import multiprocessing from time import strftime import tempfile import shutil from tqdm.auto import tqdm import os import warnings import karabo_data as kd from karabo_data.geometry2 import DSSC_1MGeometry import ToolBox as tb import numpy as np import xarray as xr import matplotlib.pyplot as plt import h5py class DSSC: def __init__(self, semester, proposal, topic='SCS'): """ Create a DSSC object to process DSSC data. inputs: semester: semester string proposal: proposal number string topic: topic, by default SCS """ self.semester = semester self.proposal = proposal self.topic = topic self.tempdir = None self.save_folder = f'/gpfs/exfel/exp/{self.topic}/{self.semester}/{self.proposal}/usr/condensed_runs/' print('DSSC configuration') print(f'Topic: {self.topic}') print(f'Semester: {self.semester}') print(f'Proposal: {self.proposal}') print(f'Default save folder: {self.save_folder}') if not os.path.exists(self.save_folder): warnings.warn(f'Default save folder does not exist: {self.save_folder}') def __del__(self): # deleting temporay folder if self.tempdir: shutil.rmtree(self.tempdir) def open_run(self, run_nr, isDark=False): """ Open a run with karabo-data and prepare the virtual dataset for multiprocessing inputs: run_nr: the run number isDark: a boolean to specify if the run is a dark run or not """ print('Opening run data with karabo-data') self.run_nr = run_nr self.xgm = None self.scan_vname = None self.run = kd.open_run(self.proposal, self.run_nr) self.isDark = isDark self.plot_title = f'{self.semester} run: {self.run_nr}' self.fpt = self.run.detector_info('SCS_DET_DSSC1M-1/DET/0CH0:xtdf')['frames_per_train'] self.nbunches = self.run.get_array('SCS_RR_UTC/MDL/BUNCH_DECODER', 'sase3.nPulses.value') self.nbunches = np.unique(self.nbunches) if len(self.nbunches) == 1: self.nbunches = self.nbunches[0] else: warnings.warn('not all trains have same length DSSC data') print(f'nbunches: {self.nbunches}') self.nbunches = self.nbunches[-1] print(f'DSSC frames per train: {self.fpt}') print(f'SA3 bunches per train: {self.nbunches}') if self.tempdir is not None: shutil.rmtree(self.tempdir) self.tempdir = tempfile.mkdtemp() print(f'Temporary directory: {self.tempdir}') print('Creating virtual dataset') self.vdslist = self.create_virtual_dssc_datasets(self.run, path=self.tempdir) # create a dummy scan variable for dark run # for other type or run, use DSSC.define_run function to overwrite it self.scan = xr.DataArray(np.ones_like(self.run.train_ids), dims=['trainId'], coords={'trainId': self.run.train_ids}) self.scan_vname = 'dummy' self.vds_scan = None def define_scan(self, vname, bins): """ Prepare the binning of the DSSC data. inputs: vname: variable name for the scan, can be a mnemonic string from ToolBox or a dictionnary with ['source', 'key'] fields bins: step size (or bins_edge but not yet implemented) """ if type(vname) is dict: self.scan = self.run.get_array(vname['source'], vname['key']) elif type(vname) is str: if vname not in tb.mnemonics: raise ValueError(f'{vname} not found in the ToolBox mnemonics table') self.scan = self.run.get_array(tb.mnemonics[vname]['source'], tb.mnemonics[vname]['key']) else: raise ValueError(f'vname should be a string or a dict. We got {type(vname)}') if (type(bins) is int) or (type(bins) is float): self.scan = bins * np.round(self.scan / bins) else: # TODO: digitize the data raise ValueError(f'To be implemented') self.scan_vname = vname self.vds_scan = os.path.join(self.tempdir, 'scan_variable.h5') if os.path.isfile(self.vds_scan): os.remove(self.vds_scan) self.scan = self.scan.to_dataset(name='scan_variable') self.scan['xgm_pumped'] = self.xgm[:, :self.nbunches:2].mean('dim_0') self.scan['xgm_unpumped'] = self.xgm[:, 1:self.nbunches:2].mean('dim_0') self.scan.to_netcdf(self.vds_scan, group='data') self.scan_counts = xr.DataArray(np.ones(len(self.scan['scan_variable'])), dims=['scan_variable'], coords={'scan_variable': self.scan['scan_variable'].values}, name='counts') fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=[5, 5]) ax1.plot(self.scan.groupby('scan_variable').mean('trainId').coords['scan_variable'].values, self.scan_counts.groupby('scan_variable').sum(), 'o-', ms=2) ax1.set_xlabel('scan variable') ax1.set_ylabel('# trains') ax1.set_title(self.plot_title) ax2.plot(self.scan['scan_variable']) ax2.set_xlabel('train #') ax2.set_ylabel(f'{vname}') plt.tight_layout() def load_xgm(self): """ Loads pulse resolved dedicated SAS3 data from the SCS XGM. """ if self.xgm is None: self.xgm = self.run.get_array(tb.mnemonics['SCS_SA3']['source'], tb.mnemonics['SCS_SA3']['key'], roi=kd.by_index[:self.nbunches]) def plot_xgm_hist(self, nbins=100): """ Plots an histogram of the SCS XGM dedicated SAS3 data. inputs: nbins: number of the bins for the histogram. """ if self.xgm is None: self.load_xgm() hist, bins_edges = np.histogram(self.xgm, nbins, density=True) width = 1.0 * (bins_edges[1] - bins_edges[0]) bins_center = 0.5*(bins_edges[:-1] + bins_edges[1:]) plt.figure(figsize=(5,3)) plt.bar(bins_center, hist, align='center', width=width) plt.xlabel(f"{tb.mnemonics['SCS_SA3']['source']}{tb.mnemonics['SCS_SA3']['key']}") plt.ylabel('density') plt.title(self.plot_title) plt.tight_layout() def xgm_filter(self, xgm_low=-np.inf, xgm_high=np.inf): """ Filters the data by train. If one pulse within a train has an SASE3 SCS XGM value below xgm_low or above xgm_high, that train will be dropped from the dataset. inputs: xgm_low: low threshold value xgm_high: high threshold value """ if self.xgm is None: self.load_xgm() if self.isDark: warnings.warn(f'This run was loaded as dark. Filtering on xgm makes no sense. Aborting') return self.xgm_low = xgm_low self.xgm_high = xgm_high valid = ((self.xgm > self.xgm_low) * (self.xgm < self.xgm_high)).prod('dim_0').astype(bool) xgm_valid = self.xgm.where(valid) xgm_valid = xgm_valid.dropna('trainId') self.scan = self.scan.sel({'trainId': xgm_valid.trainId}) nrejected = len(self.run.train_ids) - len(self.scan) print((f'Rejecting {nrejected} out of {len(self.run.train_ids)} trains due to xgm ' f'thresholds: [{self.xgm_low}, {self.xgm_high}]')) def load_geom(self): """ Loads and return the DSSC geometry. """ quad_pos = [ (-124.100, 3.112), # TR (-133.068, -110.604), # BR ( 0.988, -125.236), # BL ( 4.528, -4.912) # TL ] path = '/gpfs/exfel/sw/software/exfel_environments/misc/git/karabo_data/docs/dssc_geo_june19.h5' geom = DSSC_1MGeometry.from_h5_file_and_quad_positions(path, quad_pos) return geom def create_virtual_dssc_datasets(self, run, path=''): """ Create virtual datasets for each 16 DSSC modules used for the multiprocessing. input: run: karabo-data run path: string where the virtual files are created """ vds_list = [] for m in tqdm(range(16)): vds_filename = os.path.join(path, f'dssc{m}_vds.h5') if os.path.isfile(vds_filename): os.remove(vds_filename) module_vds = run.get_virtual_dataset(f'SCS_DET_DSSC1M-1/DET/{m}CH0:xtdf', 'image.data', filename=vds_filename) vds_list.append([vds_filename, module_vds]) return vds_list def crunch(self): """ Crunch through the DSSC data using multiprocessing. """ if self.vds_scan is None: # probably a dark run with a dummy scan variable self.vds_scan = os.path.join(self.tempdir, 'scan_variable.h5') if os.path.isfile(self.vds_scan): os.remove(self.vds_scan) self.scan = self.scan.to_dataset(name='scan_variable') self.scan.to_netcdf(self.vds_scan, group='data') max_GB = 400 # max_GB / (8byte * 16modules * 128px * 512px * N_pulses) self.chunksize = int(max_GB * 1024**3 // (8 * 16 * 128 * 512 * self.fpt)) print('processing', self.chunksize, 'trains per chunk') jobs = [] for m in range(16): jobs.append(dict( module=m, fpt=self.fpt, vdf_module=os.path.join(self.tempdir, f'dssc{m}_vds.h5'), chunksize=self.chunksize, vdf_scan=self.vds_scan, nbunches=self.nbunches, run_nr=self.run_nr, )) timestamp = strftime('%X') print(f'start time: {timestamp}') with multiprocessing.Pool(16) as pool: module_data = pool.map(process_one_module, jobs) print('finished:', strftime('%X')) # rearange the multiprocessed data self.module_data = xr.concat(module_data, dim='module') self.module_data['run'] = self.run_nr self.module_data = self.module_data.transpose('scan_variable', 'module', 'x', 'y') self.module_data = xr.merge([self.module_data, self.scan.groupby('scan_variable').mean('trainId')]) self.module_data = self.module_data.squeeze() def save(self, save_folder=None, overwrite=False): """ Save the crunched data. inputs: save_folder: string of the fodler where to save the data. overwrite: boolean whether or not to overwrite existing files. """ if save_folder is None: save_folder = this.save_folder if self.isDark: fname = f'run{self.run_nr}_el.h5' # no scan else: fname = f'run{self.run_nr}_by-delay_el.h5' # run with delay scan (change for other scan types!) save_path = os.path.join(save_folder, fname) file_exists = os.path.isfile(save_path) if not file_exists or (file_exists and overwrite): if file_exists: warnings.warn(f'Overwriting file: {save_path}') os.remove(save_path) self.module_data.to_netcdf(save_path, group='data') os.chmod(save_path, 0o664) print('saving: ', save_path) else: print('file', save_path, 'exists and overwrite is False') # since 'self' is not pickable, this function has to be outside the DSSC class so that it can be used # by the multiprocessing pool.map function def process_one_module(job): module = job['module'] fpt = job['fpt'] data_vdf = job['vdf_module'] scan_vdf = job['vdf_scan'] chunksize = job['chunksize'] nbunches = job['nbunches'] image_path = f'INSTRUMENT/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/data' npulse_path = f'INDEX/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/count' with h5py.File(data_vdf, 'r') as m: all_trainIds = m['INDEX/trainId'][()] n_trains = len(all_trainIds) chunk_start = np.arange(n_trains, step=chunksize, dtype=int) # load scan variable scan = xr.open_dataset(scan_vdf, group='data')['scan_variable'] scan.name = 'scan' len_scan = len(scan.groupby(scan)) # create empty dataset to add actual data to module_data = xr.DataArray(np.empty([len_scan, 128, 512], dtype=np.float64), dims=['scan_variable', 'x', 'y'], coords={'scan_variable': np.unique(scan)}) module_data = module_data.to_dataset(name='pumped') module_data['unpumped'] = xr.full_like(module_data['pumped'], 0) module_data['sum_count'] = xr.DataArray(np.zeros_like(np.unique(scan)), dims=['scan_variable']) module_data['module'] = module # crunching with h5py.File(data_vdf, 'r') as m: #fpt_calc = int(len(m[image_path]) / n_trains) #assert fpt_calc == fpt, f'data length does not match expected value (module {module})' all_trainIds = m['INDEX/trainId'][()] frames_per_train = m[npulse_path][()] trains_with_data = all_trainIds[frames_per_train == fpt] #print(np.unique(pulses_per_train), '/', fpt) #print(len(trains_with_data)) chunk_start = np.arange(len(all_trainIds), step=chunksize, dtype=int) trains_start = 0 # This line is the strange hack from https://github.com/tqdm/tqdm/issues/485 print(' ', end='', flush=True) for c0 in tqdm(chunk_start, desc=f'pool.map#{module:02d}', position=module): chunk_dssc = np.s_[int(c0 * fpt):int((c0 + chunksize) * fpt)] # for dssc data data = m[image_path][chunk_dssc].squeeze() data = data.astype(np.float64) n_trains = int(data.shape[0] // fpt) trainIds_chunk = np.unique(trains_with_data[trains_start:trains_start + n_trains]) trains_start += n_trains n_trains_actual = len(trainIds_chunk) coords = {'trainId': trainIds_chunk} data = np.reshape(data, [n_trains_actual, fpt, 128, 512])[:, :int(2 * nbunches)] data = xr.DataArray(data, dims=['trainId', 'pulse', 'x', 'y'], coords=coords) data_pumped = (data[:, ::4]).mean('pulse') data_unpumped = (data[:, 2::4]).mean('pulse') data = data_pumped.to_dataset(name='pumped') data['unpumped'] = data_unpumped data['sum_count'] = xr.DataArray(np.ones(n_trains_actual), dims=['trainId'], coords=coords) # grouping and summing data['scan_variable'] = scan # this only adds scan data for matching trainIds data = data.dropna('trainId') data = data.groupby('scan_variable').sum('trainId') where = {'scan_variable': data.scan_variable} for var in ['pumped', 'unpumped', 'sum_count']: module_data[var].loc[where] = module_data[var].loc[where] + data[var] for var in ['pumped', 'unpumped']: module_data[var] = module_data[var] / module_data.sum_count #module_data = module_data.drop('sum_count') return module_data