diff --git a/pes_to_spec/bnn.py b/pes_to_spec/bnn.py
index aaf850988631569f696274aea52fd1fca3625f28..887512e093e555bb65bef8442585eb0c84801146 100644
--- a/pes_to_spec/bnn.py
+++ b/pes_to_spec/bnn.py
@@ -63,9 +63,9 @@ class BNN(nn.Module):
     """
     def __init__(self, input_dimension: int=1, output_dimension: int=1):
         super(BNN, self).__init__()
-        hidden_dimension = 100
+        hidden_dimension = 50
         # controls the aleatoric uncertainty
-        self.log_isigma2 = nn.Parameter(-torch.ones(1)*np.log(0.1**2), requires_grad=True)
+        self.log_isigma2 = nn.Parameter(-torch.ones(1, output_dimension)*np.log(0.1**2), requires_grad=True)
         # controls the weight hyperprior
         self.log_ilambda2 = nn.Parameter(-torch.ones(1)*np.log(0.1**2), requires_grad=True)
 
@@ -82,8 +82,8 @@ class BNN(nn.Module):
         # and the only regularization is to prevent the weights from becoming > 18 + 3 sqrt(var) ~= 50, making this a very loose regularization.
         # An alternative would be to set the (alpha, beta) both to very low values, whichmakes the hyper prior become closer to the non-informative Jeffrey's prior.
         # Using this alternative (ie: (0.1, 0.1) for the weights' hyper prior) leads to very large lambda and numerical issues with the fit.
-        self.alpha_lambda = 0.1
-        self.beta_lambda = 0.1
+        self.alpha_lambda = 0.001
+        self.beta_lambda = 0.001
 
         # Hyperprior choice on the likelihood noise level:
         # The likelihood noise level is controlled by sigma in the likelihood and it should be allowed to be very broad, but different
@@ -92,8 +92,8 @@ class BNN(nn.Module):
         # Making both alpha and beta small makes the gamma distribution closer to the Jeffey's prior, which makes it non-informative
         # This seems to lead to a larger training time, though.
         # Since, after standardization, we know to expect the variance to be of order (1), we can select also alpha and beta leading to high variance in this range
-        self.alpha_sigma = 0.1
-        self.beta_sigma = 0.1
+        self.alpha_sigma = 0.001
+        self.beta_sigma = 0.001
 
         self.model = nn.Sequential(
                                    bnn.BayesLinear(prior_mu=0.0,
@@ -123,13 +123,12 @@ class BNN(nn.Module):
         """
         Calculate the negative log-likelihood (divided by the batch size, since we take the mean).
         """
-        n_output = target.shape[1]
         error = w*(prediction - target)
         squared_error = error**2
-        sigma2 = torch.exp(-self.log_isigma2)[0]
+        sigma2 = torch.exp(-self.log_isigma2)
         norm_error = 0.5*squared_error/sigma2
-        norm_term = 0.5*(np.log(2*np.pi) - self.log_isigma2[0])*n_output
-        return norm_error.sum(dim=1).mean(dim=0) + norm_term
+        norm_term = 0.5*(np.log(2*np.pi) - self.log_isigma2)
+        return (norm_error + norm_term).sum(dim=1).mean(dim=0)
 
     def neg_log_hyperprior(self) -> torch.Tensor:
         """
@@ -138,18 +137,18 @@ class BNN(nn.Module):
         # hyperprior for sigma to avoid large or too small sigma
         # with a standardized input, this hyperprior forces sigma to be
         # on avg. 1 and it is broad enough to allow for different sigma
-        isigma2 = torch.exp(self.log_ilambda2)[0]
+        isigma2 = torch.exp(self.log_isigma2)
         neg_log_hyperprior_noise = self.neg_log_gamma(self.log_isigma2, isigma2, self.alpha_sigma, self.beta_sigma)
-        ilambda2 = torch.exp(self.log_ilambda2)[0]
+        ilambda2 = torch.exp(self.log_ilambda2)
         neg_log_hyperprior_weights = self.neg_log_gamma(self.log_ilambda2, ilambda2, self.alpha_lambda, self.beta_lambda)
-        return neg_log_hyperprior_noise + neg_log_hyperprior_weights
+        return neg_log_hyperprior_noise.sum() + neg_log_hyperprior_weights.sum()
 
     def aleatoric_uncertainty(self) -> torch.Tensor:
         """
             Get the aleatoric component of the uncertainty.
         """
         #return 0
-        return torch.exp(-0.5*self.log_isigma2[0])
+        return torch.exp(-0.5*self.log_isigma2)
 
     def w_precision(self) -> torch.Tensor:
         """
@@ -201,10 +200,10 @@ class BNNModel(RegressorMixin, BaseEstimator):
         self.model = BNN(X.shape[1], y.shape[1])
 
         # prepare data loader
-        B = 100
+        B = 50
         loader = DataLoader(ds,
                             batch_size=B,
-                            num_workers=5,
+                            num_workers=20,
                             shuffle=True,
                             #pin_memory=True,
                             drop_last=True,
@@ -223,7 +222,7 @@ class BNNModel(RegressorMixin, BaseEstimator):
 
         # train
         self.model.train()
-        epochs = 1000
+        epochs = 500
         for epoch in range(epochs):
             meter = {k: AverageMeter(k, ':6.3f')
                     for k in ('loss', '-log(lkl)', '-log(prior)', '-log(hyper)', 'sigma', 'w.prec.')}
@@ -248,7 +247,7 @@ class BNNModel(RegressorMixin, BaseEstimator):
                 meter['-log(lkl)'].update(nll.detach().cpu().item(), B)
                 meter['-log(prior)'].update(nlprior.detach().cpu().item(), B)
                 meter['-log(hyper)'].update(nlhyper.detach().cpu().item(), B)
-                meter['sigma'].update(self.model.aleatoric_uncertainty().detach().cpu().item(), B)
+                meter['sigma'].update(self.model.aleatoric_uncertainty().mean().detach().cpu().numpy(), B)
                 meter['w.prec.'].update(self.model.w_precision().detach().cpu().item(), B)
 
             progress.display(len(loader))
@@ -268,12 +267,12 @@ class BNNModel(RegressorMixin, BaseEstimator):
         K = 10
         y_pred = list()
         for _ in range(K):
-            y_k = self.model(torch.from_numpy(X)).detach().numpy()
+            y_k = self.model(torch.from_numpy(X)).detach().cpu().numpy()
             y_pred.append(y_k)
         y_pred = np.stack(y_pred, axis=1)
         y_mu = np.mean(y_pred, axis=1)
         y_epi = np.std(y_pred, axis=1)
-        y_ale = self.model.aleatoric_uncertainty().detach().numpy()
+        y_ale = self.model.aleatoric_uncertainty().detach().cpu().numpy()
         y_unc = (y_epi**2 + y_ale**2)**0.5
         if not return_std:
             return y_mu
diff --git a/pes_to_spec/test/offline_analysis.py b/pes_to_spec/test/offline_analysis.py
index 2da28ebe6d2c4cca4206b69e5ad7d67266a2d4de..5ede9532259921dd4033e2f67dfc5492073a7ac7 100755
--- a/pes_to_spec/test/offline_analysis.py
+++ b/pes_to_spec/test/offline_analysis.py
@@ -144,7 +144,7 @@ def main():
     parser.add_argument('-o', '--offset', type=int, metavar='INT', default=0, help='Train ID offset')
     parser.add_argument('-c', '--xgm_cut', type=float, metavar='INTENSITY', default=500, help='XGM intensity threshold in uJ.')
     parser.add_argument('-e', '--bnn', action="store_true", default=False, help='Use BNN?')
-    parser.add_argument('-w', '--weight', action="store_true", default=True, help='Whether to reweight data as a function of the pulse energy to make it invariant to that.')
+    parser.add_argument('-w', '--weight', action="store_true", default=False, help='Whether to reweight data as a function of the pulse energy to make it invariant to that.')
 
     args = parser.parse_args()