{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "6a764d92",
   "metadata": {},
   "source": [
    "# Mixture Models\n",
    "\n",
    "One common objective is to find similarities in data and cluster it. There are several heuristic methods to cluster them. We are going to focus on a few strongly theoretically motivated methods. Other methods use heuristics to identify similarities in data and are mentioned in the end.\n",
    "\n",
    "For the purposes of this example, we will generate a fake dataset."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fce4d8e8",
   "metadata": {},
   "source": [
    "We start by loading the necessary Python modules. If you have not yet installed them, run the following cell to install them with pip:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "44ca341e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: numpy in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.19.2)\n",
      "Requirement already satisfied: scikit-learn in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (0.24.2)\n",
      "Requirement already satisfied: pandas in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (1.1.5)\n",
      "Requirement already satisfied: matplotlib in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (3.3.4)\n",
      "Requirement already satisfied: scipy>=0.19.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (1.5.2)\n",
      "Requirement already satisfied: joblib>=0.11 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (1.0.1)\n",
      "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from scikit-learn) (2.2.0)\n",
      "Requirement already satisfied: python-dateutil>=2.7.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2.8.2)\n",
      "Requirement already satisfied: pytz>=2017.2 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from pandas) (2021.3)\n",
      "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (3.0.4)\n",
      "Requirement already satisfied: kiwisolver>=1.0.1 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (1.3.1)\n",
      "Requirement already satisfied: cycler>=0.10 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (0.11.0)\n",
      "Requirement already satisfied: pillow>=6.2.0 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from matplotlib) (8.3.1)\n",
      "Requirement already satisfied: six>=1.5 in /home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n"
     ]
    }
   ],
   "source": [
    "!pip install numpy scikit-learn pandas matplotlib"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "300cf8d3",
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib notebook\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "from sklearn.mixture import GaussianMixture, BayesianGaussianMixture\n",
    "from sklearn.cluster import KMeans"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0ecd6a69",
   "metadata": {},
   "source": [
    "Let's generate the fake data now to have something to cluster."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "4959a292",
   "metadata": {},
   "outputs": [],
   "source": [
    "def generate_clusters(mu: np.ndarray, sigma: np.ndarray, N: int) ->np.ndarray:\n",
    "    assert len(mu) == len(sigma)\n",
    "    assert N > 1\n",
    "    D = len(mu[0].shape)\n",
    "    data = np.concatenate([np.random.default_rng().multivariate_normal(mean=mu_k, cov=sigma_k, size=N)\n",
    "                           for mu_k, sigma_k in zip(mu, sigma)], axis=0)\n",
    "    source = np.concatenate([k*np.ones([N, 1]) for k in range(len(mu))], axis=0)\n",
    "    return np.concatenate([data, source], axis=1)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "82929490",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/daniloefl/miniconda3/envs/mltut/lib/python3.6/site-packages/ipykernel_launcher.py:6: RuntimeWarning: covariance is not positive-semidefinite.\n",
      "  \n"
     ]
    }
   ],
   "source": [
    "data = generate_clusters(mu=[np.array([5.0, -2.0]),\n",
    "                             np.array([1.0, 5.0]),\n",
    "                             np.array([-5.0, -1.0])],\n",
    "                         sigma=[np.array([[0.1, 0.2],\n",
    "                                          [0.2, 0.1]]),\n",
    "                                np.array([[1.0, 0.5],\n",
    "                                          [0.5, 1.0]]),\n",
    "                                np.array([[2.0, 0.0],\n",
    "                                          [0.0, 5.0]])],\n",
    "                         N=1000)\n",
    "data = pd.DataFrame(data, columns=[\"x\", \"y\", \"source\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d8295e8a",
   "metadata": {},
   "source": [
    "Let's print out the dataset read first."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "024fb65a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>x</th>\n",
       "      <th>y</th>\n",
       "      <th>source</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>5.653241</td>\n",
       "      <td>-1.382435</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4.623728</td>\n",
       "      <td>-2.254146</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>5.313702</td>\n",
       "      <td>-1.596076</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>4.830723</td>\n",
       "      <td>-1.521429</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>4.716383</td>\n",
       "      <td>-1.686052</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2995</th>\n",
       "      <td>-5.327421</td>\n",
       "      <td>-0.196162</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2996</th>\n",
       "      <td>-6.919531</td>\n",
       "      <td>-1.834852</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2997</th>\n",
       "      <td>-6.075992</td>\n",
       "      <td>-0.312784</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2998</th>\n",
       "      <td>-3.835365</td>\n",
       "      <td>5.404520</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2999</th>\n",
       "      <td>-3.402078</td>\n",
       "      <td>-3.187637</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>3000 rows × 3 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "             x         y  source\n",
       "0     5.653241 -1.382435     0.0\n",
       "1     4.623728 -2.254146     0.0\n",
       "2     5.313702 -1.596076     0.0\n",
       "3     4.830723 -1.521429     0.0\n",
       "4     4.716383 -1.686052     0.0\n",
       "...        ...       ...     ...\n",
       "2995 -5.327421 -0.196162     2.0\n",
       "2996 -6.919531 -1.834852     2.0\n",
       "2997 -6.075992 -0.312784     2.0\n",
       "2998 -3.835365  5.404520     2.0\n",
       "2999 -3.402078 -3.187637     2.0\n",
       "\n",
       "[3000 rows x 3 columns]"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1c178424",
   "metadata": {},
   "source": [
    "We can plot this fairly easily using Matplotlib."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "e63b38c5",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = 'image/png';\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.which === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.which;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which !== 17) {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    if (event.altKey && event.which !== 18) {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    if (event.shiftKey && event.which !== 16) {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data']);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"800\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots(figsize=(8, 8))\n",
    "data.plot.scatter(x=\"x\", y=\"y\", c=\"source\", colormap='viridis', ax=ax)\n",
    "ax.set(xlabel=\"x\", ylabel=r\"y\", title=\"\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a376636d",
   "metadata": {},
   "source": [
    "There are several ways of finding similarities in the data. The Gaussian Mixture Model assumes that the data has been produced exactly as in this example. For each sample, the procedure assumed to be used for the generation of each sample is the following:\n",
    "  * a random integer is chosen according to a discrete probability distribution, which identifies to which cluster the sample belongs to (this is the `source` variable in the generation procedure above);\n",
    "  * that random integer is assumed to be used to choose the mean and covariance matrix for a Gaussian random variable, which is then used to produce the observed sample.\n",
    " \n",
    "Out objective here is then to find out the probability of producing a sample for each cluster (the probabilities with which a sample belongs to one cluster instead of the others), the means and covariance matrices for the model. Using Bayes' theorem, one may write down the posterior probability for the true means, covariances and cluster probabilities ($\\theta$) given the data ($\\x$), but it is very hard to calculate the parameters from it. Let us call the cluster that a specific sample belongs to, $z$.\n",
    "\n",
    "The true posterior would look like this:\n",
    "\n",
    "$p(\\theta|x) = \\frac{p(x|\\theta) p(\\theta)}{p(x)}$\n",
    "\n",
    "We assume $p(\\theta)$ is constant for all $\\theta$ and we know $p(x)$ is independent of $\\theta$ (because it is just the probability we obtained the existing data). We also know that $p(x|\\theta) = \\sum_z p(x,z|\\theta)$, since summing over all $z$, we obtain a total probability 1 of getting any $z$.\n",
    "\n",
    "$p(\\theta|x) \\propto \\sum_z p(x,z|\\theta) = \\sum_z p(x|\\theta,z) p(z|\\theta)$\n",
    "\n",
    "Where we have expanded it on $z$ using $p(a,b) = p(a|b)p(b)$.\n",
    "\n",
    "Now if we want to find the most probable $\\theta$ from this posterior (the \"maximum a posteriori\", or \"MAP\"), we just need to maximize the right-hand side of the last equation. This is very hard to do, but we can use the Expectation-Maximization (EM) algorithm, on which we iteratively improve our probability estimates. This method works as follows.\n",
    "\n",
    "First we define the log-likelihood $LL(\\theta|z) = \\log L(\\theta|z) = \\log p(x|\\theta,z) = \\sum_{k=\\text{sample}} \\log p(x_k|\\theta,z_k)$. Since we are assuming that the probability for each data sample $x_k$ is a Gaussian distribution, each of the terms in the sum is a Gaussian probability, so if we know $\\theta$ and $z_k$, this full sum can be calculated. The issue is that we do not know $z_k$ (that is the whole point!).\n",
    "\n",
    "We start by assuming $\\theta=\\theta_0$ for some random initial value of the parameters. The EM method iterates on two steps:\n",
    "\n",
    "  1. Calculate the *average* value of $LL(\\theta|z)$ over $z$ assuming the current $\\theta_i$ to calculate $p(z|\\theta)$, that is: $Q(\\theta) = \\sum_z LL(\\theta|z) p(z|\\theta_i)$. This means we calculate the weighted sum of the log-likelihood a point belongs to each Gaussian, weighted by the probability that that Gaussian was the reason that sample was generated. This avoids needing to know the correct $z_k$, since we just sum over all possibilities. The weights of this weighted sum are simply one of the parameters $\\theta$, namely, the cluster probabilities.\n",
    "  \n",
    "  2. Find the $\\theta$ which maximizes $Q(\\theta)$ and use this as the next $\\theta_{i+1}$.\n",
    "\n",
    "These two steps are iterated to improve the $\\theta$ for several iterations. It can be shown that an improvement on $Q$ following this procedure leads to a new $\\theta$ that improves the posterior probability $p(\\theta|x)$ above (see https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm#Proof_of_correctness ).\n",
    "\n",
    "We will not write all of this from scratch. Instead, we use the `GaussianMixture` function in `scikit-learn`, which has this ready for us. It is nevertheless important to understand the assumptions made here: the underlying samples are assumed to come from a discrete combination of Gaussians. Other mixture models are possible using other underlying distributions, but note that this method will not work if the samples do not follow this generative pattern."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "0837b3ff",
   "metadata": {},
   "outputs": [],
   "source": [
    "gmm = GaussianMixture(n_components=3, covariance_type=\"full\", max_iter=20)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "8798f857",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "GaussianMixture(max_iter=20, n_components=3)"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gmm.fit(data.loc[:, [\"x\", \"y\"]])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e928f498",
   "metadata": {},
   "source": [
    "Now that we have model fit, we can even check the fit parameters $\\theta$, which include the means, the covariance matrices and the probabilities given to each Gaussian in the mixture:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "fb5796e5",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[-5.00533402, -1.00291721],\n",
       "       [ 4.98736078, -1.99324473],\n",
       "       [ 0.99263505,  4.95370197]])"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gmm.means_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "182904d1",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[[ 1.97696177, -0.14298004],\n",
       "        [-0.14298004,  5.08432238]],\n",
       "\n",
       "       [[ 0.19127883,  0.09340703],\n",
       "        [ 0.09340703,  0.18650429]],\n",
       "\n",
       "       [[ 1.00348273,  0.47652348],\n",
       "        [ 0.47652348,  0.98154818]]])"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gmm.covariances_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "2faa1f72",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0.33306256, 0.33333333, 0.33360411])"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gmm.weights_"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b54001fc",
   "metadata": {},
   "source": [
    "We can predict to which cluster each sample belongs now by selecting the cluster for each sample that maximizes the probability $p(z|\\theta,x)$, now that we know $\\theta$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "cc8fc1f1",
   "metadata": {},
   "outputs": [],
   "source": [
    "guess = gmm.predict(data.loc[:, [\"x\", \"y\"]])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "68560fb4",
   "metadata": {},
   "source": [
    "Let's plot it!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "88982b21",
   "metadata": {},
   "outputs": [],
   "source": [
    "data.loc[:, \"guess\"] = guess"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "333581b5",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = 'image/png';\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.which === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.which;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which !== 17) {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    if (event.altKey && event.which !== 18) {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    if (event.shiftKey && event.which !== 16) {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data']);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"1000\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots(figsize=(10, 10), ncols=2)\n",
    "data.plot.scatter(x=\"x\", y=\"y\", c=\"guess\", colormap='viridis', ax=ax[0])\n",
    "data.plot.scatter(x=\"x\", y=\"y\", c=\"source\", colormap='viridis', ax=ax[1])\n",
    "ax[0].set(xlabel=\"x\", ylabel=r\"y\", title=\"Guessed source\")\n",
    "ax[1].set(xlabel=\"x\", ylabel=r\"y\", title=\"True association\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9b1363ec",
   "metadata": {},
   "source": [
    "Note that if the sample clusters were not \"blobs\" of data, but were in concentric circles, the assumption of this method would be false and the method would simply not work well. This is why it is important to understand the underlying assumptions made in the method."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7076f779",
   "metadata": {},
   "source": [
    "## K-Means\n",
    "\n",
    "Another common method used for clustering is the K-Means, on which one simply tries to find the cluster centers which minimize in-cluster distances (in an Euclidean sense) while maximizing distances between the centers. It can be shown that this method is a special case of the Gaussian Mixture Model when the covariance matrices are diagonal, which would mean that within each blob, there is no correlation between the variables (see https://en.wikipedia.org/wiki/K-means_clustering#Gaussian_mixture_model and references).\n",
    "\n",
    "While this is an approximation of the GMM model, it is still a very useful approach, since there are faster algorithms to achieve the clustering than for GMMs.\n",
    "\n",
    "The scikit-learn module also provides an easy-to-use implementation of this algorithm:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "2f280e1d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "KMeans(n_clusters=3)"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "kmeans = KMeans(n_clusters=3)\n",
    "kmeans.fit(data.loc[:, [\"x\", \"y\"]])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "950a7eec",
   "metadata": {},
   "outputs": [],
   "source": [
    "data.loc[:, \"guess_kmeans\"] = kmeans.predict(data.loc[:, [\"x\", \"y\"]])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "16a56489",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = 'image/png';\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.which === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.which;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which !== 17) {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    if (event.altKey && event.which !== 18) {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    if (event.shiftKey && event.which !== 16) {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data']);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"1000\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots(figsize=(10, 10), ncols=2)\n",
    "data.plot.scatter(x=\"x\", y=\"y\", c=\"guess_kmeans\", colormap='viridis', ax=ax[0])\n",
    "data.plot.scatter(x=\"x\", y=\"y\", c=\"source\", colormap='viridis', ax=ax[1])\n",
    "ax[0].set(xlabel=\"x\", ylabel=r\"y\", title=\"Guessed source using K-Means\")\n",
    "ax[1].set(xlabel=\"x\", ylabel=r\"y\", title=\"True association\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2fe3cad2",
   "metadata": {},
   "source": [
    "## Variational Inference on Gaussian Mixture Models\n",
    "\n",
    "While the Gaussian Mixture Model presented beforehand had a very strong theoretical background, it still assumes that there is a single correct value for the Gaussian parameters. This may not be the case if the Gaussian model is only approximate (as is very often the case!).\n",
    "\n",
    "One improvement to the Gaussian Mixture Models to allow for some uncertainty on the means and covariances would be to assume that also those quantities are random variables which came from some other probability distribution (as with the cluster identification, $z$ previously). In this case, we would obtain an uncertainty for our Gaussian parameters themselves!\n",
    "\n",
    "Optimizing this model becomes even more complicated as the derivation shown before and if we wanted to be fully general, we would need to use very slow algorithms, such as Monte-Carlo sampling to obtain uncertainties with the least amount of extra assumptions. This is often undesirable, since we need fast clustering and often Monte-Carlo sampling is very slow with even more data! An alternative is to assume some underlying prior probability for the means and covariances and find those parameters as well in an optimization algorithm. This is what is done in Variational Inference. Further details can be seen in Bishop (2006), or in a more practical approach, here: https://scikit-learn.org/stable/modules/mixture.html#bgmm\n",
    "\n",
    "We can also easily use this method in our toy data, taking the code from scikit-learn:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "0a8642bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "bgmm = BayesianGaussianMixture(n_components=3)\n",
    "bgmm.fit(data.loc[:, [\"x\", \"y\"]])\n",
    "data.loc[:, \"guess_bgmm\"] = bgmm.predict(data.loc[:, [\"x\", \"y\"]])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "ccbf4019",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = 'image/png';\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.which === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.which;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which !== 17) {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    if (event.altKey && event.which !== 18) {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    if (event.shiftKey && event.which !== 16) {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data']);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"1000\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots(figsize=(10, 10), ncols=2)\n",
    "data.plot.scatter(x=\"x\", y=\"y\", c=\"guess_bgmm\", colormap='viridis', ax=ax[0])\n",
    "data.plot.scatter(x=\"x\", y=\"y\", c=\"source\", colormap='viridis', ax=ax[1])\n",
    "ax[0].set(xlabel=\"x\", ylabel=r\"y\", title=\"Guessed source using Variation Inference GMM\")\n",
    "ax[1].set(xlabel=\"x\", ylabel=r\"y\", title=\"True association\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "72508ead",
   "metadata": {},
   "source": [
    "## Other heuristic approaches\n",
    "\n",
    "Many other heuristic approaches for clustering have been developed. Some of them rely on a strong foundation in statistics, others take a more practical approach and make assumptions on how the data samples are expected to be distributed in the $xy$ scatter plot. The following methods deserve a look if you are not familiar with them already:\n",
    "\n",
    "  * DBSCAN (see https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html ). Uses the euclidean distances between the samples to define if a sample belongs in a cluster or another. The assumption is related to GMMs. While the GMM requires fixing the number of clusters, DBSCAN relies on the maximum distance parameter do define which samples belong to a cluster.\n",
    "  * Agglomerative clustering (see https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering). It uses the nearest neighbour to each sample to define which samples belong together in the same cluster. Since the cluster association is topological, it does not assume the samples make a \"blob\" of some sort, as in the case of GMM. One could for example have samples close to one another making a circle in the $xy$-scatter plane and those samples would belong to the same cluster (depending on the definition of closeness and other parameters of the algorithm).\n",
    "  * Spectral clustering (see https://scikit-learn.org/stable/modules/clustering.html#spectral-clustering). Uses K-means on another representation of the data. This representation of the data transforms the data points from the $xy$ space shown before into a space where connectedness of nearest neighbours is the criteria for similarity. For the mathematical foundation, this document may be useful: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.9323&rep=rep1&type=pdf\n",
    "  "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "488df5eb",
   "metadata": {},
   "source": [
    "### Contact us at the EuXFEL Data Analysis group at any time if you need help analysing your data!\n",
    "\n",
    "#### Data Analysis group: da@xfel.eu"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "941c7cb8",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}