From 06e526aec6f1fb585e1624c9c1bf1fe171cc93c5 Mon Sep 17 00:00:00 2001
From: Valerio Mariani <valerio.mariani@desy.de>
Date: Fri, 20 Jan 2017 11:35:30 +0100
Subject: [PATCH] Removed duplicate file cfelvtk.py

---
 cfelvtk.py | 543 -----------------------------------------------------
 1 file changed, 543 deletions(-)
 delete mode 100644 cfelvtk.py

diff --git a/cfelvtk.py b/cfelvtk.py
deleted file mode 100644
index 47bb0c7..0000000
--- a/cfelvtk.py
+++ /dev/null
@@ -1,543 +0,0 @@
-#    This file is part of cfelpyutils.
-#
-#    cfelpyutils is free software: you can redistribute it and/or modify
-#    it under the terms of the GNU General Public License as published by
-#    the Free Software Foundation, either version 3 of the License, or
-#    (at your option) any later version.
-#
-#    cfelpyutils is distributed in the hope that it will be useful,
-#    but WITHOUT ANY WARRANTY; without even the implied warranty of
-#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-#    GNU General Public License for more details.
-#
-#    You should have received a copy of the GNU General Public License
-#    along with cfelpyutils.  If not, see <http://www.gnu.org/licenses/>.
-"""
-Utilities for 3d data visualization using the Visualization Toolkit (VTK).
-"""
-import numpy
-import vtk
-
-VTK_VERSION = vtk.vtkVersion().GetVTKMajorVersion()
-
-
-def get_lookup_table(minimum_value, maximum_value, log=False, colorscale="jet", number_of_colors=1000):
-    """Create a vtkLookupTable with a specified range, and colorscale.
-
-    Args:
-        minimum_value (float): Lowest value the lookup table can display, lower values will be displayed as this value
-        maximum_value (float): Highest value the lookup table can display, higher values will be displayed as this value
-        log (Optional[bool]): True if the scale is logarithmic
-        colorscale (Optional[string]): Accepts the name of any matplotlib colorscale. The lookuptable will
-            replicate this scale.
-        number_of_colors (Optional[int]): The length of the table. Higher values corresponds to a smoother color scale.
-
-    Returns:
-        lookup_table (vtk.vtkLookupTable): A vtk lookup table
-    """
-
-    import matplotlib
-    import matplotlib.cm
-    if log:
-        lut = vtk.vtkLogLookupTable()
-    else:
-        lut = vtk.vtkLookupTable()
-    lut.SetTableRange(minimum_value, maximum_value)
-    lut.SetNumberOfColors(number_of_colors)
-    lut.Build()
-    for i in range(number_of_colors):
-        color = matplotlib.cm.cmap_d[colorscale](float(i) / float(number_of_colors))
-        lut.SetTableValue(i, color[0], color[1], color[2], 1.)
-    lut.SetUseBelowRangeColor(True)
-    lut.SetUseAboveRangeColor(True)
-    return lut
-
-
-def array_to_float_array(array_in, dtype=None):
-    """Convert a numpy array into a vtkFloatArray of vtkDoubleArray, depending on the type of the input.
-    This flattens the array and thus the shape is lost.
-
-    Args:
-        array_in (numpy.ndarray): The array to convert.
-        dtype (Optional[type]): Optionaly convert the array to the specified data. Otherwise the original
-            type will be preserved.
-
-    Returns:
-        float_array (vtk.vtkFloatArray): A float array of the specified type.
-    """
-    if dtype is None:
-        dtype = array_in.dtype
-    if dtype == "float32":
-        float_array = vtk.vtkFloatArray()
-    elif dtype == "float64":
-        float_array = vtk.vtkDoubleArray()
-    else:
-        raise ValueError("Wrong format of input array, must be float32 or float64")
-    if len(array_in.shape) == 2:
-        float_array.SetNumberOfComponents(array_in.shape[1])
-    elif len(array_in.shape) == 1:
-        float_array.SetNumberOfComponents(1)
-    else:
-        raise ValueError("Wrong shape of array must be 1D or 2D.")
-    float_array.SetVoidArray(numpy.ascontiguousarray(array_in, dtype), numpy.product(array_in.shape), 1)
-    return float_array
-
-
-def array_to_vtk(array_in, dtype=None):
-    """Convert a numpy array into a vtk array of the specified type. This flattens the array and thus the shape is lost.
-
-    Args:
-        array_in (numpy.ndarray): The array to convert.
-        dtype (Optional[type]): Optionaly convert the array to the specified data. Otherwise the original type
-            will be preserved.
-
-    Returns:
-        vtk_array (vtk.vtkFloatArray): A float array of the specified type.
-    """
-    if dtype is None:
-        dtype = numpy.dtype(array_in.dtype)
-    else:
-        dtype = numpy.dtype(dtype)
-    if dtype == numpy.float32:
-        vtk_array = vtk.vtkFloatArray()
-    elif dtype == numpy.float64:
-        vtk_array = vtk.vtkDoubleArray()
-    elif dtype == numpy.uint8:
-        vtk_array = vtk.vtkUnsignedCharArray()
-    elif dtype == numpy.int8:
-        vtk_array = vtk.vtkCharArray()
-    else:
-        raise ValueError("Wrong format of input array, must be float32 or float64")
-    if len(array_in.shape) != 1 and len(array_in.shape) != 2:
-        raise ValueError("Wrong shape: array must be 1D")
-    vtk_array.SetNumberOfComponents(1)
-    vtk_array.SetVoidArray(numpy.ascontiguousarray(array_in.flatten(), dtype), numpy.product(array_in.shape), 1)
-    return vtk_array
-
-
-def array_to_image_data(array_in, dtype=None):
-    """Convert a numpy array to vtkImageData. Image data is a 3D object, thus the input must be 3D.
-
-    Args:
-        array_in (numpy.ndarray): Array to convert to vtkImageData. Must be 3D.
-        dtype (Optional[type]): Optionaly convert the array to the specified data. Otherwise the original
-            type will be preserved.
-
-    Returns:
-        image_data (vtk.vtkImageData): Image data containing the data from the array.
-    """
-    if len(array_in.shape) != 3:
-        raise ValueError("Array must be 3D for conversion to vtkImageData")
-    array_flat = array_in.flatten()
-    float_array = array_to_float_array(array_flat, dtype)
-    image_data = vtk.vtkImageData()
-    image_data.SetDimensions(*array_in.shape)
-    image_data.GetPointData().SetScalars(float_array)
-    return image_data
-
-
-def window_to_png(render_window, file_name, magnification=1):
-    """Take a screen shot of a specific vt render window and save it to file.
-
-    Args:
-        render_window (vtk.vtkRenderWindow): The render window window to capture.
-        file_name (string): A png file with this name will be created from the provided window.
-        magnification (Optional[int]): Increase the resolution of the output file by this factor
-    """
-    magnification = int(magnification)
-    window_to_image_filter = vtk.vtkWindowToImageFilter()
-    window_to_image_filter.SetInput(render_window)
-    window_to_image_filter.SetMagnification(magnification)
-    window_to_image_filter.SetInputBufferTypeToRGBA()
-    window_to_image_filter.Update()
-
-    writer = vtk.vtkPNGWriter()
-    writer.SetFileName(file_name)
-    writer.SetInputConnection(window_to_image_filter.GetOutputPort())
-    writer.Write()
-
-
-def poly_data_to_actor(poly_data, lut):
-    """Create a vtkActor from a vtkPolyData. This circumvents the need to create a vtkMapper by internally
-    using a very basic vtkMapper
-
-    Args:
-        poly_data (vtk.vtkPolyData): vtkPolyData object.
-        lut (vtk.vtkLookupTable): The vtkLookupTable specifies the colorscale to use for the maper.
-
-    Returns:
-        actor (vtk.vtkActor): Actor to display the provided vtkPolyData
-    """
-    mapper = vtk.vtkPolyDataMapper()
-    mapper.SetInputData(poly_data)
-    mapper.SetLookupTable(lut)
-    mapper.SetUseLookupTableScalarRange(True)
-    actor = vtk.vtkActor()
-    actor.SetMapper(mapper)
-    return actor
-
-
-class IsoSurface(object):
-    """Create and plot isosurfaces.
-
-    Args:
-        volume (numpy.ndimage): 3D floating point array.
-        level (float or list of float): The threshold level for the isosurface, or a list of such levels.
-    """
-    def __init__(self, volume, level=None):
-        self._surface_algorithm = None
-        self._renderer = None
-        self._actor = None
-        self._mapper = None
-        self._volume_array = None
-
-        self._float_array = vtk.vtkFloatArray()
-        self._image_data = vtk.vtkImageData()
-        self._image_data.GetPointData().SetScalars(self._float_array)
-        self._setup_data(volume)
-
-        self._surface_algorithm = vtk.vtkMarchingCubes()
-        self._surface_algorithm.SetInputData(self._image_data)
-        self._surface_algorithm.ComputeNormalsOn()
-
-        if level is not None:
-            try:
-                self.set_multiple_levels(iter(level))
-            except TypeError:
-                self.set_level(0, level)
-
-        self._mapper = vtk.vtkPolyDataMapper()
-        self._mapper.SetInputConnection(self._surface_algorithm.GetOutputPort())
-        self._mapper.ScalarVisibilityOn()
-        self._actor = vtk.vtkActor()
-        self._actor.SetMapper(self._mapper)
-
-    def _setup_data(self, volume):
-        """Create the numpy array self._volume_array and vtk array self._float_array and make them share data.
-
-        Args:
-            volume (numpy.ndimage): This data will populate both the created numpy and vtk objects.
-        """
-        self._volume_array = numpy.zeros(volume.shape, dtype="float32", order="C")
-        self._volume_array[:] = volume
-        self._float_array.SetNumberOfValues(numpy.product(volume.shape))
-        self._float_array.SetNumberOfComponents(1)
-        self._float_array.SetVoidArray(self._volume_array, numpy.product(volume.shape), 1)
-        self._image_data.SetDimensions(*self._volume_array.shape)
-
-    def set_renderer(self, renderer):
-        """Set the renderer of the isosurface and remove any existing renderer.
-
-        Args:
-            renderer (vtk.vtkRenderer): Give this renderer controll over all the surface actors.
-        """
-        if self._actor is None:
-            raise RuntimeError("Actor does not exist.")
-        if self._renderer is not None:
-            self._renderer.RemoveActor(self._actor)
-        self._renderer = renderer
-        self._renderer.AddActor(self._actor)
-
-    def set_multiple_levels(self, levels):
-        """Remova any current surface levels and add the ones from the provided list.
-
-        Args:
-            levels (list of float): Levels for the isosurface, in absolute values (not e.g. ratios)
-        """
-        self._surface_algorithm.SetNumberOfContours(0)
-        for index, this_level in enumerate(levels):
-            self._surface_algorithm.SetValue(index, this_level)
-        self._render()
-
-    def get_levels(self):
-        """Return a list of the current surface levels.
-
-        Returns:
-            levels (list of floats): The current surface levels.
-        """
-        return [self._surface_algorithm.GetValue(index)
-                for index in range(self._surface_algorithm.GetNumberOfContours())]
-
-    def add_level(self, level):
-        """Add a single surface level.
-
-        Args:
-            level (float): The level of the new surface.
-        """
-        self._surface_algorithm.SetValue(self._surface_algorithm.GetNumberOfContours(), level)
-        self._render()
-
-    def remove_level(self, index):
-        """Remove a singel surface level at the provided index.
-
-        Args:
-            index (int): The index of the level. If levels were added one by one this corresponds
-                to the order in which they were added.
-        """
-        for index in range(index, self._surface_algorithm.GetNumberOfContours()-1):
-            self._surface_algorithm.SetValue(index, self._surface_algorithm.GetValue(index+1))
-        self._surface_algorithm.SetNumberOfContours(self._surface_algorithm.GetNumberOfContours()-1)
-        self._render()
-
-    def set_level(self, index, level):
-        """Change the value of an existing surface level.
-
-        Args:
-            index (int): The index of the level to change. If levels were added one by one this corresponds to
-                the order in which they were added.
-            level (float): The new level of the surface.
-        """
-        self._surface_algorithm.SetValue(index, level)
-        self._render()
-
-    def set_cmap(self, cmap):
-        """Set the colormap. The color is a function of surface level and mainly of relevance when plotting multiple surfaces.
-
-        Args:
-            cmap (string): Name of the colormap to use. Supports all colormaps provided by matplotlib.
-        """
-        self._mapper.ScalarVisibilityOn()
-        self._mapper.SetLookupTable(get_lookup_table(self._volume_array.min(), self._volume_array.max(),
-                                                     colorscale=cmap))
-        self._render()
-
-    def set_color(self, color):
-        """Plot all surfaces in this provided color.
-
-        Args:
-            color (length 3 iterable): The RGB value of the color.
-        """
-        self._mapper.ScalarVisibilityOff()
-        self._actor.GetProperty().SetColor(color[0], color[1], color[2])
-        self._render()
-
-    def set_opacity(self, opacity):
-        """Set the opacity of all surfaces. (seting it individually for each surface is not supported)
-
-        Args:
-            opacity (float): Value between 0. and 1. where 0. is completely transparent and 1. is completely opaque.
-        """
-        self._actor.GetProperty().SetOpacity(opacity)
-        self._render()
-
-    def _render(self):
-        """Render if a renderer is set, otherwise do nothing."""
-        if self._renderer is not None:
-            self._renderer.GetRenderWindow().Render()
-
-    def set_data(self, volume):
-        """Change the data displayed.
-
-        Args:
-            volume (numpy.ndarray): The new array. Must have the same shape as the old array."""
-        if volume.shape != self._volume_array.shape:
-            raise ValueError("New volume must be the same shape as the old one")
-        self._volume_array[:] = volume
-        self._float_array.Modified()
-        self._render()
-
-
-def plot_isosurface(volume, level=None, opacity=1.):
-    """Plot isosurfaces of the provided module.
-
-    Args:
-        volume (numpy.ndarray): The 3D numpy array that will be plotted.
-        level (float or list of floats): Levels can be iterable or singel value.
-        opacity (float): Float between 0. and 1. where 0. is completely transparent and 1. is completely opaque.
-    """
-
-    surface_object = IsoSurface(volume, level)
-    surface_object.set_opacity(opacity)
-
-    renderer = vtk.vtkRenderer()
-    if opacity != 1.:
-        renderer.SetUseDepthPeeling(True)
-    render_window = vtk.vtkRenderWindow()
-    render_window.AddRenderer(renderer)
-    interactor = vtk.vtkRenderWindowInteractor()
-    interactor.SetRenderWindow(render_window)
-    interactor.SetInteractorStyle(vtk.vtkInteractorStyleRubberBandPick())
-
-    surface_object.set_renderer(renderer)
-
-    renderer.SetBackground(0., 0., 0.)
-    render_window.SetSize(800, 800)
-    interactor.Initialize()
-    render_window.Render()
-    interactor.Start()
-
-
-def plot_planes(array_in, log=False, cmap=None):
-    """Plot the volume at two interactive planes that cut the volume.
-
-    Args:
-        array_in (numpy.ndarray): Input array must be 3D.
-        log (bool): If true the data will be plotted in logarithmic scale.
-        cmap (string): Name of the colormap to use. Supports all colormaps provided by matplotlib.
-    """
-    array_in = numpy.float64(array_in)
-    renderer = vtk.vtkRenderer()
-    render_window = vtk.vtkRenderWindow()
-    render_window.AddRenderer(renderer)
-    interactor = vtk.vtkRenderWindowInteractor()
-    interactor.SetRenderWindow(render_window)
-    interactor.SetInteractorStyle(vtk.vtkInteractorStyleRubberBandPick())
-
-    if cmap is None:
-        import matplotlib as _matplotlib
-        cmap = _matplotlib.rcParams["image.cmap"]
-    lut = get_lookup_table(max(0., array_in.min()), array_in.max(), log=log, colorscale=cmap)
-    picker = vtk.vtkCellPicker()
-    picker.SetTolerance(0.005)
-
-    image_data = array_to_image_data(array_in)
-
-    def setup_plane():
-        """Create and setup a singel plane."""
-        plane = vtk.vtkImagePlaneWidget()
-        if VTK_VERSION >= 6:
-            plane.SetInputData(image_data)
-        else:
-            plane.SetInput(image_data)
-        plane.UserControlledLookupTableOn()
-        plane.SetLookupTable(lut)
-        plane.DisplayTextOn()
-        plane.SetPicker(picker)
-        plane.SetLeftButtonAction(1)
-        plane.SetMiddleButtonAction(2)
-        plane.SetRightButtonAction(0)
-        plane.SetInteractor(interactor)
-        return plane
-
-    plane_1 = setup_plane()
-    plane_1.SetPlaneOrientationToXAxes()
-    plane_1.SetSliceIndex(array_in.shape[0]//2)
-    plane_1.SetEnabled(1)
-    plane_2 = setup_plane()
-    plane_2.SetPlaneOrientationToYAxes()
-    plane_2.SetSliceIndex(array_in.shape[1]//2)
-    plane_2.SetEnabled(1)
-
-    renderer.SetBackground(0., 0., 0.)
-    render_window.SetSize(800, 800)
-    interactor.Initialize()
-    render_window.Render()
-    interactor.Start()
-
-
-def setup_window(size=(400, 400), background=(1., 1., 1.)):
-    """Create a renderer, render_window and interactor and setup connections between them.
-
-    Args:
-        size (Optional[length 2 iterable of int]): The size of the window in pixels.
-        background (Optional[length 3 iterable of float]): RGB value of the background color.
-
-    Returns:
-        renderer (vtk.vtkRenderer): A standard renderer connected to the window.
-        render_window (vtk.vtkRenderWindow): With dimensions given in the arguments, or oterwise 400x400 pixels.
-        interactor (vtk.vtkRenderWindowInteractor): The interactor will be given the rubber band pick interactor style.
-    """
-    renderer = vtk.vtkRenderer()
-    render_window = vtk.vtkRenderWindow()
-    render_window.AddRenderer(renderer)
-    interactor = vtk.vtkRenderWindowInteractor()
-    interactor.SetInteractorStyle(vtk.vtkInteractorStyleRubberBandPick())
-    interactor.SetRenderWindow(render_window)
-
-    renderer.SetBackground(background[0], background[1], background[2])
-    render_window.SetSize(size[0], size[1])
-
-    interactor.Initialize()
-    render_window.Render()
-    return renderer, render_window, interactor
-
-
-def scatterplot_3d(data, color=None, point_size=None, cmap="jet", point_shape=None):
-    """3D scatter plot.
-
-    Args:
-        data (numpy.ndimage): The array must have shape Nx3 where N is the number of points.
-
-        color (Optional[numpy.ndimage]): 1D Array of floating points with same length as the data array.
-            These numbers give the color of each point.
-        point_size (Optional[float]): The size of each points. Behaves differently depending on the point_shape.
-            If shape is spheres the size is relative to the scene and if squares the size is relative to the window.
-        point_shape (Optional["spheres" or "squares"]): "spheres" plots each point as a sphere, recommended for
-            small data sets. "squares" plot each point as a square without any 3D structure, recommended for
-            large data sets.
-    """
-    if len(data.shape) != 2 or data.shape[1] != 3:
-        raise ValueError("data must have shape (n, 3) where n is the number of points.")
-    if point_shape is None:
-        if len(data) <= 1000:
-            point_shape = "spheres"
-        else:
-            point_shape = "squares"
-    data = numpy.float32(data)
-    data_vtk = array_to_float_array(data)
-    point_data = vtk.vtkPoints()
-    point_data.SetData(data_vtk)
-    points_poly_data = vtk.vtkPolyData()
-    points_poly_data.SetPoints(point_data)
-
-    if color is not None:
-        lut = get_lookup_table(color.min(), color.max())
-        color_scalars = array_to_vtk(numpy.float32(color.copy()))
-        color_scalars.SetLookupTable(lut)
-        points_poly_data.GetPointData().SetScalars(color_scalars)
-
-    if point_shape == "spheres":
-        if point_size is None:
-            point_size = numpy.array(data).std() / len(data)**(1./3.) / 3.
-        glyph_filter = vtk.vtkGlyph3D()
-        glyph_filter.SetInputData(points_poly_data)
-        sphere_source = vtk.vtkSphereSource()
-        sphere_source.SetRadius(point_size)
-        glyph_filter.SetSourceConnection(sphere_source.GetOutputPort())
-        glyph_filter.SetScaleModeToDataScalingOff()
-        if color is not None:
-            glyph_filter.SetColorModeToColorByScalar()
-        else:
-            glyph_filter.SetColorMode(0)
-        glyph_filter.Update()
-    elif point_shape == "squares":
-        if point_size is None:
-            point_size = 3
-        glyph_filter = vtk.vtkVertexGlyphFilter()
-        glyph_filter.SetInputData(points_poly_data)
-        glyph_filter.Update()
-    else:
-        raise ValueError("{0} is not a valid entry for points".format(point_shape))
-
-    poly_data = vtk.vtkPolyData()
-    poly_data.ShallowCopy(glyph_filter.GetOutput())
-
-    renderer, render_window, interactor = setup_window()
-
-    mapper = vtk.vtkPolyDataMapper()
-    mapper.SetInputData(poly_data)
-    if color is not None:
-        mapper.SetLookupTable(lut)
-        mapper.SetUseLookupTableScalarRange(True)
-
-    points_actor = vtk.vtkActor()
-    points_actor.SetMapper(mapper)
-    points_actor.GetProperty().SetPointSize(point_size)
-    points_actor.GetProperty().SetColor(0., 0., 0.)
-
-    axes_actor = vtk.vtkCubeAxesActor()
-    axes_actor.SetBounds(points_actor.GetBounds())
-    axes_actor.SetCamera(renderer.GetActiveCamera())
-    axes_actor.SetFlyModeToStaticTriad()
-    axes_actor.GetXAxesLinesProperty().SetColor(0., 0., 0.)
-    axes_actor.GetYAxesLinesProperty().SetColor(0., 0., 0.)
-    axes_actor.GetZAxesLinesProperty().SetColor(0., 0., 0.)
-    for i in range(3):
-        axes_actor.GetLabelTextProperty(i).SetColor(0., 0., 0.)
-        axes_actor.GetTitleTextProperty(i).SetColor(0., 0., 0.)
-
-    renderer.AddActor(points_actor)
-    renderer.AddActor(axes_actor)
-
-    render_window.Render()
-    interactor.Start()
-- 
GitLab