNAuptt|w&sRr>8|IB899VOqS%Fbs&nUMnIKI-C3>M{pZsB@zQen}8Oeei3e-`Y)O& zBTS6`T5^JbzfKa(PZLmK<!%8O-C*<E*exSPD2Wh$oxq;w6s`WwtNO$BG0dvT`OYmh zKPwK5^4m_(9N|#w{97uMq&%r6NsGeO-fcKq$j{21+LUz`r}!8x)XU2g4~;Rla@Z>> z#6O5mei7xm-%Dh0w*#C=XW=a$EEg6_0j(9$WbKYor*;pD2+?7HyQ$m+F4DjfhKP<S zXnlhMwz?X>E#8NKi)z`~v+}KMIQg=G%<bzr0qTbwiAc!D`QmMbZ3F+_3Pzjpv`Tge zswTuFpm>=|Hv*ZoTk4$#)&r~BqX>uXZ&?rI-wOy7J10o;VSuK)u$Waam7eG|j;@}! zMkl?(7Djh69RGn87cF!rI2W4NU;$;;Zc@<AN0vEWfJ8z;au!B6=Y7W|HzhGqr3(|W z8={0jL9a{CxbeUf9nLX=*XQVw1$FzkbxUSL1BC3>)R0~nY&RaU6+$0-8`60#z1>Qv zecmX<DZqOY0&t-XLbeFB9TgMdh#1a&kQeVN4a-w+MKI0uTnk4*WfMKT_SQjXpQmi1 zjSKzo8NOBjL!ue=HoXDs5yR#(!&Fv`x4!9_OonT#XfK5x9EW4x>Wp(b7MT>F`kQys zjj^rAAoFjJ_TKv8UkR`OA#JDmU+Em1isd>g?WlPGGup5yX}cQ$8(>2{p2ZWD_vx~< z*rw5QW-*2`G#b(GJr3F&&kvR<q)_fynG|XwMO|=-d3-DWDLpbNbJqB8+m@c58Bdj` zh0<w-f*Kbu)iT*jK@fM}wdM06QxD~SEGt-oSNPp@^V>tNNmf&%ZaqqsSUzFQzTTy0 zv%#9OO+_lK<5o%wUe#_#LdV>vDy;0$^*^>P%u6%uq?fT0)PV?3S`=1<mXL3vt<{6e z(2AdBh*~GD`mpg2;qkoapXoUcX2CU&J*TgjC||~=E%A1EJ0QrM|J&fOvHdrOvvH&* zIO4@2|M&C11rHksS1O4Uo;fi0zm>7Y2~QLOu<5YQg#ws1$oEMM$e7qIY3=2|uuIgh z|Dm@IwgSE;P#T#5WiwHIsn_znybVXKl5pw!17FV(lPI4H2f^a!fiE>*$GGRyS-3-t zKk3d3I5nTD4oj6OMWZ>8cyoEfw4{Rv27gC9ws(KeHX|*_94IKZFlf5tADl#JXt@j$ zK*bROi(_vqDN6$n2nMDD>^6F_KQ+D7%6lAN$DoIWWw@*O)1u4NJOp2+*)i3-1E!>4 zmQ*J75zMdEp<{jK$zb-?A+sleFDn-G=26CT?^S;GuPmtSWuv9WOmWXOJ&)gB5pgdi zWlI6IFL=WS6KCyKyw%HYZT*zlE%H9>fLBkaX3!1M0RC>QeqwahVFH*9s!O61ibaT< zZn|~zC1OvOc)l9Vigs;z|6?<;ZqUkfQgNF^z)l9?_Qy}>51d>>7W&`g(-a_@jg42K z{^HWx{XBi(d@u$z-+EA}{l%j!>JW#{?mUV5?qzBTi?E&$lY|LRYvxF*zSg#9zzWD7 z1?bRkmi}{nCP)~0rDz*WI!{eT&Bu0oPES!xyI#xh{J_~~B)4s6k=hKa{Y6CwuKtmb zX8RYd$%a8@{F#!Ln;To}TLD6a8~Ys>9WFkz;;I?fC`~lTmWXTp$M*)2^gmJ*u-BLd zv1v<xf8g=gwe+I?<jMw})@QiE0(dkCtLVX)3z@1irC=9X8M&7H)u$PW4vO|{rSD(; z+nENCK^_jHz5}1}QvFE+nZ9_A)!e`Gy5g<i8+n|`^u^Q1emKaB?3mMVTLfUz3Zk7` z1@kP5X;2K+V*Kkq_$!PA1=#(=g4<x~jF8!o>Knt+Yh7WkJq3aWb?Q7@0O$xlRkY)N zZ?<0o3&(UwYp5r>HKbP+F)amloxSY(OvCcwhoNW`%k~jy7A$3w7EFp0#tkbRDuc1S z2Cxt7!4^AND81k?o)<EO`7mGqR)pLmJ;HL2RyM70+LGA=UKh_xEbfA{T$)thoEw6p zZd#+$(B)<|TeKGTaP}=(|Bk9^!@r#N=hR;dK*195zp`lgnht<WRG;2U^G7@Q!oixU z2!+#F8Fk!{b_9i(V3VnpE4{M!+tIsNl{Vh#b>ujh_sw0xdWXgKxVUf@O};q;7K7NB zl*KMV0~#dkidA7;=6%IgBs+2#f*~DQ^{G@q3#lVue3dH8_fl411HgkILP*Et7|T0g zgY<QvwylstA@`ed;5%-DC#^wP(?xzbd$#IQSq-!<gauHKzfC*h{3tVAd65}IQ<Bh> zX`jtrLs)@?AycXqK~uz#^1f|>L^(i)Xjd^05SQbhvZOZD<DiA3DjQsdrt&dC4E;qJ z7^}<Y_-s1!xaSat0PrHau0Gh#{MOiZtwM@(cSM+ps8>rgJ^0qG>FOyFZG~JdQ8bL6 zV1k4@-Cb34?h`-;aT_u*G}iER7-Q!HJ^aY~{-lq4T(DPWgy20<`#%Doz}egedi;Gz zJ#gbU=<7W>>FfS#)qYE`Qmp}zx-?b==+OOzs@<p<&#T=!1vpd<Xzg6t_WCBG?9DwH z4^+B@F;0|Ze^~Vhclu!j@rMbk+LZw*71mQ>XLaS$(B2uezXvB{%5TfDH3uD9%QMIY zqjs8TMRl7TgK?~*=iecUj4qdyl+abaNVYhKir@0^rKtH((cT|c%89`suxT_5t@(h< zQvn<-QOgPO0L|6ePYX9TmC4K7OPSu?2&f4{`_8kCnXwYY(z2;Fsb=bh=H;sCM&38O zqL4$tH%nQ~f}y;{QNW)5Rk?v`9(qbQB(pV`mxl#@%;`AQ_xlsYkB6U=XJ>CA%bqxx z-a~F$m-49!hl~y)oI)^jACv4)J2rH+cZY7O%7?NG0E3B&JA>}bJZ&A{=GIdIJu!*; zA3W)~n)34TMD61{2tZ3T-PAXcc_kuBtle09vQ`9mkTQ{sfu!`abyS@%5laYtY%As) z*!C(Icwi<w31uXzy|%!LJBS)AQQ|vE83O}Rf^rk<fOX`*)>xCjk*4L>2V~;^P(yh= zT6Ggf12{8aPz%{9-m7Kue76PPG{=M8`h7g*-nD?;ta_G%3n<OAshiV=%Reux9M^b} z2}(l>o{Q$aycW$arz?i|_&%3DX6eo+ild8;XXMfRC<d<}Tl<aAp}UXyD5=r<u}b0~ zzb0~SUTPkw+a~%A&Z_^Qte6=ZMVfJqAbC$y0>;(_$hVqkF^0T-R2>7g?Fd`Xo9WoZ za2`wN*6lU75L<{&bd+S~mnc?%%2q}Nra&Ilj_~y5LxvKsWqW3nyJ3#K4q%01(23%E zW<1FETOGuF_lg`6R}xG?R!iB2<)<53R%h4$U>4@X_@OTq!0sR#_b0h%sZTkfD~sV+ z03smQRq)7FYK55p^jt2-he!qV^^daYt(?wcZ@g(6?69teoOfJ2=5BpZN_J0cT!cHe zfJnng3N4a|v&^0X3&jyV#Y1IdKcYrzglYG|J&!_Md69`({@Turxf~!sL2?lyv!6>u z@MZg&4C=%912}t)T#aaUZUw#uk~I{Y1KihjYId9~#P%P%8g3A30V-#ksay?pdlZv` zC&E-L*JO8g&GaTeC+-Jw1`Fld?^_8>pYQqSzgiMses=WC|IeVl-k_)x)j90Qgw}}9 z8Jk8b&0_n7?>AyhgeGhP6ZDwjfFC1w4<paen!uxMY#fcU$7ioX4pS@QT*(V40E3%X zC@gS_<Elx(h)-CECUKW5t3M|z;k?Ep=EwB}&kid7$DE$?$~y`F383d68K^=5r@u$L z91(c6jYF??^G&NOsH8Gl$E`@Z5aa22saDiK*eRH{AJZKOqh3Ra&JEm7eZz00lz*E< zp*~C0kPIoj*&?eQTvt`Glp<znHUY18GEK(PNp3Z?ltS)ZnVP$#BH7UV8ou4GLh@Kj z{cdqkTe8FPmI<K$g*35oevkMic;7QW_kWK8-{4jJ((lfO?SGw3SbZtp_rd=@1TFQY zgsI5ioPU{i!hS$S{mdWU{K%*Zg>Ns3RaBIh6Ze}vUwjenWW`y#UpatKmbH9Ochgq$ z*6O`3TSwtGT=3Brl~O~~>BEcXU5k@`@!Yz7I1!uO?f(2_V5kDOcN2Z(7}M_`C2UFw z2&WS-bh~yVL8qWxruQs~r+|j9TGg_87Xhq52E~DHFW`*aJi4y%dE@4|1CS*Mh@oW8 z;rdqzi?h~3`i~oZgR%|nxt}xqGQDLEqK?}_$Ao;8_76dggIi=*$3V@!oKvzrz4$*u zSc9(S@K*X@a~WN1Q;$Ee@aSy&!<0b~937X|D(nr5ogfS5jb1Q=jRc>U?@Jq+@_3xO z03@JQb^h%QSTQP&8>L-1RhdM4uMkjO2Km$XxCXO$YKpGcF=QP5UXV0oN>e{p25(aS zX#aE-9F{xwkg?r^Z3EY1))G5q7&zf-MT<XawJF0)tEWg5Ih}ei`X9CZ^xJY6+K%Mu z==EvgD$F*Z?+13-tJc$%nBcRH2E!H8fMwm5c&h+MFb8Je!2;lqRuY$&4T;7j##E+6 zabH`F$={n`Hbf^OKyVay+Y&u?9Ga#k6<FI;DAgI02G5^IQ~pnIWsAC&ut6+{q1GdR zxytjtpJ0X0bB8nfHQ<h*sf0e+1THxiiG)8S2-r7(E-3uFb7uD(E?g~*Tnl`ecpG`1 zMrJ``Y~>F+%)#-Nl#i!PZB^@&8SQ{Fo<Qb9HCA^Wqoe`}%hiJG2u#YTn!&UX7%ziN z$XJooTg18u2Y>-i{8(k7Y$Upi4c<*aFl%kI&jvrG-QXscR_xeXxpIR-ZiNe>fs8Ta z6_n&kgp9dhXe8k`a|`SA4dT!bzg7mlfM@A_-<F<eCBt%RV5^a=V1{;ipMWorc9Kr` zDb#Lrb3U!!(yDV)`_iP2Mkp_>+Nh42!UNuoGWtJ*cA5cl!%O(9V$irKL?|-PSSgJS zyW-mG6SQ-L6SQC2=hBPG=H+}|n~bs%ra`3@>3k|0QiuyljBp#Bw)5)~6?(V#52tW_ zPA#^%267%$+r^Xl)%7|xnswNgqyzQ#XJ(&_8D%+FLqSH}VlRk7o}0tz%XS)W{4``H z$x+EYVu64;_=$8DWj+T|vTJnK6m1q@<g+!QM@gSwSISltS<<!#0U4uA;^barP=}ZD zRv|{@l|>#4X20jU0gzDc+9ee!F(>#T^+;(##+NQoDR;eI8Q4iDKCYpJT*|wHAITSS zpwVzJZE(gfjvjfvMjLIhp@cl)ISbi{Z;m_7BwV}@A$8ZA;(`{IZwfFtec(A2-! zq~&PUA)OSaa!9H8xPXbzFWGolIW;*J3R#_B<km)N=%rWLFKaDby@Y<ijFPm8Ttsp{ zq;dkJUDNewRuoa`S{q7c8oqygc^<cb=QR0i@_d-oNQ1LP&3LP{Qmy+5dAT3P7&nc) zXvPvfC<9RM708uQ>^KueMUR-H(O34RX;+tNR3o}c7y_C9%uVWxz36;q4g)|h6sk`D z7Y2}e(@%&A{ja=^jhi!-Xn-&omYw<Esg3<R7NB;3@c)fv;)8@TG~fITVKY3;)RHU0 z^6$q>m21LDfcT)>5E-({eXWNqUZRpPO1a*`PUmZ5m-cZ(d&c7ZWa3U=iidBUwzMH= z&-q;l2>W=l)8_JN0S(?hf?sD?n1;zjMAMaH!L<ZmNo$Z-1dHD5e#aBAW9rL<c85Tn ziYA1JnPYeyrC8Ywy&!1aA~BNwhee;|;{eQ4M<&F$;xIU6#;x@qxS(|`LFRX5AEF}C zwYu?pL&&kH<}uys<%-qG#+;$qL+_@WVZU3M_E<2<h$0Tc(=UnGEgZP=Z?ls5<e}Na zq<34)#<+WH>g5e#3BM>V1(lJC0KDK6(NF2OR#Jieu$`)=hZn0INDot}*73B1Bx>os ztW65Alp=~U!G&|KaB8Ppg8iM?=(*U`x!doGS=XsDh>f~2`ivrFMb*f5t_}Bdd6mwI zikL@k+X$8;MLwdd0vA=Rw*G>5{BdVo=C&`nqri7}R`+#1UeOGRX3$@0foBv4vCKu% zlIrb>KrKn8ImyaYk;+rz<#(x02*1vY?a(!1F4cacG*#B}dc~sc{4~im)!~HpG-(_j z03Dx_OLxS1T;okYS8Ux#ONLr-i8EYi6nYY3bJ_lkFS;MY51n&Fr8T)*(<th)h-Uw= z<lMVmyrgYh+x4zYo6UeHX@)l2CzTrkuQW(C(+iGE=hSDncVO-Sb=#ou<B=UiDeZuS z#`QeWl>vk$(Q7KPs62a#UXK$i;K$rN;1aB?v5a#YZbvg?NZ*YA=%faDp6jmMrAun6 z1D$oRjH<63{tv%)pq8qq06dJa?mTjT0m63CMSsU*Cox^p1&W{P&KLXQ?ZPo^&?qXH z41?c<7@lJGP-;L-KKIN9r71~rn}Osl8h#HPRQ!sH!H5xYkr?-=0?V2;;TixAAmxAB z<R^vcr{%+J`o<haTzYAyH1+=EJm>AhZ93Q3ZWsj81PvZ4CUP;R%Fo~Uh~38Y$(Kjh zsd^`ASWVEccWt<(S{3G{+wqVz7wnw`k+jDvb6c&_?LJ$q+VKz!qB^{qr{+Vb_6qe} zty~F$B+%mnTQ;y==qs<1SFp<rz{ES2DCwEO%I+9F)xn|_ms7s9c_B-J14UL)ol-M) z_>_QtxtTET{}W_z^*(nbV(JBZO;C8Kbc-_ft)x`~53NXjiharnaZjXZkqVJhH=zy+ z&SGyn(d&l^B8^}G%_f^HI^ZnIuz#g9YHu}f)$3||8oRr1W=pBC`~2Aicw;Rdf^1pk zzMk6_!F`|Rx;EJ*%kLiK3@3>G0$9I406=2q4{y_G1CcVb{c-!1i3(<mQ}|u?yROII zy497l$~VQ+@69s34$3>~vBoJL8!<*NhLcBZke(xVkZS^2Y~j?-a!P?W(zw`COr*8o zun4=TrwjNM`vpDK+;qJFcap(i)%ftA{;X7O;K&%+z|OUf0**$rEsL3F2lD9s!qK1> zP7HcLg1unrGu*oLOcSb}UQ@7$I9_M0Pn{wek7Kw7>t6bzN?I1i=4T3W?@};~1Er-g z6j9{+8-)&1PrJtc2&dLF9!g0+@P;tK@uEbKgG>DK4*F^LMakj-QyY>#rxqje<QWjA zq|YR%ENnZ7)}-TzztSvX!w<xD<^tqh_y+j;Sw?^DBAj9*rx;8afoCAmTAI!+7kYQt zWj1GrFm?`E)@s=-SL$M{%~t)Ol<j}0MiaCppLt=PF5cZ=7kwH1DxK>(@=n?^_}+S1 zrFeF4O)qeU&ETB_AeN|IJ{LoZ<=(%eN!)X|6Tx)szX&U5)}#?*nt2|=Rb=VMJz<jR zlSR;FrlPe)2#&>zLjwB^l*S^#2CYicXlxE{8!t#y$2l6pdCTQ0Do9Gyujz^WHg91Z zAP=L0f4N$o#8NN*#p&#{*jIoB&-l(5nC5uD5GYAIx8yYYVWzF!|4n9+ZQdXH`Kp`Q z)fsfp(S_~+Un28H{t2jHHZ}TT9w=Zo!=NGMC1~cp<%qFWe!ytbo`ixE8NI0$z&&L% z)S-jUu%tdH!Q?*wP>+dBK;wUZ@8C@E74~nK49YX12JnB~FFOlMYQW1s1>`?=DLWf$ zD)Q@h0r|K4O)Y*Uqy>CO&Iky=xVSo-8QH;jW*utDI^c35b-!!YmdHRd<8`}xos&8t zk@Ek3$`{HQFmI|4vG%~{KYQEuc)_}o`8il^*DD0CMHZH|`-hWJCNP_|Z;LP@2-y(~ zuZLKi$qtQEhuI1al4`ZxD5_AAGfjVUv?_P^c-{<|2$ZRpkL^2wd_SZ~j%H^(rP3bM zbjKg|c&w8N42zi%riWS%bXmgND7OcSW26g}O{^{9M@XVww@@uQulQ<D7Je7E2Kf9& za^A|SvC<z$Z7p{Wi(E=UMT>eW%KPFrxrW1SRVxa4J^Bv2Z_rwlm^E$I-bnqHm`G3f zzJt17-Njs4oIIduI6d8U;>!2!@ZtdCpD3KoRV;*}w&o$10NJ@5@Xg9KsI3<D7CmyX zxDpw;jK_BE>JlOfbmCkf-DWA~VTHeF5}oUxP9ImKQ-(aW$vIha<j$@+4#xrF(#!FR zFwp-C!f9=ogJ=rb(b-p+!HneBR+NwA-`)kBegkFzof7I|vJ4j<n;6I~aBP}u<9R+~ z_?B$KE=GEdJFd&k1jIK`{1B;`L;cvNNZ9r;R-MPo-R^iO07Q+17#U~Sgn)QFHK=I^ z$&IvHSra0JJh1*uM0%*FX32Ml6lES>**Oc+TePqs(Wd<+;Bp}S5vXzgGVFQ2BIm;a zx&r{9Nl)G2(>l4e6oGDi!c7pI6+1P;22j6Um6%km^TR>PeBGAu&8z2ZT6GYju8-3p zR-SuKFW|5MC~`=?OZSJp>Z{QH{1qHf_OCmey7RNk`fCp54FRO^6lXH}<+?QAP4nIP zx;UvuYRn3|p=Z<`YGI-}q&yHtbg-b8jvyg`wLLYI0LMCEiG*B&LGz-)7Bak7PPuRH z_{4=xlhu*cGfH+Wb0Z;)hvXvSG$aWWL$(()66CE%5LK<iI7{G*QAaLw8Ug_mJ<_y& zN8EIECg(Z)+%Y75<C?AerCId)g6eVG?r`0h<;X|=ADP6cUxAuVPKTsCx63PJzU|?F zBua{MKmGWfa$YqC&46y+nfYVT>}p&V)NQb3&%(4DA0Kc51Xx$K2t!Q0ByqKa<?eM2 zHxO${GmFeQ&FGnymBhM%l80<f!OsRujn380gi|eqq6xSCpH235$^tZ|edKv9vT7LJ z%h6ZXG|!zdg`UiO+GO48k&s&+L_<b^IkdR(h&?89f@-e?w9hmLct>EB5TC}sEA_ML ztdsfS+LJdkJ{SrFA)KjwlBtvc6Y|uhUHm}IY9uYxRvOq41Kt~~@Ec<;v)q+g%4zM; z62DXR?|>Mx-tT}Io8ueeWs=mAQNHRsY~RqG(qHw4-4idH0sq7fVlmI<Gn)YBNU=9U z)H!esD#o6lS8dv8)k-7wICNq4_w2|M*kb+5k;R?TA9{a}P>-%l5#Z~=Oe0vSJJW*H z-@3|z1wu?iHuP;sfB?8iL{i~?Tewe7a32BZ^f4U5_%0Y2oxOJ8Z4sduW5bhl5zIq2 zP5kD7cIX-ryII-Mtd9wfwZ#Qo5lfE>r0k^zfgy87=mt;DACJa=S<ZD`dH>q1SuXkF zROH*dqFj?DPqN;me>T<Uv#A0)uV_YHdL0l`!HfP<28Mo7d7fFBlZoK4tf(44$B}0U z(V$Q*WlaFnnJ0HE24YN}`9<yzxGpGgg{(TS1pkg4B-;z6X73nvhPVePAkQT#Yj_G` zeMv#dOV%RI_rEy+c_~a)v4YdXqM;7wzvIQS-|;ZpYm-Hh;hCFccVz$hTiBKF^9q(K z>NBy5Qy}wB+ZRe6?2`}mbTH(oO%X4Uo{2`W8zimt(f~@H8cMfct3ecZuQ67q{)!e2 zPfdyyX4k%60fqS4bYK9s1eK=!@3-6Fi}1!c)xem@6Z&6;0y_sw>W(oHIxPEtiy8KB z$IXo~ktXnWKG=68SgN}T5iKxtYJmw+0|0tlB+_)@qEhis0D}Ic!s6J=p=r4&UM>Sh zZu{!pxmd?-!4LXnPR+}Uqk<p}mz=xp`qvE*O^eGH`z<}X<?O}vA>RR3PJPDZ<HWdz z0p0#h&6UqpB?Obcw;Q!RnDxX`T~*xC4o(9`MqY443W$-YN%Oi5Ij9jA<!)5lHh}RU zx8PrYgy)`4!4<#+Yld85-Tpv?d7RtRdqRj=F=17%ggoM0%kOL=uS?mra6@`Q>Q|MI zkn?<#-6aeWxTLX?HBTvua%v~6pyHVNug~JdooYi~gWwH#d?8foNdNf13zyqt&Le;A zPU`?|Y(46`Ik(MPD6L2=^N&zjw18<-y1X=x-YCwByr=54uM<WV2UfEtn*|a~=E&2& zS4pXeg$0n?obfRl4)3bS!_o_ck#*96WtzaJ2os`Uv|mZUs6o51fs;@ZDSR4|)~-qX zCfva$3jFUnLVxQh3|05&Ta0U>Pk8h-aJ$_-*`l+k@04<$ezu87Sng0shyq3!;;MJt zv={4N^-jG3nq40nkcpn_Kv(7LLI;-d#1o`W)`3_vKM2IUWV|tx7I(?bJ<c?c`7q3M z&y#^j;MY^@$1Ve@a9bj!ei3-@Eq!zhZxpgZF@OvF?73Z<s6&zLRj4Zu6`C%25V%|^ zqCcqEV5Y-Af2V1JKFw<uhy^g!z5gO-^ntJ?jO0uS8&Ry2{9FH<cipX~J=a0;t3`pY z`$}?&R<bn9jdxGYp!tzt>{yjIUvX872=w6Ym=N^0UCOXz4g0cT*JE)tE(3P~do_tO zD@;%&xs)n$pyiB;*^Ubjw}P7SXnUD9l*&9>q;3)0S;5`IA%4T}upq#X`1hSVNs%^J zrDPAB*FsE{Y+0AgNJlepC$kHO+{-$n?cf1g+16kqA5M<P=J_VTU1d+#9mMkIqlSl# zSA{KtbT?huV3E>US(JcQ2wCnKJv6MB0ZNGNI_aZjDc-sT`1^0YWC9KKDoZUX+o6^2 z;^m$!D8SoI@-5}N6(KNTs<H(Ub!wyqQ7SC^f5b`lZzCF><@bI0mpB<#U`h0Sh`$d> zOMxY67Tx#sESOB%3c#D^^Hj2ZngKU&bxoPXxR`iJ9aG~G)K5CxzN~z+Aen5n)ll!+ zW^4GYN3S~O8WL2mvjNKtGym|@r>kgRd{dih;bPryFYl4>p0bY%=S^Ly(9Zp*i@2&9 zC3kS>w@0XwydLrTQKbV>Ln#wIaoJqijEc0+&Ag4GQKf7Qh{pe-j&AjS^Ywd#wqQ#4 zE*fb;jlghg^oblSC?Sl=MnhrP;|#&~teq>a{a+gqiP;}ev#cK(w6R-*s0S^sUC2;C zj`=jy$R4c=kwI%`7P)y3ghOn}Ajd^@(o_Cv<i=33`7`K`uz9S@Ph_V7<UV9Je3i49 z9R!rl5o7=)uH4#{xs_-n(fqiT;v8a66?$zPZZM!A>dw%#7tLw^cLaHBjJz$?$38_E zEBHhgvn>s|^WmDm9B%9>`21n$9?)$ASG@;$8+gPP|CTWB<q3zYSxEGXKj$AOOe)q2 z^>yL#Pv-{9j*(`)rq`8)$<}oT&K1_ubKB-aZx29eyw9v^7nO;^q~~KHN#-U&=KNKw zpjpL`ui&x8;_H}qEFBR8v_JS{NLVV(vjzCmAJn;4%pZWnm6eV3WB5)my7&p}UU=D^ zkI_si{>&p))F1vT$PBTB*PIx$YA(Ia1VLt{t^)~2RP2^P_&kw>>Bn;re4y8cjv#4! z<Gg^7ZK_fTlBQH2_Ynz?*}0NyAVSf&<`uykNbX%8u!}dF#z>U(5%s0MoRC71G0*{@ z6nEZ^a3t~>R<fdQBV0+?R)q>U+}vi4=jq)hKCWaQf3A>4r??U?G%Gw{QPPOL`WR3m z1>qbNad$`R0`5lI=_;u|9BVcxNbIG#hCu*s^1#v!CXq1L0#1d=uXHTivA$i%UXM<% z+fskX@RV9Ph=?u3I|keBQ2D84W+M{vN?BSX(h`2#P3{Be$#?y|`g@`b`Faei`@e^B zdP$K{O#GQO4gNjbzyDH}d5)xe@?UB06=BG9T@7-tVz^bI8=5R5^oN$pkqq?>ehC4T zfK(){D_d0RUrx)uODG7jPk!<kiZ}KcXw~U25?OyAayC=Mm6D)7p;I^=Om3Kj1E#Sd z<fK6QhFpX#eiiTa4s>Qjil1b^B_(Us=KF`QH~C5qFth_l69#|R`S^vJ1T+gj<kH=V z6NI+Zjn-uUc`fX^dW^)>bD!4jt|}8McjZH|)e+&r)ay^g+%(b_yEV0eNz3y1)hoWK zkf1C2#C(BniAqAVDw*7rhd9V-3YUBOmPeZPo;%-T5>PSt&)r9D8A>M|fk@5DBTa$j z_zy+M@r@#+&nNxAD8khKe9|jm=hV6a(s_XNUNcGtwVm1T%?2Vit(kB97w*HP7s{WO ziqra(ORuT`hsXQFRj9zM>UuLqd)6IS=_5qt8gqbx!<X|f!#>+-n-I4@W1|jU1H=vt zF|e2GV{Yn15>>ae5^0USqcG;NVL$oxAxJ@^gRm*#vA+`fEdV#y4lwT1d~9Xxs1g9A z9|nqP%(p+fhx>-f_Iew7e!%K~w);OVCrT0X?GiwPPP=9tnNiwmHy8n9kh>b@beJOd zOxrt9Ly5x!(&Z`V4R(Zd5}S>nj@ZQcRJ>^Kh|7gvr}fWgL>PaYVi=V?rQnFYVT2p& zqX9X8<Hp^MvaAe$<Mjsh8mqy^NihNN?Rh=5mR+7TeoWXV28V#?bFGn<)$|c8T6mgi zJB~{}a#N@Qf#*Oo@Q5^*gO?aKx(kgK#6)>9E`@CL1+^**{Uqo$+A*UihvJlqN;vmU zXqS|M4P8EP*J_cIS!S)2Jm#KXm#x=^HQWxi(^eiRXg#MGLJ-FJ3v~-MNLvF?Gl>1M z+!RfUKwX?XsUno2OP46Pr5|^E4{QJe9T?_@FFg-Z?>L^Y{}V?`PwEJVeQIQ4f(Pz* zl2112km)y)adbcG@Dh7C_SgetnTT-W8s{Q&fWi<B3^U~BXVd7b3;SO=X(xe83}4(m ziys)VE+pL(t4&G25-V;mC^jhoa2`T_YRb;wp&up@^?lviN&d?E2PC+mzAZX~<=m;O zn3!b*SzDFnSOyCqR$lJwf#7s%=_o`OLc=?+hxf#wVZCBbiR;(PxtRC#jUQt1yOw8A zAMtGQNDgWs<MP>sQxmtrwl8tBsfT+LFD%Zl6OMHgXrF}w%2=@J#B5Z6BGm6aO}ktn zotuE#6m#`}QC3uT*7B$%{8N$yzbSs@qT9k_-jsH6ya&m9jVj%zggu9T4koM>1@%}X zEp%~s8C#&il}3w|j%CduSz`0bp(1E_h+%AM!ijnNn*_64Jl|Iw51gFC^-)E4AHF0a zM#SOlg3>RCg+TT{qdCX`bM_5{aM?m?72`yLZ!Ae^xDK@&i^%a0i!t@9eV04E<usud z+Dw*w2;{7mrtwPJ**)V?9VCTF1wu)O#+Kg*7bH)bdO?1LN73e?5XMls%Mo9^)Q(P? znvnBW*$3t=?+2~K$Gs#mrK^Tw))S#{2!AQK(4*sKbOgxh4B2r2tA*^XUa>otT+z|X zWD7N59~6^Z5#lw%i?Ra`p#d}>P*_*Jy;7=jVpZb9=8cE#cQf^O8FIQ-&Q*tvJYELb zol*0!rzbw8wOG)Qk`ep~hMwwQjn@&G2r=-nCtEu|z!q-%(NV8m>#=D-?Jg|nS-VX` zjz#&I)iJ>LhJ+#jSHHB%Rq|-rTVWj72iri-R5tA0znEu)q1P~({6%f0l?Wkbv?%hz zlwr>VK_42W|9SzzZYB@k+yjAt`86$dx8S$c09l^?C>&Zt!r}EywKGG!Z%9br`IRXI zb`qZq{G;`@;}4=E3JM<fLW{`O{0A8&aqkBmoM;sMk*25_Adjke0=Q`IFO4HJzO~&X zWN^&UWZr?je{-6W6=)BlwLJLztPb4HG-NbRIr1>!YUOibnS(UHwmW^<l2zfHsWj;W zs)nweio`<c-t4pq)=r<wi&6?TLwwfptXkeB@?7&FhK$4($Hp3sK_=&;?{-G6?V-sd zwayf`<r}9wR&dDNJ-a*xao+lvW~nZi378vtU%YU^b837kDIKs*YIiBA0fp>kkQ3CT zLVjjyDHnoswRgAG<QH+4jl-8noHhJVT}qH}zs$^0s%RN0iAn*`rXcXw8M;*Ss@tX- zaWeekv<-I!WkI#>V!1V2vWrIECB^1F4Y0vZc%7(z(`;EraI$#?;Y`Vs8|~T=X1OX; z|52duW&LIe$i9L=tzNWbYD*cZ3CsL$c8oow^yZ1Z;D9Wc&qKWPIdYEcA1{$5f&TN_ z*fR-e^|oG1N)y^^Yur^!RWUxiRJn3e9)KkG>xUXDS#b>9@6(O}e(I6J>-d;sh)Z?v z<4G2@AN+)sfjVIq+UW(4X2~+y$S9Eyn*xKbE6FGIaODsEu&DzO5_9WzhBj<=?6sHQ zj$2S(M+4){-csmWXF^cWbLULI5Turr=Q_r=fo?SXzk;LPgYobe*1f$#l<1FH?troO z-2yv9s<%^BZpAVX)k~*JxhLojgCNI7Z*vPgms=AIT4%fN*+0H~hN~DON<R$!f?y=t z!UmbS_>shT69?RnauTwYiD2KsSo{uzp2#@8AV{(O&T7LVxGA#NkjG2a)<y>1Ls-r{ z2+fU0>X`iEq?WE&8YKdVC%;CZ_W)9bw*_%4C!Nb5r5gl)IbjY#jf3>50dewIViAL^ zS3}j)b)0_aU3T*3(Wea5AmSJ;#~FTdILNgE)tk?-z{_7khJZKJs>UEJ*atecH`iYx z1HyPxVJtDtm25aN4d=b9^G+;?Wi^L^fe{{!``GLIFNYuRG;S@86)xD%?trb|Z5e$U zCulHryhQFK*2Bo!)%PHUX?^NOV93+;FU{$ac*bIl6y|wPgBh_IyY?;gWyzJv4I$fD zH+!09zTui`L|T(3Qu{PQIt0pcORhxR{~$kz6Q;7-E#({L6D57)669x=y@;aB6>`Jp ztj#T@kQ@`F^nYXX)LZ{e1w=~gGGI&-Gl=J&-{}~NV|ksNI&S^Cw5eykv-!@wg0Wf1 z@S2d)?PNbUl_R+Vpwm697)oWDm~q50ZeK4A3YT+*msGv2MctNEEJ!L3p)L&$y#6HW z;SN61;;dCjr`@|^$qo{o-I!x=!&b30J&8L9yF{}7C;bZJZp~T^XY|!eWE<6m$9j^K zo7Eidm79@;nl#XBsEH~SuZolcko@=%+Po>+Ha(u5gzShRDc8xdS^~&6wBNZ*N_H}X z^K-~bvZajrd)GnX6CX4|@%>gDqfulf{q_<y<+In`FaC2}v_T7d{2^&IeJ8rpC_+Jg zjg*`X4ewKnIidu!)y73VPb?ETH+WWYo-;eVw&G)Q`3s~3y2JY0tZC|!s$oHdkUCvO ziUISVM}mWyJN2uIG#QqI^<Sa~$2TK1uA20l75YD-2SX}Z4e2ciQgJF~E$K9%InQa6 zNji98<K8~P1V!vuFbyWz%gCbT{G0uGDrZ%wgGAJm{KF};wHt>{O$ninoqjAwp&((A z0#Y4j#UJZH0brG4PP9h3HWr2+{OL?Kle8E_hip_1tUZW?Z2KU)EZ0b0N0@I9#K{9~ z@Z{f}I7U=AS-6&%BQfR>Uq5aDsm!a#?HMGm<_&1v7mG!sS2I|J17+NxXCA+)&<~xU zbK@H`{mSs7VxtV?5t9=;3Cpn&#@2BQ5HTi<&rj^M&C|X@CgpZ#l4WY9zxdzWeapS* zS}xE%J#52hsgnLmt2Fi6;_!olF^U+B)Y^*X9j|N31~)SsD<Ji~DT6q`Y8#R|a&Mz8 z0;0g*{CZM|<S5?y6pU$Yk*p}xoU9=BKRdjgCyvawcfX5e6tpD&I-qO7$5V8FX(=1m z@l!LO8Cpz=u)m;zijx9ue&6<mu7MO9D}0Rt<#p3poY00pbAd`k@w#vLhlWyp1;wx< zGh$fyj}K)9Qv0YsB<%eF>=~15Vn4fHeY;MJ-lr=L-)G-XZQEaU?s3f{3aDiST2NNz zU_-)DnOf9Gp^W88?nK2IM6tA3H3v!}F{KOakga=`vXGe;HmECM>-?i>p6<rHb$7AQ z#6-4mSb8ZI6}Ajh%1cr23cGM!`2Q$(*0KOiI^R0|DDHtqv$Z1u43cT>js&<hbtD>j z?^f9LO`nRSiE<-8PVk2~N^XXIL&d-4(F<wKS^70K$BB^;U`lFZL(B)w%qani&|4ue zgI@Ih@QS-^I!($vug>sn>m=qJpTQxMU^&=Dlnd<YgBz*Eq?hY1ynhV+$@Fh}YIMm{ zF#=SUC=U7Xv)@?&*y?qEMU~)_rsUwOE!a_|ODViSrmtys{lU}fd+9lqa90YMYic=+ zbJjTA5ofYwTz~p$tVSr`q}x(r9DJz4>(L<#$)ozO6>@8~IK`qT#R%!Pv(^s(5Eofb zRKoahV2$OwlxMyJa+~O2QsrQd<_UM-(y~M(R&sZZ-cis1?AKQs(Om+YA#)`L46D@c zhn(w*xnrzS7~j~-)}tB*g7_~y2SZ0ZRiy#3mf8^ShE*K06o^=PjVh1$pHaB|x<57M z$^CnbM`Ti8UHZeOzoY)aP5gSM6#J(^&Z;6acQ(O^1H0#pelH<xXe^@OmA7hWz#xX2 z5u^fp6ns}8fG3v*&UX=i;9`aL`a<|?QyV5RR_n&QudkbaN<fCh<DSllhd5r4wC(SO zFo0DX9F^f4Eb)GLr>Zofufg(VuJj?)wkOmVn%kWYfKub}u@)iT0a~a`=@5cH3Y^DH z!&9o#owf_VdFPHFT@nI^gIBglk#PV|<_IFl#Z~|V^ek_cWB%@X+W%#LynsJ?c}i%g zRHPd6<zc<Pm_3(AY`H+xrnH9fkU8Eg4Eb}tIU!?dqfa=ilp=FcC*(1b>>E)L2GgK= zk1+rWYt~P`?Wct5_Vjx#QaXo1&c;Ic7o56`^+>kBV`rJ=Yq<dS?`e~AY>|p!3$y{p z8C?BEz}=B@0t2UJ;^HJ51{D7Q?{+Ri-Dir=_#3Hg9V+ICmuu=zw1RcyGF`u~24n7{ ziC$vJ1|{7L21p462o3&43|AmcH$oU6fdgHR6~)NHM=!pea1tC3(AW)lE_cG66P7y< zkk|{*DU4XEooHs|K==t6Jm8vHcH%cXXpSO8fUYYB?oU!AADqtj(`4suI*__QeEXAN zu+}Qfb4X|W6(6(IT(KYY<7ax|fh{WG9!k|}#0GO{3k`=OZ_>Ppwgx!e6(Mh7kXBPw zVUXNV;*9h$#<Pj}VkW-=jJY3sV^oApm|#du&Xon#ktbWjqmKmQXHno;T}(Tx2B~D{ z0oD;l5rKGVlOnmGqIK&tXm%^)8{4wV8$8IzL4r#=(DrRSU^ze$Ml^wy<P!D#`p1nc z$8IohX3E|_CM}2*vKt|b=0(5rsL!7lU1{W-e77ysFn)e@fIsH-pM4yV{SmBUQB39u z_tAHN8sEn+Fav3nWS`z$-97hg(yIwe1Pqxs!C4@&hX)gAmV^FI;zva%%J|aKd2ef? z^3Byy1T9nXTbZ5~_{}CJTJ+N6`x1X7HA=E{`th<)eCM^N$oKSfIHj8-V8x8h&pJfV zZ)X*T3}xcUufb(qlC8s?d_2stj@l*s{HXWGdn29@Ebm$L+Cy9^A|_F-^=I`k8K8<- zO$gmN3rOh+Da;IdA)3NhGbqIu`;XUA+>x5g{LT#~6-2AM)=v>?6Dm+VWF;{uI%zzD ziSKmIOwP&G%wfXdP}G@Jqbjl;2Bt9MGDz|vJdIr_#bxab((u3ve`Fyc`Hyvbd>JTG zI$bQvLs(q_odC?g)De^6hE-1Pqkwax?Jpr=n|fndnZ6LN0}Yt7v=U@t&k0CVwN|rE zj^MR)qqF2z9zNk)i7xYj3opFz@^mAa-c2>T@ZE1qORF@etMU9tN@%`PGS27|=PzeR z+AwjmirU}NTn~<9*DKBR>+vsm@Dg2pJPi`7B(rkO_PJ8fDaUFzb%jC$6M)u?w^Rp3 zn}|ZOHLL2NgP*M&pI!f1T1W#WN-HiBmsmcAFmcs@>?E58#+;;tD&h<b2Y~ib)C;Sg z+?X4+W~_&fnZs@K!_=+FD2Ano1xDnDt%8whOHCs{dK(8Ab@mBvy|P-vNh2nujAfIY zT#`>*_qxE7yT=PaE@AR&C2qJOeQ<pXQ+HZPoxlhY_I~~^>^{}9jT9^OR~xB4EC>6) z;w27tu9nv}(kmzc$N#@?)>*g59Ygjz)|A_#BC~z=YX_wZq+8-xx*_>hMFh+B-diNW z0jh5rxi)!p?o#eBFA8rqn*s#NK{qKU@8-5xCad`z&UuZy)tPk@RMD%x^M;JJWm%Xu zTOL2mM6B0vo>4LOnk{UwnXKJDaLt&S3;;e2K!z74#W~fsu_H}39B((TL-+;Fi1jRH zUNz=_*caA+4Kp8TMJm10Vc_W!;Zb84epmg<?^rzn)~U_zK>Yq5HP(PxZpU`7P<pgi zuK9;)b?s=c-i!0|ef9ev@?LdYKDB>cPiLEF5TNILx9eO7Nd11qYk6tX+Ysx20?_CK zG8hHuI3v#8IJbAF<TxiL-x~}V^f!U8@_Pk(N_UkqtkwlETDAWVSML~HS+s@ic5K^r z(y_H;+qP|IcWkF)Cmq|ijgC9EZGAcCRNedC`)AfzRr}ALRjbyRW4`b6t`+9#s8(!$ z7<Fq^qXsfgqvyJJ=(YUIh7riN*he#*V5c5lIq7NJnQ;L6e+Ob-4z5np@cX$@G8>ER z*~4f`zLLcz=|(19BUt+!Ry7LQO{Xt;qTK_3I}@MDBpGk>zH`l>Ykc4MMOu!veiW^f z?lz<RXB;-W!OX}eI~$Eh#NfHWz^M_u<Sx;Jwb8zQ{+7najgM5rM1x2EBU`0a8)gQN z<;(<ZI8|;tCm5OqnuK%#?+{_GLMJFWx%s!;L~Fwm**s;W)1NlRA~jYaPi-hhGgP2O zzmFB}K$fN3S7ka|KZs!lNuqgrbGfCLZVK;2;N8EF+EUjnHC(N}qEtr-5>RlHkg}qu zWa%2=%6r;I78aSA{;O?pDI(e++UITu$|I1yb4qX=R}I;>_?=OcZ4BV)+fX}BJ7Zif z%wQ^us|m8BUHDekmmjHF^(1=1%?mIz@Ve!|z5~WdGJ!KZZwDJ%poS7L18Zoe!RWUg zD_{iXN8E1Vh18>87Sm4SwUDZtj1gbLKh}z9M05)LB<aJJ8GqfqoiK*Pht4I=llcmk z;<^S|MS2|FKd-W3T+euJ;5l{FkhkF?sHw;~IA-(SPyUk#5lPmai6}pYo05PW#tU1a z8nJiRhDFsRN;rw-+c=@$n#ILn01_Yo=AbB_XzqNI^J5@0HK}!S)|qYW`bT!U@UG{T zEAgbFgw9S=es2IlckvIfqBvU`r_JIqCQ;S2IA<uLUU&x(;S3F8-rql#6p^%+l|zjV z&T5d?n_*A2%@MGYt3uc&8r6U^IS!HAS}A;KUURzaM{-Ch2vxeEbb>!BeGCYJtd+Q| zL2h#>n1;wCS^4NKIj+n(Dsp3-A5lj8>hnmd?GiECAoQ-PZs0D|k%dAzX)FrbpbqvL zZ<(!=1lc8#UtlByo^o9GOj%o4rAKmFGz#G-wD*eqmCfp5&()-;-(3sKxXIKmB&?H^ zQL&^`>|{mwsM+3FmQYa?{>6?_^jl_(YZyleviMzPV?@AZHd^2sY~gI))UDjtE;E>( zVO0Y3QTi=)#EAOxD4LdX+QQoFTRPLi%VlE0$10qtgP^$9l6AVyy52q$es{n287S0U z7J4sg1=;fFjuxxxNiA>`N|8=Bm)NG9X*g$qHll0B8-N+fjl`ct3D*WAZ$scsldqij z2S0t0&cPGA)~{h~uAtx01_bC$Wn$krZ6nmKbu3AHVB>o;+BOG!-&*%+<x%+%Et^io z!4vi2+<`Lz``4v$jfU=!YVgf5CFqv|03%C2+~a+VjlD{+<_0M4eQGaDhu~%?G)q#~ zFOx?Giow`~Rh9rZTo5I*3^><m{MQYWv)<B?xn^3R8m=fp$HJrMaNf#Fjw$OpZKP3} zCD@MS`55SZ;7{Ta&EcHzp^#v7Y^qr-&7SFSSRrViasqwm?X^*Ld=AkRkKl2Q6k2=h z%Asl**S*3|5DV;j_i_9Sfb_zc{Iv2}tuoi>_?ey2>BSHFXNY5d?5#G70@M1k(<z}2 z@71#TpRW5dfxq3O?Yn9)%_|n|FPIMJWR5>%{d+Ztj)-N!rN2X+fTYvA3tUt;4buL@ zI9}3nm^;yv6b3Reddh(>BU2A{JZvvN_0{h(MW0=I15bfj5p&57Mml#tYi*k+GVOn8 zc?(JCSmC(;hDC(PZI9x5ack))D6F^R1L%%e9jWo-9Xn`K%8lXku<%a)8o5oJm8Jf2 z)jvHTdO}rq-M4LgFtEr_IO06;bx%z+?v@H`IXl}(krw8gyFluXZ57HJq&7gcsMGsq z)|9Fh>G}e(SSi(-HYB0k^Vs*QtNiX-N^W9OEr;akpQ&1lv4DSB_4D$j<n{$?7?0l0 zqo1Ds#xa&oS<aYN<W{mh?Z#;wHk&ax6pnp8KM02ZzQ5S6v0(l4;L87X<=pj76e0m? z(z7w6apS&x;jn-en3?cX%o5sRqV0a7jx@&$l9?OWv*yu(5`a2E#d!Nue1A@lM)>Zd zTgSiz&Cf&3?|g+lgQg;f-reU$!UU_bYKACS*@cv=Mh2{89bVqJFFt30WiIvlYS?rZ z#olKbqzT$4GVC*PV82*K?abUD@pM|E%%CGPh@96^@b3UQs}$9gJ+jI?LUZ~gm!ILV z;Y2u)^nw`VKoO6<79z8kmg~e2>p*!vmb?Cgj}#$6C@fz&S<kK?ldz(tjJoHE#!S;D zYKe4}0_yP05fwIA?&olSw2ZK$5ecew-i#w$Kr5!H@eYrb%Lg}60(E&^hNMtQlcwrm zi2xSCTer)M$2xV+6A^|Ii|kwP3u2LH^3@}-D9av6<#i`R;yVlHX9Hxb<w)<x*ee-{ z-@X0Yn1i+^MdeX`|4Yh33+9318Ll-ZIMUYrCWlj$L}pJbf-la9_5EkoNLPl0NBb~! z!Kkwy24SUimi)2C${XB7|GGcE7Ib7Oq<OLT_KRT>PD|F1tq|42yUJte@#9UW-{2B3 zg<BpE7ad9$LUjUt$aFqPp7UBh_S>0*fk7fyxR+#-0`)CU<oOmS(v^#`W#W**7=Mcs zrM&0KIu1|p?|#h8YWc2f^Sv=?Jg21pPn&4sUDGUMZLzcSD+Vg=!GEgREdRIN2cK5r z=!h%dOST5;JdQr$)WAebTmsp5+Wr5uEe16TJ?sj;Z5sxb4nOnTmSQGVhUZfmCPMy{ zUwA!}1qurvnH|sg1CW)`*p^mjwX7=U3J;DTWZiY?RH(hoCQ)x)a!i$|1G&G)NvOvT zMA1xUvG1MK+NRP<tWm8d;{`8@`}c?c!N`_Z5(|D~WIg%15t*k>faoi!Z|DES@_Xw6 z-)V6*0%6M#!`}LgT3YHUj%hJb^=o6hJ@3^9UDSPMJ)OU85tRN|NgE9mLf=Jltf&ya zj=|ELsfb&IG<;ig=1?6JzLUa6xhgTR_r_?obktf!?ZTrB@qaE1h}?#K?#zFI<Qn+1 z{de5-KZT)L>c%|<RM_eyS<C7qxl$02_5arn+QqH6qI`Du2!EJ^S%hApqoIpM$;`uD zdZ%J-!;-(`SvGZyuig$n>U)1YWRr+RCR){Cb*w{L{z^j?L$t{8+JSFtY^Arnxs8_B zhGYnOguDNL)6vy2GmBffe7ZPKGHoJ;sh+z8tAIa7f56ir<ElH#L@z;LMMLXhK8y?f z2QO>P$xQnLlTsn#3N0yGawy^3XxzvZ=1>DbHk#P2z-x<yn>E(zgjfUmcs%ZhFolpe zn-+L_Ff$cHbGCbW=y&FRxOHzAXJvCvxqbcp6gaY8dTwc6uliWHEWgrLyM`9D>v|wK z1Hx^6sxE5SEyumqm2q4bnd`0VO$&DWG(r6<>lFZ|_LGn&tns0@2CN0;;c3Zie{`R& znZ<2KwdFOKH(0GrWzA_}#9x8fXv`KS=lJDC3iP}jMI8x#1Hc%iNi1p(@y%Vit{?*- zq=C;~S<dcMz69$jno~_CnaZRTzE1DXK;{BBgA(i$#Lv_eXxhLfVf2J7MZbzQzTI}i z|G;JUy2w+ckiR_ym8siD_D)^;&FsR9BKO5s9dO`|U42{aTI?J4Obfg^$NrjikvhHc z)B_l6qmYG@jdw8vWO*c9bJ19`TK&na`-~Q%G*9e})h@qg-1uIMhAeMBaO2m2NUcWa z1tr~*qfk)<s*DVCDIjnZO0zuApWQjE>~Cvtz7B0?XL=phUoi$5Qf#HC8{T)RopZ<m zUrd`Ue;67e_5VOoeObXL?23X6$XfT8wc&}LtA~4^Mg{x+f}WJNi9ojc75*Jv6G#v~ ztFYKZX=t0VAxCuH96p$Yh0FyB#0^Dt+}Sn)-jaz|Fp0x6421ty5yB0rp(A2epQ>K9 z6*0}R-0j?8d#Kj)V5Yrl=<i+Z#UGHy69f-TAzi|@Ko13I>H%sO`jNg-FHd{2($c7i zOT6$tIr#@U@oBZR$Y_;B)QJJ8f33hYu)kOaxf0B=Nlj<a2oj7!Lzr`c4Q#FQOE7^k zo&gNOQNgJ>2H_uN*RcJXq{}{n;Yu0NphRp+6^yK=@P=t9>&49=B=yN}&T+@o!VAoi zev{ZZnr*S$@nD2LaR5kOmgU_!&{e>vBQYAXf^E;;r%9JhPQN(KedUm0&1&Vw>tp#^ z)*jju2%`6?wbmAWh29>}X^)m<8k<jr;|6E?hoX&WgoyOYV!Q-t)g+f(KlO^77WrO| zMX41udu&D>#~%9tV3gl-*jIdzi$<o|K|nY5c+`299Sv7FvvRqJ?Ku4V59CNAnbSsz zRzBf025j|N2q<P04v@sey!%cfD-kQgJB#$nxxyMLo-q|vx7!0Z)<>zI&8c;SV>+iW z2SIeOZw&LCrRDN3nlHSPm~ls)uOnjV#pen!T@sWMh+T<YGTQK!+1HovB{_tG>&nV| zL|hloRa7)M*M~(2+^JV2P=B!xcECfK0K?+R#b5o>kcaa!)XwLGSHAZJI_O;e_eb%q zO^0stqBS0hq$|*>7cszTGS}Opp2#H>k(X_|LlV-y<`o@@CGwDu9A)wHWRKDb{c%%5 zW(U+M?2K9t1_s|uG)hPL_w6^n7)CKJy?o!~l1pW0=psFG(v-Ha5gF}w>k2_qzZ9u) zZ&#wz#Df`Si4k(7Y`so6{t;|sqHHS<4L2<kg+wl^s3VYZMZ!C>U=_+c>w<)lnVMkq zaS-M<Jeto#{!v;{6#wrdg~(zmB<Ds+^BUxqL$l&PHN~NqWjMY+nhwrGVCNaezfOCU z_<U^$UkrytrYWAHpzf;D7V6e^0yv=IUb;H>Hho?ZnH2>!_jC*w?%P%vGapJ$RXS`v zfYCEt9*aN+PwoAUG0t^!PC}J7THnklA5=EdX9iplszfCl;51hO1X&a$FrkS_j+M}f zT>s&p@KV-VJ){`}u@@{m#>6POo_rF#cZv?Yvv@_nv6?xv>8dH#LekKD6DksKD+6C9 zV{e^>LfuZcQNCA-R**_K230=QRj7Wdn1Yb72Q1M0mE+#ko!QT}4!rv|-b~lLA0+vw z2+Zsu{RTh(E+mjG(2R?4&MWJOx^n-7gp3o^DHK>*Kr3?MyTM`NG)qY+b8LvpKy}+q zVakr*5iOW3RG#!RLuS`bY^Id_&|rPo#_djAW+UhZ-&)-Z;KT4wF$HsI2-yyzOu2te zX$mlv-}~ay`rz$ffbimzx<7D~&h+Dim2j_kq-O`aTTjp7aXNHwaE`_`W0jrj;1}ep zyYI+h4Ge{)aCxDJ@#W^|R+t=R6e?-c@YoI5A9QOah;O5XW=$l>M-kA;F}kD&8xtCr z1sQ>a7U3x?FyO3K$qoOTkrPzCdXA9JSOipR&`7)QZ`kHj-!SD7!sUMJZS#cl*5vTN zc83}VPqVovD)Nk&-s3;*v}@n!KU$dh!`QBO`wMMEy#66c<nluN?^*R7)NAdpuWlzS zEqmG4!TyAa`)UlXWd5`Gs*W>z%Yq+*t_p8pMJz(m!l9x?>U~*pdi(OdkQ&U)k*Pp` zL`WBNh7rSeJz$6vKbB?4=X9cup-PYsQPVg!7wVIRctSlrT&zcEoROg?!Ql01aFX&$ zn8CKc>gCrm%v?}f2<c>ShbH0yc#cF$ZF>EBwK0-jGNBGeU_-{war!Wx#jMuTWXwS$ zw-SV2*}bomcOQ8fUDb3Dw$gBfCJ*2~5#JAGrdp;-t}gJ>l~nx>i=V@^(Df@H5bmm_ zJY^I7Srag%(xbxHikmE__ETG!HBk-ATn(<D`lM%ESV#vnL(y8=Z~;CL4Ygq-?l>cW zQ1Gf>geyDjP6lCK)Fk({rpDOG^5-wd5SRaS(D7*Xm*|edJ1?UbF22~PDoB77mFmVq zNDN?0!g0i%M?uWKrhLmG$GvnzCzU`t5+C=`*SU&Wlsv6nKalETXFYf*AJKkNk!7%o zLtq)U<fv}j4Tdv`?)YwqFp?%XnX4afB9d(?|9Zglcy=sr2!i!Do~<Clc7P`URaT*F z`wS598fV1eMzkeRNqI>=uLN|<CVy(FSoq?U`)6?JGmb}U3GJ5dwyTR>!5#vO5!n1k z5u-ZvCx{gvp*;X<?>k2Pk2`1Jw^L=;2Z1zI6&Ay%e;AuO_^DQszz5sZS+!mgq`y&3 zc8I;-hoB9bKVb@BtdQK^8tDpovk6*MgIWXN-)0Ws<sk8Ni!xxt>;T?yQ@6zO6Q`dk zRTFUJTImev$}AAj&BCG=Z)%QA#Y%jHI1C(yAWnyEFnCwgd^k!KZ_v4%vFz<fFb){k z(OsiiK!t+c2$6?|$x11}BP0y7srTYXDc`7;b4C6MOeXxkTHc5u?JomDJ`-8@7BBtZ zy`a6RL+bWD1$YaNHiaz+kdyQO+Y4&xIINFi_&?Qb7Y3_0xDdq#2sB0*lRMVO*yX_$ zc_EupnCC~4O`L6Deq4Q+kK#BFqS)175Cgz8$&qHVxQ}?3jVy1P@`hGnHab{zajL)B zmm#Ww)HJZw=th<F%~87(V<VddM3>Ty9RpVrW<UslwxQ-uo)JXLprxK;U-+yUvw_!W znpv>61f@7cZ~v~}j-OE?N?9w~;|VK6_01&#JW4Y?A>R?LJs`@=31$`8!Siww^S@TG z^>v>1KdoSE`%i(GPo5k{mDp;msP)6@SGUPU%kPo?*+y~q`UYFkB7Dnp*`Wu!5%BI$ zcX#fTL%G|4TX&kBQ;GPQ^@rR0%c&kxYY8ZC*Xe(IL43G>#23`Z;)~xoggI3eW<lGT zb$NwD?j5DgCgKtezkI<on?S{A_+P2iT)n?0GEcZKS3H$rxxG0LHS65ZE(vPm?|r&r zRi<-7YBbhSE7~5dRiujs@oE@>sS%Z_lw!NQ@4x@k3N8y{e7AxhrR&y%ZhhZ&QkNPZ zDf%R)?^e*(uJ68O_0)a!m$#F?fyG2krd?BqRyHUPjRe+03(@Ag?~U~<{r<dUWm1F{ zfM&}77~9797#i*YJ1##dAs>0tnfm?F3}2Z!_z%gF;vo}i*0C}=ye80P&2Ug2t%JYv z0yY$s#xp#8y$Y^t%Gb%SN3Ye)=Qe>SYrXeFz}b>C`Vl`=k#9lMfsLr^p@-<P>3BT5 zG%*=qXq=!{A2BV|#Z6TnjmQ5_bt0>K+nD9lhuypu5oYM`u|O@AA$F@I#N*ji-Z(Dq z_EJUVDTcAZ0gF?tC@4_0R3mE9{LM$+LWC`f`!$uPxTI&}C+9llti{>ct9iH9Ppmt= zk6$gdmqze==Idv?8k)XRC)WE-=F(Jv3DvXR1yO2gUa^gcatyh1CBQ`K$c2(XD_(Ps z^h_5fbwV(Xk}MZX4Q6?_PI#_`ur6wm=AHkk$@&mCo*o~?G&^uEh2r{5f3`Nr$zQ#q zP%I40Y|g#^j{}Nwl=$6I!@;{h_d0{{?D-`g;}(HqgZSM6edX3qLS5H`ciRpo3*opn zj-RfH%;sC3c1XBa;~i@8^j79RhmPT$S6IinewAEomTy}n!)xFU$CRNv#k4H+oCbI) z<lD2mnpC?G6Qe+-jd9l>-l|S`Pwne{HXhuC-Y}0|OprJ(G3iu7nvd2$#36XR4XP^C z9vn1OGIXWhgDlM_$=jS8Z~V5plu^QBNa}5e8QwPP{WHeA#o(icF0pb?flpSz%PZhx zj~fg?DgH0V##NAoHv;N#o5pAUA%9#?B@J24`;}T3Pb9Ga447vYQ8eE9*poVd0NX&= zUvg$H4#kVEjbw%rVlSq!z;dD(c8l_yns6fcwQ(f^tsN}if?2yGMWJ>X^>oCM)HgW= z2&fu=$)F|(YSy+8O%`P#;IgC~py&f3X3EORF*gP1V0gU5Gfbp?feq|7x3BAl-OHa3 zuk>od?*k=5QN`yBP1g)H9TKIZ;9*N5hM#GZ?%Ie8O#O0G!~9~`>MG1-vRuGz4hU5@ zprd0sV!}58ze$rUKL^8C%yjda#(p!#LEl7&w~mVkAFI9%+5N<w?Q2b$35WFXmM#!N z6b~vGYz}ec*iy@UaFXtY7+#t>ohMpZ^H2R%>If9A&nAwFS?Cp8!rq8Bumqyv@0KA( zXIZ?G>h?zkGjOa{>*yxMNKdmgQ&xXyxSJ!>Qd(Avka>u<EH}VwM&P!cj7b81&c7cc zbc1#C8Jl~EMFbUmCMP6K7TCEWOwvLQbW4%73NjNlx94cYq4ilrZHPIK@-Q`z*>{~7 z{szWQMAtr6z8u#<D{d<)Ab6x1y6z)jc7b^3H4Ap+BLxFUW$=@KM+HP+ijLp!zmL|D z4*$({aYS2XaV^>ZWd19lB~Os)5hQSus&fu9KPW^Y(nyG1#Y<K5Z#4t8T9fEpV&w3j z1szCU70)nM$)|^73*pbB=r%NLu}8sMvn$~2Q%iutd6Vaw|JT7_UXp-a4?j%`^`79i zA8+6L!B$8GRr3}j|4vB@ol55>;B!PU&#S8Jt8(%Dbf=%sxYV!t^YT|zWgnMiCu<MJ zw;7M`DB`IkP=w$G@05NS)8{!Z37SSD4Wa#;AR?C5F2@)ZH#8>EQtzs>^HixHr3ma5 zGz=`QgHFUy=Z1}2Hrq!@%c91}%L7>MZZ)4}h2+&v_xJwQTREP??tE03v&~w;+d^8c zNZ{^&P!M)$#%&~sL_sR?(Zx}PLx0L|Tmm!0Xo)_OM9ltE@oT=SI#;@&OrrTvA42$- z`AHAhuL5WC!!#SweoBUu(drlfSTA6p1+|jDvk&03t&84055X8E2Jq@6>#+C}uPNyI z_Z{{Fq0I-bEu1iKbJH8Rl;-B|T|yn0Mt>Z2m9N`dZ0=hqIb7G}r1MWFzt^wBh}88D zVIL6~gr=Vj3c6>-)N)Se;)~7bU}xnNF#XAIMB2#Msff6G*7#5F%piA`o;kobv@mp9 zWnl|=)P9#0Q$m{P<UnJ21XRV6s=xxHxNE*RZE$H-*6`zW7DoGmtffvFz-x69#x&A6 z0!;VGZ2t&bYy;QM;M?{;ucBTSg>Uq{d+x^>z74~-+ku!)a%E=N>)f61m9f*NBUQ$6 zv$-X$N}#-Gecn&HkL>QP9f^CimP+88#il$<RgDM>wNoW^*}3v(a30z0d>OW~Zkl$p ziPpKUn#2rY*gsRB3S;Nnj;Q+ug_IGIS~rS^)-r5D5d!k<=#Vv|kOGcqNNBWJ-jwAH zt)uaHvv{(2`iJ6ZOHza<7HofW%53YZqAHS*JTU#76bfz-J_%>&K;}UPV1q+3{-G4Q z^+AvcuNP?hjHa0c^JGzqQ}oX7GT(Jfl9MSrnY#N+MN#<rK!rkEL~ZdM@WAB_m2*LC zZe?fteu$?Dqgtd>PwQ6m459CcV_8h>`aWLx_Qhl~oV`+Zv-eE5Wh@%~ZG4mSTsIgg zbAze5E-7<2GIqhp`TALLRve>xb><A`V7<g~QSx%I+QHjP0DFGcAb>B7S~m5c1Vw(h zcCA!La|#h)O*5Ii%f(`GvLuW_XSXhbCqX7U*j69#EIg0Yi$M)#3}!K|oq@O-jxr)X z!)JrRNj4BBQSl%ULQr3i!Jea{Sh$i@oM=lBCcndMfadZC*|*RN8%(E?bZ;zfbJMhH zTa;CwsVW>3RqoSQIQiCKVL`$D`Z=Pe$ADG4bL|HZ)dSADKu`2Citr6RA=~Dg@xWXI z8qy1Y-3XG6m>z$`oSJ&jtqVXk&{G_*D7Jqx#YP?h<YUh*bz-9vyuIcBz|DJ*^wp?Q zw~?e_nnAPq)?P`%!<<*rf?ulzJZ8;J$gVhrC^k+9z!I2st*7=F)>mh2xOKso1|}=g zI6MO54=T)w=4v=D>Q^~4Q)Dd&P@a)E>5ChKN&@oX;}w9opfy}dc}!@S0u?17GlUQV z&Ib1@RNEwsO)1a`klX2xv`nSTgoO*<ZcRVdJ*MmpT4>N0I1)KCaL*2a4yV?+j{lb4 z)>|vi4`rt=gD%3chX}wy5B?Z8ntan~K@osQ&Z<+Sl4st)F0Elxy#sy@QY_Alb-fKU z7tfA0`z4e^HSmQ7yVKE%=$WlrTVZoPlQk8YO5e7|tCcMzn%Qe?U%|gL8B8jfYIi-T ztd5|Y;1&@l=a~g^4fq^V>k2Cy(a6&v?|)sdI4n09SwfjCt@Hk(S(*IyQZw<h=WhTi zrWT!Dod_eB$~Y-}Ayadm{pJ#h{yW>rbgmbF90-efVjGu4nz&}nOswiETtvLI|I-)? z8vO!GZI>%q+OkoX&6w!m1_Te`^3?K^odkA`ewI0smP*t}frDl&mK;I!#hgwOjh{!Z zabIdpBcS&lhdCTrj5c%zQwtU~1i%F5bs_Vtaw={C-bzt>C~uSaLFHS=!LiuxZOJHc zttHj1$Ng=Up&oM;AW%KoN9NY0^cYqILYlmLE56dv%^Lmae-&@=Am;VZ1}aC*&TNMK z3IYqt_5vwkw7IB#f`0pVw0@f-Y7WWaIZiZT>S9QlDZ;8nkT!PvOEzU@7s?A5PGriM z#NW6jdqDSB#Z2ObXPkgx6<`|}@G$KIx&k;J_<1}D;AVI&5nlNvi~1M`!*Luh%XGjc zN1beqI9?lu#=hQ|4L+u{v>07z^GufWg{CLC<28-;7i`E7D&&d)T2?MNj5PFSq#y{1 zjgG1i?B6E^<Vdc%$fqVbh=3oE7M-oXWCk+p&k#0|06go8nm#RNu8`JSd_DGb>UUPo z?zK9-?zt2+XBlDV&@Ctb4x~*ZHj<^{jG@yffQDjL4*)gmQ?(?v9Q<^M^)wIu86^)m zT|fYUiIsJvqr=N5)5Py3@apJhiOe`y5M`dW{}U#P4Qh=`WG1m4Yk&hz55?K#-7#=? zXX!0x`uc^Ud7cg)Rcx(0Z>SnwFSy^q%n0q|*ms3e619#|hxTeM=k}_hQd(@ad_@zs z_%&?5?}%1Y_BIDDKsl}>gjhWIU&jF2U<(~8oV99h^3Hy{Ng@gVm>>1nAvQL?bBb(X zSL>QsM$g6-POLTn=Uf5SavNW=aP=D{`(exkbGihKSPL@A1}&~JJ#9NdctRR_O9&Pd zuLx0&WOk)O(+=OnLc)Y&T)sfyj~qO2Av-TILB(`RaTeoGL$<bP3p4nf_uqG)O@|c; z=atqe9_Dds90JNr^c_KgYg0)$L?1}Yf|k}wr7Q%N@aAPc1)sopkXkR+p7nG?5S~Z7 z>&u9m3RqY=dEig_oi!yO(ousvvQZ3j?St@_!pFv=)lELv%P+brMj}kLk)}kz{SSnY z{;NFA8Y7J9>vvr<Tp@Hmh{<4g$R77^|4f=uS4c!@57Q|Mg8c_|=C|HwjvHy^%!3{H zBvN7<VnQO>umVi$O$xBK5=SO{FoZY2$;}XURrjn<Y2}Hg&kE+N5Ae>WL}de9O_^I; zN0K-J$YD;3b5_|IkJ7;SL?WDrEwOnSCj!86Q6?;l${0uP<?Zkm<tLYqnNRtbUf5St z(jINk_Q~aIJ7*xm2%vBUiWmO^`TSz>UxFz4kE?^uKY`AEuO4@UH||7M4z&4YOLC)Q zHUa83<NZ#F)?tHIu#CLdM-FL*vwpjM>(;>eMD6}E${0GPRb?9094TIt-S}ZC$=?>( zjo%}KNs!Y<6<ISJD_t{&d0BPVx>gfuHC+pVY_F0ZCms6gc|_<OF#ZdD4S4=@&oUDJ z3e#1$@HU!<7Rf;Oj+tkzK5dCN9rfMcT+t16;~fMupE6tR8*pe@9_u>OOOD$j37-52 zB8LaNA)qTsP}#M7zwgH?lKLaOEKoO#A1s`$M)`)DK$o~0BcH0qRVy9B5e%bSPTUny z5I@+zz8sIIss1Y}YALa!*aQdVVot65jf$1@ivc0E!kGdEsN?ci9P@ifaGYAT^4q!M zDpi%XX(hJKBY+DVntVqn2PG(_j_pr^*89~HFRoO#QM5#DlA_9hXS<GsU$@K2rHgCu zeGUxe_wDE|6$=h~lF&D_!k>Z_B{j%c-sj!=5bQY6ND1$~fB_VRhw?Y2w4zl8B{*eO z5oGstU>fBu5M{a0RNC_&E{2M7L}&>p3T`M3LBtA+83H@L3Suy-M>#;&#E=$s0Xsc~ z)|jPN4OtXMs@17NQC27JB*c78<{t_CLZ1<fQ94SZB|huCReyhU3MhhQpC)PSBo{ng zG_HdXJ)Ru0>`-MbxGrl)d@mE+qot;K3>G<TLqM7|Fb=W~Fd{BCn7}QB5Pm_vqm;;9 z(Fa;Mo%Bzd6-!FmEG-pTONhJ%;ZP~o3+{~i`c4R0&QQqGS`;%m)Y>T25dS(4ExH6n z3}Ld8ojs3P78ky<te49(QIFR;{*|9S9Fo;%5jz+cn>lS2jgYKNh%9Xt3b$_(#TVTc z6M`fdC@6MNx}(W9*zbwSP__(?*_D?tO6u7AH*jcWMYq3@JOY+LCVy0eo=+J&G2x%2 z=B~xq9UpUJtS=KXfp3((5ZpA?pD=fZP6g{kP{krPLRQ}EctmdvL_R<$uOT_i2sjcH zp(CnwK$x}f0{dmv7)GCnm&hH2HAFiWpQ@+<u<u#fM7*(A1g$9$t3Pz#ahsv3$$xKz zNUMJ2^M`$9R|&n>%c;jR$J0LIk`oN}(5maWenYOmbvRM&5JRTI{L>40)m?qO4n4Q| z*ubq83~kDJ@*-CSQ<<eejaGdWV#|f#J(A{aFoi;cQViT0?dCI5T;h`SJ|S&#q>Uv4 zaB#$e>fwdnWUR2$b0pD1?oCK3`GJawh8I2gC`KGBFDpR$eq4xq$jZTrSxBjo0bzjc zuP1<H3=b=fuWhoN#B1T%4vt3h=kDppm_+aK2MyQH_tOs=Z2!7zQgkzoO9drI6CPmy z$!JV1-LgvbzwLNCAr#z}=z<*N;B41>V71U4Isepf?k}>AX$*RC=}WsBVv1Ic2`*Ig ze=|`x#N=F5-hZe^KI&;#87sbu7m4X%@m#OQ#ceL%Kj<5E<R?x&Q({>ToormNKi~8H zJ#|ai5z2;U{k8rgT>FXbMA}QJq2+y_Z44ZdTL?sP{k{X#N!Mfl%$m%RIK|Dk1E<SD zE7zpr%AH-a5?sgTHU$6{MAj+zImJn~sixj96JtP0Z($ctTAE@@lsu>%v#orHzaGef z$K7B_>D7DbF5N*3)(86eASe}YLnutocO_w6LgJ0uSR$DYXWkrNBvO=KQ-Ymi#eBRn z!&V6j6Z@|1dbx{cze^TOdAZY5fK+2v8CbQq^c9;&ced|H6y>(cW_R3_`!DC6T&u6a zDncI5|Nb>VAfZb;1%U<Y(knZY*2)d5UBt!6(~vIdDjQlr#6|U{Nqk4@SV7vy_d81) zuO*41a<!b>Usv)4Mj@@hBR@Ki!|AZW@;AU|(BV3Rv6G`vt-{IX$gn?G0tu|y&sWtS z)q`ZxxzOillhpTm<NPEGz)C8e7Sr$@SQa5D!Pr;(^4AqTSY}lmxWU*@eoNR7-{pDB zE?w7Ji=GWSXKPlYO}H7i$<r@K9Bfh5ffIR${-aE}_w0}%!q7v}lh~8qV!prbID?;- zJ=tmRNiU{+izWOXwTt-b0@q<&<Jv4Zd^9j++@d<>7iOlpJa)i+R^NP+`TbghaJ2NY z8Rnxc)U+optbSt@-c5%hRovPxZE2fLd2f*=*<F6*1%t|x8%k?YbYtD}k~HJuj98Gh zE*(-&RV0$!^tw-ep1Z7?dn*5FXnC=mp0K_>T2db|p~|+1K_i!t0Cw~Ud|kXryhy3D z+r~A}0vr4^OBQ@ZStcd40#sWmZ@J3=4CqL1pSscGPWrOMTU>OfodR0|t^0q-GkX<Y zI!A@lNSt&n9Y|aUz94h9h=_W8-5lw1;8J=HhJuW94B*d?7CSfnGSx@fF&ogHX>&=u z9HgZXt|Y8vL?K#bfSN`*5S22HQwXiwJk?v%ZwJ12A{5y@ha=d2JGoe}U(0(XjQSV4 z>Rj(G;RPG)V!U3dITtM6_K(p+22n}-%{7)^KLt2^RiPLOiMm&Od^b))srw960^3wz zE(xUpum5}nNyj%odx$Os+Kr~;s`hH{c^*A#_IMwEZwz$p0q?xBvk5UB#?1vkL#Cxb z>sA9+3WA&xXU<Nu>;$k=sc;|w77eRxybusfvxh*DhYOm80VuixlG@V@f4s%d0GELQ z8McPN@{OXUD5|ic<_w6z%`tl(-qG8!^$an5K$Wyjvz*(NDKJC+u#55hJei2;rg<o1 zeJM~lb30=lsLu%fxUk?0Tle#R02jipDfNz~xBN1G2wDu?<1#jC3u?$TgL!QuZwm}_ zZ7HhQjpU2sj~)gGsd^VZy>Q?}|9D5pq9XamBaG3`Zw<4UWwS0blUEj&O{UV$79kYS zIlCw3Qq1L$PP-!<>VxdJzGWTY+CSjOs=bB2`$jq=u<g9D)BX=HM+3;P^4bm^XY%qh z#svL<j+ucmhP9jCz0SKu_~^K;CCx=>EUvIm31=g!zlfH}8$hQ;V)Cemlx6%ZItrN6 znLa5<r+_Jk>fW$#<aIZmx+vLC+DtK41=ymIXT1H#=;grtXYbzi2W1sK=Y61JR78%B z%|5LR(C{@HRa4t<bW5c@zKH5hblwFt45Lw0jLy<NGg3X?KVjY58z*Mr&3sE;%;q>L z-Jz%8;42WLDqsB#_Iv%EQKK}68+}5j+8Elt&|c6~ZCOS4oix1EUhvQszl2fcCU)ka zG}o@(@>;)06H(S-;jAH}hO5CNpdqa$sVf3x(i<sUn1T!?adqT-9z<+{nw?#454Q?q zh<DVJf@ht(OQ^Y%r<$Lfb+fMs-C&ja0#fGM6;Sb)Pyyr}<-T%<Tr3uyx!;f9$>}zK zgUvq!oIp@%@Pj}<Q5ih${cU@V!*B6q!ov>XxBP|i)zgu`kjjZ1>HeQ<l+?9*3fR<s z9}03%7ViJHMyX#u6vV)9h?n1$#-vQZK8Y@3*fJ?}hRg;owJw=_K%*F;sn1z?0)>cv z$@JFKr1lyy1F8YGP)NtMnbhU^wc}wtFI2tWt?AewfWS6tMAQI#f+xZBzRPfvBKp6X z6lHVW^hml^9%DGN)R2|7@KCB0a!c^t?Z21;CV>rE;j9%-!}LI<n4Lfze>nS&JOn=C zH5GKB?UMU$*TFL|>q5cEYEjg6Jg{ms&!6d{^|9!Q+p`TR<i>8s>EygZ0}08&IT*K- z)_Y?e$8!L5zP;`kXbII!Q2{Nk2Hc2Q1<Af$7$cbgFnku3<Bh$sZT@I2YVe`{9AQ*D za9Hj#ry|Q687`obtCEA+V9J9!k!duS46~*k(@<#=j|6j>2t6@o&BOz^?yntCilYFW zIR#uErwHX)sk%?}hBfpeIYY8h1EE{dG!_$0rVRFrKursz8qyqR#ZpO6dHEQ!1N=oU zrMiD3X|QyvG}7QFtIB-vLqWJSy+};Ii@dIdDSQZSR3m}Lkc%tzfse#tYV**TLrYQZ zp!~J~Oo%%0E_6!hUXCCu)HLik(J4mltZfJ_!=+jnO7q7^4BKz9Sv~PDriFLN$v!bO z`1A8hb1rnV>S8Wq#1f7`CwCC?_;79jf*sAk?{`oI=<HBhW5gmkoiwm9CB`(cn>i{b zC`t{W7$;CH!hqjjb_(tlp>v?vM{4TKz#pPaZhi{6K#60T(VW#=L?P#XSmER}0m>)I zV<Ab3Q*Uxl#2T^m#s9_{gw8sLA!XzORo?FFAvELYIIZ?o{0qwZvD9mo(5)3DC+!C) z&jOV2pk;D4O8k#zD6FuJw}zAqqLRCozn!P+3P->@u_qkKGSoySz&?mFhrrDevsfOr zjVz&&a>}C7`0q5nT{hEcGTB`l5+{Zt(|SB62#4Ed6bOrYf>HFyIXRt(u@G%V7$!&# zu{Z{UsbXuzIh@Yp<uqjK9ycBkhzUSRk;HB@3B^|K1f67h48!`73hgiEYZ?iYg~ylV zt`}hK4J;@|^K^-E3{kACgOh*3@Va}JG&3Q@7Ho1sga^#u9AQrmZtwNN)y%Bsk=%fR zvuO!U#UGjIp+C575<B1$ww)|^1gnJuc`Tt}Ba>a1<Im|+fO08nn)ryv0prxta<VNG zvv)(bb$ncz_)W>)AtA<B9TS&tLH6?}@f|?iHLb}G!e_+8F)uZY%e>?1Qhs%UE|X<~ zsxh;TG3~q>9_^x$2UhJ;B!a&l+*Nvo@zY%Q8U)EV0|eC7y49UlosU#{%Ri5L+cWHe zZCpH-?0i$7Q3RFkUFW5%{MlKJGwjqgK%RG%fs%<;{tzBxeWP`LF{?{KS8NhJk33+Y zv9>}x>}D11{wCK(S5`Hj(d&sLau8Xim`$ztACRJ7H1%Dli;!Sm4FXYGeM23WB^ptF z`>n>jLL_*h!#ep+$1fduFVw<+ScIdc$$Wd0;X6)S)a;fxh^MS6MktH4*ozS)8?<?1 z=53SB3)%4gtWr;jTX9G?_)ts<F!TcLYudUy>xGeTXHjksw9VX9>WYSiE;H-P83e9+ z>W$xslGU56)_*mY|Ax<uS6@uyAg(HZVY9AK(urBK{;OWtjN7zWT6Oumd2M_|U#V+I zt%Q7BjDu|Y9{p&i@F#j-pFzpAJ$<Y9p3hU8hTX@jprS?7Rj6EP!&;*qAX^Ps5i2*^ z;H{WBYq4l-`PZUQ0PkV7bVl5d<Fr93H|F)+{8g5?^PS!J;xO?Xm*!Eb%gqMHjqO6) zq=!Fi#-VY`Hg^(OoM^&<Nn$D_-LxWSd|$(eLy<kS<{<PF@ceRcY3NvF(YH7oB-nm= z{+?N!PS03!HEHZMFN-*XXW0bI3(LDhs_C2h>W^uWpZ)Ug=dSr84`CVBlBiCLe})SZ zNOwQHeR4Nni#qgV$(_cWIyqPJm}5v;7_0R9i$9GSHg#gkGg4`Bal3Kf$^W^wYUWdK zJ2SI0D?76}gXGX7Y4PBuAdpdDp@_cMYgNe(ps_potyIzS1xe(~G76hIe@}s$N)t#y zk?OodgZ<y*vP&QZ8t@+na_H3?x{C^N8}!glx)?HB7!N{xduTSMRg~_i4g0ElmEQTd z-R<Ltgg%WU9C_X9&|x0eFG;Jx7jD*qXRT(XBuc#WtdTxsi?Bip8?e||-Nd_`z@av5 zYRVv!B3qmh(Ml6>GBiA}iK2+Nbu=^|Fr5{bUs##+PP^fuLBLev;T(9@_dkGPaOPN3 z{3s{VJ$`ZdblFi$Q#nd4YzxYy{9f~a+wi95&n{_!7#BGQ@Zv~9(LwMe!wFgL^OF0T z@+OKF4BpyFE>hKGuzlWa@NLlP@;c5qtRq$X?1%e}RI)PBU|ulM3kjW^##y6K!Lui_ z0?eT!vc8B+=D^}!<iiz3rtd}hTTJ~PgoK@rvQLd_h?R)3CrKiKL!~shFUBQilecQg zhHPPxR=_#WgkCtJIvb&N2rehZ`!9A7fG93ri!9uRPSZxdM=sqboIjRKdb?d&oQz@- z25u4K%VR^0=M)Jr9qSr6IA<;wsdW}K8=V>pXO<=dLcvu1g>29)<Z2Y^C(vz3!Ql<N zo!yjyd&mcyKgWj^rSfz^#0Uf?Vlgr>K0!8CnnG#~(u_q0At9n-%O<t;V38P3E4L8} zz{}WnCfuG!;R{5I&h&BOF-kM@?2#sWKQo0xX<r+W5HUR0;_o9q*J5h93zh3$x=7-$ z6PpDBZ^aG<(4?WO1i&QO3SGZ{0C?Oc>xCl4>1p>#Etj~*qXk#kW>%X4zF=Tflfvi8 z81ekor^mbxyxcg8xmq}2XhA&dIb=Mu@3z(2Dn1P^ADOU_NmF_-Y!k3q!d80{WGwX# zkG)<0ItD5%lBkVLRSrN@bg`707P45+)vE#VDIlc@-LP|Yv)moj5!4ipE^<}*&(@#T z-B<N6+&pP^O8r;wy%Epu4$lb!J&$$O1}d@RHq>K;W;R5p7Ln8Yk)71fw<059Aynzh z*&HaTwT_z$D%Ea(pj+<>%cbO##$+TWvU^<>fPP1kC5z;}QW*A793Yo5dm#qYA7B90 zXlcq##pO238Xd$oON&OFZ?%S0b>)XsBO~LPQ&b!^tD`2$G*y{k9S(%hKo1`E<rM>- zcJpY)&uq663(mI6bfhAFPrucaq>-3ZmY^rcewX`y*P$566#cIrlAE0O5+h>T6Jwsc z_mUeD{od7+OJO)+RC~O<6=y!_SAaYLOse-LzoOOW{uRYD?e=x@(<uk?pJSt+tL(~& zIM?ca>D5FvV$;u>(3mV&33uv;68^-Rco-|sVb7!UXjA&SbbER(s^H}|`>8-czg~^y z->dyhW3PaBQj|XcsN{2n|5FqeJM_D5FL*E%aTa0jpZgD+LW#<18u&sOw-_J+74^tE zq9gT?5TYh!oW}L8v=ugPe8#*X<P{9H=W5?-a+uGre>6z2KjvtV%(W&%=a>$_!Bb<4 z&Py-b%{NGOb%F{XoWEbh(DFhFC}`ii_QKOK?(3cW{ezdd5}+g`MS;S!R=E8cIzJ{N zzIV97tO!&q{_eJ0X0HuO3N{c5sE409)ggZ3pm3C_F|i26K+|5c4AiLTgIt4MuOF9; zu2Xs_%E#zE=21Wbe|LR1WlI|~_V7Ags;Jhn>n<x#y_4_y?9wVdEa0hFe=*j|X1sL8 z+HmHt!CK5db*<y8nm+S_tEpIY-te=#pP6mbExZxo_hEO)jLE3kYy_6HY_Y0*UdcAu zB2oXiRs>LLQuG*vW6rt1c@N#U4QH;vf=w{iG>${})M=S@Nc?&Mh2HRw4%W|T(L?s8 z@wg10jS{;EoRyKWCcTfCr4r7C_WNJ))d{UP>hojG&*b?lc4UPl_*#JY({T7Arsl)X z8E!C4u4_9>1O$j`lFgcia#qBrf2wKXnsU_(a)A02HW+vI%~RBG0T_*`HLU*23K8lZ zCr(*u8BMj_gLvW>tBUTyd;r2S>5ju1{DAL>LkX3+Ylg%ADb|_Y>sVK+*Xw8{CC9|q zcMU#(2CwkHA{PT5Nd2`5?p5P!i}?$YS9nu0=oIKdd?iQY&R!wYebS$rB1kukIrK>6 z#vlpn=LK_lS8?gopv{?CeDT@@LHyQOwtUg)r}Zqy*(T%s&wpV`Ny~>p`3s$?*){bG z!qE0)!kP+O=X+-iZE3PDz)ik)2GrzxXZlxQOsJx>ncV+Z5SYD#ZHx~W|L4q-x_D24 zl!_2Rp#xmEN0&hMo6-0yL++VZ((xUih$8&Y*q8<x4lROQcy3L9l=6(g28ZhK%Ej8< z90oe*Vys?QyxF7Oyu3p}Ew>wgCNynSIXpdZTY1zBJ&B?&x`GS_MuU>Z+DBTbCcxPS zjvEgjHX&<*Fhq3P$1iy-B)S-FEm~I+A=Q!BR03G-C>jvKu!dMVHt9GWup;4xY3y{& zBe9DO1{=Y}>oz?|QLvyp$_sa7Jl4?L#&z3QVD{?{wQ+k)!WCPZI2Y#veeeWbq0c1s z9?`mff%gX%TQ{f(7-j_sF`#aZ$k1AQ@bxih&`eI1_{LJP(z2NaHi4WJP!~aN^*w$8 zF9*8he-FgCWD>p?i8(TWkgby7pjRXcNF*G3gPKLYrf4=9Mafj5`EFi_?3jhy&tz~A z*mfzLG7R@**g{NJSlA$bv!fmOo=NSf5a;V3kgZzUxuV>40^`XI!eX{V1w;V`PQ=l9 z5xXF;PAV|4i$1hU`L6(q2p+iK1&aKwK%**RJ;ME3+eL!&TK(CYZ@+-4KIpSi;c##; zZ)Rk1k`k@H3?Y1j^dz#PF}V~#>qt1${lH-M5ukBYu!#EF`wWWq*()C}vc0oXK!tMO zC++^d5Uzk@6VUC6&O%8Hk_HNJop8auZue`8NZBVX0f=%EL=y@Im%+vFcie#J;1Ny& z*05x+z0`jk>^F-}1wKNV2O5237Z<+IDphikd2OO#X^mXjGbcD3?Tb8HBp<$_i$UHc z`k$;?gi1|ucu9LFD88lbI*f6}GHh1sxfZG$K|9`iVa>ODCq_XX0YOsRq?rY*V?Jm} z;?{hWOj%C~NEsSbD&_uJ44=S)Qz@P92F<^6NJskoHK}h@Ndq(#s&*#NpOs#<Te7%a zLlru_4+T~MSBA%R>P45$sNW%^KbVsZvJ(J#n*ePY=j;S+LU%~d>^hE0_{nYESE@Y4 zpJ!AM!{zK#bDKq0#S;+MZdO}5OJQ#+a#G(~SEvN}8QgOBI4Z{Cr*`03HRb+^0u<2t zlr4F~WKxUCVG)!*y85mQLjV3{g<n3cx9qBG;@=<fF1Mel1*3lL?p!v-!<z!!S?~V! zm1jrGI^}$&xqq*WBJJ94IaGRG2ht31(3Q;LUWbCs3*q`g((1(@EN`FAhl<h{;XFtH z;_X{4%uQ0%E5w~nhG9T78`!f@CD|LS{i_be5Tn{oi~-GK^`voLF)T**vQO5L+`m5C zo4;r-vsvX^<}h$WF{%R(r_hH2Xq<<*ybx${DjR}?5WaJS#5w;WqHF$n8wAL*ASZc< za}E%yaCk$m^ORcNV=o85N~(6K*rzIkq-!JT0}9?9#Suc1We<VulrWSIcnP&*XCIp~ z%rr>FXh?sO$a^&xXm%x0zZqgorK6Bg?SyEk7|rrjdA&DvBgw93TO38`Yj+Y*G`uDg z-v>Qd!^)TB!aA!r-|@cA98ZXd#Hzb8O|&H$^IA>8DqDVqKWV>IT%n}r1}n(R`S~`o z@jux`33iT?O|yZ-&6GE4;lY?5=21dCQ#+*{^03o1C*?FR^z3B3rGxr#r#-a9AiQ9a zMOaF_uSk(@2X{l{@@`%Xln~Zz57zg5>0VxAp4?^7fX5)^n}Sn?Y*qtl+CVr#!A-rm z#eDhw#VQ*h+tk>^Rr%>qC9}m$i3=-#RV-!HYG-xq5hpNXp;&*K^6pgJjj0Byd~eKF zi9aiwy=3B~#g=GEV&O%GmDj6@tMwCP>}0bpR!0%ehe=&NSG^NV&+$20y_;={+jaFF zmd)Z7o&9LmX+8K5zr2W}fEy}k?YopNQ*w#TaQT~6c!<w_RLU(e^&)09&AFw*<2SWJ zC!$^m1X{fe<4q!r&pmY>%QC%>AeR#!FAaMMKlHCPxW#^@D)MLiySzWaNH!m|0`%<u za{Cbu+EB-V{3vkN&6dx7kN=4QJ@rllJC(oJ43p2TDqtsSi3r*BT_!6R&f<q0QnN|q zbHh$4S;h+AMWJTAQdqCUjl%gsJnqt7ft_CR>cV(%t37g$=H!?3*8m=q6_g&~30ma7 zpTk~aMsxb|I7oa#m93Nc3(s-PW~hC{SMQWeXL=$^IDh@;LJ&Q*B94Om8-@Iz>%jla zybx0#;wX@S-#~%?`@2%{N=QQflUXPd|39CVU864j(a?w3CPK95w=CQ%+kIka_XaIv z@#ep&WhXp(Zm-UKh;s>lkojMJks@Qou_U@^Q{L9)O`>ZlVoC?lkjs>bCd;nc=#-)} z5HR~hr}EXAb|x?tc)U`hh6UFtlga}VmBt2f7%njA9CI09OeW*g2brUpgFQWwRue=+ zC(fl%0b%%(uocX`YtSX!31}6=IM+eASk8UM`^IBp*(8eX;DY(kZKT*GT(^^JLD-Ip znE?IDN6}kPB8<U4tZf<`kU5;f9W?Qn+PfhV0n9E;<bt8bAu&~^cCbxLlyTtpUrm#& zznXm!xKsrEdGleKiZtjDAhEsR8kR<hN-Fs@;SolYvBu)lq(0J1))b1yCBq4c;sVa3 zgHm)jzl&<fe5CZki;-?30^jQvBNZ_x`AJDvjoOv?4z?eZ^6*hIsS}(Z<>!=sij9n^ zvTZ2AVh9nEQfl#~p(WfFNT~q9De^J03lrTgJtvnUwS(|e+#aE^bf~P6yft(0A+85# zm%_d3<dpV|lqMwODM7RrdVPfCPH?;CX9DEs2B4tkaD5$#Tx3JJ&pZhQT1EX}iTa_{ z?ypHecO}TPhHTP=+){qj5B(sLgx!RePbat*|Al11?hTF4D~@L+Jf#Jc!}jHhhh%?t zG@R!2xKh3g_a~bjo>#HX`9A<#K%~F_@+(O;2~Od~030pP7Ylkp_wMz^_vzx5Tl<qY z^H-B@-YzBFrsj~E$L+HgX4E`rSI4szMz#IV3u+#sVZ!<s?H{Pwr{?Kw+TnpK#dy$1 zOaYrbi@~}eEwDgge0YA;y*r&z^MB)f`I?$%ef|D&*>;yf?JI-_lj-Xo&Hm(McKi`I zJTxw0!Ll<65nE#sYm&I@VcDB6kE@U%4V$1yH0in_*=tvSPF7V|#G8cOU=7AO6Vuf) z^srsDtHaaDbcXfrFSz#o+wSpUH|exXF1q&GW!D4W!<y68puLLrVA6H7)qfI}?!xk5 z)lLs*3a&YLv<IKFx1B<H{?pMP3R(wwa)Kp+O=>;J8p@UE-W$vH*9O-ujouxOB1Bvd zAr96Q?1JKoDeg*4xQr@Su2>t4*kP48R&?>Y^nBJHOkT|@*y*rlS<m1LG=i4D4w}oG znym~G7o*$n04f=5;I*Kt^M8hIB=9D0U{!y_)L|->m>dH|-eAf`PuiV>ihxlDP#%E_ z*Et40FQq&pwMm{wpj<tpY9S?)WrHbrlXs0Mh{>Cy3U?fnay6Z*Z#W?V#)eK2r)jLG zQ!S_{23PO_69VOTPA8yXx1m$gLw47YlJ8IYHKfeOmfiCy6~Nf=DSt;})9(3{z4?3L z6$C2moKM9Xzu7Xq#r_GoyX!cOa%Yq~@5!C0f6-X?UQ7Ex?cf^y@O=%$mYCNLpPc9) zLEO;zpgj6i#nT(d8z+xyZ;xMrJgVK9w<3>f^R@+fRDJ2+hCHeVwGDYxtwlz8G|Hn< z9*y#7lt-gH8s*VVl7B~RE#;Ed-SC<-uN(TkI1S24zZqvcG(73Y-E||N;f6*=V{q~z z>DBDv_LtM(Cjdbj5Ck~Q!_Xm9*_h$r%6agEdz*e3uKb8~S-|O*&;PFAK2?<U#`#JL z4#fHS>61-jr@HDdx^Dg6b*E?FHO;GeXWqV?EzIn^Ii4)%i+{E`S={N)yLL67ESfvb z(V{(SPA2mu*m62sy_uiQj=vQ<T};l-<}c^dek(Ea(|60G+aDn)B7>iQ5|n)~8OejH zu>HS}Kn`M?gDTW7{yW-ix1?38ukv4kR+TSMt5)Z28(OvYKCu<8S`BI&TD6u^qgEZY z>ZnymtvYJeQBJFlTJ>gW)lXEX5Q=Hj_)pa7XVah`RGn87lK%&JRl99{1@g*$iSnv8 zZ`+VpwW47w@~RrtHsn<;rAB!*%BxXcjq>US%B#NsC7A~_m(lbk6o=WBC5PFSCWqOT zC%4&^D7?>?i2olB1UWf4HJ8!NCKP`&Ff=(cAU-|{b98cLVQmU{oNT#caIW3bEgaie zadO9YvSK?cwr$(CZ96NrZQHhOC+B(hKJPxYzxwL>)2umqbkC}*dXf@~+S)iNx!V~t z(lXL9Z~_!Xm6RCR85jTzbj&cMq(TnH`cCGyHp2Q&#+(3EV<Ui~u^oVs3BZ5Ez`zJY z3J|ijb9XQ|HFE+`7*hVr2vD)oH!`<2cL1o^TG_go8=3*QU0huFT^yb19GrRS{z+0a zHU>DE83Rnrt&9OevU2JYGGYJ<F&Slmn6ZtqgT56&&e_1q+z=pTZfI=dXiNz(v2_4g z{aXPT+S(YI{|_cdx_<$%aWQ{(aQX+BiG!^*Kw3meKvY&n2_PawuOtM}w=n`piT{&s z<K)QsPqeY2lhglHM+0#Bk7T9)AIac9(to@TZvU3(U>F$zM&^c200U!Fa~l}?|KUx- z#>5uz``>0GXS@G({R7DHAAA6ce>kKB7#W-V6YXqeC8KX`44@FQwYGnAb~1JVNZT42 zJJ<mJhkI8C^M5S=8>(+@Zsq>}8~lGGB%JjBAw$5%^dI^d{%taM6g77<Hj*=U`iE~P z2WR7dn^lef-5Y6RBXei#f2SM&!^uBgHL|s_a{s?4{!_}o&ZC!97E_fGqyEnj{L3w3 zV`yt+Zet2iboz%+eFuM|{}}$|meV)?_XPbfmj9h70OSADrS+X0%-sN*40Qi9A`JiY z{ja3`|Dps1ZQVR+nHZS?w9Kp=07hmGRscIIqxXNoHFS1xFt%~}7wP}h^1u4OhRN92 z&DaoTZQ0h4E65_XIi$=-q;R$zoO*UzPnmj|5qM>)`$iMle9(W)NcZpx`(6n<&lL`D z#@~Qv_i{(#zKKXb))?-1Vls*_OnVvowV1fv)TesuT|WP<E==bdOa;r@PzLNK{LU$T zeJwzaYLX>0=e%0dzLW=9j4?{@Z+jm&(stbH!lR8Cr8YTAhQ>FX@ji7G(yUo<!L<S3 z>)skjXkOqh+zo#zmabVrnZMm(r~>b5;t!rg312;ts=)O`Q8rsjG|nobg6HKH{e4n( z$hveCE@I3TQ)TaKdO?+qh*g>wGgnX7kXd_;E+=1;1#_kcvzH~VdkO+Ql6o6i-s~H- zmT~uOCUa`#XucHwdhBq?4=_g0?XtWySE2kx{r)TDiQ|8Gt~og<*b?y!Eh8z8!6%1= zPJJu~9-_0Rmcp~{n!JDm)r~|{6_j!-)vEK2$@Hrz<6TSnZmyt*S?@EMEoHcYC?PPI z>W?waBQ9v-ldirpTl6AXe^`{Qd{s(xvg#gSlY1x*zj4apjWiPaBzJ_EZ}UvfS@Vm} zd)%fc4{m=usr#Nn>9wWt92xoXQ@_=c3=1n*3FEfPitSFqYg`TeL$uOA@zMz?@|;KN zA*S*j8Z!8n=XH1Ev{*@nL^&v8>|v)$>h9)a(MjBNo2~OKc@L{af<uRAvkF`4cS`K4 zfS>hWS}du$vO)s8s`6{DTac!t`qxxw8d#xp;m>~{v?R`f`^&D8oL{9zast&0yTrl0 z{gBEi(9|HJWxGXP!5t;Tacj3~#Meg4EOg(KlSWqtEJi5IB->%1xE1%VuI?2_^H|bH za^Ve4Y1S>37a*Fg?5jw$>kNHJ$p#@B<$l2CE7D1&0UvZbY`XqMg3ZNhcgKs7%dTNB zsX>3Y0GV{%MuruTz`6G)jq)Mxp34g!kFHq_N387pP=5r%disJFOVb#8T&6vDig`PF ze)-$Nvp>YcF@$JEv2>{ixR3BKLd~<`1&mueHeY%ufF%gTh=rkgv9orEd>Ogr%7(io z;)G-z|4H}9imljm0|%!i7)I?f#<IwdCXs(ekvgTI6M7rDhZ#Nt%~00pQC^o6Cy}}* zNBCnJ&`|BalVscC<AuCo{mx-Bk8Q*FdvN!$vV}O`#-N+fvMyh`9T=6^(W@I&zHHIK za<EOJ%4$~l{IedPZmVI=44P%cdFdm~TyxAiQlvb;{G&8Vwr>d4sEjH^B>cY+A=!W9 zsLEFJvn!&FU~YjN28|VCPH$@WXqYhRhuy`lr8Mc&W>qODtcsrF^u~HT+e+14%5xzF z3{~O1deW#9lhoGMeU7s5<SQnsmRo*XBBc}Vz3t9CZ}ke21a8%0L9#iGxYiL}e;xvT zkrrGkSJwtl%6&4MB4yv39yv(JAC!Nl6|J~u$r*m=I)zn;@|_F4PzYpXctVR!cDw9* zT|H_?+Z!7EVV$QRw<5n_0u<W*{n3dtf(!71j&j@{Z!hS`b(T8{7XJZtv+NX<d6jfZ z2Nb`+1Oc?y2rW|P+AAP<B#XTu^^jyt{opLYdg<t!`!SOFPA3J7I)5vO=~90dtMWuQ z-k_-A<PX$zGNjxYEhFG8Bzw3}0{@U(gtF~<R=GK#F9N6@X%-gVqEDy&fnS<Pqb`e2 zLjHEOlA&w#%q~m^(7Xa~?8=?euo>eJFjiFKvO}9w+Zya_3qD;1LmgC`9m}>d7pMN| zdbfkrNT7TL3wVqU*<*uV(O!Qy6^FeckP|87uM8cEVFjDB?lhIKwK^Q-L@DA9)=z6u z)~@(+*|bOd{WUwE?qs!K`VLKj5;17&G2dM9cP_+dYP!_fiIT5cTsSqj-2`3&gAO{@ zboXdT*%$-mnfdiz+GCsB8UV)HaicI>&2soGNs%u>Z2nQ659Wkdtfqgd^xi8~l)9%F zq?HU-mCQp(xVOC%oFt>^GTFs#-Nq<-=~7Iz-2d#1uWI`VV0_v>G%{F*wc7KJR4csd z?tZPL#^SrlQY!JEm+H~9B$l5KeNQ>Cp1Gq&6CQy7iX|?RSVCM%x$&T;uqG8E6er_M z{L#qBZ?%*<2B#b9kfwjZYZDWksT{xccdw&9BsrACtMf*Zk`e8YVItC?-}CnxK^XES zY+$8sl5R4d65NT~9s*ZyrIlkAbmLQ>Gh5eVJQR5ipPb7q(eBRt?RSGX=-}V(<&d#< zTkp{lJ#!<i+?kF2`}w3mq&D8p_m33H^AEIyaG6jq{-kkka{GU~h%mt(fy$9&%YB$Z z8;VO~)AjivLxLdazTu72;bL+DNvlXj!fhWUNl(`B;)XV|3d9Prw@XAk5^xWcTHhF- zuAf+>;yVfO#A&{pXk$Kwes|qv^${ko!eH$rNb85{5D;qYtQdKxz?1*ZrySwoM+xB! zdCd+KtCL!AE%$#+M}*6BGlyRWR4`UHX7lGvUoYICHJEG86>m@k<j-AuL+_E4-~6=i zWpB+#c=Qo~B7&d6V%12X@zIeY+#QkV9o?o?%?xkcf`>nkv0#?mt1GAJCPikSos40Q za0sWZFJviRoJq!)gG4IwZ7$Hohl(*7*YN4&iS<JZZ9{)jxbHzcMeO~D?{<bt61*_A zmm`0Z+(!Ty3bMXMqp20?KK1bn7s}bFQ1eE)xPz#?sM*Y~&}#9G<REZQo_VMluJ)p_ z`>!`FYCQbh1zaMG&<xw7a{SIfv%u&Oer`1I4s?lHcGk7?WfV}wdr4@qLGG8Uigqhn z2Hd&Sl+u5Vbk_zKel@E2+#~a>exy!)eGNu(w@VOU!LStix#f0R%x>_mIkW%<wwM1h z_DCta#)a(b5?x;qgQ8fmL}-<gsD!BrST|VYIb8g(|GuaRQ}m&0{LWnpa~Bzu>z(}I zWIy8varrHu1FC+!v1q3FdK<C!qsN;@`v!G?_!EE2rwD1B@JcGi9Wtc&3mAg*Qxl)Z zuT*-$e&Pv*4RzgZy7%SVL7?Dw8)apC3`*El+oqSE_oNkP(87whbvJD|keSTGf>@|Q zVt&=RYfRQu09ykV_lHXEDz`6^Z_b!}-QDKx*3SONt%_@$Rd$hAysCqmetyv}@P`3F zsKI~lcspgIEFfgXbcV-T<QTcKwP4-Vb&PdYNm_kUvr^>(F<nL3G_<$XZ}<4Nb<Zyd zgkvmp<gya!aCI==Vr7Fw?#|$}4?7xOYRuDB|CZ)<HlDiba`enl**VNxan6yBM6{$? zA60}Ba^Gzz7QW!LB8^35=uhqk(+WKKPWOMOv^X+;WRa@(5sKN$&&ayUbOH~M>43pu z0b%p;J{=GJ;0DUk=a3bR>{vbuI5m&T+C#=&UJSUdvLAwRK@T6jmGhE;i+H{^|IFWl zk91F?QOu+JtNZNW-}7*g98u^zD#4BsS~;!7zE*~(qH2FjZa>1-|E6)o!}XoCnL~f= z$5LQV)Sg&jWI|>aJvHIdW}PQD6GL8%N?t*-wYmRn28p5cpsAh^FF?u*IRCm2(S7nr zxTk^9#B$S$(3TYFoA313K`H)Ts8v1-tf(XfHP~Ub$V-*`Gp0j6D2Bj5QV2bJp&pU? z(q|{4E7L;N*g0!2w)_eqrMQt(td@T$8ZV|x#@q|8%6}|*7AUK)6L>i9ioA(i|941O zhTp@r4Y~BB`j7zjoM62#g%Obe3ZD_NHN&V?UmfymGK@vW#6#0uUk)T0-|xx3MFf$W zx~tSw@Nh@aT~k7%thW%evHPpx`CLu5g<$4&j>=(jnbwB30X>!yH(1_bcm{uLZZklr zDI}XhhiBJ73*jVxz`o&nQsd=B0dpEAlvB{e23<KHIsev>7&}naj=~~=j$D<WK6RNE zy2eoInbdCI_A^AsNdQsFPoAV}oE%&!$cXclp&Jf^SHQc%JRBZfQQa{oa2kzaSJ=2J z5d3sJB(HDO>qX>{{)JS&z{!8eo#7bH-$N9p^chg9wOJa^b2lQur+kp*&3!L#6j1=q z%k0l{DNOvv$%6rcxeT2AJ?L{AOI}3t*epjwD-clh2>}uBU){Db{HPT{*AyuB&1b)i zPsPsH0lNa??#XUTW7&1EScuJz%oa-fe*f@S-GTh~>Z9#a`->_=V>N%w?yllm?mI*q zl2U-HY3H8T_1RDH*d@j1#twh5IRZjQo3$w+(-h5z`U<E)BA$P;7}f7>`pED3%lAS4 z^W{rZwxrzmpP|P2RV;;Eo#bDas|xu7bNOiO?sBdN@2F)6)+bj){J%&Qim}5V82NB< zh`3(H__t1e5&QT!&wYQy0;l_Zso-n+)!ICBf*ZThaNW8z1PcgL4stFZfM~U!X5UfK z#rq|u{N9pq=^a(#C^JcxHheOamKL@Rr1ULMd(adG7xy2!C@s;fepZ-~?P3moiYQ1* zH~PuEp^vqs9N8}g-+{13>G0Baim=?Mfy9B}qp6ekbkf)S(Nuq*Xo}fC+i#BrGmVb4 z;6b@o(+5k2mPPL`CZ7LOCcPG8=<Ssy5S<sVzA*E1N2R22lDByP&%R%K*Bea<g_O&+ zF)5(R{7lPtm<P;1Z`2~id>EmwbTmCWu6dudmTvR-43M?^mgpgRX$=LYAH`SXJfN=( z)NL+^7k(%Lf)sx?Lv>q-m8-Orm)u9^b-{`&4GBrMzKJpRW+6;v#IMgoHm2vah9t_q zA{A-(EY1P}cBUDg!F^dMv*%P0!2CuWKVu1flb{Rt9=`c=wcud@)PYhVjIeGzhaa3W z9W|QbgME=Q4S^=O7l!V_0y>U@(6y4_ygOTll>&pwuDE~42e!p?5L>|>vqsZlS6w({ zT0UX5)Ugw4JPu1Y;0kC#OR(sVISPQ<{dO6$iwIl_i$NTr{Ra90j(fPk@c9gdJH;|e zAy3h!W-m{i<QD|V2t;t|O94*yy>@pz7HU_|6QpXs<SSPNam~Fy>tEbM&lpvHP0%+i z6uk_F3~qn8Z=Fb;IpIw0vdv6f<L~z{j0+xd8yU$-TYS}<`<B+Ma9LhS0$Y%l*Iby4 z4ku~9X%sm|e>OZz=ma@iOvkvz)yN|U<ddxGq<<7e#stTdqBJ$nkcN)epL=rts#HAV z;R`adcOfU^3Bd*5{A1}Dro%bnwXW}fVyM%D)<=I10MSq*H5!Wxg(-St*lL^#_eA&S zbBn=X0=-XznIh)#Q@L4o6iSCdAH0%BOtU{bR0a~9qL$wymPvSeBy-}P_ffv<=@tI% z^L2F{EH$4T)>IMnB71Q4d>ENg8#@ExX;Q>)Br|2f<ndXuu;4_!<r4foY&rB7_cbXI zri6bhTTG?a+GElKKiPTp$2L;Gy4cp4s@xq-sU6r)X}oml9sEO@LjGyvc?{@V%PA#; zU`(!Zw7DKziBM8|8<u$IK{lBj{nfu3N3Ux_n4IU05rkH>HAEG~8(ON;yu4Qwg_Je7 zI_sl15sUMh6RSNQf`u?GCa)?)DKU9^rIdeei>r5fsQyo4zOyP0+*Uw56vwK84{-3w zQo5T`A42Y#C7#@@i>maY)|9Hq@trD##|`Q1z9cGG8w*r9UBK*>446X#{6)6z5!vl9 zCH$k)&pfM5kBfkV$4~TK%?vikyT(koUjc7;38CQ3>^dGA^MKwZ6?nTN%+H43Pd<N_ z#xLKY{wMHx3_!80E5bEf>I5>+QGP0KV}RiB#LPzQ7?(Ac)kRg?yvhc+Qdz@{wXHtG zRH(2RJrVTIDQZ$Y`bJ#oAmo8cKjpg7()gO%hzFKTeZ6U;ql+YRlkBbRX0X^s8~7)7 z;*fgltJYm+k*pI1?u#`GIrK^_)b)Q(s0mU%kv+QwOc;?*D2KY+9rgfJGkeh(>*(Cv zLfXKRK;5bBvwn5JhR;a&gL4}qL~fGuYgMMTyV%VuqjTNsc))Kaf+UVM&$nqV=xj2B zOO<kgz~AQt`aU4;8b8Zzy}iacIjlLj5B}{CPn>ozf1e_Eym_}UhU1f$DE)um!Cc`S zT%;HHPyEdCOkiv`YU|mdD@?VPj2sL7d9vD^KcQDk*qCY&j4$Etq8a_sPIFuvhqASO zA9&1X$;d@@0?8_mZ?7tODVBg)qV;A7n`|<hO-c4Xgu+_x>fh)ghyn<^snZ=bmT=aY zw_S2V7TvehnJrb@TFxGZ-p7B+9p@aRl+u(9IrH~Y-GnQQ_CTr-TCLumN^q3J@O%Ns z&OL7FTP_r!DCHphTP}ZCr#T&@8-Jx}At~Yygv1Qo_9=z|nPqkx-{k+`<yo#1Ne*k> z=WMaUPjatwF0&%E4utq#P1Sm)rmU+u+vcs%)7m=M1658B$_~xcpc8*)4Fj#ch3bSB z+d(!Z)pj?kbr>;(i#7#2D0`lrjki1%CTA;QZA*2Tmyu0N+3eTA{ITAhzJD@VNaxXC zuVCf#)*jb?HC^G7wqQzYv#Xh$DQiHi_LWSgy8Rm8Zia%b^4bd_?l2zlFKPpUS6+dy zW)T$n*!o_5r#!7kA4Gpifm8_jbYJ3<LR-5~{JpQ+D6WG!VEqvb$~MY!X-nAVMonp7 zGj-u@QwJ2xHL+r{=IcqC1%aQ~l&Xr(%G-l8m8yUhBTL-!D{0r9_N4{CYNBAE-ky6v zvf4oa8~m$Y$oM-w=G;PA1n$})(&=L3q)f5;y;vPeKPiv_8Qy=S3_xQ##opnI^A;Yv zsh{c`KA=^<aQLk3V+mQoP^LgtuI?x>m~1yI$UvaG0)VhzqsXE*vL|D5<>`CJbcq*o zg=ibf+Qgs~IK8Tu_dpV@;C2#{)#KSPo87AJOpMlIbtrjL8-Vz#{|(uBswu`EyX$fu zg%QZ^Qm1eu&QgE7E(V5sQ#D%zu0Llov<$EG9F2{w`Yb6NUhdi#Z(rv|b5toYb}qi` zfADpb6d@W!b`)Jp!?sU0*rk!l>P9HkEwIsWLb-V~k30c>AvBsG_R+6FuT0SR#=kp) z=QOjGmn!XTmAt3JuLaoIr3q#qNoU`W!l0XN0P8BwgPnhNeWK}cl6iz0#2faw%704R zEa=GPTOkoa;{A&L#+lb52Et43U0=H|(36JjVBPCEt2dELJU46-0*t)n?_V$&eikF| zYxLH6N)VT3l@(Af|CQ_%eLm%nfP)hAz}B)nN-Gi{Bd5!wGr7R~GDPLZJijTB@tl`F z+6h1;n4^F9>5i$QKj3McSNkM;Z(2n&g@`H;wNDD|i4{{iIXG1_rJo~RaRy%g_4;bN zbSyRsb*r0Fz-V%mNZ=#-hay&n)gHIrjm{`GAR`lAjw+!+*v;ad2G7f}7>;=<EW~)L zUm<WKcf8tm@sn*Wr1X|#kzfn0Y@OEw=hLj;2ZDdCRl9JE5ib6CSuuMx22<ZvJ|K^Z zYY##)C;12!b-5?p&bFH7l2lVv+$5>SzenFpp@)Au#G%l0^~ql)E*Y<qvPAl&zLhc= zj}i$M@qwrL0i*4)5+);kN$$6qbymedQwmI=2NN~x*hn8P5jOO*m9t2M)P5tQNMvVJ zlk$I%LW@SRdGq-BcOPZj-x<pFgaJELGU2&W`i*9c?@qDh)FE9|;-7-pxr%P7n<~K^ zHQ@M^mS3KRipp}apA7+a6bHzQW`@qxHuiR=)93gdQ}#xy0Ux`Jl(DgvAvWMp_~`yI z@frn)k?N?+CM`9@_a{hbRxP6TeQn2YqZfZgcK>&GSAd|m?OC{w&MyL|{Ok)eB`bId z<E^=2fkKaAeKN9+FTe}#*2*8glhv(J)UGm&PNLaQx92eMBGua)Xk@Bf-jFBrN*4>! zk$j)v9IELmP?`CS?CJx}so@15Lj`3AmhG{2<P<$gOE~*$(v>?&1k`^SO@~>o!li#} z4DrsKKIn6xa4Bq-J*X&Onbrhs85hy9IbG^S-z}AF&hQnqLjbPJAa+i}9r_kcy1*YF z8P1V!Fr+Fn28bLY93LU0PcG>e|NW-)p;DoXW+mb{KtW1X<Ex^<Xs3zr3!NEtjHvPr zjv;OP72T@aMg$Yns5jr{G&rlcXk>p4-G3}hs~j|`|0V8J)Yn}px*J1=a_TAiY3<SG z&IJ7RsKBmfiB{9VCmSLC;ZYqWQWH0~`unK+R8Q^l7De#hyH$w35&c&L!J8u&|M&GD zLI!r3>zb+_K0O!V^>vpp*yjz66(s(O0)pPJi`i-AGGFSoz2++Vf&R9lGFyLc^SckH z2u3i=09kt1v_k>(-3uZ4m1(IY_(!+WE~^Ty@eR@*8Qul6kJw2JLTToAGEO<i*-iNG zO!LfUn~Ztv)z!bbjbNsF23TYUx*s3bby{cpzJW7$tji4!rsTQ4Pr4|G+VZLntUG>| z^4FJ(s~86<!$lQ;hqxGBA&Y-kPW=XD#!B;x{?JFM!KuV!%Lb9DLStzxNR`Z6*XBrO zhg%Q_y%O~VgtISF%!zatNc`b&CDxt@%1zUW>=!T+t1)kM`Q0tA5Aj|4gI)0jZ|-Sm zTrFKQ@HYnhhHkQ90azq6iPqy@E#!RShr0ipZHo2%Q*w``?^^lqBNTsIQ(Fa0Wr4hR zMrjSK8Nd`1&HbGI8tQcBgdhcRa?eU)sqtII)t8y&l%P(Irhih2vzK13FiBt#nFpYs z{Q6?vG{tcd`fxs-gp$rF)Hoon$H%Yuln>0HBL#i_R5huWwhsZ)VAE;P)Si%^hoJ%} z(!+<HG+u+WH$Vo{?0J6(d-&Rk;I~#f(#FhVeiYudK!Q6DmqpO<W#Nw7-~XmKxiM$1 zgUj{Whrj~Mm^x2|nB9(60LpE;IZN*F(0ZVgR!+cZPz_P_Sy)mBQeWP0XG+4ExNW&Q z!L<7H>bO2}lAOs^iq;l)cMJQAiK^=QuoKbR45H<<QhR;IgCKv*N#I&p5!QG59ccUq z!b!x#?v*}dWPtoiQcUBBCL|vI*B2dF*%s>jLjl?z8J(-JQ&-4~?V{M9vy;o-TpM`L zE(*kQQ5$AZ)0mrJT6g|aIT2iCgcJ9Gj&ANh8ux*tfRQ%TJw$dnbYDvd(c=>HXj}#R zwKPDa#EXZG5RQK%40<AH#T*~T(8R2MG7a+ip;FntLckt12o7{sLkudkev%7HCFl|K z;j#GlVsbYS1|M8okN^@YwBNL$Y6ZXd-&(<`OUB<GQ^K|df3T{Pgd@^AwZv%XDGnnS zcJp@ksyF_sU7P2op?pXx6aK=Q%$qwy<(cr(kzqb_^TvOz#kVb`b2)VMY8uEZ6+A{i zHKI-pD}!kp^|3e?c^jBt*^;T&0mTs5zCNwo>*@yABO4vi$X88V2hE25So=iB-jMDe z!m}CUY#&PG-N?2KeuIq0i4sbCaVR?5m_G2!(8kOTRfb3Vff<Sz{puI?h%SM6=}A$k zrd{4PApC!7<TT|ek!gvDYg$(yA>euj<6($c&GFLw?#AEt7hGUiB7tjp>MTRVmFXW& z6p%XX$s#kSp#na)hV0C2y~Q<YSP-V`E|yzF4=Iy^@I$b*Fmzp0O%sD}PeczBGT*BK zoOWxEBD=X6*>T)`<#V@aODCz9o~V~a9X$9Y3qOBRV(}O5_D*QO#gfV5tV#Q*9}<XV zSaa*;6_%MsMQQg`N6lQA4Sa%p?nEh&0f2eo_y8&Jo}O*cs1#;Y^NL{?ERJzoh{=x_ z&H^FryGn(g?UqRbxs;IIhm08n0yGs1K&BzH+5!nz33gcwBU_K!m*o1;(~^_DJCESH zt3!WyNbtcuH@QprX%geICF}+qS!8m^#n+0IN=bbN3f+`buFi}GMwWOUCAqu))g@8x zEt&Hfb`jQHk1;A|zgzmx5-J_$psGiLYJMh-fw5ZSf=)$g0nZ2tHWA^=Ee2Voi2Ht; zTxCsI=s*j0cpN`}tD5I#-y@a(bSy*70WE(_!!OV~S8>Qg@WB#&^@0+`_-se{C>`$x zA$h=k#X-u;pLaVdi=g75#^i_rtz&2E*l*yiF_wl>KLpRZ;W+Q!fq3mGm>d`)k4@<8 z3(0!pD<TDL)!@OtMC>Lq-`n(x)#;&;D?*pwgLL(txgI*`H-Py&?71k@UBsBv+3kNS z$)vVX<FsOd_!?p|^J!>f4p)r_L2Ei&lM;0z91;GqlOJ?F_tF-3c&??62)KdN7V^x2 zuEfFPMP}57HwIG_#A2O`3sFB%NC{2WSnVlSk&4Tabd?@lJaLgu<s|`wLkB+4aaPk~ zXB`XoqVO(%hB6vuJ?TriR}$B^>3M&CEGHE5@!deljZ1MOSw1k5Aq21*Ny%gZ%fSMV z5apVk4C$JC?ESif<=v0o%4EVL5ef;CE&9YAi#sYGzR;bM9xW{~^Mg8J*$}MG106qf zH@W^}!MvH!D~$0rC@`a5&+vj=+-H}CRGr|`20vqFlnX62gXnyksJq-y&sKko{hfMY z)W@--a>}J3$Ki5a41^iign>aEjyQ6l6HE=6{)>T~sm|QZmewg3Ni2@?c%B?V`HR() zF)?g+&oYKln&!dMUmHm|-`)@*Z*JZGc1vTK#eu@eLHPB8KKf=}GbVe2PP#I1)i|~m z;l2$qzE8m{^v>^Pjqb^R;KzReac!%|of8F339Kiqg>(>{JzI3d`Lt=cWbqUaKgo0Y z;RK7HsNbDmTBR<(JH4(gm@^WXJ)tx92hY=sI+i<y+5ycsiaDZm{PrRTihY8<|M2t= z=OeHQFrLm;Y_M<M*)v$xYH$m<MEWjnR+fX#;26GcH=d1T@Vk<}!47{4Dq#<|XR9zu z%4;7+GUlHPa<xkyJrkz=#e{d6iJYV0>(uj=Mhqky2n1qVqm#(?p*h2k&$s^G=nQ=3 z4^igtS`#TRJSHRa8q+ZG*>k(2v)bwJ-l6Z5hc6?X3qgM@#9_*V)Syey*wD{!?z{$` zY^D|6poF{R`84$SQXPMMSIp}<#;p2pw&}}lyiWo;<=?6WyLD$4Q8Td`9#&893BGpN zN+KiFw&N<93a=;}u>Co9mFx~bkjtU-yu@)7kOSAY6#?P8o?Zyn5kUx^@;%(qTmrlK z#2>BSxxq;cNPoZa@$Jjq@*jM~eO+CoL$aT*-bvc|VyIcdi{XDGmv{*)jzDvY*+{uG zz%>&em~+FS@!kx(EZ?o3PA4}idi|9T%-S&WTq3N5y&BR%-Iw_2PB9Ev3NC7zuHti) zN!^~lrwZ;&af?heDVhaJt}T(15pSciCBG<O$ibZEQWy?iA$RheHGq8nB6LhnCy>L3 z(lA34u0}s1YNUVCp609}FFcFiZ<+!rO@eVay*%OKn3FIT>m4I!SAlbS+;fP4!t@p< zosodt524X9JGfq~+0H_`a+e%aq1X0pNKk*OA4plB=zs>Iat4hz;BC!j;+&H?yK10j z!H-8~{etKIc?_F09^`j14hV;_<f>o?`#7@^z#M%xzo~zz8G|2=To_b&@d`e~wDw6s z3lFA17Q=qYF_$W*9TJ)rgfTZtknPGSofF(VO7#vvu$zu*R6t7Rv88oTKy!rUY-Y(| z{>&X~8R&1HAWNhiG<&s+$F|8Q*u?JD-Ve~v1@l9(VDW_*{DGL5`~*(oTq)6P=PW<1 zBOl1=+GBsa(-=(lReM&7FFX`)<s_IpwP@QvU%zr2w=ieUmNK}F$MHp0^w8UBH++88 z)lxNz>ug_)i6@q4YjaiKTz>j8HY-(v42*ZBO51ph=T`VwKJZYH4@-z&cupwZ6d*49 zNPPx^8oeH^`{<c=MVDF{;BG6Ltl6jDl-%6Jvgv=y3*d3L5%!JY#G<Y+igv1XJ4L*y zq$91hnpI^N3d~Jjk)bcxL505+)pbe&3%_C}wKN*u+EwKNrB|-QDB<sk8z(2&7{zhU zz*&rg2o@vGnTVxxi}4k9rZXlJ)mT!$=z&vB48)GZ^}zp4_j{(j^~RHgqt|wQ!>BC1 zv7&z^hYiN8rB;V3Mih5Bj0LwC=iOAXz=|;>z+3^{?FEH8Prn@hq=gVGcs7GGh!G0g z(*E|+%8rfNVTKihatYhJPAzwys(zqQOu!*pDp7IOioJ-680;r4?B$eyOL4uX`Ar3_ zDz6ee%qm3&MK!UZOm&K8HWbK-0Gp0Ay()k5X<r$k`gPjRp6~rai;e*+CX8cTiQQd9 z!a3WREYIv)^taBIV=k|;MsXQq<@=TP!obpFe{SL*3NP2P1fc_+JIN9*6xYBcC(5S+ zE|WMK@a#sYmfFVd&;Nd~iM#=4yzw#!Jx%14Ee-^tj6}!hv|o`|(>{|qP;0{X!wP@y z%J&)O4d(DNU+vhHk1e0&XERgx$@U-7;qQA{8;h6Li7TXRY>&y;Qx1=hsUq=)H<yQx zw&pf6r6Y$ERROn>kJR;?4#sSyTB?aPeb>6|<?;~34*hHT-%l71$3??vlg;dQ3DR7P zBV-~*lY(s9mMJ6hw`ke&Ev+j#jY)sCO6kz!+V2<519`Vo>@jm(9uXF|9(-y~L?TWV zx=QWYcU@ogq2IJ0De_&5?A#2s%90qDUVWB*I!qz8hE3IJMK#ah2fdY`IFwnxSAq1b z{>o1=#Stp<LT|s%8dQs~(%-t(A_&`kABYUj#So)E1tdl=X!(<Hp1iL2T;YG&+$xXw zN@_t^(_`J?Qe&Jh?X{_?Dy1!N{gJs02u^~*wmaWSlO?Y*rLSN>pT7o;;&ZFfSV7CL zpRb;aQG^a5a7Yu=Bej|+7_Id~`9wbQd?x+X_Z)6wj-GL{G<CT{Y!)46)h!+v;zo)h z&}fS?MC9)2ZNGk8a)U?Q1V?|(wqW=Otezy&x*FHsVxu5lIEwR4U!U**A56QgckCba zi%9P5-5Ij}uNl%2ljM0s5^V4?5R_(BvD=@dqp@>an-PUYz_uj}dO6MgS7sl31F9Hu z=km#BNt>f(v=h~)L~XijfndScv(!2u6XX{<qZ0aRJ8nbfcmigcRsDaY66(>lf!zgn zRRF(TOK8<w1on082u$Fo3G7w+%;|9xP23}lF@96jS~33gjLm$7`YU=eBP}8uT)-i5 zi7F-1)a?R>?bu`)JJg=xFBqS&<E3Pux0UI{&cn6J+ECDAr%<l#RC5{?JIVM1nLdV^ zXz$aSd+v+Dr?;e8)NFsY>(adiI({%D`Q~>c@dmfD$l?d%H%UUVJDn7UiWZ~OVQ5b! zQ&0tqc)nxCmg{L?zg-WxCz<#oB#jH1E7wKHX?g5uJp285uTg{Kkn<wDY0hnH*aR?% z-;8gj3LmwI?6U1>xp^SC73`KNKn29Bsp#IwuVqDOZt8184Ml$hKv3OB@Tv0y%d_C> zOP?3tISk|T*{x^S=KV^{Q}AExq-Lmq6anj0LL<^^Xd$tYbBZ6pekD_#j=7*G7pm0h zV~}C;YyoTnLDd|y7%$2|?`emjTdfP`+K;CSG<LJ`uMkt@N4PyJbv)eJq`zj6+ECct z*&d|4wDa<CEyRBubbQ&NlqM3N00qArqT|jSx#g_B5j|+z$Ga^x;C`NvFSu#W;bX^a zIN)cf$1m(7#R&RvRe|Y7&48AltB6%9@A~B5nwc5rg(n{V=L9=}X657IEwT#ClMJWe zW!4~+rVn7oA#>Xv%p=(k9sV`)I|Gt%;PPL{{CPD4Z%coBh^*ya2O#HGM1+W@op}R| zfBW(eYL5&@V50FgbC45~i&}Pj%yHc~pb%?fYn@ZiFsj7mMPMv4jhM9}wV&CJ)N-QY z@c~0BlYwku?H!DKjNK#*3+Ai@Vg8DYr@@imTFKBFKduZRT^~xu%zL}3RkN@Zc_uwY zp1$J0W>tTpzIkk4S(u{p5Mnp52czYr&IrO%zBu1Ue2$OErRfx*O#?DnP1<yD{Q(R0 z@mE-jM9(C}x%-<kA=Fx!BXlZ20%yKClh3O|3Z!bzoQHIKkF)1kYJ2wIw3YdbvlY3+ z14R42JB9Iarn@5%t>t&?B=8I2I2l8ZD?si3aPoiaagd-~ZLrHHyBI}O=BCkJf4?nw zq9|mY#4dZkT!Zq1AE4yEXK@Zvr9q2<!H4wNm*z~nd=$Z-S#17RweCy68&>64Y*Ns- zeQA?xool*Xac|^!XG+?2HJH0D3ls97HBx@OM)o$8ozjWQZ_ms{lGULTU^jieRpG$% zi5h>efWr&dKsX1<&J}q^#};28?Q0g{pP}y@o*`nySwJX*JzX4!5UJ4dH<BHbu!v*| zPAejK?zSdD!hb&?2;p<4!K(+l^RyjNC8bhqUbfQdNVxa|eb4%@_TNF2@P)GYETQ89 z;3Si+U;PxowY7l?CUkWuyrmq|4>}x!72SW$VrLkXTY=cxgRdl3Ewr%NZ*zc<6uJ6j zRQlruxaF{*Rx?Yt^TRs!zzZ9g#nDD9*Q}8!fx+9yCY@lD7qdr0H1JVwTpE@$E*5EW zA5iYD3*Y`MrnVv}O~K+l;#5=E^edymAk`6aG-$&;D_>Wbv*TvclC+lZj<Tf=-*$g^ zZJ1LvIkIJcMWck@aVrZsV_->9wlQ*+<<r_5z@cBUmBh+4mHe&idknC|&*(G=ywxV@ z$z>t-`ucViC0Jg!<JO2~4kE==+Mli(SSTVr@j~j}J-TQE>*E2Mdt%9@0gboYCdVD# z*iv^9!lMo&daXix>d8}OqeS)n<w}3<q7JB0*dmJ*8?!b8{+cie6*z}B3hC4z`jk^J zs4Q2Fd~4#0w+oaA5&=@OQ}!fon+11@_MtFHavJO4Fxi^yBG3iS0w>FUrvKG~w(CcA z^}fAwMM^qAn?vlgm(p(X!~vNm2y_MNc!zU8X_w)(Q`uO^v~S1tA+d|rBW!=Z(o9v$ zk<hjGPZv}Cm=4FbM|-=ML3-R8AlWrfQ@F20OpXT1^$Yk{NctH@2y2_GK$ySqRyh}a z%5#H@kPeY-I^{ZH1ntz2qU*BdeWWj#YE~{;?>TczHI87%=xToNN?8UE!alasJ#%eo zD#pe)CGJqrA?1%+(`Dh*dk25bMsN4mPLI`c+aH|n5O~6v;i6zwaiYFcpvQ;uB(!UQ z9RwX_uIQWN{w1<mSHL3elHJ+E7)}A`zrr(Rob7(#KhzS|K2b=2!8EZQmdRimyL+a^ z$yz}5W&u<}?vW=JMI<ZY5nQK@*`MpAZ4rHP%7js)lzwe;Z?k8vv|xXS&695&qS?$Z z%k_Bo6DnY+OwrDn9YAeWAt#%rz(M5T%yinfak>h<x>5IM5Y>?;JVQg4(;H(3$$bT| za@qz-2gNaTXYq<lP1}gD)J%8b=kJNqE=7$W7nDXq*t04lJ<_El%&?Y3Lpr63HlZ3M zp8{NqwVx6Usd!Bp*u8%=2q7y(33iCKd=EZx<fSkw>N=8vGt@!eqeAE69At)<K$qHs z+^cvVxD`3;A)+OT979u1E9TbA9_{mX$Gu^pp0{vG1zp71E4ZY5s}w-_jwiiUKaK@R zi7egc+c41V<|SNE7J{+4F{TSX8m_%#^d)7Dd$66!vh1HXW;=gozm?M(lO@~S6AAFs zxamIVOU+=}j8;Ip@#Y0318ui=v&rNWYRs9a4WWnaIjTGcQti)<mE-k?$i%c54Yswp zY%Dr~qCzHsgYhJ&^Lx}PAnx7?JRa|hw3~S@AP0+@592GPqCG4)^J*_2VGDj6K%<n! ziEj>2#@*O0JKTTXXcSF?Jw&V99G$Bv&fiAeaQym=%MrB&QLAc)*1+YeA>G@+yoLr@ z)K34>MJVdUyR{@OGiEhr?Qr9v+(=-A6CK9}oLYQwg^xODx&EBspTWH#JQjo4qE!81 ztjQzu&ZE~~rIe7$+r~)G14CoNyG*pj5%bCM>NCR-IW&Kl#D@^zMEQWlx7$)g5b!7% zz^>C1Z!hy{Or2?Fdp>7Cmxs0YBAsyI=S%Upt)Gi%BM<km=(}1{W(|*Br3#Wchs@>d z-@Ztr6;R#){S&+Y^k83fPMEhE#=HcbWkDriR$xQz4KBg6k&P)Rc036FlxG|aEY?FD zW*Rpeoh*OqL6jIsLgCOn91b;smkZRr#Xoplqbm4OPdNy_KBi<^@%HZMFv&q1d0_s> zBjs70H>HrgxmVAXBbPGIaPQ+itixkCg3O4otNj)@H<i^S_Hx#kgLznm08fHyz#hfl zlnBL+GXJnMu@JKcOC(SzBZz&_NyI#%B9sItyV-vu)`?#II+sngP@l&NY=D!&;(;Dr zEs<MU^=-X5f_6ASV?c|_6tjCt3`hlii<E(lEn?c6dsYMkF?kt_fGHR@j9Mq#TT$ta z{-Mk~;#8{JYW)WbK7$Y(M;c0Z7CEGVU$qh}PU}PK)~8R<Vtt$=08B;oVnTgM={K%9 z{Ahp8jP{=j0xyBoNbE(H`kHy&UmG=8joLzUkn%|EKQFM|$@r20ss^RZ|K2y_7JJOw zkrx%srjQ9sGbj@;aM!fO95|`!BX8Q|x!j;|z-w@ZpG*_WmY;IEblAFCU$u=DfKq+C zp=*9H=3<=YNUax26`j8reciZ<?lkDap?80KiTl8%m{KhFE$gylQ$^zoQPJpPO1I96 zN(lwF=d+fQs>JAf!WoZQ4;<OfXQWljl#d5sPv6#ve;scvG=Ol&g(jI8sgJ>SGDWEj zdfsR>Rnc5w%~aBB5GMU~j4tDp&rbDWn%qRl9ZBek3%2<A`#j<<3Zv}Ze17RfMzep0 z)Lc$N{$g?IX+j8^nJ_hHn-Q~Q;jbQd+WsY8WT?sd0JV!*!Ki=~E)Ke2tu+2gc;*Q4 z6g1EvUnnf!b>B5%;6<HoL6O4n%j%|ql^)WoQjEmIiqKNIaYE_Yz`if0=3h%oxpQ-z zoE5Pvk8(aFby|f$C6t4=rEswIKsbLj82yf)E*-4%F`zO&+0*bkzWVk`3T_11(hm@9 zWy$E3q0ONIJ$&pb1s@A<JZa~aVbJ7AchjWc$YX%Cb=S{cX|_=N#>D{<RNkj5_qvBX zltEmle}5SGg+^G=tBTuzBe)AH(SmInGX`TJDy4*pve}NviP)Gy#rij4|BQb>%@vpF zbDgtj`-DE1pPhcjxW%?x5&36YLyw+Jmg7{has+EH{<73u0cNqCsVaRa*-+oD+D{ys z-(phh=%<j|)54oMi`5_W%Y__lR=tTad7ziyfKQnl5|`OdSs+oP5VuQeXbrJ1=^-WZ zW1LLt$5>{FVC7lXHQMcJ>j8h<3ZSvk;<pFvi4j^Hhm0QL<We+kj_khM6l+OeWnBs{ z?hg8`ul_udg{l2Vny<)MX?ARbAQi!f9@(=g$!T01nV4U~-G#*)RiBzn_7sQEfh1E| z{@9_ko<d2bP0RH>CACR!^j&Q^@n0oRA~W1WP)e6fjIYc#Bd8<j7Uh4KuHl4OzC_lo z0vzWjatC1eJ>bH9*sp|8^_kE_bRj=@;RyR?xui@b6PZ(aMi7T6D!?3!G6;Aiw7_WL zFF+z@2YFvfDZRQ!`8kPvY$A_{u-N{Q6sWY+V?R!j&$1X}WcN<5K_;Y&Z5cf_Z^25* zuIX#-U%m4NL|>#qRUUu2%Fuj>*CbVM_1I;V6td0I9`K?pf2j$cH3IkvNEJkflzXsJ zXg4OHh41zhP&`(9r2hL_cqmsL<YCkhp(qi?8rvcUxyW-RqNu|53gbhtsF!K5^UJr+ z#_jLJrYd==hyw9cz}}iyT$*zpc?cxD(dh|pR5p|2R>;^vt$2UUrZ5d}Z<NrUl~}RK zr)#Qfv1Sy~oG7pDc&a=h4D3`D4a305*X5P;OZX8%IqRg=J|{Q-xpl_RGYUxi`i+dG z7|M&OMC{KQtUdR>0E<2l9U*+*YK$R~HQ5(|LepyO>-oU!sG`$Z;3zW}Qy*+}v}*G? z$e8{4(rrqzE}4H30>_o8q0~sbwFu%ruvXLO{~PgkFR6M8-~5$C4Lg4S0Ab);;qCZV z!+3I;Oc2~eX~~M{8ibC%L#`Z{HdfZJ7CFc4D~4YP7D1?9O{Q|Aj#LLpfzwso>(yj9 z;%k!2<Dp$PKyIJ>12(Me|I<pM7F2DX-9x#nnLGszfnR@$wK`f<d5+u3TX*191xc-; zGLYZ|$RcM4#mZUchoVDgXJX1UjT?oV9!Z3ptO7cx+t$+}Px4Zd#<<QKj&0GX<e&xL zjCjlkHu<-UJ%1oebP#T58iYJuot#B$;8Ax9znAS_MkE<9v6z)-&!AB^SOQ|V8X-|% ztRZtLKx}_7?`~@)POQx+F8u{6dEFXTa9mZ#o8*)-H)kHBWPE8duzkB5n)^VXnIAr5 znhY%B1<^M1qfT+8LAFQ7q#}&HL=l<^x<O8bCOU~^gCaPQg-giwrr54DEI<v_ceZ4{ zpbqF8Mqz<fVVXHhjr(FiLOvtQzaXq@{noJ7a65k=5~nzC7|9}eeV_C$fQbr@f}VCW zfBgy77DhSSsKvBERPC{a(b0>jJ-QOg+8@h2Y+{ylp-kLS9QxqUGV01k?72k%)VIMq zER57mFOMFo<=Y-R??tj;)=tXkjKRX^jIOOUb@Gz+1Y4hNazNAWcf)#eHZXe<tJfxJ ziT!`~0=q$>n0zXuQn5HO&gGo|Cl$K&UWptI2e|22QvxA<MOS%Oc%87<ib!mX?X-M* zgy>JbWk<BSO!g+<OkMa`lRQ1mfRz^wag}>7BNKsoFN$}tkcI)EBvDh%Oe5lSAfmv1 z<Q6_Px@Z(>C<J`>TO0O|nkQAklQ3{jDFlD;eJ^>L{<o)pvG&2sA+46r3ReIIrs0=P z{N!6}*Ryyn&-a;WvFWCl<gd9zP2`a?Dq9}yv%B5+1aZjru)n%P>eC%zoo!uU1$S}5 zxjehOUp<8K?*|!@z?kY<<yOS2OD89f9F+=D%L!{P+9B67<Bq-06THs8=jhFZmZg88 z2)_Dpr8)YCcs+hl#($%m5Xc~tv<_C!747XsYu;EJ0x_e_5csDNeEmE!`rk>e(}hhV zGDSHPGDbY#T>Xo!&?E8&LuJHmaSw6WVWfQt`;uO+w8_kK`k5}Kdbeo>%#F*Ti6X*x zjg<9~uZVMHgwv;2J-~sB3NuLC_9TBF&c-}a%yWMALwqvWSOGQ9N?u2`sG0EcMNptr z>HyM47yWas`uTAM_%#|aGD|bYy)F=vk4AxBT4$Y5K@VZsWvU2y!hcdPRt(nCc+Z6w zEaNS_=b)#u`JENThdF1-F}|k#oCFWe#uC~;`y~x?5NQ#iJjWQN)z@<jv`c?E6o~rH z>KTNJnuho6pH&%iKaY7!Fawr2yG>kP$A*VH?Fz;^_N*gpEg@Uh2yx;|w#q_kV$FJ) zOCL3n2b@;(7|!)&srlGx*i?mQ=|dwjNQe09M|dgAP`-RfIBG`8S@UP4arbgWhp|DC zdTU<Bw~d(vg?Ga1zGPbepsat7uq?Mx3-=HwfQ}4sHwn|@{*_qY!`dAzFf<pAt&E?y zUMHu_+4#ae%C3H^Bm0eZkBERkP{iM`<DIJnL~i2@vM|U|b6}UKwtrArPAL88i8_|) z`(}R8(#;bwozNl5^tf{UX|=SO({>oYoT1I}af^tvc~VPN#5UQJ$tHh4Ql)!f<n@|e z#V=SWKPSa>*XZki^{w6oIireRlg7bhb?T`z?X9aiVfzIV+MR=?q3VwP!A`e5Q()%H zl(wfhI{Bzj_uKlzIuNm{(!SwO3rD&gR{b-@CG(P4zPm+gpimY!!?O(+zcSSFhr7FJ zbYEE`i>+AT`GK2@+AjgwKPJF`2|6I!&_p%z-q);DH7mATt3y(H4|uTJl8ow==ftMC zciG%}g%9&w+4Unm*qN1mHFfj!_AU8{jJG>7cyd3*)3&T&I7tU>ZUaC89w#~Rirufb z0Fp?FLCL<-xSY6b1D(jFM4&;LuV|SSQQA@=GAC`tX!{99*xIVk+Z_gfPiV1|$6<bd zOWMGkSXp@46PqY320^<$`I6rr2un1fBd(Q>2Cya|_1<CAfw#?yCGv5R9q?Lv?47$S z(1|Xte2ru1`x^f4^%-~QmbwR_u$$#WoHRXdeK20?mDi)y%c@<TTGskZ_5`>UTvrA% zTnLz{b{Q3$aR2;&V@uJ0JMp`Jh^q?~JCw^cXh0B9A}G+HkHU^sZG(yHWe;ozS&Zl$ zH;2I%b5ow?P4^r#Ns@#Czgs?4OHc<~f`M|EaE77h8cB`LvD^$=##}*hU8(l09-457 z$DlD2^}3`z2_U9x^TrPtPP$k3E3&}TQ5eQ}{iGLF%uqamhf<k;hM0heZ!^U99zEW! z8OwR4riTKVzaYd%tj$>95ZHCmmXyxEp40Fm3dk4E=+1H}69x#;ZLmVcxbU$KNe=QG zENhXJTYdxYsQ!{4xMO;9!@W+CRVJJ9c+xf2{t!sol58kB$`n5d&0E+#s1ibuK$^3s zvllCWSBC8F>BdigHUmhrEW2cuV$}aWFMtKH!m#R03D!F!4W(lJA&C0n=2%pTt&pEw z0Om>N@=&eK>NJRHLU2q|`WZpE`Vgq%Co9&^vWE4WUKU9C05B{aAv=<o2A_SFVEi$X zWk)#~3A9AB5A;RT<;%tP>E3cT!RD0M$1mYQ3coXL$sRa=%DI5(j0cq)n;($31i79h z$okZFuev8W)F!y9H)Wg?7{RYOq1GHRkn@{$>=c(W7mL4==7kRk%+KE(!JGLpkU@YJ z_9U)taW5F#SS*9c!-4pI4pDS}v+rt5X8INC^(4^QSx9TKRC!GQk&5VGF@_Ses!$Cu zR@5|1SEfpTXj!A>Iy`X(bJ1n>P&6xGO;`5DCB6oQ59js3_B5HXeTn!(_~omvwjv0V zrjEhX5!?dsEBFne`W@nras*RRHPU_qe}9(t9MR(NIqWX-Bywu5W(%dQHRNbU;` z^YH#Rb{=!)(M>A-AGL}#w?Yu1(Wpk%#gVu!?bEz}vU$7bO%?(BD-22_mrv-(n{z8F zV5}xr;$H=yHLyd|?_+Rz#6|q!5Pi{7Pl8uU2NouF@C@`mR=dL-l^-XK{>X^Q^2#=0 zs#HFpGML$v<SILMwlCtpzW}+CIZdR73=Ylm!-@2JAQ$Vu22s#{3V5%D2SzmpnvNnM zH)zv;hs%I#z4mz7$1(_Oq=m^5@%uo^!L-g`%M3MSd5cFwj^|ON+&zX!h3K<*9^(YZ zL4{YD;ZArx=j9mN>z4&uQcQ}w!x-7xI(DgBQN{I(P)|Nn;tT`WpFV(Ostl<aNlTiu z6*NiV)&erz{@Ngb#7~b$aZZD82Zx3zagfM=?M2`Kk=KCQgl9M?(u@V{;8M~gf0&w# zr@Qj7R0&UO)|EnzM+Ux{$lmYl8Iyd{O94ya7Aiu5Ed8G@&S^^&MccJy+qP}nwr$(9 zY}>YN+qP}nuDj0TzMn8!UXqN~^Zej*=?ROrk+JnWr8d<AfC0>$!m$Mt;wJ5|Ykcf~ zi1MyQhlV(UGG8#pNZA<<>l&Gpj?wsbFo2x?%eb9nf}2y9v)lC&3D@hZiTh8S1+_UI zV}gEavs}KK%`Xf~Ox$Bsi_QZBOW|66<&nc6v!kKVUxJB1v1|dCwI>O_lDwPrR>FnN zj@alL9%L&c!(AuI@o)qw^Y*eqDLjdPaU?d>7{bUPX+!Ku1F>6`Q!?h?zSNi!E;yau zR`^>W5-Df6p>caIbFLGn(_DJ9ICm**3yd;rfTKCU4*_o-5P8kkwu~WN`@Er`5zANl zR^)P<iT-v3Szl5bW*<){Pw$s!vYqJ7C#JNx2!(yb1@b(VI+|5MErP!Y6;<PZxJJj{ z@IT{pf0_@|*LdW@KN)lK$~mkK0PWo?g_5}1tltE-{3c6V-!jW#*hnPuu%rp@`lS#2 z(U>aiO25C_-LtfuH+4&yrV=%|PEBMkF|gWkTo<kiv>obvPwipcuBh=<t+^7*J#a{h z?eB}l81Nq(f}b(W<O{?MK=DC;TE&v)9ojd1ohpJQ4>J<joZ^y9xo3S>NQ|L>WC+C~ z#998o<&>nMN=KmX2d;_%QA4?Nk9^M46jo%wwv=#nP{a6F)S|*R>?dcYR2;9{$C$B} zeqVQ;Rb6Vz$T%d_EEX0Kll%#uR-5mV$?y)uahAoihJoqklC^c^n<OQFd0vcHZY)F@ z>BFNYNM<b{&&d43Z$`@Opoa`zINQr>3F?u93T|}iWCPzPXtL1tCS!F2io+EJ157W^ z!G-An$m`#-=xA1_o2x33Uv5lz#4gYVt*Z@hH$e;9qE8<uGlM<}A=6z#gq%A%?K*x1 z``8ZClxg+t;n1;wyZb7CMV<5rVNwiM$^CT_g^7TQWmRt*S4XcU`<=qpJ*0uztbe1A zU2|@q2UTA)Vu?!eNo4MWO-(sr2>I^N`)fMCrUy_ZNA`wyZq>GKov!`2D4kH*mf6zp zW&MOB>azE=`hmi>ZK{A)yX1FB`>A2@2K+?k=uA+Rz8Xdq4G#r>$HXvFPyiY0ozq@h zpT23qdULT)twjqw(iwbv$P+~McB-ii*3(vDE2j`ng+2tX)9<))W~{k`_G_BZ!Hb^> zUpD_jBaVI@MU}=D)p!}R&kdFBr8}{Ay6c^<qWl&7_1%@iAULRTi_Bps0>|*-mW@N~ zcaqLTmoVNn@8Ao6cx>xNvrt*`sA)FTPyF{c84<qb_dOssnm(83SxYKO1B?bWWYDKD z9tsS~fU+Ns8lpG9fDuwRLHExg#EP0(*6rw>1>CR_!KqhYl!XjJ<i>Kv*a3ErP@Sau zYIN-pjvH1!?aAMa?TqUYz6v?omV;j~;DWC{V-#ts1x)9E^|bt`3Yf7S_`(t_S5un} z0u=G)YbrIS^=LO=To5Hr607A-K!y*s7y;7&!(|UUT>P<;rd*7S>AJ1CubQN~>*MTJ zCeJVa(_9IhkV^CgXeFjSL!vj2=?E{n4cJJF8&|9dgC&xTFS-H^>67Ph$QYrqWe4lj z*`F_T-nI9C>0O-8;fF1y3thri;e{>w4wHZK`=r!uivkWnaDf~&P*3fU;{&HT+MDp4 z7d~GQp|R{xPBA$}Do)9b)&0zVTlRwgps4rdWP+GXPGVWgR3C6OqaOOwj>@aIz+fLC zBuI?0E;6=IM25$@j;HNpAEkG6+v0vKK5x84pVmfyLne5FGgtxc3UePY@y5}W{SC;c zDV>~F_>INisOf!~_S8wj_p;3dg~+iEUQ5|T*Bw^Z!oZc2u5u>lf6H-IE-Mp7Q}7v~ zPqZBRd9wY?NO_>_H)}+DK%+iktjXEc>318&BI4yV^G`pzlb=>aFwDp_ZV9i%U+WG= zG7JlUC>=uX*0U{OkGj%alHEBI*$>*NIOVGLD7+sBK{@qh5c+_b{<}w=m6gZq3VLNj zMA6yWb7<_{c)a6VhPCU(29Mee!eZNi=y*bvi;8`$ub>w0zfz&V<eDxbU>n(~wgEAE zFFt)j+5}2ZO?NMM>qHe>`rf3H9StlV^r=pN$5R2ZNf-5`D)qhUiS=|)TAF2v{{lo_ z1fCh#bue16ZWT!9{DxY1EKuO@Ay~5i%`}Z0LzIJJ=U?;2hh2`f4{E%Bg^ym<t2J35 zCTW=oIg!taFxMco5+37qbS(v<+#Xs5D@fM;u?&-)CFUQ3S=wm&YTLuDTOFihI=Q=l zZ6NPo7C9+@mY!6h89h7GY#9j*!zhqMbRR-ZENqaInm#YxFN};)Y69bLx2rULY}{)6 zTg4zu%n90pKek8D(np;{>X3pCj_h_`<{~*Xd=`hpL4I(UNt@=*hzd+uN2=KjxcqCH zpJ$>geT&ZCK0%<5iP-&)`iYjUQWnC0PhIX92X5`n0CzgvW^m_PTGP_?9zPY$>ez|N z>I^T_v6viCeEXT{ux_TNE^Kypf+b0BB`9X`eP6Ws;<StEa0SZO?I2;TR>9>2kVkv1 zh*ejcA}Fu4|116f$3u2otjUJMQ5&Xs`A?~X&Hl>cC*dvZ#k#<>r{aeGl|HzCL}9jb z3~@y6Wpwo(*>+v1ocQJ?c2bszDnwrEVM9aSC%;d}>AJe9o6BaSsnCdB$DTzPh~i7e za{acG+tWWh(dnS&_JR>;utLGt!nI}$D4W68D(vaeeJX+)%cutWyd>Fyzbw~@p^ifG zk``m7iulMT#ErJ7G|?irIctJ{Jfs@=lAveYLpH&!`f2(;-&1f-)g*@m;lZ6XxcJXg zG;gNFH)P3B&f<9_1elAvhgk8viff-u<j!b6Y%8<K3SKY++z)wV?51_?xR6qmi=(=a zI`5Sw#n$G$LjH7^W1Nq~CXt8IWt(BO2Gmw&nu7+sZ7kCCv6w^#6$|u#q^>*YDzS0s z16d-cQkqmH#<E|r%d%j?m<L$T+b_1;F=FdfTp4D%?kGXx!_;KAV-kF_OlVGhQCPMq z%;&1-!4`NL>TnWSY*o+Vwnv1GT#S?%IV0r=gi%uXlOZ<OG3Zo*J4r722<d9J;8rg= zegyxMa8EW{z^#z4QW{KuQ%hrf>00FEUs@_)!4)To9<xq@GwMwjBhf>1B0X<^e8vG5 zd7}F^GCgDMG7AAV*o9*Y(>)wIZu{fcT>fYuae@)DO&)OqR#1bfiO$B!rVP=<-0>pk z**P|4yS!j<Q-9S_-#IaWIwd!ibB6YK0MC<(b^^ZcC+bInLfZ*{{$V~G#J%=vnvSnv zT#m1vRvg>4hZMpH#s%9WeT)Zcd2ZR+579gBWCI9o$lP=io+?aG#f2hq^`)z{H}Lf$ z%AZnZ-Rz5UjsYsUCQeXVfT%iRa5SymL)%Bjn4vV8#kq6tix@W!C}?WCoiVk76}#Oo z6YO^*LYYK>G;Pp-XRUb&Hfr#`Z~mnlbyP~0J3WD)fr~@s8JVig-d6q?Eq(~|`bzPo zL=o@6G+08~>dj7b)>sxV(rm?>_}!(45G;Feg*o9z-h$ftG=M=T^~QcoNY^5^mmRl? zdXK?m19BtGx#sQluBPdu0c#Yuv{%8_FGT7Uhq!Aq|L&WAD-ya+1A!znbD1PYgm1== z;WlhUfwrbD=fhPu?$Pt?9`k+8GJ?WjYS~np{=x?^rM}X$udwpNFXFs-GrIRGRCi$g zV~IyBm@b>UdI=Gsd=0wW?g4oECbqSt56=;~V^sJK<!WdhakhAhgG8je(AE}(n>5#T zQ*@Crg*vBy<Jz`X*E6d=9!{a}qne|)8@eSI`%j*byM^(Q9g@MW758kT&2&&NU@ml} zKd@38^>0S{j)jTkV>It-(({7#R&D$sHzbR{O8)m!_QOp~oUwM(7uXULhJ+OtAg|ya zH1k2Hr2#Xf-2}@*7rr)MrG6#LNH1CtKh4<ds;V}BV(2o|v^zc)5X7I0`+qxbxl3sn zI|o3r5eL$+urr9n{SJwG{Mxr#_uvGamaXed6dOMq-i>=p<+C#%DyQnUHpY&5+N_xm z8}pLtw+H5nz#0V)QMH{1d_6i<H4aeXLu2l=piFbE>D5505d2TiR83)d=|_oePpB-v zqW+S9z-Tuu>s%sJ>8^#ba?+AhGc;`kFe*S{>-x*$s#}*V$)-W%rtJn|l{>M`Z@0$b zzvCiX+SQS&h?FB_XSaM-cumgTPuPy=H>0U*g_!>SuV<5nm2@tiNP`=-ohDrrsSsKZ z)5HAW2?A<+v(x@Vg|m1=a<D~NI7BWh!}~dZdM~l0y!}6eAf2D}GRjD9!=mTF(l<q0 z8BeD&c8?tz#GQjzqrgycUZr<rsXo9c6zh8*7=`zO9V@1MoLwxx+>xQoVy!8N0Xg_| zFu4a57ul33(Lrd<y2vJ|^DighObfiWAe*5OLrXlRA=8IfXJVV}_Rh21)OQaEw{X*c zu6v?kB5j69kV`on98%9DtC>!+!oCv#P(nh`y2*E*$bfhrPN3a7&&yr4c>OmC6LhAC z0|oyM`>Vmrp$)lvdUH+C9N&?Hm37JFdFRL2U}+2{tJM+=4wf1cz3YqN6}J#GoyPKQ zEyEZj(@{lVwcIyj0{RSi@iru?-iL30w4>dYUzbjn&CZEzd?)G~hpBtDfKg9uX<L{P z*$44ErRF_=RJ@6yF~V4L4(F@dRXd@GxRakeq`VB5IOuKaMt0KbtfJJ!>@qsCh}0Ba zS-jVsxRh;`-|QLGMxvPYWZk_A8lh=N&LruF#WnVt7sDB3T9BumkQB}w#M?!GDN=8= zk>eFcmwAO*WTCe2jCI!b<=g5LO4<OHXA#Z0;dj>g_I{NH0}P0!@h9t=-MK!BSEjzW z`r_(ka&7~nFeXC&w4ZKcYHH~ZUKI8CtsU^*2eCl2`+UOTx@B=__NH=hnI6FPdb~<g z>rZLjZzW=Y8Ad00qyx6<Jj4)xn9S;9!BmJ-_2c7z=8tHv?(lCzXmqO+d>Ni`F7%t( zodq*Tm5)8o)ZsoU#A7Fe%2tfH5ch9uN=-DdaDz_6b_#JU4@Jw$m;DB5Fx2W<$63eA z>=5|ayaTS%OI(7@N7kpiD6q+Q?b!i`e>8ZaSAwC@@*eGky$Gj~-NYMz=0p}z2jbIA z{S?o+?~^n%uR?BGf?!NhCwN74g{@|{yZm$kB@$X8Ym_I|W9v}F6EO|5#Z&PEzzT+V zn(6AV+rW^Pm2<awmHK$$>gM5r(+$u{E2!x!cM-#KW+OVP_tqIwUa3q{xS5j?7VE@X zV`I~%%gg<v*+kIzXSol5DJg|3O8Gq>lO}ijXX0DT<$0_E8{<x*$3b^b&C71%zx~?7 zErCmbr5D-o%mzjv(0PNxo;%XGwjbs=Yn7-_5@yO>&+M@NU>Py@nK|SLXt)oYdUDJ> zdjKVN>afgjGjAO!&u(=Beu~XnblW*=o_BqyHpUM(&*IqRN)@AjdE9SPsXgYEU1>rt z1O)l%LGFqPD2tERMKeyf*-a0_=7jXn{7a}(a=SL#9STbcteKgO?%Z1?sxl50w8kF7 z2U3<HK-;A6%TRI1Smjl@afA!de2!`gpy~@e6w~PIgGgZoqde$bbh0<KR43N<XTq|w z?b$4*1Q$Ldm;Z`?y#Q-AKz6Mgv?PUmHe4!HY~LYoOe)n!j+GFssd1-PF<!7W;@(9k zfr+J7-G3YaI|^)T;&9ZBQjfBfgrzAW<9Z9oun&S+<)Tv&>b8e&2o&6OanG9_qL3W3 z@(Hmk!_(fJDOTawRU*$^7?kU&wzYD70|0YAOAE$~IEL4MF{%F<2gakXT=g$)6niIO z|JzsEw$tjjoJ5Qp`o|fMOG?qg5A)4Hn*akW#M7s*rNdpW8SYmcT-1FYoh}V-=`Gf; zIBUYWYfExSCICS05FSv-b+I(?!SBx^tP7x!JUp4DCc9#2Q6#US0L-)Ue1Jw#qkx`Z z0^O@yV4e7X$-`Zq>^fkWzA9;N7~lJ7OqHTn7&0MWF!Gsn%z9`uRv-=JCnLA|EO}EN zRL8u)$ib+Jsej^^EdWz?dcAPO!evz!R<hG9=*Zl8an#2QO86^$^{;&F6h;*P#$=8? z!I-|R3|E<38%%(*`Mc%}qyRk4w=b|d1;s=#n#o#!PsoDq|NKXo$uYLup|alJp>R6R zY+kiaG|gt}zrm*0k-Qy`@>>kn<jV^Fpm|2lCfvV$FBF|Xk<^y4)aIu{3=)zum!R37 zi?#CnZKp2KJHznbVHW&b6&t9!{zn=xMz;143YdAPC_QhaGfU@*LInM{;u^%Eql3a8 z2%Cd{pzc56uXWuCQY)-a+Fvc#nbxLz;W~!X{Vvyh((n@^DsVJdieV1Ic(jJM1(&aW zPmk4qe@w>=aVMQr^ynN~x}zGLbUFV<IBwOJbq)F7A`l}H3j4B3<Jgm~0Tu<`LP>&M zpMsh`&A+xn_DoN97gde-Hb)L^2#L3vlTZ$S3=>IWvf0!EhPN_rtuKr$3~_K&>a0iz z@lW#B!6Kxb498Gb=Yt4R)CBpN6O*HQK9ugjPKl#A3xQq+9IxqTN~gS$t=n3WP^>kz z6TUn6Y9-QkrOp|C$0z^+njHG<mJe~Xj-wkDM+uD6q%-%}tt7@E&h2(ZhbkH(TRy*k z%d4^wTr=vW);uatDa88!FfAf0FiAWd4R7G!&0cj9`P96K^j!YQM+8Ion&On!eL(w> zXOH2;5@NMN8%kuKWyg@oF+e9TXw|mggwPSKYphHX$T998w5vas9{%F9vEqDYY+;gl zpGru*-p&T4nDI|izoO|^hgII{5^gPj$#o=#m*s2Aw$V`h-RQBrff~Lh^hiVxFt79I zP7!70eJw$cr_6Xsn-G!iQH+ylg#30us7NPLr6K$;=C4rk>cC{k%xcxCOFu0&TP&kp z`Ew{4ro;YxjU(6$<JGg9dQowko;S`e0AK39L~Uwp5WCo;9W3Kw$7&HC9Wmd3jgeuy z-4IX0EgF2|^xj?hsZ8p9Mw206H(oIzY14g=f4(^Z?yav|1`&~Ph?tQpeh(ret&(TF z<@yD6bYXz$3Y41T=(3Ckwv&aI<|-^=nH=(`^O^v`YcNf0V3z0n0cU3lnA$jhoFvXG zPqbuxtfE?buCx+vWQOe;g<y|=XXs&whk_53RSKQ+8(nNZaHoi4vF`pcfOeh{1!bI{ zk4CA6`5KwXewUZT2Y#W*b!ZIpVi;4~!lq7uo`a@=@L1XHD7FCvY=Y3^b}Tk0DbzZr z@~w$pYqWojD_zKsBot|f*JNf&ZF`%QcoIj=Tw@thay-Dh_*;E4A@<LIm(x&vCXAJU z*3l{M@6=7Z7t>1o0<cEw+{kJfk(RT@E@>XbS2z<ca8N5LEqp`9h^oPjgzcEzP@%z2 zP*qn+>yaK8BNgDwOknL_qFN(j4TW|w2qu!^sVS5NabF<YL(0;*94OtU;q)cRsB5LG z==csYpkY?Ro0<h;TxWBCxPQtSX&D-?i5p!n>h|qY1~ed`lkr~(J9sk}Fg;X`IweAF z`e!bdn*v{}lN2s<u&4?{=cO180pom;mF`|~T+0VDZ$t?w8!3(q+EkrHFQQd@$~*WW zTX+&_SQF4gWXH9LiW#DYP;nE`S@URi4UG2LD!zIx+qrb5<wMJVbSWvgJUaFTCmf@R z7s;}jWAb$6zO`qqM4_L`6zK2+Zv@lgQNMUN0KCa|<svC81wN3d(XfmtE^`QPVF18* zDRr9s)a`JE4(LtSfV;%X;Lu8NB0A1{+!f`8MaLR|S?0u8PDHw@JI9SzxmG>{rPJm^ zbhcTATU8$KVx%B{L3FRE9yD$M7!X8fQAXHpIDJ&CFIO}4hC|9#G^170_LE&gO!`bJ z(l8S4&cAdDlb%V5e#?pbLTcRHpAI&yj1K~4Cj|=kbTuFMgv$S2sxYhaTfv1oM&*;) zGt5V6EWWjIkR<b6bS$salo$20g5VKUu(0ny`@#h&X1i2>1$SM7=1DY9XR@V5*IpQq zlC02<IoNEL>*^mV3dMCk9(GfigriO`UmUHr<a>GAf*l`<q{KWmWDM$mh-vn8>kRNZ zpmL^mn|)jUw1_L{xJMubU6A6AASTYeLv8BtP!b2PF^Yn!$=%nc5lR(tp~0|E_y2ir z&Dgw@%ge5R`laoZkz;gmqYHcYKUCX2z=Yw0Rec>F7+38pBy;s`e1l_DYAiI6m1Dp- zC5tHv<<!!3+2eaWVdO~n5QJT@KdHy}2+r{zBf0@rWjlY{X<4U84<sAobN#0!*DZ&w zKw4vZlEISVv$hr2+u7`69COp+M6C{U67Npp%%-k?cbUCo2hVShh0x7iH~OpP_zLbx zajDuAmzlHo@hwv59kU03`o0sJG22Soy3?b(>SX-O9bEQm08pEMx~IlBH+QCe!k;|{ zjp+9T%g8{B;#^(FtSfV&3LaRqm8(g}g&u0hrH6Z_pfVjOH#n6gpb3$0)eInBU>4Ec zC_}h^JucTFRwe#)gH#RfXzCXw{vdcnBPnB588IZ#!%YGnd{prk-izvJsCORP#n5!K z<$(eHygyr<>YDdV2ol+{;v=I=^d8hYJ;V7yJ>_^__KXYy+Q8Bd@|fCbixPM-#`k-C zxKxmSIQHx|CApRV*Er6wtVeU-=OWhNt;hs_c?=>SMe&9C|GicpAyjHaFNeumHGj_R zKS)1FzEjP<qH*FH5JH{T&6|?oCwe{FVh4st%Y`>y?tnhn0#ZcXT8Ms6-pb(G^&>f> z*VzkB`qI<RbXUZAlsU`+5Q%A<RwWYRaL&EfJSllza2>w*`?_2(htles?-keXAe20R z@ln!&?8NH642fgBADrq6A}<^v25kc6q>06R%dYU+)(4>Vp(;ehs&e}dPqsN>V4f+Y zLuR`P<VlGD41S3Z_Cl*KUSWN}N0ykj#Th)@+<Ur~5H+NBbF^a;MRi7+QmN(p8i1>G z(1MfVg;_Oq8(HjJ!#ji)SxD2_yM+jU0!bUJNff10w|^%P3|tJa(>!>aSA5EP?8j_X z@VW}N*)z_wz+M{BY<eQ!+dBiJ`s_Q~U~+C`a;Kekp@K=FLg>E-CFMv=rS%ZiiH=&* zsSg~=2W2Lo(`JU75>$t{P4{~UMX=@k{v3$$_5#n?xD9E$Mku)+c}t;wQm;#Yu8+;* zwph(!ZT*CT9n1`(SOwBZ(av+9A}VWFPl6e$^iSgAhXS$laDfarr!KLm4(2afpTLal z>>U%V$HhE>FQaV6JM<%V;#3Wz%tCeO(<>~6K98l}oVx0UH-mhxIH!H@lTunE&)Mei zbi4D@eXgUpKSxyCb*Qi}c*}f$nt~iE+ZkVmvX_h9?NR;)o1-SID?$zr43sKcGc?}d za%@HWh-%egyVaj*wLNcm@W1WBzpjWqO=z|6zRU|SirWrOhpP2wGUm`^yo2QZ=(PB6 z&ra(pYkbxD|6JKk!^z2OCQBqO5$)yi4Oyk9IeTlae?QyTt2L`S79CQ5Ih3q1kFQZx z=-dmM612JTjKTEKT_iX!kBNAoix{|^XKQAJ@g}-`=<g9NII|iVBkj^Gix!<~Z#U5< zLg?Ck<~bNuLg{}ZpW_3P`rgJh547LMBzA<d`NtJeKKyOTk?55vO!=)!`d|z!YSiK4 zb6U|X=^&x>S4^)dXYj3m#A>`BNs{EJ)n|l4Fd$mbMmb}RWJuUss4qyW?;aJ(trnt3 z20C9g=S@{)eWDi@_0i%b^=?I?`bG%GexFwPF~pAla{!94G(ON5I|$HIUda9%!Za7o z6}}HR8WC*6v=JbFAy${$B!XqgD7M-{3pBet^|~EPtaeUS^uTz3jS7MPOhVZXnc?n? zR|AOOGak_7tB8uytq{+5pzrkJmdT<AKKcIgI?0Al^2P*IZ_t3&H6kA_1GwqB=+R<I z0qLQ^tgD%6z>TRDQySh~&C|n8L7g8a-u^oaro)3v;3h_9tkM~;@buWXV_|S>NSSJW zMfioTaC~>7*m@U#IF_7##x4`FMh5k}X2)n{LGZf}J^s`S(9kw?+2!%8&`6eITW1A3 z&ag&d&{NmX8&h3(2!IpCgqPeeGi2C*<ZyMvjVjF2|5^vl{AEOGM_dDvF9s5<(W4wP zmohEu^l&A8gE5c$$EQ|8Vf1GuMoz|g3+54JozU7dP!z6z%T|y;ws$-86fH`XRM$wr z5Eb<EB5R!67c|rMDM==c!ifgtA(NZ)KjRe<FN!*@7~_8~)w`fDVAAmPHvJj!=e4C_ zl%U#xgX)R2*R`slXz)E!Q9UNcC}XQ+z=&@DhKFBje#ZGq9X?t=Dr?1LxYsoY9R7y8 zqvg>h@yg(TL}-ia#xr|fvCG$#<8(3RR_%N2sBzdMaSw&yJ<bY|PMfwSJ6rTtKB&$b zi3RDT39T7_b+QJCM{QGuJ>A0N{$2lJpGk8)SwN?S7z%y94!LGfRweL3^gvLq-+N17 zuNX~Qa<B1&KW4}bE~A_X1R^7tmGBx{N6AG)<n<tbez!>99;2_|Z0a#3z5)vT0XLEr z(5nn?`P~bpZ}zaf)qnZUZdeOnu@|20#UMIcxYi%h%m!+J^PV_?6?JM9_j~LHm8!Nc z{8HLER`RvNX0(dE;AcKO?IQSSPnXAM7}*8GKxP%Jh(7m6e&&jxAd$;TE7unnuC<sE zZAlD&3b&It_eO@8n?K270kfA`qJ=@twt`|o;P2EEic@qM5Yqke*HTm}OhK103t=VF zrQdDBZ0njylIt#WU2(52)FbJcNC|$zu1RNC3%*mEqSK6#s1P;-iOcwWV*);z_?HZ; zLznO1ec2NuuX=Tpg-YGle$$6FxZ3GcKn4tdVE(@d<+S44=K2H6Qbm<S8(v(m6>R&$ z@<DdOmCjrtk{yV6a+8_&9sJ5qER?4j?1CK3-+cv#-(;gz7*L7`)#!qd__MA{{zQ94 z{Jt-$U4T$+IR?&Q5nrrL0#7*7B&th!!)L`3GXZ~`ulX2A@tHC~OhoiQD+Hz*@A!Lv zL%!V(-YbKI74xnm(60-^@3Cic+C<zFFaJ)IXXer{vV)9TVHcR=A%j;LppdVikxL0u zBHd}?Jpuc&F-dF5XN<aXU1f8Xd=e<Hwa!1p+>Z@8cS(ykfZY;ESch=|9Pj5XtuE<& zYNvOZo^#z4{f|>u{s|y~ah=VFkP;++{Ji-xexWlLR4mfBXoc*?0v=F<p*c8wlQ8A( zxg6gK3vR;r^vodaQBo^|6h-o;U*zVfqpnqKHsN;l1F|IDZHrxRe71tqq+QK<rA`<I zUCF8`m(4AvASP1*A~TV~fe`-8SISLa<7j5FE}sI`IBrNi=mbZ?1ZXBc*cZ)zhn^62 zribML*v<OkW;7#GiWM;^Aw`I1G;B5TJZYLdEBdlweheV*cFem$UFr-v%L3`a;q8F4 zhY+K2W7(FOC5&GAKE(+32%>NA$l%8HyMtDG2EyC(UnH*KPS)@R$wJ>tM}9+}`t<Jg z@5UI$<N;xD(q$<q=4Hs3EqJ1T|0Cz&RdikmctA@n{!9lEjpUuM^E}314N^#45_r)x zaUW6k=03x3R~>AZIj7c=E?9;P^aDEr1rx!Qb&#H8k2yuWP1v8=Z{a%0u9K-&CHz!b zV&{8~<0u4v3IIKhWws%jEO2BKpx`}=4<!EpO??;1m^6uAM9I=1BrkS<0MDfF{U{ae zdvl4k@}ZU->oCJMY8fkUjtKJA1b`8CV*{OrI|?z4uI4XRZYuNDnnIjcjmn<<6M$km zZFb9j69yuXu~x0yoOD#u6arvAw;aOI*K)qdc8&WB1J0-QW<Zedjr8LS{-I8kOC+t8 z`@sy=2n~brQP$oc6KF1fLu}lD#zvb($PZbVQZOo+^}jfYnmwHv{q2ZAlPV!D5s;i% zBpDk2@YgNNEI%2v$^d*OXfT>s{i~1T%Dtt5!lMWjHESHtDUjAhcljN7bB<bM4yze` zPZgwLwlQQ3$<y?Hkk$7J<{;8Ltv#NmjpQ%S(b4^aV0A|zo?mZ&H{u%rL`Ewj*x5L` zw8eZc32~S@c`9s)K{@<Jp!y{5x{7fS;N1MyN`zVx!R`_FkaHN-8Zu}^5gz5lxez`1 zPwav2A!<ARVM7v4rg#g?_jgoW_Wh(01grBn&nQ}9QIwYSPg8^5wK{l+<S!u`-hl9o zam6lr|Bv-;hQ1PizKZT`@5oSLuXou8-&sj6PYobmjAOL8ViQJW2hesm3msCjrOvdO zJYJd&(Z>}vY~1kM#H^7a*x0D8C*G=oX5qpqbu`?6d1q!g!qVG%;sB$S7mds{duFmD zfXkj{;)*L6McMFchHI8eUBu1!eTTq6m~`T(s5-_L>t1Mo7W36uz14c(D=2_FvVA&_ zG1AiNUY%Xu_DXs2#%;;=)gyx};+_Vq9vNvB@?3*=4xJ1g$7*V>d+##gGyd{)<JDP3 z?R$xp)PuQ)4wwNT&^OIrud2m8U)AQl=gJQAX5gQtRb9OuqUyB3ba@jtW4#{*bR3N* z5S~aXtV-v9?N($ub*W*rrQl+}a&=OaW=K!$7QYDhDT<GwNZB^tbng=7&LBag?HBTf zo?7PlyGW)*{C60f3VkjUoun1dr@@|==NZN8qqyC2nC$Fe?$$qnt?x#WoeUm`U54M& zkBRd1E|k{EO?yTc3ijRT9<}~=dnyWk{+QjEkq$$DqA;3^N28{Ea2y%L=Bn&I0H$6~ z0d?J#UXYo~Pb4sIt~fs<!C1QicgjnVxM$WmwW!mKr1QDiM|iF@PE6j~NZdT*f_4?a zDSAw)LOC<mOLO(t395?)tzW%en9J@I2bArqpCvsL-bvuZrXQ0QGZY=;dI;W0LjV?? z55eqzlqJVu+oD#?pmccH2RW*!B)q35>n&K`r$+BGVrKerPj9;lG}4{U`uBqFL%oFN z-{wUN-%|!upZ;v5qOT_BsJJT#mVCg*f&d4x2flp}@?j-3qtHUq;h+j!+T#WiLQO~~ zA|mrjGGv6NF)~`$K0R@%ftR2NB2~TRnWs5_4S0O4f^C3|KYz(OJu@Bp?2=0LYeflI z4hhxZ@{heC{*&tV?vN|R)U;i}8BA>!7nC8L$gOzep<<7wLi4_nS+Vy;1@YPH_>EPO z(#0<gU*Wmz;X;M@*kdvZw!uUwt<>a$<fD~v9_*m$FA$A0Y_?S!dK<x=x21|SZ`{{^ zF^rornx{acx+V58R;WtrvS`dJ#DytXv;N3x#*cb@H|kiK3tpjN8{HI4D2VS-jn)-A ze_k)>C%Y2T!D>w`oHokBz}kxE-1A}Ay!Ja-Y&0_UJ`l$-lWRfAjrAB*IKiU-{=KoU z2-QurHU5n2+%g4=xecFyp~rPukxa9H#4o0>6BQES1iV`Hs&W8wWa66&*uKg2<Moe` zD{Fyg)hP0(MCBj?ZZf$lhC_$QeL>i4D7S&cMnulH62;Sy>xj#p0qyoePdezOc>fca zldDWu1&A>3tiqYoOmi}U47a6`le61WnPQX7SZdrnh(NpPa*x9$1Ku1SkpBRG-}oz$ zal>yjegC72*1sE!DniGB5)J<R@<_On##|kCVO@aj88*2Dky)W;cBaui&=%#{_3u?| zC#Ke#_TQV(2=E+qq(bnh>w-7=aPNk#Is@Offt`}NNK!y4zS`65;QYp2MXI9jh8ugT zj}7smCG!{rsG4)vB*yYLIkx$K_}D(nECSnY*xp_<6U-w3_dgCdTcT&OhqE7N2cS{& zKah(-DJES~>9hAqjvFHSPQ+oGsTiqRLv00g2;z>{Hnl*_Iu7Cx$;lDcVkm$lY}+HF zRe**mf)=cwxH%()?UDwvj5|7tbVOUKUL5YRx@A@}1Q&qbu0wmDZciV7dma+WA5iXq zJD7awCyXAD6?)I#g(tIL^+!5?;x=<pLw9z9w#~3)$|M&E^thgIMy5A6ARdn!uWebe zT<0&P<`b@I%q%f$%Mxpj!g}mBF@%k+@^jIikj#fj^j93uc92TY6Z?`igLX>PFi+kN zur_~IDL@y!{H+x-`rT1~^xxT4jF}lN+IOjoj<9<BD%!LA)>=-3x5u1uXl#73+*GlH z4QL6WnJtCT2jD|o&h6ivZ1GXx7$mE-dZLXMQK9JCpH#t~x5I&Ukr$XAPK+;z7upy} zI5Q&O%kr>jW&P%}tf4QVWeti~Sx40%ag6W(r{}@{+^Zd>9VB^w@k(723mQMqO++VZ zpgSf=o_bh=q-DaTLrvJP(jH|g!E)DAtLJkDcqiM)O#OGlf;f40!J7Z<>-~H;%y?}! z$h{9^5>YPslfnGs<4tmr{csraZ&MzF>O^7fJz4z=TDu=K*#~(&fYc+D^RS01Ss1mv zp!-om>Y;u6-V6qR;jxiD@MLScr~x3P_Mw9w+(bir9{iR&t~6;D{X}dHqWO5q*Y5#t z!)<MR@_ZKmBkOmf7Q}?-@eN#b2A4ihab1^IN-r?-6M<0QRdc>P6sI=y>6br+eIK-b zV-c5|a0&P@Ec{&`ws|Fk#$p^Cv$6yF93a*TzHKljnlB@NjxG?P^B02ux;CS4;%gKa zHb~&21;2N+*CEn3`^Ft16VT;Wdm-u}0l1!fy~b861}~y?U(5d#!x1fCJ>E~>y#%;w z^2rHgcoR?6r_fw|E|nLl9!sxT!xnkS+whqz%4}E^1;qMFUZgT{9jouc`N4^KY@L&q z40qO%2>`x-dAs=7i!*YxLss?9^clw7NtsApbePE{;5V))CMBfff?q%*xeGaaM-8T1 z`USnob#KofupTqnCkMS8S_(=e<Hq}ui)8P}<g?9zR{Nj3_>dsMPazv;M77B8v*?m} zx`cneKHo?~Rqrj*OR$x`;63K9veu0}+}kB<JI-o<;uui%gG5fXMbksShs0&~o0~ff z@#!$@4xjfp(r8EJE3FjXZtcj6WFF8raO;AXuNquVt@svwEk^J6qD1~NA{~|pR@HbM z>Lt`+JO-;W%szqn07_Ux(F6klz)DyOr9k(Zne{S(yLey>)}Ndb#|o_%bZ_xI4S;ZE zky{*p$T!6xP95aPgEnh5#KVR<6x&TaJSvwB`bZL{tT<^N)#k~1fF&!RN0K1f5=3&x z$VuBJifZdv0LyD%@j33MQU*(e@b{TfD?>Y}iW?Z6XN#SB2T+0gS-4Z)2i@mqFd^Nm z2|HZMBpf&78mH`qpgYmrvHHoy4OmJ}sgUx2$_7W#Q2|K{AD*))oqq~7dGoaS3X>P{ zwp;kHRJcv6w@)6Q7af>E8yg&(0-}Uw)|~cpm&~ooOl19^se@MRM3t*d8RLWk=+9Ar z0g3vzoE>vhBUk${<<_Xj<V<{m@0HSJ_W0&7+h9}+xQtg*G^KpZd!1aw@J?wBG~>^I z$ydT9rwRz82m5>@_L{f)O?%utvVG#lzD0cbAM=}W?XFCt=)y6frH-_WAcp`L|At_A zwPQbLZ$$GT$7P_LT#TE=<Q~OcK62?AI%Hq)BraX<yA^`v0o91E8FuMJ;5=N?I;D81 zQmIeMKi}kutndxc{pB5NZRL#hd?m_%Rl!ok>oPFR1Xz)D0n7K7lO)a1A~u??yh5wS z$@n<D6~jXxc<W@o0|ALcZJ(h%xA$@(XZJ~bu$QBaPZBmvbF1WUs?2rWqZO`B>cc&$ z2`AIc8+7fie)oI%f$F42{sX+4TFa)W`i{u4b+BI@G{faAn{Fj%OURc9oeN}t%s@CI zyWQ}4RyhPLP)fvZ-^K{j5U0vQi|ntF*K{0t{myqzqaJ(KE_R)7X?JOTkKiA&N94Ft z>+4lwPebu2XyZ=iM37T)B9;HrXl{{NJOkW5BX1t^oaPk#IH(%dmMmMYjlK;|T<=VL zT-Fzcw!2z2vKY9t1!MVKle`^&@-6VXEo-WL7MzcDd@;+H3dMx@w9iJl^iTo=NiIuK zCjB>^oMT;hufp_ZtijfZuRex{`o`Jx9F^;(;-&%G^V#UA<l~!n;F4LnLMoMX)WBuv z{k76}=Z)Ps)99uqslg1*4L_}5(&HtU<wj#fs3>B&yu|AdmASb2x#b6cdc>o~i;@th zT*m!EO>7DDmNnygdFDS!<1oI7ql$ZyQn%Q5ot+4z!_eubIf0x0Se2Y+6(bd|2K4JR zhsLVf^*Lz#?C+y0ZrtC|1bAm#<(2p$9DJ}lzhY_HHj0*v(yR_k0-6Q)?zQ&vaIcN8 zaqkF81VZCc+9Cqbc>ZaB_9!%^U07zg_mTxE4@*5bEmav;rls$;Ee2}}753J)k8P9( ziD$p+U6X>oTT$QE-k^1Q`*@xnv+?|B4GC}D2iJ=S;=R26n<YEHiw2lFEGngOCIW1S zoXu%H&#WVfTX<YMGx}6-0s2ZrlDX<1O1R&1Tz1cO=Ao?O^wRf#{q&J=I(Jgs{jgJp zunFH`0@$~vMJQh5!xXc*3#6X0-1)|0I(uhWO|IXVDJ7P+qCFxVxp_N}-@*9>`q{x@ z*yd0!bJM!YAxcr+I#za76AO{RAR-M&R1|TG;te*;$S?}5mwPk7Kmzph)7A9Lyd|G8 zLKJgG_U!L`Yay(E?9VPPhAzdq1W&YDvA0L;{G4K`K%2`0?pQxDB_Vv`M9zf)6b^0k zyCwdwHheM1qwB2sD4{R9^SftxwL_PSUQnxPP>+#N@s-c~<7ri4m_E}xG3P>wzG26z zuSrhKpLpo*Ew4wg3)RY#cbtzK6kM<&(j0{%$|>zXkd5Mh@pqw(yojnxhDUY&apD>F zcZcH}Flj=e;4nq8&OOL+7IK6_OiV3C!~s}iX&fx0X<~-)%amb7zEp>|1Kl=C)#W@U zD(SeJ<pb6hCyv&4TgU|Qo90n{!Tw<q1i5tOjMQfVjV|FIaVO>dfHhY#&?1N~A*pcq z_F?BP@JX6~O|OBtG>Nkb#%MiokcC!g+EkMv3+qO3TclBF?0U*^zenuFd)&E3cK^C} z(6d)Uxj}f!2_S*_aOMdxdxMiK_6e`BcHW0-LqyE0d_op`V}Td(&Wvvovg}rjtp&q= zr>U1O`-QPp;)5o{p+hsW{Q$Uxxdl*DX1R$z*NtR<65kG}`SrtSk#=*r=VZv?z5EcA ze($y~-pF_|BTF+yJi@0{8G=kM?{+d4U~Vq>uaH+P&zn6+y8!40pC{)#6oYgWJY$$D zu(|>iec+B@Q7567m_oVf$%A<uJXI&o6#(#fv$p^h@6sAoW$l7y_eXUcq&OC12PH4^ zwdd}Cv8C<_$aapGrV=WntZ4gv(Is$yPMkRVa>&r@rA2MPax>qwfQ8}M=nAattW`<q z)004yrOGG2z(bGKOpP~-RntKXU~l4u)3hL#u8q(l$tY9leZs0%G`SgC*IS0&mu`@$ zq-{IS!uGQ-jDs*>1HqnhwjNFT6;j<DQU;%YhapUb*bM<EQTCz*Ew|$g;h#I~CNnCM zFXoL<n9;*tiafr5S&lW@s($idxr^6x0d!Zv;iOgwKS=kwnS-fYSMi$m!s^I34rHT= zuIDnmyIvC7GPPIc;0${_Ejz9%XpCM6eUZ8CWOXoz<py9BM%BYxau_gNokgr@{U^YG ztcsT4T%23ATsNMZl1)tNp&?NSiYi^gbgm^yWEeoFyPN@)j}!UgL&0cAxa21l&3-=k z9Z%@>J2<MxX8rlaOLp94suaG*De%HloE6n~QLS0mkYtWZmXCKb$Y0J?Y8Ju|WRr&X zvF;u0cSu<ak&QoV?^cVv>;IAqP|8?;+&+f(*yGD7VlQ6k0N@PMKG%%eE~(GfyFl1N zNB(bCea&q$^EiSZxx-_|U|Hu5mUVT;4bjC3`IL*$GeU?l;5FzTE8w@SB5-^zouEz6 ze6L3mq?T_-HfO1}@PlGc>O9j(WQ$CshAT5Gcc?iN&}nQ%dOR114121Oyeg)Dlqd2y zfXt8Y9s|Bs<3S?qI7v(@E1(xc3;BBN7?hwfxg;NN1vRpMb`j98KLB<g*!TB=FoHkZ z{(VGWUC-RIUNFt^RBL~zoHGk;2mz@;1)<r2&9U;AC@k|ZZ5g0&xc6!|m-u=K^dbju zfQ^f1%~o~;s%U;FHJK4DaoL)GSvm!&Gsb%@iyjS(VZlci?Ia=jk@tPf_YDcaBZ_vx z_e(oRkY~|}6~6wLC23LR<rx5Dr{5eYi3zI>yIZJ>l*Sn<;5pY-vObTGKDbMNU2@B# zhR*N<$q^EABN1~`Y2JU)K?wE?`7xL=9}icT@Yb5k$usdviAn$Awf=5@mcTS@khY{> zy#uMII<ga<D&av7ony@}E9*x?9w4mTBZ6fwi0Pl)d$D|F5tt6VGebL_{j0e+@CH5y z-Zr*9am0_hcsdeFI+8j}+}ZT5)_eTI@UuaR+o9D&fHs@b0V@N3vQKhsW!-wA<>Te% zb6k4dZHE~`>vm4#Ck{Xzy-jpiIkry`@9kho67(F=L0Mp7x(31j18(1W4VTgMB@>ru zgefSulVvH^9+#npDJYjtr5q!-w1g?`0hgnRDZsa3hbch<m!ym-E4R&wDcAy+rjIGV zw`7eeLIRhkk}1EpWsoUC0+*<jDM`2Rk}0?Xm#LU3D7Vm+DcJ&-*qbRTmn8WTmbYn{ zDQ^Oo2A?Uvx0jqLZvvMzqA4hroGF*L#h)o}0+#}&DJYj<wJDvq`JyQa1DDRJDJZup zrYWNXmz%9A$G4QKDF_3XYOyKBw_&a+2?LinwJFB8FtRBK1D6K5DJZvKwJD|pm!rHX z!?($~DcS;;K)@-(w`RR5+5(r|!zntKK)ET2w*$c`+5(q)$0<6O`5gfkw=KjeO#_z~ z%PGRQJjf~A0++PTDJqvRxha^p*~=-~0+&(JDJi$y&M9^Smz&lpDVIRYDG|5%9RXnj zmn7OLDz|#lDIo-x3f(CTmrTGZ9k;~RDPjYcanTegw@%tAyaE9=mkZq~j|DL`GBh!l zpWP|d1u-=;G%>e%-YF#kmmuFMWtTVMDH;Jbk=q^vH8wMsv6T`Rmx|#jKz}(PFG)lo zTRb*lWi&BkV>dJ~F=aS8H!(C}GGSt5Gh$<5FgP_aFfu+oHaKE8Wiv83IAk?uV>U7~ zH8(k9VmCK1Gd4CgGG=9BK3yO_J_>Vma%Ev{3V59Dlut+%Q544Sy)(XlsZj|9*?WZu z{lg3sBT$KIkz~9m#Da1WRDY02B2=`9D8fZh(k}H$VzsG-n~I2tHm$-%5#lBZYE==5 z5CuW={fwEnuuUx<4`voW4&Qup&bjB_JI?5F*4*D?oH2G^z^Z&YpiNGo91`!o4d{kf zDz4Zey04;t5zl_{@J)Ty`&04KU*gjXVzPkehiE>D%RZ8!AH7RoWq%$hUeb=z3>)zr zA>INvh*ej}{}6v2$}I6-aZOWH(QgpFQS$VOeUEX@sp6M;bgJj+e-$03K2U3uxE|fX zlLG<$!6%9nTk$MR;CVO!JA9AoUDW*^O(vZr&k6B-o0z$b(jl%sgWupkraafL(#cuH z?_c7SZbs(NZ{U9v`hQKe^4s(~l-*)2yXjiO346;=^X;2()n;Rs-k7{?51l4K=AKqo zHyXY5KZmiunVu^qS?^@D(#pyxe`XhYo}44-r_gg^vnFXfYw&clFSW!w=@X|zPcaS4 zX>oUmUqjZCKBzp2<8(3`?S6vulieoP4H6&VgxnI>ej_G-PJbuIt{X#V-*eBz`c5W! zi9LeZ7ceD%Zh*I}v3iCRLeAC#>tdHXxIryFVjJBihxGQ`5LLJ%ZacGe?CApSU&t-+ z8Y22r@D<8bky1>i;T0B-|0rWc3irsrhR$8^Rs{ct>H4FJgQ>@i`R}y1OW#Ax@}(Uw neGf6qo$+5N<_~|JpYhW75VJh_8^Kj@0JloyDP;|pt??-r$y=j8 -- GitLab