{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "1bba0128",
   "metadata": {},
   "source": [
    "# Supervised regression\n",
    "\n",
    "This is an example of how to build and optimize neural networks with PyTorch with the objective of predicting a known feature in the training dataset.\n",
    "\n",
    "The logic here is very similar to the classification problem and the code is also very close, but the final objective is to minimize the error in the prediction of the missing feature. This is achieved by minimizing the mean-squared-error between the prediction and the target features. As noticed during the presentation, by minimizing the mean-squared-error, we assume that the underlying error distribution is Gaussian. One could use the mean absolute error instead when assuming the distribution is Laplacian.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "d0681795",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: torchvision in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (0.10.0)\n",
      "Requirement already satisfied: torch in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.9.0)\n",
      "Requirement already satisfied: pandas in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.3.0)\n",
      "Requirement already satisfied: numpy in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (1.19.2)\n",
      "Requirement already satisfied: matplotlib in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (3.4.2)\n",
      "Requirement already satisfied: ipympl in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (0.8.2)\n",
      "Collecting torchbnn\n",
      "  Downloading torchbnn-1.2-py3-none-any.whl (12 kB)\n",
      "Requirement already satisfied: pillow>=5.3.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from torchvision) (8.3.1)\n",
      "Requirement already satisfied: typing_extensions in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from torch) (3.10.0.0)\n",
      "Requirement already satisfied: python-dateutil>=2.7.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2.8.2)\n",
      "Requirement already satisfied: pytz>=2017.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pandas) (2021.1)\n",
      "Requirement already satisfied: six>=1.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n",
      "Requirement already satisfied: pyparsing>=2.2.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (2.4.7)\n",
      "Requirement already satisfied: kiwisolver>=1.0.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (1.3.1)\n",
      "Requirement already satisfied: cycler>=0.10 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from matplotlib) (0.10.0)\n",
      "Requirement already satisfied: ipywidgets>=7.6.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipympl) (7.6.3)\n",
      "Requirement already satisfied: ipykernel>=4.7 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipympl) (5.5.5)\n",
      "Requirement already satisfied: tornado>=4.2 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (6.1)\n",
      "Requirement already satisfied: jupyter-client in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (6.1.12)\n",
      "Requirement already satisfied: ipython>=5.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (7.25.0)\n",
      "Requirement already satisfied: traitlets>=4.1.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipykernel>=4.7->ipympl) (5.0.5)\n",
      "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (3.0.19)\n",
      "Requirement already satisfied: pickleshare in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.7.5)\n",
      "Requirement already satisfied: decorator in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (5.0.9)\n",
      "Requirement already satisfied: jedi>=0.16 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.18.0)\n",
      "Requirement already satisfied: pygments in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (2.9.0)\n",
      "Requirement already satisfied: backcall in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.2.0)\n",
      "Requirement already satisfied: setuptools>=18.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (49.6.0.post20210108)\n",
      "Requirement already satisfied: matplotlib-inline in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.1.2)\n",
      "Requirement already satisfied: pexpect>4.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipython>=5.0.0->ipykernel>=4.7->ipympl) (4.8.0)\n",
      "Requirement already satisfied: widgetsnbextension~=3.5.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipywidgets>=7.6.0->ipympl) (3.5.1)\n",
      "Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipywidgets>=7.6.0->ipympl) (1.0.0)\n",
      "Requirement already satisfied: nbformat>=4.2.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from ipywidgets>=7.6.0->ipympl) (5.1.3)\n",
      "Requirement already satisfied: parso<0.9.0,>=0.8.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jedi>=0.16->ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.8.2)\n",
      "Requirement already satisfied: jupyter-core in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (4.7.1)\n",
      "Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (3.2.0)\n",
      "Requirement already satisfied: ipython-genutils in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (0.2.0)\n",
      "Requirement already satisfied: pyrsistent>=0.14.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (0.17.3)\n",
      "Requirement already satisfied: importlib-metadata in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (1.7.0)\n",
      "Requirement already satisfied: attrs>=17.4.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (21.2.0)\n",
      "Requirement already satisfied: ptyprocess>=0.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from pexpect>4.3->ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.7.0)\n",
      "Requirement already satisfied: wcwidth in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=5.0.0->ipykernel>=4.7->ipympl) (0.2.5)\n",
      "Requirement already satisfied: notebook>=4.4.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (6.4.0)\n",
      "Requirement already satisfied: nbconvert in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (6.1.0)\n",
      "Requirement already satisfied: prometheus-client in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.11.0)\n",
      "Requirement already satisfied: jinja2 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (3.0.1)\n",
      "Requirement already satisfied: Send2Trash>=1.5.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.7.1)\n",
      "Requirement already satisfied: argon2-cffi in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (20.1.0)\n",
      "Requirement already satisfied: pyzmq>=17 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (22.1.0)\n",
      "Requirement already satisfied: terminado>=0.8.3 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.10.1)\n",
      "Requirement already satisfied: cffi>=1.0.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.14.6)\n",
      "Requirement already satisfied: pycparser in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from cffi>=1.0.0->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (2.20)\n",
      "Requirement already satisfied: zipp>=0.5 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from importlib-metadata->jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets>=7.6.0->ipympl) (3.5.0)\n",
      "Requirement already satisfied: MarkupSafe>=2.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from jinja2->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (2.0.1)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: entrypoints>=0.2.2 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.3)\n",
      "Requirement already satisfied: pandocfilters>=1.4.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.4.2)\n",
      "Requirement already satisfied: mistune<2,>=0.8.1 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.8.4)\n",
      "Requirement already satisfied: jupyterlab-pygments in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.1.2)\n",
      "Requirement already satisfied: bleach in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (3.3.1)\n",
      "Requirement already satisfied: defusedxml in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.7.1)\n",
      "Requirement already satisfied: nbclient<0.6.0,>=0.5.0 in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.3)\n",
      "Requirement already satisfied: testpath in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.0)\n",
      "Requirement already satisfied: async-generator in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbclient<0.6.0,>=0.5.0->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.10)\n",
      "Requirement already satisfied: nest-asyncio in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from nbclient<0.6.0,>=0.5.0->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (1.5.1)\n",
      "Requirement already satisfied: packaging in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (21.0)\n",
      "Requirement already satisfied: webencodings in /home/danilo/miniconda3/envs/mlmkl/lib/python3.7/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets>=7.6.0->ipympl) (0.5.1)\n",
      "Installing collected packages: torchbnn\n",
      "Successfully installed torchbnn-1.2\n"
     ]
    }
   ],
   "source": [
    "!pip install torchvision torch pandas numpy matplotlib ipympl torchbnn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "23feddde",
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib notebook\n",
    "\n",
    "from typing import Tuple\n",
    "\n",
    "# import standard PyTorch modules\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "\n",
    "import torchbnn as bnn\n",
    "\n",
    "# import torchvision module to handle image manipulation\n",
    "import torchvision\n",
    "import torchvision.transforms as transforms\n",
    "\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from mpl_toolkits.mplot3d import axes3d\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bb1286f0",
   "metadata": {},
   "source": [
    "We start by generating some fake dataset, which is simple enough that we can visualize the results easily. For this reason, the dataset will contain only two independent variables and a third feature variable which we want to determine in test data.\n",
    "\n",
    "The simulated example data will be $f(x) = (3 + \\kappa) x^2 + \\epsilon$, where $\\epsilon \\sim \\mathcal{N}(\\mu=0, \\sigma=10)$ and $\\kappa \\sim \\mathcal{N}(\\mu=0, \\sigma=0.03)$.\n",
    "\n",
    "In this case we do know the true model, so it is interesting to take some time to pinpoint the role of $\\kappa$ and $\\epsilon$. These variables add fluctuation to the results. $\\epsilon$ adds Gaussian noise in a way that is completely independent from $x$ and cannot be traced down to a particular functional dependence. $\\kappa$ changes a specific parameter of the model, in this case the coefficient 3, by around 1%.\n",
    "\n",
    "When fitting a model, the nomenclature *epistemic uncertainty* is often used to refer to uncertainties coming to effects related to different functional models. That is, one can imagine that there are different functions that may fit the data due to the effect of $\\kappa$, such as: $g(x) = 3x^2$ or $h(x) = 2.95x^2$.\n",
    "\n",
    "The nomenclature *aleatoric uncertainty* is used to refer to whichever uncertainty cannot be tracked down to a given model dependence. In this example, different constant factors could be added to the model $g$ to account for the fluctuations in $\\epsilon$.\n",
    "\n",
    "We will see these two effects later on, when we discuss Bayesian Neural Networks, so that we can predict the effect of those uncertainties."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "5d457cd8",
   "metadata": {},
   "outputs": [],
   "source": [
    "def generate_data(N: int) -> np.ndarray:\n",
    "    x = 2*np.random.randn(N, 1)\n",
    "    epsilon = 10*np.random.randn(N, 1)\n",
    "    kappa = 0.03*np.random.randn(N, 1)\n",
    "    z = (3 + kappa)*x**2 + epsilon\n",
    "    return np.concatenate((x, z), axis=1).astype(np.float32)\n",
    "\n",
    "train_data = generate_data(N=1000)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "48433f6f",
   "metadata": {},
   "source": [
    "PyTorch allows you to create a class that outputs a single data entry and use that to feed input to your neural network. We will use the following class to feed the data to the neural network. This looks useless if all your data fits in a Numpy array, but notice that if you have a lot of data and cannot load it all in memory, this allows you to read data on demand, as you need it and only the needed samples are stored at a single time."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "30205402",
   "metadata": {},
   "outputs": [],
   "source": [
    "class MyDataset(torch.utils.data.Dataset):\n",
    "    def __init__(self, data: np.ndarray):\n",
    "        self.data = data\n",
    "    def __len__(self) -> int:\n",
    "        \"\"\"How many samples do I have?\"\"\"\n",
    "        return len(self.data)\n",
    "    def __getitem__(self, idx):\n",
    "        # give me item with index idx\n",
    "        return {\"data\": self.data[idx, 0:1], \"target\": self.data[idx, 1:]}\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "cc0b0774",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1000\n"
     ]
    }
   ],
   "source": [
    "my_dataset = MyDataset(train_data)\n",
    "print(len(my_dataset))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "6dccfac6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'data': array([-0.5583114], dtype=float32), 'target': array([-11.577045], dtype=float32)}\n"
     ]
    }
   ],
   "source": [
    "print(my_dataset[1])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "527089bd",
   "metadata": {},
   "source": [
    "Plot some of the data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "067b8105",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'dblclick',\n",
       "        on_mouse_event_closure('dblclick')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            var img = evt.data;\n",
       "            if (img.type !== 'image/png') {\n",
       "                /* FIXME: We get \"Resource interpreted as Image but\n",
       "                 * transferred with MIME type text/plain:\" errors on\n",
       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "                 * to be part of the websocket stream */\n",
       "                img.type = 'image/png';\n",
       "            }\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                img\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.key === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.key;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.key !== 'Control') {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    else if (event.altKey && event.key !== 'Alt') {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k' + event.key;\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
       "    ws.readyState = comm.kernel.ws.readyState;\n",
       "    function updateReadyState(_event) {\n",
       "        if (comm.kernel.ws) {\n",
       "            ws.readyState = comm.kernel.ws.readyState;\n",
       "        } else {\n",
       "            ws.readyState = 3; // Closed state.\n",
       "        }\n",
       "    }\n",
       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        var data = msg['content']['data'];\n",
       "        if (data['blob'] !== undefined) {\n",
       "            data = {\n",
       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
       "            };\n",
       "        }\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(data);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"640\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig = plt.figure()\n",
    "ax = fig.add_subplot(111)\n",
    "ax.scatter(train_data[:, 0], train_data[:, 1])\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e517975c",
   "metadata": {},
   "source": [
    "And now let us define the neural network. In PyTorch, neural networks always extend `nn.Module`. They define their sub-parts in their constructor, which are convolutional layers and fully connected linear layers in this case, and the method `forward` is expected to receive an input image and output the network target.\n",
    "\n",
    "The network parameters are the weights of the `Conv2d` and `Linear` layers, which are conveniently hidden here, but can be accessed if you try to access their `weights` elements.\n",
    "\n",
    "We will not directly output the label probabilities, since we do not actually need it to optimize the neural network: we need only the logits."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "d908ef86",
   "metadata": {},
   "outputs": [],
   "source": [
    "class Network(nn.Module):\n",
    "    \"\"\"\n",
    "        This is our parametrized function.\n",
    "        It stores all the parametrized weights theta inside the model object.\n",
    "        For such a simple example data, it was not necessary to have such a complex model:\n",
    "        this was only done here to show the interface provided by PyTorch.\n",
    "        The forward function receives the x values and outputs an estimate of the target.\n",
    "        \n",
    "        The nn.Sequential object allows one to apply each step in the given list of parameter\n",
    "        in a sequential way. An alternative would be to create each of these layers manually\n",
    "        and apply them one after the other in the forward method.\n",
    "    \"\"\"\n",
    "    def __init__(self, input_dimension: int=1, output_dimension: int=1):\n",
    "        \"\"\"\n",
    "        Constructor. Here we initialize the weights.\n",
    "        \"\"\"\n",
    "        super().__init__()\n",
    "\n",
    "        hidden_layer = 100\n",
    "        self.model = nn.Sequential(\n",
    "                                   nn.Linear(input_dimension, hidden_layer),\n",
    "                                   nn.ReLU(),\n",
    "                                   nn.Linear(hidden_layer, output_dimension)\n",
    "                                    )\n",
    "\n",
    "    def forward(self, x):\n",
    "        \"\"\"\n",
    "        This function is called when one does my_network(x) and it represents the action\n",
    "        of our parametrized function in the input.\n",
    "        \"\"\"\n",
    "        return self.model(x)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9c5620dc",
   "metadata": {},
   "source": [
    "Let us create one instance of this network. We also create an instance of PyTorch's `DataLoader`, which has the task of taking a given number of data elements and outputing it in a single object. This \"mini-batch\" of data is used during training, so that we do not need to load the entire data in memory during the optimization procedure.\n",
    "\n",
    "We also create an instance of the Adam optimizer, which is used to tune the parameters of the network."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "988e1979",
   "metadata": {},
   "outputs": [],
   "source": [
    "network = Network()\n",
    "B = 10\n",
    "loader = torch.utils.data.DataLoader(my_dataset, batch_size=B)\n",
    "optimizer = torch.optim.Adam(network.parameters(), lr=1e-3)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ee54520",
   "metadata": {},
   "source": [
    "Now we actually repeatedly try to optimize the network parameters. Each time we go through all the data we have, we go through one \"epoch\". For each epoch, we take several \"mini-batches\" of data (given by the `DataLoader` in `loader`) and use it to make one training step."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "d15d655d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 0/100: average loss 378.81588\n",
      "Epoch 1/100: average loss 275.14966\n",
      "Epoch 2/100: average loss 209.67680\n",
      "Epoch 3/100: average loss 177.45487\n",
      "Epoch 4/100: average loss 161.36641\n",
      "Epoch 5/100: average loss 151.22071\n",
      "Epoch 6/100: average loss 143.62892\n",
      "Epoch 7/100: average loss 137.58497\n",
      "Epoch 8/100: average loss 132.61164\n",
      "Epoch 9/100: average loss 128.38996\n",
      "Epoch 10/100: average loss 124.72414\n",
      "Epoch 11/100: average loss 121.49631\n",
      "Epoch 12/100: average loss 118.62273\n",
      "Epoch 13/100: average loss 116.04727\n",
      "Epoch 14/100: average loss 113.73365\n",
      "Epoch 15/100: average loss 111.67534\n",
      "Epoch 16/100: average loss 109.85956\n",
      "Epoch 17/100: average loss 108.26555\n",
      "Epoch 18/100: average loss 106.88248\n",
      "Epoch 19/100: average loss 105.69173\n",
      "Epoch 20/100: average loss 104.67635\n",
      "Epoch 21/100: average loss 103.80502\n",
      "Epoch 22/100: average loss 103.06343\n",
      "Epoch 23/100: average loss 102.43223\n",
      "Epoch 24/100: average loss 101.89756\n",
      "Epoch 25/100: average loss 101.43507\n",
      "Epoch 26/100: average loss 101.03641\n",
      "Epoch 27/100: average loss 100.68191\n",
      "Epoch 28/100: average loss 100.35821\n",
      "Epoch 29/100: average loss 100.06578\n",
      "Epoch 30/100: average loss 99.79758\n",
      "Epoch 31/100: average loss 99.54630\n",
      "Epoch 32/100: average loss 99.31432\n",
      "Epoch 33/100: average loss 99.08812\n",
      "Epoch 34/100: average loss 98.87219\n",
      "Epoch 35/100: average loss 98.67368\n",
      "Epoch 36/100: average loss 98.48651\n",
      "Epoch 37/100: average loss 98.31420\n",
      "Epoch 38/100: average loss 98.15310\n",
      "Epoch 39/100: average loss 97.99930\n",
      "Epoch 40/100: average loss 97.85031\n",
      "Epoch 41/100: average loss 97.71002\n",
      "Epoch 42/100: average loss 97.57293\n",
      "Epoch 43/100: average loss 97.44047\n",
      "Epoch 44/100: average loss 97.31417\n",
      "Epoch 45/100: average loss 97.18990\n",
      "Epoch 46/100: average loss 97.07419\n",
      "Epoch 47/100: average loss 96.96548\n",
      "Epoch 48/100: average loss 96.86184\n",
      "Epoch 49/100: average loss 96.76805\n",
      "Epoch 50/100: average loss 96.67791\n",
      "Epoch 51/100: average loss 96.59360\n",
      "Epoch 52/100: average loss 96.51472\n",
      "Epoch 53/100: average loss 96.43937\n",
      "Epoch 54/100: average loss 96.36539\n",
      "Epoch 55/100: average loss 96.29459\n",
      "Epoch 56/100: average loss 96.22356\n",
      "Epoch 57/100: average loss 96.15634\n",
      "Epoch 58/100: average loss 96.08934\n",
      "Epoch 59/100: average loss 96.02401\n",
      "Epoch 60/100: average loss 95.96307\n",
      "Epoch 61/100: average loss 95.90349\n",
      "Epoch 62/100: average loss 95.84973\n",
      "Epoch 63/100: average loss 95.79636\n",
      "Epoch 64/100: average loss 95.74215\n",
      "Epoch 65/100: average loss 95.69529\n",
      "Epoch 66/100: average loss 95.64951\n",
      "Epoch 67/100: average loss 95.60449\n",
      "Epoch 68/100: average loss 95.56373\n",
      "Epoch 69/100: average loss 95.52165\n",
      "Epoch 70/100: average loss 95.48233\n",
      "Epoch 71/100: average loss 95.44179\n",
      "Epoch 72/100: average loss 95.39826\n",
      "Epoch 73/100: average loss 95.35763\n",
      "Epoch 74/100: average loss 95.31944\n",
      "Epoch 75/100: average loss 95.27754\n",
      "Epoch 76/100: average loss 95.23919\n",
      "Epoch 77/100: average loss 95.20086\n",
      "Epoch 78/100: average loss 95.16258\n",
      "Epoch 79/100: average loss 95.12233\n",
      "Epoch 80/100: average loss 95.08201\n",
      "Epoch 81/100: average loss 95.04595\n",
      "Epoch 82/100: average loss 95.01281\n",
      "Epoch 83/100: average loss 94.97996\n",
      "Epoch 84/100: average loss 94.94827\n",
      "Epoch 85/100: average loss 94.91624\n",
      "Epoch 86/100: average loss 94.88639\n",
      "Epoch 87/100: average loss 94.85546\n",
      "Epoch 88/100: average loss 94.82733\n",
      "Epoch 89/100: average loss 94.79647\n",
      "Epoch 90/100: average loss 94.77049\n",
      "Epoch 91/100: average loss 94.74167\n",
      "Epoch 92/100: average loss 94.71930\n",
      "Epoch 93/100: average loss 94.69341\n",
      "Epoch 94/100: average loss 94.66904\n",
      "Epoch 95/100: average loss 94.64581\n",
      "Epoch 96/100: average loss 94.61936\n",
      "Epoch 97/100: average loss 94.59652\n",
      "Epoch 98/100: average loss 94.57301\n",
      "Epoch 99/100: average loss 94.55085\n"
     ]
    }
   ],
   "source": [
    "epochs = 100\n",
    "# for each epoch\n",
    "for epoch in range(epochs):\n",
    "    losses = list()\n",
    "    # for each mini-batch given by the loader:\n",
    "    for batch in loader:\n",
    "        # get the input in the mini-batch\n",
    "        # this has size (B, C)\n",
    "        # where B is the mini-batch size\n",
    "        # C is the number of features (1 in this case)\n",
    "        features = batch[\"data\"]\n",
    "        # get the targets in the mini-batch (there shall be B of them)\n",
    "        target = batch[\"target\"]\n",
    "        # get the output of the neural network:\n",
    "        prediction = network(features)\n",
    "        \n",
    "        # calculate the loss function being minimized\n",
    "        # in this case, it is the mean-squared error between the prediction and the target values\n",
    "        loss = F.mse_loss(prediction, target)\n",
    "        # exactly equivalent to:\n",
    "        #loss = ((prediction - target)**2).mean()\n",
    "\n",
    "        # clean the optimizer temporary gradient storage\n",
    "        optimizer.zero_grad()\n",
    "        # calculate the gradient of the loss function as a function of the gradients\n",
    "        loss.backward()\n",
    "        # ask the Adam optimizer to change the parameters in the direction of - gradient\n",
    "        # Adam scales the gradient by a constant which is adaptively tuned\n",
    "        # take a look at the Adam paper for more details: https://arxiv.org/abs/1412.6980\n",
    "        optimizer.step()\n",
    "        losses.append(loss.detach().cpu().item())\n",
    "    avg_loss = np.mean(np.array(losses))\n",
    "    print(f\"Epoch {epoch}/{epochs}: average loss {avg_loss:.5f}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a4980bf4",
   "metadata": {},
   "source": [
    "Let us check what the network says about some new data it has never seen before."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "09646d29",
   "metadata": {},
   "outputs": [],
   "source": [
    "test_data = generate_data(N=1000)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e315b5dc",
   "metadata": {},
   "source": [
    "And now we can plot again the new images, now showing what the network tells us about it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "7a06a4c0",
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "predicted = network(torch.from_numpy(test_data[:,0:1])).detach().numpy()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "bab0ce43",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'dblclick',\n",
       "        on_mouse_event_closure('dblclick')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            var img = evt.data;\n",
       "            if (img.type !== 'image/png') {\n",
       "                /* FIXME: We get \"Resource interpreted as Image but\n",
       "                 * transferred with MIME type text/plain:\" errors on\n",
       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "                 * to be part of the websocket stream */\n",
       "                img.type = 'image/png';\n",
       "            }\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                img\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.key === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.key;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.key !== 'Control') {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    else if (event.altKey && event.key !== 'Alt') {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k' + event.key;\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
       "    ws.readyState = comm.kernel.ws.readyState;\n",
       "    function updateReadyState(_event) {\n",
       "        if (comm.kernel.ws) {\n",
       "            ws.readyState = comm.kernel.ws.readyState;\n",
       "        } else {\n",
       "            ws.readyState = 3; // Closed state.\n",
       "        }\n",
       "    }\n",
       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        var data = msg['content']['data'];\n",
       "        if (data['blob'] !== undefined) {\n",
       "            data = {\n",
       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
       "            };\n",
       "        }\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(data);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"640\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig = plt.figure()\n",
    "ax = fig.add_subplot(111)\n",
    "ax.scatter(test_data[:, 0], test_data[:, 1], label=\"Test data\")\n",
    "ax.scatter(test_data[:, 0], predicted, label=\"Predicted\")\n",
    "ax.set(xlabel=\"$x$\", ylabel=\"$f(x)$\")\n",
    "#ax.set_yscale('log')\n",
    "plt.legend(frameon=False)\n",
    "plt.show()"
   ]
  },
  {
   "attachments": {
    "elbo.png": {
     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAACdCAYAAAA6/zu5AAAABHNCSVQICAgIfAhkiAAAABl0RVh0U29mdHdhcmUAZ25vbWUtc2NyZWVuc2hvdO8Dvz4AACAASURBVHic7N0/UONYn/D7795667EyayP7jawboTeyN7JvhDbCG9lPhDtCT4Q3Qk+EbtXWljM8VVuFJsIToYnQRGgiNBGaqDU3QR2hjlBHqCPUESI6NzBNG2MbTAPdzJxPFVPTsv7//enod875FyGEQJIkSZIkaY7/61uvgCRJkiRJ3zcZLEiSJEmStJAMFiRJkiRJWkgGC5IkSZIkLSSDBUmSJEmSFpLBgiRJkiRJC8lgQZIkSZKkhWSwIEmSJEnSQjJYkCRJkiRpIRksSJIkSZK0kAwWJEmSJElaSAYLkiRJkiQtJIMFSZIkSZIWksGCJEmSJEkLyWBBkiRJkqSFZLAgSZIkSdJCMliQJEmSJGmhZwwWCori+eYuSZIkSdLLeL5gIbaxfBktSIvkuG2VqqahaW1G6dfNrUhc7FH8JGs2LXN7WOFjJw4YOiH5PaMF/R7ejJHmDX9aOeFwSJA9x7wj7O6I9InnWoQOQ3/OChc+pqahaVVU3eZ5zgpJ+uv4X4+ZKI9G2G6KpkFGm4FtoE6PlGaEaQroX7mK0ixFllFUq3f3+2PnN6cYSFGUBb8rKMr90y5ers4gjuh/7YZkHr1+wiAwv3JGsxVZQqIUwLxtKkhcGyeuoikZecti2NXGP1XbmFqPnq3iDxtz5lCQJQn5nV05b/jnn2PcgUcyb8XVKrqu0zLa6HP3cUFkdRm1PLzqvHG+Rk4aJwuCpYIsiQjDhKzIKbIc1CqKqqCqVbRGi5ZevbPfFKNPq9+lr3qMjKmNU7q4aRcI6GnBk2+RJP3liCWdH22IWn1bnFwKIcSlOOhUxPrR5fi3412xtbUj9g6OxOFWXZTWdsXx4b7Y3d4S2wenyy5KmuftlqiAKHUOxeWTzPBMHO/tiI16WQACEJXVTbGzdyzOhRBCnIu3B3tifWX8G+W6WN/eFQdvz4UQ5+J4b0esr5RuT7v/edpFLsTealPsXXzt+p+KndVVsXf2tfOZ72ynLtYO5u3tS/F2qy5WNo6uj8ex2Kitiv3z2+McbzbFxtH8eeyv1sXunZ02b/iX389PT8XJXkeUQJTWdsXJ6ak4OzsTp6en4uTtkdjfWhWVUk109mdfgxdH66K5cfxE59IsR2K9tiVO7qz6mTja6YhmvS6aq01RA0FpRax11sTaal1UStycU6Xamtg+PJsx71Ox3VwTB3P3z5xlS5K0lOWChbNd0SytiO2JK+/tVkWU1g9v/n15diR2N5qiAgJKora2Jfbf3v/YkJZwuiea5bJY2Xr7tPM92RrfsJn1cDoXe01EaWVTHM06nG83r495U+w9+HA/TbBwvr8qVjafeF9MWRQsnB+siXJlQxzf/HwmduqI1f2pDTvfE82VTfF25mweGyx8nvWqAMT64ex1PFovC6jdunbH3orN2qqYXtWnNeOBfXYg1uurYvv4/DpIORQdEKzuiS+rcinOT4/E3mZTlEFARXT2z+7M/fKwI2rr8wJnGSxI0lNYImchZdSziY0BduPLUEVRuIqjm2JQRWtj2V3UUo2VikKjP8BsPUvZ5l+X3ifKcxKn9bTzVbXrzxoq6q1S3YLIbmMX24TRiPaswzk57Yse7oiBndO3n3hfPFTu0+//hm4PMG7KycefZ+Jo6kt51WTQ8LGfIQEhCiJglbYx+yNHVVOBD4Th7W/82cjGa9n0nup71oNEWMYbkt6IoXH9eSFLSYGSpk98WlOo6m36o4j4cJ0KH/n1H12cqTQFpTugG9k46cttgST91Tw8WIgcBn8omHbv1nfyLMsgL/jySTXHtX3aQUwSORTDgUwuei0mH3Y3A3NCu0U3bBNEQ1rzHiozp31+ReDgaiY97QUXOiEdDfi16GD3J1cgI82guJNooNDuGUSO+8TJfhFBeAUrbaY/3Y8VJPEHANTq5Agp7iim22+/6DEjzdGHJ4T2RD5TmpIBjdbsHCetO8LplIB3+P50sNWg184ZOfJOI0nP5YEJjgWB4/Kx0sM0JodnJMkVqBOJdmlI0fdxDBUw8UcjvAga3+jF77acJPAJkxyq46Svxq234HEyWZplZJlCo2eg5QlhmKK2DBrV27fUPI2I4pRCbWAYOmoe43shKTrdfhttatlpnJDlOVlepdVtUC1SojAizVV0Y2L+eUoUxWRU0Vut24lpRUaSpGRZRq7odA39ZnicpORZRqY26LU0yGKCKKFQdRqtBtrST4QM3zQwky5hOKTxok+U6zWIA6JUQTeM8X7IUrKqxufDFnoB1ZbNdGFGEft4cQ6KgnJdjVdt9GgrIV6UoyhAUVCg0up10RXIIo8g4TppU7kZPl+MM3pHqTugOzlekZB8ALU948lttGm9GxFkFv2nKoFJQsJPUOkZU+fctdzHDYHaJoPJFc18vHct7hbKZIRuQHorgVWjbeqkbkCijAPCoihAa2MaVSgSAi8iUxSUoqDQ2/NLFLU2t2IrIE9iPlKm25i3U1Ta7Rb8+jtZnsFUam+rbZDZHgkNmVItSc/gYSULuY/jf6Lc7nL7vhIRxoD25eaN1qU/UU6tNPqY30OgUEQMezaR2sa0LHp6xsDQ6XmTeeQ5se/iWD3+/mZIGHtYo5g8tPk3rTtRfS3D7zcwrAg0HTUdYugtuoOUhtmlGPUZTaenFymh62Kb/8HfzRFJ6jN0QgqtRaMaY+k6ZpBTxC62G4PWQMejp+kMJ1+Y8oTAHdLv/p2/Dyaq46UR3mg8/M0wIg8dbD+j2mhRTQa0tC7eMtXiioRRu4GZmN8mUChihu0W/VBBb6jEAws3HGG0BhOZ/wlh+ImG0bg7eZ4ShyOsN2948+YfDLyINC9gcvg/BnhRerMPiywicPq8MQf44fhNd+EqBg7uBzC67ds/xCERoOna3YnUFq3aHwTRMjtjsSwMeE8Joz3rQkvxTIvf1A4H0YjWxHEswpB3K40ZxzYniyO84RvevHnDPyyHIM7Ir2st+AOTN2/eYDkBSZ7fTJOELgPzDdYoIE6X+9QShzHQYsahvKFWx/cVTdPu/tgyaLwPCZ+9iqkk/UU9JLHhcn9NAKJcXxOdTufL3+qKKIGo75w9TQbF2b7o1OuivuRfc+v43llf7K8KqIiNL1lo4vJwXZRKMxLyjjdEibpY3TkQF0KIi6Mtsbq6fZPAdr6/Kkqsicl8t6ONsqC+I+6r83G+2xSUmmJ973b2+UEHwcqa2NybTMU6F7tNRGnt4E7y1kFnOhnsevgagnpH7B5ObtSx2Cgjalv3pHmd74o6CKiJ+nXNiPLqrjh9SJr82Y5YAQEdcXj/2NfmJDheHIvNlbJYnazecHkk1ksIOpP74kislypi/madiu3rGhzlWwlwn4eXb2ryfHa8URH13TMxbVaC49F6SUBJrKx2bl0Xa/WygIqYnX96Ifaas66Zxyc4HnZKAlbE5sGxOD4e/x0dHoi9nU2xVq+LzvbhzGN4tlsXrO3PrQVxeTiuYQErYnJ1Lw8741oK9R1xayvO90SzvC7uVvi4L8lwnBBKfXdhDZqLvdVxkubMi+xQdGbuc5ngKElP4UGfIaIwApoMw+BWffjE1vn19xrtz/XJv5Zm4kW95ad7QH1+VW+zWoeG+mVcpdVCv/qFIIJ+9/b8FN6hat1xYWfbIZx4eYz837mqbN0qotYbGvzsE+b2gvrs120PXCVUW8at78S6VoNfM/Tu5KtVFV0rcRXHpPRuFa/O22RFARIFvTtZnKvT0ODnNAEWvLrdKNDaJiQ/8u73f2J0VaLAnF3E/eQKQtvkp8LkZLKsWhnnxTTbE/utyMiuVBpz97eOZTX54T//4NMvDt6oi6kCeUT0HuATvuORt83xcS58HF/HcrR5M5yQEEZXsLKNHw4njk3OqPWv/Fbu0p1ZojZOAE3TFJ5kj17nK1R0GupEq6mqRqs3pG/PPxmzNANVnZuvoHQteuVf+fnTe0ZOhH2dUDsuBQDejXBiG+f6lEoch8x0aS9bCpWHBO9gZbt953PSFwVBEEHTwZr5nUFFLX8kfZZGpSRJesBniJwk+QS11lRyW0YQvoemNefifRxFUZb/e8iMWzZhHGI1CrI4wBs5OE5AzqxENIAa+pwP1lWtAkV+q5GZIiugpKE9KKt8/PCe3m7Q0aszhi/bEKY2/d1Wuf5G/9AZNOgNHKJoh2YJPv72D4yef2+x/JNIR1g/fWCl178d1kQh0VUNY/I7eJaTo6IuOAGqpsVaCeB3HDcdL8J1iDsbrJXg6jeH68FkrkPYfmjNgHFeQrll3N7XRYD/B9T6FsacKVW1NLchq6Vd5yuUjD79dpv25z+jReOekzHPcsrKonEMrH4NgA+uQ1AARYDjqmxsrAAfcJ3PDR5FOC5Y1vLfHHPf43cqGN0FN5LUxQmqbDnmnIBiXIPnyfarJEm3PCBYyEhzoNG6ffNOPdw/SqxZ8y7e701G6PRo6AZ2BHrbpG93F7zbKVPVB79o2UPWCHCD6xtTETPyU5rDAe3Zk9yZ98ySgdIT1SR4aAB132waNuF1wPDhl79j9O9vsvhr5aHPOyq0px4caRjysWzQnjwJFYBicQyk9LB6ZQDeOQ4xMY6T0x+42GYFeIczioEEx0kwrQfWDMgzMkBv3S6pyT2X36hj9eeX4BTFFerCh/TD5WHAe5iTr3AP5d69R8OyqAN88nH8nNx3CFo2ztCiCXzyHLwcCn+Ip9uY2rIrUeB7v0GluyC3KWVkDmAY4LTmHZ3rJNYHlDJKkrS8B3yGUFAVKFdvhwTxyOFduYfTfcIK2qlP33KXfoNVDBtv4RtNQdhv8e+uxl4SfcnEzm/fWIpisnh/8QO30R9SDfr0gypKnlMdJoRP9TnmO6I0bMIwp2X8wLuf2hhqSDRsPT4YSVxGuUl/zuEat01gTCW65QTBO2jZtxNsVRWVnCyHRRFr2+pT+/kHPnxwGVoZgWoRN0CzTFZ++oH3I4ewreBiET30mXsdkKm3rosMd/QbpbWDBQ/NgjyH6tys/+WEQQTUac+uM7mQqqpc3ZeIWDWx12ze/HbFb46NTUR34KNWwepYvPn1NxwvJvdC2pa3fPPjhY/3G9S2+szc9UWCa/bwuz7hwiLMnDyvUH0dby6S9Oo8IFioolWn2vnPfQajnI7rTDRE8wQ0A3uoL13qjqot/r3wGf70gfLG6HaVrSwh5br3isJlMDIYWvfMCyAKSBouw5657Jp+34ov/zN5DJTWkMBN0N/8yrsf2rSrEYGl3w4YHnTQMty+S+Gac8dQFAUq2u1qnkVIEEFzeDvPA0VHL2dkGYu7IGn0seo/8M93n/jlx19Y2x+NS5R0C6v5A//5h0evp6APkodnESgaWhmKydoF0YBh3MRJegsemjl5BtUneap9zlcwMLTlp9Z1HaJxCcn8tVHpWj3Kv/3Mpz9+4qfKFifXSQk9y6T/60/8MWiT0sPvLn8zKHyP36ixfackJid2B1hOQmsYEMxsCWxyRjn5VRXZ/pskPY8HlSy0e6vkN93R5fj9PknPJ3rKUgUAVLRF2YGPpVSplu9+z0yinGoF8iKHPOfmu0NRUHx+Y51F00jabazcpKEqKCgoqorWaN1pi2Ha53UopvokKooCru4WChdFcb0+08OBfJw3oU4PvzN+cWv43DXMPlcXHD/QJp+c1Z6L62n8/ddP/P7PFl0lwu9PBAw306bczd0ryJOAgdnnx8zk9NZvtzXabcruZD5ITtC3+PWqxrYx/SRo0Gpd4UQpi5+WGqa1xj//8RuU17FukhKq9KwO1ptf+Zi3GZnLPGkMuu0STnZ9BIoIqxdgeNGdNgRuiwiTGo25xelLiDz8T1BqGw9KW52mthpUrIgYFn4+U9oWZu1nfvwAdcv6sizDol/7iR8+fETdtmaXDCxU4LsB1EwMEpI4J8tSkjAgiDKUdh83ch7WPkgcEpUb2NrSKyFJ0kM8rNLEqdjtdMTO4ZHY3+qI9Z2HdBL0fTk/2hKrlZpY2zkQx8dHYn93RxycXIqzvVVRLtfF+sa2OLo4E/ubHbG2UhGlUklU6muis74pDs7uzE3srZZEqVITtVpFVMpfOlEq1zfEzP5uLo/FznpHNGslUSqVRa3ZEeu7b4U4PxRbnTVRr4yHr6x2xMb+qRCn+2KjsyZWyl+Gbx6eC3GyJ9Y7q9fDa6LZ2RD7p2LG8HWxfXQhLo93xHqnKWqlkiiVKqK+1hG7d6qXnYmj3S3RmegMqtzcENs3HUldiLcHu2Kz+aWjKSiJlc6W2Dv+/+5MS6kiaisrYmVlRazUKtfV7647mbrVh8OsqpMX4mizKVY3D8TR0YHY3d4RO+srgtKGOJ6xW892m4LOwf0nwOWRWC8janfq1h2LzQqisjlr7hPLmdU3xPmBWF/bEodHB2J7vSO2Zh74KSfbolbeFHdrVT686uTZ4ZZY73REs1YWpVJJlCp1sdZZFzvHy3bwcCw2yvOqIt52tlsXlNbEwZ3uLlYFpelOs6bNqr54KvbWKl86iipXRK2+KjqbO2Lv8OROleD7nO8253SsJqtOStJTWKojqYuzU3H+fF3TvYBLcX52Ik5OzsTFxHZcXlws0ePeidhprorNw7OpaS7FxdmR2Fkti9La/tI3u7+m+R1JXZ6fitOzCyHEhdhfZX57AOf7YrXcEXP6T3oy8zuSuhRnp2cPPt6n2yszApbxfL6mI6nHertZESs7z90j7HM/sM/FXvNumxkvs2xJ+mtYoiMpUDWde0rZv3MKVa1Bo6Hdqm6nLKhrfkfgMFB6DLva1DQKqtbGdkzUKJT9YXwlpaqjayoQEURQbxuzj1G1h92OcJZqnvIpKWi69sDEvpChq2I/onrhc2lZNsrI4QkblHx5iYOT97GXbuBBkqSHWipYkAC9RSPxCeY8m9IwojDaj/h+K80U+YRXFYy5OQkKbWcIzvC7D9Ayd0jcG92T0/DCdItRN2LwzYKtr1UQDHxazuBReRuSJD2MDBaWpfUJ/Da+2aXv+IRxQpomxKHHsN+mH5tEXu+ZevErSEMP1w1I/uxtz2QBQ6tP23T5SEHkWAyDdPa4VRPPTun3w+Vr0ryUdITpNnCH398jrTV0aTjmTeNUr0nmmwzUESNZqiBJz+qBvU5Kk9SWhRdY5ElEnCZECahVnd4wYEHrul8pJ+h38QwXpx1gtkc4Yf+FmmB+TimebZOqVdq29aWL5aqBaTfoD4bAda0QdX5thWrPY5SaWL7OqPud1Z8rYoZ2jOWNvknPnfdSGgz9PqY1pOHaz7OOzzHP1MXy23jurE9UMa7tkZAQ/wmuEkn61v5FCCG+9UpI94uHLczMIXZaQIbTMCi8BPuV98ebRj5xBqCit417uoS+X5ZmVLVnCBaylFTVHtHNN5CnpNzfFHiepqDdzX+YN/zJPXA9l1eQpjnaEx+XIkspqvP2S0bkR+PqvIqO0daff/9J0p+YDBZeg2xES/OxsuC634KUof5/EzsC72HtS0uSJEnSo8mchVcgGg75wzD50gZWQpxWqMpXJUmSJOkFyJyF717IyP1AzUhxR6PxoNQnvNIZvvJPEJIkSdLrIIOF712WkHxaoWebfO6nKnUcPta6U12GS5IkSdLzkMHC9y6JSUothq3qdWc/OX74nlXbWth3kiRJkiQ9FRksfPcKCq36pVfAZISTrOMs1emRJEmSJD2eTHD83jUMWje9SGaMLJ924CLboJEkSZJeiqw6+d0riOweI61LIwpIukNGn5MXJEmSJOkFyGDhlSjyjEKtyoZlJEmSpBcngwVJkiRJkhaSOQuSJEmSJC0kgwVJkiRJkhaSwYIkSZIkSQvJYEGSJEmSpIVksCBJkiRJ0kIyWJAkSZIkaSEZLEiSJEmStJAMFiRJkiRJWkgGC5IkvRpF4mKP4meZd+b2sMLHThwwdELyp1whSfqOyGBBkqTXIfPo9RN6ZuNZZl9kCUlWLBghxbf7WMMhtmXhJRO/VduY2oieHbNgDpL0askuqqWvVkQOppOgNVTQegx6DWSnmNLTShj2RrTdkMa3OLmKBMdoE1oRfq8KiY3eG9KIbfTrUapdFzsw6AchruwWVvqTkSUL0tfJfHpdl9ZwRDf3cd70cNJvvVLSn03m9nH1IX3tWyy9IOgbDKpD3F51PEjTqb5z8dPJ8RSMgUliWUSyeEH6k5HBgvRV4qHFrw0LU7seUNbQZNeY0pOKGNg5fbv1TZZehBbmzwr9Qe9Lr6+KgsJ7oun0iarJoOFjezJ7QfpzkcGC9HiFz2D0gdVeFxVoDROKPKAngwXpCRWBg6uZ9LRvsfQcb/ATH5s21mSqRJaRAUU+XYSg0O4ZRI5L+nIrKUnPTuYsSI9WBC7B1QoDQ0YH0uNlcUCUKuiGga4CWUpW1bgu8Cf0Aqot++bfnxWxjxfn12/5BUUBaqNHWwnxohxFAYqCApVWr4uuQBZ5BAkoChSFcjN8rtTF+R1W93u3l5/EJICuzpjYaNN6NyLILPrTKy1Jr5QsWZAeLfACrsoGhvat10R6lYqYYbtFP1TQGyrxwMINRxitAV8qGiSE4Scaxt0aEEWeEocjrDdvePPmHwy8iDQvYHL4PwZ4UXpTpbHIIgKnzxtzgB+mZPesYuw4vKNOt307IE6iiCtqaNqMidQWrdofBNFSe0OSvmuyZEF6pBA/uALD4Nt8SZZetTyk3+qSWDHhddaiPmzTU/+D39sHE+dUSppVZj6UVcPCMdoo0f/hh/eQq236hopCH6dlXA/PUbt9WtcFAFrXoe97JGaAb82Y6S0xrvcBAK/fJZz4JYveQ2mdGTEMUEWrQpCkwH3LkKTXQZYsSI8T+QSfoG7IUEFaVkFom/xUmDiT1RuUggJoto0vVW+LjOxKpTr3S5eOZTUB+PSLw01eYR4RvQf4hO94XxpLKnwcX8e6ychdIIuIPkJ50yXyffzPf55JNYdSu4sxc0IVtQppmt6/DEl6JWSwID1KGoZ8pEyroX3rVZFem3SE9dMHVnp9br2YRyHRVQ2jNfGhP8vJUZmVGvBZ1bRYKwH8juOm40W4DnFng7USXP3mcD2YzHUI2/bDknCv8xJa0wFx5BNelelZvbntiahqiaKQ9SelPw8ZLEiPkBMG74AGLVmwIC0pD33eUaHd1W8NT8OQj2WD9mQEoQAUi1tFVHpYvTIA7xyHmBjHyekPXGyzArzDGcVAguMkmFb7YY2G5RmfqNGYagUqGPl8qplYxvxJi+IKVZGJv9KfhwwWpEeIxslbtca3aU1PetXiKAZaU9/7c4LgHbTat3NgVBWVnOyeZgvaVp8awAeXoTXEVS36DTAskxXgw8ghDB1cLKyHBriKwuf8gy+r6eH4n2haFvMbnS7Ic6hqsiqE9OchgwVpeVFAeAU0WgtumJI0m6IoUNHQJgPNIiSIpvIVABQdvZyR3VdtodHHqgN84pcff6FlmePUQt3CagKfPHo9D/3z8IeoatRQxjHDtWQ0JNS2cRcmR+bkGVSrMliQ/jxksCAtLY1CPgIrLRkqSMtrtNuUi3yih8acoG/x61UNw5h+wDZota6Io/SeuWqY1tr4f8vrWDdJCVV6VocSV3zMDSxziQd4o0u7MhGoJEN6jsooGKIvnDAiTGo0WrLYTfrzkMGCtKSCKHgHQKOx+Jb5lDLfxgmfJ2Es6Pd4bOu88cjGS590df70lLaD10sY9D2CwMOxR8SFAqWpfIXx2BjtJu+i+xstUHsW62WomRaT/TipPQuzAhXTorvU87vF0DUIhy6B72DaKXYYcG9FijgiVtp0X+7ykKRn9y9CCPGtV0JaXpFlFNUqL59CFdFX/x9++lRn9yzm3qrqTyAPTLq+STAynqE3ywLXaJF7Mda8l84sZDjwyDWNIlMwh9ZErkbMsD1Edz269720Jh6WE5DlOXm1j+88MNHuT6rIEtKiiq6Ba/wr/1D2uQzMu/skczF0Hyvzl3zYLycdNuhrEUFvaiFFRpIp6A/s9CSxddqFS+q8tuzfnDgIyBs97hTwSH95smThNYostP/9v6l2/cVZ4s8hDQk/ASUdXXuB5WUuvUEVx3mOQOEBUo92y0a1RwxtG1v36NqTb7kN7JHBqOfc3xeAZtDvd1GiX/ktTl/+2H1nlKp+/QAeJ8zWp/MVPqv2sNsRjndf4sIzUaoPDhQgZOiq2A/OovweZITDHrr6r/zbf/RlSZk0kwwWXiNVRyuX0bTqiz9AiyjkPbxQcmOBbw1Q7cE3qnURY7VNctu76Rq5qmlknsutQnGtj607mO49DzOlit7o0pWpHrdFPuFVBWNuu+EKbWcIzpDpTh6/N5k7JO6NvlFX2o9VxbA9Rt3yt14R6Tsmg4XXSO8T5TnJNyjmjMLxY7LcaNzp2OfJJQ521MV+zrLnBWK7x49Zj+GtVgYV+BgTT+U4GLZFbg+4/8s6/KW/PUzKAoZWn7bp8pGCyLEYBunscasmnp3S74ffb4lMOsJ0G7jD1xkNqvObyZQk2TeEtIyUKPoEQOMFakJEI4eiF3yb6plFwHD0npW+d6tJ3yLLuKKgyOFWwojWpac2GAUOrbaMBh6kamDaDfqDIcC4xUN1fgha7XmMUhPL1xndmyDywoqYoR1jeSPZ9oj0p/QXCxZyksAnTHKo6rSMNo1b95yCLElIs4wsU2j0DLQ8IQxT1JZBo3r7LpCnEVGcUqgNDENHzWN8LyRFp9tvT9XnzknjhCzPyfIqrW6DapEShRFprqIbE/PPU6IoJqOK3mqNu+29WcWMJEnJsoxc0eka+s3wOEnJs4xMbdBraZDFBFFCoeo0Wo3b9dofo4iJ3gFUaDS+9i0kJwlDkkKjZTSoKpClKaqmXb94x3h+jjG6GyokgUuUXdfXLwoKFPRuj2rsEqbKdffDBSg63V4LlZzY94mL666MadDtNRYmh+aewy+fVtjp315+EieAhnpnYg3DUBj6EbSNx++VJCKMItKiSqNl0GrM+dRUZMRRwhvwHwAAIABJREFURJIpaIZBq6qQhS5elFNtm/S++vi8BGXJtggUGrbHIH2e3AXN9Bktald6kUKlNxrx4NSG70Aajhh5EVkBasOkPVVk8xLXmfSKiL+Ky7diZ31T7L89F5dCiIuTfdFZWRHrB6cTI52Lo50tsV4vC1gT+ycHYmvnQBxu1QWlNXFw8WW8w826qHd2xdHJiTje3xD1labobB2Ks8szsVOvie3T6eWfiP2tTbFaQ1DeFMdnh2JnZ18cn56J0+MdsVquiY2jC3F5si+2dw/F29MzcXq0JerlFbFzMrmKx2J3qyNWSghW98TNKp0eiu3N6+GdA3FxvCu2947EydmZeLvXEZVKRxycf+U+fLslKiBgTRxcPn42l6f7otNcEztHp+Ls9Ehsb+6J44N1UesciJvZnu+JJk2xd3F3+rf7W2JztSYAARXR3NgRR+dCnOxvic216+GVptjYORLjTb4QRzvrollBlGprYmP783AhhLgU+6t1sXtr35yJ3TqC2pY4ubXkC7G3iqC0IY5nbddBR7CyLaYP/bTD9aljJ4QQl2fiYKMpVrcOxen5pbi8OBXHOx3R7OyJk6l9cHmyK9ZWVsXWwVtxcnIkttdWRH1tQ+y+vRCXR+uiPLkfJemOC/F2uylqqzs359b50aaolxBQFptvx8Oe9jqTXrvvK1g42xedel3Ul/xrbh3fO+uL/VUBFbFx/OU2enm4LkqlptibPqOPN0SJuljdORAXQoiLoy2xurotPk96vr8qSlMPzKONsqC+c++D4ny3KSg1xfre8a0b+kEHwcqa2Ny7FRmI3SaitHb35n/QmfHAEUIcrCGod8Tu4eRGHYuNMqK2dSK+xvlec3yDeMADcZ7Lkx1RL6+I7ZOJLboOQpqTB+JkS1RK6+Jo/sqIJghArO5P7IWLz8NXxf6tnXMqtldq4u4umBEsnO2K+vWNsNPpTPw1Ra2EYHX/zn4XQghxvCnKLFjna3eDhUtxtF4RlY2jO8f57VZNlNb2J266b8VmBVHbntiQ811RpyzWj2SIIN3v8nhDVLh73ztaL90KFoQQT3idSa/d9xUsCCEuLy+X/3vIjN/uiNX6qti99SwePxQ6h9PjbooyiM6c1+fDDoLK7bfOs926YM6b8KSLvXHQMn0xnWzVBEy/4V5fwDMezjPfTj+v252H7Pn4TblzsHjl7jG+mSBK69M77KFOxfYKojz9UHy7KcpMlcYcrQsqm+KtmOdSHHTG60N9R5x9Hnq0LsrXN7f67tmX0Y83RWVivMn5TAcLlwcdAYjO4dTxPx6fF8070eXnzdsWtQecA3eO3cmWqFAWG8czRj7ZFrXJQOB0R6yAWNufXLcjsV5ClDdnzUCSJl3fC+q7d976T7Zrd4OFJ7vOpNfuu8tZUJRnyg5q2YSxDRRkcUgYJWRpQA4UecHdFPUauj57XapaBcLJ5mqhyAoo6Q/8Zqkz3bPzeLt19OqM4cumf2uNqeZor9u3/6o08oQwvgJAf2RyY+5aOO/LmKPbjRGlYcSnskF7YqWLLAdFW/C9U6Fn9ej/+jOf3o1wYhunkeM5Aa2NdeKffxn3QGg5NCjwHY+GlT6oX4A0ToA6xlRzvXEQ8Km0htWb851draJSsGzPxGkQ8hHtzjkBgK6j8YkwiKHdAq1KFciLHG7qoxQUV6Bps2Zw23/913/x448/LreC0qu2ubnJ//zP/1z/KyJ8B3SqD6zN9HzXmfS6fHfBwvPJCB0La5TSsAZYbZOuquD/8Nuc8ZUZSWxjLXvImmvjBgVGW4EiZuSnNIc+7Qety+3OaW6UlKepVac80XwmFTHxe4ASjZlPtfuFQchVqUvXmBx63d11y77d2+BDuiY2LMzaz/z44QOuE+AMEpyoi5PZBNEv/PDexQkdXN1lGLYZeA9LtcryDMrdqeTXGNf7QLk3ojdvNkVBgcqyOXJpkgL67HPi+lh+TFKgBUqP4dYQw/VI+xYakHkuYWUd7wGV+//7v/8b27aXW0HpVfvb3/725R9pQgKQj6+tB52qz3SdSa/L9xUspD59y2XZXGfFsPEWtphWEPZb/LursZdEXxpMyW9fKkXBxA178QO30R9SDfr0gypKnlMdJoRdbcEUr1wcXTeI06D1qDbvE6L4ChrG7aCAED+C5vB2632KqlLKb5fe3NXAspr8+M8/+OQ5WCTkpo+h6OhWkx/+8w88x8NqOaQ9l4fWaFQUBapTb16hg/uhRt9aEA7mGTlVlq2urjd0+DknnywsuJnneB/U9M87XYFqm2E/Y2BaVNWCjDZB0qf1gOX+7W9/u/3wkP5ars/r92lMAg+slvw815n0unxfwYJmYA/15UvLVW3x74XP8KcPlDemWlbLElIYF9kXLoORwfAhnR1EAUnDZdgzl13TVyuPYz4CVFq0HlXFXUFVoKRNfVoIA8KrGv3pxui1BtqnkOye1x/NtFiz3/Db1W/8+HOd3bPx7a9q2nSsv/PrrxbtSMUKH96AlaZpoKgTi80YDTzUzYDBortrlpNXHlq8+0W13WXln/8vQZRj61NP/CgkpoLZ+7zgBD+EXjDEMpdckCQpDRo1+P2Dxyh0GBkTvxXj/8z6jPYc15n0unxnLTiqaLqOvuxf9Z5QVqlSLV/XCZ6QRDnVyvX33zzn5rtDUVCQk817rdU0EquNNXJxPQ/P8/GDkDi7P8wZr8PdC7IoCri6W+xeFMX1+kwP5+at887wO+MXc4Y/XBxdN7TbMh7ZSJJG26hxledf1qGIsPo/8WlWb4N6g0Yp5vNi51K7WJ+bqV21vvQIqHSxemXgIx81C3OJ0pBqt8tKlt6UcGWuyaAY4N/TP0USR1y1Wvd0XzzjGOk23k6daDggmjxARcJw4FPd9PjSWKdGQ/EwzSGu6+J5Hr7vE0TJPaUwz6yIcWzv/v4xlp1t6DD0X7pPiJxwOCR48sVG2N3Rk+8jWGY/NRgMO5T4yE+9LqPrpkiL1GPofwCuiFyPKJ06m57hOpNel++rZOHZGAy9LVLToj0ssFsqaRyjGA7eIKFht+lFbUwnx+2beGEEpRzXbJPoGr3hiJ42MbuGhaVrWIOUqlJQ5DkfP42T/8r1DVzf5c4XiSJkaDr4UUyppDBodwl6Nl4vw+qPCKOMUinAMrq0zCFuK8K0PaIQSoVLz0gxrBEjzac38IjDEqViRK+b0B+6mMVoPDz6PDzG6I8YKCNMxydKSpSwabV9zIHPcv3cZMTJuOXGpvH4N4fG0GOnbdF3VXpKQhhDoQJGm7tzNegaH3HijMVFGQpt26T2i4th926VWhi2zcrPQxq2udzbvmbhml2cUYCJzyhqEwTWPS3zFcThe1a7CwKKeDRx7By63Yiu5WIbCg07Iq5a9Ns9Wr0uDWICP6LohcRWa2KeCl27i20MsUMVpcjJPn7iCqBUY23o4d8a/x5FjDvwxt+xZ1Gr6Pq4AbPpQo8vEpyujTIKnjyxTTH6tPpd+qrHyLjnO8uTbEtBZHUZtTy8OSdNkcWEYUSSFRRFRo5KVVFRVZWq3qDV0uck5o4bZnuOoG6Z/aT2PKLcpGf9wn/+279ilcpoXYdBt4bvVWlUc/I7Z9AzXGfS6/Ktq2O8rEtxfnYiTk7OxMVEzbPLi4slGrE5ETvNVbF5eDY1zaW4ODsSO6tlUVqbUw//1ToWG6Vxwyxb8+syPtjF2ak4uxDic5W/W1WvJlwerovy6t4zN+wyq1Gm61/OT8Xp+QPPjMtD0SlP1zl/nIuzU3F6NntG54frot7ZFSfT63t5Lk4ONsTKjGq5i12K89NTcbLXESUQpbVdcXJ6Ks7OzsTp6ak4eXsk9rdWRaVUE539Wa1rXIq3W03R+eoWvxY5FdvNtQc0Kva12yLExdG6aG4cz7gfXIrTgy2x1qyLZnNV1CvjBozqax2xttYUK5Xr6oUgKK+I9Z3jGeftkVi/09DXU3rofvrsUpyfnYqz641d7j4o/dX8xYKFJ3C0IUoz2je4cbIlKuXZLfy9Wp8bKaIjHtvCwkxvt0Rl4cPtrdiqrYidx7YA9SDzg4VlnO81RWXmQ+YpnYnd+nQ9+EmXYn9tQTsQC5zvrQpArE+3LXHtaL0soCa2p4/V6Y6ov0C9+svDjqitHz5o/z56W8RbsVmbEfBdnoq9tbro7L29vu6vW/Kcuh4uz0/E4e66WCmPg4baxuFUwPDcwcJy+0mSlvGd5Sy8AnqLRuLP/Z6ZhhHFzGL1VyyJxkW7zemaDF852zDg46x8hRstBqMG3jD4fnsaBCBmOFJx7slp+HoajYZC6MWz90ceEsQ1jEdkoEZBBKzSNua1LaICHwjDyRO/wLeHVK3+s9erV7oDupGNk94/7uO2BbKRjdeyp6rGFgSmgVVYuP3WdfF7SpICNf1WfopSbdC1POJoj9UyfPi5h+m9bCbJMvtJkpYhg4VlaX0Cv41vduk7PmGckKYJcegx7LfpxyaR13umh0ZBGnq4bkDygk/PNE64Aiqt1pN8k8zDEVa/S2/wHogZWTbenA/NanvEkAGm/03T9xYoCPt9soE7v/2FJ2S4EYPCpmvauEFEkqYkcUQwsuj1RmhuxPI9JEcE4RWstJn9ubsgiT8AU90Y5x5O0MJ8iQ2nQa+dM3Luy3h95LaQ4o5iuv321LWbkrdGxIE58Z0+I/sANBozgyRF7+MOm8AVv3nhfRv2xB66nyRpOX+RBMenpbYsvMAiTyLiNCFKQK3q9IYB9rPdN3OCfhfPcHHaAWZ7hBM+/xsdQDzuahLjK5IbJ6mtHrbe47pnYoqiQJkbhai0XY+s18dteF+ysL8TmW8x0ke4L9ZlskZvFNArMuI4JolSCqWKZti4/Tk9VN4nCQk/QaVnzD6fch83BGqbDLpfllAEHr/rbbzpheYRnp9QXDcoVRTFuDvqVo7nx3xuTnQ82KStAWmIG6YoikJRFGiGiTG1Mq22QWZ7JEy3UPr120Lm471rYd85xXV61tTS0pgYWGk15u5vzeiywh+8zzOmezP/si7fcD9J0rK+9XcQ6WFOdpqifpNdeC5268/9Lf+zcX8OzOh45mVdiLOHJhsuO+ezs0cnpJ6fvf5+9cbf+EtidpcfZ+KgUxHM6LX0eKM8uz+K8yOxvbV+3YshgpWO2Nw/EeL8SOxsrYv69Tf9lc6m2P/8Af9kX2x0VkSJsqivTwy/vaJzeyL92m15aI+hN+NSEhuLegy72BerIEq3RprKWfiG+0mSliVLFl6DbER/oGJnn197CoriPXEKz//qkJC85ysaY3oqKtozLV99QJ8K81Sfa6Ve0Pgbv4ZahITheFiRZ6RJiO9FKO0Rp16X212lFKTZJ7S2dneG1TZDp027CPn3nz5CXsU0x99GbKdNqwj4958+UWgm5udPJg2TUc/HL2xCz5z9Jl6tUiUlSWBe8szjtgWyLAWt+6CSujiKAIO2sWCkLCMDGov6UfmG+0mSliVzFl6BaDjkD8Oke3NnSIjTytLNCj/KdTPPJeOxjTFJ37frb/wVnYZaUBTjP1SNVm9IEMf4w7sPV8jIMlDndaACGJZJDeCjhxN8TrJJiaJxmx0fXIebwWS4Tkjb6i3oPExFLX8kndv20GO3BbI0A1V9wGeclDD4CM0uc/Inx/MLfd6XOtjm/cHky+8nSVqeLFn47oWM3A/UjBR3NBoPSn3CK53hC3yQzOOID8Dawtco6dW6/sZfavfptx/WDdpYPg4WlAURq25hNX/gn398wnc88raJGjuM8nU2Vn/h5999HD+n3VMhcXFSE29hxwIqqgpZMacN8EdvC+RZTnnRtnyW+njvYWXHWJDsG+M4MfVBTPf+6OPl95MkPYIsWfjeZQnJpxV6tkm326Xb7dIg5WOt9aCOg75WHMZAnfZ9redJr1IeBrwHjPYjyquV+/oFrWJaa5SAq98c3BQCx6VqDRlZHUpc8Zsz7jgudBwUq39P6dU42U+d0439827LWOq7vGMFszcvUi+IbRNXGxHYD43mX3Y/SdJjyGDhe5fEJKUW7VaVarVKtaqMmxW2rRfIdL4uCq0YdzKupT+HMIh4XDCoUlUhzxdXaVV7Nr0ywDucoYXjt7BMDaVr0asAfzg4kY/j6Vj3diyQk+cVqnNe6R+/LePPKVf3bAtk+O47qPfn1MrJiZ0uZmIR+ss1ffyS+0mSHkMGC9+9gkKb6MkwGeEk6w/6Fvr1i44I30O53ZX5Cn9Kn7/xPyYY1NC162/9CxlYZg2ADz/9SNS2rnNvDGxzBfjAqNsnNCx6953SRU5+VZ2T6Po12wK6rt8kJc6V+XjvoNnv3QkEsmiE2WozYEDomzPzIhZ7qf0kSY8jg4XvXcOgddNDYcbI8mkHL9RnfBwSUaLdM15gYdKLizz8T49PXm0YdT5Ec1qTnBzPsqgDUMG0vjR6pFsWTeDTx4Ke1b3/63ocEpUbNLQZv33ltqitBpXrZN55Ms/lD+oYjZwkjonCAM+xMNsG5qjA9CN8q7Ug8XCxF9lPkvRY37rupnSfS/F2uyM29vbF7sa62Dw8e7Eln26vCErr4kg2NP+ncna4JdY7HdGslUWpVBKlSl2sddbFzvGSFfNPtkXtQf2gXIj9tZKgvjvVh8SFOOiUBSs7D2rf4Hy3KUqd2/0ePNm2iGOxUa6J7Zkrcine7jRF+bqjqFKpLCq1ulhd3xI7+0fi9MGLuq9viOfbT5L0tf5FCCG+dcAi3a/IMwq1+ui3luUl2Pr/YdQ6JneNF1uq9JokDHWD1M0YPXt9/oxRSyccZPfUBHi8qF/F1EKSBycmLiugpwXYqfOMn/Wefz9Jf03yM8QroTx3oBCP6LZ7uJ/7aIhdvPd1BgPjOZcqvWo6pt3Ad/zn7+grcXDyPvYzPgBblo0ycoiebQkv4AX2k/TXJIMFCYA0GPHrb7/gxTnj3AgHZWtEX/vWayZ9z6rmCCsdMkqfcykFwcCn5QyeN9FWtxh1Iwbea23N6IX2k/SXJIMFCQDNHLDZ2aCrRLj9Hq7mEjgt2aSLdA8N2zXxzSFzOg79aplvMlBHjF7gbbk1dGk4Jm767It6ci+5n6S/HpmzIE0oyJKEXNXRq/KGIz1cHlqYfhfPMZ42wExdegMYuuaL9LAKQOZjWgmWa9N40o0J6OkBdvIMOQvfYj9JfykyWJAk6UkUaUqhaU+aW1NkKUX1aef5IHlKiob2pAsuSNMc7RkaQPhm+0n6y5DBgiRJkiRJC8mcBUmSJEmSFpLBgiRJkiRJC8lgQZIkSZKkhWSwIEmSJEnSQjJYkCRJkiRpIRksSJIkSZK0kAwWJEmSJElaSAYLkiRJkiQtJIMFSZIkSZIWksGC9P2ILLRqFU3T0PrBV84sJxwOCZ6lA8EIuzsifeTU8cjGe+zEiUPXjh8+/IVkvo0TPnVH1SmePSKeM9t42BqfK1WVrvfsnWRLD5Q4LdSqhqZp9Lz8W6/Os3ie8x2Cfo/n2WVffy39r+dYLen5FVlGUa0+WVvwRTH7BFEUZcHvCopy/7RLrAVK1yMZGUtOd3c+kdVl1PLwnr4ZfiAnjRMWXtNZyHDgkWsaRaZgDq2bToka/R5Bu4fvenSXXb88Jc5mREDzht8jDYaMwnlbolLVNLRGi3ZLm9tBVB6Y9AKTYPTUnY9p9PrQ7Y1w/P6dDpIadkRqQzps0H/iJT9E6g9xwofucwW9a9M3/gK9NxQ5xijF717/O/GwnIAsz8mrfXyn/c16s32R871IiYKQOM0pioIMqCoqiqqgVnVardacPkeuO/J7lrj3Ca4lIb0+b7dEBUSpcygun2SGZ+J4b0ds1MsCEICorG6Knb1jcS6EEOJcvD3YE+sr498o18X69q44eHsuhDgXx3s7Yn2ldHva/c/TLrNdm2Jl8/irt+biaF00N46faN/MciTWa1viZN7PZwdirdYUe2fjf57vNUVt6+3UOHtibXVXnC276LdborZx9PDh97i8OBOnp8diq46AFbF5dCpOT8/E2dmpOD15K44PdsX6SkmUm1vi+GLGDM73xVpzW5w8384WF4frojm9/yac7dTF2sEzrsAclxen4uR4R6zWN8XR6ak4PdoS9ea2OD45EScnb8XR4b7Y3VoTtUpdbO1uiOYTnNuvwenOiugcTgy4PBenJ4dio4ZgdU/MOo1eynOe7xcn+2JzrSnqzaZYXRnfSyvNjuisrYrmSlmUru+PUBHNjT3x9s78L8X+al3sLn3jfLivuZZksPAane6JZrksVhYc9Ec52RI1EDDrhD0Xe01EaWVTHM06md9uigoIaIq9x57sTxIsvBWbtVWx/6x3pEXBwonYWimJ5udIQQghjtZFqbIppo/W8WZNrO4vubOeOFi4nlhslhGs7MwOXs52RR1EuXMwdaO/FIfrNbF++NwP6lOxXa+LndPZv36rYGHsVGyvXh/bt5uiuT1jJc8PxXqtJCp/1WDh2mHn2wcLY099vl+Ktzuror6+L06vJzjdWRFQFpuTF/3FmXh7sC3WauMXq1J9aypgeP5g4WuuJZmz8BrpfaI8J3FaTztf9XMXtyrqrWKygshuYxfbhNGI9qyi88lpn6Xo/2GykY3Xsul9o9Le2O7xY9Zj2Ne+DFQU+BgTT5V+GrZFbg+IXnQNZ0hCwk9QMYw7xZMAaFWqwKcg4FZWROJgR13s7nMXKuvYVpXhwOd7z0xQbp13OWlWQLWLO2x/q1X6fnyrbw/Tnvh8z9wuxrDK0DXRr49/mqSATmNyAapGqzckSCK26yWu3v1I2/ra3KxlPf5aksGC9IXy5X++XA45od2iG7YJoiGteQ/hmdO+tBR3FNPtf6NvokXAcPSelb6FMTk4y7iioJj+VKp16akeo+DbPgKzMOA9JYx2Y/YIcUwCUFVv5chEI4eiZzJnqieldns0/BH+a8qXi4e0rRAApWvjdPVvuz4S8NTne0FKFz92aStfhmXpFZR19FkvTkqDoWtRAz75/ou/LDz2WvqLJTjmJIFPmORQ1WkZbRq3DuY4wSTNMrJModEz0PKEMExRWwaN6u1HUJ5GRHFKoTYwDB01j/G9kBSdbr89FbWOk+KyPCfLq7S6DapFShRGpLmKbkzMP0+JopiMKnqrdROtjlcxI0lSsiwjV3S6hn4zPE5S8iwjUxv0WhpkMUGUUKg6jVYDbeknaIZvGphJlzAc3iTofTN5ShjGFNUGRktDISdNQfucLZT5eO9a2HcKXDJCNyC9lZCp0TZ1UjcgUcYBTlEUoLUxjSoUCYEXkSkKSlFQ6G3M1uIik9xz+OXTCjv927eTJE4Abaq0BkDDMBSGfgRt45E75etFQQS0aBuzD3Ds+XygzOrAmrhRxnh+jjG6e8NNApcou05wLQoKFPRuj2rsEqYTx0DR6fZaqOTEvk9cKCgUFDTo9hq3k3dVg7b2D7ywoPfsJRlPIw0C0s9ho9KiJwsX5iqyhCiKiFPQGq3x/XT2iMRRRJIpaIZBq6qQhS5elFNtm/Qa9xcpPu35rtAyp1MCY6IEaLTmB9KNLu3yD/z0KWNRiuz3dC39dUoWiohhzyZS25iWRU/PGBg6PS+ZGCkn9l0cq8ff3wwJYw9rFJOHNv+mdSeqtGT4/QaGFYGmo6ZDDL1Fd5DSMLsUoz6jZHr5KaHrYpv/wd/NEUnqM3RCCq1Foxpj6TpmkFPELrYbg9ZAx6On6Qwny8LyhMAd0u/+nb8Pwi8Z+WmENxoPfzOMyEMH28+oNlpUkwEtrYu3TLJ8kTBqNzAT87sIFFLfpNV1yLQGWuFjDQP+//bOHzxRrVvj762gk046uZV00smt9Kukk1NpKvmqeKvwVaG0i6eSU8WpwqnCqcJUYaowVZjbhKniVCGVpJJUkmrdQk38H01iJnMOv+fheRKULcLauPbe71rLbcrQpkbliefhe15acq4xosCH3d7D3t4e/q2bcIMIMRJEPR9OS8Pe3h5000Uvjh+P6XkWWtoe9K6LIHzODQ9hmV+AnAJFmP1s378FGGGpAloqy7j3XMyby/vhw/UegLyCZUL92DegmSEKhy5cTXh6IfLh30qQl6yExVEA32phb28Pe/820PVCxAkQhwF82xjdA6MLL4wfp0KjnouuvgfNsOEF0ZIpUgGynIHn/vRFm+dJIgS2hrqdvFm00t+XBEG3jrLmAKIKvalAjC2osga7N2sFSWBCkeqwIh6iCDiaBEnRYLMqmpKPZsvdYGr97e19gShAcAfkJHnN/ech8ABywvKlkMn5fKS+tEMlxfbcnFC1UKDCllvx4OLZpgcnJQKy1Lh4Em8Mz2rEMEsEeRcNYlCg0tFI4DI4P6BS6ZAmh/ZPSsSgQtM6kPNGhlA4ohW6kUf6nSKBKVLteFatf1oFIV+h/eNp2VyfOkUQUzldUPafrhALnVZAKFSpczb9pS6okQHlDlbq9ycnRwWAgBwVxpERmVKHrjfRjt0cUR4goEpLtE2bsULgeH1coUyuQVO3jm6OCgTkaFpPdtMpEConK6MghmfVsSI5T0c3s/sBEApzgqf+MRUzNTpfaHCJwHEsikK2SNVqdWorUo4BoXSyXNh1sU8Z1GhjaeJbCxyvR/eNqRzRxcXFeDun05MOHdZKVCg26PhyieLq6oCyzJrz7h9Tcaz+Lk2rTQeT/fMi1Gs6zOdonYleH+YJpcX7+5EEjtlsjnIZhsCU6PiiQ6XaS0Wncwzf6Pu9VTtrWClwrC0+s/onFWLyi2Lh4XmNMtkanT+++ZL2s6Dc4dQ7+x0qIEO1xQ667uR2Y+/TnNeIAUPru+NIZMlUp5/tKwSOH6QvfayZBUGD7fvwt9w8s/xs05yooFQQIXFPw05WliE+fMOCg8WyYPEdnKCCA8ApJjyvjcmsle98xUNWhDg1ghUlAfjuYGUI72PTLPAQgpfLM+vqopADfkQQ1emJKx6iwOAhDBYSAK1KYcCyAHosxJkA/pHQ5jbcdPyaQFA0FBjg/uu6PNL5AAARaUlEQVR/UFatFycgejVRF5ruQW6bmJ41TJAAmTKUqWXgKIwAjlupV2BVHfUMAPxA13y66YE3nrr53oU5NYvTM01Emj61FrmaxPfwHUC168FxnKdNlxA/AMW6snyUwXPgEOLZiYsdEXsufgCQRBFJkow3gJcU6JaHwLfQXLb8EkW447jVIydeg15lAABfzacEVonvjWdRvsK0wqf3eyYstgl9jQCCEzgg6v08W9wAUXcRxjH6Xh1uszUrkHspsQfTdNdOV2+Kp6swVzUUB3AsC44/9YYkQNew0Ht+yL49iQtd/wJeXdS9sEoTavIXtNa4n/Y8eHeAKE51eF6EyNzDdTYfIe/M3qfwHQ8PUKCW17yp58C9z0LT68/rqz5IX/pYzgJGP6Zbb5s0LBvwAg+6lCAKXNhdE6bpIgaQLM2CkYMoLm+ZF7JAEs8k5UmiZOVU8yJzKllMEhgtCmJGa1WbtDmFIGFWSjVa29q8HQn1lgnfP0KRAe6+/BvluvMmD6vtSODqBr5BQVOdvrAxfPcHICuYnhWMoxgZdt0NKENv5gAAt5YJNwGQuDAtDo1GHsAtLHOiTvZhWoCubxZxEgY9AAWU5VmbCVwX90wFen2F3oHjwWH0wPoZjKYiC6jrKhRFedzKkgh+TcdKohhg1z08WdT1OjLAlBMWwzZdyI0asgC+m+b4xzSBY9qQ9MVkMdNwHDdet30ZiWdAKZdR3nhTYLwoSx8LXm7CfovkQ4kPXfNRNlTsNMioZ0Ktu+BVFZxVR3PyvVkJTYODqb08Y+lKAhfe/ZwD8IgAUQDuPG/0ueMIhXhGJZwgeQAEQdj4I3dn749fCrZzB5QUrJBEAEjgtS3EpTZa5U3O+mP0pQ/nLOyOCJ5ZhySWYfiAqGhoGuqaC8ouEaSNkI02KnBhTdbLkwBdJ0Sx3cJmGiZ2+cwA80aRBJs6UM81Ixnwxg7D7V+/odz01mctfHMCON49IKtzHc+H6wNFZXZ2Bux4xmENkq6jAAD3DkwnRuyYcGUDZltHEcC9bcKOgcRpwxYNTC9briOKIyAjzQlmA1j2LTJ1fXUoZ5IgAQfuTW78tozXb7NllIUtD2WBZ692WYeWAx6dsNCC6aswui1oeQC3FkwPQGSh7SnQn4l3HQm5Xp61lC23YNk27I03C63VT/wNPk+bE8VGCLf0uIOWgcTQdxtxEruoqy7qtgGZ41BWBdjm1Po/p6KluNCtNx4uhCHusCrT6/gZ2RuPftk62gd5BJb96LREtgUvW5sNU17Lju0dAAIL9h1Q0uor7TT2dGieAtvRNncAP0Bf+ljREKGDpm5tPYJlywbstSPABF5Txr8sAcc9H4+2Fc8aaZJMT++v/8GVmm3wbhNNlwcbx+DbPXiqsOaIXxNWMuB5MeTy7/j+SUGZ8+C35Zc7Iz0L3VhDc5MBezwSCuW1OaGQ78B7yI2iFqbgOA4Pz83n8xqMioG9Lw/4Yhow4ENtOeB4QK/q2Pv8BaYdILY9KLq9cWdiWRbg+dnO75mwbnNo6mtcyDhCDB78z1DCjePNGUXZ+seI5TgwcfyM8yhB14v44z/fcG+b0NFDrDkosyJEvYjf//cbbNOGLpsI69azyz1xHC9e4+3OGjz/jklAWAVt/enf2NKg9kwE7Q1DKGMLuiOj296tJ+npGnzFhT2xwSTBfdhDBDwOpvi6Bogt+FoXm821bYAoIofPo/u60NNiRDEAcTJLygK8gnYzQkvTwXMJIihwe83V4dzz7NzegcBycIcKTHX5SUWegbqRwPQsKFv1+Z/flz6WsyCUYbTF7acZOWH964mD9qdbZBpdzDih4zUbEQASC61uGW39mbYAwHfRkyy069q2Z/qxSZ7+mL4HrNyGa/Ug7n3G998VKLwPVxdnHYaNbloEq2khsbTNzmc8QyKIwszunuPhjiljPkxaFEXAH4Uire4EHFS9jsyXP3H/7RM+ZQ9wNe5ZdV1D8/MnfGspCFGHs0VYkSAIADutl4jQbdng9l201j2Zohhx9jU/gC9nsn5bUV7w+BckCPceogRrk+0Imo6KsYcvD1/wx58FdG5GF4PXDFT13/D5sw7F56B7z59DHMZgeP7D5PZZxkIujcn+0ELd+AKhO+soJJEP1w0QcxIUVUTo9iAqI+c4cW2ESntmSTFy22hPqqMlIupmE6zdhBWMrgpb1tFWhXE0VAgWCSStC22VDcYWWjaLuv/0hrDXAzhl1iZZBXVJh+1js4iATZBUKNnfYXke0FRnX4t9+D+A/NHkPHpwPKDutqFrL/u43dt7D7ZzC6baxryvkIQeTN2Aw2rovjC67Gf3pY/lLICDIO5giMXy4DOLBY96fgw+O14Hi2M8rjskCZKJZ7sMQUBPUaDHGiSOBQsWLMdBkOSFXAzzTM4hmTO6JEmAh8VpriRJlq4tJQmAsafLze9feH8ys3/lGUbheFYnRjw9rADA1y1YtoDfPt/j639kqKwPpznlMDweGyIMZ48FEsQ9Fy2tiT8iDdczr62BLUMtAHYcY/Lzn/RMaOYPoNxaGOFwsoSs7iMA1i4HsYoOLfcn/rgFCvrUFG9ZRzP3Cb/f3oE71LcaQfGqinw7fByNRZaGVtKCa5bXdshe4ONBbs1pTN6DGI7tA8ij/JLiRqIEiTHhB0B93YXiVOhqBl/+ugdK+tOyDqtCr2fw+c873AktaM9egBh+cAup/h4poLZhvIwEjJ4f8dxDIw5gd9voejwkqQh+6nuGjgbNktC1dYiJg6Zchy2YiMfG67kehLn5ck5SUHbq+O3TD+Qa5zBYgJXrYLv/wu/fijhqjvoJJ0qAayBQHaybpY/sLr4+8BD9LrpjnaBvf0dWnhsMgIUoAm0vBOQ1Da5h8dkkw7T34SptmD0F+qNGLIHfasPPH8I3JhdMgMTa0DQeepl/0qvxImR5RU6GGd7B3gML9i0g6yLCXoA4jhH1AniuiyAWUG+58DeeBlnCz+5L64I7/k70zw+olM1R5eiULi7O6aRzRKdXQ7o5LlEmU6Ba45DOBzd0sl+lSj5LDMNQtlCham2fTm8WWqPjEkNMNke5XJaymaciSplCg84W3k9Ewws6qlWpmGOIYTKUK1ap1rkk6p/RQbVChexof75UpcbJNdH1CTWqFcpnnvbvn/WJro6pVi2N9+eoWG3QyTUt2V+jw/MBDS+OqFYtUo5hiGGyVKhUqbNQUuKGzjsHVJ0qBpUpNujwsZDUgC5PO7RffCo0BTCUrx7Q8cX/LRwLJku5fJ7y+Tzlc9mpAiqg7P6aehZLQieH18dUKVapc3ZOZ8dHdHh8QCUGVFyaQP2CGpnZcMpV3HQKBKZCp3PxjP3jEoEp0fqSDctqQwzp8rBCteNzOj/ep2qjQ1fPJsEf0mkFVNqmmMZrQyeHl9SpValaKVCWGdtiqUrVxsmzYb9zDdFpBVTc5NyvDiiHDDXmQ9yujyiPzIa1JS6oweSX5rT/WaGT1yc1KhWyxGRyVCyVqFTKUwZZyhdLVCoVqfBo+xnKl0qUz02F3t10qJiZtr9RmPRTaNyQTkorwu8moXQTGxyeUy0z6l+VyfE3HSosrUdSmQnNu2hkiKmeUL/fH2+nVGUYqi65nv3jImU2qG+xEDq55Nl0NBUHPbg8plqpQo2jYzo96dBBrUSlxslCyPbwcp9yTIayuRzlslOFmZgcVTqXy0Om38neB+cHlGcm55OhbDZPxUqDDjqndHGzqW1uUBviJ/alf4yzMGJI/Zsrurq6ocHU9RgOBltUKLyio2KJ9s9u5o4Z0uDmnI5KGWIqK2LqU9azspDUgG6ur6k/pHHFzezKGOLL/SzlV1VJeTNWF5Ia9q/pur+hNQ3PqJrZsujVTgpJvYzhWY0ypePtq4u+hIt9ys7nwRjzc/MsvIyL/QxhOsZ+eEoVTD/A+9QpzhUiemRIZ7UMAQzVzoY0OClRtnFMh4Wn4kiX+zkqdG6WfO60szCg4+Kc432xT5klTgYR0fCkQswGNrYqz8JzjCpC3ix9dvbPalSoduhq3tiGfbo6bVB+zTPhrdi9vb9HISl6cV/6B0VDAAALXpAgScKM+pxdE5u/gGuixdbRVufrnbPgBAWGqYHzvbeJr04Zw0EQR6FNobdcrzBB1g2wXfOnFWdieRHiM0tREyKrDV9t/bSiV6+FVXVooQlr5+knE9imA9lYHw726xAh8O+Rl6WnZ4jvws+UUX6cQubBc/cLqxojWKiGhiwe8Fdbh94OoelNGEYFzA8TbddG2xZhPBvKM1oS4AX+8X/HtCEYxtIluCiOIPDPtflyWE6AKApLlhRC2C0XsqHPRRsBYHlI9S6Myh386fwQuzi/d7P3XfLyvvQPcxbeAFGG1HPgrrDL0PORlJW3UwynTBHDdb8DZWWmUNMMoo6u6qO1VW7rn0GAdpeD+Yym4WMjo9WVYLc3SbP7CsIuzMiA+at6VQtw4AWAe8wJEsMxnYXnhijlEK2K7pF0GAUA3z7hT86ALgFc3UA9cwdL1eCrm1Re5SFL2cc8M4mvo52YcFaIvKNetCA2fh8ESBILzw6W21nswQ1yKD9Tu+X1vJO975JX9KXUWdgWoQnXUeBoKpqmAy/oIQx7CDwb7aaCZqDBtzfIyvUiEoSeDctyd5NR7cOSILAM6JoC4yuAng1DtxCsuAZy24JkaphOavaxSOA1m4ha1i87qzCBU7poowVtZ+UgAxiaC83W/yazCgDAot4+BucYsGwbpqGj7d9DnismJikKeq63og0BWquKDDKoGZN4/TIMo4CHBwG6UV5x3CyyYYJzW7C7BjRThOloK65zCM8XoG6SznQHlC0frcSAqhmwXB+9MEQv8OF2ddTrXQiWj/Y7aF93b++75JV9aadrI39zBteXdHF+RqenZ3R+cUU3OxUqDOh8v0SN0xsa9I+pWjpeuub0S3O5T9lCjQ4PD+nwdFZ3MBz0qd8f0GAwoMH477Wr1P0zatSO6GonS9nnVFuSz35T+mf7VOtcbaGTmeLygPIrNAtL978LN3RSq9HJzVu3O6SLgxodXizvWP3zDh0eHlKjmPnlNAsjhtQfDJfoFSZc02GxSus0a8PB/ItDGq6p/zAvcJwcM1hoZ46bDhUrpxtpsa6P8pSrHNDh4SGdvHUHHPbp6vKczk5P6fTsgi6v+y/rR69id/a+O83C6/vSfxERvbH7krIDgrYMLTIRmDKACKZURmL3YLx/zN3uiAO4Xjia4hNkqAsLlNu2FyLEpim4tyFBGMYQhJedXxRGU+vEWx+NMOQgLNQbX7X/vYgRRiyEDfUaG7cZsiu/U9xz4Y2n2HhZxc5noXeFq4Grs3DjxYRHiatBCQx4b9TRvaaCoOVC3+paJXA1BYHhbfS8SXoe3N5o5M1L6ksjLT84u7B3IA5DQFim23h1y6/uS6mz8CsQdSELDvTIHU9bh2iL/43AJNib5ZdOSUn5gAS2AdNy4UcCynoLpibNLWEmCEwdrmzCkF//w/QSZyGyNeixAbv5dxqZpGxL6iz8Avi6gP/ptTF0J1oIF3VWA+9FMFMlZUrK35wEgeOBU5VX6zZCu4tQba4pcjT/0T5sh4Nan0/SlPJPI3UWPjweNO5f8MpHMCbJxEMHrd8TtAcetF9cIJeSkpKS8vH5YOmeUxaIeujd51E3NEzqVIWmibucunkBlZSUlJSUlFeQOgsfnV6AHiOjLU+KDcVwvB8oGfpPqCeQkpKSkvJPJHUWPjwJEmGqKmGvC7NXg6n9qtLvlJSUlJRfjTQp00dHKkN+rNQWoas7UNzn65WnpKSkpKS8FanA8cOTwDfq6AoqJN9FT22jOxEvpKSkpKSkvAOps/CLkMQREo7fQbKOlJSUlJSU9aTOQkpKSkpKSspaUs1CSkpKSkpKylpSZyElJSUlJSVlLamzkJKSkpKSkrKW1FlISUlJSUlJWUvqLKSkpKSkpKSs5f8BpLzYp7Bd9NQAAAAASUVORK5CYII="
    }
   },
   "cell_type": "markdown",
   "id": "6bd7c62d",
   "metadata": {},
   "source": [
    "## What about an uncertainty?!\n",
    "\n",
    "The method shown before finds the neural network parameters which maximize the log-likelihood of the data. But not all parameters are equally likely and we can estimate an uncertainty for them.\n",
    "\n",
    "With an uncertainty for the parameters, we can propagate the uncertainty through the neural network and obtain an uncertainty on the prediction of the regression output.\n",
    "\n",
    "This can be done assuming each weight in the network function has a given probability distribution and instead of fitting a single value for the weight, we fit the parameters of this probability distribution. For the example shown here, we assume that the probability distribution of the weights is Gaussian and we aim to obtain the mean and variance of the Gaussian.\n",
    "\n",
    "We are going to include the epistemic uncertainty through the variation of the weights. That is, the fact that the weights vary and lead to different effective functions allow us to model different $f(x)$ dependence relationships and this is attributed to the epistemic uncertainty.\n",
    "\n",
    "We additionally assume that the data collected has some aleatoric uncertainty, which means that every point is uncertain by some fixed unknown amount. To model this effect, we assume that the likelihood function $p(\\text{data}|\\theta)$ can be modelled by a Gaussian distribution with a certain standard deviation $\\sigma_a$. This standard deviation will be used to model the aleatoric uncertainty.\n",
    "\n",
    "The final loss function to be optimised here is:\n",
    "\n",
    "$\\mathcal{L} = -\\mathbb{E}_{\\text{data}}\\left[\\log p(\\text{data}|\\text{weights})\\right] + \\frac{1}{M} KL(\\text{weights}|\\text{prior})$\n",
    "\n",
    "The first term is assumed to be a Gaussian with the standard deviation given by the aleatoric uncertainty (assumed to be the same for every data point, but this could be changed to be data-point specific as well!). The second term corresponds to a penalty for varying the weights away from the prior assumption that the weights are Gaussian with a mean zero and standard deviation 0.1. In this equation, $M$ is the number of batches used.\n",
    "\n",
    "It can be shown that by minimizing this loss function, we obtain weights mean and standard deviations that approximately optimize the posterior probability given by the Bayes rule: $p(\\text{weights}|\\text{data}) = \\frac{p(\\text{data}|\\text{weights}) p(\\text{weights})}{p(\\text{data})}$. The proof follows by algebraically trying to minimize the Kullback-Leibler divergence between the true posterior given by the Bayes rule and the approximate posterior, on which the weights are assumed to be Gaussian and the likelihood is assumed to be Gaussian.\n",
    "\n",
    "![elbo.png](attachment:elbo.png)\n",
    "\n",
    "The details of the derivation can be consulted in the following paper:\n",
    "\n",
    "https://arxiv.org/pdf/1505.05424.pdf\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "f8d501ff",
   "metadata": {},
   "outputs": [],
   "source": [
    "class BayesianNetwork(nn.Module):\n",
    "    \"\"\"\n",
    "        A model Bayesian Neural network.\n",
    "        Each weight is represented by a Gaussian with a mean and a standard deviation.\n",
    "        Each evaluation of forward leads to a different choice of the weights, so running\n",
    "        forward several times we can check the effect of the weights variation on the same input.\n",
    "        The nll function implements the negative log likelihood to be used as the first part of the loss\n",
    "        function (the second shall be the Kullback-Leibler divergence).\n",
    "        The negative log-likelihood is simply the negative log likelihood of a Gaussian\n",
    "        between the prediction and the true value. The standard deviation of the Gaussian is left as a\n",
    "        parameter to be fit: sigma.\n",
    "    \"\"\"\n",
    "    def __init__(self, input_dimension: int=1, output_dimension: int=1):\n",
    "        super(BayesianNetwork, self).__init__()\n",
    "        hidden_dimension = 100\n",
    "        self.model = nn.Sequential(\n",
    "                                   bnn.BayesLinear(prior_mu=0,\n",
    "                                                   prior_sigma=0.1,\n",
    "                                                   in_features=input_dimension,\n",
    "                                                   out_features=hidden_dimension),\n",
    "                                   nn.ReLU(),\n",
    "                                   bnn.BayesLinear(prior_mu=0,\n",
    "                                                   prior_sigma=0.1,\n",
    "                                                   in_features=hidden_dimension,\n",
    "                                                   out_features=hidden_dimension),\n",
    "                                   nn.ReLU(),\n",
    "                                   bnn.BayesLinear(prior_mu=0,\n",
    "                                                   prior_sigma=0.1,\n",
    "                                                   in_features=hidden_dimension,\n",
    "                                                   out_features=output_dimension)\n",
    "                                    )\n",
    "        self.log_sigma2 = nn.Parameter(torch.ones(1), requires_grad=True)\n",
    "\n",
    "    def forward(self, x: torch.Tensor) -> torch.Tensor:\n",
    "        \"\"\"\n",
    "        Calculate the result f(x) applied on the input x.\n",
    "        \"\"\"\n",
    "        return self.model(x)\n",
    "\n",
    "    def nll(self, prediction: torch.Tensor, target: torch.Tensor) -> torch.Tensor:\n",
    "        \"\"\"\n",
    "        Calculate the negative log-likelihood (divided by the batch size, since we take the mean).\n",
    "        \"\"\"\n",
    "        error = prediction - target\n",
    "        squared_error = error**2\n",
    "        sigma2 = torch.exp(self.log_sigma2)[0]\n",
    "        norm_error = 0.5*squared_error/sigma2\n",
    "        norm_term = 0.5*(np.log(2*np.pi) + self.log_sigma2[0])\n",
    "        return norm_error.mean() + norm_term\n",
    "\n",
    "    def aleatoric_uncertainty(self) -> torch.Tensor:\n",
    "        \"\"\"\n",
    "            Get the aleatoric component of the uncertainty.\n",
    "        \"\"\"\n",
    "        return torch.exp(0.5*self.log_sigma2[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "7b9beb21",
   "metadata": {},
   "outputs": [],
   "source": [
    "# create the neural network:\n",
    "b_network = BayesianNetwork()\n",
    "\n",
    "# create the object to load the data:\n",
    "B = 10\n",
    "loader = torch.utils.data.DataLoader(my_dataset, batch_size=B)\n",
    "\n",
    "# create the optimizer to be used \n",
    "optimizer = torch.optim.Adam(b_network.parameters(), lr=0.001)\n",
    "\n",
    "# the Kullback-Leibler divergence should be scaled by 1/number_of_batches\n",
    "# see https://arxiv.org/abs/1505.05424 for more information on this\n",
    "number_of_batches = len(my_dataset)/float(B)\n",
    "weight_kl = 1.0/float(number_of_batches)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c68ba2e2",
   "metadata": {},
   "source": [
    "The criteria for finding the optimal weights are based on the Bayes' theorem, on which the posterior probability of the weights is proportional to the likelihood of the data given the weights and to the prior probability of the weights. We assume the prior probability of the weights is Gaussian corresponding to a unit Gaussian centred at zero and with standard deviation 0.1. This prior has a regularizing effect, preventing overtraining.\n",
    "\n",
    "We can translate the Bayes theorem and the assumption that the final posterior distribution is also Gaussian into an optimization procedure to find the posterior mean and variance of the posterior distribution. The function optimized to obtain the mean and variances of the Gaussians for the weights is the sum between the mean-squared-error (corresponding to a Gaussian log-likelihood of the data) and the Kullback-Leibler divergence between the weights distribution and the prior Gaussian."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "fbea6b0c",
   "metadata": {},
   "outputs": [],
   "source": [
    "kl_loss = bnn.BKLLoss(reduction='mean', last_layer_only=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "b92ed4b0",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 0/500  total: 58.60563, -LL: 29.30297, prior: 0.49401, aleatoric unc.: 1.70738\n",
      "Epoch 1/500  total: 29.89883, -LL: 22.77377, prior: 0.51578, aleatoric unc.: 1.74675\n",
      "Epoch 2/500  total: 24.01581, -LL: 19.56905, prior: 0.54058, aleatoric unc.: 1.78531\n",
      "Epoch 3/500  total: 20.88541, -LL: 15.23512, prior: 0.56686, aleatoric unc.: 1.82458\n",
      "Epoch 4/500  total: 18.42086, -LL: 12.56114, prior: 0.59138, aleatoric unc.: 1.86375\n",
      "Epoch 5/500  total: 16.78540, -LL: 11.47957, prior: 0.61184, aleatoric unc.: 1.90320\n",
      "Epoch 6/500  total: 15.74639, -LL: 10.39981, prior: 0.63168, aleatoric unc.: 1.94387\n",
      "Epoch 7/500  total: 15.23265, -LL: 10.92122, prior: 0.64618, aleatoric unc.: 1.98676\n",
      "Epoch 8/500  total: 14.43628, -LL: 14.04801, prior: 0.65764, aleatoric unc.: 2.03084\n",
      "Epoch 9/500  total: 13.75567, -LL: 9.28419, prior: 0.66495, aleatoric unc.: 2.07617\n",
      "Epoch 10/500  total: 13.46332, -LL: 9.24567, prior: 0.67066, aleatoric unc.: 2.12401\n",
      "Epoch 11/500  total: 12.68328, -LL: 8.02405, prior: 0.68236, aleatoric unc.: 2.17244\n",
      "Epoch 12/500  total: 12.16965, -LL: 10.14399, prior: 0.69100, aleatoric unc.: 2.22149\n",
      "Epoch 13/500  total: 11.89046, -LL: 10.02692, prior: 0.69707, aleatoric unc.: 2.27265\n",
      "Epoch 14/500  total: 11.31826, -LL: 8.22698, prior: 0.70348, aleatoric unc.: 2.32503\n",
      "Epoch 15/500  total: 11.15097, -LL: 8.46218, prior: 0.70463, aleatoric unc.: 2.37917\n",
      "Epoch 16/500  total: 10.78811, -LL: 6.91465, prior: 0.70900, aleatoric unc.: 2.43505\n",
      "Epoch 17/500  total: 10.27545, -LL: 7.55249, prior: 0.70822, aleatoric unc.: 2.49083\n",
      "Epoch 18/500  total: 9.88403, -LL: 7.78374, prior: 0.70896, aleatoric unc.: 2.54750\n",
      "Epoch 19/500  total: 9.49734, -LL: 6.96424, prior: 0.71104, aleatoric unc.: 2.60481\n",
      "Epoch 20/500  total: 9.18567, -LL: 6.83609, prior: 0.71782, aleatoric unc.: 2.66279\n",
      "Epoch 21/500  total: 8.77549, -LL: 6.85847, prior: 0.72051, aleatoric unc.: 2.72092\n",
      "Epoch 22/500  total: 8.64839, -LL: 6.52611, prior: 0.71736, aleatoric unc.: 2.78174\n",
      "Epoch 23/500  total: 8.43415, -LL: 7.78695, prior: 0.71795, aleatoric unc.: 2.84376\n",
      "Epoch 24/500  total: 8.17714, -LL: 6.13595, prior: 0.72104, aleatoric unc.: 2.90688\n",
      "Epoch 25/500  total: 7.70156, -LL: 6.61542, prior: 0.72217, aleatoric unc.: 2.96854\n",
      "Epoch 26/500  total: 7.61942, -LL: 6.63054, prior: 0.72667, aleatoric unc.: 3.03244\n",
      "Epoch 27/500  total: 7.42529, -LL: 5.76781, prior: 0.72993, aleatoric unc.: 3.09773\n",
      "Epoch 28/500  total: 7.29471, -LL: 6.51807, prior: 0.72927, aleatoric unc.: 3.16509\n",
      "Epoch 29/500  total: 7.12159, -LL: 5.48303, prior: 0.73176, aleatoric unc.: 3.23374\n",
      "Epoch 30/500  total: 6.79870, -LL: 6.10557, prior: 0.73237, aleatoric unc.: 3.30124\n",
      "Epoch 31/500  total: 6.60342, -LL: 5.65072, prior: 0.73511, aleatoric unc.: 3.36955\n",
      "Epoch 32/500  total: 6.63333, -LL: 6.37231, prior: 0.73616, aleatoric unc.: 3.44177\n",
      "Epoch 33/500  total: 6.25342, -LL: 5.67089, prior: 0.73999, aleatoric unc.: 3.51138\n",
      "Epoch 34/500  total: 6.25324, -LL: 5.80523, prior: 0.74006, aleatoric unc.: 3.58479\n",
      "Epoch 35/500  total: 6.06724, -LL: 4.63822, prior: 0.73928, aleatoric unc.: 3.65814\n",
      "Epoch 36/500  total: 5.97354, -LL: 4.87066, prior: 0.73962, aleatoric unc.: 3.73306\n",
      "Epoch 37/500  total: 5.75250, -LL: 5.21252, prior: 0.74361, aleatoric unc.: 3.80782\n",
      "Epoch 38/500  total: 5.70047, -LL: 4.60235, prior: 0.74538, aleatoric unc.: 3.88453\n",
      "Epoch 39/500  total: 5.65181, -LL: 5.21456, prior: 0.74527, aleatoric unc.: 3.96423\n",
      "Epoch 40/500  total: 5.43323, -LL: 4.63033, prior: 0.74861, aleatoric unc.: 4.04155\n",
      "Epoch 41/500  total: 5.28977, -LL: 5.04850, prior: 0.74891, aleatoric unc.: 4.11915\n",
      "Epoch 42/500  total: 5.24329, -LL: 5.24680, prior: 0.74535, aleatoric unc.: 4.19924\n",
      "Epoch 43/500  total: 5.17848, -LL: 4.70368, prior: 0.75037, aleatoric unc.: 4.28055\n",
      "Epoch 44/500  total: 5.16991, -LL: 4.86729, prior: 0.74977, aleatoric unc.: 4.36667\n",
      "Epoch 45/500  total: 5.00426, -LL: 4.76213, prior: 0.74627, aleatoric unc.: 4.45042\n",
      "Epoch 46/500  total: 4.96309, -LL: 4.31775, prior: 0.75200, aleatoric unc.: 4.53622\n",
      "Epoch 47/500  total: 4.89156, -LL: 4.62450, prior: 0.75400, aleatoric unc.: 4.62413\n",
      "Epoch 48/500  total: 4.77733, -LL: 4.33423, prior: 0.75599, aleatoric unc.: 4.71083\n",
      "Epoch 49/500  total: 4.70859, -LL: 4.23383, prior: 0.75542, aleatoric unc.: 4.79768\n",
      "Epoch 50/500  total: 4.61107, -LL: 4.23617, prior: 0.75896, aleatoric unc.: 4.88461\n",
      "Epoch 51/500  total: 4.53410, -LL: 4.05732, prior: 0.76156, aleatoric unc.: 4.97112\n",
      "Epoch 52/500  total: 4.53218, -LL: 4.03225, prior: 0.76646, aleatoric unc.: 5.06118\n",
      "Epoch 53/500  total: 4.47935, -LL: 4.09978, prior: 0.76704, aleatoric unc.: 5.15256\n",
      "Epoch 54/500  total: 4.39028, -LL: 3.94386, prior: 0.76755, aleatoric unc.: 5.24289\n",
      "Epoch 55/500  total: 4.38337, -LL: 4.36773, prior: 0.76699, aleatoric unc.: 5.33596\n",
      "Epoch 56/500  total: 4.35281, -LL: 4.11247, prior: 0.77196, aleatoric unc.: 5.43080\n",
      "Epoch 57/500  total: 4.29956, -LL: 3.87602, prior: 0.77093, aleatoric unc.: 5.52630\n",
      "Epoch 58/500  total: 4.23197, -LL: 4.01298, prior: 0.77028, aleatoric unc.: 5.62054\n",
      "Epoch 59/500  total: 4.24475, -LL: 3.99289, prior: 0.77126, aleatoric unc.: 5.71866\n",
      "Epoch 60/500  total: 4.16691, -LL: 3.89405, prior: 0.77055, aleatoric unc.: 5.81574\n",
      "Epoch 61/500  total: 4.16522, -LL: 3.96328, prior: 0.76699, aleatoric unc.: 5.91432\n",
      "Epoch 62/500  total: 4.11586, -LL: 3.69259, prior: 0.76921, aleatoric unc.: 6.01400\n",
      "Epoch 63/500  total: 4.07180, -LL: 3.89622, prior: 0.77077, aleatoric unc.: 6.11181\n",
      "Epoch 64/500  total: 4.07462, -LL: 3.86786, prior: 0.77294, aleatoric unc.: 6.21290\n",
      "Epoch 65/500  total: 4.01141, -LL: 3.77488, prior: 0.77207, aleatoric unc.: 6.31128\n",
      "Epoch 66/500  total: 3.99999, -LL: 3.65617, prior: 0.77586, aleatoric unc.: 6.41138\n",
      "Epoch 67/500  total: 4.02086, -LL: 3.71232, prior: 0.77457, aleatoric unc.: 6.51647\n",
      "Epoch 68/500  total: 3.96727, -LL: 3.82445, prior: 0.77131, aleatoric unc.: 6.61852\n",
      "Epoch 69/500  total: 3.91331, -LL: 3.59059, prior: 0.77492, aleatoric unc.: 6.71576\n",
      "Epoch 70/500  total: 3.92368, -LL: 3.87038, prior: 0.77663, aleatoric unc.: 6.81692\n",
      "Epoch 71/500  total: 3.91091, -LL: 3.71611, prior: 0.77434, aleatoric unc.: 6.91915\n",
      "Epoch 72/500  total: 3.90254, -LL: 3.84058, prior: 0.77568, aleatoric unc.: 7.02362\n",
      "Epoch 73/500  total: 3.86610, -LL: 3.79804, prior: 0.77613, aleatoric unc.: 7.12259\n",
      "Epoch 74/500  total: 3.86877, -LL: 3.67038, prior: 0.77967, aleatoric unc.: 7.22509\n",
      "Epoch 75/500  total: 3.83692, -LL: 3.71282, prior: 0.78043, aleatoric unc.: 7.32391\n",
      "Epoch 76/500  total: 3.84445, -LL: 3.81955, prior: 0.77407, aleatoric unc.: 7.42552\n",
      "Epoch 77/500  total: 3.82880, -LL: 3.67313, prior: 0.77377, aleatoric unc.: 7.52656\n",
      "Epoch 78/500  total: 3.81437, -LL: 3.66513, prior: 0.77432, aleatoric unc.: 7.62591\n",
      "Epoch 79/500  total: 3.78821, -LL: 3.75625, prior: 0.77875, aleatoric unc.: 7.71907\n",
      "Epoch 80/500  total: 3.83347, -LL: 3.61354, prior: 0.77968, aleatoric unc.: 7.82734\n",
      "Epoch 81/500  total: 3.78359, -LL: 3.59515, prior: 0.77631, aleatoric unc.: 7.92300\n",
      "Epoch 82/500  total: 3.78367, -LL: 3.67180, prior: 0.77953, aleatoric unc.: 8.01834\n",
      "Epoch 83/500  total: 3.75569, -LL: 3.61895, prior: 0.78101, aleatoric unc.: 8.10435\n",
      "Epoch 84/500  total: 3.76833, -LL: 3.55765, prior: 0.78393, aleatoric unc.: 8.19697\n",
      "Epoch 85/500  total: 3.76053, -LL: 3.68451, prior: 0.78236, aleatoric unc.: 8.28731\n",
      "Epoch 86/500  total: 3.76217, -LL: 3.74953, prior: 0.78270, aleatoric unc.: 8.37660\n",
      "Epoch 87/500  total: 3.73655, -LL: 3.64136, prior: 0.77914, aleatoric unc.: 8.45761\n",
      "Epoch 88/500  total: 3.75396, -LL: 3.62085, prior: 0.77929, aleatoric unc.: 8.54510\n",
      "Epoch 89/500  total: 3.74527, -LL: 3.68434, prior: 0.77997, aleatoric unc.: 8.62806\n",
      "Epoch 90/500  total: 3.75304, -LL: 3.66249, prior: 0.77914, aleatoric unc.: 8.71503\n",
      "Epoch 91/500  total: 3.72325, -LL: 3.60384, prior: 0.77980, aleatoric unc.: 8.78583\n",
      "Epoch 92/500  total: 3.74192, -LL: 3.59396, prior: 0.78044, aleatoric unc.: 8.86492\n",
      "Epoch 93/500  total: 3.71866, -LL: 3.61358, prior: 0.78299, aleatoric unc.: 8.93002\n",
      "Epoch 94/500  total: 3.72444, -LL: 3.58171, prior: 0.78235, aleatoric unc.: 8.99536\n",
      "Epoch 95/500  total: 3.72439, -LL: 3.60700, prior: 0.77858, aleatoric unc.: 9.05974\n",
      "Epoch 96/500  total: 3.73727, -LL: 3.67353, prior: 0.77897, aleatoric unc.: 9.13145\n",
      "Epoch 97/500  total: 3.73587, -LL: 3.65088, prior: 0.78041, aleatoric unc.: 9.19960\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 98/500  total: 3.72790, -LL: 3.58224, prior: 0.78028, aleatoric unc.: 9.25964\n",
      "Epoch 99/500  total: 3.71771, -LL: 3.66020, prior: 0.77745, aleatoric unc.: 9.31000\n",
      "Epoch 100/500  total: 3.72549, -LL: 3.62102, prior: 0.77761, aleatoric unc.: 9.36518\n",
      "Epoch 101/500  total: 3.71956, -LL: 3.57595, prior: 0.77925, aleatoric unc.: 9.41201\n",
      "Epoch 102/500  total: 3.72677, -LL: 3.57028, prior: 0.77652, aleatoric unc.: 9.46463\n",
      "Epoch 103/500  total: 3.72387, -LL: 3.65744, prior: 0.77754, aleatoric unc.: 9.50802\n",
      "Epoch 104/500  total: 3.71402, -LL: 3.60348, prior: 0.77234, aleatoric unc.: 9.54170\n",
      "Epoch 105/500  total: 3.72198, -LL: 3.63285, prior: 0.77360, aleatoric unc.: 9.58104\n",
      "Epoch 106/500  total: 3.71737, -LL: 3.64993, prior: 0.77597, aleatoric unc.: 9.61322\n",
      "Epoch 107/500  total: 3.71005, -LL: 3.56981, prior: 0.77387, aleatoric unc.: 9.63459\n",
      "Epoch 108/500  total: 3.71906, -LL: 3.58226, prior: 0.77644, aleatoric unc.: 9.66549\n",
      "Epoch 109/500  total: 3.72139, -LL: 3.63789, prior: 0.77184, aleatoric unc.: 9.69481\n",
      "Epoch 110/500  total: 3.70912, -LL: 3.60181, prior: 0.77226, aleatoric unc.: 9.71032\n",
      "Epoch 111/500  total: 3.71838, -LL: 3.63031, prior: 0.77578, aleatoric unc.: 9.73120\n",
      "Epoch 112/500  total: 3.71506, -LL: 3.61052, prior: 0.77374, aleatoric unc.: 9.74926\n",
      "Epoch 113/500  total: 3.71562, -LL: 3.72471, prior: 0.77285, aleatoric unc.: 9.76058\n",
      "Epoch 114/500  total: 3.71990, -LL: 3.74557, prior: 0.76846, aleatoric unc.: 9.78141\n",
      "Epoch 115/500  total: 3.72581, -LL: 3.67777, prior: 0.76765, aleatoric unc.: 9.80824\n",
      "Epoch 116/500  total: 3.72395, -LL: 3.66619, prior: 0.76687, aleatoric unc.: 9.82927\n",
      "Epoch 117/500  total: 3.72196, -LL: 3.67000, prior: 0.76839, aleatoric unc.: 9.84076\n",
      "Epoch 118/500  total: 3.70945, -LL: 3.61228, prior: 0.76902, aleatoric unc.: 9.84046\n",
      "Epoch 119/500  total: 3.71781, -LL: 3.57591, prior: 0.77380, aleatoric unc.: 9.84767\n",
      "Epoch 120/500  total: 3.70874, -LL: 3.66554, prior: 0.77551, aleatoric unc.: 9.83665\n",
      "Epoch 121/500  total: 3.72752, -LL: 3.65136, prior: 0.77845, aleatoric unc.: 9.86153\n",
      "Epoch 122/500  total: 3.73040, -LL: 3.62794, prior: 0.77837, aleatoric unc.: 9.88645\n",
      "Epoch 123/500  total: 3.71462, -LL: 3.68275, prior: 0.78350, aleatoric unc.: 9.88238\n",
      "Epoch 124/500  total: 3.71511, -LL: 3.59032, prior: 0.78381, aleatoric unc.: 9.87697\n",
      "Epoch 125/500  total: 3.72409, -LL: 3.58439, prior: 0.78439, aleatoric unc.: 9.89114\n",
      "Epoch 126/500  total: 3.71711, -LL: 3.66987, prior: 0.78606, aleatoric unc.: 9.88819\n",
      "Epoch 127/500  total: 3.71188, -LL: 3.63467, prior: 0.78302, aleatoric unc.: 9.87889\n",
      "Epoch 128/500  total: 3.72376, -LL: 3.58284, prior: 0.78485, aleatoric unc.: 9.88960\n",
      "Epoch 129/500  total: 3.71365, -LL: 3.66670, prior: 0.78087, aleatoric unc.: 9.88381\n",
      "Epoch 130/500  total: 3.72456, -LL: 3.66885, prior: 0.78370, aleatoric unc.: 9.89316\n",
      "Epoch 131/500  total: 3.71323, -LL: 3.62470, prior: 0.78227, aleatoric unc.: 9.88930\n",
      "Epoch 132/500  total: 3.71856, -LL: 3.66937, prior: 0.78154, aleatoric unc.: 9.88618\n",
      "Epoch 133/500  total: 3.71670, -LL: 3.64594, prior: 0.77825, aleatoric unc.: 9.88424\n",
      "Epoch 134/500  total: 3.72210, -LL: 3.60950, prior: 0.77902, aleatoric unc.: 9.89171\n",
      "Epoch 135/500  total: 3.71507, -LL: 3.59651, prior: 0.77877, aleatoric unc.: 9.88918\n",
      "Epoch 136/500  total: 3.71900, -LL: 3.65212, prior: 0.78622, aleatoric unc.: 9.89051\n",
      "Epoch 137/500  total: 3.71307, -LL: 3.61388, prior: 0.78563, aleatoric unc.: 9.88130\n",
      "Epoch 138/500  total: 3.71602, -LL: 3.60536, prior: 0.78637, aleatoric unc.: 9.88007\n",
      "Epoch 139/500  total: 3.72967, -LL: 3.64175, prior: 0.78606, aleatoric unc.: 9.89858\n",
      "Epoch 140/500  total: 3.71805, -LL: 3.57543, prior: 0.78286, aleatoric unc.: 9.90221\n",
      "Epoch 141/500  total: 3.71457, -LL: 3.60350, prior: 0.78505, aleatoric unc.: 9.89543\n",
      "Epoch 142/500  total: 3.71818, -LL: 3.66506, prior: 0.79071, aleatoric unc.: 9.89198\n",
      "Epoch 143/500  total: 3.70745, -LL: 3.66879, prior: 0.79167, aleatoric unc.: 9.87098\n",
      "Epoch 144/500  total: 3.71752, -LL: 3.59973, prior: 0.79228, aleatoric unc.: 9.87335\n",
      "Epoch 145/500  total: 3.71323, -LL: 3.68346, prior: 0.78821, aleatoric unc.: 9.86594\n",
      "Epoch 146/500  total: 3.69810, -LL: 3.62257, prior: 0.79184, aleatoric unc.: 9.83553\n",
      "Epoch 147/500  total: 3.70289, -LL: 3.60558, prior: 0.79325, aleatoric unc.: 9.81485\n",
      "Epoch 148/500  total: 3.71252, -LL: 3.67221, prior: 0.79652, aleatoric unc.: 9.81311\n",
      "Epoch 149/500  total: 3.73219, -LL: 3.57769, prior: 0.79471, aleatoric unc.: 9.85562\n",
      "Epoch 150/500  total: 3.72208, -LL: 3.67267, prior: 0.78948, aleatoric unc.: 9.87345\n",
      "Epoch 151/500  total: 3.71389, -LL: 3.65466, prior: 0.79006, aleatoric unc.: 9.87153\n",
      "Epoch 152/500  total: 3.72419, -LL: 3.67915, prior: 0.79090, aleatoric unc.: 9.87917\n",
      "Epoch 153/500  total: 3.71665, -LL: 3.62692, prior: 0.79997, aleatoric unc.: 9.88276\n",
      "Epoch 154/500  total: 3.72019, -LL: 3.58589, prior: 0.79751, aleatoric unc.: 9.88690\n",
      "Epoch 155/500  total: 3.71445, -LL: 3.61408, prior: 0.80268, aleatoric unc.: 9.88311\n",
      "Epoch 156/500  total: 3.70221, -LL: 3.68263, prior: 0.80404, aleatoric unc.: 9.85331\n",
      "Epoch 157/500  total: 3.70698, -LL: 3.70702, prior: 0.80339, aleatoric unc.: 9.83723\n",
      "Epoch 158/500  total: 3.72310, -LL: 3.59278, prior: 0.80445, aleatoric unc.: 9.85699\n",
      "Epoch 159/500  total: 3.71378, -LL: 3.73156, prior: 0.80416, aleatoric unc.: 9.85512\n",
      "Epoch 160/500  total: 3.70706, -LL: 3.63655, prior: 0.80595, aleatoric unc.: 9.84014\n",
      "Epoch 161/500  total: 3.71271, -LL: 3.57877, prior: 0.80410, aleatoric unc.: 9.84335\n",
      "Epoch 162/500  total: 3.71768, -LL: 3.63120, prior: 0.80659, aleatoric unc.: 9.85032\n",
      "Epoch 163/500  total: 3.71903, -LL: 3.65138, prior: 0.80638, aleatoric unc.: 9.85763\n",
      "Epoch 164/500  total: 3.71713, -LL: 3.64704, prior: 0.80705, aleatoric unc.: 9.86186\n",
      "Epoch 165/500  total: 3.71419, -LL: 3.64462, prior: 0.80874, aleatoric unc.: 9.86155\n",
      "Epoch 166/500  total: 3.70272, -LL: 3.60857, prior: 0.80695, aleatoric unc.: 9.83837\n",
      "Epoch 167/500  total: 3.71688, -LL: 3.60935, prior: 0.81090, aleatoric unc.: 9.84529\n",
      "Epoch 168/500  total: 3.70292, -LL: 3.60577, prior: 0.80637, aleatoric unc.: 9.82553\n",
      "Epoch 169/500  total: 3.71970, -LL: 3.63841, prior: 0.80866, aleatoric unc.: 9.83715\n",
      "Epoch 170/500  total: 3.71758, -LL: 3.67275, prior: 0.81033, aleatoric unc.: 9.84604\n",
      "Epoch 171/500  total: 3.72500, -LL: 3.59006, prior: 0.81392, aleatoric unc.: 9.86759\n",
      "Epoch 172/500  total: 3.70126, -LL: 3.64450, prior: 0.81116, aleatoric unc.: 9.84247\n",
      "Epoch 173/500  total: 3.72101, -LL: 3.64824, prior: 0.81156, aleatoric unc.: 9.84976\n",
      "Epoch 174/500  total: 3.71152, -LL: 3.69934, prior: 0.81262, aleatoric unc.: 9.84919\n",
      "Epoch 175/500  total: 3.71467, -LL: 3.68428, prior: 0.81517, aleatoric unc.: 9.85176\n",
      "Epoch 176/500  total: 3.70291, -LL: 3.63773, prior: 0.81583, aleatoric unc.: 9.83082\n",
      "Epoch 177/500  total: 3.70896, -LL: 3.66547, prior: 0.81045, aleatoric unc.: 9.82290\n",
      "Epoch 178/500  total: 3.71117, -LL: 3.68764, prior: 0.81337, aleatoric unc.: 9.82000\n",
      "Epoch 179/500  total: 3.70928, -LL: 3.61341, prior: 0.81607, aleatoric unc.: 9.81955\n",
      "Epoch 180/500  total: 3.70466, -LL: 3.65554, prior: 0.81575, aleatoric unc.: 9.80751\n",
      "Epoch 181/500  total: 3.70420, -LL: 3.64272, prior: 0.81693, aleatoric unc.: 9.79344\n",
      "Epoch 182/500  total: 3.71046, -LL: 3.64984, prior: 0.81584, aleatoric unc.: 9.79500\n",
      "Epoch 183/500  total: 3.71474, -LL: 3.66882, prior: 0.81325, aleatoric unc.: 9.80760\n",
      "Epoch 184/500  total: 3.71527, -LL: 3.61031, prior: 0.81348, aleatoric unc.: 9.82014\n",
      "Epoch 185/500  total: 3.70042, -LL: 3.66272, prior: 0.81257, aleatoric unc.: 9.80154\n",
      "Epoch 186/500  total: 3.71282, -LL: 3.61934, prior: 0.81781, aleatoric unc.: 9.80770\n",
      "Epoch 187/500  total: 3.71327, -LL: 3.67081, prior: 0.81615, aleatoric unc.: 9.81168\n",
      "Epoch 188/500  total: 3.70315, -LL: 3.66320, prior: 0.81042, aleatoric unc.: 9.80011\n",
      "Epoch 189/500  total: 3.69962, -LL: 3.63048, prior: 0.81293, aleatoric unc.: 9.78159\n",
      "Epoch 190/500  total: 3.71830, -LL: 3.68563, prior: 0.81299, aleatoric unc.: 9.80476\n",
      "Epoch 191/500  total: 3.71706, -LL: 3.64913, prior: 0.81458, aleatoric unc.: 9.81613\n",
      "Epoch 192/500  total: 3.70988, -LL: 3.62455, prior: 0.81865, aleatoric unc.: 9.81723\n",
      "Epoch 193/500  total: 3.70870, -LL: 3.63595, prior: 0.81586, aleatoric unc.: 9.81325\n",
      "Epoch 194/500  total: 3.71062, -LL: 3.63609, prior: 0.81832, aleatoric unc.: 9.81209\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 195/500  total: 3.72410, -LL: 3.62442, prior: 0.81648, aleatoric unc.: 9.83962\n",
      "Epoch 196/500  total: 3.71915, -LL: 3.66803, prior: 0.81624, aleatoric unc.: 9.84151\n",
      "Epoch 197/500  total: 3.71432, -LL: 3.64483, prior: 0.81001, aleatoric unc.: 9.85190\n",
      "Epoch 198/500  total: 3.71493, -LL: 3.59165, prior: 0.81170, aleatoric unc.: 9.85324\n",
      "Epoch 199/500  total: 3.70331, -LL: 3.60793, prior: 0.80896, aleatoric unc.: 9.83340\n",
      "Epoch 200/500  total: 3.70812, -LL: 3.59062, prior: 0.81499, aleatoric unc.: 9.82334\n",
      "Epoch 201/500  total: 3.71478, -LL: 3.62452, prior: 0.81519, aleatoric unc.: 9.82977\n",
      "Epoch 202/500  total: 3.71517, -LL: 3.56803, prior: 0.81508, aleatoric unc.: 9.83826\n",
      "Epoch 203/500  total: 3.69960, -LL: 3.63084, prior: 0.81742, aleatoric unc.: 9.81023\n",
      "Epoch 204/500  total: 3.70639, -LL: 3.66974, prior: 0.81871, aleatoric unc.: 9.80200\n",
      "Epoch 205/500  total: 3.70826, -LL: 3.62572, prior: 0.81504, aleatoric unc.: 9.79858\n",
      "Epoch 206/500  total: 3.71623, -LL: 3.64392, prior: 0.81659, aleatoric unc.: 9.81016\n",
      "Epoch 207/500  total: 3.71774, -LL: 3.65070, prior: 0.81498, aleatoric unc.: 9.82834\n",
      "Epoch 208/500  total: 3.69666, -LL: 3.65249, prior: 0.81455, aleatoric unc.: 9.79752\n",
      "Epoch 209/500  total: 3.70594, -LL: 3.67450, prior: 0.81606, aleatoric unc.: 9.79126\n",
      "Epoch 210/500  total: 3.69925, -LL: 3.68792, prior: 0.81400, aleatoric unc.: 9.77435\n",
      "Epoch 211/500  total: 3.70082, -LL: 3.60530, prior: 0.81230, aleatoric unc.: 9.76606\n",
      "Epoch 212/500  total: 3.71195, -LL: 3.64706, prior: 0.81609, aleatoric unc.: 9.77611\n",
      "Epoch 213/500  total: 3.70414, -LL: 3.64134, prior: 0.81544, aleatoric unc.: 9.77201\n",
      "Epoch 214/500  total: 3.71389, -LL: 3.63395, prior: 0.81622, aleatoric unc.: 9.78563\n",
      "Epoch 215/500  total: 3.71683, -LL: 3.66099, prior: 0.81664, aleatoric unc.: 9.80171\n",
      "Epoch 216/500  total: 3.72204, -LL: 3.66836, prior: 0.81515, aleatoric unc.: 9.82727\n",
      "Epoch 217/500  total: 3.70703, -LL: 3.63465, prior: 0.81890, aleatoric unc.: 9.82033\n",
      "Epoch 218/500  total: 3.70247, -LL: 3.71451, prior: 0.81721, aleatoric unc.: 9.80064\n",
      "Epoch 219/500  total: 3.71433, -LL: 3.63672, prior: 0.82165, aleatoric unc.: 9.80686\n",
      "Epoch 220/500  total: 3.70779, -LL: 3.61201, prior: 0.82151, aleatoric unc.: 9.80850\n",
      "Epoch 221/500  total: 3.72726, -LL: 3.65804, prior: 0.82183, aleatoric unc.: 9.83772\n",
      "Epoch 222/500  total: 3.71228, -LL: 3.65686, prior: 0.81864, aleatoric unc.: 9.84025\n",
      "Epoch 223/500  total: 3.72339, -LL: 3.64982, prior: 0.82202, aleatoric unc.: 9.85690\n",
      "Epoch 224/500  total: 3.70915, -LL: 3.63755, prior: 0.81988, aleatoric unc.: 9.85046\n",
      "Epoch 225/500  total: 3.70552, -LL: 3.63990, prior: 0.82102, aleatoric unc.: 9.82943\n",
      "Epoch 226/500  total: 3.70323, -LL: 3.64443, prior: 0.82060, aleatoric unc.: 9.81781\n",
      "Epoch 227/500  total: 3.70019, -LL: 3.65555, prior: 0.82249, aleatoric unc.: 9.79478\n",
      "Epoch 228/500  total: 3.71216, -LL: 3.69579, prior: 0.82333, aleatoric unc.: 9.79841\n",
      "Epoch 229/500  total: 3.71140, -LL: 3.62137, prior: 0.82447, aleatoric unc.: 9.80692\n",
      "Epoch 230/500  total: 3.70575, -LL: 3.64446, prior: 0.82529, aleatoric unc.: 9.79880\n",
      "Epoch 231/500  total: 3.71456, -LL: 3.75829, prior: 0.82439, aleatoric unc.: 9.80728\n",
      "Epoch 232/500  total: 3.70966, -LL: 3.63882, prior: 0.82492, aleatoric unc.: 9.80583\n",
      "Epoch 233/500  total: 3.71351, -LL: 3.61270, prior: 0.82613, aleatoric unc.: 9.81784\n",
      "Epoch 234/500  total: 3.70172, -LL: 3.62794, prior: 0.81822, aleatoric unc.: 9.79805\n",
      "Epoch 235/500  total: 3.71109, -LL: 3.64488, prior: 0.82053, aleatoric unc.: 9.80066\n",
      "Epoch 236/500  total: 3.70431, -LL: 3.62616, prior: 0.82161, aleatoric unc.: 9.78883\n",
      "Epoch 237/500  total: 3.70279, -LL: 3.68337, prior: 0.82063, aleatoric unc.: 9.77969\n",
      "Epoch 238/500  total: 3.71613, -LL: 3.67027, prior: 0.82166, aleatoric unc.: 9.79706\n",
      "Epoch 239/500  total: 3.70064, -LL: 3.66745, prior: 0.82222, aleatoric unc.: 9.78118\n",
      "Epoch 240/500  total: 3.70537, -LL: 3.60819, prior: 0.82710, aleatoric unc.: 9.77992\n",
      "Epoch 241/500  total: 3.71476, -LL: 3.61006, prior: 0.82356, aleatoric unc.: 9.79421\n",
      "Epoch 242/500  total: 3.71145, -LL: 3.64876, prior: 0.82434, aleatoric unc.: 9.79779\n",
      "Epoch 243/500  total: 3.70802, -LL: 3.58574, prior: 0.82809, aleatoric unc.: 9.79796\n",
      "Epoch 244/500  total: 3.70571, -LL: 3.65710, prior: 0.82588, aleatoric unc.: 9.79101\n",
      "Epoch 245/500  total: 3.70188, -LL: 3.62964, prior: 0.82486, aleatoric unc.: 9.77658\n",
      "Epoch 246/500  total: 3.72030, -LL: 3.63991, prior: 0.82122, aleatoric unc.: 9.80154\n",
      "Epoch 247/500  total: 3.71523, -LL: 3.61676, prior: 0.82447, aleatoric unc.: 9.81099\n",
      "Epoch 248/500  total: 3.71168, -LL: 3.59765, prior: 0.82207, aleatoric unc.: 9.81821\n",
      "Epoch 249/500  total: 3.71399, -LL: 3.63747, prior: 0.82239, aleatoric unc.: 9.82253\n",
      "Epoch 250/500  total: 3.70465, -LL: 3.64624, prior: 0.82184, aleatoric unc.: 9.81008\n",
      "Epoch 251/500  total: 3.69921, -LL: 3.60426, prior: 0.82150, aleatoric unc.: 9.78902\n",
      "Epoch 252/500  total: 3.71118, -LL: 3.67592, prior: 0.82288, aleatoric unc.: 9.79504\n",
      "Epoch 253/500  total: 3.70237, -LL: 3.62898, prior: 0.82680, aleatoric unc.: 9.78291\n",
      "Epoch 254/500  total: 3.70794, -LL: 3.64745, prior: 0.82541, aleatoric unc.: 9.78084\n",
      "Epoch 255/500  total: 3.70302, -LL: 3.62780, prior: 0.82535, aleatoric unc.: 9.77530\n",
      "Epoch 256/500  total: 3.71729, -LL: 3.63795, prior: 0.82601, aleatoric unc.: 9.79276\n",
      "Epoch 257/500  total: 3.70993, -LL: 3.63274, prior: 0.82741, aleatoric unc.: 9.79693\n",
      "Epoch 258/500  total: 3.71243, -LL: 3.65305, prior: 0.82601, aleatoric unc.: 9.80389\n",
      "Epoch 259/500  total: 3.70296, -LL: 3.64940, prior: 0.82313, aleatoric unc.: 9.79133\n",
      "Epoch 260/500  total: 3.71093, -LL: 3.59715, prior: 0.82558, aleatoric unc.: 9.79233\n",
      "Epoch 261/500  total: 3.71045, -LL: 3.63395, prior: 0.82771, aleatoric unc.: 9.79831\n",
      "Epoch 262/500  total: 3.69963, -LL: 3.67210, prior: 0.82712, aleatoric unc.: 9.77961\n",
      "Epoch 263/500  total: 3.71113, -LL: 3.65016, prior: 0.82726, aleatoric unc.: 9.78695\n",
      "Epoch 264/500  total: 3.70665, -LL: 3.60633, prior: 0.83064, aleatoric unc.: 9.78443\n",
      "Epoch 265/500  total: 3.71054, -LL: 3.65116, prior: 0.83137, aleatoric unc.: 9.79059\n",
      "Epoch 266/500  total: 3.69886, -LL: 3.60721, prior: 0.83100, aleatoric unc.: 9.77077\n",
      "Epoch 267/500  total: 3.70686, -LL: 3.65023, prior: 0.83398, aleatoric unc.: 9.77222\n",
      "Epoch 268/500  total: 3.69995, -LL: 3.71522, prior: 0.83159, aleatoric unc.: 9.75908\n",
      "Epoch 269/500  total: 3.70539, -LL: 3.64799, prior: 0.83221, aleatoric unc.: 9.75858\n",
      "Epoch 270/500  total: 3.70420, -LL: 3.63578, prior: 0.83041, aleatoric unc.: 9.75445\n",
      "Epoch 271/500  total: 3.70999, -LL: 3.68182, prior: 0.82908, aleatoric unc.: 9.76730\n",
      "Epoch 272/500  total: 3.70793, -LL: 3.63381, prior: 0.83376, aleatoric unc.: 9.76915\n",
      "Epoch 273/500  total: 3.70842, -LL: 3.64926, prior: 0.83353, aleatoric unc.: 9.77610\n",
      "Epoch 274/500  total: 3.70973, -LL: 3.62482, prior: 0.83395, aleatoric unc.: 9.77950\n",
      "Epoch 275/500  total: 3.71090, -LL: 3.60236, prior: 0.83533, aleatoric unc.: 9.78900\n",
      "Epoch 276/500  total: 3.70221, -LL: 3.67710, prior: 0.83294, aleatoric unc.: 9.77734\n",
      "Epoch 277/500  total: 3.70494, -LL: 3.64316, prior: 0.83875, aleatoric unc.: 9.77393\n",
      "Epoch 278/500  total: 3.71155, -LL: 3.61530, prior: 0.83769, aleatoric unc.: 9.78493\n",
      "Epoch 279/500  total: 3.72149, -LL: 3.63981, prior: 0.83667, aleatoric unc.: 9.81001\n",
      "Epoch 280/500  total: 3.70467, -LL: 3.62610, prior: 0.83533, aleatoric unc.: 9.80246\n",
      "Epoch 281/500  total: 3.70502, -LL: 3.66885, prior: 0.83573, aleatoric unc.: 9.79123\n",
      "Epoch 282/500  total: 3.70405, -LL: 3.63700, prior: 0.83748, aleatoric unc.: 9.78283\n",
      "Epoch 283/500  total: 3.70889, -LL: 3.63902, prior: 0.83531, aleatoric unc.: 9.78254\n",
      "Epoch 284/500  total: 3.71741, -LL: 3.60456, prior: 0.83570, aleatoric unc.: 9.80172\n",
      "Epoch 285/500  total: 3.71138, -LL: 3.68161, prior: 0.83478, aleatoric unc.: 9.80546\n",
      "Epoch 286/500  total: 3.70675, -LL: 3.59507, prior: 0.83560, aleatoric unc.: 9.80310\n",
      "Epoch 287/500  total: 3.70698, -LL: 3.61376, prior: 0.83594, aleatoric unc.: 9.79633\n",
      "Epoch 288/500  total: 3.70635, -LL: 3.60290, prior: 0.83656, aleatoric unc.: 9.78862\n",
      "Epoch 289/500  total: 3.71560, -LL: 3.64837, prior: 0.83419, aleatoric unc.: 9.80237\n",
      "Epoch 290/500  total: 3.70476, -LL: 3.65473, prior: 0.83240, aleatoric unc.: 9.79643\n",
      "Epoch 291/500  total: 3.70503, -LL: 3.67415, prior: 0.83116, aleatoric unc.: 9.78742\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 292/500  total: 3.69757, -LL: 3.58311, prior: 0.82735, aleatoric unc.: 9.77046\n",
      "Epoch 293/500  total: 3.70371, -LL: 3.64588, prior: 0.82783, aleatoric unc.: 9.76296\n",
      "Epoch 294/500  total: 3.70312, -LL: 3.62281, prior: 0.83122, aleatoric unc.: 9.76033\n",
      "Epoch 295/500  total: 3.70929, -LL: 3.64419, prior: 0.83021, aleatoric unc.: 9.76300\n",
      "Epoch 296/500  total: 3.70208, -LL: 3.64338, prior: 0.83049, aleatoric unc.: 9.76104\n",
      "Epoch 297/500  total: 3.70218, -LL: 3.61723, prior: 0.83026, aleatoric unc.: 9.75453\n",
      "Epoch 298/500  total: 3.70252, -LL: 3.64148, prior: 0.83147, aleatoric unc.: 9.74977\n",
      "Epoch 299/500  total: 3.70108, -LL: 3.68672, prior: 0.83107, aleatoric unc.: 9.74179\n",
      "Epoch 300/500  total: 3.70634, -LL: 3.67040, prior: 0.82994, aleatoric unc.: 9.75107\n",
      "Epoch 301/500  total: 3.69355, -LL: 3.60485, prior: 0.82971, aleatoric unc.: 9.73195\n",
      "Epoch 302/500  total: 3.70322, -LL: 3.63580, prior: 0.83051, aleatoric unc.: 9.73157\n",
      "Epoch 303/500  total: 3.70026, -LL: 3.70596, prior: 0.82929, aleatoric unc.: 9.72599\n",
      "Epoch 304/500  total: 3.70397, -LL: 3.65822, prior: 0.83103, aleatoric unc.: 9.72934\n",
      "Epoch 305/500  total: 3.70864, -LL: 3.56731, prior: 0.83211, aleatoric unc.: 9.74369\n",
      "Epoch 306/500  total: 3.70876, -LL: 3.59099, prior: 0.83176, aleatoric unc.: 9.75274\n",
      "Epoch 307/500  total: 3.70129, -LL: 3.63883, prior: 0.82881, aleatoric unc.: 9.74951\n",
      "Epoch 308/500  total: 3.70983, -LL: 3.63237, prior: 0.82886, aleatoric unc.: 9.75686\n",
      "Epoch 309/500  total: 3.70741, -LL: 3.60030, prior: 0.83055, aleatoric unc.: 9.76448\n",
      "Epoch 310/500  total: 3.70709, -LL: 3.59931, prior: 0.83434, aleatoric unc.: 9.76765\n",
      "Epoch 311/500  total: 3.69747, -LL: 3.63639, prior: 0.83337, aleatoric unc.: 9.74833\n",
      "Epoch 312/500  total: 3.71152, -LL: 3.62594, prior: 0.83660, aleatoric unc.: 9.76304\n",
      "Epoch 313/500  total: 3.70416, -LL: 3.64673, prior: 0.83517, aleatoric unc.: 9.76183\n",
      "Epoch 314/500  total: 3.69919, -LL: 3.58278, prior: 0.83536, aleatoric unc.: 9.75043\n",
      "Epoch 315/500  total: 3.70675, -LL: 3.60159, prior: 0.83583, aleatoric unc.: 9.75515\n",
      "Epoch 316/500  total: 3.70445, -LL: 3.64417, prior: 0.83832, aleatoric unc.: 9.75135\n",
      "Epoch 317/500  total: 3.70155, -LL: 3.64957, prior: 0.83247, aleatoric unc.: 9.74824\n",
      "Epoch 318/500  total: 3.70251, -LL: 3.61336, prior: 0.83256, aleatoric unc.: 9.74411\n",
      "Epoch 319/500  total: 3.70864, -LL: 3.61781, prior: 0.83391, aleatoric unc.: 9.75591\n",
      "Epoch 320/500  total: 3.69483, -LL: 3.62589, prior: 0.83023, aleatoric unc.: 9.73673\n",
      "Epoch 321/500  total: 3.70477, -LL: 3.65918, prior: 0.83147, aleatoric unc.: 9.73801\n",
      "Epoch 322/500  total: 3.71006, -LL: 3.68025, prior: 0.83056, aleatoric unc.: 9.75054\n",
      "Epoch 323/500  total: 3.70612, -LL: 3.63204, prior: 0.82882, aleatoric unc.: 9.75776\n",
      "Epoch 324/500  total: 3.70220, -LL: 3.63502, prior: 0.82885, aleatoric unc.: 9.75287\n",
      "Epoch 325/500  total: 3.70991, -LL: 3.67634, prior: 0.82949, aleatoric unc.: 9.75935\n",
      "Epoch 326/500  total: 3.70031, -LL: 3.67920, prior: 0.83210, aleatoric unc.: 9.74968\n",
      "Epoch 327/500  total: 3.71157, -LL: 3.65393, prior: 0.83033, aleatoric unc.: 9.76567\n",
      "Epoch 328/500  total: 3.70492, -LL: 3.64040, prior: 0.82936, aleatoric unc.: 9.76520\n",
      "Epoch 329/500  total: 3.70176, -LL: 3.60859, prior: 0.83023, aleatoric unc.: 9.75874\n",
      "Epoch 330/500  total: 3.70091, -LL: 3.61544, prior: 0.83437, aleatoric unc.: 9.74670\n",
      "Epoch 331/500  total: 3.70303, -LL: 3.65750, prior: 0.83323, aleatoric unc.: 9.74530\n",
      "Epoch 332/500  total: 3.70879, -LL: 3.59750, prior: 0.82948, aleatoric unc.: 9.75656\n",
      "Epoch 333/500  total: 3.70656, -LL: 3.65474, prior: 0.82868, aleatoric unc.: 9.76092\n",
      "Epoch 334/500  total: 3.69965, -LL: 3.63443, prior: 0.83218, aleatoric unc.: 9.74758\n",
      "Epoch 335/500  total: 3.70277, -LL: 3.63288, prior: 0.83110, aleatoric unc.: 9.74762\n",
      "Epoch 336/500  total: 3.70189, -LL: 3.66539, prior: 0.83201, aleatoric unc.: 9.74239\n",
      "Epoch 337/500  total: 3.69537, -LL: 3.65592, prior: 0.82954, aleatoric unc.: 9.72731\n",
      "Epoch 338/500  total: 3.69802, -LL: 3.60642, prior: 0.82822, aleatoric unc.: 9.72182\n",
      "Epoch 339/500  total: 3.71005, -LL: 3.67063, prior: 0.82849, aleatoric unc.: 9.73660\n",
      "Epoch 340/500  total: 3.70104, -LL: 3.60019, prior: 0.83237, aleatoric unc.: 9.73406\n",
      "Epoch 341/500  total: 3.70567, -LL: 3.62259, prior: 0.83000, aleatoric unc.: 9.74208\n",
      "Epoch 342/500  total: 3.70195, -LL: 3.65865, prior: 0.82917, aleatoric unc.: 9.73657\n",
      "Epoch 343/500  total: 3.70123, -LL: 3.62708, prior: 0.83080, aleatoric unc.: 9.73533\n",
      "Epoch 344/500  total: 3.70437, -LL: 3.61342, prior: 0.82911, aleatoric unc.: 9.73596\n",
      "Epoch 345/500  total: 3.70366, -LL: 3.60328, prior: 0.83045, aleatoric unc.: 9.74204\n",
      "Epoch 346/500  total: 3.70356, -LL: 3.62689, prior: 0.83147, aleatoric unc.: 9.73873\n",
      "Epoch 347/500  total: 3.69629, -LL: 3.64269, prior: 0.82647, aleatoric unc.: 9.72898\n",
      "Epoch 348/500  total: 3.69996, -LL: 3.65626, prior: 0.82871, aleatoric unc.: 9.72221\n",
      "Epoch 349/500  total: 3.70417, -LL: 3.63705, prior: 0.82662, aleatoric unc.: 9.72849\n",
      "Epoch 350/500  total: 3.70177, -LL: 3.65497, prior: 0.82323, aleatoric unc.: 9.72953\n",
      "Epoch 351/500  total: 3.70254, -LL: 3.67832, prior: 0.82772, aleatoric unc.: 9.73065\n",
      "Epoch 352/500  total: 3.70162, -LL: 3.63990, prior: 0.83119, aleatoric unc.: 9.72532\n",
      "Epoch 353/500  total: 3.70578, -LL: 3.60402, prior: 0.83188, aleatoric unc.: 9.73709\n",
      "Epoch 354/500  total: 3.70272, -LL: 3.62950, prior: 0.82930, aleatoric unc.: 9.73685\n",
      "Epoch 355/500  total: 3.70043, -LL: 3.62746, prior: 0.82995, aleatoric unc.: 9.73355\n",
      "Epoch 356/500  total: 3.69946, -LL: 3.61545, prior: 0.83072, aleatoric unc.: 9.72545\n",
      "Epoch 357/500  total: 3.70071, -LL: 3.67021, prior: 0.83015, aleatoric unc.: 9.72398\n",
      "Epoch 358/500  total: 3.70548, -LL: 3.63582, prior: 0.82771, aleatoric unc.: 9.73216\n",
      "Epoch 359/500  total: 3.69811, -LL: 3.60202, prior: 0.82758, aleatoric unc.: 9.72475\n",
      "Epoch 360/500  total: 3.69686, -LL: 3.64973, prior: 0.82581, aleatoric unc.: 9.71591\n",
      "Epoch 361/500  total: 3.70717, -LL: 3.65881, prior: 0.82941, aleatoric unc.: 9.72619\n",
      "Epoch 362/500  total: 3.70385, -LL: 3.65302, prior: 0.82832, aleatoric unc.: 9.73025\n",
      "Epoch 363/500  total: 3.70743, -LL: 3.64934, prior: 0.82749, aleatoric unc.: 9.74160\n",
      "Epoch 364/500  total: 3.70326, -LL: 3.58934, prior: 0.82753, aleatoric unc.: 9.74316\n",
      "Epoch 365/500  total: 3.70402, -LL: 3.62665, prior: 0.82742, aleatoric unc.: 9.74414\n",
      "Epoch 366/500  total: 3.70585, -LL: 3.68176, prior: 0.82632, aleatoric unc.: 9.74891\n",
      "Epoch 367/500  total: 3.70568, -LL: 3.62934, prior: 0.82647, aleatoric unc.: 9.75294\n",
      "Epoch 368/500  total: 3.69735, -LL: 3.63394, prior: 0.82584, aleatoric unc.: 9.73833\n",
      "Epoch 369/500  total: 3.70665, -LL: 3.60627, prior: 0.82508, aleatoric unc.: 9.74506\n",
      "Epoch 370/500  total: 3.70283, -LL: 3.64191, prior: 0.82496, aleatoric unc.: 9.74463\n",
      "Epoch 371/500  total: 3.69990, -LL: 3.63656, prior: 0.82942, aleatoric unc.: 9.73714\n",
      "Epoch 372/500  total: 3.70170, -LL: 3.65815, prior: 0.82560, aleatoric unc.: 9.73377\n",
      "Epoch 373/500  total: 3.70135, -LL: 3.66173, prior: 0.82487, aleatoric unc.: 9.73149\n",
      "Epoch 374/500  total: 3.70539, -LL: 3.60903, prior: 0.82451, aleatoric unc.: 9.74010\n",
      "Epoch 375/500  total: 3.69980, -LL: 3.63325, prior: 0.82713, aleatoric unc.: 9.73296\n",
      "Epoch 376/500  total: 3.69921, -LL: 3.60023, prior: 0.82868, aleatoric unc.: 9.72724\n",
      "Epoch 377/500  total: 3.69869, -LL: 3.66106, prior: 0.82731, aleatoric unc.: 9.72021\n",
      "Epoch 378/500  total: 3.69702, -LL: 3.62505, prior: 0.82719, aleatoric unc.: 9.71488\n",
      "Epoch 379/500  total: 3.69819, -LL: 3.60678, prior: 0.82717, aleatoric unc.: 9.71085\n",
      "Epoch 380/500  total: 3.69677, -LL: 3.62688, prior: 0.82746, aleatoric unc.: 9.70245\n",
      "Epoch 381/500  total: 3.70501, -LL: 3.60229, prior: 0.82751, aleatoric unc.: 9.71364\n",
      "Epoch 382/500  total: 3.69922, -LL: 3.57855, prior: 0.83100, aleatoric unc.: 9.71044\n",
      "Epoch 383/500  total: 3.69865, -LL: 3.63590, prior: 0.82836, aleatoric unc.: 9.70802\n",
      "Epoch 384/500  total: 3.70344, -LL: 3.59795, prior: 0.82755, aleatoric unc.: 9.71421\n",
      "Epoch 385/500  total: 3.70533, -LL: 3.64661, prior: 0.82573, aleatoric unc.: 9.72334\n",
      "Epoch 386/500  total: 3.70198, -LL: 3.61014, prior: 0.82611, aleatoric unc.: 9.72450\n",
      "Epoch 387/500  total: 3.70406, -LL: 3.64215, prior: 0.82555, aleatoric unc.: 9.73054\n",
      "Epoch 388/500  total: 3.70490, -LL: 3.63847, prior: 0.82456, aleatoric unc.: 9.73703\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 389/500  total: 3.69739, -LL: 3.60615, prior: 0.82374, aleatoric unc.: 9.72495\n",
      "Epoch 390/500  total: 3.70646, -LL: 3.59768, prior: 0.82653, aleatoric unc.: 9.73402\n",
      "Epoch 391/500  total: 3.69914, -LL: 3.65293, prior: 0.82449, aleatoric unc.: 9.72576\n",
      "Epoch 392/500  total: 3.70214, -LL: 3.62112, prior: 0.82444, aleatoric unc.: 9.72820\n",
      "Epoch 393/500  total: 3.70022, -LL: 3.57499, prior: 0.82906, aleatoric unc.: 9.72694\n",
      "Epoch 394/500  total: 3.69050, -LL: 3.60771, prior: 0.82554, aleatoric unc.: 9.70561\n",
      "Epoch 395/500  total: 3.69285, -LL: 3.68116, prior: 0.82755, aleatoric unc.: 9.69149\n",
      "Epoch 396/500  total: 3.70537, -LL: 3.61828, prior: 0.82465, aleatoric unc.: 9.70394\n",
      "Epoch 397/500  total: 3.69655, -LL: 3.61455, prior: 0.82317, aleatoric unc.: 9.70052\n",
      "Epoch 398/500  total: 3.70530, -LL: 3.62109, prior: 0.82612, aleatoric unc.: 9.71183\n",
      "Epoch 399/500  total: 3.70086, -LL: 3.61040, prior: 0.82481, aleatoric unc.: 9.71438\n",
      "Epoch 400/500  total: 3.70211, -LL: 3.64791, prior: 0.82474, aleatoric unc.: 9.71751\n",
      "Epoch 401/500  total: 3.70449, -LL: 3.66220, prior: 0.82469, aleatoric unc.: 9.72471\n",
      "Epoch 402/500  total: 3.69559, -LL: 3.68538, prior: 0.82521, aleatoric unc.: 9.71284\n",
      "Epoch 403/500  total: 3.70262, -LL: 3.61727, prior: 0.82641, aleatoric unc.: 9.71845\n",
      "Epoch 404/500  total: 3.70541, -LL: 3.65800, prior: 0.82866, aleatoric unc.: 9.72628\n",
      "Epoch 405/500  total: 3.70215, -LL: 3.66135, prior: 0.82954, aleatoric unc.: 9.72948\n",
      "Epoch 406/500  total: 3.69729, -LL: 3.64724, prior: 0.82800, aleatoric unc.: 9.72026\n",
      "Epoch 407/500  total: 3.69719, -LL: 3.63176, prior: 0.82775, aleatoric unc.: 9.71121\n",
      "Epoch 408/500  total: 3.70596, -LL: 3.66872, prior: 0.82940, aleatoric unc.: 9.72126\n",
      "Epoch 409/500  total: 3.70204, -LL: 3.63414, prior: 0.83020, aleatoric unc.: 9.72397\n",
      "Epoch 410/500  total: 3.70021, -LL: 3.64946, prior: 0.83012, aleatoric unc.: 9.72245\n",
      "Epoch 411/500  total: 3.69402, -LL: 3.61718, prior: 0.82774, aleatoric unc.: 9.70823\n",
      "Epoch 412/500  total: 3.70567, -LL: 3.61743, prior: 0.82851, aleatoric unc.: 9.71849\n",
      "Epoch 413/500  total: 3.70361, -LL: 3.64554, prior: 0.82617, aleatoric unc.: 9.72331\n",
      "Epoch 414/500  total: 3.69468, -LL: 3.60278, prior: 0.82620, aleatoric unc.: 9.71184\n",
      "Epoch 415/500  total: 3.70510, -LL: 3.64241, prior: 0.82747, aleatoric unc.: 9.72071\n",
      "Epoch 416/500  total: 3.70178, -LL: 3.59014, prior: 0.83144, aleatoric unc.: 9.72354\n",
      "Epoch 417/500  total: 3.69967, -LL: 3.63795, prior: 0.83206, aleatoric unc.: 9.71923\n",
      "Epoch 418/500  total: 3.69828, -LL: 3.60308, prior: 0.82796, aleatoric unc.: 9.71243\n",
      "Epoch 419/500  total: 3.70307, -LL: 3.66544, prior: 0.82524, aleatoric unc.: 9.71768\n",
      "Epoch 420/500  total: 3.70183, -LL: 3.61180, prior: 0.82254, aleatoric unc.: 9.72192\n",
      "Epoch 421/500  total: 3.69221, -LL: 3.63945, prior: 0.82239, aleatoric unc.: 9.70423\n",
      "Epoch 422/500  total: 3.69980, -LL: 3.61604, prior: 0.82302, aleatoric unc.: 9.70583\n",
      "Epoch 423/500  total: 3.69928, -LL: 3.63499, prior: 0.81947, aleatoric unc.: 9.70428\n",
      "Epoch 424/500  total: 3.70064, -LL: 3.64438, prior: 0.82250, aleatoric unc.: 9.70499\n",
      "Epoch 425/500  total: 3.69506, -LL: 3.61971, prior: 0.82166, aleatoric unc.: 9.69757\n",
      "Epoch 426/500  total: 3.70398, -LL: 3.62597, prior: 0.82278, aleatoric unc.: 9.70802\n",
      "Epoch 427/500  total: 3.70216, -LL: 3.65498, prior: 0.81911, aleatoric unc.: 9.71137\n",
      "Epoch 428/500  total: 3.70190, -LL: 3.64064, prior: 0.81833, aleatoric unc.: 9.71579\n",
      "Epoch 429/500  total: 3.70573, -LL: 3.66083, prior: 0.81893, aleatoric unc.: 9.72434\n",
      "Epoch 430/500  total: 3.69885, -LL: 3.65177, prior: 0.82123, aleatoric unc.: 9.72031\n",
      "Epoch 431/500  total: 3.70198, -LL: 3.67658, prior: 0.81868, aleatoric unc.: 9.72134\n",
      "Epoch 432/500  total: 3.70692, -LL: 3.63311, prior: 0.81943, aleatoric unc.: 9.73138\n",
      "Epoch 433/500  total: 3.70009, -LL: 3.59875, prior: 0.81951, aleatoric unc.: 9.72938\n",
      "Epoch 434/500  total: 3.69864, -LL: 3.63859, prior: 0.82302, aleatoric unc.: 9.72290\n",
      "Epoch 435/500  total: 3.69655, -LL: 3.66607, prior: 0.82137, aleatoric unc.: 9.71333\n",
      "Epoch 436/500  total: 3.69973, -LL: 3.65163, prior: 0.81886, aleatoric unc.: 9.71366\n",
      "Epoch 437/500  total: 3.69769, -LL: 3.68498, prior: 0.81805, aleatoric unc.: 9.70730\n",
      "Epoch 438/500  total: 3.69672, -LL: 3.64131, prior: 0.81733, aleatoric unc.: 9.70155\n",
      "Epoch 439/500  total: 3.69554, -LL: 3.62049, prior: 0.82319, aleatoric unc.: 9.69490\n",
      "Epoch 440/500  total: 3.69749, -LL: 3.62081, prior: 0.82234, aleatoric unc.: 9.69433\n",
      "Epoch 441/500  total: 3.70329, -LL: 3.59532, prior: 0.82169, aleatoric unc.: 9.70249\n",
      "Epoch 442/500  total: 3.69808, -LL: 3.62759, prior: 0.82254, aleatoric unc.: 9.70274\n",
      "Epoch 443/500  total: 3.70494, -LL: 3.65422, prior: 0.82270, aleatoric unc.: 9.71221\n",
      "Epoch 444/500  total: 3.69976, -LL: 3.65673, prior: 0.82426, aleatoric unc.: 9.71188\n",
      "Epoch 445/500  total: 3.70325, -LL: 3.64046, prior: 0.82422, aleatoric unc.: 9.71596\n",
      "Epoch 446/500  total: 3.70594, -LL: 3.65127, prior: 0.82255, aleatoric unc.: 9.72795\n",
      "Epoch 447/500  total: 3.70256, -LL: 3.65205, prior: 0.82299, aleatoric unc.: 9.72941\n",
      "Epoch 448/500  total: 3.70255, -LL: 3.66160, prior: 0.82127, aleatoric unc.: 9.73019\n",
      "Epoch 449/500  total: 3.70477, -LL: 3.65332, prior: 0.82186, aleatoric unc.: 9.73749\n",
      "Epoch 450/500  total: 3.69821, -LL: 3.62343, prior: 0.82277, aleatoric unc.: 9.72872\n",
      "Epoch 451/500  total: 3.69862, -LL: 3.61988, prior: 0.81971, aleatoric unc.: 9.72094\n",
      "Epoch 452/500  total: 3.69956, -LL: 3.64692, prior: 0.82058, aleatoric unc.: 9.71754\n",
      "Epoch 453/500  total: 3.68746, -LL: 3.61281, prior: 0.81960, aleatoric unc.: 9.69424\n",
      "Epoch 454/500  total: 3.69136, -LL: 3.61534, prior: 0.82130, aleatoric unc.: 9.67839\n",
      "Epoch 455/500  total: 3.70947, -LL: 3.63629, prior: 0.82276, aleatoric unc.: 9.70095\n",
      "Epoch 456/500  total: 3.70455, -LL: 3.62145, prior: 0.82456, aleatoric unc.: 9.71287\n",
      "Epoch 457/500  total: 3.69434, -LL: 3.64094, prior: 0.82408, aleatoric unc.: 9.70524\n",
      "Epoch 458/500  total: 3.69588, -LL: 3.62607, prior: 0.82356, aleatoric unc.: 9.69614\n",
      "Epoch 459/500  total: 3.69965, -LL: 3.67129, prior: 0.82353, aleatoric unc.: 9.69692\n",
      "Epoch 460/500  total: 3.69278, -LL: 3.64340, prior: 0.82238, aleatoric unc.: 9.68522\n",
      "Epoch 461/500  total: 3.69769, -LL: 3.66663, prior: 0.82365, aleatoric unc.: 9.68477\n",
      "Epoch 462/500  total: 3.70174, -LL: 3.64461, prior: 0.82374, aleatoric unc.: 9.69469\n",
      "Epoch 463/500  total: 3.69422, -LL: 3.62371, prior: 0.82634, aleatoric unc.: 9.68775\n",
      "Epoch 464/500  total: 3.70086, -LL: 3.65318, prior: 0.82430, aleatoric unc.: 9.69298\n",
      "Epoch 465/500  total: 3.69787, -LL: 3.66150, prior: 0.81959, aleatoric unc.: 9.69327\n",
      "Epoch 466/500  total: 3.69348, -LL: 3.64051, prior: 0.81754, aleatoric unc.: 9.68517\n",
      "Epoch 467/500  total: 3.70298, -LL: 3.65390, prior: 0.81789, aleatoric unc.: 9.69441\n",
      "Epoch 468/500  total: 3.69817, -LL: 3.65901, prior: 0.81541, aleatoric unc.: 9.69768\n",
      "Epoch 469/500  total: 3.69301, -LL: 3.63411, prior: 0.81612, aleatoric unc.: 9.68669\n",
      "Epoch 470/500  total: 3.70037, -LL: 3.61972, prior: 0.81542, aleatoric unc.: 9.69086\n",
      "Epoch 471/500  total: 3.70139, -LL: 3.60899, prior: 0.81560, aleatoric unc.: 9.69815\n",
      "Epoch 472/500  total: 3.70118, -LL: 3.68662, prior: 0.81407, aleatoric unc.: 9.70126\n",
      "Epoch 473/500  total: 3.70042, -LL: 3.64964, prior: 0.81481, aleatoric unc.: 9.70599\n",
      "Epoch 474/500  total: 3.70516, -LL: 3.62561, prior: 0.81684, aleatoric unc.: 9.71484\n",
      "Epoch 475/500  total: 3.69569, -LL: 3.62760, prior: 0.81538, aleatoric unc.: 9.70852\n",
      "Epoch 476/500  total: 3.69344, -LL: 3.63575, prior: 0.81317, aleatoric unc.: 9.69601\n",
      "Epoch 477/500  total: 3.69725, -LL: 3.66014, prior: 0.81203, aleatoric unc.: 9.69300\n",
      "Epoch 478/500  total: 3.70594, -LL: 3.65619, prior: 0.81437, aleatoric unc.: 9.70621\n",
      "Epoch 479/500  total: 3.69992, -LL: 3.61516, prior: 0.81284, aleatoric unc.: 9.70868\n",
      "Epoch 480/500  total: 3.69582, -LL: 3.64135, prior: 0.81684, aleatoric unc.: 9.70021\n",
      "Epoch 481/500  total: 3.69739, -LL: 3.60619, prior: 0.81517, aleatoric unc.: 9.70025\n",
      "Epoch 482/500  total: 3.70488, -LL: 3.63401, prior: 0.81520, aleatoric unc.: 9.70766\n",
      "Epoch 483/500  total: 3.69736, -LL: 3.61727, prior: 0.81478, aleatoric unc.: 9.70594\n",
      "Epoch 484/500  total: 3.70235, -LL: 3.63803, prior: 0.81578, aleatoric unc.: 9.71074\n",
      "Epoch 485/500  total: 3.70031, -LL: 3.64106, prior: 0.81726, aleatoric unc.: 9.71344\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 486/500  total: 3.70281, -LL: 3.65334, prior: 0.81765, aleatoric unc.: 9.71675\n",
      "Epoch 487/500  total: 3.69665, -LL: 3.62427, prior: 0.81798, aleatoric unc.: 9.71068\n",
      "Epoch 488/500  total: 3.69354, -LL: 3.60938, prior: 0.81778, aleatoric unc.: 9.69865\n",
      "Epoch 489/500  total: 3.69664, -LL: 3.66371, prior: 0.81562, aleatoric unc.: 9.69401\n",
      "Epoch 490/500  total: 3.70017, -LL: 3.61261, prior: 0.81859, aleatoric unc.: 9.69709\n",
      "Epoch 491/500  total: 3.70181, -LL: 3.64116, prior: 0.81858, aleatoric unc.: 9.70037\n",
      "Epoch 492/500  total: 3.69507, -LL: 3.62122, prior: 0.81482, aleatoric unc.: 9.69759\n",
      "Epoch 493/500  total: 3.69890, -LL: 3.65301, prior: 0.81908, aleatoric unc.: 9.69581\n",
      "Epoch 494/500  total: 3.70058, -LL: 3.65166, prior: 0.81909, aleatoric unc.: 9.69850\n",
      "Epoch 495/500  total: 3.69788, -LL: 3.62267, prior: 0.81817, aleatoric unc.: 9.70015\n",
      "Epoch 496/500  total: 3.69267, -LL: 3.64171, prior: 0.81855, aleatoric unc.: 9.68762\n",
      "Epoch 497/500  total: 3.70465, -LL: 3.66362, prior: 0.81682, aleatoric unc.: 9.70045\n",
      "Epoch 498/500  total: 3.70106, -LL: 3.66015, prior: 0.81733, aleatoric unc.: 9.70227\n",
      "Epoch 499/500  total: 3.69741, -LL: 3.64281, prior: 0.81737, aleatoric unc.: 9.70153\n"
     ]
    }
   ],
   "source": [
    "epochs = 500\n",
    "# for each epoch\n",
    "for epoch in range(epochs):\n",
    "    losses = list()\n",
    "    # for each mini-batch given by the loader:\n",
    "    for batch in loader:\n",
    "        # get the input in the mini-batch\n",
    "        # this has size (B, C)\n",
    "        # where B is the mini-batch size\n",
    "        # C is the number of features (1 in this case)\n",
    "        features = batch[\"data\"]\n",
    "        # get the targets in the mini-batch (there shall be B of them)\n",
    "        target = batch[\"target\"]\n",
    "        # get the output of the neural network:\n",
    "        prediction = b_network(features)\n",
    "        \n",
    "        # calculate the loss function being minimized\n",
    "        # in this case, it is the mean-squared error between the prediction and the target values added\n",
    "        # to the Kullback-Leibler divergence between the current weight Gaussian and\n",
    "        # the prior Gaussian, set to the unit Normal distribution\n",
    "        nll = b_network.nll(prediction, target)\n",
    "        prior = kl_loss(b_network)\n",
    "        loss = nll + weight_kl * prior\n",
    "\n",
    "        # clean the optimizer temporary gradient storage\n",
    "        optimizer.zero_grad()\n",
    "        # calculate the gradient of the loss function as a function of the gradients\n",
    "        loss.backward()\n",
    "        # ask the Adam optimizer to change the parameters in the direction of - gradient\n",
    "        # Adam scales the gradient by a constant which is adaptively tuned\n",
    "        # take a look at the Adam paper for more details: https://arxiv.org/abs/1412.6980\n",
    "        optimizer.step()\n",
    "        \n",
    "        ale = b_network.aleatoric_uncertainty().detach().numpy()\n",
    "\n",
    "        losses.append(loss.detach().cpu().item())\n",
    "    avg_loss = np.mean(np.array(losses))\n",
    "    print(f\"Epoch {epoch}/{epochs}  total: {avg_loss:.5f}, -LL: {nll.item():.5f}, prior: {prior.item():.5f}, aleatoric unc.: {ale:.5f}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "15f3f633",
   "metadata": {},
   "source": [
    "To evaluate the effect of the uncertainty, we perform the prediction many times for the same data and take the average and root-mean-squared-error of the predictions, since each prediction performed with the Bayesian Neural Network leads to a different results, using a different weight, selected from the final Gaussian."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "a3d244e2",
   "metadata": {},
   "outputs": [],
   "source": [
    "b_predicted = list()\n",
    "for k in range(10):\n",
    "    p = b_network(torch.from_numpy(test_data[:,0:1])).detach().numpy()\n",
    "    b_predicted.append(p[:,0])\n",
    "b_predicted = np.stack(b_predicted, axis=1)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "85fed034",
   "metadata": {},
   "source": [
    "We can now take the average result for each sample, and their root-mean-squared-error as an estimate of the mean and epistemic uncertainty for the results.\n",
    "\n",
    "The aleatoric uncertainty is fitted as an independent parameter. Since we assume the aleatoric uncertainty is independent, we can calculate the total uncertainty as the sum of squares of the epistemic and aleatoric uncertainty."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "4a56960d",
   "metadata": {},
   "outputs": [],
   "source": [
    "b_mean = np.mean(b_predicted, axis=1)\n",
    "b_sigma = np.std(b_predicted, axis=1)\n",
    "aleatoric_uncertainty = b_network.aleatoric_uncertainty().detach().numpy()\n",
    "\n",
    "total_uncertainty = (b_sigma**2 + aleatoric_uncertainty**2)**0.5"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6ef3d430",
   "metadata": {},
   "source": [
    "Let's check how big are those uncertainties found:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "4d01c41f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Average epistemic uncertainty:  0.83653456\n"
     ]
    }
   ],
   "source": [
    "print(\"Average epistemic uncertainty: \", np.mean(b_sigma))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "67d456a1",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Aleatoric uncertainty:  9.7015295\n"
     ]
    }
   ],
   "source": [
    "print(\"Aleatoric uncertainty: \", aleatoric_uncertainty)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "364bdcd7",
   "metadata": {},
   "source": [
    "Note that the aleatoric uncertainty is very close to the standard deviation of the $\\epsilon$ component of the model we created in the beginning! Clearly the model could fit the uncertainty coming from that component of the noise.\n",
    "\n",
    "It is not easy to estimate the effect of the epistemic uncertainty, as it is different for every data point (as it is scaled by $x^2$), but we can plot it to take a look at its effect.\n",
    "\n",
    "Note that the uncertainties are the standard deviations of Gaussian models and therefore they correspond to a $1\\sigma$ quantile band, which is a 67% confidence band. The quantile corresponding to $2\\sigma$ corresponds to a 95% confidence band in a Gaussian model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "8b9142e8",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'dblclick',\n",
       "        on_mouse_event_closure('dblclick')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            var img = evt.data;\n",
       "            if (img.type !== 'image/png') {\n",
       "                /* FIXME: We get \"Resource interpreted as Image but\n",
       "                 * transferred with MIME type text/plain:\" errors on\n",
       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "                 * to be part of the websocket stream */\n",
       "                img.type = 'image/png';\n",
       "            }\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                img\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.key === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.key;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.key !== 'Control') {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    else if (event.altKey && event.key !== 'Alt') {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k' + event.key;\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
       "    ws.readyState = comm.kernel.ws.readyState;\n",
       "    function updateReadyState(_event) {\n",
       "        if (comm.kernel.ws) {\n",
       "            ws.readyState = comm.kernel.ws.readyState;\n",
       "        } else {\n",
       "            ws.readyState = 3; // Closed state.\n",
       "        }\n",
       "    }\n",
       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        var data = msg['content']['data'];\n",
       "        if (data['blob'] !== undefined) {\n",
       "            data = {\n",
       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
       "            };\n",
       "        }\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(data);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"640\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig = plt.figure()\n",
    "ax = fig.add_subplot(111)\n",
    "ax.scatter(test_data[:, 0], test_data[:, 1], alpha=0.5, label=\"Test data\")\n",
    "ax.errorbar(test_data[:, 0], b_mean, yerr=2*total_uncertainty, alpha=0.5, fmt='or', label=\"95% band total unc.\")\n",
    "ax.errorbar(test_data[:, 0], b_mean, yerr=2*b_sigma, alpha=0.5, fmt='og', label=\"95% band epistemic unc.\")\n",
    "ax.set(xlabel=\"$x$\", ylabel=\"$f(x)$\")\n",
    "#ax.set_yscale('log')\n",
    "plt.legend(frameon=False)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8cfb5d35",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}