diff --git a/Gaussian Processes.ipynb b/Gaussian Processes.ipynb index c9075d07b26e97a125de26d166b562dc6c14bf4d..014f5c505ce9639e87ad474f9f13e5d7a3e55718 100644 --- a/Gaussian Processes.ipynb +++ b/Gaussian Processes.ipynb @@ -700,10 +700,21 @@ "http://www.gaussianprocess.org/gpml/chapters/RW.pdf" ] }, + { + "cell_type": "markdown", + "id": "6274aac1", + "metadata": {}, + "source": [ + "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", + "\n", + "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", + "#### Arman Davtyan: arman.davtyan@xfel.eu" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "ec18ae45", + "id": "6d44d78a", "metadata": {}, "outputs": [], "source": [] diff --git a/Mixture Models.ipynb b/Mixture Models.ipynb index ead7c4fcfd28148517702d3b274577c5aa311ead..75ef86ed0e557a0f05fa14875389cd4dae2d2b36 100644 --- a/Mixture Models.ipynb +++ b/Mixture Models.ipynb @@ -656,6 +656,25 @@ " * Spectral clustering (see https://scikit-learn.org/stable/modules/clustering.html#spectral-clustering). Uses K-means on another representation of the data. This representation of the data transforms the data points from the $xy$ space shown before into a space where connectedness of nearest neighbours is the criteria for similarity. For the mathematical foundation, this document may be useful: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.9323&rep=rep1&type=pdf\n", " " ] + }, + { + "cell_type": "markdown", + "id": "488df5eb", + "metadata": {}, + "source": [ + "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", + "\n", + "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", + "#### Arman Davtyan: arman.davtyan@xfel.eu" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "941c7cb8", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/README.md b/README.md index 613a2c4839927a2ac23ee3352345d382b4318a35..d04ce0eed69eb826ec6fbe0d438fa1b94c5fa79d 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,21 @@ # ML Tutorial -Some Jupyter notebooks to help beginners start using a selected set of ML methods. \ No newline at end of file +These are some hands-on Jupyter notebooks to help beginners start using a selected set of ML methods. +When there was no time to delve into the details of the presentation, some extra details on the maths derivations +are also given in the notebooks. + +Most of the notebooks require installing special software the following is a general setup that should work with most of the given notebooks. +The list of packages needed in each given notebook is given in the beginning of the notebook with a `!pip install ...` command. + +``` +pip install torchvision torch pandas numpy matplotlib ipympl torchbnn +``` + +All the data used in the examples are produced on-the-fly for demonstration purposes, or are taken from public and open resources. +None of the data comes from the EuXFEL, as the purpose of the examples is to show the idea behind the methods. + +### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data! + +#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu +#### Arman Davtyan: arman.davtyan@xfel.eu + diff --git a/Representation Learning.ipynb b/Representation Learning.ipynb index babc8b6b51cebf89f53f80524e270d63140c9ef8..95fd59c6555004ed94fd0ffa0abeb3b0770c78b4 100644 --- a/Representation Learning.ipynb +++ b/Representation Learning.ipynb @@ -429,10 +429,21 @@ " * t-SNE embedding: If the objective is only to visualize the data, there are many alternative solutions which focus on reducing the dimensionality of the data into a 2D representation. The t-SNE method assumes that a Gaussian probability can be used to model similarity between data points in N dimensions and that one should maintain that similarity measure when projecting the data in two dimensions, assuming however that the 2D data points' similarity can be represented with a t-Student distribution. Full details on the method can be seen here: https://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf It can be easily tried in scikit-learn following the procedure here: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html" ] }, + { + "cell_type": "markdown", + "id": "18c90048", + "metadata": {}, + "source": [ + "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", + "\n", + "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", + "#### Arman Davtyan: arman.davtyan@xfel.eu" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "b189d3af", + "id": "e4f0d770", "metadata": {}, "outputs": [], "source": [] diff --git a/Supervised classification.ipynb b/Supervised classification.ipynb index 097354c041925d6cdf4e6aaa34f2e777a494ec2b..1a10549887ec13a2e8ca5a07094a787866a176ac 100644 --- a/Supervised classification.ipynb +++ b/Supervised classification.ipynb @@ -761,10 +761,21 @@ "plt.show()" ] }, + { + "cell_type": "markdown", + "id": "bff1f8db", + "metadata": {}, + "source": [ + "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", + "\n", + "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", + "#### Arman Davtyan: arman.davtyan@xfel.eu" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "161b5464", + "id": "0879d703", "metadata": {}, "outputs": [], "source": [] diff --git a/Supervised regression.ipynb b/Supervised regression.ipynb index 17939882db5fc92ff7d4ea9a0de5c59aa330db51..f8e5a76466e1f1ea2233cb7595c16155987881e1 100644 --- a/Supervised regression.ipynb +++ b/Supervised regression.ipynb @@ -4378,10 +4378,21 @@ "plt.show()" ] }, + { + "cell_type": "markdown", + "id": "ccecaea7", + "metadata": {}, + "source": [ + "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", + "\n", + "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", + "#### Arman Davtyan: arman.davtyan@xfel.eu" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "8cfb5d35", + "id": "55635d1f", "metadata": {}, "outputs": [], "source": [] diff --git a/Support Vector Machines.ipynb b/Support Vector Machines.ipynb index 5451ea9c076a5ea62e1cf82e630dc72ea2b009d2..abce0ee6ab61908fe703a37d735a2541d413b37b 100644 --- a/Support Vector Machines.ipynb +++ b/Support Vector Machines.ipynb @@ -636,10 +636,21 @@ "plt.show()" ] }, + { + "cell_type": "markdown", + "id": "df35963b", + "metadata": {}, + "source": [ + "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n", + "\n", + "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n", + "#### Arman Davtyan: arman.davtyan@xfel.eu" + ] + }, { "cell_type": "code", "execution_count": null, - "id": "84b20df8", + "id": "288d8fe2", "metadata": {}, "outputs": [], "source": []