From e38756beee55cbdc7508c2d8d9b39c5d63d64a91 Mon Sep 17 00:00:00 2001
From: Danilo Ferreira de Lima <danilo.enoque.ferreira.de.lima@xfel.de>
Date: Fri, 10 Dec 2021 13:12:36 +0100
Subject: [PATCH] Added our emails and more text on the README.

---
 Gaussian Processes.ipynb        | 13 ++++++++++++-
 Mixture Models.ipynb            | 19 +++++++++++++++++++
 README.md                       | 20 +++++++++++++++++++-
 Representation Learning.ipynb   | 13 ++++++++++++-
 Supervised classification.ipynb | 13 ++++++++++++-
 Supervised regression.ipynb     | 13 ++++++++++++-
 Support Vector Machines.ipynb   | 13 ++++++++++++-
 7 files changed, 98 insertions(+), 6 deletions(-)

diff --git a/Gaussian Processes.ipynb b/Gaussian Processes.ipynb
index c9075d0..014f5c5 100644
--- a/Gaussian Processes.ipynb	
+++ b/Gaussian Processes.ipynb	
@@ -700,10 +700,21 @@
     "http://www.gaussianprocess.org/gpml/chapters/RW.pdf"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "id": "6274aac1",
+   "metadata": {},
+   "source": [
+    "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n",
+    "\n",
+    "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n",
+    "#### Arman Davtyan: arman.davtyan@xfel.eu"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "ec18ae45",
+   "id": "6d44d78a",
    "metadata": {},
    "outputs": [],
    "source": []
diff --git a/Mixture Models.ipynb b/Mixture Models.ipynb
index ead7c4f..75ef86e 100644
--- a/Mixture Models.ipynb	
+++ b/Mixture Models.ipynb	
@@ -656,6 +656,25 @@
     "  * Spectral clustering (see https://scikit-learn.org/stable/modules/clustering.html#spectral-clustering). Uses K-means on another representation of the data. This representation of the data transforms the data points from the $xy$ space shown before into a space where connectedness of nearest neighbours is the criteria for similarity. For the mathematical foundation, this document may be useful: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.9323&rep=rep1&type=pdf\n",
     "  "
    ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "488df5eb",
+   "metadata": {},
+   "source": [
+    "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n",
+    "\n",
+    "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n",
+    "#### Arman Davtyan: arman.davtyan@xfel.eu"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "941c7cb8",
+   "metadata": {},
+   "outputs": [],
+   "source": []
   }
  ],
  "metadata": {
diff --git a/README.md b/README.md
index 613a2c4..d04ce0e 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,21 @@
 # ML Tutorial
 
-Some Jupyter notebooks to help beginners start using a selected set of ML methods.
\ No newline at end of file
+These are some hands-on Jupyter notebooks to help beginners start using a selected set of ML methods.
+When there was no time to delve into the details of the presentation, some extra details on the maths derivations
+are also given in the notebooks.
+
+Most of the notebooks require installing special software the following is a general setup that should work with most of the given notebooks.
+The list of packages needed in each given notebook is given in the beginning of the notebook with a `!pip install ...` command.
+
+```
+pip install torchvision torch pandas numpy matplotlib ipympl torchbnn
+```
+
+All the data used in the examples are produced on-the-fly for demonstration purposes, or are taken from public and open resources.
+None of the data comes from the EuXFEL, as the purpose of the examples is to show the idea behind the methods.
+
+### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!
+
+#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu
+#### Arman Davtyan: arman.davtyan@xfel.eu
+
diff --git a/Representation Learning.ipynb b/Representation Learning.ipynb
index babc8b6..95fd59c 100644
--- a/Representation Learning.ipynb	
+++ b/Representation Learning.ipynb	
@@ -429,10 +429,21 @@
     "  * t-SNE embedding: If the objective is only to visualize the data, there are many alternative solutions which focus on reducing the dimensionality of the data into a 2D representation. The t-SNE method assumes that a Gaussian probability can be used to model similarity between data points in N dimensions and that one should maintain that similarity measure when projecting the data in two dimensions, assuming however that the 2D data points' similarity can be represented with a t-Student distribution. Full details on the method can be seen here: https://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf It can be easily tried in scikit-learn following the procedure here: https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "id": "18c90048",
+   "metadata": {},
+   "source": [
+    "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n",
+    "\n",
+    "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n",
+    "#### Arman Davtyan: arman.davtyan@xfel.eu"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "b189d3af",
+   "id": "e4f0d770",
    "metadata": {},
    "outputs": [],
    "source": []
diff --git a/Supervised classification.ipynb b/Supervised classification.ipynb
index 097354c..1a10549 100644
--- a/Supervised classification.ipynb	
+++ b/Supervised classification.ipynb	
@@ -761,10 +761,21 @@
     "plt.show()"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "id": "bff1f8db",
+   "metadata": {},
+   "source": [
+    "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n",
+    "\n",
+    "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n",
+    "#### Arman Davtyan: arman.davtyan@xfel.eu"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "161b5464",
+   "id": "0879d703",
    "metadata": {},
    "outputs": [],
    "source": []
diff --git a/Supervised regression.ipynb b/Supervised regression.ipynb
index 1793988..f8e5a76 100644
--- a/Supervised regression.ipynb	
+++ b/Supervised regression.ipynb	
@@ -4378,10 +4378,21 @@
     "plt.show()"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "id": "ccecaea7",
+   "metadata": {},
+   "source": [
+    "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n",
+    "\n",
+    "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n",
+    "#### Arman Davtyan: arman.davtyan@xfel.eu"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "8cfb5d35",
+   "id": "55635d1f",
    "metadata": {},
    "outputs": [],
    "source": []
diff --git a/Support Vector Machines.ipynb b/Support Vector Machines.ipynb
index 5451ea9..abce0ee 100644
--- a/Support Vector Machines.ipynb	
+++ b/Support Vector Machines.ipynb	
@@ -636,10 +636,21 @@
     "plt.show()"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "id": "df35963b",
+   "metadata": {},
+   "source": [
+    "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n",
+    "\n",
+    "#### Danilo Ferreira de Lima: danilo.enoque.ferreira.de.lima@xfel.eu\n",
+    "#### Arman Davtyan: arman.davtyan@xfel.eu"
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": null,
-   "id": "84b20df8",
+   "id": "288d8fe2",
    "metadata": {},
    "outputs": [],
    "source": []
-- 
GitLab