From a331fefa1023cff3c934729522b2db5ea317981b Mon Sep 17 00:00:00 2001
From: Danilo Ferreira de Lima <danilo.enoque.ferreira.de.lima@xfel.de>
Date: Thu, 9 Dec 2021 18:46:10 +0100
Subject: [PATCH] Added more on BNNs.

---
 Supervised regression.ipynb | 3080 +++++++++++++++++++++++------------
 1 file changed, 2009 insertions(+), 1071 deletions(-)

diff --git a/Supervised regression.ipynb b/Supervised regression.ipynb
index b844353..1793988 100644
--- a/Supervised regression.ipynb	
+++ b/Supervised regression.ipynb	
@@ -14,7 +14,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 23,
    "id": "d0681795",
    "metadata": {},
    "outputs": [
@@ -27,81 +27,81 @@
       "Requirement already satisfied: pandas in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.3.0)\n",
       "Requirement already satisfied: numpy in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.19.2)\n",
       "Requirement already satisfied: matplotlib in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (3.4.2)\n",
-      "Collecting ipympl\n",
-      "  Downloading ipympl-0.8.2-py2.py3-none-any.whl (84 kB)\n",
-      "\u001b[K     |████████████████████████████████| 84 kB 115 kB/s eta 0:00:011\n",
-      "\u001b[?25hRequirement already satisfied: pillow>=5.3.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from torchvision) (8.3.1)\n",
+      "Requirement already satisfied: ipympl in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (0.8.2)\n",
+      "Collecting torchbnn\n",
+      "  Downloading torchbnn-1.2-py3-none-any.whl (12 kB)\n",
+      "Requirement already satisfied: pillow>=5.3.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from torchvision) (8.3.1)\n",
       "Requirement already satisfied: typing_extensions in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from torch) (3.10.0.0)\n",
       "Requirement already satisfied: python-dateutil>=2.7.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2.8.2)\n",
       "Requirement already satisfied: pytz>=2017.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2021.1)\n",
       "Requirement already satisfied: six>=1.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n",
+      "Requirement already satisfied: pyparsing>=2.2.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (2.4.7)\n",
       "Requirement already satisfied: kiwisolver>=1.0.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (1.3.1)\n",
       "Requirement already satisfied: cycler>=0.10 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (0.10.0)\n",
-      "Requirement already satisfied: pyparsing>=2.2.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (2.4.7)\n",
-      "Requirement already satisfied: ipykernel>=4.7 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipympl) (5.5.5)\n",
       "Requirement already satisfied: ipywidgets>=7.6.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipympl) (7.6.3)\n",
-      "Requirement already satisfied: traitlets>=4.1.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (5.0.5)\n",
-      "Requirement already satisfied: jupyter-client in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (6.1.12)\n",
+      "Requirement already satisfied: ipykernel>=4.7 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipympl) (5.5.5)\n",
       "Requirement already satisfied: tornado>=4.2 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (6.1)\n",
+      "Requirement already satisfied: jupyter-client in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (6.1.12)\n",
       "Requirement already satisfied: ipython>=5.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (7.25.0)\n",
-      "Requirement already satisfied: matplotlib-inline in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.1.2)\n",
-      "Requirement already satisfied: pygments in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (2.9.0)\n",
-      "Requirement already satisfied: jedi>=0.16 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.18.0)\n",
-      "Requirement already satisfied: pickleshare in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.7.5)\n",
+      "Requirement already satisfied: traitlets>=4.1.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (5.0.5)\n",
       "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (3.0.19)\n",
-      "Requirement already satisfied: backcall in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.2.0)\n",
+      "Requirement already satisfied: pickleshare in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.7.5)\n",
       "Requirement already satisfied: decorator in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (5.0.9)\n",
-      "Requirement already satisfied: pexpect>4.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (4.8.0)\n",
+      "Requirement already satisfied: jedi>=0.16 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.18.0)\n",
+      "Requirement already satisfied: pygments in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (2.9.0)\n",
+      "Requirement already satisfied: backcall in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.2.0)\n",
       "Requirement already satisfied: setuptools>=18.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (49.6.0.post20210108)\n",
-      "Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipywidgets>=7.6.0->ipympl) (1.0.0)\n",
+      "Requirement already satisfied: matplotlib-inline in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.1.2)\n",
+      "Requirement already satisfied: pexpect>4.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (4.8.0)\n",
       "Requirement already satisfied: widgetsnbextension~=3.5.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipywidgets>=7.6.0->ipympl) (3.5.1)\n",
+      "Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipywidgets>=7.6.0->ipympl) (1.0.0)\n",
       "Requirement already satisfied: nbformat>=4.2.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipywidgets>=7.6.0->ipympl) (5.1.3)\n",
       "Requirement already satisfied: parso<0.9.0,>=0.8.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jedi>=0.16->ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.8.2)\n",
+      "Requirement already satisfied: jupyter-core in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (4.7.1)\n",
       "Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (3.2.0)\n",
       "Requirement already satisfied: ipython-genutils in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (0.2.0)\n",
-      "Requirement already satisfied: jupyter-core in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (4.7.1)\n",
       "Requirement already satisfied: pyrsistent>=0.14.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (0.17.3)\n",
       "Requirement already satisfied: importlib-metadata in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (1.7.0)\n",
       "Requirement already satisfied: attrs>=17.4.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (21.2.0)\n",
       "Requirement already satisfied: ptyprocess>=0.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pexpect>4.3->ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.7.0)\n",
       "Requirement already satisfied: wcwidth in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.2.5)\n",
       "Requirement already satisfied: notebook>=4.4.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (6.4.0)\n",
-      "Requirement already satisfied: terminado>=0.8.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.10.1)\n",
-      "Requirement already satisfied: prometheus-client in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.11.0)\n",
       "Requirement already satisfied: nbconvert in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (6.1.0)\n",
+      "Requirement already satisfied: prometheus-client in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.11.0)\n",
+      "Requirement already satisfied: jinja2 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (3.0.1)\n",
       "Requirement already satisfied: Send2Trash>=1.5.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.7.1)\n",
       "Requirement already satisfied: argon2-cffi in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (20.1.0)\n",
       "Requirement already satisfied: pyzmq>=17 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (22.1.0)\n",
-      "Requirement already satisfied: jinja2 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (3.0.1)\n",
+      "Requirement already satisfied: terminado>=0.8.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.10.1)\n",
       "Requirement already satisfied: cffi>=1.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.14.6)\n",
       "Requirement already satisfied: pycparser in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from cffi>=1.0.0->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (2.20)\n",
-      "Requirement already satisfied: zipp>=0.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from importlib-metadata->jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (3.5.0)\n"
+      "Requirement already satisfied: zipp>=0.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from importlib-metadata->jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (3.5.0)\n",
+      "Requirement already satisfied: MarkupSafe>=2.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jinja2->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (2.0.1)\n"
      ]
     },
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Requirement already satisfied: MarkupSafe>=2.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jinja2->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (2.0.1)\n",
       "Requirement already satisfied: entrypoints>=0.2.2 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.3)\n",
       "Requirement already satisfied: pandocfilters>=1.4.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.4.2)\n",
-      "Requirement already satisfied: testpath in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.0)\n",
-      "Requirement already satisfied: defusedxml in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.7.1)\n",
-      "Requirement already satisfied: nbclient<0.6.0,>=0.5.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.3)\n",
       "Requirement already satisfied: mistune<2,>=0.8.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.8.4)\n",
       "Requirement already satisfied: jupyterlab-pygments in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.1.2)\n",
       "Requirement already satisfied: bleach in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (3.3.1)\n",
-      "Requirement already satisfied: nest-asyncio in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbclient<0.6.0,>=0.5.0->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.5.1)\n",
+      "Requirement already satisfied: defusedxml in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.7.1)\n",
+      "Requirement already satisfied: nbclient<0.6.0,>=0.5.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.3)\n",
+      "Requirement already satisfied: testpath in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.0)\n",
       "Requirement already satisfied: async-generator in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbclient<0.6.0,>=0.5.0->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.10)\n",
-      "Requirement already satisfied: webencodings in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.1)\n",
+      "Requirement already satisfied: nest-asyncio in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbclient<0.6.0,>=0.5.0->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.5.1)\n",
       "Requirement already satisfied: packaging in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (21.0)\n",
-      "Installing collected packages: ipympl\n",
-      "Successfully installed ipympl-0.8.2\n"
+      "Requirement already satisfied: webencodings in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.1)\n",
+      "Installing collected packages: torchbnn\n",
+      "Successfully installed torchbnn-1.2\n"
      ]
     }
    ],
    "source": [
-    "!pip install torchvision torch pandas numpy matplotlib ipympl"
+    "!pip install torchvision torch pandas numpy matplotlib ipympl torchbnn"
    ]
   },
   {
@@ -120,6 +120,8 @@
     "import torch.nn as nn\n",
     "import torch.nn.functional as F\n",
     "\n",
+    "import torchbnn as bnn\n",
+    "\n",
     "# import torchvision module to handle image manipulation\n",
     "import torchvision\n",
     "import torchvision.transforms as transforms\n",
@@ -132,24 +134,34 @@
   },
   {
    "cell_type": "markdown",
-   "id": "3b0c2582",
+   "id": "bb1286f0",
    "metadata": {},
    "source": [
     "We start by generating some fake dataset, which is simple enough that we can visualize the results easily. For this reason, the dataset will contain only two independent variables and a third feature variable which we want to determine in test data.\n",
     "\n",
-    "The simulated example data will be $f(x) = 3x^2 + 10\\epsilon$, where $\\epsilon \\sim \\mathcal{N}(\\mu=0, \\sigma=1)$."
+    "The simulated example data will be $f(x) = (3 + \\kappa) x^2 + \\epsilon$, where $\\epsilon \\sim \\mathcal{N}(\\mu=0, \\sigma=10)$ and $\\kappa \\sim \\mathcal{N}(\\mu=0, \\sigma=0.03)$.\n",
+    "\n",
+    "In this case we do know the true model, so it is interesting to take some time to pinpoint the role of $\\kappa$ and $\\epsilon$. These variables add fluctuation to the results. $\\epsilon$ adds Gaussian noise in a way that is completely independent from $x$ and cannot be traced down to a particular functional dependence. $\\kappa$ changes a specific parameter of the model, in this case the coefficient 3, by around 1%.\n",
+    "\n",
+    "When fitting a model, the nomenclature *epistemic uncertainty* is often used to refer to uncertainties coming to effects related to different functional models. That is, one can imagine that there are different functions that may fit the data due to the effect of $\\kappa$, such as: $g(x) = 3x^2$ or $h(x) = 2.95x^2$.\n",
+    "\n",
+    "The nomenclature *aleatoric uncertainty* is used to refer to whichever uncertainty cannot be tracked down to a given model dependence. In this example, different constant factors could be added to the model $g$ to account for the fluctuations in $\\epsilon$.\n",
+    "\n",
+    "We will see these two effects later on, when we discuss Bayesian Neural Networks, so that we can predict the effect of those uncertainties."
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 2,
-   "id": "4db66b5f",
+   "id": "5d457cd8",
    "metadata": {},
    "outputs": [],
    "source": [
     "def generate_data(N: int) -> np.ndarray:\n",
     "    x = 2*np.random.randn(N, 1)\n",
-    "    z = 3*x**2 + 10*np.random.randn(N, 1)\n",
+    "    epsilon = 10*np.random.randn(N, 1)\n",
+    "    kappa = 0.03*np.random.randn(N, 1)\n",
+    "    z = (3 + kappa)*x**2 + epsilon\n",
     "    return np.concatenate((x, z), axis=1).astype(np.float32)\n",
     "\n",
     "train_data = generate_data(N=1000)"
@@ -210,7 +222,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "{'data': array([-1.2814782], dtype=float32), 'target': array([0.560014], dtype=float32)}\n"
+      "{'data': array([-0.5583114], dtype=float32), 'target': array([-11.577045], dtype=float32)}\n"
      ]
     }
    ],
@@ -1218,7 +1230,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"640\">"
+       "<img src=\"\" width=\"640\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -1272,7 +1284,7 @@
     "        \"\"\"\n",
     "        super().__init__()\n",
     "\n",
-    "        hidden_layer = 10\n",
+    "        hidden_layer = 100\n",
     "        self.model = nn.Sequential(\n",
     "                                   nn.Linear(input_dimension, hidden_layer),\n",
     "                                   nn.ReLU(),\n",
@@ -1299,13 +1311,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 8,
    "id": "988e1979",
    "metadata": {},
    "outputs": [],
    "source": [
     "network = Network()\n",
-    "B = 100\n",
+    "B = 10\n",
     "loader = torch.utils.data.DataLoader(my_dataset, batch_size=B)\n",
     "optimizer = torch.optim.Adam(network.parameters(), lr=1e-3)"
    ]
@@ -1320,7 +1332,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 9,
    "id": "d15d655d",
    "metadata": {},
    "outputs": [
@@ -1328,1035 +1340,111 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "Epoch 0/1000: average loss 516.29735\n",
-      "Epoch 1/1000: average loss 512.18335\n",
-      "Epoch 2/1000: average loss 507.95869\n",
-      "Epoch 3/1000: average loss 503.62383\n",
-      "Epoch 4/1000: average loss 499.17747\n",
-      "Epoch 5/1000: average loss 494.62193\n",
-      "Epoch 6/1000: average loss 489.95475\n",
-      "Epoch 7/1000: average loss 485.17705\n",
-      "Epoch 8/1000: average loss 480.29152\n",
-      "Epoch 9/1000: average loss 475.29948\n",
-      "Epoch 10/1000: average loss 470.21111\n",
-      "Epoch 11/1000: average loss 465.03427\n",
-      "Epoch 12/1000: average loss 459.77571\n",
-      "Epoch 13/1000: average loss 454.43815\n",
-      "Epoch 14/1000: average loss 449.03186\n",
-      "Epoch 15/1000: average loss 443.56538\n",
-      "Epoch 16/1000: average loss 438.04604\n",
-      "Epoch 17/1000: average loss 432.48139\n",
-      "Epoch 18/1000: average loss 426.87895\n",
-      "Epoch 19/1000: average loss 421.24786\n",
-      "Epoch 20/1000: average loss 415.59554\n",
-      "Epoch 21/1000: average loss 409.93154\n",
-      "Epoch 22/1000: average loss 404.26357\n",
-      "Epoch 23/1000: average loss 398.60003\n",
-      "Epoch 24/1000: average loss 392.94809\n",
-      "Epoch 25/1000: average loss 387.31665\n",
-      "Epoch 26/1000: average loss 381.71419\n",
-      "Epoch 27/1000: average loss 376.14790\n",
-      "Epoch 28/1000: average loss 370.62468\n",
-      "Epoch 29/1000: average loss 365.15330\n",
-      "Epoch 30/1000: average loss 359.74091\n",
-      "Epoch 31/1000: average loss 354.39241\n",
-      "Epoch 32/1000: average loss 349.11393\n",
-      "Epoch 33/1000: average loss 343.91179\n",
-      "Epoch 34/1000: average loss 338.79240\n",
-      "Epoch 35/1000: average loss 333.76137\n",
-      "Epoch 36/1000: average loss 328.82259\n",
-      "Epoch 37/1000: average loss 323.98134\n",
-      "Epoch 38/1000: average loss 319.24119\n",
-      "Epoch 39/1000: average loss 314.60560\n",
-      "Epoch 40/1000: average loss 310.07807\n",
-      "Epoch 41/1000: average loss 305.66202\n",
-      "Epoch 42/1000: average loss 301.36003\n",
-      "Epoch 43/1000: average loss 297.17309\n",
-      "Epoch 44/1000: average loss 293.10238\n",
-      "Epoch 45/1000: average loss 289.14837\n",
-      "Epoch 46/1000: average loss 285.31107\n",
-      "Epoch 47/1000: average loss 281.59181\n",
-      "Epoch 48/1000: average loss 277.99125\n",
-      "Epoch 49/1000: average loss 274.50813\n",
-      "Epoch 50/1000: average loss 271.14275\n",
-      "Epoch 51/1000: average loss 267.89285\n",
-      "Epoch 52/1000: average loss 264.75684\n",
-      "Epoch 53/1000: average loss 261.73257\n",
-      "Epoch 54/1000: average loss 258.81750\n",
-      "Epoch 55/1000: average loss 256.01109\n",
-      "Epoch 56/1000: average loss 253.30935\n",
-      "Epoch 57/1000: average loss 250.70945\n",
-      "Epoch 58/1000: average loss 248.20815\n",
-      "Epoch 59/1000: average loss 245.80230\n",
-      "Epoch 60/1000: average loss 243.48779\n",
-      "Epoch 61/1000: average loss 241.26119\n",
-      "Epoch 62/1000: average loss 239.11858\n",
-      "Epoch 63/1000: average loss 237.05718\n",
-      "Epoch 64/1000: average loss 235.07329\n",
-      "Epoch 65/1000: average loss 233.16484\n",
-      "Epoch 66/1000: average loss 231.32740\n",
-      "Epoch 67/1000: average loss 229.55724\n",
-      "Epoch 68/1000: average loss 227.85047\n",
-      "Epoch 69/1000: average loss 226.20283\n",
-      "Epoch 70/1000: average loss 224.61242\n",
-      "Epoch 71/1000: average loss 223.07738\n",
-      "Epoch 72/1000: average loss 221.59367\n",
-      "Epoch 73/1000: average loss 220.15863\n",
-      "Epoch 74/1000: average loss 218.76994\n",
-      "Epoch 75/1000: average loss 217.42427\n",
-      "Epoch 76/1000: average loss 216.11972\n",
-      "Epoch 77/1000: average loss 214.85442\n",
-      "Epoch 78/1000: average loss 213.62558\n",
-      "Epoch 79/1000: average loss 212.43136\n",
-      "Epoch 80/1000: average loss 211.27035\n",
-      "Epoch 81/1000: average loss 210.14213\n",
-      "Epoch 82/1000: average loss 209.04453\n",
-      "Epoch 83/1000: average loss 207.97776\n",
-      "Epoch 84/1000: average loss 206.93904\n",
-      "Epoch 85/1000: average loss 205.92708\n",
-      "Epoch 86/1000: average loss 204.94052\n",
-      "Epoch 87/1000: average loss 203.97957\n",
-      "Epoch 88/1000: average loss 203.04195\n",
-      "Epoch 89/1000: average loss 202.12578\n",
-      "Epoch 90/1000: average loss 201.23054\n",
-      "Epoch 91/1000: average loss 200.35473\n",
-      "Epoch 92/1000: average loss 199.49778\n",
-      "Epoch 93/1000: average loss 198.65660\n",
-      "Epoch 94/1000: average loss 197.83049\n",
-      "Epoch 95/1000: average loss 197.01979\n",
-      "Epoch 96/1000: average loss 196.22490\n",
-      "Epoch 97/1000: average loss 195.44649\n",
-      "Epoch 98/1000: average loss 194.68315\n",
-      "Epoch 99/1000: average loss 193.93409\n",
-      "Epoch 100/1000: average loss 193.19773\n",
-      "Epoch 101/1000: average loss 192.47478\n",
-      "Epoch 102/1000: average loss 191.76571\n",
-      "Epoch 103/1000: average loss 191.07033\n",
-      "Epoch 104/1000: average loss 190.38703\n",
-      "Epoch 105/1000: average loss 189.71561\n",
-      "Epoch 106/1000: average loss 189.05642\n",
-      "Epoch 107/1000: average loss 188.40782\n",
-      "Epoch 108/1000: average loss 187.77160\n",
-      "Epoch 109/1000: average loss 187.14585\n",
-      "Epoch 110/1000: average loss 186.52918\n",
-      "Epoch 111/1000: average loss 185.92215\n",
-      "Epoch 112/1000: average loss 185.32542\n",
-      "Epoch 113/1000: average loss 184.73697\n",
-      "Epoch 114/1000: average loss 184.15590\n",
-      "Epoch 115/1000: average loss 183.58204\n",
-      "Epoch 116/1000: average loss 183.01379\n",
-      "Epoch 117/1000: average loss 182.45193\n",
-      "Epoch 118/1000: average loss 181.89669\n",
-      "Epoch 119/1000: average loss 181.34791\n",
-      "Epoch 120/1000: average loss 180.80578\n",
-      "Epoch 121/1000: average loss 180.26933\n",
-      "Epoch 122/1000: average loss 179.73864\n",
-      "Epoch 123/1000: average loss 179.21464\n",
-      "Epoch 124/1000: average loss 178.69662\n",
-      "Epoch 125/1000: average loss 178.18415\n",
-      "Epoch 126/1000: average loss 177.67794\n",
-      "Epoch 127/1000: average loss 177.17704\n",
-      "Epoch 128/1000: average loss 176.68044\n",
-      "Epoch 129/1000: average loss 176.18963\n",
-      "Epoch 130/1000: average loss 175.70465\n",
-      "Epoch 131/1000: average loss 175.22391\n",
-      "Epoch 132/1000: average loss 174.74675\n",
-      "Epoch 133/1000: average loss 174.27373\n",
-      "Epoch 134/1000: average loss 173.80499\n",
-      "Epoch 135/1000: average loss 173.34032\n",
-      "Epoch 136/1000: average loss 172.87927\n",
-      "Epoch 137/1000: average loss 172.42313\n",
-      "Epoch 138/1000: average loss 171.97237\n",
-      "Epoch 139/1000: average loss 171.52639\n",
-      "Epoch 140/1000: average loss 171.08524\n",
-      "Epoch 141/1000: average loss 170.64875\n",
-      "Epoch 142/1000: average loss 170.21636\n",
-      "Epoch 143/1000: average loss 169.78678\n",
-      "Epoch 144/1000: average loss 169.35938\n",
-      "Epoch 145/1000: average loss 168.93464\n",
-      "Epoch 146/1000: average loss 168.51286\n",
-      "Epoch 147/1000: average loss 168.09441\n",
-      "Epoch 148/1000: average loss 167.67917\n",
-      "Epoch 149/1000: average loss 167.26674\n",
-      "Epoch 150/1000: average loss 166.85826\n",
-      "Epoch 151/1000: average loss 166.45358\n",
-      "Epoch 152/1000: average loss 166.05285\n",
-      "Epoch 153/1000: average loss 165.65584\n",
-      "Epoch 154/1000: average loss 165.26202\n",
-      "Epoch 155/1000: average loss 164.87139\n",
-      "Epoch 156/1000: average loss 164.48415\n",
-      "Epoch 157/1000: average loss 164.09959\n",
-      "Epoch 158/1000: average loss 163.71877\n",
-      "Epoch 159/1000: average loss 163.34192\n",
-      "Epoch 160/1000: average loss 162.96854\n",
-      "Epoch 161/1000: average loss 162.59787\n",
-      "Epoch 162/1000: average loss 162.22913\n",
-      "Epoch 163/1000: average loss 161.86229\n",
-      "Epoch 164/1000: average loss 161.49802\n",
-      "Epoch 165/1000: average loss 161.13637\n",
-      "Epoch 166/1000: average loss 160.77721\n",
-      "Epoch 167/1000: average loss 160.42047\n",
-      "Epoch 168/1000: average loss 160.06694\n",
-      "Epoch 169/1000: average loss 159.71556\n",
-      "Epoch 170/1000: average loss 159.36664\n",
-      "Epoch 171/1000: average loss 159.02040\n",
-      "Epoch 172/1000: average loss 158.67656\n",
-      "Epoch 173/1000: average loss 158.33447\n",
-      "Epoch 174/1000: average loss 157.99440\n",
-      "Epoch 175/1000: average loss 157.65621\n",
-      "Epoch 176/1000: average loss 157.31971\n",
-      "Epoch 177/1000: average loss 156.98518\n",
-      "Epoch 178/1000: average loss 156.65326\n",
-      "Epoch 179/1000: average loss 156.32300\n",
-      "Epoch 180/1000: average loss 155.99482\n",
-      "Epoch 181/1000: average loss 155.66862\n",
-      "Epoch 182/1000: average loss 155.34485\n",
-      "Epoch 183/1000: average loss 155.02203\n",
-      "Epoch 184/1000: average loss 154.69981\n",
-      "Epoch 185/1000: average loss 154.38012\n",
-      "Epoch 186/1000: average loss 154.06311\n",
-      "Epoch 187/1000: average loss 153.74890\n",
-      "Epoch 188/1000: average loss 153.43663\n",
-      "Epoch 189/1000: average loss 153.12656\n",
-      "Epoch 190/1000: average loss 152.81933\n",
-      "Epoch 191/1000: average loss 152.51415\n",
-      "Epoch 192/1000: average loss 152.21158\n",
-      "Epoch 193/1000: average loss 151.91125\n",
-      "Epoch 194/1000: average loss 151.61366\n",
-      "Epoch 195/1000: average loss 151.31776\n",
-      "Epoch 196/1000: average loss 151.02372\n",
-      "Epoch 197/1000: average loss 150.73124\n",
-      "Epoch 198/1000: average loss 150.44091\n",
-      "Epoch 199/1000: average loss 150.15181\n",
-      "Epoch 200/1000: average loss 149.86449\n",
-      "Epoch 201/1000: average loss 149.57881\n",
-      "Epoch 202/1000: average loss 149.29530\n",
-      "Epoch 203/1000: average loss 149.01313\n",
-      "Epoch 204/1000: average loss 148.73234\n",
-      "Epoch 205/1000: average loss 148.45444\n",
-      "Epoch 206/1000: average loss 148.17901\n",
-      "Epoch 207/1000: average loss 147.90587\n",
-      "Epoch 208/1000: average loss 147.63529\n",
-      "Epoch 209/1000: average loss 147.36677\n",
-      "Epoch 210/1000: average loss 147.09995\n",
-      "Epoch 211/1000: average loss 146.83378\n",
-      "Epoch 212/1000: average loss 146.56793\n",
-      "Epoch 213/1000: average loss 146.30375\n",
-      "Epoch 214/1000: average loss 146.04152\n",
-      "Epoch 215/1000: average loss 145.78189\n",
-      "Epoch 216/1000: average loss 145.52441\n",
-      "Epoch 217/1000: average loss 145.26847\n",
-      "Epoch 218/1000: average loss 145.01473\n",
-      "Epoch 219/1000: average loss 144.76271\n",
-      "Epoch 220/1000: average loss 144.51205\n",
-      "Epoch 221/1000: average loss 144.26223\n",
-      "Epoch 222/1000: average loss 144.01265\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 223/1000: average loss 143.76459\n",
-      "Epoch 224/1000: average loss 143.51769\n",
-      "Epoch 225/1000: average loss 143.27267\n",
-      "Epoch 226/1000: average loss 143.02905\n",
-      "Epoch 227/1000: average loss 142.78597\n",
-      "Epoch 228/1000: average loss 142.54393\n",
-      "Epoch 229/1000: average loss 142.30420\n",
-      "Epoch 230/1000: average loss 142.06679\n",
-      "Epoch 231/1000: average loss 141.83147\n",
-      "Epoch 232/1000: average loss 141.59817\n",
-      "Epoch 233/1000: average loss 141.36640\n",
-      "Epoch 234/1000: average loss 141.13630\n",
-      "Epoch 235/1000: average loss 140.90765\n",
-      "Epoch 236/1000: average loss 140.68027\n",
-      "Epoch 237/1000: average loss 140.45373\n",
-      "Epoch 238/1000: average loss 140.22856\n",
-      "Epoch 239/1000: average loss 140.00473\n",
-      "Epoch 240/1000: average loss 139.78200\n",
-      "Epoch 241/1000: average loss 139.56070\n",
-      "Epoch 242/1000: average loss 139.34060\n",
-      "Epoch 243/1000: average loss 139.12181\n",
-      "Epoch 244/1000: average loss 138.90476\n",
-      "Epoch 245/1000: average loss 138.68925\n",
-      "Epoch 246/1000: average loss 138.47556\n",
-      "Epoch 247/1000: average loss 138.26453\n",
-      "Epoch 248/1000: average loss 138.05592\n",
-      "Epoch 249/1000: average loss 137.84924\n",
-      "Epoch 250/1000: average loss 137.64476\n",
-      "Epoch 251/1000: average loss 137.44157\n",
-      "Epoch 252/1000: average loss 137.23886\n",
-      "Epoch 253/1000: average loss 137.03678\n",
-      "Epoch 254/1000: average loss 136.83581\n",
-      "Epoch 255/1000: average loss 136.63565\n",
-      "Epoch 256/1000: average loss 136.43700\n",
-      "Epoch 257/1000: average loss 136.23967\n",
-      "Epoch 258/1000: average loss 136.04350\n",
-      "Epoch 259/1000: average loss 135.84843\n",
-      "Epoch 260/1000: average loss 135.65483\n",
-      "Epoch 261/1000: average loss 135.46250\n",
-      "Epoch 262/1000: average loss 135.27147\n",
-      "Epoch 263/1000: average loss 135.08145\n",
-      "Epoch 264/1000: average loss 134.89242\n",
-      "Epoch 265/1000: average loss 134.70467\n",
-      "Epoch 266/1000: average loss 134.51837\n",
-      "Epoch 267/1000: average loss 134.33377\n",
-      "Epoch 268/1000: average loss 134.15051\n",
-      "Epoch 269/1000: average loss 133.96843\n",
-      "Epoch 270/1000: average loss 133.78770\n",
-      "Epoch 271/1000: average loss 133.60893\n",
-      "Epoch 272/1000: average loss 133.43130\n",
-      "Epoch 273/1000: average loss 133.25406\n",
-      "Epoch 274/1000: average loss 133.07737\n",
-      "Epoch 275/1000: average loss 132.90209\n",
-      "Epoch 276/1000: average loss 132.72818\n",
-      "Epoch 277/1000: average loss 132.55555\n",
-      "Epoch 278/1000: average loss 132.38411\n",
-      "Epoch 279/1000: average loss 132.21383\n",
-      "Epoch 280/1000: average loss 132.04562\n",
-      "Epoch 281/1000: average loss 131.87905\n",
-      "Epoch 282/1000: average loss 131.71417\n",
-      "Epoch 283/1000: average loss 131.55036\n",
-      "Epoch 284/1000: average loss 131.38779\n",
-      "Epoch 285/1000: average loss 131.22650\n",
-      "Epoch 286/1000: average loss 131.06620\n",
-      "Epoch 287/1000: average loss 130.90711\n",
-      "Epoch 288/1000: average loss 130.74956\n",
-      "Epoch 289/1000: average loss 130.59320\n",
-      "Epoch 290/1000: average loss 130.43795\n",
-      "Epoch 291/1000: average loss 130.28476\n",
-      "Epoch 292/1000: average loss 130.13320\n",
-      "Epoch 293/1000: average loss 129.98301\n",
-      "Epoch 294/1000: average loss 129.83398\n",
-      "Epoch 295/1000: average loss 129.68616\n",
-      "Epoch 296/1000: average loss 129.53930\n",
-      "Epoch 297/1000: average loss 129.39347\n",
-      "Epoch 298/1000: average loss 129.24838\n",
-      "Epoch 299/1000: average loss 129.10507\n",
-      "Epoch 300/1000: average loss 128.96328\n",
-      "Epoch 301/1000: average loss 128.82231\n",
-      "Epoch 302/1000: average loss 128.68253\n",
-      "Epoch 303/1000: average loss 128.54392\n",
-      "Epoch 304/1000: average loss 128.40612\n",
-      "Epoch 305/1000: average loss 128.26945\n",
-      "Epoch 306/1000: average loss 128.13356\n",
-      "Epoch 307/1000: average loss 127.99844\n",
-      "Epoch 308/1000: average loss 127.86407\n",
-      "Epoch 309/1000: average loss 127.73090\n",
-      "Epoch 310/1000: average loss 127.59863\n",
-      "Epoch 311/1000: average loss 127.46723\n",
-      "Epoch 312/1000: average loss 127.33660\n",
-      "Epoch 313/1000: average loss 127.20748\n",
-      "Epoch 314/1000: average loss 127.08004\n",
-      "Epoch 315/1000: average loss 126.95423\n",
-      "Epoch 316/1000: average loss 126.82981\n",
-      "Epoch 317/1000: average loss 126.70604\n",
-      "Epoch 318/1000: average loss 126.58333\n",
-      "Epoch 319/1000: average loss 126.46168\n",
-      "Epoch 320/1000: average loss 126.34027\n",
-      "Epoch 321/1000: average loss 126.21914\n",
-      "Epoch 322/1000: average loss 126.09876\n",
-      "Epoch 323/1000: average loss 125.97821\n",
-      "Epoch 324/1000: average loss 125.85784\n",
-      "Epoch 325/1000: average loss 125.73776\n",
-      "Epoch 326/1000: average loss 125.61864\n",
-      "Epoch 327/1000: average loss 125.50043\n",
-      "Epoch 328/1000: average loss 125.38274\n",
-      "Epoch 329/1000: average loss 125.26584\n",
-      "Epoch 330/1000: average loss 125.14977\n",
-      "Epoch 331/1000: average loss 125.03431\n",
-      "Epoch 332/1000: average loss 124.91970\n",
-      "Epoch 333/1000: average loss 124.80576\n",
-      "Epoch 334/1000: average loss 124.69270\n",
-      "Epoch 335/1000: average loss 124.58023\n",
-      "Epoch 336/1000: average loss 124.46903\n",
-      "Epoch 337/1000: average loss 124.35884\n",
-      "Epoch 338/1000: average loss 124.24922\n",
-      "Epoch 339/1000: average loss 124.13984\n",
-      "Epoch 340/1000: average loss 124.03224\n",
-      "Epoch 341/1000: average loss 123.92604\n",
-      "Epoch 342/1000: average loss 123.82059\n",
-      "Epoch 343/1000: average loss 123.71578\n",
-      "Epoch 344/1000: average loss 123.61176\n",
-      "Epoch 345/1000: average loss 123.50828\n",
-      "Epoch 346/1000: average loss 123.40537\n",
-      "Epoch 347/1000: average loss 123.30330\n",
-      "Epoch 348/1000: average loss 123.20179\n",
-      "Epoch 349/1000: average loss 123.10104\n",
-      "Epoch 350/1000: average loss 123.00071\n",
-      "Epoch 351/1000: average loss 122.90046\n",
-      "Epoch 352/1000: average loss 122.80079\n",
-      "Epoch 353/1000: average loss 122.70212\n",
-      "Epoch 354/1000: average loss 122.60451\n",
-      "Epoch 355/1000: average loss 122.50820\n",
-      "Epoch 356/1000: average loss 122.41368\n",
-      "Epoch 357/1000: average loss 122.31979\n",
-      "Epoch 358/1000: average loss 122.22659\n",
-      "Epoch 359/1000: average loss 122.13402\n",
-      "Epoch 360/1000: average loss 122.04161\n",
-      "Epoch 361/1000: average loss 121.94969\n",
-      "Epoch 362/1000: average loss 121.85844\n",
-      "Epoch 363/1000: average loss 121.76866\n",
-      "Epoch 364/1000: average loss 121.68049\n",
-      "Epoch 365/1000: average loss 121.59346\n",
-      "Epoch 366/1000: average loss 121.50698\n",
-      "Epoch 367/1000: average loss 121.42106\n",
-      "Epoch 368/1000: average loss 121.33642\n",
-      "Epoch 369/1000: average loss 121.25286\n",
-      "Epoch 370/1000: average loss 121.17086\n",
-      "Epoch 371/1000: average loss 121.09031\n",
-      "Epoch 372/1000: average loss 121.01071\n",
-      "Epoch 373/1000: average loss 120.93137\n",
-      "Epoch 374/1000: average loss 120.85273\n",
-      "Epoch 375/1000: average loss 120.77480\n",
-      "Epoch 376/1000: average loss 120.69798\n",
-      "Epoch 377/1000: average loss 120.62210\n",
-      "Epoch 378/1000: average loss 120.54664\n",
-      "Epoch 379/1000: average loss 120.47193\n",
-      "Epoch 380/1000: average loss 120.39811\n",
-      "Epoch 381/1000: average loss 120.32514\n",
-      "Epoch 382/1000: average loss 120.25264\n",
-      "Epoch 383/1000: average loss 120.18084\n",
-      "Epoch 384/1000: average loss 120.10992\n",
-      "Epoch 385/1000: average loss 120.03932\n",
-      "Epoch 386/1000: average loss 119.96916\n",
-      "Epoch 387/1000: average loss 119.89908\n",
-      "Epoch 388/1000: average loss 119.82950\n",
-      "Epoch 389/1000: average loss 119.76069\n",
-      "Epoch 390/1000: average loss 119.69174\n",
-      "Epoch 391/1000: average loss 119.62233\n",
-      "Epoch 392/1000: average loss 119.55332\n",
-      "Epoch 393/1000: average loss 119.48493\n",
-      "Epoch 394/1000: average loss 119.41731\n",
-      "Epoch 395/1000: average loss 119.35027\n",
-      "Epoch 396/1000: average loss 119.28415\n",
-      "Epoch 397/1000: average loss 119.21974\n",
-      "Epoch 398/1000: average loss 119.15626\n",
-      "Epoch 399/1000: average loss 119.09300\n",
-      "Epoch 400/1000: average loss 119.02933\n",
-      "Epoch 401/1000: average loss 118.96652\n",
-      "Epoch 402/1000: average loss 118.90455\n",
-      "Epoch 403/1000: average loss 118.84364\n",
-      "Epoch 404/1000: average loss 118.78402\n",
-      "Epoch 405/1000: average loss 118.72482\n",
-      "Epoch 406/1000: average loss 118.66576\n",
-      "Epoch 407/1000: average loss 118.60694\n",
-      "Epoch 408/1000: average loss 118.54848\n",
-      "Epoch 409/1000: average loss 118.49037\n",
-      "Epoch 410/1000: average loss 118.43236\n",
-      "Epoch 411/1000: average loss 118.37443\n",
-      "Epoch 412/1000: average loss 118.31662\n",
-      "Epoch 413/1000: average loss 118.25967\n",
-      "Epoch 414/1000: average loss 118.20371\n",
-      "Epoch 415/1000: average loss 118.14822\n",
-      "Epoch 416/1000: average loss 118.09298\n",
-      "Epoch 417/1000: average loss 118.03775\n",
-      "Epoch 418/1000: average loss 117.98241\n",
-      "Epoch 419/1000: average loss 117.92728\n",
-      "Epoch 420/1000: average loss 117.87241\n",
-      "Epoch 421/1000: average loss 117.81832\n",
-      "Epoch 422/1000: average loss 117.76526\n",
-      "Epoch 423/1000: average loss 117.71273\n",
-      "Epoch 424/1000: average loss 117.66048\n",
-      "Epoch 425/1000: average loss 117.60851\n",
-      "Epoch 426/1000: average loss 117.55787\n",
-      "Epoch 427/1000: average loss 117.50774\n",
-      "Epoch 428/1000: average loss 117.45816\n",
-      "Epoch 429/1000: average loss 117.40948\n",
-      "Epoch 430/1000: average loss 117.36112\n",
-      "Epoch 431/1000: average loss 117.31289\n",
-      "Epoch 432/1000: average loss 117.26460\n",
-      "Epoch 433/1000: average loss 117.21632\n",
-      "Epoch 434/1000: average loss 117.16817\n",
-      "Epoch 435/1000: average loss 117.11998\n",
-      "Epoch 436/1000: average loss 117.07218\n",
-      "Epoch 437/1000: average loss 117.02469\n",
-      "Epoch 438/1000: average loss 116.97748\n",
-      "Epoch 439/1000: average loss 116.93063\n",
-      "Epoch 440/1000: average loss 116.88414\n",
-      "Epoch 441/1000: average loss 116.83761\n",
-      "Epoch 442/1000: average loss 116.79120\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 443/1000: average loss 116.74533\n",
-      "Epoch 444/1000: average loss 116.69964\n",
-      "Epoch 445/1000: average loss 116.65411\n",
-      "Epoch 446/1000: average loss 116.60916\n",
-      "Epoch 447/1000: average loss 116.56424\n",
-      "Epoch 448/1000: average loss 116.51974\n",
-      "Epoch 449/1000: average loss 116.47575\n",
-      "Epoch 450/1000: average loss 116.43159\n",
-      "Epoch 451/1000: average loss 116.38761\n",
-      "Epoch 452/1000: average loss 116.34388\n",
-      "Epoch 453/1000: average loss 116.30031\n",
-      "Epoch 454/1000: average loss 116.25637\n",
-      "Epoch 455/1000: average loss 116.21195\n",
-      "Epoch 456/1000: average loss 116.16753\n",
-      "Epoch 457/1000: average loss 116.12387\n",
-      "Epoch 458/1000: average loss 116.08012\n",
-      "Epoch 459/1000: average loss 116.03695\n",
-      "Epoch 460/1000: average loss 115.99475\n",
-      "Epoch 461/1000: average loss 115.95310\n",
-      "Epoch 462/1000: average loss 115.91160\n",
-      "Epoch 463/1000: average loss 115.86993\n",
-      "Epoch 464/1000: average loss 115.82726\n",
-      "Epoch 465/1000: average loss 115.78390\n",
-      "Epoch 466/1000: average loss 115.74063\n",
-      "Epoch 467/1000: average loss 115.69750\n",
-      "Epoch 468/1000: average loss 115.65444\n",
-      "Epoch 469/1000: average loss 115.61177\n",
-      "Epoch 470/1000: average loss 115.56924\n",
-      "Epoch 471/1000: average loss 115.52689\n",
-      "Epoch 472/1000: average loss 115.48467\n",
-      "Epoch 473/1000: average loss 115.44275\n",
-      "Epoch 474/1000: average loss 115.40118\n",
-      "Epoch 475/1000: average loss 115.36006\n",
-      "Epoch 476/1000: average loss 115.31905\n",
-      "Epoch 477/1000: average loss 115.27872\n",
-      "Epoch 478/1000: average loss 115.23885\n",
-      "Epoch 479/1000: average loss 115.19864\n",
-      "Epoch 480/1000: average loss 115.15850\n",
-      "Epoch 481/1000: average loss 115.11863\n",
-      "Epoch 482/1000: average loss 115.07946\n",
-      "Epoch 483/1000: average loss 115.04078\n",
-      "Epoch 484/1000: average loss 115.00191\n",
-      "Epoch 485/1000: average loss 114.96300\n",
-      "Epoch 486/1000: average loss 114.92471\n",
-      "Epoch 487/1000: average loss 114.88719\n",
-      "Epoch 488/1000: average loss 114.84998\n",
-      "Epoch 489/1000: average loss 114.81301\n",
-      "Epoch 490/1000: average loss 114.77619\n",
-      "Epoch 491/1000: average loss 114.73949\n",
-      "Epoch 492/1000: average loss 114.70294\n",
-      "Epoch 493/1000: average loss 114.66627\n",
-      "Epoch 494/1000: average loss 114.62955\n",
-      "Epoch 495/1000: average loss 114.59282\n",
-      "Epoch 496/1000: average loss 114.55641\n",
-      "Epoch 497/1000: average loss 114.52007\n",
-      "Epoch 498/1000: average loss 114.48355\n",
-      "Epoch 499/1000: average loss 114.44675\n",
-      "Epoch 500/1000: average loss 114.40994\n",
-      "Epoch 501/1000: average loss 114.37296\n",
-      "Epoch 502/1000: average loss 114.33627\n",
-      "Epoch 503/1000: average loss 114.29961\n",
-      "Epoch 504/1000: average loss 114.26293\n",
-      "Epoch 505/1000: average loss 114.22639\n",
-      "Epoch 506/1000: average loss 114.18991\n",
-      "Epoch 507/1000: average loss 114.15339\n",
-      "Epoch 508/1000: average loss 114.11677\n",
-      "Epoch 509/1000: average loss 114.07987\n",
-      "Epoch 510/1000: average loss 114.04273\n",
-      "Epoch 511/1000: average loss 114.00532\n",
-      "Epoch 512/1000: average loss 113.96724\n",
-      "Epoch 513/1000: average loss 113.92873\n",
-      "Epoch 514/1000: average loss 113.89082\n",
-      "Epoch 515/1000: average loss 113.85376\n",
-      "Epoch 516/1000: average loss 113.81740\n",
-      "Epoch 517/1000: average loss 113.78119\n",
-      "Epoch 518/1000: average loss 113.74473\n",
-      "Epoch 519/1000: average loss 113.70840\n",
-      "Epoch 520/1000: average loss 113.67257\n",
-      "Epoch 521/1000: average loss 113.63747\n",
-      "Epoch 522/1000: average loss 113.60224\n",
-      "Epoch 523/1000: average loss 113.56655\n",
-      "Epoch 524/1000: average loss 113.53084\n",
-      "Epoch 525/1000: average loss 113.49574\n",
-      "Epoch 526/1000: average loss 113.46091\n",
-      "Epoch 527/1000: average loss 113.42608\n",
-      "Epoch 528/1000: average loss 113.39118\n",
-      "Epoch 529/1000: average loss 113.35679\n",
-      "Epoch 530/1000: average loss 113.32350\n",
-      "Epoch 531/1000: average loss 113.29131\n",
-      "Epoch 532/1000: average loss 113.25926\n",
-      "Epoch 533/1000: average loss 113.22718\n",
-      "Epoch 534/1000: average loss 113.19472\n",
-      "Epoch 535/1000: average loss 113.16243\n",
-      "Epoch 536/1000: average loss 113.13019\n",
-      "Epoch 537/1000: average loss 113.09792\n",
-      "Epoch 538/1000: average loss 113.06564\n",
-      "Epoch 539/1000: average loss 113.03336\n",
-      "Epoch 540/1000: average loss 113.00129\n",
-      "Epoch 541/1000: average loss 112.96926\n",
-      "Epoch 542/1000: average loss 112.93738\n",
-      "Epoch 543/1000: average loss 112.90551\n",
-      "Epoch 544/1000: average loss 112.87369\n",
-      "Epoch 545/1000: average loss 112.84221\n",
-      "Epoch 546/1000: average loss 112.81076\n",
-      "Epoch 547/1000: average loss 112.77940\n",
-      "Epoch 548/1000: average loss 112.74756\n",
-      "Epoch 549/1000: average loss 112.71541\n",
-      "Epoch 550/1000: average loss 112.68318\n",
-      "Epoch 551/1000: average loss 112.65105\n",
-      "Epoch 552/1000: average loss 112.61904\n",
-      "Epoch 553/1000: average loss 112.58719\n",
-      "Epoch 554/1000: average loss 112.55570\n",
-      "Epoch 555/1000: average loss 112.52438\n",
-      "Epoch 556/1000: average loss 112.49324\n",
-      "Epoch 557/1000: average loss 112.46239\n",
-      "Epoch 558/1000: average loss 112.43144\n",
-      "Epoch 559/1000: average loss 112.40060\n",
-      "Epoch 560/1000: average loss 112.36927\n",
-      "Epoch 561/1000: average loss 112.33818\n",
-      "Epoch 562/1000: average loss 112.30712\n",
-      "Epoch 563/1000: average loss 112.27592\n",
-      "Epoch 564/1000: average loss 112.24476\n",
-      "Epoch 565/1000: average loss 112.21396\n",
-      "Epoch 566/1000: average loss 112.18390\n",
-      "Epoch 567/1000: average loss 112.15401\n",
-      "Epoch 568/1000: average loss 112.12422\n",
-      "Epoch 569/1000: average loss 112.09406\n",
-      "Epoch 570/1000: average loss 112.06459\n",
-      "Epoch 571/1000: average loss 112.03549\n",
-      "Epoch 572/1000: average loss 112.00630\n",
-      "Epoch 573/1000: average loss 111.97692\n",
-      "Epoch 574/1000: average loss 111.94761\n",
-      "Epoch 575/1000: average loss 111.91849\n",
-      "Epoch 576/1000: average loss 111.88956\n",
-      "Epoch 577/1000: average loss 111.86074\n",
-      "Epoch 578/1000: average loss 111.83205\n",
-      "Epoch 579/1000: average loss 111.80283\n",
-      "Epoch 580/1000: average loss 111.77328\n",
-      "Epoch 581/1000: average loss 111.74386\n",
-      "Epoch 582/1000: average loss 111.71494\n",
-      "Epoch 583/1000: average loss 111.68654\n",
-      "Epoch 584/1000: average loss 111.65831\n",
-      "Epoch 585/1000: average loss 111.63028\n",
-      "Epoch 586/1000: average loss 111.60232\n",
-      "Epoch 587/1000: average loss 111.57449\n",
-      "Epoch 588/1000: average loss 111.54689\n",
-      "Epoch 589/1000: average loss 111.51947\n",
-      "Epoch 590/1000: average loss 111.49226\n",
-      "Epoch 591/1000: average loss 111.46559\n",
-      "Epoch 592/1000: average loss 111.43957\n",
-      "Epoch 593/1000: average loss 111.41385\n",
-      "Epoch 594/1000: average loss 111.38830\n",
-      "Epoch 595/1000: average loss 111.36238\n",
-      "Epoch 596/1000: average loss 111.33650\n",
-      "Epoch 597/1000: average loss 111.31077\n",
-      "Epoch 598/1000: average loss 111.28479\n",
-      "Epoch 599/1000: average loss 111.25884\n",
-      "Epoch 600/1000: average loss 111.23295\n",
-      "Epoch 601/1000: average loss 111.20726\n",
-      "Epoch 602/1000: average loss 111.18261\n",
-      "Epoch 603/1000: average loss 111.15771\n",
-      "Epoch 604/1000: average loss 111.13268\n",
-      "Epoch 605/1000: average loss 111.10759\n",
-      "Epoch 606/1000: average loss 111.08221\n",
-      "Epoch 607/1000: average loss 111.05669\n",
-      "Epoch 608/1000: average loss 111.03092\n",
-      "Epoch 609/1000: average loss 111.00506\n",
-      "Epoch 610/1000: average loss 110.97948\n",
-      "Epoch 611/1000: average loss 110.95391\n",
-      "Epoch 612/1000: average loss 110.92874\n",
-      "Epoch 613/1000: average loss 110.90389\n",
-      "Epoch 614/1000: average loss 110.87921\n",
-      "Epoch 615/1000: average loss 110.85463\n",
-      "Epoch 616/1000: average loss 110.83008\n",
-      "Epoch 617/1000: average loss 110.80563\n",
-      "Epoch 618/1000: average loss 110.78126\n",
-      "Epoch 619/1000: average loss 110.75667\n",
-      "Epoch 620/1000: average loss 110.73167\n",
-      "Epoch 621/1000: average loss 110.70657\n",
-      "Epoch 622/1000: average loss 110.68184\n",
-      "Epoch 623/1000: average loss 110.65738\n",
-      "Epoch 624/1000: average loss 110.63297\n",
-      "Epoch 625/1000: average loss 110.60881\n",
-      "Epoch 626/1000: average loss 110.58476\n",
-      "Epoch 627/1000: average loss 110.56086\n",
-      "Epoch 628/1000: average loss 110.53784\n",
-      "Epoch 629/1000: average loss 110.51506\n",
-      "Epoch 630/1000: average loss 110.49219\n",
-      "Epoch 631/1000: average loss 110.46940\n",
-      "Epoch 632/1000: average loss 110.44658\n",
-      "Epoch 633/1000: average loss 110.42354\n",
-      "Epoch 634/1000: average loss 110.40064\n",
-      "Epoch 635/1000: average loss 110.37823\n",
-      "Epoch 636/1000: average loss 110.35594\n",
-      "Epoch 637/1000: average loss 110.33422\n",
-      "Epoch 638/1000: average loss 110.31271\n",
-      "Epoch 639/1000: average loss 110.29099\n",
-      "Epoch 640/1000: average loss 110.26905\n",
-      "Epoch 641/1000: average loss 110.24727\n",
-      "Epoch 642/1000: average loss 110.22572\n",
-      "Epoch 643/1000: average loss 110.20431\n",
-      "Epoch 644/1000: average loss 110.18252\n",
-      "Epoch 645/1000: average loss 110.16066\n",
-      "Epoch 646/1000: average loss 110.13872\n",
-      "Epoch 647/1000: average loss 110.11696\n",
-      "Epoch 648/1000: average loss 110.09543\n",
-      "Epoch 649/1000: average loss 110.07394\n",
-      "Epoch 650/1000: average loss 110.05244\n",
-      "Epoch 651/1000: average loss 110.03076\n",
-      "Epoch 652/1000: average loss 110.00913\n",
-      "Epoch 653/1000: average loss 109.98736\n",
-      "Epoch 654/1000: average loss 109.96541\n",
-      "Epoch 655/1000: average loss 109.94305\n",
-      "Epoch 656/1000: average loss 109.92070\n",
-      "Epoch 657/1000: average loss 109.89844\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 658/1000: average loss 109.87593\n",
-      "Epoch 659/1000: average loss 109.85325\n",
-      "Epoch 660/1000: average loss 109.83058\n",
-      "Epoch 661/1000: average loss 109.80790\n",
-      "Epoch 662/1000: average loss 109.78520\n",
-      "Epoch 663/1000: average loss 109.76252\n",
-      "Epoch 664/1000: average loss 109.73986\n",
-      "Epoch 665/1000: average loss 109.71699\n",
-      "Epoch 666/1000: average loss 109.69386\n",
-      "Epoch 667/1000: average loss 109.67074\n",
-      "Epoch 668/1000: average loss 109.64750\n",
-      "Epoch 669/1000: average loss 109.62411\n",
-      "Epoch 670/1000: average loss 109.60114\n",
-      "Epoch 671/1000: average loss 109.57841\n",
-      "Epoch 672/1000: average loss 109.55575\n",
-      "Epoch 673/1000: average loss 109.53287\n",
-      "Epoch 674/1000: average loss 109.51023\n",
-      "Epoch 675/1000: average loss 109.48816\n",
-      "Epoch 676/1000: average loss 109.46613\n",
-      "Epoch 677/1000: average loss 109.44385\n",
-      "Epoch 678/1000: average loss 109.42149\n",
-      "Epoch 679/1000: average loss 109.39928\n",
-      "Epoch 680/1000: average loss 109.37742\n",
-      "Epoch 681/1000: average loss 109.35552\n",
-      "Epoch 682/1000: average loss 109.33406\n",
-      "Epoch 683/1000: average loss 109.31288\n",
-      "Epoch 684/1000: average loss 109.29128\n",
-      "Epoch 685/1000: average loss 109.26963\n",
-      "Epoch 686/1000: average loss 109.24805\n",
-      "Epoch 687/1000: average loss 109.22671\n",
-      "Epoch 688/1000: average loss 109.20528\n",
-      "Epoch 689/1000: average loss 109.18367\n",
-      "Epoch 690/1000: average loss 109.16237\n",
-      "Epoch 691/1000: average loss 109.14120\n",
-      "Epoch 692/1000: average loss 109.12018\n",
-      "Epoch 693/1000: average loss 109.09939\n",
-      "Epoch 694/1000: average loss 109.07915\n",
-      "Epoch 695/1000: average loss 109.05917\n",
-      "Epoch 696/1000: average loss 109.03925\n",
-      "Epoch 697/1000: average loss 109.01923\n",
-      "Epoch 698/1000: average loss 108.99944\n",
-      "Epoch 699/1000: average loss 108.98045\n",
-      "Epoch 700/1000: average loss 108.96116\n",
-      "Epoch 701/1000: average loss 108.94178\n",
-      "Epoch 702/1000: average loss 108.92292\n",
-      "Epoch 703/1000: average loss 108.90447\n",
-      "Epoch 704/1000: average loss 108.88611\n",
-      "Epoch 705/1000: average loss 108.86805\n",
-      "Epoch 706/1000: average loss 108.85034\n",
-      "Epoch 707/1000: average loss 108.83292\n",
-      "Epoch 708/1000: average loss 108.81561\n",
-      "Epoch 709/1000: average loss 108.79843\n",
-      "Epoch 710/1000: average loss 108.78075\n",
-      "Epoch 711/1000: average loss 108.76265\n",
-      "Epoch 712/1000: average loss 108.74436\n",
-      "Epoch 713/1000: average loss 108.72616\n",
-      "Epoch 714/1000: average loss 108.70811\n",
-      "Epoch 715/1000: average loss 108.69009\n",
-      "Epoch 716/1000: average loss 108.67197\n",
-      "Epoch 717/1000: average loss 108.65375\n",
-      "Epoch 718/1000: average loss 108.63554\n",
-      "Epoch 719/1000: average loss 108.61740\n",
-      "Epoch 720/1000: average loss 108.59931\n",
-      "Epoch 721/1000: average loss 108.58066\n",
-      "Epoch 722/1000: average loss 108.56111\n",
-      "Epoch 723/1000: average loss 108.54239\n",
-      "Epoch 724/1000: average loss 108.52395\n",
-      "Epoch 725/1000: average loss 108.50554\n",
-      "Epoch 726/1000: average loss 108.48717\n",
-      "Epoch 727/1000: average loss 108.46837\n",
-      "Epoch 728/1000: average loss 108.44933\n",
-      "Epoch 729/1000: average loss 108.43009\n",
-      "Epoch 730/1000: average loss 108.41084\n",
-      "Epoch 731/1000: average loss 108.39140\n",
-      "Epoch 732/1000: average loss 108.37184\n",
-      "Epoch 733/1000: average loss 108.35241\n",
-      "Epoch 734/1000: average loss 108.33305\n",
-      "Epoch 735/1000: average loss 108.31373\n",
-      "Epoch 736/1000: average loss 108.29464\n",
-      "Epoch 737/1000: average loss 108.27557\n",
-      "Epoch 738/1000: average loss 108.25649\n",
-      "Epoch 739/1000: average loss 108.23739\n",
-      "Epoch 740/1000: average loss 108.21823\n",
-      "Epoch 741/1000: average loss 108.19893\n",
-      "Epoch 742/1000: average loss 108.17984\n",
-      "Epoch 743/1000: average loss 108.16102\n",
-      "Epoch 744/1000: average loss 108.14292\n",
-      "Epoch 745/1000: average loss 108.12529\n",
-      "Epoch 746/1000: average loss 108.10770\n",
-      "Epoch 747/1000: average loss 108.09024\n",
-      "Epoch 748/1000: average loss 108.07285\n",
-      "Epoch 749/1000: average loss 108.05551\n",
-      "Epoch 750/1000: average loss 108.03826\n",
-      "Epoch 751/1000: average loss 108.02119\n",
-      "Epoch 752/1000: average loss 108.00445\n",
-      "Epoch 753/1000: average loss 107.98760\n",
-      "Epoch 754/1000: average loss 107.97059\n",
-      "Epoch 755/1000: average loss 107.95333\n",
-      "Epoch 756/1000: average loss 107.93577\n",
-      "Epoch 757/1000: average loss 107.91785\n",
-      "Epoch 758/1000: average loss 107.89968\n",
-      "Epoch 759/1000: average loss 107.88170\n",
-      "Epoch 760/1000: average loss 107.86384\n",
-      "Epoch 761/1000: average loss 107.84541\n",
-      "Epoch 762/1000: average loss 107.82657\n",
-      "Epoch 763/1000: average loss 107.80796\n",
-      "Epoch 764/1000: average loss 107.78949\n",
-      "Epoch 765/1000: average loss 107.77092\n",
-      "Epoch 766/1000: average loss 107.75229\n",
-      "Epoch 767/1000: average loss 107.73357\n",
-      "Epoch 768/1000: average loss 107.71430\n",
-      "Epoch 769/1000: average loss 107.69537\n",
-      "Epoch 770/1000: average loss 107.67656\n",
-      "Epoch 771/1000: average loss 107.65813\n",
-      "Epoch 772/1000: average loss 107.63991\n",
-      "Epoch 773/1000: average loss 107.62186\n",
-      "Epoch 774/1000: average loss 107.60401\n",
-      "Epoch 775/1000: average loss 107.58610\n",
-      "Epoch 776/1000: average loss 107.56802\n",
-      "Epoch 777/1000: average loss 107.55003\n",
-      "Epoch 778/1000: average loss 107.53220\n",
-      "Epoch 779/1000: average loss 107.51451\n",
-      "Epoch 780/1000: average loss 107.49680\n",
-      "Epoch 781/1000: average loss 107.47910\n",
-      "Epoch 782/1000: average loss 107.46181\n",
-      "Epoch 783/1000: average loss 107.44500\n",
-      "Epoch 784/1000: average loss 107.42823\n",
-      "Epoch 785/1000: average loss 107.41157\n",
-      "Epoch 786/1000: average loss 107.39498\n",
-      "Epoch 787/1000: average loss 107.37816\n",
-      "Epoch 788/1000: average loss 107.36101\n",
-      "Epoch 789/1000: average loss 107.34356\n",
-      "Epoch 790/1000: average loss 107.32611\n",
-      "Epoch 791/1000: average loss 107.30838\n",
-      "Epoch 792/1000: average loss 107.29069\n",
-      "Epoch 793/1000: average loss 107.27298\n",
-      "Epoch 794/1000: average loss 107.25521\n",
-      "Epoch 795/1000: average loss 107.23707\n",
-      "Epoch 796/1000: average loss 107.21823\n",
-      "Epoch 797/1000: average loss 107.19936\n",
-      "Epoch 798/1000: average loss 107.18049\n",
-      "Epoch 799/1000: average loss 107.16162\n",
-      "Epoch 800/1000: average loss 107.14270\n",
-      "Epoch 801/1000: average loss 107.12359\n",
-      "Epoch 802/1000: average loss 107.10452\n",
-      "Epoch 803/1000: average loss 107.08503\n",
-      "Epoch 804/1000: average loss 107.06490\n",
-      "Epoch 805/1000: average loss 107.04434\n",
-      "Epoch 806/1000: average loss 107.02340\n",
-      "Epoch 807/1000: average loss 107.00244\n",
-      "Epoch 808/1000: average loss 106.98114\n",
-      "Epoch 809/1000: average loss 106.95969\n",
-      "Epoch 810/1000: average loss 106.93831\n",
-      "Epoch 811/1000: average loss 106.91636\n",
-      "Epoch 812/1000: average loss 106.89452\n",
-      "Epoch 813/1000: average loss 106.87267\n",
-      "Epoch 814/1000: average loss 106.85076\n",
-      "Epoch 815/1000: average loss 106.82882\n",
-      "Epoch 816/1000: average loss 106.80701\n",
-      "Epoch 817/1000: average loss 106.78503\n",
-      "Epoch 818/1000: average loss 106.76337\n",
-      "Epoch 819/1000: average loss 106.74204\n",
-      "Epoch 820/1000: average loss 106.72130\n",
-      "Epoch 821/1000: average loss 106.70078\n",
-      "Epoch 822/1000: average loss 106.68042\n",
-      "Epoch 823/1000: average loss 106.66014\n",
-      "Epoch 824/1000: average loss 106.63960\n",
-      "Epoch 825/1000: average loss 106.61883\n",
-      "Epoch 826/1000: average loss 106.59802\n",
-      "Epoch 827/1000: average loss 106.57677\n",
-      "Epoch 828/1000: average loss 106.55565\n",
-      "Epoch 829/1000: average loss 106.53457\n",
-      "Epoch 830/1000: average loss 106.51372\n",
-      "Epoch 831/1000: average loss 106.49293\n",
-      "Epoch 832/1000: average loss 106.47222\n",
-      "Epoch 833/1000: average loss 106.45243\n",
-      "Epoch 834/1000: average loss 106.43320\n",
-      "Epoch 835/1000: average loss 106.41412\n",
-      "Epoch 836/1000: average loss 106.39532\n",
-      "Epoch 837/1000: average loss 106.37652\n",
-      "Epoch 838/1000: average loss 106.35736\n",
-      "Epoch 839/1000: average loss 106.33832\n",
-      "Epoch 840/1000: average loss 106.32024\n",
-      "Epoch 841/1000: average loss 106.30225\n",
-      "Epoch 842/1000: average loss 106.28427\n",
-      "Epoch 843/1000: average loss 106.26630\n",
-      "Epoch 844/1000: average loss 106.24820\n",
-      "Epoch 845/1000: average loss 106.23017\n",
-      "Epoch 846/1000: average loss 106.21225\n",
-      "Epoch 847/1000: average loss 106.19441\n",
-      "Epoch 848/1000: average loss 106.17666\n",
-      "Epoch 849/1000: average loss 106.15847\n",
-      "Epoch 850/1000: average loss 106.14090\n",
-      "Epoch 851/1000: average loss 106.12359\n",
-      "Epoch 852/1000: average loss 106.10618\n",
-      "Epoch 853/1000: average loss 106.08868\n",
-      "Epoch 854/1000: average loss 106.07095\n",
-      "Epoch 855/1000: average loss 106.05344\n",
-      "Epoch 856/1000: average loss 106.03618\n",
-      "Epoch 857/1000: average loss 106.01906\n",
-      "Epoch 858/1000: average loss 106.00218\n",
-      "Epoch 859/1000: average loss 105.98531\n",
-      "Epoch 860/1000: average loss 105.96849\n",
-      "Epoch 861/1000: average loss 105.95162\n",
-      "Epoch 862/1000: average loss 105.93456\n",
-      "Epoch 863/1000: average loss 105.91750\n",
-      "Epoch 864/1000: average loss 105.90002\n",
-      "Epoch 865/1000: average loss 105.88248\n",
-      "Epoch 866/1000: average loss 105.86484\n",
-      "Epoch 867/1000: average loss 105.84707\n",
-      "Epoch 868/1000: average loss 105.82893\n",
-      "Epoch 869/1000: average loss 105.81050\n",
-      "Epoch 870/1000: average loss 105.79178\n",
-      "Epoch 871/1000: average loss 105.77317\n",
-      "Epoch 872/1000: average loss 105.75474\n",
-      "Epoch 873/1000: average loss 105.73644\n",
-      "Epoch 874/1000: average loss 105.71836\n",
-      "Epoch 875/1000: average loss 105.70087\n",
-      "Epoch 876/1000: average loss 105.68357\n",
-      "Epoch 877/1000: average loss 105.66600\n",
-      "Epoch 878/1000: average loss 105.64812\n",
-      "Epoch 879/1000: average loss 105.63034\n",
-      "Epoch 880/1000: average loss 105.61297\n",
-      "Epoch 881/1000: average loss 105.59601\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Epoch 882/1000: average loss 105.57906\n",
-      "Epoch 883/1000: average loss 105.56142\n",
-      "Epoch 884/1000: average loss 105.54363\n",
-      "Epoch 885/1000: average loss 105.52542\n",
-      "Epoch 886/1000: average loss 105.50700\n",
-      "Epoch 887/1000: average loss 105.48836\n",
-      "Epoch 888/1000: average loss 105.46950\n",
-      "Epoch 889/1000: average loss 105.45090\n",
-      "Epoch 890/1000: average loss 105.43248\n",
-      "Epoch 891/1000: average loss 105.41445\n",
-      "Epoch 892/1000: average loss 105.39694\n",
-      "Epoch 893/1000: average loss 105.38010\n",
-      "Epoch 894/1000: average loss 105.36357\n",
-      "Epoch 895/1000: average loss 105.34708\n",
-      "Epoch 896/1000: average loss 105.33056\n",
-      "Epoch 897/1000: average loss 105.31411\n",
-      "Epoch 898/1000: average loss 105.29778\n",
-      "Epoch 899/1000: average loss 105.28129\n",
-      "Epoch 900/1000: average loss 105.26482\n",
-      "Epoch 901/1000: average loss 105.24841\n",
-      "Epoch 902/1000: average loss 105.23203\n",
-      "Epoch 903/1000: average loss 105.21580\n",
-      "Epoch 904/1000: average loss 105.19963\n",
-      "Epoch 905/1000: average loss 105.18360\n",
-      "Epoch 906/1000: average loss 105.16793\n",
-      "Epoch 907/1000: average loss 105.15262\n",
-      "Epoch 908/1000: average loss 105.13739\n",
-      "Epoch 909/1000: average loss 105.12224\n",
-      "Epoch 910/1000: average loss 105.10727\n",
-      "Epoch 911/1000: average loss 105.09254\n",
-      "Epoch 912/1000: average loss 105.07756\n",
-      "Epoch 913/1000: average loss 105.06238\n",
-      "Epoch 914/1000: average loss 105.04746\n",
-      "Epoch 915/1000: average loss 105.03280\n",
-      "Epoch 916/1000: average loss 105.01806\n",
-      "Epoch 917/1000: average loss 105.00288\n",
-      "Epoch 918/1000: average loss 104.98758\n",
-      "Epoch 919/1000: average loss 104.97225\n",
-      "Epoch 920/1000: average loss 104.95693\n",
-      "Epoch 921/1000: average loss 104.94150\n",
-      "Epoch 922/1000: average loss 104.92583\n",
-      "Epoch 923/1000: average loss 104.91019\n",
-      "Epoch 924/1000: average loss 104.89488\n",
-      "Epoch 925/1000: average loss 104.87992\n",
-      "Epoch 926/1000: average loss 104.86482\n",
-      "Epoch 927/1000: average loss 104.84955\n",
-      "Epoch 928/1000: average loss 104.83395\n",
-      "Epoch 929/1000: average loss 104.81837\n",
-      "Epoch 930/1000: average loss 104.80295\n",
-      "Epoch 931/1000: average loss 104.78766\n",
-      "Epoch 932/1000: average loss 104.77282\n",
-      "Epoch 933/1000: average loss 104.75832\n",
-      "Epoch 934/1000: average loss 104.74403\n",
-      "Epoch 935/1000: average loss 104.72981\n",
-      "Epoch 936/1000: average loss 104.71571\n",
-      "Epoch 937/1000: average loss 104.70182\n",
-      "Epoch 938/1000: average loss 104.68795\n",
-      "Epoch 939/1000: average loss 104.67415\n",
-      "Epoch 940/1000: average loss 104.66049\n",
-      "Epoch 941/1000: average loss 104.64686\n",
-      "Epoch 942/1000: average loss 104.63326\n",
-      "Epoch 943/1000: average loss 104.61987\n",
-      "Epoch 944/1000: average loss 104.60652\n",
-      "Epoch 945/1000: average loss 104.59305\n",
-      "Epoch 946/1000: average loss 104.57977\n",
-      "Epoch 947/1000: average loss 104.56673\n",
-      "Epoch 948/1000: average loss 104.55390\n",
-      "Epoch 949/1000: average loss 104.54132\n",
-      "Epoch 950/1000: average loss 104.52857\n",
-      "Epoch 951/1000: average loss 104.51521\n",
-      "Epoch 952/1000: average loss 104.50110\n",
-      "Epoch 953/1000: average loss 104.48659\n",
-      "Epoch 954/1000: average loss 104.47301\n",
-      "Epoch 955/1000: average loss 104.45926\n",
-      "Epoch 956/1000: average loss 104.44545\n",
-      "Epoch 957/1000: average loss 104.43175\n",
-      "Epoch 958/1000: average loss 104.41804\n",
-      "Epoch 959/1000: average loss 104.40515\n",
-      "Epoch 960/1000: average loss 104.39217\n",
-      "Epoch 961/1000: average loss 104.37944\n",
-      "Epoch 962/1000: average loss 104.36693\n",
-      "Epoch 963/1000: average loss 104.35449\n",
-      "Epoch 964/1000: average loss 104.34203\n",
-      "Epoch 965/1000: average loss 104.32962\n",
-      "Epoch 966/1000: average loss 104.31723\n",
-      "Epoch 967/1000: average loss 104.30484\n",
-      "Epoch 968/1000: average loss 104.29251\n",
-      "Epoch 969/1000: average loss 104.28021\n",
-      "Epoch 970/1000: average loss 104.26793\n",
-      "Epoch 971/1000: average loss 104.25550\n",
-      "Epoch 972/1000: average loss 104.24302\n",
-      "Epoch 973/1000: average loss 104.23049\n",
-      "Epoch 974/1000: average loss 104.21798\n",
-      "Epoch 975/1000: average loss 104.20553\n",
-      "Epoch 976/1000: average loss 104.19309\n",
-      "Epoch 977/1000: average loss 104.18098\n",
-      "Epoch 978/1000: average loss 104.16921\n",
-      "Epoch 979/1000: average loss 104.15743\n",
-      "Epoch 980/1000: average loss 104.14564\n",
-      "Epoch 981/1000: average loss 104.13388\n",
-      "Epoch 982/1000: average loss 104.12216\n",
-      "Epoch 983/1000: average loss 104.11055\n",
-      "Epoch 984/1000: average loss 104.09907\n",
-      "Epoch 985/1000: average loss 104.08780\n",
-      "Epoch 986/1000: average loss 104.07705\n",
-      "Epoch 987/1000: average loss 104.06620\n",
-      "Epoch 988/1000: average loss 104.05515\n",
-      "Epoch 989/1000: average loss 104.04421\n",
-      "Epoch 990/1000: average loss 104.03320\n",
-      "Epoch 991/1000: average loss 104.02218\n",
-      "Epoch 992/1000: average loss 104.01117\n",
-      "Epoch 993/1000: average loss 104.00022\n",
-      "Epoch 994/1000: average loss 103.98929\n",
-      "Epoch 995/1000: average loss 103.97845\n",
-      "Epoch 996/1000: average loss 103.96767\n",
-      "Epoch 997/1000: average loss 103.95667\n",
-      "Epoch 998/1000: average loss 103.94563\n",
-      "Epoch 999/1000: average loss 103.93501\n"
+      "Epoch 0/100: average loss 378.81588\n",
+      "Epoch 1/100: average loss 275.14966\n",
+      "Epoch 2/100: average loss 209.67680\n",
+      "Epoch 3/100: average loss 177.45487\n",
+      "Epoch 4/100: average loss 161.36641\n",
+      "Epoch 5/100: average loss 151.22071\n",
+      "Epoch 6/100: average loss 143.62892\n",
+      "Epoch 7/100: average loss 137.58497\n",
+      "Epoch 8/100: average loss 132.61164\n",
+      "Epoch 9/100: average loss 128.38996\n",
+      "Epoch 10/100: average loss 124.72414\n",
+      "Epoch 11/100: average loss 121.49631\n",
+      "Epoch 12/100: average loss 118.62273\n",
+      "Epoch 13/100: average loss 116.04727\n",
+      "Epoch 14/100: average loss 113.73365\n",
+      "Epoch 15/100: average loss 111.67534\n",
+      "Epoch 16/100: average loss 109.85956\n",
+      "Epoch 17/100: average loss 108.26555\n",
+      "Epoch 18/100: average loss 106.88248\n",
+      "Epoch 19/100: average loss 105.69173\n",
+      "Epoch 20/100: average loss 104.67635\n",
+      "Epoch 21/100: average loss 103.80502\n",
+      "Epoch 22/100: average loss 103.06343\n",
+      "Epoch 23/100: average loss 102.43223\n",
+      "Epoch 24/100: average loss 101.89756\n",
+      "Epoch 25/100: average loss 101.43507\n",
+      "Epoch 26/100: average loss 101.03641\n",
+      "Epoch 27/100: average loss 100.68191\n",
+      "Epoch 28/100: average loss 100.35821\n",
+      "Epoch 29/100: average loss 100.06578\n",
+      "Epoch 30/100: average loss 99.79758\n",
+      "Epoch 31/100: average loss 99.54630\n",
+      "Epoch 32/100: average loss 99.31432\n",
+      "Epoch 33/100: average loss 99.08812\n",
+      "Epoch 34/100: average loss 98.87219\n",
+      "Epoch 35/100: average loss 98.67368\n",
+      "Epoch 36/100: average loss 98.48651\n",
+      "Epoch 37/100: average loss 98.31420\n",
+      "Epoch 38/100: average loss 98.15310\n",
+      "Epoch 39/100: average loss 97.99930\n",
+      "Epoch 40/100: average loss 97.85031\n",
+      "Epoch 41/100: average loss 97.71002\n",
+      "Epoch 42/100: average loss 97.57293\n",
+      "Epoch 43/100: average loss 97.44047\n",
+      "Epoch 44/100: average loss 97.31417\n",
+      "Epoch 45/100: average loss 97.18990\n",
+      "Epoch 46/100: average loss 97.07419\n",
+      "Epoch 47/100: average loss 96.96548\n",
+      "Epoch 48/100: average loss 96.86184\n",
+      "Epoch 49/100: average loss 96.76805\n",
+      "Epoch 50/100: average loss 96.67791\n",
+      "Epoch 51/100: average loss 96.59360\n",
+      "Epoch 52/100: average loss 96.51472\n",
+      "Epoch 53/100: average loss 96.43937\n",
+      "Epoch 54/100: average loss 96.36539\n",
+      "Epoch 55/100: average loss 96.29459\n",
+      "Epoch 56/100: average loss 96.22356\n",
+      "Epoch 57/100: average loss 96.15634\n",
+      "Epoch 58/100: average loss 96.08934\n",
+      "Epoch 59/100: average loss 96.02401\n",
+      "Epoch 60/100: average loss 95.96307\n",
+      "Epoch 61/100: average loss 95.90349\n",
+      "Epoch 62/100: average loss 95.84973\n",
+      "Epoch 63/100: average loss 95.79636\n",
+      "Epoch 64/100: average loss 95.74215\n",
+      "Epoch 65/100: average loss 95.69529\n",
+      "Epoch 66/100: average loss 95.64951\n",
+      "Epoch 67/100: average loss 95.60449\n",
+      "Epoch 68/100: average loss 95.56373\n",
+      "Epoch 69/100: average loss 95.52165\n",
+      "Epoch 70/100: average loss 95.48233\n",
+      "Epoch 71/100: average loss 95.44179\n",
+      "Epoch 72/100: average loss 95.39826\n",
+      "Epoch 73/100: average loss 95.35763\n",
+      "Epoch 74/100: average loss 95.31944\n",
+      "Epoch 75/100: average loss 95.27754\n",
+      "Epoch 76/100: average loss 95.23919\n",
+      "Epoch 77/100: average loss 95.20086\n",
+      "Epoch 78/100: average loss 95.16258\n",
+      "Epoch 79/100: average loss 95.12233\n",
+      "Epoch 80/100: average loss 95.08201\n",
+      "Epoch 81/100: average loss 95.04595\n",
+      "Epoch 82/100: average loss 95.01281\n",
+      "Epoch 83/100: average loss 94.97996\n",
+      "Epoch 84/100: average loss 94.94827\n",
+      "Epoch 85/100: average loss 94.91624\n",
+      "Epoch 86/100: average loss 94.88639\n",
+      "Epoch 87/100: average loss 94.85546\n",
+      "Epoch 88/100: average loss 94.82733\n",
+      "Epoch 89/100: average loss 94.79647\n",
+      "Epoch 90/100: average loss 94.77049\n",
+      "Epoch 91/100: average loss 94.74167\n",
+      "Epoch 92/100: average loss 94.71930\n",
+      "Epoch 93/100: average loss 94.69341\n",
+      "Epoch 94/100: average loss 94.66904\n",
+      "Epoch 95/100: average loss 94.64581\n",
+      "Epoch 96/100: average loss 94.61936\n",
+      "Epoch 97/100: average loss 94.59652\n",
+      "Epoch 98/100: average loss 94.57301\n",
+      "Epoch 99/100: average loss 94.55085\n"
      ]
     }
    ],
    "source": [
-    "epochs = 1000\n",
+    "epochs = 100\n",
     "# for each epoch\n",
     "for epoch in range(epochs):\n",
     "    losses = list()\n",
@@ -2401,7 +1489,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 10,
    "id": "09646d29",
    "metadata": {},
    "outputs": [],
@@ -2419,7 +1507,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": 11,
    "id": "7a06a4c0",
    "metadata": {
     "scrolled": false
@@ -2431,8 +1519,8 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
-   "id": "14f6886d",
+   "execution_count": 12,
+   "id": "bab0ce43",
    "metadata": {},
    "outputs": [
     {
@@ -3421,7 +2509,7 @@
     {
      "data": {
       "text/html": [
-       "<img src=\"\" width=\"640\">"
+       "<img src=\"\" width=\"640\">"
       ],
       "text/plain": [
        "<IPython.core.display.HTML object>"
@@ -3436,6 +2524,1856 @@
     "ax = fig.add_subplot(111)\n",
     "ax.scatter(test_data[:, 0], test_data[:, 1], label=\"Test data\")\n",
     "ax.scatter(test_data[:, 0], predicted, label=\"Predicted\")\n",
+    "ax.set(xlabel=\"$x$\", ylabel=\"$f(x)$\")\n",
+    "#ax.set_yscale('log')\n",
+    "plt.legend(frameon=False)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "attachments": {
+    "elbo.png": {
+     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAACdCAYAAAA6/zu5AAAABHNCSVQICAgIfAhkiAAAABl0RVh0U29mdHdhcmUAZ25vbWUtc2NyZWVuc2hvdO8Dvz4AACAASURBVHic7N0/UONYn/D7795667EyayP7jawboTeyN7JvhDbCG9lPhDtCT4Q3Qk+EbtXWljM8VVuFJsIToYnQRGgiNBGaqDU3QR2hjlBHqCPUESI6NzBNG2MbTAPdzJxPFVPTsv7//enod875FyGEQJIkSZIkaY7/61uvgCRJkiRJ3zcZLEiSJEmStJAMFiRJkiRJWkgGC5IkSZIkLSSDBUmSJEmSFpLBgiRJkiRJC8lgQZIkSZKkhWSwIEmSJEnSQjJYkCRJkiRpIRksSJIkSZK0kAwWJEmSJElaSAYLkiRJkiQtJIMFSZIkSZIWksGCJEmSJEkLyWBBkiRJkqSFZLAgSZIkSdJCMliQJEmSJGmhZwwWCori+eYuSZIkSdLLeL5gIbaxfBktSIvkuG2VqqahaW1G6dfNrUhc7FH8JGs2LXN7WOFjJw4YOiH5PaMF/R7ejJHmDX9aOeFwSJA9x7wj7O6I9InnWoQOQ3/OChc+pqahaVVU3eZ5zgpJ+uv4X4+ZKI9G2G6KpkFGm4FtoE6PlGaEaQroX7mK0ixFllFUq3f3+2PnN6cYSFGUBb8rKMr90y5ers4gjuh/7YZkHr1+wiAwv3JGsxVZQqIUwLxtKkhcGyeuoikZecti2NXGP1XbmFqPnq3iDxtz5lCQJQn5nV05b/jnn2PcgUcyb8XVKrqu0zLa6HP3cUFkdRm1PLzqvHG+Rk4aJwuCpYIsiQjDhKzIKbIc1CqKqqCqVbRGi5ZevbPfFKNPq9+lr3qMjKmNU7q4aRcI6GnBk2+RJP3liCWdH22IWn1bnFwKIcSlOOhUxPrR5fi3412xtbUj9g6OxOFWXZTWdsXx4b7Y3d4S2wenyy5KmuftlqiAKHUOxeWTzPBMHO/tiI16WQACEJXVTbGzdyzOhRBCnIu3B3tifWX8G+W6WN/eFQdvz4UQ5+J4b0esr5RuT7v/edpFLsTealPsXXzt+p+KndVVsXf2tfOZ72ynLtYO5u3tS/F2qy5WNo6uj8ex2Kitiv3z2+McbzbFxtH8eeyv1sXunZ02b/iX389PT8XJXkeUQJTWdsXJ6ak4OzsTp6en4uTtkdjfWhWVUk109mdfgxdH66K5cfxE59IsR2K9tiVO7qz6mTja6YhmvS6aq01RA0FpRax11sTaal1UStycU6Xamtg+PJsx71Ox3VwTB3P3z5xlS5K0lOWChbNd0SytiO2JK+/tVkWU1g9v/n15diR2N5qiAgJKora2Jfbf3v/YkJZwuiea5bJY2Xr7tPM92RrfsJn1cDoXe01EaWVTHM06nG83r495U+w9+HA/TbBwvr8qVjafeF9MWRQsnB+siXJlQxzf/HwmduqI1f2pDTvfE82VTfF25mweGyx8nvWqAMT64ex1PFovC6jdunbH3orN2qqYXtWnNeOBfXYg1uurYvv4/DpIORQdEKzuiS+rcinOT4/E3mZTlEFARXT2z+7M/fKwI2rr8wJnGSxI0lNYImchZdSziY0BduPLUEVRuIqjm2JQRWtj2V3UUo2VikKjP8BsPUvZ5l+X3ifKcxKn9bTzVbXrzxoq6q1S3YLIbmMX24TRiPaswzk57Yse7oiBndO3n3hfPFTu0+//hm4PMG7KycefZ+Jo6kt51WTQ8LGfIQEhCiJglbYx+yNHVVOBD4Th7W/82cjGa9n0nup71oNEWMYbkt6IoXH9eSFLSYGSpk98WlOo6m36o4j4cJ0KH/n1H12cqTQFpTugG9k46cttgST91Tw8WIgcBn8omHbv1nfyLMsgL/jySTXHtX3aQUwSORTDgUwuei0mH3Y3A3NCu0U3bBNEQ1rzHiozp31+ReDgaiY97QUXOiEdDfi16GD3J1cgI82guJNooNDuGUSO+8TJfhFBeAUrbaY/3Y8VJPEHANTq5Agp7iim22+/6DEjzdGHJ4T2RD5TmpIBjdbsHCetO8LplIB3+P50sNWg184ZOfJOI0nP5YEJjgWB4/Kx0sM0JodnJMkVqBOJdmlI0fdxDBUw8UcjvAga3+jF77acJPAJkxyq46Svxq234HEyWZplZJlCo2eg5QlhmKK2DBrV27fUPI2I4pRCbWAYOmoe43shKTrdfhttatlpnJDlOVlepdVtUC1SojAizVV0Y2L+eUoUxWRU0Vut24lpRUaSpGRZRq7odA39ZnicpORZRqY26LU0yGKCKKFQdRqtBtrST4QM3zQwky5hOKTxok+U6zWIA6JUQTeM8X7IUrKqxufDFnoB1ZbNdGFGEft4cQ6KgnJdjVdt9GgrIV6UoyhAUVCg0up10RXIIo8g4TppU7kZPl+MM3pHqTugOzlekZB8ALU948lttGm9GxFkFv2nKoFJQsJPUOkZU+fctdzHDYHaJoPJFc18vHct7hbKZIRuQHorgVWjbeqkbkCijAPCoihAa2MaVSgSAi8iUxSUoqDQ2/NLFLU2t2IrIE9iPlKm25i3U1Ta7Rb8+jtZnsFUam+rbZDZHgkNmVItSc/gYSULuY/jf6Lc7nL7vhIRxoD25eaN1qU/UU6tNPqY30OgUEQMezaR2sa0LHp6xsDQ6XmTeeQ5se/iWD3+/mZIGHtYo5g8tPk3rTtRfS3D7zcwrAg0HTUdYugtuoOUhtmlGPUZTaenFymh62Kb/8HfzRFJ6jN0QgqtRaMaY+k6ZpBTxC62G4PWQMejp+kMJ1+Y8oTAHdLv/p2/Dyaq46UR3mg8/M0wIg8dbD+j2mhRTQa0tC7eMtXiioRRu4GZmN8mUChihu0W/VBBb6jEAws3HGG0BhOZ/wlh+ImG0bg7eZ4ShyOsN2948+YfDLyINC9gcvg/BnhRerMPiywicPq8MQf44fhNd+EqBg7uBzC67ds/xCERoOna3YnUFq3aHwTRMjtjsSwMeE8Joz3rQkvxTIvf1A4H0YjWxHEswpB3K40ZxzYniyO84RvevHnDPyyHIM7Ir2st+AOTN2/eYDkBSZ7fTJOELgPzDdYoIE6X+9QShzHQYsahvKFWx/cVTdPu/tgyaLwPCZ+9iqkk/UU9JLHhcn9NAKJcXxOdTufL3+qKKIGo75w9TQbF2b7o1OuivuRfc+v43llf7K8KqIiNL1lo4vJwXZRKMxLyjjdEibpY3TkQF0KIi6Mtsbq6fZPAdr6/Kkqsicl8t6ONsqC+I+6r83G+2xSUmmJ973b2+UEHwcqa2NybTMU6F7tNRGnt4E7y1kFnOhnsevgagnpH7B5ObtSx2Cgjalv3pHmd74o6CKiJ+nXNiPLqrjh9SJr82Y5YAQEdcXj/2NfmJDheHIvNlbJYnazecHkk1ksIOpP74kislypi/madiu3rGhzlWwlwn4eXb2ryfHa8URH13TMxbVaC49F6SUBJrKx2bl0Xa/WygIqYnX96Ifaas66Zxyc4HnZKAlbE5sGxOD4e/x0dHoi9nU2xVq+LzvbhzGN4tlsXrO3PrQVxeTiuYQErYnJ1Lw8741oK9R1xayvO90SzvC7uVvi4L8lwnBBKfXdhDZqLvdVxkubMi+xQdGbuc5ngKElP4UGfIaIwApoMw+BWffjE1vn19xrtz/XJv5Zm4kW95ad7QH1+VW+zWoeG+mVcpdVCv/qFIIJ+9/b8FN6hat1xYWfbIZx4eYz837mqbN0qotYbGvzsE+b2gvrs120PXCVUW8at78S6VoNfM/Tu5KtVFV0rcRXHpPRuFa/O22RFARIFvTtZnKvT0ODnNAEWvLrdKNDaJiQ/8u73f2J0VaLAnF3E/eQKQtvkp8LkZLKsWhnnxTTbE/utyMiuVBpz97eOZTX54T//4NMvDt6oi6kCeUT0HuATvuORt83xcS58HF/HcrR5M5yQEEZXsLKNHw4njk3OqPWv/Fbu0p1ZojZOAE3TFJ5kj17nK1R0GupEq6mqRqs3pG/PPxmzNANVnZuvoHQteuVf+fnTe0ZOhH2dUDsuBQDejXBiG+f6lEoch8x0aS9bCpWHBO9gZbt953PSFwVBEEHTwZr5nUFFLX8kfZZGpSRJesBniJwk+QS11lRyW0YQvoemNefifRxFUZb/e8iMWzZhHGI1CrI4wBs5OE5AzqxENIAa+pwP1lWtAkV+q5GZIiugpKE9KKt8/PCe3m7Q0aszhi/bEKY2/d1Wuf5G/9AZNOgNHKJoh2YJPv72D4yef2+x/JNIR1g/fWCl178d1kQh0VUNY/I7eJaTo6IuOAGqpsVaCeB3HDcdL8J1iDsbrJXg6jeH68FkrkPYfmjNgHFeQrll3N7XRYD/B9T6FsacKVW1NLchq6Vd5yuUjD79dpv25z+jReOekzHPcsrKonEMrH4NgA+uQ1AARYDjqmxsrAAfcJ3PDR5FOC5Y1vLfHHPf43cqGN0FN5LUxQmqbDnmnIBiXIPnyfarJEm3PCBYyEhzoNG6ffNOPdw/SqxZ8y7e701G6PRo6AZ2BHrbpG93F7zbKVPVB79o2UPWCHCD6xtTETPyU5rDAe3Zk9yZ98ySgdIT1SR4aAB132waNuF1wPDhl79j9O9vsvhr5aHPOyq0px4caRjysWzQnjwJFYBicQyk9LB6ZQDeOQ4xMY6T0x+42GYFeIczioEEx0kwrQfWDMgzMkBv3S6pyT2X36hj9eeX4BTFFerCh/TD5WHAe5iTr3AP5d69R8OyqAN88nH8nNx3CFo2ztCiCXzyHLwcCn+Ip9uY2rIrUeB7v0GluyC3KWVkDmAY4LTmHZ3rJNYHlDJKkrS8B3yGUFAVKFdvhwTxyOFduYfTfcIK2qlP33KXfoNVDBtv4RtNQdhv8e+uxl4SfcnEzm/fWIpisnh/8QO30R9SDfr0gypKnlMdJoRP9TnmO6I0bMIwp2X8wLuf2hhqSDRsPT4YSVxGuUl/zuEat01gTCW65QTBO2jZtxNsVRWVnCyHRRFr2+pT+/kHPnxwGVoZgWoRN0CzTFZ++oH3I4ewreBiET30mXsdkKm3rosMd/QbpbWDBQ/NgjyH6tys/+WEQQTUac+uM7mQqqpc3ZeIWDWx12ze/HbFb46NTUR34KNWwepYvPn1NxwvJvdC2pa3fPPjhY/3G9S2+szc9UWCa/bwuz7hwiLMnDyvUH0dby6S9Oo8IFioolWn2vnPfQajnI7rTDRE8wQ0A3uoL13qjqot/r3wGf70gfLG6HaVrSwh5br3isJlMDIYWvfMCyAKSBouw5657Jp+34ov/zN5DJTWkMBN0N/8yrsf2rSrEYGl3w4YHnTQMty+S+Gac8dQFAUq2u1qnkVIEEFzeDvPA0VHL2dkGYu7IGn0seo/8M93n/jlx19Y2x+NS5R0C6v5A//5h0evp6APkodnESgaWhmKydoF0YBh3MRJegsemjl5BtUneap9zlcwMLTlp9Z1HaJxCcn8tVHpWj3Kv/3Mpz9+4qfKFifXSQk9y6T/60/8MWiT0sPvLn8zKHyP36ixfackJid2B1hOQmsYEMxsCWxyRjn5VRXZ/pskPY8HlSy0e6vkN93R5fj9PknPJ3rKUgUAVLRF2YGPpVSplu9+z0yinGoF8iKHPOfmu0NRUHx+Y51F00jabazcpKEqKCgoqorWaN1pi2Ha53UopvokKooCru4WChdFcb0+08OBfJw3oU4PvzN+cWv43DXMPlcXHD/QJp+c1Z6L62n8/ddP/P7PFl0lwu9PBAw306bczd0ryJOAgdnnx8zk9NZvtzXabcruZD5ITtC3+PWqxrYx/SRo0Gpd4UQpi5+WGqa1xj//8RuU17FukhKq9KwO1ptf+Zi3GZnLPGkMuu0STnZ9BIoIqxdgeNGdNgRuiwiTGo25xelLiDz8T1BqGw9KW52mthpUrIgYFn4+U9oWZu1nfvwAdcv6sizDol/7iR8+fETdtmaXDCxU4LsB1EwMEpI4J8tSkjAgiDKUdh83ch7WPkgcEpUb2NrSKyFJ0kM8rNLEqdjtdMTO4ZHY3+qI9Z2HdBL0fTk/2hKrlZpY2zkQx8dHYn93RxycXIqzvVVRLtfF+sa2OLo4E/ubHbG2UhGlUklU6muis74pDs7uzE3srZZEqVITtVpFVMpfOlEq1zfEzP5uLo/FznpHNGslUSqVRa3ZEeu7b4U4PxRbnTVRr4yHr6x2xMb+qRCn+2KjsyZWyl+Gbx6eC3GyJ9Y7q9fDa6LZ2RD7p2LG8HWxfXQhLo93xHqnKWqlkiiVKqK+1hG7d6qXnYmj3S3RmegMqtzcENs3HUldiLcHu2Kz+aWjKSiJlc6W2Dv+/+5MS6kiaisrYmVlRazUKtfV7647mbrVh8OsqpMX4mizKVY3D8TR0YHY3d4RO+srgtKGOJ6xW892m4LOwf0nwOWRWC8janfq1h2LzQqisjlr7hPLmdU3xPmBWF/bEodHB2J7vSO2Zh74KSfbolbeFHdrVT686uTZ4ZZY73REs1YWpVJJlCp1sdZZFzvHy3bwcCw2yvOqIt52tlsXlNbEwZ3uLlYFpelOs6bNqr54KvbWKl86iipXRK2+KjqbO2Lv8OROleD7nO8253SsJqtOStJTWKojqYuzU3H+fF3TvYBLcX52Ik5OzsTFxHZcXlws0ePeidhprorNw7OpaS7FxdmR2Fkti9La/tI3u7+m+R1JXZ6fitOzCyHEhdhfZX57AOf7YrXcEXP6T3oy8zuSuhRnp2cPPt6n2yszApbxfL6mI6nHertZESs7z90j7HM/sM/FXvNumxkvs2xJ+mtYoiMpUDWde0rZv3MKVa1Bo6Hdqm6nLKhrfkfgMFB6DLva1DQKqtbGdkzUKJT9YXwlpaqjayoQEURQbxuzj1G1h92OcJZqnvIpKWi69sDEvpChq2I/onrhc2lZNsrI4QkblHx5iYOT97GXbuBBkqSHWipYkAC9RSPxCeY8m9IwojDaj/h+K80U+YRXFYy5OQkKbWcIzvC7D9Ayd0jcG92T0/DCdItRN2LwzYKtr1UQDHxazuBReRuSJD2MDBaWpfUJ/Da+2aXv+IRxQpomxKHHsN+mH5tEXu+ZevErSEMP1w1I/uxtz2QBQ6tP23T5SEHkWAyDdPa4VRPPTun3w+Vr0ryUdITpNnCH398jrTV0aTjmTeNUr0nmmwzUESNZqiBJz+qBvU5Kk9SWhRdY5ElEnCZECahVnd4wYEHrul8pJ+h38QwXpx1gtkc4Yf+FmmB+TimebZOqVdq29aWL5aqBaTfoD4bAda0QdX5thWrPY5SaWL7OqPud1Z8rYoZ2jOWNvknPnfdSGgz9PqY1pOHaz7OOzzHP1MXy23jurE9UMa7tkZAQ/wmuEkn61v5FCCG+9UpI94uHLczMIXZaQIbTMCi8BPuV98ebRj5xBqCit417uoS+X5ZmVLVnCBaylFTVHtHNN5CnpNzfFHiepqDdzX+YN/zJPXA9l1eQpjnaEx+XIkspqvP2S0bkR+PqvIqO0daff/9J0p+YDBZeg2xES/OxsuC634KUof5/EzsC72HtS0uSJEnSo8mchVcgGg75wzD50gZWQpxWqMpXJUmSJOkFyJyF717IyP1AzUhxR6PxoNQnvNIZvvJPEJIkSdLrIIOF712WkHxaoWebfO6nKnUcPta6U12GS5IkSdLzkMHC9y6JSUothq3qdWc/OX74nlXbWth3kiRJkiQ9FRksfPcKCq36pVfAZISTrOMs1emRJEmSJD2eTHD83jUMWje9SGaMLJ924CLboJEkSZJeiqw6+d0riOweI61LIwpIukNGn5MXJEmSJOkFyGDhlSjyjEKtyoZlJEmSpBcngwVJkiRJkhaSOQuSJEmSJC0kgwVJkiRJkhaSwYIkSZIkSQvJYEGSJEmSpIVksCBJkiRJ0kIyWJAkSZIkaSEZLEiSJEmStJAMFiRJkiRJWkgGC5IkvRpF4mKP4meZd+b2sMLHThwwdELyp1whSfqOyGBBkqTXIfPo9RN6ZuNZZl9kCUlWLBghxbf7WMMhtmXhJRO/VduY2oieHbNgDpL0askuqqWvVkQOppOgNVTQegx6DWSnmNLTShj2RrTdkMa3OLmKBMdoE1oRfq8KiY3eG9KIbfTrUapdFzsw6AchruwWVvqTkSUL0tfJfHpdl9ZwRDf3cd70cNJvvVLSn03m9nH1IX3tWyy9IOgbDKpD3F51PEjTqb5z8dPJ8RSMgUliWUSyeEH6k5HBgvRV4qHFrw0LU7seUNbQZNeY0pOKGNg5fbv1TZZehBbmzwr9Qe9Lr6+KgsJ7oun0iarJoOFjezJ7QfpzkcGC9HiFz2D0gdVeFxVoDROKPKAngwXpCRWBg6uZ9LRvsfQcb/ATH5s21mSqRJaRAUU+XYSg0O4ZRI5L+nIrKUnPTuYsSI9WBC7B1QoDQ0YH0uNlcUCUKuiGga4CWUpW1bgu8Cf0Aqot++bfnxWxjxfn12/5BUUBaqNHWwnxohxFAYqCApVWr4uuQBZ5BAkoChSFcjN8rtTF+R1W93u3l5/EJICuzpjYaNN6NyLILPrTKy1Jr5QsWZAeLfACrsoGhvat10R6lYqYYbtFP1TQGyrxwMINRxitAV8qGiSE4Scaxt0aEEWeEocjrDdvePPmHwy8iDQvYHL4PwZ4UXpTpbHIIgKnzxtzgB+mZPesYuw4vKNOt307IE6iiCtqaNqMidQWrdofBNFSe0OSvmuyZEF6pBA/uALD4Nt8SZZetTyk3+qSWDHhddaiPmzTU/+D39sHE+dUSppVZj6UVcPCMdoo0f/hh/eQq236hopCH6dlXA/PUbt9WtcFAFrXoe97JGaAb82Y6S0xrvcBAK/fJZz4JYveQ2mdGTEMUEWrQpCkwH3LkKTXQZYsSI8T+QSfoG7IUEFaVkFom/xUmDiT1RuUggJoto0vVW+LjOxKpTr3S5eOZTUB+PSLw01eYR4RvQf4hO94XxpLKnwcX8e6ychdIIuIPkJ50yXyffzPf55JNYdSu4sxc0IVtQppmt6/DEl6JWSwID1KGoZ8pEyroX3rVZFem3SE9dMHVnp9br2YRyHRVQ2jNfGhP8vJUZmVGvBZ1bRYKwH8juOm40W4DnFng7USXP3mcD2YzHUI2/bDknCv8xJa0wFx5BNelelZvbntiahqiaKQ9SelPw8ZLEiPkBMG74AGLVmwIC0pD33eUaHd1W8NT8OQj2WD9mQEoQAUi1tFVHpYvTIA7xyHmBjHyekPXGyzArzDGcVAguMkmFb7YY2G5RmfqNGYagUqGPl8qplYxvxJi+IKVZGJv9KfhwwWpEeIxslbtca3aU1PetXiKAZaU9/7c4LgHbTat3NgVBWVnOyeZgvaVp8awAeXoTXEVS36DTAskxXgw8ghDB1cLKyHBriKwuf8gy+r6eH4n2haFvMbnS7Ic6hqsiqE9OchgwVpeVFAeAU0WgtumJI0m6IoUNHQJgPNIiSIpvIVABQdvZyR3VdtodHHqgN84pcff6FlmePUQt3CagKfPHo9D/3z8IeoatRQxjHDtWQ0JNS2cRcmR+bkGVSrMliQ/jxksCAtLY1CPgIrLRkqSMtrtNuUi3yih8acoG/x61UNw5h+wDZota6Io/SeuWqY1tr4f8vrWDdJCVV6VocSV3zMDSxziQd4o0u7MhGoJEN6jsooGKIvnDAiTGo0WrLYTfrzkMGCtKSCKHgHQKOx+Jb5lDLfxgmfJ2Es6Pd4bOu88cjGS590df70lLaD10sY9D2CwMOxR8SFAqWpfIXx2BjtJu+i+xstUHsW62WomRaT/TipPQuzAhXTorvU87vF0DUIhy6B72DaKXYYcG9FijgiVtp0X+7ykKRn9y9CCPGtV0JaXpFlFNUqL59CFdFX/x9++lRn9yzm3qrqTyAPTLq+STAynqE3ywLXaJF7Mda8l84sZDjwyDWNIlMwh9ZErkbMsD1Edz269720Jh6WE5DlOXm1j+88MNHuT6rIEtKiiq6Ba/wr/1D2uQzMu/skczF0Hyvzl3zYLycdNuhrEUFvaiFFRpIp6A/s9CSxddqFS+q8tuzfnDgIyBs97hTwSH95smThNYostP/9v6l2/cVZ4s8hDQk/ASUdXXuB5WUuvUEVx3mOQOEBUo92y0a1RwxtG1v36NqTb7kN7JHBqOfc3xeAZtDvd1GiX/ktTl/+2H1nlKp+/QAeJ8zWp/MVPqv2sNsRjndf4sIzUaoPDhQgZOiq2A/OovweZITDHrr6r/zbf/RlSZk0kwwWXiNVRyuX0bTqiz9AiyjkPbxQcmOBbw1Q7cE3qnURY7VNctu76Rq5qmlknsutQnGtj607mO49DzOlit7o0pWpHrdFPuFVBWNuu+EKbWcIzpDpTh6/N5k7JO6NvlFX2o9VxbA9Rt3yt14R6Tsmg4XXSO8T5TnJNyjmjMLxY7LcaNzp2OfJJQ521MV+zrLnBWK7x49Zj+GtVgYV+BgTT+U4GLZFbg+4/8s6/KW/PUzKAoZWn7bp8pGCyLEYBunscasmnp3S74ffb4lMOsJ0G7jD1xkNqvObyZQk2TeEtIyUKPoEQOMFakJEI4eiF3yb6plFwHD0npW+d6tJ3yLLuKKgyOFWwojWpac2GAUOrbaMBh6kamDaDfqDIcC4xUN1fgha7XmMUhPL1xndmyDywoqYoR1jeSPZ9oj0p/QXCxZyksAnTHKo6rSMNo1b95yCLElIs4wsU2j0DLQ8IQxT1JZBo3r7LpCnEVGcUqgNDENHzWN8LyRFp9tvT9XnzknjhCzPyfIqrW6DapEShRFprqIbE/PPU6IoJqOK3mqNu+29WcWMJEnJsoxc0eka+s3wOEnJs4xMbdBraZDFBFFCoeo0Wo3b9dofo4iJ3gFUaDS+9i0kJwlDkkKjZTSoKpClKaqmXb94x3h+jjG6GyokgUuUXdfXLwoKFPRuj2rsEqbKdffDBSg63V4LlZzY94mL666MadDtNRYmh+aewy+fVtjp315+EieAhnpnYg3DUBj6EbSNx++VJCKMItKiSqNl0GrM+dRUZMRRwhvwHwAAIABJREFURJIpaIZBq6qQhS5elFNtm/S++vi8BGXJtggUGrbHIH2e3AXN9Bktald6kUKlNxrx4NSG70Aajhh5EVkBasOkPVVk8xLXmfSKiL+Ky7diZ31T7L89F5dCiIuTfdFZWRHrB6cTI52Lo50tsV4vC1gT+ycHYmvnQBxu1QWlNXFw8WW8w826qHd2xdHJiTje3xD1labobB2Ks8szsVOvie3T6eWfiP2tTbFaQ1DeFMdnh2JnZ18cn56J0+MdsVquiY2jC3F5si+2dw/F29MzcXq0JerlFbFzMrmKx2J3qyNWSghW98TNKp0eiu3N6+GdA3FxvCu2947EydmZeLvXEZVKRxycf+U+fLslKiBgTRxcPn42l6f7otNcEztHp+Ls9Ehsb+6J44N1UesciJvZnu+JJk2xd3F3+rf7W2JztSYAARXR3NgRR+dCnOxvic216+GVptjYORLjTb4QRzvrollBlGprYmP783AhhLgU+6t1sXtr35yJ3TqC2pY4ubXkC7G3iqC0IY5nbddBR7CyLaYP/bTD9aljJ4QQl2fiYKMpVrcOxen5pbi8OBXHOx3R7OyJk6l9cHmyK9ZWVsXWwVtxcnIkttdWRH1tQ+y+vRCXR+uiPLkfJemOC/F2uylqqzs359b50aaolxBQFptvx8Oe9jqTXrvvK1g42xedel3Ul/xrbh3fO+uL/VUBFbFx/OU2enm4LkqlptibPqOPN0SJuljdORAXQoiLoy2xurotPk96vr8qSlMPzKONsqC+c++D4ny3KSg1xfre8a0b+kEHwcqa2Ny7FRmI3SaitHb35n/QmfHAEUIcrCGod8Tu4eRGHYuNMqK2dSK+xvlec3yDeMADcZ7Lkx1RL6+I7ZOJLboOQpqTB+JkS1RK6+Jo/sqIJghArO5P7IWLz8NXxf6tnXMqtldq4u4umBEsnO2K+vWNsNPpTPw1Ra2EYHX/zn4XQghxvCnKLFjna3eDhUtxtF4RlY2jO8f57VZNlNb2J266b8VmBVHbntiQ811RpyzWj2SIIN3v8nhDVLh73ztaL90KFoQQT3idSa/d9xUsCCEuLy+X/3vIjN/uiNX6qti99SwePxQ6h9PjbooyiM6c1+fDDoLK7bfOs926YM6b8KSLvXHQMn0xnWzVBEy/4V5fwDMezjPfTj+v252H7Pn4TblzsHjl7jG+mSBK69M77KFOxfYKojz9UHy7KcpMlcYcrQsqm+KtmOdSHHTG60N9R5x9Hnq0LsrXN7f67tmX0Y83RWVivMn5TAcLlwcdAYjO4dTxPx6fF8070eXnzdsWtQecA3eO3cmWqFAWG8czRj7ZFrXJQOB0R6yAWNufXLcjsV5ClDdnzUCSJl3fC+q7d976T7Zrd4OFJ7vOpNfuu8tZUJRnyg5q2YSxDRRkcUgYJWRpQA4UecHdFPUauj57XapaBcLJ5mqhyAoo6Q/8Zqkz3bPzeLt19OqM4cumf2uNqeZor9u3/6o08oQwvgJAf2RyY+5aOO/LmKPbjRGlYcSnskF7YqWLLAdFW/C9U6Fn9ej/+jOf3o1wYhunkeM5Aa2NdeKffxn3QGg5NCjwHY+GlT6oX4A0ToA6xlRzvXEQ8Km0htWb851draJSsGzPxGkQ8hHtzjkBgK6j8YkwiKHdAq1KFciLHG7qoxQUV6Bps2Zw23/913/x448/LreC0qu2ubnJ//zP/1z/KyJ8B3SqD6zN9HzXmfS6fHfBwvPJCB0La5TSsAZYbZOuquD/8Nuc8ZUZSWxjLXvImmvjBgVGW4EiZuSnNIc+7Qety+3OaW6UlKepVac80XwmFTHxe4ASjZlPtfuFQchVqUvXmBx63d11y77d2+BDuiY2LMzaz/z44QOuE+AMEpyoi5PZBNEv/PDexQkdXN1lGLYZeA9LtcryDMrdqeTXGNf7QLk3ojdvNkVBgcqyOXJpkgL67HPi+lh+TFKgBUqP4dYQw/VI+xYakHkuYWUd7wGV+//7v/8b27aXW0HpVfvb3/725R9pQgKQj6+tB52qz3SdSa/L9xUspD59y2XZXGfFsPEWtphWEPZb/LursZdEXxpMyW9fKkXBxA178QO30R9SDfr0gypKnlMdJoRdbcEUr1wcXTeI06D1qDbvE6L4ChrG7aCAED+C5vB2632KqlLKb5fe3NXAspr8+M8/+OQ5WCTkpo+h6OhWkx/+8w88x8NqOaQ9l4fWaFQUBapTb16hg/uhRt9aEA7mGTlVlq2urjd0+DknnywsuJnneB/U9M87XYFqm2E/Y2BaVNWCjDZB0qf1gOX+7W9/u/3wkP5ars/r92lMAg+slvw815n0unxfwYJmYA/15UvLVW3x74XP8KcPlDemWlbLElIYF9kXLoORwfAhnR1EAUnDZdgzl13TVyuPYz4CVFq0HlXFXUFVoKRNfVoIA8KrGv3pxui1BtqnkOye1x/NtFiz3/Db1W/8+HOd3bPx7a9q2nSsv/PrrxbtSMUKH96AlaZpoKgTi80YDTzUzYDBortrlpNXHlq8+0W13WXln/8vQZRj61NP/CgkpoLZ+7zgBD+EXjDEMpdckCQpDRo1+P2Dxyh0GBkTvxXj/8z6jPYc15n0unxnLTiqaLqOvuxf9Z5QVqlSLV/XCZ6QRDnVyvX33zzn5rtDUVCQk817rdU0EquNNXJxPQ/P8/GDkDi7P8wZr8PdC7IoCri6W+xeFMX1+kwP5+at887wO+MXc4Y/XBxdN7TbMh7ZSJJG26hxledf1qGIsPo/8WlWb4N6g0Yp5vNi51K7WJ+bqV21vvQIqHSxemXgIx81C3OJ0pBqt8tKlt6UcGWuyaAY4N/TP0USR1y1Wvd0XzzjGOk23k6daDggmjxARcJw4FPd9PjSWKdGQ/EwzSGu6+J5Hr7vE0TJPaUwz6yIcWzv/v4xlp1t6DD0X7pPiJxwOCR48sVG2N3Rk+8jWGY/NRgMO5T4yE+9LqPrpkiL1GPofwCuiFyPKJ06m57hOpNel++rZOHZGAy9LVLToj0ssFsqaRyjGA7eIKFht+lFbUwnx+2beGEEpRzXbJPoGr3hiJ42MbuGhaVrWIOUqlJQ5DkfP42T/8r1DVzf5c4XiSJkaDr4UUyppDBodwl6Nl4vw+qPCKOMUinAMrq0zCFuK8K0PaIQSoVLz0gxrBEjzac38IjDEqViRK+b0B+6mMVoPDz6PDzG6I8YKCNMxydKSpSwabV9zIHPcv3cZMTJuOXGpvH4N4fG0GOnbdF3VXpKQhhDoQJGm7tzNegaH3HijMVFGQpt26T2i4th926VWhi2zcrPQxq2udzbvmbhml2cUYCJzyhqEwTWPS3zFcThe1a7CwKKeDRx7By63Yiu5WIbCg07Iq5a9Ns9Wr0uDWICP6LohcRWa2KeCl27i20MsUMVpcjJPn7iCqBUY23o4d8a/x5FjDvwxt+xZ1Gr6Pq4AbPpQo8vEpyujTIKnjyxTTH6tPpd+qrHyLjnO8uTbEtBZHUZtTy8OSdNkcWEYUSSFRRFRo5KVVFRVZWq3qDV0uck5o4bZnuOoG6Z/aT2PKLcpGf9wn/+279ilcpoXYdBt4bvVWlUc/I7Z9AzXGfS6/Ktq2O8rEtxfnYiTk7OxMVEzbPLi4slGrE5ETvNVbF5eDY1zaW4ODsSO6tlUVqbUw//1ToWG6Vxwyxb8+syPtjF2ak4uxDic5W/W1WvJlwerovy6t4zN+wyq1Gm61/OT8Xp+QPPjMtD0SlP1zl/nIuzU3F6NntG54frot7ZFSfT63t5Lk4ONsTKjGq5i12K89NTcbLXESUQpbVdcXJ6Ks7OzsTp6ak4eXsk9rdWRaVUE539Wa1rXIq3W03R+eoWvxY5FdvNtQc0Kva12yLExdG6aG4cz7gfXIrTgy2x1qyLZnNV1CvjBozqax2xttYUK5Xr6oUgKK+I9Z3jGeftkVi/09DXU3rofvrsUpyfnYqz641d7j4o/dX8xYKFJ3C0IUoz2je4cbIlKuXZLfy9Wp8bKaIjHtvCwkxvt0Rl4cPtrdiqrYidx7YA9SDzg4VlnO81RWXmQ+YpnYnd+nQ9+EmXYn9tQTsQC5zvrQpArE+3LXHtaL0soCa2p4/V6Y6ov0C9+svDjqitHz5o/z56W8RbsVmbEfBdnoq9tbro7L29vu6vW/Kcuh4uz0/E4e66WCmPg4baxuFUwPDcwcJy+0mSlvGd5Sy8AnqLRuLP/Z6ZhhHFzGL1VyyJxkW7zemaDF852zDg46x8hRstBqMG3jD4fnsaBCBmOFJx7slp+HoajYZC6MWz90ceEsQ1jEdkoEZBBKzSNua1LaICHwjDyRO/wLeHVK3+s9erV7oDupGNk94/7uO2BbKRjdeyp6rGFgSmgVVYuP3WdfF7SpICNf1WfopSbdC1POJoj9UyfPi5h+m9bCbJMvtJkpYhg4VlaX0Cv41vduk7PmGckKYJcegx7LfpxyaR13umh0ZBGnq4bkDygk/PNE64Aiqt1pN8k8zDEVa/S2/wHogZWTbenA/NanvEkAGm/03T9xYoCPt9soE7v/2FJ2S4EYPCpmvauEFEkqYkcUQwsuj1RmhuxPI9JEcE4RWstJn9ubsgiT8AU90Y5x5O0MJ8iQ2nQa+dM3Luy3h95LaQ4o5iuv321LWbkrdGxIE58Z0+I/sANBozgyRF7+MOm8AVv3nhfRv2xB66nyRpOX+RBMenpbYsvMAiTyLiNCFKQK3q9IYB9rPdN3OCfhfPcHHaAWZ7hBM+/xsdQDzuahLjK5IbJ6mtHrbe47pnYoqiQJkbhai0XY+s18dteF+ysL8TmW8x0ke4L9ZlskZvFNArMuI4JolSCqWKZti4/Tk9VN4nCQk/QaVnzD6fch83BGqbDLpfllAEHr/rbbzpheYRnp9QXDcoVRTFuDvqVo7nx3xuTnQ82KStAWmIG6YoikJRFGiGiTG1Mq22QWZ7JEy3UPr120Lm471rYd85xXV61tTS0pgYWGk15u5vzeiywh+8zzOmezP/si7fcD9J0rK+9XcQ6WFOdpqifpNdeC5268/9Lf+zcX8OzOh45mVdiLOHJhsuO+ezs0cnpJ6fvf5+9cbf+EtidpcfZ+KgUxHM6LX0eKM8uz+K8yOxvbV+3YshgpWO2Nw/EeL8SOxsrYv69Tf9lc6m2P/8Af9kX2x0VkSJsqivTwy/vaJzeyL92m15aI+hN+NSEhuLegy72BerIEq3RprKWfiG+0mSliVLFl6DbER/oGJnn197CoriPXEKz//qkJC85ysaY3oqKtozLV99QJ8K81Sfa6Ve0Pgbv4ZahITheFiRZ6RJiO9FKO0Rp16X212lFKTZJ7S2dneG1TZDp027CPn3nz5CXsU0x99GbKdNqwj4958+UWgm5udPJg2TUc/HL2xCz5z9Jl6tUiUlSWBe8szjtgWyLAWt+6CSujiKAIO2sWCkLCMDGov6UfmG+0mSliVzFl6BaDjkD8Oke3NnSIjTytLNCj/KdTPPJeOxjTFJ37frb/wVnYZaUBTjP1SNVm9IEMf4w7sPV8jIMlDndaACGJZJDeCjhxN8TrJJiaJxmx0fXIebwWS4Tkjb6i3oPExFLX8kndv20GO3BbI0A1V9wGeclDD4CM0uc/Inx/MLfd6XOtjm/cHky+8nSVqeLFn47oWM3A/UjBR3NBoPSn3CK53hC3yQzOOID8Dawtco6dW6/sZfavfptx/WDdpYPg4WlAURq25hNX/gn398wnc88raJGjuM8nU2Vn/h5999HD+n3VMhcXFSE29hxwIqqgpZMacN8EdvC+RZTnnRtnyW+njvYWXHWJDsG+M4MfVBTPf+6OPl95MkPYIsWfjeZQnJpxV6tkm326Xb7dIg5WOt9aCOg75WHMZAnfZ9redJr1IeBrwHjPYjyquV+/oFrWJaa5SAq98c3BQCx6VqDRlZHUpc8Zsz7jgudBwUq39P6dU42U+d0439827LWOq7vGMFszcvUi+IbRNXGxHYD43mX3Y/SdJjyGDhe5fEJKUW7VaVarVKtaqMmxW2rRfIdL4uCq0YdzKupT+HMIh4XDCoUlUhzxdXaVV7Nr0ywDucoYXjt7BMDaVr0asAfzg4kY/j6Vj3diyQk+cVqnNe6R+/LePPKVf3bAtk+O47qPfn1MrJiZ0uZmIR+ss1ffyS+0mSHkMGC9+9gkKb6MkwGeEk6w/6Fvr1i44I30O53ZX5Cn9Kn7/xPyYY1NC162/9CxlYZg2ADz/9SNS2rnNvDGxzBfjAqNsnNCx6953SRU5+VZ2T6Po12wK6rt8kJc6V+XjvoNnv3QkEsmiE2WozYEDomzPzIhZ7qf0kSY8jg4XvXcOgddNDYcbI8mkHL9RnfBwSUaLdM15gYdKLizz8T49PXm0YdT5Ec1qTnBzPsqgDUMG0vjR6pFsWTeDTx4Ke1b3/63ocEpUbNLQZv33ltqitBpXrZN55Ms/lD+oYjZwkjonCAM+xMNsG5qjA9CN8q7Ug8XCxF9lPkvRY37rupnSfS/F2uyM29vbF7sa62Dw8e7Eln26vCErr4kg2NP+ncna4JdY7HdGslUWpVBKlSl2sddbFzvGSFfNPtkXtQf2gXIj9tZKgvjvVh8SFOOiUBSs7D2rf4Hy3KUqd2/0ePNm2iGOxUa6J7Zkrcine7jRF+bqjqFKpLCq1ulhd3xI7+0fi9MGLuq9viOfbT5L0tf5FCCG+dcAi3a/IMwq1+ui3luUl2Pr/YdQ6JneNF1uq9JokDHWD1M0YPXt9/oxRSyccZPfUBHi8qF/F1EKSBycmLiugpwXYqfOMn/Wefz9Jf03yM8QroTx3oBCP6LZ7uJ/7aIhdvPd1BgPjOZcqvWo6pt3Ad/zn7+grcXDyPvYzPgBblo0ycoiebQkv4AX2k/TXJIMFCYA0GPHrb7/gxTnj3AgHZWtEX/vWayZ9z6rmCCsdMkqfcykFwcCn5QyeN9FWtxh1Iwbea23N6IX2k/SXJIMFCQDNHLDZ2aCrRLj9Hq7mEjgt2aSLdA8N2zXxzSFzOg79aplvMlBHjF7gbbk1dGk4Jm767It6ci+5n6S/HpmzIE0oyJKEXNXRq/KGIz1cHlqYfhfPMZ42wExdegMYuuaL9LAKQOZjWgmWa9N40o0J6OkBdvIMOQvfYj9JfykyWJAk6UkUaUqhaU+aW1NkKUX1aef5IHlKiob2pAsuSNMc7RkaQPhm+0n6y5DBgiRJkiRJC8mcBUmSJEmSFpLBgiRJkiRJC8lgQZIkSZKkhWSwIEmSJEnSQjJYkCRJkiRpIRksSJIkSZK0kAwWJEmSJElaSAYLkiRJkiQtJIMFSZIkSZIWksGC9P2ILLRqFU3T0PrBV84sJxwOCZ6lA8EIuzsifeTU8cjGe+zEiUPXjh8+/IVkvo0TPnVH1SmePSKeM9t42BqfK1WVrvfsnWRLD5Q4LdSqhqZp9Lz8W6/Os3ie8x2Cfo/n2WVffy39r+dYLen5FVlGUa0+WVvwRTH7BFEUZcHvCopy/7RLrAVK1yMZGUtOd3c+kdVl1PLwnr4ZfiAnjRMWXtNZyHDgkWsaRaZgDq2bToka/R5Bu4fvenSXXb88Jc5mREDzht8jDYaMwnlbolLVNLRGi3ZLm9tBVB6Y9AKTYPTUnY9p9PrQ7Y1w/P6dDpIadkRqQzps0H/iJT9E6g9xwofucwW9a9M3/gK9NxQ5xijF717/O/GwnIAsz8mrfXyn/c16s32R871IiYKQOM0pioIMqCoqiqqgVnVardacPkeuO/J7lrj3Ca4lIb0+b7dEBUSpcygun2SGZ+J4b0ds1MsCEICorG6Knb1jcS6EEOJcvD3YE+sr498o18X69q44eHsuhDgXx3s7Yn2ldHva/c/TLrNdm2Jl8/irt+biaF00N46faN/MciTWa1viZN7PZwdirdYUe2fjf57vNUVt6+3UOHtibXVXnC276LdborZx9PDh97i8OBOnp8diq46AFbF5dCpOT8/E2dmpOD15K44PdsX6SkmUm1vi+GLGDM73xVpzW5w8384WF4frojm9/yac7dTF2sEzrsAclxen4uR4R6zWN8XR6ak4PdoS9ea2OD45EScnb8XR4b7Y3VoTtUpdbO1uiOYTnNuvwenOiugcTgy4PBenJ4dio4ZgdU/MOo1eynOe7xcn+2JzrSnqzaZYXRnfSyvNjuisrYrmSlmUru+PUBHNjT3x9s78L8X+al3sLn3jfLivuZZksPAane6JZrksVhYc9Ec52RI1EDDrhD0Xe01EaWVTHM06md9uigoIaIq9x57sTxIsvBWbtVWx/6x3pEXBwonYWimJ5udIQQghjtZFqbIppo/W8WZNrO4vubOeOFi4nlhslhGs7MwOXs52RR1EuXMwdaO/FIfrNbF++NwP6lOxXa+LndPZv36rYGHsVGyvXh/bt5uiuT1jJc8PxXqtJCp/1WDh2mHn2wcLY099vl+Ktzuror6+L06vJzjdWRFQFpuTF/3FmXh7sC3WauMXq1J9aypgeP5g4WuuJZmz8BrpfaI8J3FaTztf9XMXtyrqrWKygshuYxfbhNGI9qyi88lpn6Xo/2GykY3Xsul9o9Le2O7xY9Zj2Ne+DFQU+BgTT5V+GrZFbg+IXnQNZ0hCwk9QMYw7xZMAaFWqwKcg4FZWROJgR13s7nMXKuvYVpXhwOd7z0xQbp13OWlWQLWLO2x/q1X6fnyrbw/Tnvh8z9wuxrDK0DXRr49/mqSATmNyAapGqzckSCK26yWu3v1I2/ra3KxlPf5aksGC9IXy5X++XA45od2iG7YJoiGteQ/hmdO+tBR3FNPtf6NvokXAcPSelb6FMTk4y7iioJj+VKp16akeo+DbPgKzMOA9JYx2Y/YIcUwCUFVv5chEI4eiZzJnqieldns0/BH+a8qXi4e0rRAApWvjdPVvuz4S8NTne0FKFz92aStfhmXpFZR19FkvTkqDoWtRAz75/ou/LDz2WvqLJTjmJIFPmORQ1WkZbRq3DuY4wSTNMrJModEz0PKEMExRWwaN6u1HUJ5GRHFKoTYwDB01j/G9kBSdbr89FbWOk+KyPCfLq7S6DapFShRGpLmKbkzMP0+JopiMKnqrdROtjlcxI0lSsiwjV3S6hn4zPE5S8iwjUxv0WhpkMUGUUKg6jVYDbeknaIZvGphJlzAc3iTofTN5ShjGFNUGRktDISdNQfucLZT5eO9a2HcKXDJCNyC9lZCp0TZ1UjcgUcYBTlEUoLUxjSoUCYEXkSkKSlFQ6G3M1uIik9xz+OXTCjv927eTJE4Abaq0BkDDMBSGfgRt45E75etFQQS0aBuzD3Ds+XygzOrAmrhRxnh+jjG6e8NNApcou05wLQoKFPRuj2rsEqYTx0DR6fZaqOTEvk9cKCgUFDTo9hq3k3dVg7b2D7ywoPfsJRlPIw0C0s9ho9KiJwsX5iqyhCiKiFPQGq3x/XT2iMRRRJIpaIZBq6qQhS5elFNtm/Qa9xcpPu35rtAyp1MCY6IEaLTmB9KNLu3yD/z0KWNRiuz3dC39dUoWiohhzyZS25iWRU/PGBg6PS+ZGCkn9l0cq8ff3wwJYw9rFJOHNv+mdSeqtGT4/QaGFYGmo6ZDDL1Fd5DSMLsUoz6jZHr5KaHrYpv/wd/NEUnqM3RCCq1Foxpj6TpmkFPELrYbg9ZAx6On6Qwny8LyhMAd0u/+nb8Pwi8Z+WmENxoPfzOMyEMH28+oNlpUkwEtrYu3TLJ8kTBqNzAT87sIFFLfpNV1yLQGWuFjDQP+//bOHzxRrVvj762gk046uZV00smt9Kukk1NpKvmqeKvwVaG0i6eSU8WpwqnCqcJUYaowVZjbhKniVCGVpJJUkmrdQk38H01iJnMOv+fheRKULcLauPbe71rLbcrQpkbliefhe15acq4xosCH3d7D3t4e/q2bcIMIMRJEPR9OS8Pe3h5000Uvjh+P6XkWWtoe9K6LIHzODQ9hmV+AnAJFmP1s378FGGGpAloqy7j3XMyby/vhw/UegLyCZUL92DegmSEKhy5cTXh6IfLh30qQl6yExVEA32phb28Pe/820PVCxAkQhwF82xjdA6MLL4wfp0KjnouuvgfNsOEF0ZIpUgGynIHn/vRFm+dJIgS2hrqdvFm00t+XBEG3jrLmAKIKvalAjC2osga7N2sFSWBCkeqwIh6iCDiaBEnRYLMqmpKPZsvdYGr97e19gShAcAfkJHnN/ech8ABywvKlkMn5fKS+tEMlxfbcnFC1UKDCllvx4OLZpgcnJQKy1Lh4Em8Mz2rEMEsEeRcNYlCg0tFI4DI4P6BS6ZAmh/ZPSsSgQtM6kPNGhlA4ohW6kUf6nSKBKVLteFatf1oFIV+h/eNp2VyfOkUQUzldUPafrhALnVZAKFSpczb9pS6okQHlDlbq9ycnRwWAgBwVxpERmVKHrjfRjt0cUR4goEpLtE2bsULgeH1coUyuQVO3jm6OCgTkaFpPdtMpEConK6MghmfVsSI5T0c3s/sBEApzgqf+MRUzNTpfaHCJwHEsikK2SNVqdWorUo4BoXSyXNh1sU8Z1GhjaeJbCxyvR/eNqRzRxcXFeDun05MOHdZKVCg26PhyieLq6oCyzJrz7h9Tcaz+Lk2rTQeT/fMi1Gs6zOdonYleH+YJpcX7+5EEjtlsjnIZhsCU6PiiQ6XaS0Wncwzf6Pu9VTtrWClwrC0+s/onFWLyi2Lh4XmNMtkanT+++ZL2s6Dc4dQ7+x0qIEO1xQ667uR2Y+/TnNeIAUPru+NIZMlUp5/tKwSOH6QvfayZBUGD7fvwt9w8s/xs05yooFQQIXFPw05WliE+fMOCg8WyYPEdnKCCA8ApJjyvjcmsle98xUNWhDg1ghUlAfjuYGUI72PTLPAQgpfLM+vqopADfkQQ1emJKx6iwOAhDBYSAK1KYcCyAHosxJkA/pHQ5jbcdPyaQFA0FBjg/uu6PNL5AAARaUlEQVR/UFatFycgejVRF5ruQW6bmJ41TJAAmTKUqWXgKIwAjlupV2BVHfUMAPxA13y66YE3nrr53oU5NYvTM01Emj61FrmaxPfwHUC168FxnKdNlxA/AMW6snyUwXPgEOLZiYsdEXsufgCQRBFJkow3gJcU6JaHwLfQXLb8EkW447jVIydeg15lAABfzacEVonvjWdRvsK0wqf3eyYstgl9jQCCEzgg6v08W9wAUXcRxjH6Xh1uszUrkHspsQfTdNdOV2+Kp6swVzUUB3AsC44/9YYkQNew0Ht+yL49iQtd/wJeXdS9sEoTavIXtNa4n/Y8eHeAKE51eF6EyNzDdTYfIe/M3qfwHQ8PUKCW17yp58C9z0LT68/rqz5IX/pYzgJGP6Zbb5s0LBvwAg+6lCAKXNhdE6bpIgaQLM2CkYMoLm+ZF7JAEs8k5UmiZOVU8yJzKllMEhgtCmJGa1WbtDmFIGFWSjVa29q8HQn1lgnfP0KRAe6+/BvluvMmD6vtSODqBr5BQVOdvrAxfPcHICuYnhWMoxgZdt0NKENv5gAAt5YJNwGQuDAtDo1GHsAtLHOiTvZhWoCubxZxEgY9AAWU5VmbCVwX90wFen2F3oHjwWH0wPoZjKYiC6jrKhRFedzKkgh+TcdKohhg1z08WdT1OjLAlBMWwzZdyI0asgC+m+b4xzSBY9qQ9MVkMdNwHDdet30ZiWdAKZdR3nhTYLwoSx8LXm7CfovkQ4kPXfNRNlTsNMioZ0Ktu+BVFZxVR3PyvVkJTYODqb08Y+lKAhfe/ZwD8IgAUQDuPG/0ueMIhXhGJZwgeQAEQdj4I3dn749fCrZzB5QUrJBEAEjgtS3EpTZa5U3O+mP0pQ/nLOyOCJ5ZhySWYfiAqGhoGuqaC8ouEaSNkI02KnBhTdbLkwBdJ0Sx3cJmGiZ2+cwA80aRBJs6UM81Ixnwxg7D7V+/odz01mctfHMCON49IKtzHc+H6wNFZXZ2Bux4xmENkq6jAAD3DkwnRuyYcGUDZltHEcC9bcKOgcRpwxYNTC9briOKIyAjzQlmA1j2LTJ1fXUoZ5IgAQfuTW78tozXb7NllIUtD2WBZ692WYeWAx6dsNCC6aswui1oeQC3FkwPQGSh7SnQn4l3HQm5Xp61lC23YNk27I03C63VT/wNPk+bE8VGCLf0uIOWgcTQdxtxEruoqy7qtgGZ41BWBdjm1Po/p6KluNCtNx4uhCHusCrT6/gZ2RuPftk62gd5BJb96LREtgUvW5sNU17Lju0dAAIL9h1Q0uor7TT2dGieAtvRNncAP0Bf+ljREKGDpm5tPYJlywbstSPABF5Txr8sAcc9H4+2Fc8aaZJMT++v/8GVmm3wbhNNlwcbx+DbPXiqsOaIXxNWMuB5MeTy7/j+SUGZ8+C35Zc7Iz0L3VhDc5MBezwSCuW1OaGQ78B7yI2iFqbgOA4Pz83n8xqMioG9Lw/4Yhow4ENtOeB4QK/q2Pv8BaYdILY9KLq9cWdiWRbg+dnO75mwbnNo6mtcyDhCDB78z1DCjePNGUXZ+seI5TgwcfyM8yhB14v44z/fcG+b0NFDrDkosyJEvYjf//cbbNOGLpsI69azyz1xHC9e4+3OGjz/jklAWAVt/enf2NKg9kwE7Q1DKGMLuiOj296tJ+npGnzFhT2xwSTBfdhDBDwOpvi6Bogt+FoXm821bYAoIofPo/u60NNiRDEAcTJLygK8gnYzQkvTwXMJIihwe83V4dzz7NzegcBycIcKTHX5SUWegbqRwPQsKFv1+Z/flz6WsyCUYbTF7acZOWH964mD9qdbZBpdzDih4zUbEQASC61uGW39mbYAwHfRkyy069q2Z/qxSZ7+mL4HrNyGa/Ug7n3G998VKLwPVxdnHYaNbloEq2khsbTNzmc8QyKIwszunuPhjiljPkxaFEXAH4Uire4EHFS9jsyXP3H/7RM+ZQ9wNe5ZdV1D8/MnfGspCFGHs0VYkSAIADutl4jQbdng9l201j2Zohhx9jU/gC9nsn5bUV7w+BckCPceogRrk+0Imo6KsYcvD1/wx58FdG5GF4PXDFT13/D5sw7F56B7z59DHMZgeP7D5PZZxkIujcn+0ELd+AKhO+soJJEP1w0QcxIUVUTo9iAqI+c4cW2ESntmSTFy22hPqqMlIupmE6zdhBWMrgpb1tFWhXE0VAgWCSStC22VDcYWWjaLuv/0hrDXAzhl1iZZBXVJh+1js4iATZBUKNnfYXke0FRnX4t9+D+A/NHkPHpwPKDutqFrL/u43dt7D7ZzC6baxryvkIQeTN2Aw2rovjC67Gf3pY/lLICDIO5giMXy4DOLBY96fgw+O14Hi2M8rjskCZKJZ7sMQUBPUaDHGiSOBQsWLMdBkOSFXAzzTM4hmTO6JEmAh8VpriRJlq4tJQmAsafLze9feH8ys3/lGUbheFYnRjw9rADA1y1YtoDfPt/j639kqKwPpznlMDweGyIMZ48FEsQ9Fy2tiT8iDdczr62BLUMtAHYcY/Lzn/RMaOYPoNxaGOFwsoSs7iMA1i4HsYoOLfcn/rgFCvrUFG9ZRzP3Cb/f3oE71LcaQfGqinw7fByNRZaGVtKCa5bXdshe4ONBbs1pTN6DGI7tA8ij/JLiRqIEiTHhB0B93YXiVOhqBl/+ugdK+tOyDqtCr2fw+c873AktaM9egBh+cAup/h4poLZhvIwEjJ4f8dxDIw5gd9voejwkqQh+6nuGjgbNktC1dYiJg6Zchy2YiMfG67kehLn5ck5SUHbq+O3TD+Qa5zBYgJXrYLv/wu/fijhqjvoJJ0qAayBQHaybpY/sLr4+8BD9LrpjnaBvf0dWnhsMgIUoAm0vBOQ1Da5h8dkkw7T34SptmD0F+qNGLIHfasPPH8I3JhdMgMTa0DQeepl/0qvxImR5RU6GGd7B3gML9i0g6yLCXoA4jhH1AniuiyAWUG+58DeeBlnCz+5L64I7/k70zw+olM1R5eiULi7O6aRzRKdXQ7o5LlEmU6Ba45DOBzd0sl+lSj5LDMNQtlCham2fTm8WWqPjEkNMNke5XJaymaciSplCg84W3k9Ewws6qlWpmGOIYTKUK1ap1rkk6p/RQbVChexof75UpcbJNdH1CTWqFcpnnvbvn/WJro6pVi2N9+eoWG3QyTUt2V+jw/MBDS+OqFYtUo5hiGGyVKhUqbNQUuKGzjsHVJ0qBpUpNujwsZDUgC5PO7RffCo0BTCUrx7Q8cX/LRwLJku5fJ7y+Tzlc9mpAiqg7P6aehZLQieH18dUKVapc3ZOZ8dHdHh8QCUGVFyaQP2CGpnZcMpV3HQKBKZCp3PxjP3jEoEp0fqSDctqQwzp8rBCteNzOj/ep2qjQ1fPJsEf0mkFVNqmmMZrQyeHl9SpValaKVCWGdtiqUrVxsmzYb9zDdFpBVTc5NyvDiiHDDXmQ9yujyiPzIa1JS6oweSX5rT/WaGT1yc1KhWyxGRyVCyVqFTKUwZZyhdLVCoVqfBo+xnKl0qUz02F3t10qJiZtr9RmPRTaNyQTkorwu8moXQTGxyeUy0z6l+VyfE3HSosrUdSmQnNu2hkiKmeUL/fH2+nVGUYqi65nv3jImU2qG+xEDq55Nl0NBUHPbg8plqpQo2jYzo96dBBrUSlxslCyPbwcp9yTIayuRzlslOFmZgcVTqXy0Om38neB+cHlGcm55OhbDZPxUqDDjqndHGzqW1uUBviJ/alf4yzMGJI/Zsrurq6ocHU9RgOBltUKLyio2KJ9s9u5o4Z0uDmnI5KGWIqK2LqU9azspDUgG6ur6k/pHHFzezKGOLL/SzlV1VJeTNWF5Ia9q/pur+hNQ3PqJrZsujVTgpJvYzhWY0ypePtq4u+hIt9ys7nwRjzc/MsvIyL/QxhOsZ+eEoVTD/A+9QpzhUiemRIZ7UMAQzVzoY0OClRtnFMh4Wn4kiX+zkqdG6WfO60szCg4+Kc432xT5klTgYR0fCkQswGNrYqz8JzjCpC3ix9dvbPalSoduhq3tiGfbo6bVB+zTPhrdi9vb9HISl6cV/6B0VDAAALXpAgScKM+pxdE5u/gGuixdbRVufrnbPgBAWGqYHzvbeJr04Zw0EQR6FNobdcrzBB1g2wXfOnFWdieRHiM0tREyKrDV9t/bSiV6+FVXVooQlr5+knE9imA9lYHw726xAh8O+Rl6WnZ4jvws+UUX6cQubBc/cLqxojWKiGhiwe8Fdbh94OoelNGEYFzA8TbddG2xZhPBvKM1oS4AX+8X/HtCEYxtIluCiOIPDPtflyWE6AKApLlhRC2C0XsqHPRRsBYHlI9S6Myh386fwQuzi/d7P3XfLyvvQPcxbeAFGG1HPgrrDL0PORlJW3UwynTBHDdb8DZWWmUNMMoo6u6qO1VW7rn0GAdpeD+Yym4WMjo9WVYLc3SbP7CsIuzMiA+at6VQtw4AWAe8wJEsMxnYXnhijlEK2K7pF0GAUA3z7hT86ALgFc3UA9cwdL1eCrm1Re5SFL2cc8M4mvo52YcFaIvKNetCA2fh8ESBILzw6W21nswQ1yKD9Tu+X1vJO975JX9KXUWdgWoQnXUeBoKpqmAy/oIQx7CDwb7aaCZqDBtzfIyvUiEoSeDctyd5NR7cOSILAM6JoC4yuAng1DtxCsuAZy24JkaphOavaxSOA1m4ha1i87qzCBU7poowVtZ+UgAxiaC83W/yazCgDAot4+BucYsGwbpqGj7d9DnismJikKeq63og0BWquKDDKoGZN4/TIMo4CHBwG6UV5x3CyyYYJzW7C7BjRThOloK65zCM8XoG6SznQHlC0frcSAqhmwXB+9MEQv8OF2ddTrXQiWj/Y7aF93b++75JV9aadrI39zBteXdHF+RqenZ3R+cUU3OxUqDOh8v0SN0xsa9I+pWjpeuub0S3O5T9lCjQ4PD+nwdFZ3MBz0qd8f0GAwoMH477Wr1P0zatSO6GonS9nnVFuSz35T+mf7VOtcbaGTmeLygPIrNAtL978LN3RSq9HJzVu3O6SLgxodXizvWP3zDh0eHlKjmPnlNAsjhtQfDJfoFSZc02GxSus0a8PB/ItDGq6p/zAvcJwcM1hoZ46bDhUrpxtpsa6P8pSrHNDh4SGdvHUHHPbp6vKczk5P6fTsgi6v+y/rR69id/a+O83C6/vSfxERvbH7krIDgrYMLTIRmDKACKZURmL3YLx/zN3uiAO4Xjia4hNkqAsLlNu2FyLEpim4tyFBGMYQhJedXxRGU+vEWx+NMOQgLNQbX7X/vYgRRiyEDfUaG7cZsiu/U9xz4Y2n2HhZxc5noXeFq4Grs3DjxYRHiatBCQx4b9TRvaaCoOVC3+paJXA1BYHhbfS8SXoe3N5o5M1L6ksjLT84u7B3IA5DQFim23h1y6/uS6mz8CsQdSELDvTIHU9bh2iL/43AJNib5ZdOSUn5gAS2AdNy4UcCynoLpibNLWEmCEwdrmzCkF//w/QSZyGyNeixAbv5dxqZpGxL6iz8Avi6gP/ptTF0J1oIF3VWA+9FMFMlZUrK35wEgeOBU5VX6zZCu4tQba4pcjT/0T5sh4Nan0/SlPJPI3UWPjweNO5f8MpHMCbJxEMHrd8TtAcetF9cIJeSkpKS8vH5YOmeUxaIeujd51E3NEzqVIWmibucunkBlZSUlJSUlFeQOgsfnV6AHiOjLU+KDcVwvB8oGfpPqCeQkpKSkvJPJHUWPjwJEmGqKmGvC7NXg6n9qtLvlJSUlJRfjTQp00dHKkN+rNQWoas7UNzn65WnpKSkpKS8FanA8cOTwDfq6AoqJN9FT22jOxEvpKSkpKSkvAOps/CLkMQREo7fQbKOlJSUlJSU9aTOQkpKSkpKSspaUs1CSkpKSkpKylpSZyElJSUlJSVlLamzkJKSkpKSkrKW1FlISUlJSUlJWUvqLKSkpKSkpKSs5f8BpLzYp7Bd9NQAAAAASUVORK5CYII="
+    }
+   },
+   "cell_type": "markdown",
+   "id": "6bd7c62d",
+   "metadata": {},
+   "source": [
+    "## What about an uncertainty?!\n",
+    "\n",
+    "The method shown before finds the neural network parameters which maximize the log-likelihood of the data. But not all parameters are equally likely and we can estimate an uncertainty for them.\n",
+    "\n",
+    "With an uncertainty for the parameters, we can propagate the uncertainty through the neural network and obtain an uncertainty on the prediction of the regression output.\n",
+    "\n",
+    "This can be done assuming each weight in the network function has a given probability distribution and instead of fitting a single value for the weight, we fit the parameters of this probability distribution. For the example shown here, we assume that the probability distribution of the weights is Gaussian and we aim to obtain the mean and variance of the Gaussian.\n",
+    "\n",
+    "We are going to include the epistemic uncertainty through the variation of the weights. That is, the fact that the weights vary and lead to different effective functions allow us to model different $f(x)$ dependence relationships and this is attributed to the epistemic uncertainty.\n",
+    "\n",
+    "We additionally assume that the data collected has some aleatoric uncertainty, which means that every point is uncertain by some fixed unknown amount. To model this effect, we assume that the likelihood function $p(\\text{data}|\\theta)$ can be modelled by a Gaussian distribution with a certain standard deviation $\\sigma_a$. This standard deviation will be used to model the aleatoric uncertainty.\n",
+    "\n",
+    "The final loss function to be optimised here is:\n",
+    "\n",
+    "$\\mathcal{L} = -\\mathbb{E}_{\\text{data}}\\left[\\log p(\\text{data}|\\text{weights})\\right] + \\frac{1}{M} KL(\\text{weights}|\\text{prior})$\n",
+    "\n",
+    "The first term is assumed to be a Gaussian with the standard deviation given by the aleatoric uncertainty (assumed to be the same for every data point, but this could be changed to be data-point specific as well!). The second term corresponds to a penalty for varying the weights away from the prior assumption that the weights are Gaussian with a mean zero and standard deviation 0.1. In this equation, $M$ is the number of batches used.\n",
+    "\n",
+    "It can be shown that by minimizing this loss function, we obtain weights mean and standard deviations that approximately optimize the posterior probability given by the Bayes rule: $p(\\text{weights}|\\text{data}) = \\frac{p(\\text{data}|\\text{weights}) p(\\text{weights})}{p(\\text{data})}$. The proof follows by algebraically trying to minimize the Kullback-Leibler divergence between the true posterior given by the Bayes rule and the approximate posterior, on which the weights are assumed to be Gaussian and the likelihood is assumed to be Gaussian.\n",
+    "\n",
+    "![elbo.png](attachment:elbo.png)\n",
+    "\n",
+    "The details of the derivation can be consulted in the following paper:\n",
+    "\n",
+    "https://arxiv.org/pdf/1505.05424.pdf\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "id": "f8d501ff",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "class BayesianNetwork(nn.Module):\n",
+    "    \"\"\"\n",
+    "        A model Bayesian Neural network.\n",
+    "        Each weight is represented by a Gaussian with a mean and a standard deviation.\n",
+    "        Each evaluation of forward leads to a different choice of the weights, so running\n",
+    "        forward several times we can check the effect of the weights variation on the same input.\n",
+    "        The nll function implements the negative log likelihood to be used as the first part of the loss\n",
+    "        function (the second shall be the Kullback-Leibler divergence).\n",
+    "        The negative log-likelihood is simply the negative log likelihood of a Gaussian\n",
+    "        between the prediction and the true value. The standard deviation of the Gaussian is left as a\n",
+    "        parameter to be fit: sigma.\n",
+    "    \"\"\"\n",
+    "    def __init__(self, input_dimension: int=1, output_dimension: int=1):\n",
+    "        super(BayesianNetwork, self).__init__()\n",
+    "        hidden_dimension = 100\n",
+    "        self.model = nn.Sequential(\n",
+    "                                   bnn.BayesLinear(prior_mu=0,\n",
+    "                                                   prior_sigma=0.1,\n",
+    "                                                   in_features=input_dimension,\n",
+    "                                                   out_features=hidden_dimension),\n",
+    "                                   nn.ReLU(),\n",
+    "                                   bnn.BayesLinear(prior_mu=0,\n",
+    "                                                   prior_sigma=0.1,\n",
+    "                                                   in_features=hidden_dimension,\n",
+    "                                                   out_features=hidden_dimension),\n",
+    "                                   nn.ReLU(),\n",
+    "                                   bnn.BayesLinear(prior_mu=0,\n",
+    "                                                   prior_sigma=0.1,\n",
+    "                                                   in_features=hidden_dimension,\n",
+    "                                                   out_features=output_dimension)\n",
+    "                                    )\n",
+    "        self.log_sigma2 = nn.Parameter(torch.ones(1), requires_grad=True)\n",
+    "\n",
+    "    def forward(self, x: torch.Tensor) -> torch.Tensor:\n",
+    "        \"\"\"\n",
+    "        Calculate the result f(x) applied on the input x.\n",
+    "        \"\"\"\n",
+    "        return self.model(x)\n",
+    "\n",
+    "    def nll(self, prediction: torch.Tensor, target: torch.Tensor) -> torch.Tensor:\n",
+    "        \"\"\"\n",
+    "        Calculate the negative log-likelihood (divided by the batch size, since we take the mean).\n",
+    "        \"\"\"\n",
+    "        error = prediction - target\n",
+    "        squared_error = error**2\n",
+    "        sigma2 = torch.exp(self.log_sigma2)[0]\n",
+    "        norm_error = 0.5*squared_error/sigma2\n",
+    "        norm_term = 0.5*(np.log(2*np.pi) + self.log_sigma2[0])\n",
+    "        return norm_error.mean() + norm_term\n",
+    "\n",
+    "    def aleatoric_uncertainty(self) -> torch.Tensor:\n",
+    "        \"\"\"\n",
+    "            Get the aleatoric component of the uncertainty.\n",
+    "        \"\"\"\n",
+    "        return torch.exp(0.5*self.log_sigma2[0])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "id": "7b9beb21",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# create the neural network:\n",
+    "b_network = BayesianNetwork()\n",
+    "\n",
+    "# create the object to load the data:\n",
+    "B = 10\n",
+    "loader = torch.utils.data.DataLoader(my_dataset, batch_size=B)\n",
+    "\n",
+    "# create the optimizer to be used \n",
+    "optimizer = torch.optim.Adam(b_network.parameters(), lr=0.001)\n",
+    "\n",
+    "# the Kullback-Leibler divergence should be scaled by 1/number_of_batches\n",
+    "# see https://arxiv.org/abs/1505.05424 for more information on this\n",
+    "number_of_batches = len(my_dataset)/float(B)\n",
+    "weight_kl = 1.0/float(number_of_batches)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c68ba2e2",
+   "metadata": {},
+   "source": [
+    "The criteria for finding the optimal weights are based on the Bayes' theorem, on which the posterior probability of the weights is proportional to the likelihood of the data given the weights and to the prior probability of the weights. We assume the prior probability of the weights is Gaussian corresponding to a unit Gaussian centred at zero and with standard deviation 0.1. This prior has a regularizing effect, preventing overtraining.\n",
+    "\n",
+    "We can translate the Bayes theorem and the assumption that the final posterior distribution is also Gaussian into an optimization procedure to find the posterior mean and variance of the posterior distribution. The function optimized to obtain the mean and variances of the Gaussians for the weights is the sum between the mean-squared-error (corresponding to a Gaussian log-likelihood of the data) and the Kullback-Leibler divergence between the weights distribution and the prior Gaussian."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "id": "fbea6b0c",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "kl_loss = bnn.BKLLoss(reduction='mean', last_layer_only=False)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "id": "b92ed4b0",
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 0/500  total: 58.60563, -LL: 29.30297, prior: 0.49401, aleatoric unc.: 1.70738\n",
+      "Epoch 1/500  total: 29.89883, -LL: 22.77377, prior: 0.51578, aleatoric unc.: 1.74675\n",
+      "Epoch 2/500  total: 24.01581, -LL: 19.56905, prior: 0.54058, aleatoric unc.: 1.78531\n",
+      "Epoch 3/500  total: 20.88541, -LL: 15.23512, prior: 0.56686, aleatoric unc.: 1.82458\n",
+      "Epoch 4/500  total: 18.42086, -LL: 12.56114, prior: 0.59138, aleatoric unc.: 1.86375\n",
+      "Epoch 5/500  total: 16.78540, -LL: 11.47957, prior: 0.61184, aleatoric unc.: 1.90320\n",
+      "Epoch 6/500  total: 15.74639, -LL: 10.39981, prior: 0.63168, aleatoric unc.: 1.94387\n",
+      "Epoch 7/500  total: 15.23265, -LL: 10.92122, prior: 0.64618, aleatoric unc.: 1.98676\n",
+      "Epoch 8/500  total: 14.43628, -LL: 14.04801, prior: 0.65764, aleatoric unc.: 2.03084\n",
+      "Epoch 9/500  total: 13.75567, -LL: 9.28419, prior: 0.66495, aleatoric unc.: 2.07617\n",
+      "Epoch 10/500  total: 13.46332, -LL: 9.24567, prior: 0.67066, aleatoric unc.: 2.12401\n",
+      "Epoch 11/500  total: 12.68328, -LL: 8.02405, prior: 0.68236, aleatoric unc.: 2.17244\n",
+      "Epoch 12/500  total: 12.16965, -LL: 10.14399, prior: 0.69100, aleatoric unc.: 2.22149\n",
+      "Epoch 13/500  total: 11.89046, -LL: 10.02692, prior: 0.69707, aleatoric unc.: 2.27265\n",
+      "Epoch 14/500  total: 11.31826, -LL: 8.22698, prior: 0.70348, aleatoric unc.: 2.32503\n",
+      "Epoch 15/500  total: 11.15097, -LL: 8.46218, prior: 0.70463, aleatoric unc.: 2.37917\n",
+      "Epoch 16/500  total: 10.78811, -LL: 6.91465, prior: 0.70900, aleatoric unc.: 2.43505\n",
+      "Epoch 17/500  total: 10.27545, -LL: 7.55249, prior: 0.70822, aleatoric unc.: 2.49083\n",
+      "Epoch 18/500  total: 9.88403, -LL: 7.78374, prior: 0.70896, aleatoric unc.: 2.54750\n",
+      "Epoch 19/500  total: 9.49734, -LL: 6.96424, prior: 0.71104, aleatoric unc.: 2.60481\n",
+      "Epoch 20/500  total: 9.18567, -LL: 6.83609, prior: 0.71782, aleatoric unc.: 2.66279\n",
+      "Epoch 21/500  total: 8.77549, -LL: 6.85847, prior: 0.72051, aleatoric unc.: 2.72092\n",
+      "Epoch 22/500  total: 8.64839, -LL: 6.52611, prior: 0.71736, aleatoric unc.: 2.78174\n",
+      "Epoch 23/500  total: 8.43415, -LL: 7.78695, prior: 0.71795, aleatoric unc.: 2.84376\n",
+      "Epoch 24/500  total: 8.17714, -LL: 6.13595, prior: 0.72104, aleatoric unc.: 2.90688\n",
+      "Epoch 25/500  total: 7.70156, -LL: 6.61542, prior: 0.72217, aleatoric unc.: 2.96854\n",
+      "Epoch 26/500  total: 7.61942, -LL: 6.63054, prior: 0.72667, aleatoric unc.: 3.03244\n",
+      "Epoch 27/500  total: 7.42529, -LL: 5.76781, prior: 0.72993, aleatoric unc.: 3.09773\n",
+      "Epoch 28/500  total: 7.29471, -LL: 6.51807, prior: 0.72927, aleatoric unc.: 3.16509\n",
+      "Epoch 29/500  total: 7.12159, -LL: 5.48303, prior: 0.73176, aleatoric unc.: 3.23374\n",
+      "Epoch 30/500  total: 6.79870, -LL: 6.10557, prior: 0.73237, aleatoric unc.: 3.30124\n",
+      "Epoch 31/500  total: 6.60342, -LL: 5.65072, prior: 0.73511, aleatoric unc.: 3.36955\n",
+      "Epoch 32/500  total: 6.63333, -LL: 6.37231, prior: 0.73616, aleatoric unc.: 3.44177\n",
+      "Epoch 33/500  total: 6.25342, -LL: 5.67089, prior: 0.73999, aleatoric unc.: 3.51138\n",
+      "Epoch 34/500  total: 6.25324, -LL: 5.80523, prior: 0.74006, aleatoric unc.: 3.58479\n",
+      "Epoch 35/500  total: 6.06724, -LL: 4.63822, prior: 0.73928, aleatoric unc.: 3.65814\n",
+      "Epoch 36/500  total: 5.97354, -LL: 4.87066, prior: 0.73962, aleatoric unc.: 3.73306\n",
+      "Epoch 37/500  total: 5.75250, -LL: 5.21252, prior: 0.74361, aleatoric unc.: 3.80782\n",
+      "Epoch 38/500  total: 5.70047, -LL: 4.60235, prior: 0.74538, aleatoric unc.: 3.88453\n",
+      "Epoch 39/500  total: 5.65181, -LL: 5.21456, prior: 0.74527, aleatoric unc.: 3.96423\n",
+      "Epoch 40/500  total: 5.43323, -LL: 4.63033, prior: 0.74861, aleatoric unc.: 4.04155\n",
+      "Epoch 41/500  total: 5.28977, -LL: 5.04850, prior: 0.74891, aleatoric unc.: 4.11915\n",
+      "Epoch 42/500  total: 5.24329, -LL: 5.24680, prior: 0.74535, aleatoric unc.: 4.19924\n",
+      "Epoch 43/500  total: 5.17848, -LL: 4.70368, prior: 0.75037, aleatoric unc.: 4.28055\n",
+      "Epoch 44/500  total: 5.16991, -LL: 4.86729, prior: 0.74977, aleatoric unc.: 4.36667\n",
+      "Epoch 45/500  total: 5.00426, -LL: 4.76213, prior: 0.74627, aleatoric unc.: 4.45042\n",
+      "Epoch 46/500  total: 4.96309, -LL: 4.31775, prior: 0.75200, aleatoric unc.: 4.53622\n",
+      "Epoch 47/500  total: 4.89156, -LL: 4.62450, prior: 0.75400, aleatoric unc.: 4.62413\n",
+      "Epoch 48/500  total: 4.77733, -LL: 4.33423, prior: 0.75599, aleatoric unc.: 4.71083\n",
+      "Epoch 49/500  total: 4.70859, -LL: 4.23383, prior: 0.75542, aleatoric unc.: 4.79768\n",
+      "Epoch 50/500  total: 4.61107, -LL: 4.23617, prior: 0.75896, aleatoric unc.: 4.88461\n",
+      "Epoch 51/500  total: 4.53410, -LL: 4.05732, prior: 0.76156, aleatoric unc.: 4.97112\n",
+      "Epoch 52/500  total: 4.53218, -LL: 4.03225, prior: 0.76646, aleatoric unc.: 5.06118\n",
+      "Epoch 53/500  total: 4.47935, -LL: 4.09978, prior: 0.76704, aleatoric unc.: 5.15256\n",
+      "Epoch 54/500  total: 4.39028, -LL: 3.94386, prior: 0.76755, aleatoric unc.: 5.24289\n",
+      "Epoch 55/500  total: 4.38337, -LL: 4.36773, prior: 0.76699, aleatoric unc.: 5.33596\n",
+      "Epoch 56/500  total: 4.35281, -LL: 4.11247, prior: 0.77196, aleatoric unc.: 5.43080\n",
+      "Epoch 57/500  total: 4.29956, -LL: 3.87602, prior: 0.77093, aleatoric unc.: 5.52630\n",
+      "Epoch 58/500  total: 4.23197, -LL: 4.01298, prior: 0.77028, aleatoric unc.: 5.62054\n",
+      "Epoch 59/500  total: 4.24475, -LL: 3.99289, prior: 0.77126, aleatoric unc.: 5.71866\n",
+      "Epoch 60/500  total: 4.16691, -LL: 3.89405, prior: 0.77055, aleatoric unc.: 5.81574\n",
+      "Epoch 61/500  total: 4.16522, -LL: 3.96328, prior: 0.76699, aleatoric unc.: 5.91432\n",
+      "Epoch 62/500  total: 4.11586, -LL: 3.69259, prior: 0.76921, aleatoric unc.: 6.01400\n",
+      "Epoch 63/500  total: 4.07180, -LL: 3.89622, prior: 0.77077, aleatoric unc.: 6.11181\n",
+      "Epoch 64/500  total: 4.07462, -LL: 3.86786, prior: 0.77294, aleatoric unc.: 6.21290\n",
+      "Epoch 65/500  total: 4.01141, -LL: 3.77488, prior: 0.77207, aleatoric unc.: 6.31128\n",
+      "Epoch 66/500  total: 3.99999, -LL: 3.65617, prior: 0.77586, aleatoric unc.: 6.41138\n",
+      "Epoch 67/500  total: 4.02086, -LL: 3.71232, prior: 0.77457, aleatoric unc.: 6.51647\n",
+      "Epoch 68/500  total: 3.96727, -LL: 3.82445, prior: 0.77131, aleatoric unc.: 6.61852\n",
+      "Epoch 69/500  total: 3.91331, -LL: 3.59059, prior: 0.77492, aleatoric unc.: 6.71576\n",
+      "Epoch 70/500  total: 3.92368, -LL: 3.87038, prior: 0.77663, aleatoric unc.: 6.81692\n",
+      "Epoch 71/500  total: 3.91091, -LL: 3.71611, prior: 0.77434, aleatoric unc.: 6.91915\n",
+      "Epoch 72/500  total: 3.90254, -LL: 3.84058, prior: 0.77568, aleatoric unc.: 7.02362\n",
+      "Epoch 73/500  total: 3.86610, -LL: 3.79804, prior: 0.77613, aleatoric unc.: 7.12259\n",
+      "Epoch 74/500  total: 3.86877, -LL: 3.67038, prior: 0.77967, aleatoric unc.: 7.22509\n",
+      "Epoch 75/500  total: 3.83692, -LL: 3.71282, prior: 0.78043, aleatoric unc.: 7.32391\n",
+      "Epoch 76/500  total: 3.84445, -LL: 3.81955, prior: 0.77407, aleatoric unc.: 7.42552\n",
+      "Epoch 77/500  total: 3.82880, -LL: 3.67313, prior: 0.77377, aleatoric unc.: 7.52656\n",
+      "Epoch 78/500  total: 3.81437, -LL: 3.66513, prior: 0.77432, aleatoric unc.: 7.62591\n",
+      "Epoch 79/500  total: 3.78821, -LL: 3.75625, prior: 0.77875, aleatoric unc.: 7.71907\n",
+      "Epoch 80/500  total: 3.83347, -LL: 3.61354, prior: 0.77968, aleatoric unc.: 7.82734\n",
+      "Epoch 81/500  total: 3.78359, -LL: 3.59515, prior: 0.77631, aleatoric unc.: 7.92300\n",
+      "Epoch 82/500  total: 3.78367, -LL: 3.67180, prior: 0.77953, aleatoric unc.: 8.01834\n",
+      "Epoch 83/500  total: 3.75569, -LL: 3.61895, prior: 0.78101, aleatoric unc.: 8.10435\n",
+      "Epoch 84/500  total: 3.76833, -LL: 3.55765, prior: 0.78393, aleatoric unc.: 8.19697\n",
+      "Epoch 85/500  total: 3.76053, -LL: 3.68451, prior: 0.78236, aleatoric unc.: 8.28731\n",
+      "Epoch 86/500  total: 3.76217, -LL: 3.74953, prior: 0.78270, aleatoric unc.: 8.37660\n",
+      "Epoch 87/500  total: 3.73655, -LL: 3.64136, prior: 0.77914, aleatoric unc.: 8.45761\n",
+      "Epoch 88/500  total: 3.75396, -LL: 3.62085, prior: 0.77929, aleatoric unc.: 8.54510\n",
+      "Epoch 89/500  total: 3.74527, -LL: 3.68434, prior: 0.77997, aleatoric unc.: 8.62806\n",
+      "Epoch 90/500  total: 3.75304, -LL: 3.66249, prior: 0.77914, aleatoric unc.: 8.71503\n",
+      "Epoch 91/500  total: 3.72325, -LL: 3.60384, prior: 0.77980, aleatoric unc.: 8.78583\n",
+      "Epoch 92/500  total: 3.74192, -LL: 3.59396, prior: 0.78044, aleatoric unc.: 8.86492\n",
+      "Epoch 93/500  total: 3.71866, -LL: 3.61358, prior: 0.78299, aleatoric unc.: 8.93002\n",
+      "Epoch 94/500  total: 3.72444, -LL: 3.58171, prior: 0.78235, aleatoric unc.: 8.99536\n",
+      "Epoch 95/500  total: 3.72439, -LL: 3.60700, prior: 0.77858, aleatoric unc.: 9.05974\n",
+      "Epoch 96/500  total: 3.73727, -LL: 3.67353, prior: 0.77897, aleatoric unc.: 9.13145\n",
+      "Epoch 97/500  total: 3.73587, -LL: 3.65088, prior: 0.78041, aleatoric unc.: 9.19960\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 98/500  total: 3.72790, -LL: 3.58224, prior: 0.78028, aleatoric unc.: 9.25964\n",
+      "Epoch 99/500  total: 3.71771, -LL: 3.66020, prior: 0.77745, aleatoric unc.: 9.31000\n",
+      "Epoch 100/500  total: 3.72549, -LL: 3.62102, prior: 0.77761, aleatoric unc.: 9.36518\n",
+      "Epoch 101/500  total: 3.71956, -LL: 3.57595, prior: 0.77925, aleatoric unc.: 9.41201\n",
+      "Epoch 102/500  total: 3.72677, -LL: 3.57028, prior: 0.77652, aleatoric unc.: 9.46463\n",
+      "Epoch 103/500  total: 3.72387, -LL: 3.65744, prior: 0.77754, aleatoric unc.: 9.50802\n",
+      "Epoch 104/500  total: 3.71402, -LL: 3.60348, prior: 0.77234, aleatoric unc.: 9.54170\n",
+      "Epoch 105/500  total: 3.72198, -LL: 3.63285, prior: 0.77360, aleatoric unc.: 9.58104\n",
+      "Epoch 106/500  total: 3.71737, -LL: 3.64993, prior: 0.77597, aleatoric unc.: 9.61322\n",
+      "Epoch 107/500  total: 3.71005, -LL: 3.56981, prior: 0.77387, aleatoric unc.: 9.63459\n",
+      "Epoch 108/500  total: 3.71906, -LL: 3.58226, prior: 0.77644, aleatoric unc.: 9.66549\n",
+      "Epoch 109/500  total: 3.72139, -LL: 3.63789, prior: 0.77184, aleatoric unc.: 9.69481\n",
+      "Epoch 110/500  total: 3.70912, -LL: 3.60181, prior: 0.77226, aleatoric unc.: 9.71032\n",
+      "Epoch 111/500  total: 3.71838, -LL: 3.63031, prior: 0.77578, aleatoric unc.: 9.73120\n",
+      "Epoch 112/500  total: 3.71506, -LL: 3.61052, prior: 0.77374, aleatoric unc.: 9.74926\n",
+      "Epoch 113/500  total: 3.71562, -LL: 3.72471, prior: 0.77285, aleatoric unc.: 9.76058\n",
+      "Epoch 114/500  total: 3.71990, -LL: 3.74557, prior: 0.76846, aleatoric unc.: 9.78141\n",
+      "Epoch 115/500  total: 3.72581, -LL: 3.67777, prior: 0.76765, aleatoric unc.: 9.80824\n",
+      "Epoch 116/500  total: 3.72395, -LL: 3.66619, prior: 0.76687, aleatoric unc.: 9.82927\n",
+      "Epoch 117/500  total: 3.72196, -LL: 3.67000, prior: 0.76839, aleatoric unc.: 9.84076\n",
+      "Epoch 118/500  total: 3.70945, -LL: 3.61228, prior: 0.76902, aleatoric unc.: 9.84046\n",
+      "Epoch 119/500  total: 3.71781, -LL: 3.57591, prior: 0.77380, aleatoric unc.: 9.84767\n",
+      "Epoch 120/500  total: 3.70874, -LL: 3.66554, prior: 0.77551, aleatoric unc.: 9.83665\n",
+      "Epoch 121/500  total: 3.72752, -LL: 3.65136, prior: 0.77845, aleatoric unc.: 9.86153\n",
+      "Epoch 122/500  total: 3.73040, -LL: 3.62794, prior: 0.77837, aleatoric unc.: 9.88645\n",
+      "Epoch 123/500  total: 3.71462, -LL: 3.68275, prior: 0.78350, aleatoric unc.: 9.88238\n",
+      "Epoch 124/500  total: 3.71511, -LL: 3.59032, prior: 0.78381, aleatoric unc.: 9.87697\n",
+      "Epoch 125/500  total: 3.72409, -LL: 3.58439, prior: 0.78439, aleatoric unc.: 9.89114\n",
+      "Epoch 126/500  total: 3.71711, -LL: 3.66987, prior: 0.78606, aleatoric unc.: 9.88819\n",
+      "Epoch 127/500  total: 3.71188, -LL: 3.63467, prior: 0.78302, aleatoric unc.: 9.87889\n",
+      "Epoch 128/500  total: 3.72376, -LL: 3.58284, prior: 0.78485, aleatoric unc.: 9.88960\n",
+      "Epoch 129/500  total: 3.71365, -LL: 3.66670, prior: 0.78087, aleatoric unc.: 9.88381\n",
+      "Epoch 130/500  total: 3.72456, -LL: 3.66885, prior: 0.78370, aleatoric unc.: 9.89316\n",
+      "Epoch 131/500  total: 3.71323, -LL: 3.62470, prior: 0.78227, aleatoric unc.: 9.88930\n",
+      "Epoch 132/500  total: 3.71856, -LL: 3.66937, prior: 0.78154, aleatoric unc.: 9.88618\n",
+      "Epoch 133/500  total: 3.71670, -LL: 3.64594, prior: 0.77825, aleatoric unc.: 9.88424\n",
+      "Epoch 134/500  total: 3.72210, -LL: 3.60950, prior: 0.77902, aleatoric unc.: 9.89171\n",
+      "Epoch 135/500  total: 3.71507, -LL: 3.59651, prior: 0.77877, aleatoric unc.: 9.88918\n",
+      "Epoch 136/500  total: 3.71900, -LL: 3.65212, prior: 0.78622, aleatoric unc.: 9.89051\n",
+      "Epoch 137/500  total: 3.71307, -LL: 3.61388, prior: 0.78563, aleatoric unc.: 9.88130\n",
+      "Epoch 138/500  total: 3.71602, -LL: 3.60536, prior: 0.78637, aleatoric unc.: 9.88007\n",
+      "Epoch 139/500  total: 3.72967, -LL: 3.64175, prior: 0.78606, aleatoric unc.: 9.89858\n",
+      "Epoch 140/500  total: 3.71805, -LL: 3.57543, prior: 0.78286, aleatoric unc.: 9.90221\n",
+      "Epoch 141/500  total: 3.71457, -LL: 3.60350, prior: 0.78505, aleatoric unc.: 9.89543\n",
+      "Epoch 142/500  total: 3.71818, -LL: 3.66506, prior: 0.79071, aleatoric unc.: 9.89198\n",
+      "Epoch 143/500  total: 3.70745, -LL: 3.66879, prior: 0.79167, aleatoric unc.: 9.87098\n",
+      "Epoch 144/500  total: 3.71752, -LL: 3.59973, prior: 0.79228, aleatoric unc.: 9.87335\n",
+      "Epoch 145/500  total: 3.71323, -LL: 3.68346, prior: 0.78821, aleatoric unc.: 9.86594\n",
+      "Epoch 146/500  total: 3.69810, -LL: 3.62257, prior: 0.79184, aleatoric unc.: 9.83553\n",
+      "Epoch 147/500  total: 3.70289, -LL: 3.60558, prior: 0.79325, aleatoric unc.: 9.81485\n",
+      "Epoch 148/500  total: 3.71252, -LL: 3.67221, prior: 0.79652, aleatoric unc.: 9.81311\n",
+      "Epoch 149/500  total: 3.73219, -LL: 3.57769, prior: 0.79471, aleatoric unc.: 9.85562\n",
+      "Epoch 150/500  total: 3.72208, -LL: 3.67267, prior: 0.78948, aleatoric unc.: 9.87345\n",
+      "Epoch 151/500  total: 3.71389, -LL: 3.65466, prior: 0.79006, aleatoric unc.: 9.87153\n",
+      "Epoch 152/500  total: 3.72419, -LL: 3.67915, prior: 0.79090, aleatoric unc.: 9.87917\n",
+      "Epoch 153/500  total: 3.71665, -LL: 3.62692, prior: 0.79997, aleatoric unc.: 9.88276\n",
+      "Epoch 154/500  total: 3.72019, -LL: 3.58589, prior: 0.79751, aleatoric unc.: 9.88690\n",
+      "Epoch 155/500  total: 3.71445, -LL: 3.61408, prior: 0.80268, aleatoric unc.: 9.88311\n",
+      "Epoch 156/500  total: 3.70221, -LL: 3.68263, prior: 0.80404, aleatoric unc.: 9.85331\n",
+      "Epoch 157/500  total: 3.70698, -LL: 3.70702, prior: 0.80339, aleatoric unc.: 9.83723\n",
+      "Epoch 158/500  total: 3.72310, -LL: 3.59278, prior: 0.80445, aleatoric unc.: 9.85699\n",
+      "Epoch 159/500  total: 3.71378, -LL: 3.73156, prior: 0.80416, aleatoric unc.: 9.85512\n",
+      "Epoch 160/500  total: 3.70706, -LL: 3.63655, prior: 0.80595, aleatoric unc.: 9.84014\n",
+      "Epoch 161/500  total: 3.71271, -LL: 3.57877, prior: 0.80410, aleatoric unc.: 9.84335\n",
+      "Epoch 162/500  total: 3.71768, -LL: 3.63120, prior: 0.80659, aleatoric unc.: 9.85032\n",
+      "Epoch 163/500  total: 3.71903, -LL: 3.65138, prior: 0.80638, aleatoric unc.: 9.85763\n",
+      "Epoch 164/500  total: 3.71713, -LL: 3.64704, prior: 0.80705, aleatoric unc.: 9.86186\n",
+      "Epoch 165/500  total: 3.71419, -LL: 3.64462, prior: 0.80874, aleatoric unc.: 9.86155\n",
+      "Epoch 166/500  total: 3.70272, -LL: 3.60857, prior: 0.80695, aleatoric unc.: 9.83837\n",
+      "Epoch 167/500  total: 3.71688, -LL: 3.60935, prior: 0.81090, aleatoric unc.: 9.84529\n",
+      "Epoch 168/500  total: 3.70292, -LL: 3.60577, prior: 0.80637, aleatoric unc.: 9.82553\n",
+      "Epoch 169/500  total: 3.71970, -LL: 3.63841, prior: 0.80866, aleatoric unc.: 9.83715\n",
+      "Epoch 170/500  total: 3.71758, -LL: 3.67275, prior: 0.81033, aleatoric unc.: 9.84604\n",
+      "Epoch 171/500  total: 3.72500, -LL: 3.59006, prior: 0.81392, aleatoric unc.: 9.86759\n",
+      "Epoch 172/500  total: 3.70126, -LL: 3.64450, prior: 0.81116, aleatoric unc.: 9.84247\n",
+      "Epoch 173/500  total: 3.72101, -LL: 3.64824, prior: 0.81156, aleatoric unc.: 9.84976\n",
+      "Epoch 174/500  total: 3.71152, -LL: 3.69934, prior: 0.81262, aleatoric unc.: 9.84919\n",
+      "Epoch 175/500  total: 3.71467, -LL: 3.68428, prior: 0.81517, aleatoric unc.: 9.85176\n",
+      "Epoch 176/500  total: 3.70291, -LL: 3.63773, prior: 0.81583, aleatoric unc.: 9.83082\n",
+      "Epoch 177/500  total: 3.70896, -LL: 3.66547, prior: 0.81045, aleatoric unc.: 9.82290\n",
+      "Epoch 178/500  total: 3.71117, -LL: 3.68764, prior: 0.81337, aleatoric unc.: 9.82000\n",
+      "Epoch 179/500  total: 3.70928, -LL: 3.61341, prior: 0.81607, aleatoric unc.: 9.81955\n",
+      "Epoch 180/500  total: 3.70466, -LL: 3.65554, prior: 0.81575, aleatoric unc.: 9.80751\n",
+      "Epoch 181/500  total: 3.70420, -LL: 3.64272, prior: 0.81693, aleatoric unc.: 9.79344\n",
+      "Epoch 182/500  total: 3.71046, -LL: 3.64984, prior: 0.81584, aleatoric unc.: 9.79500\n",
+      "Epoch 183/500  total: 3.71474, -LL: 3.66882, prior: 0.81325, aleatoric unc.: 9.80760\n",
+      "Epoch 184/500  total: 3.71527, -LL: 3.61031, prior: 0.81348, aleatoric unc.: 9.82014\n",
+      "Epoch 185/500  total: 3.70042, -LL: 3.66272, prior: 0.81257, aleatoric unc.: 9.80154\n",
+      "Epoch 186/500  total: 3.71282, -LL: 3.61934, prior: 0.81781, aleatoric unc.: 9.80770\n",
+      "Epoch 187/500  total: 3.71327, -LL: 3.67081, prior: 0.81615, aleatoric unc.: 9.81168\n",
+      "Epoch 188/500  total: 3.70315, -LL: 3.66320, prior: 0.81042, aleatoric unc.: 9.80011\n",
+      "Epoch 189/500  total: 3.69962, -LL: 3.63048, prior: 0.81293, aleatoric unc.: 9.78159\n",
+      "Epoch 190/500  total: 3.71830, -LL: 3.68563, prior: 0.81299, aleatoric unc.: 9.80476\n",
+      "Epoch 191/500  total: 3.71706, -LL: 3.64913, prior: 0.81458, aleatoric unc.: 9.81613\n",
+      "Epoch 192/500  total: 3.70988, -LL: 3.62455, prior: 0.81865, aleatoric unc.: 9.81723\n",
+      "Epoch 193/500  total: 3.70870, -LL: 3.63595, prior: 0.81586, aleatoric unc.: 9.81325\n",
+      "Epoch 194/500  total: 3.71062, -LL: 3.63609, prior: 0.81832, aleatoric unc.: 9.81209\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 195/500  total: 3.72410, -LL: 3.62442, prior: 0.81648, aleatoric unc.: 9.83962\n",
+      "Epoch 196/500  total: 3.71915, -LL: 3.66803, prior: 0.81624, aleatoric unc.: 9.84151\n",
+      "Epoch 197/500  total: 3.71432, -LL: 3.64483, prior: 0.81001, aleatoric unc.: 9.85190\n",
+      "Epoch 198/500  total: 3.71493, -LL: 3.59165, prior: 0.81170, aleatoric unc.: 9.85324\n",
+      "Epoch 199/500  total: 3.70331, -LL: 3.60793, prior: 0.80896, aleatoric unc.: 9.83340\n",
+      "Epoch 200/500  total: 3.70812, -LL: 3.59062, prior: 0.81499, aleatoric unc.: 9.82334\n",
+      "Epoch 201/500  total: 3.71478, -LL: 3.62452, prior: 0.81519, aleatoric unc.: 9.82977\n",
+      "Epoch 202/500  total: 3.71517, -LL: 3.56803, prior: 0.81508, aleatoric unc.: 9.83826\n",
+      "Epoch 203/500  total: 3.69960, -LL: 3.63084, prior: 0.81742, aleatoric unc.: 9.81023\n",
+      "Epoch 204/500  total: 3.70639, -LL: 3.66974, prior: 0.81871, aleatoric unc.: 9.80200\n",
+      "Epoch 205/500  total: 3.70826, -LL: 3.62572, prior: 0.81504, aleatoric unc.: 9.79858\n",
+      "Epoch 206/500  total: 3.71623, -LL: 3.64392, prior: 0.81659, aleatoric unc.: 9.81016\n",
+      "Epoch 207/500  total: 3.71774, -LL: 3.65070, prior: 0.81498, aleatoric unc.: 9.82834\n",
+      "Epoch 208/500  total: 3.69666, -LL: 3.65249, prior: 0.81455, aleatoric unc.: 9.79752\n",
+      "Epoch 209/500  total: 3.70594, -LL: 3.67450, prior: 0.81606, aleatoric unc.: 9.79126\n",
+      "Epoch 210/500  total: 3.69925, -LL: 3.68792, prior: 0.81400, aleatoric unc.: 9.77435\n",
+      "Epoch 211/500  total: 3.70082, -LL: 3.60530, prior: 0.81230, aleatoric unc.: 9.76606\n",
+      "Epoch 212/500  total: 3.71195, -LL: 3.64706, prior: 0.81609, aleatoric unc.: 9.77611\n",
+      "Epoch 213/500  total: 3.70414, -LL: 3.64134, prior: 0.81544, aleatoric unc.: 9.77201\n",
+      "Epoch 214/500  total: 3.71389, -LL: 3.63395, prior: 0.81622, aleatoric unc.: 9.78563\n",
+      "Epoch 215/500  total: 3.71683, -LL: 3.66099, prior: 0.81664, aleatoric unc.: 9.80171\n",
+      "Epoch 216/500  total: 3.72204, -LL: 3.66836, prior: 0.81515, aleatoric unc.: 9.82727\n",
+      "Epoch 217/500  total: 3.70703, -LL: 3.63465, prior: 0.81890, aleatoric unc.: 9.82033\n",
+      "Epoch 218/500  total: 3.70247, -LL: 3.71451, prior: 0.81721, aleatoric unc.: 9.80064\n",
+      "Epoch 219/500  total: 3.71433, -LL: 3.63672, prior: 0.82165, aleatoric unc.: 9.80686\n",
+      "Epoch 220/500  total: 3.70779, -LL: 3.61201, prior: 0.82151, aleatoric unc.: 9.80850\n",
+      "Epoch 221/500  total: 3.72726, -LL: 3.65804, prior: 0.82183, aleatoric unc.: 9.83772\n",
+      "Epoch 222/500  total: 3.71228, -LL: 3.65686, prior: 0.81864, aleatoric unc.: 9.84025\n",
+      "Epoch 223/500  total: 3.72339, -LL: 3.64982, prior: 0.82202, aleatoric unc.: 9.85690\n",
+      "Epoch 224/500  total: 3.70915, -LL: 3.63755, prior: 0.81988, aleatoric unc.: 9.85046\n",
+      "Epoch 225/500  total: 3.70552, -LL: 3.63990, prior: 0.82102, aleatoric unc.: 9.82943\n",
+      "Epoch 226/500  total: 3.70323, -LL: 3.64443, prior: 0.82060, aleatoric unc.: 9.81781\n",
+      "Epoch 227/500  total: 3.70019, -LL: 3.65555, prior: 0.82249, aleatoric unc.: 9.79478\n",
+      "Epoch 228/500  total: 3.71216, -LL: 3.69579, prior: 0.82333, aleatoric unc.: 9.79841\n",
+      "Epoch 229/500  total: 3.71140, -LL: 3.62137, prior: 0.82447, aleatoric unc.: 9.80692\n",
+      "Epoch 230/500  total: 3.70575, -LL: 3.64446, prior: 0.82529, aleatoric unc.: 9.79880\n",
+      "Epoch 231/500  total: 3.71456, -LL: 3.75829, prior: 0.82439, aleatoric unc.: 9.80728\n",
+      "Epoch 232/500  total: 3.70966, -LL: 3.63882, prior: 0.82492, aleatoric unc.: 9.80583\n",
+      "Epoch 233/500  total: 3.71351, -LL: 3.61270, prior: 0.82613, aleatoric unc.: 9.81784\n",
+      "Epoch 234/500  total: 3.70172, -LL: 3.62794, prior: 0.81822, aleatoric unc.: 9.79805\n",
+      "Epoch 235/500  total: 3.71109, -LL: 3.64488, prior: 0.82053, aleatoric unc.: 9.80066\n",
+      "Epoch 236/500  total: 3.70431, -LL: 3.62616, prior: 0.82161, aleatoric unc.: 9.78883\n",
+      "Epoch 237/500  total: 3.70279, -LL: 3.68337, prior: 0.82063, aleatoric unc.: 9.77969\n",
+      "Epoch 238/500  total: 3.71613, -LL: 3.67027, prior: 0.82166, aleatoric unc.: 9.79706\n",
+      "Epoch 239/500  total: 3.70064, -LL: 3.66745, prior: 0.82222, aleatoric unc.: 9.78118\n",
+      "Epoch 240/500  total: 3.70537, -LL: 3.60819, prior: 0.82710, aleatoric unc.: 9.77992\n",
+      "Epoch 241/500  total: 3.71476, -LL: 3.61006, prior: 0.82356, aleatoric unc.: 9.79421\n",
+      "Epoch 242/500  total: 3.71145, -LL: 3.64876, prior: 0.82434, aleatoric unc.: 9.79779\n",
+      "Epoch 243/500  total: 3.70802, -LL: 3.58574, prior: 0.82809, aleatoric unc.: 9.79796\n",
+      "Epoch 244/500  total: 3.70571, -LL: 3.65710, prior: 0.82588, aleatoric unc.: 9.79101\n",
+      "Epoch 245/500  total: 3.70188, -LL: 3.62964, prior: 0.82486, aleatoric unc.: 9.77658\n",
+      "Epoch 246/500  total: 3.72030, -LL: 3.63991, prior: 0.82122, aleatoric unc.: 9.80154\n",
+      "Epoch 247/500  total: 3.71523, -LL: 3.61676, prior: 0.82447, aleatoric unc.: 9.81099\n",
+      "Epoch 248/500  total: 3.71168, -LL: 3.59765, prior: 0.82207, aleatoric unc.: 9.81821\n",
+      "Epoch 249/500  total: 3.71399, -LL: 3.63747, prior: 0.82239, aleatoric unc.: 9.82253\n",
+      "Epoch 250/500  total: 3.70465, -LL: 3.64624, prior: 0.82184, aleatoric unc.: 9.81008\n",
+      "Epoch 251/500  total: 3.69921, -LL: 3.60426, prior: 0.82150, aleatoric unc.: 9.78902\n",
+      "Epoch 252/500  total: 3.71118, -LL: 3.67592, prior: 0.82288, aleatoric unc.: 9.79504\n",
+      "Epoch 253/500  total: 3.70237, -LL: 3.62898, prior: 0.82680, aleatoric unc.: 9.78291\n",
+      "Epoch 254/500  total: 3.70794, -LL: 3.64745, prior: 0.82541, aleatoric unc.: 9.78084\n",
+      "Epoch 255/500  total: 3.70302, -LL: 3.62780, prior: 0.82535, aleatoric unc.: 9.77530\n",
+      "Epoch 256/500  total: 3.71729, -LL: 3.63795, prior: 0.82601, aleatoric unc.: 9.79276\n",
+      "Epoch 257/500  total: 3.70993, -LL: 3.63274, prior: 0.82741, aleatoric unc.: 9.79693\n",
+      "Epoch 258/500  total: 3.71243, -LL: 3.65305, prior: 0.82601, aleatoric unc.: 9.80389\n",
+      "Epoch 259/500  total: 3.70296, -LL: 3.64940, prior: 0.82313, aleatoric unc.: 9.79133\n",
+      "Epoch 260/500  total: 3.71093, -LL: 3.59715, prior: 0.82558, aleatoric unc.: 9.79233\n",
+      "Epoch 261/500  total: 3.71045, -LL: 3.63395, prior: 0.82771, aleatoric unc.: 9.79831\n",
+      "Epoch 262/500  total: 3.69963, -LL: 3.67210, prior: 0.82712, aleatoric unc.: 9.77961\n",
+      "Epoch 263/500  total: 3.71113, -LL: 3.65016, prior: 0.82726, aleatoric unc.: 9.78695\n",
+      "Epoch 264/500  total: 3.70665, -LL: 3.60633, prior: 0.83064, aleatoric unc.: 9.78443\n",
+      "Epoch 265/500  total: 3.71054, -LL: 3.65116, prior: 0.83137, aleatoric unc.: 9.79059\n",
+      "Epoch 266/500  total: 3.69886, -LL: 3.60721, prior: 0.83100, aleatoric unc.: 9.77077\n",
+      "Epoch 267/500  total: 3.70686, -LL: 3.65023, prior: 0.83398, aleatoric unc.: 9.77222\n",
+      "Epoch 268/500  total: 3.69995, -LL: 3.71522, prior: 0.83159, aleatoric unc.: 9.75908\n",
+      "Epoch 269/500  total: 3.70539, -LL: 3.64799, prior: 0.83221, aleatoric unc.: 9.75858\n",
+      "Epoch 270/500  total: 3.70420, -LL: 3.63578, prior: 0.83041, aleatoric unc.: 9.75445\n",
+      "Epoch 271/500  total: 3.70999, -LL: 3.68182, prior: 0.82908, aleatoric unc.: 9.76730\n",
+      "Epoch 272/500  total: 3.70793, -LL: 3.63381, prior: 0.83376, aleatoric unc.: 9.76915\n",
+      "Epoch 273/500  total: 3.70842, -LL: 3.64926, prior: 0.83353, aleatoric unc.: 9.77610\n",
+      "Epoch 274/500  total: 3.70973, -LL: 3.62482, prior: 0.83395, aleatoric unc.: 9.77950\n",
+      "Epoch 275/500  total: 3.71090, -LL: 3.60236, prior: 0.83533, aleatoric unc.: 9.78900\n",
+      "Epoch 276/500  total: 3.70221, -LL: 3.67710, prior: 0.83294, aleatoric unc.: 9.77734\n",
+      "Epoch 277/500  total: 3.70494, -LL: 3.64316, prior: 0.83875, aleatoric unc.: 9.77393\n",
+      "Epoch 278/500  total: 3.71155, -LL: 3.61530, prior: 0.83769, aleatoric unc.: 9.78493\n",
+      "Epoch 279/500  total: 3.72149, -LL: 3.63981, prior: 0.83667, aleatoric unc.: 9.81001\n",
+      "Epoch 280/500  total: 3.70467, -LL: 3.62610, prior: 0.83533, aleatoric unc.: 9.80246\n",
+      "Epoch 281/500  total: 3.70502, -LL: 3.66885, prior: 0.83573, aleatoric unc.: 9.79123\n",
+      "Epoch 282/500  total: 3.70405, -LL: 3.63700, prior: 0.83748, aleatoric unc.: 9.78283\n",
+      "Epoch 283/500  total: 3.70889, -LL: 3.63902, prior: 0.83531, aleatoric unc.: 9.78254\n",
+      "Epoch 284/500  total: 3.71741, -LL: 3.60456, prior: 0.83570, aleatoric unc.: 9.80172\n",
+      "Epoch 285/500  total: 3.71138, -LL: 3.68161, prior: 0.83478, aleatoric unc.: 9.80546\n",
+      "Epoch 286/500  total: 3.70675, -LL: 3.59507, prior: 0.83560, aleatoric unc.: 9.80310\n",
+      "Epoch 287/500  total: 3.70698, -LL: 3.61376, prior: 0.83594, aleatoric unc.: 9.79633\n",
+      "Epoch 288/500  total: 3.70635, -LL: 3.60290, prior: 0.83656, aleatoric unc.: 9.78862\n",
+      "Epoch 289/500  total: 3.71560, -LL: 3.64837, prior: 0.83419, aleatoric unc.: 9.80237\n",
+      "Epoch 290/500  total: 3.70476, -LL: 3.65473, prior: 0.83240, aleatoric unc.: 9.79643\n",
+      "Epoch 291/500  total: 3.70503, -LL: 3.67415, prior: 0.83116, aleatoric unc.: 9.78742\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 292/500  total: 3.69757, -LL: 3.58311, prior: 0.82735, aleatoric unc.: 9.77046\n",
+      "Epoch 293/500  total: 3.70371, -LL: 3.64588, prior: 0.82783, aleatoric unc.: 9.76296\n",
+      "Epoch 294/500  total: 3.70312, -LL: 3.62281, prior: 0.83122, aleatoric unc.: 9.76033\n",
+      "Epoch 295/500  total: 3.70929, -LL: 3.64419, prior: 0.83021, aleatoric unc.: 9.76300\n",
+      "Epoch 296/500  total: 3.70208, -LL: 3.64338, prior: 0.83049, aleatoric unc.: 9.76104\n",
+      "Epoch 297/500  total: 3.70218, -LL: 3.61723, prior: 0.83026, aleatoric unc.: 9.75453\n",
+      "Epoch 298/500  total: 3.70252, -LL: 3.64148, prior: 0.83147, aleatoric unc.: 9.74977\n",
+      "Epoch 299/500  total: 3.70108, -LL: 3.68672, prior: 0.83107, aleatoric unc.: 9.74179\n",
+      "Epoch 300/500  total: 3.70634, -LL: 3.67040, prior: 0.82994, aleatoric unc.: 9.75107\n",
+      "Epoch 301/500  total: 3.69355, -LL: 3.60485, prior: 0.82971, aleatoric unc.: 9.73195\n",
+      "Epoch 302/500  total: 3.70322, -LL: 3.63580, prior: 0.83051, aleatoric unc.: 9.73157\n",
+      "Epoch 303/500  total: 3.70026, -LL: 3.70596, prior: 0.82929, aleatoric unc.: 9.72599\n",
+      "Epoch 304/500  total: 3.70397, -LL: 3.65822, prior: 0.83103, aleatoric unc.: 9.72934\n",
+      "Epoch 305/500  total: 3.70864, -LL: 3.56731, prior: 0.83211, aleatoric unc.: 9.74369\n",
+      "Epoch 306/500  total: 3.70876, -LL: 3.59099, prior: 0.83176, aleatoric unc.: 9.75274\n",
+      "Epoch 307/500  total: 3.70129, -LL: 3.63883, prior: 0.82881, aleatoric unc.: 9.74951\n",
+      "Epoch 308/500  total: 3.70983, -LL: 3.63237, prior: 0.82886, aleatoric unc.: 9.75686\n",
+      "Epoch 309/500  total: 3.70741, -LL: 3.60030, prior: 0.83055, aleatoric unc.: 9.76448\n",
+      "Epoch 310/500  total: 3.70709, -LL: 3.59931, prior: 0.83434, aleatoric unc.: 9.76765\n",
+      "Epoch 311/500  total: 3.69747, -LL: 3.63639, prior: 0.83337, aleatoric unc.: 9.74833\n",
+      "Epoch 312/500  total: 3.71152, -LL: 3.62594, prior: 0.83660, aleatoric unc.: 9.76304\n",
+      "Epoch 313/500  total: 3.70416, -LL: 3.64673, prior: 0.83517, aleatoric unc.: 9.76183\n",
+      "Epoch 314/500  total: 3.69919, -LL: 3.58278, prior: 0.83536, aleatoric unc.: 9.75043\n",
+      "Epoch 315/500  total: 3.70675, -LL: 3.60159, prior: 0.83583, aleatoric unc.: 9.75515\n",
+      "Epoch 316/500  total: 3.70445, -LL: 3.64417, prior: 0.83832, aleatoric unc.: 9.75135\n",
+      "Epoch 317/500  total: 3.70155, -LL: 3.64957, prior: 0.83247, aleatoric unc.: 9.74824\n",
+      "Epoch 318/500  total: 3.70251, -LL: 3.61336, prior: 0.83256, aleatoric unc.: 9.74411\n",
+      "Epoch 319/500  total: 3.70864, -LL: 3.61781, prior: 0.83391, aleatoric unc.: 9.75591\n",
+      "Epoch 320/500  total: 3.69483, -LL: 3.62589, prior: 0.83023, aleatoric unc.: 9.73673\n",
+      "Epoch 321/500  total: 3.70477, -LL: 3.65918, prior: 0.83147, aleatoric unc.: 9.73801\n",
+      "Epoch 322/500  total: 3.71006, -LL: 3.68025, prior: 0.83056, aleatoric unc.: 9.75054\n",
+      "Epoch 323/500  total: 3.70612, -LL: 3.63204, prior: 0.82882, aleatoric unc.: 9.75776\n",
+      "Epoch 324/500  total: 3.70220, -LL: 3.63502, prior: 0.82885, aleatoric unc.: 9.75287\n",
+      "Epoch 325/500  total: 3.70991, -LL: 3.67634, prior: 0.82949, aleatoric unc.: 9.75935\n",
+      "Epoch 326/500  total: 3.70031, -LL: 3.67920, prior: 0.83210, aleatoric unc.: 9.74968\n",
+      "Epoch 327/500  total: 3.71157, -LL: 3.65393, prior: 0.83033, aleatoric unc.: 9.76567\n",
+      "Epoch 328/500  total: 3.70492, -LL: 3.64040, prior: 0.82936, aleatoric unc.: 9.76520\n",
+      "Epoch 329/500  total: 3.70176, -LL: 3.60859, prior: 0.83023, aleatoric unc.: 9.75874\n",
+      "Epoch 330/500  total: 3.70091, -LL: 3.61544, prior: 0.83437, aleatoric unc.: 9.74670\n",
+      "Epoch 331/500  total: 3.70303, -LL: 3.65750, prior: 0.83323, aleatoric unc.: 9.74530\n",
+      "Epoch 332/500  total: 3.70879, -LL: 3.59750, prior: 0.82948, aleatoric unc.: 9.75656\n",
+      "Epoch 333/500  total: 3.70656, -LL: 3.65474, prior: 0.82868, aleatoric unc.: 9.76092\n",
+      "Epoch 334/500  total: 3.69965, -LL: 3.63443, prior: 0.83218, aleatoric unc.: 9.74758\n",
+      "Epoch 335/500  total: 3.70277, -LL: 3.63288, prior: 0.83110, aleatoric unc.: 9.74762\n",
+      "Epoch 336/500  total: 3.70189, -LL: 3.66539, prior: 0.83201, aleatoric unc.: 9.74239\n",
+      "Epoch 337/500  total: 3.69537, -LL: 3.65592, prior: 0.82954, aleatoric unc.: 9.72731\n",
+      "Epoch 338/500  total: 3.69802, -LL: 3.60642, prior: 0.82822, aleatoric unc.: 9.72182\n",
+      "Epoch 339/500  total: 3.71005, -LL: 3.67063, prior: 0.82849, aleatoric unc.: 9.73660\n",
+      "Epoch 340/500  total: 3.70104, -LL: 3.60019, prior: 0.83237, aleatoric unc.: 9.73406\n",
+      "Epoch 341/500  total: 3.70567, -LL: 3.62259, prior: 0.83000, aleatoric unc.: 9.74208\n",
+      "Epoch 342/500  total: 3.70195, -LL: 3.65865, prior: 0.82917, aleatoric unc.: 9.73657\n",
+      "Epoch 343/500  total: 3.70123, -LL: 3.62708, prior: 0.83080, aleatoric unc.: 9.73533\n",
+      "Epoch 344/500  total: 3.70437, -LL: 3.61342, prior: 0.82911, aleatoric unc.: 9.73596\n",
+      "Epoch 345/500  total: 3.70366, -LL: 3.60328, prior: 0.83045, aleatoric unc.: 9.74204\n",
+      "Epoch 346/500  total: 3.70356, -LL: 3.62689, prior: 0.83147, aleatoric unc.: 9.73873\n",
+      "Epoch 347/500  total: 3.69629, -LL: 3.64269, prior: 0.82647, aleatoric unc.: 9.72898\n",
+      "Epoch 348/500  total: 3.69996, -LL: 3.65626, prior: 0.82871, aleatoric unc.: 9.72221\n",
+      "Epoch 349/500  total: 3.70417, -LL: 3.63705, prior: 0.82662, aleatoric unc.: 9.72849\n",
+      "Epoch 350/500  total: 3.70177, -LL: 3.65497, prior: 0.82323, aleatoric unc.: 9.72953\n",
+      "Epoch 351/500  total: 3.70254, -LL: 3.67832, prior: 0.82772, aleatoric unc.: 9.73065\n",
+      "Epoch 352/500  total: 3.70162, -LL: 3.63990, prior: 0.83119, aleatoric unc.: 9.72532\n",
+      "Epoch 353/500  total: 3.70578, -LL: 3.60402, prior: 0.83188, aleatoric unc.: 9.73709\n",
+      "Epoch 354/500  total: 3.70272, -LL: 3.62950, prior: 0.82930, aleatoric unc.: 9.73685\n",
+      "Epoch 355/500  total: 3.70043, -LL: 3.62746, prior: 0.82995, aleatoric unc.: 9.73355\n",
+      "Epoch 356/500  total: 3.69946, -LL: 3.61545, prior: 0.83072, aleatoric unc.: 9.72545\n",
+      "Epoch 357/500  total: 3.70071, -LL: 3.67021, prior: 0.83015, aleatoric unc.: 9.72398\n",
+      "Epoch 358/500  total: 3.70548, -LL: 3.63582, prior: 0.82771, aleatoric unc.: 9.73216\n",
+      "Epoch 359/500  total: 3.69811, -LL: 3.60202, prior: 0.82758, aleatoric unc.: 9.72475\n",
+      "Epoch 360/500  total: 3.69686, -LL: 3.64973, prior: 0.82581, aleatoric unc.: 9.71591\n",
+      "Epoch 361/500  total: 3.70717, -LL: 3.65881, prior: 0.82941, aleatoric unc.: 9.72619\n",
+      "Epoch 362/500  total: 3.70385, -LL: 3.65302, prior: 0.82832, aleatoric unc.: 9.73025\n",
+      "Epoch 363/500  total: 3.70743, -LL: 3.64934, prior: 0.82749, aleatoric unc.: 9.74160\n",
+      "Epoch 364/500  total: 3.70326, -LL: 3.58934, prior: 0.82753, aleatoric unc.: 9.74316\n",
+      "Epoch 365/500  total: 3.70402, -LL: 3.62665, prior: 0.82742, aleatoric unc.: 9.74414\n",
+      "Epoch 366/500  total: 3.70585, -LL: 3.68176, prior: 0.82632, aleatoric unc.: 9.74891\n",
+      "Epoch 367/500  total: 3.70568, -LL: 3.62934, prior: 0.82647, aleatoric unc.: 9.75294\n",
+      "Epoch 368/500  total: 3.69735, -LL: 3.63394, prior: 0.82584, aleatoric unc.: 9.73833\n",
+      "Epoch 369/500  total: 3.70665, -LL: 3.60627, prior: 0.82508, aleatoric unc.: 9.74506\n",
+      "Epoch 370/500  total: 3.70283, -LL: 3.64191, prior: 0.82496, aleatoric unc.: 9.74463\n",
+      "Epoch 371/500  total: 3.69990, -LL: 3.63656, prior: 0.82942, aleatoric unc.: 9.73714\n",
+      "Epoch 372/500  total: 3.70170, -LL: 3.65815, prior: 0.82560, aleatoric unc.: 9.73377\n",
+      "Epoch 373/500  total: 3.70135, -LL: 3.66173, prior: 0.82487, aleatoric unc.: 9.73149\n",
+      "Epoch 374/500  total: 3.70539, -LL: 3.60903, prior: 0.82451, aleatoric unc.: 9.74010\n",
+      "Epoch 375/500  total: 3.69980, -LL: 3.63325, prior: 0.82713, aleatoric unc.: 9.73296\n",
+      "Epoch 376/500  total: 3.69921, -LL: 3.60023, prior: 0.82868, aleatoric unc.: 9.72724\n",
+      "Epoch 377/500  total: 3.69869, -LL: 3.66106, prior: 0.82731, aleatoric unc.: 9.72021\n",
+      "Epoch 378/500  total: 3.69702, -LL: 3.62505, prior: 0.82719, aleatoric unc.: 9.71488\n",
+      "Epoch 379/500  total: 3.69819, -LL: 3.60678, prior: 0.82717, aleatoric unc.: 9.71085\n",
+      "Epoch 380/500  total: 3.69677, -LL: 3.62688, prior: 0.82746, aleatoric unc.: 9.70245\n",
+      "Epoch 381/500  total: 3.70501, -LL: 3.60229, prior: 0.82751, aleatoric unc.: 9.71364\n",
+      "Epoch 382/500  total: 3.69922, -LL: 3.57855, prior: 0.83100, aleatoric unc.: 9.71044\n",
+      "Epoch 383/500  total: 3.69865, -LL: 3.63590, prior: 0.82836, aleatoric unc.: 9.70802\n",
+      "Epoch 384/500  total: 3.70344, -LL: 3.59795, prior: 0.82755, aleatoric unc.: 9.71421\n",
+      "Epoch 385/500  total: 3.70533, -LL: 3.64661, prior: 0.82573, aleatoric unc.: 9.72334\n",
+      "Epoch 386/500  total: 3.70198, -LL: 3.61014, prior: 0.82611, aleatoric unc.: 9.72450\n",
+      "Epoch 387/500  total: 3.70406, -LL: 3.64215, prior: 0.82555, aleatoric unc.: 9.73054\n",
+      "Epoch 388/500  total: 3.70490, -LL: 3.63847, prior: 0.82456, aleatoric unc.: 9.73703\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 389/500  total: 3.69739, -LL: 3.60615, prior: 0.82374, aleatoric unc.: 9.72495\n",
+      "Epoch 390/500  total: 3.70646, -LL: 3.59768, prior: 0.82653, aleatoric unc.: 9.73402\n",
+      "Epoch 391/500  total: 3.69914, -LL: 3.65293, prior: 0.82449, aleatoric unc.: 9.72576\n",
+      "Epoch 392/500  total: 3.70214, -LL: 3.62112, prior: 0.82444, aleatoric unc.: 9.72820\n",
+      "Epoch 393/500  total: 3.70022, -LL: 3.57499, prior: 0.82906, aleatoric unc.: 9.72694\n",
+      "Epoch 394/500  total: 3.69050, -LL: 3.60771, prior: 0.82554, aleatoric unc.: 9.70561\n",
+      "Epoch 395/500  total: 3.69285, -LL: 3.68116, prior: 0.82755, aleatoric unc.: 9.69149\n",
+      "Epoch 396/500  total: 3.70537, -LL: 3.61828, prior: 0.82465, aleatoric unc.: 9.70394\n",
+      "Epoch 397/500  total: 3.69655, -LL: 3.61455, prior: 0.82317, aleatoric unc.: 9.70052\n",
+      "Epoch 398/500  total: 3.70530, -LL: 3.62109, prior: 0.82612, aleatoric unc.: 9.71183\n",
+      "Epoch 399/500  total: 3.70086, -LL: 3.61040, prior: 0.82481, aleatoric unc.: 9.71438\n",
+      "Epoch 400/500  total: 3.70211, -LL: 3.64791, prior: 0.82474, aleatoric unc.: 9.71751\n",
+      "Epoch 401/500  total: 3.70449, -LL: 3.66220, prior: 0.82469, aleatoric unc.: 9.72471\n",
+      "Epoch 402/500  total: 3.69559, -LL: 3.68538, prior: 0.82521, aleatoric unc.: 9.71284\n",
+      "Epoch 403/500  total: 3.70262, -LL: 3.61727, prior: 0.82641, aleatoric unc.: 9.71845\n",
+      "Epoch 404/500  total: 3.70541, -LL: 3.65800, prior: 0.82866, aleatoric unc.: 9.72628\n",
+      "Epoch 405/500  total: 3.70215, -LL: 3.66135, prior: 0.82954, aleatoric unc.: 9.72948\n",
+      "Epoch 406/500  total: 3.69729, -LL: 3.64724, prior: 0.82800, aleatoric unc.: 9.72026\n",
+      "Epoch 407/500  total: 3.69719, -LL: 3.63176, prior: 0.82775, aleatoric unc.: 9.71121\n",
+      "Epoch 408/500  total: 3.70596, -LL: 3.66872, prior: 0.82940, aleatoric unc.: 9.72126\n",
+      "Epoch 409/500  total: 3.70204, -LL: 3.63414, prior: 0.83020, aleatoric unc.: 9.72397\n",
+      "Epoch 410/500  total: 3.70021, -LL: 3.64946, prior: 0.83012, aleatoric unc.: 9.72245\n",
+      "Epoch 411/500  total: 3.69402, -LL: 3.61718, prior: 0.82774, aleatoric unc.: 9.70823\n",
+      "Epoch 412/500  total: 3.70567, -LL: 3.61743, prior: 0.82851, aleatoric unc.: 9.71849\n",
+      "Epoch 413/500  total: 3.70361, -LL: 3.64554, prior: 0.82617, aleatoric unc.: 9.72331\n",
+      "Epoch 414/500  total: 3.69468, -LL: 3.60278, prior: 0.82620, aleatoric unc.: 9.71184\n",
+      "Epoch 415/500  total: 3.70510, -LL: 3.64241, prior: 0.82747, aleatoric unc.: 9.72071\n",
+      "Epoch 416/500  total: 3.70178, -LL: 3.59014, prior: 0.83144, aleatoric unc.: 9.72354\n",
+      "Epoch 417/500  total: 3.69967, -LL: 3.63795, prior: 0.83206, aleatoric unc.: 9.71923\n",
+      "Epoch 418/500  total: 3.69828, -LL: 3.60308, prior: 0.82796, aleatoric unc.: 9.71243\n",
+      "Epoch 419/500  total: 3.70307, -LL: 3.66544, prior: 0.82524, aleatoric unc.: 9.71768\n",
+      "Epoch 420/500  total: 3.70183, -LL: 3.61180, prior: 0.82254, aleatoric unc.: 9.72192\n",
+      "Epoch 421/500  total: 3.69221, -LL: 3.63945, prior: 0.82239, aleatoric unc.: 9.70423\n",
+      "Epoch 422/500  total: 3.69980, -LL: 3.61604, prior: 0.82302, aleatoric unc.: 9.70583\n",
+      "Epoch 423/500  total: 3.69928, -LL: 3.63499, prior: 0.81947, aleatoric unc.: 9.70428\n",
+      "Epoch 424/500  total: 3.70064, -LL: 3.64438, prior: 0.82250, aleatoric unc.: 9.70499\n",
+      "Epoch 425/500  total: 3.69506, -LL: 3.61971, prior: 0.82166, aleatoric unc.: 9.69757\n",
+      "Epoch 426/500  total: 3.70398, -LL: 3.62597, prior: 0.82278, aleatoric unc.: 9.70802\n",
+      "Epoch 427/500  total: 3.70216, -LL: 3.65498, prior: 0.81911, aleatoric unc.: 9.71137\n",
+      "Epoch 428/500  total: 3.70190, -LL: 3.64064, prior: 0.81833, aleatoric unc.: 9.71579\n",
+      "Epoch 429/500  total: 3.70573, -LL: 3.66083, prior: 0.81893, aleatoric unc.: 9.72434\n",
+      "Epoch 430/500  total: 3.69885, -LL: 3.65177, prior: 0.82123, aleatoric unc.: 9.72031\n",
+      "Epoch 431/500  total: 3.70198, -LL: 3.67658, prior: 0.81868, aleatoric unc.: 9.72134\n",
+      "Epoch 432/500  total: 3.70692, -LL: 3.63311, prior: 0.81943, aleatoric unc.: 9.73138\n",
+      "Epoch 433/500  total: 3.70009, -LL: 3.59875, prior: 0.81951, aleatoric unc.: 9.72938\n",
+      "Epoch 434/500  total: 3.69864, -LL: 3.63859, prior: 0.82302, aleatoric unc.: 9.72290\n",
+      "Epoch 435/500  total: 3.69655, -LL: 3.66607, prior: 0.82137, aleatoric unc.: 9.71333\n",
+      "Epoch 436/500  total: 3.69973, -LL: 3.65163, prior: 0.81886, aleatoric unc.: 9.71366\n",
+      "Epoch 437/500  total: 3.69769, -LL: 3.68498, prior: 0.81805, aleatoric unc.: 9.70730\n",
+      "Epoch 438/500  total: 3.69672, -LL: 3.64131, prior: 0.81733, aleatoric unc.: 9.70155\n",
+      "Epoch 439/500  total: 3.69554, -LL: 3.62049, prior: 0.82319, aleatoric unc.: 9.69490\n",
+      "Epoch 440/500  total: 3.69749, -LL: 3.62081, prior: 0.82234, aleatoric unc.: 9.69433\n",
+      "Epoch 441/500  total: 3.70329, -LL: 3.59532, prior: 0.82169, aleatoric unc.: 9.70249\n",
+      "Epoch 442/500  total: 3.69808, -LL: 3.62759, prior: 0.82254, aleatoric unc.: 9.70274\n",
+      "Epoch 443/500  total: 3.70494, -LL: 3.65422, prior: 0.82270, aleatoric unc.: 9.71221\n",
+      "Epoch 444/500  total: 3.69976, -LL: 3.65673, prior: 0.82426, aleatoric unc.: 9.71188\n",
+      "Epoch 445/500  total: 3.70325, -LL: 3.64046, prior: 0.82422, aleatoric unc.: 9.71596\n",
+      "Epoch 446/500  total: 3.70594, -LL: 3.65127, prior: 0.82255, aleatoric unc.: 9.72795\n",
+      "Epoch 447/500  total: 3.70256, -LL: 3.65205, prior: 0.82299, aleatoric unc.: 9.72941\n",
+      "Epoch 448/500  total: 3.70255, -LL: 3.66160, prior: 0.82127, aleatoric unc.: 9.73019\n",
+      "Epoch 449/500  total: 3.70477, -LL: 3.65332, prior: 0.82186, aleatoric unc.: 9.73749\n",
+      "Epoch 450/500  total: 3.69821, -LL: 3.62343, prior: 0.82277, aleatoric unc.: 9.72872\n",
+      "Epoch 451/500  total: 3.69862, -LL: 3.61988, prior: 0.81971, aleatoric unc.: 9.72094\n",
+      "Epoch 452/500  total: 3.69956, -LL: 3.64692, prior: 0.82058, aleatoric unc.: 9.71754\n",
+      "Epoch 453/500  total: 3.68746, -LL: 3.61281, prior: 0.81960, aleatoric unc.: 9.69424\n",
+      "Epoch 454/500  total: 3.69136, -LL: 3.61534, prior: 0.82130, aleatoric unc.: 9.67839\n",
+      "Epoch 455/500  total: 3.70947, -LL: 3.63629, prior: 0.82276, aleatoric unc.: 9.70095\n",
+      "Epoch 456/500  total: 3.70455, -LL: 3.62145, prior: 0.82456, aleatoric unc.: 9.71287\n",
+      "Epoch 457/500  total: 3.69434, -LL: 3.64094, prior: 0.82408, aleatoric unc.: 9.70524\n",
+      "Epoch 458/500  total: 3.69588, -LL: 3.62607, prior: 0.82356, aleatoric unc.: 9.69614\n",
+      "Epoch 459/500  total: 3.69965, -LL: 3.67129, prior: 0.82353, aleatoric unc.: 9.69692\n",
+      "Epoch 460/500  total: 3.69278, -LL: 3.64340, prior: 0.82238, aleatoric unc.: 9.68522\n",
+      "Epoch 461/500  total: 3.69769, -LL: 3.66663, prior: 0.82365, aleatoric unc.: 9.68477\n",
+      "Epoch 462/500  total: 3.70174, -LL: 3.64461, prior: 0.82374, aleatoric unc.: 9.69469\n",
+      "Epoch 463/500  total: 3.69422, -LL: 3.62371, prior: 0.82634, aleatoric unc.: 9.68775\n",
+      "Epoch 464/500  total: 3.70086, -LL: 3.65318, prior: 0.82430, aleatoric unc.: 9.69298\n",
+      "Epoch 465/500  total: 3.69787, -LL: 3.66150, prior: 0.81959, aleatoric unc.: 9.69327\n",
+      "Epoch 466/500  total: 3.69348, -LL: 3.64051, prior: 0.81754, aleatoric unc.: 9.68517\n",
+      "Epoch 467/500  total: 3.70298, -LL: 3.65390, prior: 0.81789, aleatoric unc.: 9.69441\n",
+      "Epoch 468/500  total: 3.69817, -LL: 3.65901, prior: 0.81541, aleatoric unc.: 9.69768\n",
+      "Epoch 469/500  total: 3.69301, -LL: 3.63411, prior: 0.81612, aleatoric unc.: 9.68669\n",
+      "Epoch 470/500  total: 3.70037, -LL: 3.61972, prior: 0.81542, aleatoric unc.: 9.69086\n",
+      "Epoch 471/500  total: 3.70139, -LL: 3.60899, prior: 0.81560, aleatoric unc.: 9.69815\n",
+      "Epoch 472/500  total: 3.70118, -LL: 3.68662, prior: 0.81407, aleatoric unc.: 9.70126\n",
+      "Epoch 473/500  total: 3.70042, -LL: 3.64964, prior: 0.81481, aleatoric unc.: 9.70599\n",
+      "Epoch 474/500  total: 3.70516, -LL: 3.62561, prior: 0.81684, aleatoric unc.: 9.71484\n",
+      "Epoch 475/500  total: 3.69569, -LL: 3.62760, prior: 0.81538, aleatoric unc.: 9.70852\n",
+      "Epoch 476/500  total: 3.69344, -LL: 3.63575, prior: 0.81317, aleatoric unc.: 9.69601\n",
+      "Epoch 477/500  total: 3.69725, -LL: 3.66014, prior: 0.81203, aleatoric unc.: 9.69300\n",
+      "Epoch 478/500  total: 3.70594, -LL: 3.65619, prior: 0.81437, aleatoric unc.: 9.70621\n",
+      "Epoch 479/500  total: 3.69992, -LL: 3.61516, prior: 0.81284, aleatoric unc.: 9.70868\n",
+      "Epoch 480/500  total: 3.69582, -LL: 3.64135, prior: 0.81684, aleatoric unc.: 9.70021\n",
+      "Epoch 481/500  total: 3.69739, -LL: 3.60619, prior: 0.81517, aleatoric unc.: 9.70025\n",
+      "Epoch 482/500  total: 3.70488, -LL: 3.63401, prior: 0.81520, aleatoric unc.: 9.70766\n",
+      "Epoch 483/500  total: 3.69736, -LL: 3.61727, prior: 0.81478, aleatoric unc.: 9.70594\n",
+      "Epoch 484/500  total: 3.70235, -LL: 3.63803, prior: 0.81578, aleatoric unc.: 9.71074\n",
+      "Epoch 485/500  total: 3.70031, -LL: 3.64106, prior: 0.81726, aleatoric unc.: 9.71344\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 486/500  total: 3.70281, -LL: 3.65334, prior: 0.81765, aleatoric unc.: 9.71675\n",
+      "Epoch 487/500  total: 3.69665, -LL: 3.62427, prior: 0.81798, aleatoric unc.: 9.71068\n",
+      "Epoch 488/500  total: 3.69354, -LL: 3.60938, prior: 0.81778, aleatoric unc.: 9.69865\n",
+      "Epoch 489/500  total: 3.69664, -LL: 3.66371, prior: 0.81562, aleatoric unc.: 9.69401\n",
+      "Epoch 490/500  total: 3.70017, -LL: 3.61261, prior: 0.81859, aleatoric unc.: 9.69709\n",
+      "Epoch 491/500  total: 3.70181, -LL: 3.64116, prior: 0.81858, aleatoric unc.: 9.70037\n",
+      "Epoch 492/500  total: 3.69507, -LL: 3.62122, prior: 0.81482, aleatoric unc.: 9.69759\n",
+      "Epoch 493/500  total: 3.69890, -LL: 3.65301, prior: 0.81908, aleatoric unc.: 9.69581\n",
+      "Epoch 494/500  total: 3.70058, -LL: 3.65166, prior: 0.81909, aleatoric unc.: 9.69850\n",
+      "Epoch 495/500  total: 3.69788, -LL: 3.62267, prior: 0.81817, aleatoric unc.: 9.70015\n",
+      "Epoch 496/500  total: 3.69267, -LL: 3.64171, prior: 0.81855, aleatoric unc.: 9.68762\n",
+      "Epoch 497/500  total: 3.70465, -LL: 3.66362, prior: 0.81682, aleatoric unc.: 9.70045\n",
+      "Epoch 498/500  total: 3.70106, -LL: 3.66015, prior: 0.81733, aleatoric unc.: 9.70227\n",
+      "Epoch 499/500  total: 3.69741, -LL: 3.64281, prior: 0.81737, aleatoric unc.: 9.70153\n"
+     ]
+    }
+   ],
+   "source": [
+    "epochs = 500\n",
+    "# for each epoch\n",
+    "for epoch in range(epochs):\n",
+    "    losses = list()\n",
+    "    # for each mini-batch given by the loader:\n",
+    "    for batch in loader:\n",
+    "        # get the input in the mini-batch\n",
+    "        # this has size (B, C)\n",
+    "        # where B is the mini-batch size\n",
+    "        # C is the number of features (1 in this case)\n",
+    "        features = batch[\"data\"]\n",
+    "        # get the targets in the mini-batch (there shall be B of them)\n",
+    "        target = batch[\"target\"]\n",
+    "        # get the output of the neural network:\n",
+    "        prediction = b_network(features)\n",
+    "        \n",
+    "        # calculate the loss function being minimized\n",
+    "        # in this case, it is the mean-squared error between the prediction and the target values added\n",
+    "        # to the Kullback-Leibler divergence between the current weight Gaussian and\n",
+    "        # the prior Gaussian, set to the unit Normal distribution\n",
+    "        nll = b_network.nll(prediction, target)\n",
+    "        prior = kl_loss(b_network)\n",
+    "        loss = nll + weight_kl * prior\n",
+    "\n",
+    "        # clean the optimizer temporary gradient storage\n",
+    "        optimizer.zero_grad()\n",
+    "        # calculate the gradient of the loss function as a function of the gradients\n",
+    "        loss.backward()\n",
+    "        # ask the Adam optimizer to change the parameters in the direction of - gradient\n",
+    "        # Adam scales the gradient by a constant which is adaptively tuned\n",
+    "        # take a look at the Adam paper for more details: https://arxiv.org/abs/1412.6980\n",
+    "        optimizer.step()\n",
+    "        \n",
+    "        ale = b_network.aleatoric_uncertainty().detach().numpy()\n",
+    "\n",
+    "        losses.append(loss.detach().cpu().item())\n",
+    "    avg_loss = np.mean(np.array(losses))\n",
+    "    print(f\"Epoch {epoch}/{epochs}  total: {avg_loss:.5f}, -LL: {nll.item():.5f}, prior: {prior.item():.5f}, aleatoric unc.: {ale:.5f}\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "15f3f633",
+   "metadata": {},
+   "source": [
+    "To evaluate the effect of the uncertainty, we perform the prediction many times for the same data and take the average and root-mean-squared-error of the predictions, since each prediction performed with the Bayesian Neural Network leads to a different results, using a different weight, selected from the final Gaussian."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "id": "a3d244e2",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "b_predicted = list()\n",
+    "for k in range(10):\n",
+    "    p = b_network(torch.from_numpy(test_data[:,0:1])).detach().numpy()\n",
+    "    b_predicted.append(p[:,0])\n",
+    "b_predicted = np.stack(b_predicted, axis=1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "85fed034",
+   "metadata": {},
+   "source": [
+    "We can now take the average result for each sample, and their root-mean-squared-error as an estimate of the mean and epistemic uncertainty for the results.\n",
+    "\n",
+    "The aleatoric uncertainty is fitted as an independent parameter. Since we assume the aleatoric uncertainty is independent, we can calculate the total uncertainty as the sum of squares of the epistemic and aleatoric uncertainty."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "id": "4a56960d",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "b_mean = np.mean(b_predicted, axis=1)\n",
+    "b_sigma = np.std(b_predicted, axis=1)\n",
+    "aleatoric_uncertainty = b_network.aleatoric_uncertainty().detach().numpy()\n",
+    "\n",
+    "total_uncertainty = (b_sigma**2 + aleatoric_uncertainty**2)**0.5"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "6ef3d430",
+   "metadata": {},
+   "source": [
+    "Let's check how big are those uncertainties found:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "id": "4d01c41f",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Average epistemic uncertainty:  0.83653456\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"Average epistemic uncertainty: \", np.mean(b_sigma))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "id": "67d456a1",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Aleatoric uncertainty:  9.7015295\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(\"Aleatoric uncertainty: \", aleatoric_uncertainty)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "364bdcd7",
+   "metadata": {},
+   "source": [
+    "Note that the aleatoric uncertainty is very close to the standard deviation of the $\\epsilon$ component of the model we created in the beginning! Clearly the model could fit the uncertainty coming from that component of the noise.\n",
+    "\n",
+    "It is not easy to estimate the effect of the epistemic uncertainty, as it is different for every data point (as it is scaled by $x^2$), but we can plot it to take a look at its effect.\n",
+    "\n",
+    "Note that the uncertainties are the standard deviations of Gaussian models and therefore they correspond to a $1\\sigma$ quantile band, which is a 67% confidence band. The quantile corresponding to $2\\sigma$ corresponds to a 95% confidence band in a Gaussian model."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "id": "8b9142e8",
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "/* global mpl */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "mpl.get_websocket_type = function () {\n",
+       "    if (typeof WebSocket !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert(\n",
+       "            'Your browser does not have WebSocket support. ' +\n",
+       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "                'Firefox 4 and 5 are also supported but you ' +\n",
+       "                'have to enable WebSockets in about:config.'\n",
+       "        );\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById('mpl-warnings');\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent =\n",
+       "                'This browser does not support binary websocket messages. ' +\n",
+       "                'Performance may be slow.';\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = document.createElement('div');\n",
+       "    this.root.setAttribute('style', 'display: inline-block');\n",
+       "    this._root_extra_style(this.root);\n",
+       "\n",
+       "    parent_element.appendChild(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen = function () {\n",
+       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+       "        fig.send_message('send_image_mode', {});\n",
+       "        if (fig.ratio !== 1) {\n",
+       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+       "        }\n",
+       "        fig.send_message('refresh', {});\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onload = function () {\n",
+       "        if (fig.image_mode === 'full') {\n",
+       "            // Full images could contain transparency (where diff images\n",
+       "            // almost always do), so we need to clear the canvas so that\n",
+       "            // there is no ghosting.\n",
+       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "        }\n",
+       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onunload = function () {\n",
+       "        fig.ws.close();\n",
+       "    };\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function () {\n",
+       "    var titlebar = document.createElement('div');\n",
+       "    titlebar.classList =\n",
+       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+       "    var titletext = document.createElement('div');\n",
+       "    titletext.classList = 'ui-dialog-title';\n",
+       "    titletext.setAttribute(\n",
+       "        'style',\n",
+       "        'width: 100%; text-align: center; padding: 3px;'\n",
+       "    );\n",
+       "    titlebar.appendChild(titletext);\n",
+       "    this.root.appendChild(titlebar);\n",
+       "    this.header = titletext;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+       "    canvas_div.setAttribute(\n",
+       "        'style',\n",
+       "        'border: 1px solid #ddd;' +\n",
+       "            'box-sizing: content-box;' +\n",
+       "            'clear: both;' +\n",
+       "            'min-height: 1px;' +\n",
+       "            'min-width: 1px;' +\n",
+       "            'outline: 0;' +\n",
+       "            'overflow: hidden;' +\n",
+       "            'position: relative;' +\n",
+       "            'resize: both;'\n",
+       "    );\n",
+       "\n",
+       "    function on_keyboard_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.key_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keydown',\n",
+       "        on_keyboard_event_closure('key_press')\n",
+       "    );\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keyup',\n",
+       "        on_keyboard_event_closure('key_release')\n",
+       "    );\n",
+       "\n",
+       "    this._canvas_extra_style(canvas_div);\n",
+       "    this.root.appendChild(canvas_div);\n",
+       "\n",
+       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
+       "    canvas.classList.add('mpl-canvas');\n",
+       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+       "\n",
+       "    this.context = canvas.getContext('2d');\n",
+       "\n",
+       "    var backingStore =\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        this.context.webkitBackingStorePixelRatio ||\n",
+       "        this.context.mozBackingStorePixelRatio ||\n",
+       "        this.context.msBackingStorePixelRatio ||\n",
+       "        this.context.oBackingStorePixelRatio ||\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        1;\n",
+       "\n",
+       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+       "        'canvas'\n",
+       "    ));\n",
+       "    rubberband_canvas.setAttribute(\n",
+       "        'style',\n",
+       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+       "    );\n",
+       "\n",
+       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+       "    if (this.ResizeObserver === undefined) {\n",
+       "        if (window.ResizeObserver !== undefined) {\n",
+       "            this.ResizeObserver = window.ResizeObserver;\n",
+       "        } else {\n",
+       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+       "            this.ResizeObserver = obs.ResizeObserver;\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+       "        var nentries = entries.length;\n",
+       "        for (var i = 0; i < nentries; i++) {\n",
+       "            var entry = entries[i];\n",
+       "            var width, height;\n",
+       "            if (entry.contentBoxSize) {\n",
+       "                if (entry.contentBoxSize instanceof Array) {\n",
+       "                    // Chrome 84 implements new version of spec.\n",
+       "                    width = entry.contentBoxSize[0].inlineSize;\n",
+       "                    height = entry.contentBoxSize[0].blockSize;\n",
+       "                } else {\n",
+       "                    // Firefox implements old version of spec.\n",
+       "                    width = entry.contentBoxSize.inlineSize;\n",
+       "                    height = entry.contentBoxSize.blockSize;\n",
+       "                }\n",
+       "            } else {\n",
+       "                // Chrome <84 implements even older version of spec.\n",
+       "                width = entry.contentRect.width;\n",
+       "                height = entry.contentRect.height;\n",
+       "            }\n",
+       "\n",
+       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
+       "            // the canvas container.\n",
+       "            if (entry.devicePixelContentBoxSize) {\n",
+       "                // Chrome 84 implements new version of spec.\n",
+       "                canvas.setAttribute(\n",
+       "                    'width',\n",
+       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
+       "                );\n",
+       "                canvas.setAttribute(\n",
+       "                    'height',\n",
+       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
+       "                );\n",
+       "            } else {\n",
+       "                canvas.setAttribute('width', width * fig.ratio);\n",
+       "                canvas.setAttribute('height', height * fig.ratio);\n",
+       "            }\n",
+       "            canvas.setAttribute(\n",
+       "                'style',\n",
+       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
+       "            );\n",
+       "\n",
+       "            rubberband_canvas.setAttribute('width', width);\n",
+       "            rubberband_canvas.setAttribute('height', height);\n",
+       "\n",
+       "            // And update the size in Python. We ignore the initial 0/0 size\n",
+       "            // that occurs as the element is placed into the DOM, which should\n",
+       "            // otherwise not happen due to the minimum size styling.\n",
+       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+       "                fig.request_resize(width, height);\n",
+       "            }\n",
+       "        }\n",
+       "    });\n",
+       "    this.resizeObserverInstance.observe(canvas_div);\n",
+       "\n",
+       "    function on_mouse_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.mouse_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousedown',\n",
+       "        on_mouse_event_closure('button_press')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseup',\n",
+       "        on_mouse_event_closure('button_release')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'dblclick',\n",
+       "        on_mouse_event_closure('dblclick')\n",
+       "    );\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousemove',\n",
+       "        on_mouse_event_closure('motion_notify')\n",
+       "    );\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseenter',\n",
+       "        on_mouse_event_closure('figure_enter')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseleave',\n",
+       "        on_mouse_event_closure('figure_leave')\n",
+       "    );\n",
+       "\n",
+       "    canvas_div.addEventListener('wheel', function (event) {\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        on_mouse_event_closure('scroll')(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.appendChild(canvas);\n",
+       "    canvas_div.appendChild(rubberband_canvas);\n",
+       "\n",
+       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+       "    this.rubberband_context.strokeStyle = '#000000';\n",
+       "\n",
+       "    this._resize_canvas = function (width, height, forward) {\n",
+       "        if (forward) {\n",
+       "            canvas_div.style.width = width + 'px';\n",
+       "            canvas_div.style.height = height + 'px';\n",
+       "        }\n",
+       "    };\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+       "        event.preventDefault();\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus() {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'mpl-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'mpl-button-group';\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'mpl-button-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
+       "        button.classList = 'mpl-widget';\n",
+       "        button.setAttribute('role', 'button');\n",
+       "        button.setAttribute('aria-disabled', 'false');\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "\n",
+       "        var icon_img = document.createElement('img');\n",
+       "        icon_img.src = '_images/' + image + '.png';\n",
+       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+       "        icon_img.alt = tooltip;\n",
+       "        button.appendChild(icon_img);\n",
+       "\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker = document.createElement('select');\n",
+       "    fmt_picker.classList = 'mpl-widget';\n",
+       "    toolbar.appendChild(fmt_picker);\n",
+       "    this.format_dropdown = fmt_picker;\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = document.createElement('option');\n",
+       "        option.selected = fmt === mpl.default_extension;\n",
+       "        option.innerHTML = fmt;\n",
+       "        fmt_picker.appendChild(option);\n",
+       "    }\n",
+       "\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function (type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function () {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+       "        fig.send_message('refresh', {});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+       "    var x0 = msg['x0'] / fig.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+       "    var x1 = msg['x1'] / fig.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0,\n",
+       "        0,\n",
+       "        fig.canvas.width / fig.ratio,\n",
+       "        fig.canvas.height / fig.ratio\n",
+       "    );\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch (cursor) {\n",
+       "        case 0:\n",
+       "            cursor = 'pointer';\n",
+       "            break;\n",
+       "        case 1:\n",
+       "            cursor = 'default';\n",
+       "            break;\n",
+       "        case 2:\n",
+       "            cursor = 'crosshair';\n",
+       "            break;\n",
+       "        case 3:\n",
+       "            cursor = 'move';\n",
+       "            break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+       "    for (var key in msg) {\n",
+       "        if (!(key in fig.buttons)) {\n",
+       "            continue;\n",
+       "        }\n",
+       "        fig.buttons[key].disabled = !msg[key];\n",
+       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+       "    if (msg['mode'] === 'PAN') {\n",
+       "        fig.buttons['Pan'].classList.add('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    } else if (msg['mode'] === 'ZOOM') {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.add('active');\n",
+       "    } else {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message('ack', {});\n",
+       "};\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            var img = evt.data;\n",
+       "            if (img.type !== 'image/png') {\n",
+       "                /* FIXME: We get \"Resource interpreted as Image but\n",
+       "                 * transferred with MIME type text/plain:\" errors on\n",
+       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "                 * to be part of the websocket stream */\n",
+       "                img.type = 'image/png';\n",
+       "            }\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src\n",
+       "                );\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                img\n",
+       "            );\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        } else if (\n",
+       "            typeof evt.data === 'string' &&\n",
+       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+       "        ) {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig['handle_' + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\n",
+       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
+       "                msg\n",
+       "            );\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\n",
+       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+       "                    e,\n",
+       "                    e.stack,\n",
+       "                    msg\n",
+       "                );\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "};\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function (e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e) {\n",
+       "        e = window.event;\n",
+       "    }\n",
+       "    if (e.target) {\n",
+       "        targ = e.target;\n",
+       "    } else if (e.srcElement) {\n",
+       "        targ = e.srcElement;\n",
+       "    }\n",
+       "    if (targ.nodeType === 3) {\n",
+       "        // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "    }\n",
+       "\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    var boundingRect = targ.getBoundingClientRect();\n",
+       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+       "\n",
+       "    return { x: x, y: y };\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys(original) {\n",
+       "    return Object.keys(original).reduce(function (obj, key) {\n",
+       "        if (typeof original[key] !== 'object') {\n",
+       "            obj[key] = original[key];\n",
+       "        }\n",
+       "        return obj;\n",
+       "    }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event);\n",
+       "\n",
+       "    if (name === 'button_press') {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * this.ratio;\n",
+       "    var y = canvas_pos.y * this.ratio;\n",
+       "\n",
+       "    this.send_message(name, {\n",
+       "        x: x,\n",
+       "        y: y,\n",
+       "        button: event.button,\n",
+       "        step: event.step,\n",
+       "        guiEvent: simpleKeys(event),\n",
+       "    });\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function (event, name) {\n",
+       "    // Prevent repeat events\n",
+       "    if (name === 'key_press') {\n",
+       "        if (event.key === this._key) {\n",
+       "            return;\n",
+       "        } else {\n",
+       "            this._key = event.key;\n",
+       "        }\n",
+       "    }\n",
+       "    if (name === 'key_release') {\n",
+       "        this._key = null;\n",
+       "    }\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.key !== 'Control') {\n",
+       "        value += 'ctrl+';\n",
+       "    }\n",
+       "    else if (event.altKey && event.key !== 'Alt') {\n",
+       "        value += 'alt+';\n",
+       "    }\n",
+       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
+       "        value += 'shift+';\n",
+       "    }\n",
+       "\n",
+       "    value += 'k' + event.key;\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+       "    if (name === 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message('toolbar_button', { name: name });\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "\n",
+       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+       "// prettier-ignore\n",
+       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";/* global mpl */\n",
+       "\n",
+       "var comm_websocket_adapter = function (comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
+       "    ws.readyState = comm.kernel.ws.readyState;\n",
+       "    function updateReadyState(_event) {\n",
+       "        if (comm.kernel.ws) {\n",
+       "            ws.readyState = comm.kernel.ws.readyState;\n",
+       "        } else {\n",
+       "            ws.readyState = 3; // Closed state.\n",
+       "        }\n",
+       "    }\n",
+       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
+       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
+       "\n",
+       "    ws.close = function () {\n",
+       "        comm.close();\n",
+       "    };\n",
+       "    ws.send = function (m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function (msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        var data = msg['content']['data'];\n",
+       "        if (data['blob'] !== undefined) {\n",
+       "            data = {\n",
+       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
+       "            };\n",
+       "        }\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(data);\n",
+       "    });\n",
+       "    return ws;\n",
+       "};\n",
+       "\n",
+       "mpl.mpl_figure_comm = function (comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = document.getElementById(id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm);\n",
+       "\n",
+       "    function ondownload(figure, _format) {\n",
+       "        window.open(figure.canvas.toDataURL());\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element;\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error('Failed to find cell for figure', id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.cell_info[0].output_area.element.on(\n",
+       "        'cleared',\n",
+       "        { fig: fig },\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+       "    var width = fig.canvas.width / fig.ratio;\n",
+       "    fig.cell_info[0].output_area.element.off(\n",
+       "        'cleared',\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable();\n",
+       "    fig.parent_element.innerHTML =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "    fig.close_ws(fig, msg);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width / this.ratio;\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message('ack', {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () {\n",
+       "        fig.push_to_output();\n",
+       "    }, 1000);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'btn-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'btn-group';\n",
+       "    var button;\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'btn-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        button = fig.buttons[name] = document.createElement('button');\n",
+       "        button.classList = 'btn btn-default';\n",
+       "        button.href = '#';\n",
+       "        button.title = name;\n",
+       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message pull-right';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = document.createElement('div');\n",
+       "    buttongrp.classList = 'btn-group inline pull-right';\n",
+       "    button = document.createElement('button');\n",
+       "    button.classList = 'btn btn-mini btn-primary';\n",
+       "    button.href = '#';\n",
+       "    button.title = 'Stop Interaction';\n",
+       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+       "    button.addEventListener('click', function (_evt) {\n",
+       "        fig.handle_close(fig, {});\n",
+       "    });\n",
+       "    button.addEventListener(\n",
+       "        'mouseover',\n",
+       "        on_mouseover_closure('Stop Interaction')\n",
+       "    );\n",
+       "    buttongrp.appendChild(button);\n",
+       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+       "    var fig = event.data.fig;\n",
+       "    if (event.target !== this) {\n",
+       "        // Ignore bubbled events from children.\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.close_ws(fig, {});\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (el) {\n",
+       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.setAttribute('tabindex', 0);\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    } else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager) {\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "    }\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which === 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "};\n",
+       "\n",
+       "mpl.find_output_cell = function (html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i = 0; i < ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code') {\n",
+       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] === html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel !== null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target(\n",
+       "        'matplotlib',\n",
+       "        mpl.mpl_figure_comm\n",
+       "    );\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"640\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig = plt.figure()\n",
+    "ax = fig.add_subplot(111)\n",
+    "ax.scatter(test_data[:, 0], test_data[:, 1], alpha=0.5, label=\"Test data\")\n",
+    "ax.errorbar(test_data[:, 0], b_mean, yerr=2*total_uncertainty, alpha=0.5, fmt='or', label=\"95% band total unc.\")\n",
+    "ax.errorbar(test_data[:, 0], b_mean, yerr=2*b_sigma, alpha=0.5, fmt='og', label=\"95% band epistemic unc.\")\n",
+    "ax.set(xlabel=\"$x$\", ylabel=\"$f(x)$\")\n",
+    "#ax.set_yscale('log')\n",
     "plt.legend(frameon=False)\n",
     "plt.show()"
    ]
@@ -3443,7 +4381,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "161b5464",
+   "id": "8cfb5d35",
    "metadata": {},
    "outputs": [],
    "source": []
-- 
GitLab