# -*- coding: utf-8 -*- """ Toolbox for SCS. Various utilities function to quickly process data measured at the SCS instruments. Copyright (2019) SCS Team. """ import matplotlib.pyplot as plt import numpy as np import xarray as xr def pulsePatternInfo(data, plot=False): ''' display general information on the pulse patterns operated by SASE1 and SASE3. This is useful to track changes of number of pulses or mode of operation of SASE1 and SASE3. It also determines which SASE comes first in the train and the minimum separation between the two SASE sub-trains. Inputs: data: xarray Dataset containing pulse pattern info from the bunch decoder MDL: {'sase1, sase3', 'npulses_sase1', 'npulses_sase3'} plot: bool enabling/disabling the plotting of the pulse patterns Outputs: print of pulse pattern info. If plot==True, plot of the pulse pattern. ''' #Which SASE comes first? npulses_sa3 = data['npulses_sase3'] npulses_sa1 = data['npulses_sase1'] dedicated = False if np.all(npulses_sa1.where(npulses_sa3 !=0, drop=True) == 0): dedicated = True print('No SASE 1 pulses during SASE 3 operation') if np.all(npulses_sa3.where(npulses_sa1 !=0, drop=True) == 0): dedicated = True print('No SASE 3 pulses during SASE 1 operation') if dedicated==False: pulseIdmin_sa1 = data['sase1'].where(npulses_sa1 != 0).where(data['sase1']>1).min().values pulseIdmax_sa1 = data['sase1'].where(npulses_sa1 != 0).where(data['sase1']>1).max().values pulseIdmin_sa3 = data['sase3'].where(npulses_sa3 != 0).where(data['sase3']>1).min().values pulseIdmax_sa3 = data['sase3'].where(npulses_sa3 != 0).where(data['sase3']>1).max().values #print(pulseIdmin_sa1, pulseIdmax_sa1, pulseIdmin_sa3, pulseIdmax_sa3) if pulseIdmin_sa1 > pulseIdmax_sa3: t = 0.220*(pulseIdmin_sa1 - pulseIdmax_sa3 + 1) print('SASE 3 pulses come before SASE 1 pulses (minimum separation %.1f µs)'%t) elif pulseIdmin_sa3 > pulseIdmax_sa1: t = 0.220*(pulseIdmin_sa3 - pulseIdmax_sa1 + 1) print('SASE 1 pulses come before SASE 3 pulses (minimum separation %.1f µs)'%t) else: print('Interleaved mode') #What is the pulse pattern of each SASE? for key in['sase3', 'sase1']: print('\n*** %s pulse pattern: ***'%key.upper()) npulses = data['npulses_%s'%key] sase = data[key] if not np.all(npulses == npulses[0]): print('Warning: number of pulses per train changed during the run!') #take the derivative along the trainId to track changes in pulse number: diff = npulses.diff(dim='trainId') #only keep trainIds where a change occured: diff = diff.where(diff !=0, drop=True) #get a list of indices where a change occured: idx_change = np.argwhere(np.isin(npulses.trainId.values, diff.trainId.values, assume_unique=True))[:,0] #add index 0 to get the initial pulse number per train: idx_change = np.insert(idx_change, 0, 0) print('npulses\tindex From\tindex To\ttrainId From\ttrainId To\trep. rate [kHz]') for i,idx in enumerate(idx_change): n = npulses[idx] idxFrom = idx trainIdFrom = npulses.trainId[idx] if i < len(idx_change)-1: idxTo = idx_change[i+1]-1 else: idxTo = npulses.shape[0]-1 trainIdTo = npulses.trainId[idxTo] if n <= 1: print('%i\t%i\t\t%i\t\t%i\t%i'%(n, idxFrom, idxTo, trainIdFrom, trainIdTo)) else: f = 1/((sase[idxFrom,1] - sase[idxFrom,0])*222e-6) print('%i\t%i\t\t%i\t\t%i\t%i\t%.0f'%(n, idxFrom, idxTo, trainIdFrom, trainIdTo, f)) print('\n') if plot: plt.figure(figsize=(6,3)) plt.plot(data['npulses_sase3'].trainId, data['npulses_sase3'], 'o-', ms=3, label='SASE 3') plt.xlabel('trainId') plt.ylabel('pulses per train') plt.plot(data['npulses_sase1'].trainId, data['npulses_sase1'], '^-', ms=3, color='C2', label='SASE 1') plt.legend() plt.tight_layout() def selectSASEinXGM(data, sase='sase3', xgm='SCS_XGM'): ''' Extract SASE1- or SASE3-only XGM data. There are various cases depending on i) the mode of operation (10 Hz with fresh bunch, dedicated trains to one SASE, pulse on demand), ii) the potential change of number of pulses per train in each SASE and iii) the order (SASE1 first, SASE3 first, interleaved mode). Inputs: data: xarray Dataset containing xgm data sase: key of sase to select: {'sase1', 'sase3'} xgm: key of xgm to select: {'SA3_XGM', 'SCS_XGM'} Output: DataArray that has all trainIds that contain a lasing train in sase, with dimension equal to the maximum number of pulses of that sase in the run. The missing values, in case of change of number of pulses, are filled with NaNs. ''' result = None npulses_sa3 = data['npulses_sase3'] npulses_sa1 = data['npulses_sase1'] dedicated = 0 if np.all(npulses_sa1.where(npulses_sa3 !=0, drop=True) == 0): dedicated += 1 print('No SASE 1 pulses during SASE 3 operation') if np.all(npulses_sa3.where(npulses_sa1 !=0, drop=True) == 0): dedicated += 1 print('No SASE 3 pulses during SASE 1 operation') #Alternating pattern with dedicated pulses in SASE1 and SASE3: if dedicated==2: if sase=='sase1': result = data[xgm].where(npulses_sa1>0, drop=True)[:,:npulses_sa1.max().values] else: result = data[xgm].where(npulses_sa3>0, drop=True)[:,:npulses_sa3.max().values] result = result.where(result != 1.0) return result # SASE1 and SASE3 bunches in a same train: find minimum indices of first and # maximum indices of last pulse per train else: pulseIdmin_sa1 = data['sase1'].where(npulses_sa1 != 0).where(data['sase1']>1).min().values pulseIdmax_sa1 = data['sase1'].where(npulses_sa1 != 0).where(data['sase1']>1).max().values pulseIdmin_sa3 = data['sase3'].where(npulses_sa3 != 0).where(data['sase3']>1).min().values pulseIdmax_sa3 = data['sase3'].where(npulses_sa3 != 0).where(data['sase3']>1).max().values if pulseIdmin_sa1 > pulseIdmax_sa3: sa3First = True elif pulseIdmin_sa3 > pulseIdmax_sa1: sa3First = False else: print('Interleaved mode') #take the derivative along the trainId to track changes in pulse number: diff = npulses_sa3.diff(dim='trainId') #only keep trainIds where a change occured: diff = diff.where(diff != 0, drop=True) #get a list of indices where a change occured: idx_change_sa3 = np.argwhere(np.isin(npulses_sa3.trainId.values, diff.trainId.values, assume_unique=True))[:,0] #Same for SASE 1: diff = npulses_sa1.diff(dim='trainId') diff = diff.where(diff !=0, drop=True) idx_change_sa1 = np.argwhere(np.isin(npulses_sa1.trainId.values, diff.trainId.values, assume_unique=True))[:,0] #create index that locates all changes of pulse number in both SASE1 and 3: #add index 0 to get the initial pulse number per train: idx_change = np.unique(np.concatenate(([0], idx_change_sa3, idx_change_sa1))).astype(int) if sase=='sase1': npulses = npulses_sa1 maxpulses = int(npulses_sa1.max().values) else: npulses = npulses_sa3 maxpulses = int(npulses_sa3.max().values) for i,k in enumerate(idx_change): #skip if no pulses after the change: if npulses[idx_change[i]]==0: continue #calculate indices if sa3First: a = 0 b = int(npulses_sa3[k].values) c = b d = int(c + npulses_sa1[k].values) else: a = int(npulses_sa1[k].values) b = int(a + npulses_sa3[k].values) c = 0 d = a if sase=='sase1': a = c b = d if i==len(idx_change)-1: l = None else: l = idx_change[i+1] temp = data[xgm][k:l,a:a+maxpulses].copy() temp[:,b:] = np.NaN if result is None: result = temp else: result = xr.concat([result, temp], dim='trainId') return result def calcContribSASE(data, sase='sase1', xgm='SA3_XGM'): ''' Calculate the relative contribution of SASE 1 or SASE 3 pulses for each train in the run. Supports fresh bunch, dedicated trains and pulse on demand modes. Inputs: data: xarray Dataset containing xgm data sase: key of sase for which the contribution is computed: {'sase1', 'sase3'} xgm: key of xgm to select: {'SA3_XGM', 'SCS_XGM'} Output: 1D DataArray equal to sum(sase)/sum(sase1+sase3) ''' xgm_sa1 = selectSASEinXGM(data, 'sase1', xgm=xgm) xgm_sa3 = selectSASEinXGM(data, 'sase3', xgm=xgm) if np.all(xgm_sa1.trainId.isin(xgm_sa3.trainId).values) == False: print('Dedicated mode') r = xr.align(*[xgm_sa1, xgm_sa3], join='outer', exclude=['SA3_XGM_dim', 'SA1_XGM_dim']) xgm_sa1 = r[0] xgm_sa1.fillna(0) xgm_sa3 = r[1] xgm_sa3.fillna(0) contrib = xgm_sa1.sum(axis=1)/(xgm_sa1.sum(axis=1) + xgm_sa3.sum(axis=1)) if sase=='sase1': return contrib else: return 1 - contrib def filterOnTrains(data, key='sase3'): ''' Removes train ids for which there was no pulse in sase='sase1' or 'sase3' branch Inputs: data: xarray Dataset sase: SASE onwhich to filter: {'sase1', 'sase3'} Output: filtered xarray Dataset ''' key = 'npulses_' + key res = data.where(data[key]>0, drop=True) return res def calibrateXGMs(data, rollingWindow=200, plot=False): ''' Calibrate the fast (pulse-resolved) signals of the XTD10 and SCS XGM (read in intensityTD property) to the respective slow ion signal (photocurrent read by Keithley, channel 'pulseEnergy.photonFlux.value'). One has to take into account the possible signal created by SASE1 pulses. In the tunnel, this signal is usually large enough to be read by the XGM and the relative contribution C of SASE3 pulses to the overall signal is computed. In the tunnel, the calibration F is defined as: F = E_slow / E_fast_avg, where E_fast_avg is the rolling average (with window rollingWindow) of the fast signal. In SCS XGM, the signal from SASE1 is usually in the noise, so we calculate the average over the pulse-resolved signal of SASE3 pulses only and calibrate it to the slow signal modulated by the SASE3 contribution: F = (N1+N3) * E_avg * C/(N3 * E_fast_avg_sase3), where N1 and N3 are the number of pulses in SASE1 and SASE3, E_fast_avg_sase3 is the rolling average (with window rollingWindow) of the SASE3-only fast signal. Inputs: data: xarray Dataset rollingWindow: length of running average to calculate E_fast_avg plot: boolean, plot the calibration output Output: factors: numpy ndarray of shape 1 x 2 containing [XTD10 calibration factor, SCS calibration factor] ''' noSCS = noSA3 = False sa3_calib_factor = None scs_calib_factor = None if 'SCS_XGM' not in data: print('no SCS XGM data. Skipping calibration for SCS XGM') noSCS = True if 'SA3_XGM' not in data: print('no SASE3 XGM data. Skipping calibration for SASE3 XGM') noSA3 = True if noSCS and noSA3: return np.array([None, None]) start = 0 stop = None npulses = data['npulses_sase3'] ntrains = npulses.shape[0] # First, in case of change in number of pulses, locate a region where # the number of pulses is maximum. if not np.all(npulses == npulses[0]): print('Warning: Number of pulses per train changed during the run!') start = np.argmax(npulses.values) stop = ntrains + np.argmax(npulses.values[::-1]) - 1 if stop - start < rollingWindow: print('not enough consecutive data points with the largest number of pulses per train') start += rollingWindow stop = np.min((ntrains, stop+rollingWindow)) # Calibrate SASE3 XGM with all signal from SASE1 and SASE3 if not noSA3: xgm_avg = data['SA3_XGM'].where(data['SA3_XGM'] != 1.0).mean(axis=1) rolling_sa3_xgm = xgm_avg.rolling(trainId=rollingWindow).mean() ratio = data['SA3_XGM_SLOW']/rolling_sa3_xgm sa3_calib_factor = ratio[start:stop].mean().values print('calibration factor SA3 XGM: %f'%sa3_calib_factor) # Calibrate SCS XGM with SASE3-only contribution sa3contrib = calcContribSASE(data, 'sase3', 'SA3_XGM') if not noSCS: scs_sase3_fast = selectSASEinXGM(data, 'sase3', 'SCS_XGM').mean(axis=1) meanFast = scs_sase3_fast.rolling(trainId=rollingWindow).mean() ratio = ((data['npulses_sase3']+data['npulses_sase1']) * data['SCS_XGM_SLOW'] * sa3contrib) / (meanFast * data['npulses_sase3']) scs_calib_factor = ratio[start:stop].median().values print('calibration factor SCS XGM: %f'%scs_calib_factor) if plot: plt.figure(figsize=(8,8)) plt.subplot(211) plt.title('E[uJ] = %.2f x IntensityTD' %(sa3_calib_factor)) plt.plot(data['SA3_XGM_SLOW'], label='SA3 slow', color='C1') plt.plot(rolling_sa3_xgm*sa3_calib_factor, label='SA3 fast signal rolling avg', color='C4') plt.ylabel('Energy [uJ]') plt.xlabel('train in run') plt.legend(loc='upper left', fontsize=10) plt.twinx() plt.plot(xgm_avg*sa3_calib_factor, label='SA3 fast signal train avg', alpha=0.2, color='C4') plt.ylabel('Calibrated SA3 fast signal [uJ]') plt.legend(loc='lower right', fontsize=10) plt.subplot(212) plt.title('E[uJ] = %.2f x HAMP' %scs_calib_factor) plt.plot(data['SCS_XGM_SLOW'], label='SCS slow (all SASE)', color='C0') slow_avg_sase3 = data['SCS_XGM_SLOW']*(data['npulses_sase1'] +data['npulses_sase3'])*sa3contrib/data['npulses_sase3'] plt.plot(slow_avg_sase3, label='SCS slow (SASE3 only)', color='C1') plt.plot(meanFast*scs_calib_factor, label='SCS HAMP rolling avg', color='C2') plt.ylabel('Energy [uJ]') plt.xlabel('train in run') plt.legend(loc='upper left', fontsize=10) plt.twinx() plt.plot(scs_sase3_fast*scs_calib_factor, label='SCS HAMP train avg', alpha=0.2, color='C2') plt.ylabel('Calibrated HAMP signal [uJ]') plt.legend(loc='lower right', fontsize=10) plt.tight_layout() return np.array([sa3_calib_factor, scs_calib_factor]) def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, t_offset=1760, mcp=1, npulses=None): ''' Computes peak integration from raw MCP traces. Inputs: data: xarray Dataset containing MCP raw traces (e.g. 'MCP1raw') intstart: trace index of integration start intstop: trace index of integration stop bkgstart: trace index of background start bkgstop: trace index of background stop t_offset: index separation between two pulses mcp: MCP channel number npulses: number of pulses Output: results: DataArray with dims trainId x max(sase3 pulses)*1MHz/intra-train rep.rate ''' keyraw = 'MCP{}raw'.format(mcp) if keyraw not in data: raise ValueError("Source not found: {}!".format(keyraw)) if npulses is None: npulses = int((data['sase3'].max().values + 1)/4) sa3 = data['sase3'].where(data['sase3']>1)/4 sa3 -= sa3[:,0] results = xr.DataArray(np.empty((sa3.shape[0], npulses)), coords=sa3.coords, dims=['trainId', 'MCP{}fromRaw'.format(mcp)]) for i in range(npulses): a = intstart + t_offset*i b = intstop + t_offset*i bkga = bkgstart + t_offset*i bkgb = bkgstop + t_offset*i bg = np.outer(np.median(data[keyraw][:,bkga:bkgb], axis=1), np.ones(b-a)) results[:,i] = np.trapz(data[keyraw][:,a:b] - bg, axis=1) return results def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None, bkgstart=None, bkgstop=None, t_offset=1760, npulses=None): ''' Extract peak-integrated data from TIM where pulses are from SASE3 only. If use_apd is False it calculates integration from raw traces. The missing values, in case of change of number of pulses, are filled with NaNs. data: xarray Dataset containing MCP raw traces (e.g. 'MCP1raw') intstart: trace index of integration start intstop: trace index of integration stop bkgstart: trace index of background start bkgstop: trace index of background stop t_offset: index separation between two pulses mcp: MCP channel number npulses: number of pulses to compute Output: tim: DataArray of shape trainId only for SASE3 pulses x N with N=max(number of pulses per train) ''' key = 'MCP{}apd'.format(mcp) if use_apd: apd = data[key] else: apd = mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, t_offset, mcp, npulses) npulses_sa3 = data['npulses_sase3'] sa3 = data['sase3'].where(data['sase3']>1, drop=True)/4 sa3 -= sa3[:,0] sa3 = sa3.astype(int) if np.all(npulses_sa3 == npulses_sa3[0]): tim = apd[:, sa3[0].values] return tim maxpulses = int(npulses_sa3.max().values) diff = npulses_sa3.diff(dim='trainId') #only keep trainIds where a change occured: diff = diff.where(diff != 0, drop=True) #get a list of indices where a change occured: idx_change = np.argwhere(np.isin(npulses_sa3.trainId.values, diff.trainId.values, assume_unique=True))[:,0] #add index 0 to get the initial pulse number per train: idx_change = np.insert(idx_change, 0, 0) tim = None for i,idx in enumerate(idx_change): if npulses_sa3[idx]==0: continue if i==len(idx_change)-1: l = None else: l = idx_change[i+1] b = npulses_sa3[idx].values temp = apd[idx:l,:maxpulses].copy() temp[:,b:] = np.NaN if tim is None: tim = temp else: tim = xr.concat([tim, temp], dim='trainId') return tim def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intstart=None, intstop=None, bkgstart=None, bkgstop=None, t_offset=1760, npulses_apd=None): ''' Calibrate TIM signal (Peak-integrated signal) to the slow ion signal of SCS_XGM (photocurrent read by Keithley, channel 'pulseEnergy.photonFlux.value'). The aim is to find F so that E_tim_peak[uJ] = F x TIM_peak. For this, we want to match the SASE3-only average TIM pulse peak per train (TIM_avg) to the slow XGM signal E_slow. Since E_slow is the average energy per pulse over all SASE1 and SASE3 pulses (N1 and N3), we first extract the relative contribution C of the SASE3 pulses by looking at the pulse-resolved signals of the SA3_XGM in the tunnel. There, the signal of SASE1 is usually strong enough to be above noise level. Let TIM_avg be the average of the TIM pulses (SASE3 only). The calibration factor is then defined as: F = E_slow * C * (N1+N3) / ( N3 * TIM_avg ). If N3 changes during the run, we locate the indices for which N3 is maximum and define a window where to apply calibration (indices start/stop). Warning: the calibration does not include the transmission by the KB mirrors! Inputs: data: xarray Dataset rollingWindow: length of running average to calculate TIM_avg mcp: MCP channel plot: boolean. If True, plot calibration results. use_apd: boolean. If False, the TIM pulse peaks are extract from raw traces using getTIMapd intstart: trace index of integration start intstop: trace index of integration stop bkgstart: trace index of background start bkgstop: trace index of background stop t_offset: index separation between two pulses mcp: MCP channel number npulses_apd: number of pulses Output: F: float, TIM calibration factor. ''' start = 0 stop = None npulses = data['npulses_sase3'] if not np.all(npulses == npulses[0]): start = np.argmax(npulses.values) stop = ntrains + np.argmax(npulses.values[::-1]) - 1 if stop - start < rollingWindow: print('not enough consecutive data points with the largest number of pulses per train') start += rollingWindow stop = np.min((ntrains, stop+rollingWindow)) #print(start, stop) filteredTIM = getTIMapd(data, mcp, use_apd, intstart, intstop, bkgstart, bkgstop, t_offset, npulses_apd) sa3contrib = calcContribSASE(data, 'sase3', 'SA3_XGM') avgFast = filteredTIM.mean(axis=1).rolling(trainId=rollingWindow).mean() ratio = ((data['npulses_sase3']+data['npulses_sase1']) * data['SCS_XGM_SLOW'] * sa3contrib) / (avgFast*data['npulses_sase3']) F = float(ratio[start:stop].median().values) if plot: fig = plt.figure(figsize=(8,5)) ax = plt.subplot(211) ax.set_title('E[uJ] = {:2e} x TIM (MCP{})'.format(F, mcp)) ax.plot(data['SCS_XGM_SLOW'], label='SCS XGM slow (all SASE)', color='C0') slow_avg_sase3 = data['SCS_XGM_SLOW']*(data['npulses_sase1'] +data['npulses_sase3'])*sa3contrib/data['npulses_sase3'] ax.plot(slow_avg_sase3, label='SCS XGM slow (SASE3 only)', color='C1') ax.plot(avgFast*F, label='Calibrated TIM rolling avg', color='C2') ax.legend(loc='upper left', fontsize=8) ax.set_ylabel('Energy [$\mu$J]', size=10) #ax2=ax#.twinx() ax.plot(filteredTIM.mean(axis=1)*F, label='Calibrated TIM train avg', alpha=0.2, color='C9') #ax2.set_ylabel('Calibrated TIM (MCP{}) [uJ]'.format(mcp)) ax.legend(loc='best', fontsize=8, ncol=2) plt.xlabel('train in run') ax = plt.subplot(234) xgm_fast = selectSASEinXGM(data) ax.scatter(filteredTIM, xgm_fast, s=5, alpha=0.1) fit, cov = np.polyfit(filteredTIM.values.flatten(),xgm_fast.values.flatten(),1, cov=True) y=np.poly1d(fit) x=np.linspace(filteredTIM.min(), filteredTIM.max(), 10) ax.plot(x, y(x), lw=2, color='r') ax.set_ylabel('Raw HAMP [$\mu$J]', size=10) ax.set_xlabel('TIM (MCP{}) signal'.format(mcp), size=10) ax.annotate(s='y(x) = F x + A\n'+ 'F = %.3e\n$\Delta$F/F = %.2e\n'%(fit[0],np.abs(np.sqrt(cov[0,0])/fit[0]))+ 'A = %.3e'%fit[1], xy=(0.5,0.6), xycoords='axes fraction', fontsize=10, color='r') print('TIM calibration factor: %e'%(F)) ax = plt.subplot(235) ax.hist(filteredTIM.values.flatten()*F, bins=50, rwidth=0.8) ax.set_ylabel('number of pulses', size=10) ax.set_xlabel('Pulse energy MCP{} [uJ]'.format(mcp), size=10) #ax2 = ax.twiny() #ax2.set_xlabel('MCP 1 APD') #toRaw = lambda x: x/F #ax2.set_xlim((toRaw(ax.get_xlim()[0]),toRaw(ax.get_xlim()[1]))) ax.set_yscale('log') ax = plt.subplot(236) if not use_apd: pulseStart = intstart pulseStop = intstop else: pulseStart = data.attrs['run'].get_array( 'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.pulseStart.value')[0].values pulseStop = data.attrs['run'].get_array( 'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.pulseStop.value')[0].values if 'MCP{}raw'.format(mcp) not in data: tid, data = data.attrs['run'].train_from_index(0) trace = data['SCS_UTC1_ADQ/ADC/1:network']['digitizers.channel_1_D.raw.samples'] print('no raw data for MCP{}. Loading trace from MCP1'.format(mcp)) label_trace='MCP1 Voltage [V]' else: trace = data['MCP{}raw'.format(mcp)][0] label_trace='MCP{} Voltage [V]'.format(mcp) ax.plot(trace[:pulseStop+25], 'o-', ms=2, label='trace') ax.axvspan(pulseStart, pulseStop, color='C2', alpha=0.2, label='APD region') ax.axvline(pulseStart, color='gray', ls='--') ax.axvline(pulseStop, color='gray', ls='--') ax.set_xlim(pulseStart - 25, pulseStop + 25) ax.set_ylabel(label_trace, size=10) ax.set_xlabel('sample #', size=10) ax.legend(fontsize=8) plt.tight_layout() return F