diff --git a/pes_to_spec/model.py b/pes_to_spec/model.py index aac55a52dc505e502e6928e4bb59aa4b7c08e682..4395b0c3be70442ee4b8758211a5ff875daa2b79 100644 --- a/pes_to_spec/model.py +++ b/pes_to_spec/model.py @@ -8,6 +8,7 @@ from scipy.optimize import fmin_l_bfgs_b from sklearn.decomposition import PCA, IncrementalPCA from sklearn.model_selection import train_test_split from sklearn.base import TransformerMixin, BaseEstimator +from itertools import product import matplotlib.pyplot as plt @@ -124,17 +125,13 @@ class Model(TransformerMixin, BaseEstimator): """ def __init__(self, - channels:List[str]=["channel_1_D", - "channel_2_B", - "channel_3_A", - "channel_3_B", - "channel_4_C", - "channel_4_D"], - n_pca_lr: int=400, + channels:List[str]=[f"channel_{j}_{k}" + for j, k in product(range(1, 5), ["A", "B", "C", "D"])], + n_pca_lr: int=600, n_pca_hr: int=20, high_res_sigma: float=0.2, - tof_start: Optional[int]=31445, - delta_tof: Optional[int]=200, + tof_start: Optional[int]=None, + delta_tof: Optional[int]=300, validation_size: float=0.05): self.channels = channels self.n_pca_lr = n_pca_lr diff --git a/pes_to_spec/test/offline_analysis.py b/pes_to_spec/test/offline_analysis.py index 62fb6b33e4a8849b08dac2ecb0fabb4340c67084..c3a566811b7d7851933dedd87ee294f6c2fafb14 100755 --- a/pes_to_spec/test/offline_analysis.py +++ b/pes_to_spec/test/offline_analysis.py @@ -109,17 +109,19 @@ def main(): #retvol_raw = run["SA3_XTD10_PES/MDL/DAQ_MPOD", "u212.value"].select_trains(by_id[tids]).ndarray() #retvol_raw_timestamp = run["SA3_XTD10_PES/MDL/DAQ_MPOD", "u212.timestamp"].select_trains(by_id[tids]).ndarray() - model = Model(channels=["channel_1_D", - "channel_2_B", - "channel_3_A", - "channel_3_B", - "channel_4_C", - "channel_4_D"], + # these have been manually selected: + #useful_channels = ["channel_1_D", + # "channel_2_B", + # "channel_3_A", + # "channel_3_B", + # "channel_4_C", + # "channel_4_D"] + model = Model(channels=channels, n_pca_lr=400, n_pca_hr=20, high_res_sigma=0.2, tof_start=None, - delta_tof=200, + delta_tof=300, validation_size=0.05) train_idx = np.isin(tids, train_tids)