diff --git a/pes_to_spec/__init__.py b/pes_to_spec/__init__.py index ca6f3e9f1fcf657fec6836e8f13c3c178112bc3b..439057e6c3c9215cc40f5848237329de2dbbc43d 100644 --- a/pes_to_spec/__init__.py +++ b/pes_to_spec/__init__.py @@ -2,4 +2,4 @@ Estimate high-resolution photon spectrometer data from low-resolution non-invasive measurements. """ -VERSION = "0.0.9" +VERSION = "0.1.0" diff --git a/pes_to_spec/model.py b/pes_to_spec/model.py index f54f7d43bd0d533256edbdbab8117e1996d68785..ff38768c59e3e087a38346b66de538088f5e875e 100644 --- a/pes_to_spec/model.py +++ b/pes_to_spec/model.py @@ -3,23 +3,18 @@ from __future__ import annotations import joblib import numpy as np -import scipy.stats from scipy.signal import fftconvolve #from scipy.signal import find_peaks_cwt from scipy.optimize import fmin_l_bfgs_b from sklearn.decomposition import PCA -from sklearn.pipeline import Pipeline, FeatureUnion -from sklearn.preprocessing import FunctionTransformer from sklearn.base import TransformerMixin, BaseEstimator from sklearn.base import RegressorMixin +from sklearn.pipeline import Pipeline from sklearn.kernel_approximation import Nystroem -from sklearn.preprocessing import PolynomialFeatures -from sklearn.linear_model import ARDRegression +#from sklearn.linear_model import ARDRegression from sklearn.linear_model import BayesianRidge from sklearn.neighbors import KernelDensity from sklearn.ensemble import IsolationForest -#from sklearn.neighbors import LocalOutlierFactor -#from sklearn.covariance import EllipticEnvelope from functools import reduce from itertools import product @@ -166,6 +161,7 @@ class FitModel(RegressorMixin, BaseEstimator): self.pars = FitModel.get_pars(sc_op[0], self.structure) self.nll_train = sc_op[1] self.nll_train_expected = np.mean(self.nll(X, pars=self.pars), axis=0, keepdims=True) + return self def predict(self, X: np.ndarray, return_std: bool=False) -> Union[Tuple[np.ndarray, np.ndarray], np.ndarray]: """ @@ -770,8 +766,8 @@ class Model(TransformerMixin, BaseEstimator): """ self.kde_xgm = KernelDensity() self.kde_xgm.fit(intensity.reshape(-1, 1)) - self.mu_xgm = np.mean(intensity, axis=0) - self.sigma_xgm = np.mean(intensity, axis=0) + self.mu_xgm = np.mean(intensity.reshape(-1), axis=0) + self.sigma_xgm = np.std(intensity.reshape(-1), axis=0) q = np.quantile(intensity, [0.10, 0.90]) l, h = q[0], q[1] x = intensity*((intensity > l) & (intensity < h)) + l*(intensity <= l) + h*(intensity >= h) @@ -807,11 +803,7 @@ class Model(TransformerMixin, BaseEstimator): x_t = self.x_model.fit_transform(low_res_select) print("Fitting PCA on high-resolution data.") y_t = self.y_model.fit_transform(high_res_data, smoothen__energy=high_res_photon_energy) - intensity = np.sum(y_t, axis=1) - self.kde_intensity = KernelDensity() - self.kde_intensity.fit(intensity.reshape(-1, 1)) - self.mu_intensity = np.mean(intensity, axis=0) - self.sigma_intensity = np.std(intensity, axis=0) + #self.fit_model.set_params(fex__gamma=1.0/float(x_t.shape[0])) print("Fitting outlier detection") self.ood['full'].fit(x_t) @@ -827,6 +819,40 @@ class Model(TransformerMixin, BaseEstimator): high_pca_unc = np.sqrt(np.mean((high_res - high_pca_rec)**2, axis=0, keepdims=True)) self.y_model['unc'].set_uncertainty(high_pca_unc) + print("Calculate transfer function") + # Model: z(e) = conv(h(e), d(e)) + n(e) + # d: true high-resolution data + # h: the effect of the model + # z: estimated high-resolution data + # n: noise (uncertainty) + # e: energy + # true signal (as far as we can get -- it is smoothened, but this is the model target) + d = high_res[inliers] + y_pred, n = self.fit_model.predict(x_t[inliers], return_std=True) + z = self.y_model['pca'].inverse_transform(y_pred) + n = np.fabs(self.y_model['pca'].inverse_transform(y_pred + n) - z) + e = high_res_photon_energy[0,:] if len(high_res_photon_energy.shape) == 2 else high_res_photon_energy + D = np.fft.fft(d) + Z = np.fft.fft(z) + V = np.fft.fft(n) + de = e[1] - e[0] + E = np.fft.fftfreq(len(e), de) + H = np.mean(Z/D, axis=0) + N = np.mean(np.absolute(V)**2, axis=0) + S = np.mean(np.absolute(D)**2, axis=0) + # Wiener filter: + G = np.conjugate(H) * S / (np.absolute(H)**2 * S + N) + self.wiener_filter = np.fft.ifft(G) + self.wiener_filter_ft = G + self.wiener_energy = E + + # get intensity effect + intensity = np.sum(z, axis=1) + self.kde_intensity = KernelDensity() + self.kde_intensity.fit(intensity.reshape(-1, 1)) + self.mu_intensity = np.mean(intensity.reshape(-1), axis=0) + self.sigma_intensity = np.std(intensity.reshape(-1), axis=0) + # for consistency check per channel selection_model = self.x_select low_res_selected = selection_model.transform(low_res_data, keep_dictionary_structure=True) @@ -932,10 +958,15 @@ class Model(TransformerMixin, BaseEstimator): self.fit_model, self.channel_pca, #self.channel_fit_model - DataHolder(self.mu_intensity), - DataHolder(self.sigma_intensity), - DataHolder(self.mu_xgm), - DataHolder(self.sigma_xgm), + DataHolder(dict(mu_intensity=self.mu_intensity, + sigma_intensity=self.sigma_intensity, + mu_xgm=self.mu_xgm, + sigma_xgm=self.sigma_xgm, + wiener_filter_ft=self.wiener_filter_ft, + wiener_filter=self.wiener_filter, + wiener_energy=self.wiener_energy, + ) + ), self.ood, self.kde_xgm, self.kde_intensity, @@ -955,10 +986,7 @@ class Model(TransformerMixin, BaseEstimator): x_model, y_model, fit_model, channel_pca, #channel_fit_model - mu_intensity, - sigma_intensity, - mu_xgm, - sigma_xgm, + extra, ood, kde_xgm, kde_intensity, @@ -971,11 +999,16 @@ class Model(TransformerMixin, BaseEstimator): obj.channel_pca = channel_pca #obj.channel_fit_model = channel_fit_model obj.ood = ood - obj.mu_intensity = mu_intensity.get_data() - obj.sigma_intensity = sigma_intensity.get_data() - obj.mu_xgm = mu_xgm.get_data() - obj.sigma_xgm = sigma_xgm.get_data() obj.kde_xgm = kde_xgm obj.kde_intensity = kde_intensity + + extra = extra.get_data() + obj.mu_intensity = extra["mu_intensity"] + obj.sigma_intensity = extra["sigma_intensity"] + obj.mu_xgm = extra["mu_xgm"] + obj.sigma_xgm = extra["sigma_xgm"] + obj.wiener_filter_ft = extra["wiener_filter_ft"] + obj.wiener_filter = extra["wiener_filter"] + obj.wiener_energy = extra["wiener_energy"] return obj diff --git a/pes_to_spec/test/offline_analysis.py b/pes_to_spec/test/offline_analysis.py index 790a5b368054825f9672b165fe753b4ddbfbe993..9b9300f194e885841f478687c099f0f334d9ea5f 100755 --- a/pes_to_spec/test/offline_analysis.py +++ b/pes_to_spec/test/offline_analysis.py @@ -20,6 +20,8 @@ import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec from mpl_toolkits.axes_grid.inset_locator import InsetPosition import seaborn as sns +import scipy +from scipy.signal import fftconvolve from typing import Dict, Optional @@ -65,7 +67,8 @@ def plot_result(filename: str, spec_raw_int: Optional[np.ndarray]=None, pes: Optional[np.ndarray]=None, pes_to_show: Optional[str]="", - pes_bin: Optional[np.ndarray]=None): + pes_bin: Optional[np.ndarray]=None, + wiener: Optional[np.ndarray]=None): """ Plot result with uncertainty band. @@ -78,6 +81,7 @@ def plot_result(filename: str, pes: PES spectrum for the inset. pes_to_show: Name of the channel shown. pes_bin: PES bins. + wiener: A Wiener filter to use to improve the filter estimate. """ fig = plt.figure(figsize=(12, 8)) @@ -94,6 +98,9 @@ def plot_result(filename: str, #ax.fill_between(spec_raw_pe, spec_pred["expected"] - unc_pca, spec_pred["expected"] + unc_pca, facecolor='magenta', alpha=0.6, label="68% unc. (syst., PCA)") #if spec_raw_int is not None: # ax.plot(spec_raw_pe, spec_raw_int, c='b', lw=1, ls='--', label="High-resolution measurement") + if wiener is not None: + deconvolved = fftconvolve(spec_pred["expected"], wiener, mode="same") + ax.plot(spec_raw_pe, deconvolved, c='g', ls='-.', lw=3, label="Wiener filter result") Y = np.amax(spec_smooth) ax.legend(frameon=False, borderaxespad=0, loc='upper left') ax.set(title=f"", #avg(stat unc) = {unc_stat}, avg(pca unc) = {unc_pca}", @@ -239,6 +246,33 @@ def main(): t += [time_ns() - start] t_names += ["Load"] + # plot Wiener filter + fig = plt.figure(figsize=(12, 8)) + gs = GridSpec(1, 1) + ax = fig.add_subplot(gs[0, 0]) + plt.scatter(np.fft.fftshift(model.wiener_energy), np.fft.fftshift(np.absolute(model.wiener_filter_ft))) + ax.set(title=f"", + xlabel=r"Reciprocal energy [1/eV]", + ylabel="Filter intensity [a.u.]", + yscale='log', + ) + fig.savefig(os.path.join(args.directory, "wiener_ft.png")) + plt.close(fig) + + fig = plt.figure(figsize=(12, 8)) + gs = GridSpec(1, 1) + ax = fig.add_subplot(gs[0, 0]) + de = spec_raw_pe[0, -1] - spec_raw_pe[0,0] + de = np.linspace(-0.5*de, 0.5*de, spec_raw_pe.shape[1]) + plt.scatter(de, np.fft.fftshift(np.absolute(model.wiener_filter))) + ax.set(title=f"", + xlabel=r"Energy [eV]", + ylabel="Filter value [a.u.]", + yscale='log', + ) + fig.savefig(os.path.join(args.directory, "wiener.png")) + plt.close(fig) + print("Check consistency") start = time_ns() Z = model.check_compatibility(pes_raw_t) @@ -297,7 +331,7 @@ def main(): ax2.tick_params(axis='both', which='major', labelsize=SMALL_SIZE) fig.savefig(os.path.join(args.directory, "intensity_vs_chi2.png")) plt.close(fig) - + fig = plt.figure(figsize=(12, 8)) gs = GridSpec(1, 1) ax = fig.add_subplot(gs[0, 0]) @@ -317,7 +351,7 @@ def main(): color='black', fontsize=15) fig.savefig(os.path.join(args.directory, "chi2.png")) plt.close(fig) - + fig = plt.figure(figsize=(12, 8)) gs = GridSpec(1, 1) ax = fig.add_subplot(gs[0, 0]) @@ -336,7 +370,7 @@ def main(): color='black', fontsize=15) fig.savefig(os.path.join(args.directory, "intensity.png")) plt.close(fig) - + # rmse rmse = np.sqrt(np.mean((spec_smooth - spec_pred["expected"])**2, axis=1)) fig = plt.figure(figsize=(12, 8)) @@ -350,7 +384,7 @@ def main(): ) fig.savefig(os.path.join(args.directory, "intensity_vs_rmse.png")) plt.close(fig) - + fig = plt.figure(figsize=(12, 8)) gs = GridSpec(1, 1) ax = fig.add_subplot(gs[0, 0]) @@ -370,7 +404,7 @@ def main(): color='black', fontsize=15) fig.savefig(os.path.join(args.directory, "rmse.png")) plt.close(fig) - + # SPEC integral w.r.t XGM intensity fig = plt.figure(figsize=(12, 8)) gs = GridSpec(1, 1) @@ -382,7 +416,7 @@ def main(): ) fig.savefig(os.path.join(args.directory, "xgm_vs_intensity.png")) plt.close(fig) - + # SPEC integral w.r.t XGM intensity fig = plt.figure(figsize=(12, 8)) gs = GridSpec(1, 1) @@ -394,7 +428,7 @@ def main(): ) fig.savefig(os.path.join(args.directory, "expected_vs_intensity.png")) plt.close(fig) - + fig = plt.figure(figsize=(12, 8)) gs = GridSpec(1, 1) ax = fig.add_subplot(gs[0, 0]) @@ -422,7 +456,8 @@ def main(): spec_raw_int[idx, :] if showSpec else None, #pes=-pes_raw[pes_to_show][idx, first:last], #pes_to_show=pes_to_show.replace('_', ' '), - #pes_bin=np.arange(first, last) + #pes_bin=np.arange(first, last), + wiener=model.wiener_filter ) for ch in channels: plot_pes(os.path.join(args.directory, f"test_pes_{tid}_{ch}.png"),