From 3b94f54ac07bed274d9b452de78996e97a6cd846 Mon Sep 17 00:00:00 2001
From: Danilo Ferreira de Lima <danilo.enoque.ferreira.de.lima@xfel.de>
Date: Fri, 3 Mar 2023 13:57:28 +0100
Subject: [PATCH] Consistently using the uncertainty as the noise model.

---
 pes_to_spec/model.py | 10 +++++-----
 1 file changed, 5 insertions(+), 5 deletions(-)

diff --git a/pes_to_spec/model.py b/pes_to_spec/model.py
index 8b47e61..7bb760a 100644
--- a/pes_to_spec/model.py
+++ b/pes_to_spec/model.py
@@ -937,13 +937,13 @@ class Model(TransformerMixin, BaseEstimator):
         E = np.fft.fftfreq(len(e), de)
         e_axis = np.linspace(-0.5*(e[-1] - e[0]), 0.5*(e[-1] - e[0]), len(e))
         # generate a gaussian
-        gaussian = np.exp(-0.5*(e_axis)**2/self.high_res_sigma**2)
-        gaussian /= np.sum(gaussian, axis=0, keepdims=True)
-        gaussian = np.clip(gaussian, a_min=1e-6, a_max=None)
-        gaussian_ft = np.fft.fft(gaussian)
+        #gaussian = np.exp(-0.5*(e_axis)**2/self.high_res_sigma**2)
+        #gaussian /= np.sum(gaussian, axis=0, keepdims=True)
+        #gaussian = np.clip(gaussian, a_min=1e-6, a_max=None)
+        #gaussian_ft = np.fft.fft(gaussian)
 
         H = np.mean(Z/D, axis=0)
-        N = np.absolute(gaussian_ft*V)**2
+        N = np.absolute(V)**2
         S = np.mean(np.absolute(D)**2, axis=0)
         H2 = np.absolute(H)**2
         nonzero = np.absolute(H) > 0.2
-- 
GitLab