diff --git a/README.md b/README.md
index 89637b7cc43e8783f8064af0e5967b08ec6f805b..f76d3e1b972962c60b5accae78a88c911fb15d49 100644
--- a/README.md
+++ b/README.md
@@ -2,3 +2,14 @@
 
 Aim of the project to transform the data from PES to SPEC.
 
+# Usage
+
+1. inv_train.py -> Train a model on the specific RUN.
+Thish will save the pca model and fit model in experiments/YOUR_DIR/checkpoints and the data in 
+experiments/YOUR_DIR/data.
+
+2. inv_eval.py -> Use to evaluate the trained model
+
+3. inv_inference -> Use trained model to do inference on new data point
+
+4. data_drift_check.py  -> Check data drift between two datasets
\ No newline at end of file
diff --git a/data_drift_check.py b/data_drift_check.py
new file mode 100644
index 0000000000000000000000000000000000000000..6bef4952adf4b0e48bedf2d7d12b06eb472dc93a
--- /dev/null
+++ b/data_drift_check.py
@@ -0,0 +1,34 @@
+import sys
+sys.path.append("./")
+sys.path.append("..")
+
+import matplotlib
+matplotlib.use('Agg')
+import matplotlib.pyplot as plt
+
+from src.data.data import ReadPesSpec, PesChannelSelector
+from src.data.data_preproc import SpecPreprocessing
+
+from src.models.find_components.Find_Component import FindPCAcomps
+from src.models.fit_methods.Fit_Methods import FitBFGS, FitBFGSPCA
+from src.models.fit_methods.model import Model
+
+from src.utils.utils import load_train_test_h5, load_rec_data_h5, load_rec_data_h5_bfgs_pca, load_checkpoint
+from src.utils.utils import create_experiment_dirs
+
+from sklearn.model_selection import train_test_split
+import numpy as np
+
+
+# Load trained model in the path exp_dir
+exp_dir = "test3_pulseen_short_test_eps_r0015"
+Y_train_model, Y_test_model, spec_train_model, spec_test_model, spec_raw_pe, X_train_model, X_test_model, pes_train_model, pes_test_model, att_dict, xgm_pulseen_train, xgm_pulseen_test = load_train_test_h5(exp_dir)
+
+att_dict["pes_pca_preprocessing"] = False  # set pca non trainable
+att_dict["spec_pca_preprocessing"] = False # set pca non trainable
+
+model_instance = Model(model_type="bfgs_pca_eps", data_info=att_dict)
+
+inference_model, pes_pca_model, spec_pca_model = model_instance.load_model()                                 # Move to incference sctipt  TODO!
+
+print("Finish")
\ No newline at end of file
diff --git a/inv_eval.py b/inv_eval.py
new file mode 100644
index 0000000000000000000000000000000000000000..8985125bd4f404355a0250f0a6833670508090bd
--- /dev/null
+++ b/inv_eval.py
@@ -0,0 +1,1627 @@
+
+import sys
+sys.path.append("./")
+sys.path.append("..")
+
+import matplotlib
+matplotlib.use('Agg')
+import matplotlib.pyplot as plt
+
+from src.utils.utils import load_train_test_h5, load_rec_data_h5, load_rec_data_h5_bfgs_pca, load_checkpoint, load_rec_data_h5_bfgs_pca_eps
+import numpy as np
+import h5py
+
+exp_dir = "test3_pulseen_short_test_eps_r0015" # Evaluate the trained model
+
+# Load Data
+Y_train, Y_test, spec_train, spec_test, spec_raw_pe, X_train, X_test, pes_train, pes_test, att_dict, xgm_pulseen_trains, xgm_pulseen_tests = load_train_test_h5(exp_dir)
+
+xgm_pulseen_test = []
+for xgm_i in range(len(xgm_pulseen_tests)):
+    xgm_pulseen_test.append(xgm_pulseen_tests[xgm_i][0])
+
+n_pca_comps = att_dict["n_pca_comps_pes"]
+
+if att_dict["model_type"]=="bfgs":
+
+
+    # Load Rec
+    Y_rec, Y_rec_unc = load_rec_data_h5(exp_dir)
+    print(Y_test.shape, Y_rec.shape)
+
+    fig, axes_2 = plt.subplots(10, 2, figsize=(15, 35))
+    axes_2 = axes_2.flatten()
+
+    for i_bfgs in range(15):
+        
+        ax = axes_2[i_bfgs]
+        ax.plot(np.arange(0,Y_rec.shape[1],1), Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(np.arange(0,Y_rec.shape[1],1), Y_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                np.arange(0,Y_rec.shape[1],1), Y_rec[i_bfgs,:] - Y_rec_unc,  Y_rec[i_bfgs,:] + Y_rec_unc, color="pink", alpha=0.5, label="BFGS std"
+            )
+        ax.set_xlabel('XXX ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.legend(fontsize=10)
+        ax.set_title(f"{exp_dir}", y=1.0, pad=-10)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+if att_dict["model_type"]=="bfgs_pca":
+
+    # Load Rec
+    Y_rec, Y_rec_unc_bfgs, Y_rec_unc_specpca, Y_rec_unc = load_rec_data_h5_bfgs_pca(exp_dir)
+    print(Y_test.shape, Y_rec.shape)
+
+    Y_eps = 0*Y_rec_unc_bfgs # TODO! fix this remove eps version from here
+    eps_mean = np.mean(Y_eps, axis=1)
+    print("len eps mean", len(eps_mean))
+
+    # compute RMSE
+    def int_sum_1(A):
+        return np.sum(A, axis=1)
+    pes_sum = int_sum_1(pes_test)
+    spec_sum = int_sum_1(spec_test)
+
+    cor_mat = np.corrcoef(pes_test)
+    cor_mat_int = np.sum(cor_mat, axis=1)
+    #where_1 = np.where(cor_mat == 1)
+    #cor_mat[where_1] = 0
+
+
+
+    # quick fft eval
+    FC_START = 0
+    FC_END = 80
+    N_ROI = 40
+    # Get the Fourier Components
+    n_Y_comps = spec_test.shape[1]
+    Y_test_fft_raw = np.abs(np.fft.fft(spec_test))[:, :round(n_Y_comps/2)]
+    Y_rec_fft_raw = np.abs(np.fft.fft(Y_rec))[:, :round(n_Y_comps/2)]
+
+    # Cut the Fourier components and take only those who are relevant and not close to 0
+    Y_test_fft = Y_test_fft_raw[:, FC_START:FC_END]
+    Y_rec_fft = Y_rec_fft_raw[:, FC_START:FC_END]
+    
+    # Split relevant fourier components into N regions of interests (roi)
+    split_size = round((FC_END - FC_START)/N_ROI)
+
+    def split_to_rois(a, splitedSize = split_size):
+        a_splited = [a[:,x:x+splitedSize] for x in range(0, a.shape[1], splitedSize)]
+        return a_splited
+
+    Y_test_fft_rois = split_to_rois(Y_test_fft)
+    Y_rec_fft_rois = split_to_rois(Y_rec_fft)
+
+    # Define the X axis, pixels
+    pixel_rois = split_to_rois(np.arange(FC_START, FC_END, 1).reshape(1,-1))
+
+    # Compute the absolute difference of gt and rec fourier components per region of interest per train ID
+    delta_Y_fft_rois = [np.abs(a-b) for a, b in zip(Y_test_fft_rois, Y_rec_fft_rois)]
+    # Sum along all Fourier components in roi per train id 
+    delta_Y_fft_rois_sum = [np.sum(a, axis=1) for a in delta_Y_fft_rois]
+    print("len(delta_Y_fft_rois_sum)", len(delta_Y_fft_rois))
+    # Sum along all train IDs per roi
+    delta_Y_fft_rois_sum_mean = [x.mean()  for x in delta_Y_fft_rois_sum]
+
+
+    # find corr coef
+    def corr_coef(a, b):
+        cor_coef = np.corrcoef(a, b)[0][1]
+        #print("The corr coef is :",  np.round(cor_coef, 2))
+        return np.round(cor_coef, 2)
+    cc = []
+    for i_bfgs in range(Y_rec.shape[0]):
+        #corr_coef(sc_res[i_bfgs,:], Y_test[i_bfgs,:]) 
+        cc.append(corr_coef(Y_rec[i_bfgs,:], spec_test[i_bfgs,:]) )
+
+
+
+    # Function to calculate Chi-distance
+    def chi2_distance(A, B):
+        # compute the chi-squared distance using above formula
+        chi = 0.5 * np.sum([((a - b) ** 2) / (a + b)
+                        for (a, b) in zip(A, B)])
+
+        #print("The Chi-square distance is :", chi)
+        return chi
+    chi_2 = []
+    for i_bfgs in range(Y_rec.shape[0]):
+        chi_2.append(chi2_distance(Y_rec[i_bfgs,:], spec_test[i_bfgs,:]))
+
+
+    # compute RMSE
+    def rmse_value(A, B):
+        return np.sqrt(np.mean((A-B)**2))
+    rmse = []
+    for i_bfgs in range(Y_rec.shape[0]):
+        rmse.append(rmse_value(Y_rec[i_bfgs,:], spec_test[i_bfgs,:]))
+    rmse_quickfft = []
+    for i_bfgs in range(Y_rec_fft.shape[0]):
+        rmse_quickfft.append(rmse_value(Y_rec_fft[i_bfgs,:], Y_test_fft[i_bfgs,:]))
+
+
+
+
+
+
+    # Save Images
+
+    # Save cor mat test set
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        im = ax.imshow(cor_mat)
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('train IDs.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cor mat: PCA(PES)", y=1.0, pad=-20, fontsize=22)
+
+    cax = fig.add_axes([0.27, 0.95, 0.5, 0.05])
+    fig.colorbar(im, cax=cax, orientation='horizontal')
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cor_mat_pca_pes.png", bbox_inches='tight')
+    plt.close(fig)
+
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    ax.plot(cor_mat[42,:], label=f"42")
+    ax.plot(cor_mat[43,:], label=f"43")
+    ax.plot(cor_mat[171,:], label=f"171")
+    #ax.plot(cor_mat_int, label=f"int")
+    ax.legend(fontsize=20)
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cor_mat_pca_pes_line.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save xgm_pulse energy
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(xgm_pulseen_test)), xgm_pulseen_test, label=f"xgm pulse energy: PES")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"xgm test pulse energy: PES", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/xgm_pulse_energy.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save xgm_pulse energy vs PES sum
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(eps_mean, xgm_pulseen_test, label=f"eps_mean xgm pulse energy")
+
+        ax.set_xlabel('eps_mean', fontsize=22)
+        ax.set_ylabel('pulse energy', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"pes_sum vs pulse energy", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pulse_energy_vs_eps_mean.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save xgm_pulse energy vs QuickFFT
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(eps_mean, rmse_quickfft, label=f"eps_mean QuickFFT")
+
+        ax.set_xlabel('eps_mean', fontsize=22)
+        ax.set_ylabel('QuickFFT', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"eps_mean QuickFFT", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/eps_mean_vs_quick_fft.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save xgm_pulse energy vs QuickFFT
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(xgm_pulseen_test, rmse_quickfft, label=f"xgm_pulseen_test QuickFFT")
+
+        ax.set_xlabel('xgm_pulseen_test', fontsize=22)
+        ax.set_ylabel('QuickFFT', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"pulse energy QuickFFT", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/xgm_pulseen_test_vs_quick_fft.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save CC vs QuickFFT
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(cc, rmse_quickfft, label=f"cc vs QuickFFT")
+
+        ax.set_xlabel('cc', fontsize=22)
+        ax.set_ylabel('QuickFFT', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cc vs QuickFFT", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cc_vs_quick_fft.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save xgm_pulse energy vs Spec sum
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(spec_sum, xgm_pulseen_test, label=f"xgm pulse energy vs spec int")
+
+        ax.set_xlabel('spec_sum', fontsize=22)
+        ax.set_ylabel('pulse energy', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"spec_sum  vs pulse energy", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pulse_energy_vs_spec_int.png", bbox_inches='tight')
+    plt.close(fig)
+    
+
+    # Save xgm_pulse energy vs corr matrix sum
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(cor_mat_int, xgm_pulseen_test, label=f"xgm pulse energy vs cor_mat_int")
+
+        ax.set_xlabel('cor_mat_int', fontsize=22)
+        ax.set_ylabel('pulse energy', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"spec_sum  vs pulse energy", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pulse_energy_vs_cor_mat_int.png", bbox_inches='tight')
+    plt.close(fig)
+    
+
+    # pes_sum vs Spec sum
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(spec_sum, pes_sum, label=f" spec int vs  pes_sum")
+
+        ax.set_xlabel('spec_sum', fontsize=22)
+        ax.set_ylabel('pulse energy', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"spec_sum  vs pes_sum", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/spec_int_vs_pes_int.png", bbox_inches='tight')
+    plt.close(fig)
+    
+    
+    # Save pes sum test data
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(pes_sum)), pes_sum, label=f"integrated int: PES")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"integrated int: PES", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pes_int_sum.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save pes sum test data
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(spec_sum)), spec_sum, label=f"integrated int: SPEC")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"integrated int: SPEC", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/spec_int_sum.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save pes_sum vs pulse energy
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        #ax.plot(np.arange(len(cc)), cc/max(cc), label=f"cross correlation")
+        #ax.plot(np.arange(len(cc)), pes_sum/max(np.array(pes_sum)), label=f"pes_sum")
+
+        ax.plot(pes_sum/max(np.array(pes_sum)), cc/max(cc), label=f"correlation coef.")
+
+        ax.set_xlabel('pes_sum', fontsize=22)
+        ax.set_ylabel('cor. coef.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"pes_sum vs cor. coef.", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pes_int_sum_vs_cor_coef.png", bbox_inches='tight')
+    plt.close(fig)
+
+    # Save spec_sum vs pulse energy
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        #ax.plot(np.arange(len(cc)), cc/max(cc), label=f"cross correlation")
+        #ax.plot(np.arange(len(cc)), spec_sum/max(np.array(spec_sum)), label=f"spec_sum")
+
+        ax.plot(spec_sum/max(np.array(spec_sum)), cc/max(cc), label=f"spec_sum correlation coef")
+
+        ax.set_xlabel('spec_sum', fontsize=22)
+        ax.set_ylabel('cor. coef.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"spec_sum vs cor. coef.", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/spec_int_sum_vs_corr_coef.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save quick fft eval
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(N_ROI), delta_Y_fft_rois_sum_mean, label=f"FFT eval {i_bfgs}")
+
+        ax.set_xlabel('FFT bin comps.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f" qucik fft eval", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/quick_fft_eval.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(cc)), cc, label=f"correlation coef")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cor. coef.", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/corr_coef.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation vs pulse energy
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        #ax.plot(np.arange(len(cc)), cc/max(cc), label=f"cross correlation")
+        ax.scatter( cc/max(cc), eps_mean/spec_sum, label=f"cc vs eps_mean")
+
+        ax.set_xlabel('cor coef', fontsize=22)
+        ax.set_ylabel('eps mean', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cc vs eps_mean", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cor_coef_vs_eps_mean.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation vs pulse energy
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        #ax.plot(np.arange(len(cc)), cc/max(cc), label=f"cross correlation")
+        ax.scatter( cc/max(cc), xgm_pulseen_test/max(np.array(xgm_pulseen_test)), label=f"xgm_pulseen_test")
+
+        ax.set_xlabel('cor coef', fontsize=22)
+        ax.set_ylabel('pulse energy', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cor. coef. vs pulse energy", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cor_coef_vs_pulse_energy.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation best rec spec
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+
+        i_bfgs = np.argmax(cc)
+        
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_bfgs[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc_bfgs[0,:], color="r", alpha=0.5, label="u_bfgs"
+            )
+        ax.fill_between(
+            spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_specpca,  Y_rec[i_bfgs,:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cc best rec", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cc_best_rec.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation best rec spec
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+
+        i_bfgs = np.argmin(cc)
+        
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_bfgs[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc_bfgs[0,:], color="r", alpha=0.5, label="u_bfgs"
+            )
+        ax.fill_between(
+            spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_specpca,  Y_rec[i_bfgs,:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cc worse rec", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cc_worse_rec.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation best rec pes
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+
+        i_bfgs = np.argmax(cc)
+        
+        ax.plot(pes_test[i_bfgs,:], "r", label=f"PES test {i_bfgs}")
+        
+        ax.set_xlabel(' x comps ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"pes raw (cc best rec)", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pes_raw_best_rec.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation worst rec pes
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+
+        i_bfgs = np.argmin(cc)
+        
+        ax.plot(pes_test[i_bfgs,:], "r", label=f"PES test {i_bfgs}")
+        
+        ax.set_xlabel(' x comps ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"pes raw (cc worst rec)", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pes_raw_worst_rec.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save chi_2
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(chi_2)), chi_2, label=f"chi_2")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"chi_2", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/chi_2.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save rmse
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(rmse)), rmse, label=f"rmse")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"rmse", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/rmse.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save rmse vs eps_mean
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(eps_mean, rmse, label=f"rmse_vs_eps_mean")
+
+        ax.set_xlabel('eps mean', fontsize=22)
+        ax.set_ylabel('rmse', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"rmse_vs_eps_mean", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/rmse_vs_eps_mean.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # reconstruction with total unc
+    fig, axes_2 = plt.subplots(10, 2, figsize=(15, 35))
+    axes_2 = axes_2.flatten()
+    for i_bfgs in range(20):
+        
+        ax = axes_2[i_bfgs]
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc[0,:], color="pink", alpha=0.5, label="u_total"
+            )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.legend(fontsize=10)
+        ax.set_title(f"{exp_dir} eps={eps_mean[i_bfgs]}", y=1.0, pad=-10)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # reconstruction with total unc + eps
+    fig, axes_2 = plt.subplots(10, 2, figsize=(15, 35))
+    axes_2 = axes_2.flatten()
+    for i_bfgs in range(20):
+        
+        ax = axes_2[i_bfgs]
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+            spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_specpca,  Y_rec[i_bfgs,:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_eps[0,:],  Y_rec[i_bfgs,:] + Y_eps[0,:], color="blue", alpha=0.5, label="eps"
+            )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.legend(fontsize=10)
+        ax.set_title(f"{exp_dir} eps={eps_mean[i_bfgs]}", y=1.0, pad=-10)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_eps.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    print(Y_rec_unc_bfgs[0,:])
+    # Reconstruction with 2 uncs
+    fig, axes_2 = plt.subplots(10, 2, figsize=(15, 35))
+    axes_2 = axes_2.flatten()
+    for i_bfgs in range(20):
+        
+        ax = axes_2[i_bfgs]
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_bfgs[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc_bfgs[0,:], color="r", alpha=0.5, label="u_bfgs"
+            )
+        ax.fill_between(
+            spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_specpca,  Y_rec[i_bfgs,:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.legend(fontsize=10)
+        ax.set_title(f"{exp_dir}", y=1.0, pad=-10)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_2unc.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Single ID reconstruction with 2 unc
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_bfgs[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc_bfgs[0,:], color="r", alpha=0.5, label="u_bfgs"
+            )
+        ax.fill_between(
+            spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_specpca,  Y_rec[i_bfgs,:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_2unc_id1.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Single ID reconstruction with TOTAL unc
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc[0,:], color="r", alpha=0.5, label="u_total"
+            )
+
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_unc_id1.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Example single spec
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/single_spec.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Example single Y
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(Y_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+
+        ax.set_xlabel('PCA comps.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/single_Y.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Example single PES
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(pes_train[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+
+        ax.set_xlabel('Channel comps.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/single_pes.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # # Example single X
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(X_train[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+
+        ax.set_xlabel('PCA comps.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/single_X.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    args_cor_mat_int = np.argsort(eps_mean)
+    args_cor_mat_int = args_cor_mat_int[230:]
+    # ORDERED reconstruction with total unc + eps
+    fig, axes_2 = plt.subplots(10, 2, figsize=(15, 35))
+    axes_2 = axes_2.flatten()
+    for i_bfgs in range(20):
+        i_bfgs = i_bfgs
+        ax = axes_2[i_bfgs]
+        ax.plot(spec_raw_pe, Y_rec[args_cor_mat_int[i_bfgs],:], "r", label=f"SPEC rec {i_bfgs, args_cor_mat_int[i_bfgs]}")
+        ax.plot(spec_raw_pe, spec_test[args_cor_mat_int[i_bfgs],:], label=f"SPEC gt {i_bfgs, args_cor_mat_int[i_bfgs]}")
+        ax.fill_between(
+            spec_raw_pe, Y_rec[args_cor_mat_int[i_bfgs],:] - Y_rec_unc_specpca,  Y_rec[args_cor_mat_int[i_bfgs],:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.fill_between(
+                spec_raw_pe, Y_rec[args_cor_mat_int[i_bfgs],:] - Y_eps[0,:],  Y_rec[args_cor_mat_int[i_bfgs],:] + Y_eps[0,:], color="blue", alpha=0.5, label="eps"
+            )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.legend(fontsize=10)
+        ax.set_title(f"eps={eps_mean[args_cor_mat_int[i_bfgs]]}", y=1.0, pad=-10)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_eps_SORTED.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    args_eps = np.argsort(eps_mean)
+    # ORDERED reconstruction with total unc + eps
+    fig, axes_2 = plt.subplots(10, 2, figsize=(15, 35))
+    axes_2 = axes_2.flatten()
+    for i_bfgs in range(20):
+        
+        ax = axes_2[i_bfgs]
+        ax.plot(spec_raw_pe, Y_rec[args_eps[i_bfgs],:], "r", label=f"SPEC rec {i_bfgs, args_eps[i_bfgs]}")
+        ax.plot(spec_raw_pe, spec_test[args_eps[i_bfgs],:], label=f"SPEC gt {i_bfgs, args_eps[i_bfgs]}")
+        ax.fill_between(
+            spec_raw_pe, Y_rec[args_eps[i_bfgs],:] - Y_rec_unc_specpca,  Y_rec[args_eps[i_bfgs],:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.fill_between(
+                spec_raw_pe, Y_rec[args_eps[i_bfgs],:] - Y_eps[0,:],  Y_rec[args_eps[i_bfgs],:] + Y_eps[0,:], color="blue", alpha=0.5, label="eps"
+            )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.legend(fontsize=10)
+        ax.set_title(f"eps={eps_mean[args_eps[i_bfgs]]}", y=1.0, pad=-10)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_eps_SORTED_descending.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+
+
+
+    print("finished eval")
+
+
+if att_dict["model_type"]=="bfgs_pca_eps":
+
+    # Load Rec
+    Y_rec, Y_rec_unc_bfgs, Y_rec_unc_specpca, Y_rec_unc, Y_eps = load_rec_data_h5_bfgs_pca_eps(exp_dir)
+    print(Y_test.shape, Y_rec.shape)
+
+    eps_mean = np.mean(Y_eps, axis=1)
+    eps_mean = np.round(eps_mean, 2)    # round eps mean
+    print("len eps mean", len(eps_mean))
+
+    # compute RMSE
+    def int_sum_1(A):
+        return np.sum(A, axis=1)
+    pes_sum = int_sum_1(pes_test)
+    spec_sum = int_sum_1(spec_test)
+
+    cor_mat = np.corrcoef(pes_test)
+    cor_mat_int = np.sum(cor_mat, axis=1)
+    #where_1 = np.where(cor_mat == 1)
+    #cor_mat[where_1] = 0
+
+
+
+    # quick fft eval
+    FC_START = 0
+    FC_END = 80
+    N_ROI = 40
+    # Get the Fourier Components
+    n_Y_comps = spec_test.shape[1]
+    Y_test_fft_raw = np.abs(np.fft.fft(spec_test))[:, :round(n_Y_comps/2)]
+    Y_rec_fft_raw = np.abs(np.fft.fft(Y_rec))[:, :round(n_Y_comps/2)]
+
+    # Cut the Fourier components and take only those who are relevant and not close to 0
+    Y_test_fft = Y_test_fft_raw[:, FC_START:FC_END]
+    Y_rec_fft = Y_rec_fft_raw[:, FC_START:FC_END]
+    
+    # Split relevant fourier components into N regions of interests (roi)
+    split_size = round((FC_END - FC_START)/N_ROI)
+
+    def split_to_rois(a, splitedSize = split_size):
+        a_splited = [a[:,x:x+splitedSize] for x in range(0, a.shape[1], splitedSize)]
+        return a_splited
+
+    Y_test_fft_rois = split_to_rois(Y_test_fft)
+    Y_rec_fft_rois = split_to_rois(Y_rec_fft)
+
+    # Define the X axis, pixels
+    pixel_rois = split_to_rois(np.arange(FC_START, FC_END, 1).reshape(1,-1))
+
+    # Compute the absolute difference of gt and rec fourier components per region of interest per train ID
+    delta_Y_fft_rois = [np.abs(a-b) for a, b in zip(Y_test_fft_rois, Y_rec_fft_rois)]
+    # Sum along all Fourier components in roi per train id 
+    delta_Y_fft_rois_sum = [np.sum(a, axis=1) for a in delta_Y_fft_rois]
+    print("len(delta_Y_fft_rois_sum)", len(delta_Y_fft_rois))
+    # Sum along all train IDs per roi
+    delta_Y_fft_rois_sum_mean = [x.mean()  for x in delta_Y_fft_rois_sum]
+
+
+    # find corr coef
+    def corr_coef(a, b):
+        cor_coef = np.corrcoef(a, b)[0][1]
+        #print("The corr coef is :",  np.round(cor_coef, 2))
+        return np.round(cor_coef, 2)
+    cc = []
+    for i_bfgs in range(Y_rec.shape[0]):
+        #corr_coef(sc_res[i_bfgs,:], Y_test[i_bfgs,:]) 
+        cc.append(corr_coef(Y_rec[i_bfgs,:], spec_test[i_bfgs,:]) )
+
+
+
+    # Function to calculate Chi-distance
+    def chi2_distance(A, B):
+        # compute the chi-squared distance using above formula
+        chi = 0.5 * np.sum([((a - b) ** 2) / (a + b)
+                        for (a, b) in zip(A, B)])
+
+        #print("The Chi-square distance is :", chi)
+        return chi
+    chi_2 = []
+    for i_bfgs in range(Y_rec.shape[0]):
+        chi_2.append(chi2_distance(Y_rec[i_bfgs,:], spec_test[i_bfgs,:]))
+
+
+    # compute RMSE
+    def rmse_value(A, B):
+        return np.sqrt(np.mean((A-B)**2))
+    rmse = []
+    for i_bfgs in range(Y_rec.shape[0]):
+        rmse.append(rmse_value(Y_rec[i_bfgs,:], spec_test[i_bfgs,:]))
+    rmse_quickfft = []
+    for i_bfgs in range(Y_rec_fft.shape[0]):
+        rmse_quickfft.append(rmse_value(Y_rec_fft[i_bfgs,:], Y_test_fft[i_bfgs,:]))
+
+
+
+
+
+
+    # Save Images
+
+    # Save cor mat test set
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        im = ax.imshow(cor_mat)
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('train IDs.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cor mat: PCA(PES)", y=1.0, pad=-20, fontsize=22)
+
+    cax = fig.add_axes([0.27, 0.95, 0.5, 0.05])
+    fig.colorbar(im, cax=cax, orientation='horizontal')
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cor_mat_pca_pes.png", bbox_inches='tight')
+    plt.close(fig)
+
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    ax.plot(cor_mat[42,:], label=f"42")
+    ax.plot(cor_mat[43,:], label=f"43")
+    ax.plot(cor_mat[171,:], label=f"171")
+    #ax.plot(cor_mat_int, label=f"int")
+    ax.legend(fontsize=20)
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cor_mat_pca_pes_line.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save xgm_pulse energy
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(xgm_pulseen_test)), xgm_pulseen_test, label=f"xgm pulse energy: PES")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"xgm test pulse energy: PES", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/xgm_pulse_energy.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save xgm_pulse energy vs PES sum
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(eps_mean, xgm_pulseen_test, label=f"eps_mean xgm pulse energy")
+
+        ax.set_xlabel('eps_mean', fontsize=22)
+        ax.set_ylabel('pulse energy', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"pes_sum vs pulse energy", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pulse_energy_vs_eps_mean.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save xgm_pulse energy vs QuickFFT
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(eps_mean, rmse_quickfft, label=f"eps_mean QuickFFT")
+
+        ax.set_xlabel('eps_mean', fontsize=22)
+        ax.set_ylabel('QuickFFT', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"eps_mean QuickFFT", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/eps_mean_vs_quick_fft.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save xgm_pulse energy vs QuickFFT
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(xgm_pulseen_test, rmse_quickfft, label=f"xgm_pulseen_test QuickFFT")
+
+        ax.set_xlabel('xgm_pulseen_test', fontsize=22)
+        ax.set_ylabel('QuickFFT', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"pulse energy QuickFFT", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/xgm_pulseen_test_vs_quick_fft.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save CC vs QuickFFT
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(cc, rmse_quickfft, label=f"cc vs QuickFFT")
+
+        ax.set_xlabel('cc', fontsize=22)
+        ax.set_ylabel('QuickFFT', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cc vs QuickFFT", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cc_vs_quick_fft.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save xgm_pulse energy vs Spec sum
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(spec_sum, xgm_pulseen_test, label=f"xgm pulse energy vs spec int")
+
+        ax.set_xlabel('spec_sum', fontsize=22)
+        ax.set_ylabel('pulse energy', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"spec_sum  vs pulse energy", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pulse_energy_vs_spec_int.png", bbox_inches='tight')
+    plt.close(fig)
+    
+
+    # Save xgm_pulse energy vs corr matrix sum
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(cor_mat_int, xgm_pulseen_test, label=f"xgm pulse energy vs cor_mat_int")
+
+        ax.set_xlabel('cor_mat_int', fontsize=22)
+        ax.set_ylabel('pulse energy', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"spec_sum  vs pulse energy", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pulse_energy_vs_cor_mat_int.png", bbox_inches='tight')
+    plt.close(fig)
+    
+
+    # pes_sum vs Spec sum
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(spec_sum, pes_sum, label=f" spec int vs  pes_sum")
+
+        ax.set_xlabel('spec_sum', fontsize=22)
+        ax.set_ylabel('pulse energy', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"spec_sum  vs pes_sum", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/spec_int_vs_pes_int.png", bbox_inches='tight')
+    plt.close(fig)
+    
+    
+    # Save pes sum test data
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(pes_sum)), pes_sum, label=f"integrated int: PES")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"integrated int: PES", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pes_int_sum.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save pes sum test data
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(spec_sum)), spec_sum, label=f"integrated int: SPEC")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"integrated int: SPEC", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/spec_int_sum.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save pes_sum vs pulse energy
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        #ax.plot(np.arange(len(cc)), cc/max(cc), label=f"cross correlation")
+        #ax.plot(np.arange(len(cc)), pes_sum/max(np.array(pes_sum)), label=f"pes_sum")
+
+        ax.plot(pes_sum/max(np.array(pes_sum)), cc/max(cc), label=f"correlation coef.")
+
+        ax.set_xlabel('pes_sum', fontsize=22)
+        ax.set_ylabel('cor. coef.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"pes_sum vs cor. coef.", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pes_int_sum_vs_cor_coef.png", bbox_inches='tight')
+    plt.close(fig)
+
+    # Save spec_sum vs pulse energy
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        #ax.plot(np.arange(len(cc)), cc/max(cc), label=f"cross correlation")
+        #ax.plot(np.arange(len(cc)), spec_sum/max(np.array(spec_sum)), label=f"spec_sum")
+
+        ax.plot(spec_sum/max(np.array(spec_sum)), cc/max(cc), label=f"spec_sum correlation coef")
+
+        ax.set_xlabel('spec_sum', fontsize=22)
+        ax.set_ylabel('cor. coef.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"spec_sum vs cor. coef.", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/spec_int_sum_vs_corr_coef.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save quick fft eval
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(N_ROI), delta_Y_fft_rois_sum_mean, label=f"FFT eval {i_bfgs}")
+
+        ax.set_xlabel('FFT bin comps.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f" qucik fft eval", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/quick_fft_eval.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(cc)), cc, label=f"correlation coef")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cor. coef.", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/corr_coef.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation vs pulse energy
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        #ax.plot(np.arange(len(cc)), cc/max(cc), label=f"cross correlation")
+        ax.scatter( cc/max(cc), eps_mean/spec_sum, label=f"cc vs eps_mean")
+
+        ax.set_xlabel('cor coef', fontsize=22)
+        ax.set_ylabel('eps mean', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cc vs eps_mean", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cor_coef_vs_eps_mean.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation vs pulse energy
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        #ax.plot(np.arange(len(cc)), cc/max(cc), label=f"cross correlation")
+        ax.scatter( cc/max(cc), xgm_pulseen_test/max(np.array(xgm_pulseen_test)), label=f"xgm_pulseen_test")
+
+        ax.set_xlabel('cor coef', fontsize=22)
+        ax.set_ylabel('pulse energy', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cor. coef. vs pulse energy", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cor_coef_vs_pulse_energy.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation best rec spec
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+
+        i_bfgs = np.argmax(cc)
+        
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_bfgs[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc_bfgs[0,:], color="r", alpha=0.5, label="u_bfgs"
+            )
+        ax.fill_between(
+            spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_specpca,  Y_rec[i_bfgs,:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cc best rec", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cc_best_rec.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation best rec spec
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+
+        i_bfgs = np.argmin(cc)
+        
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_bfgs[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc_bfgs[0,:], color="r", alpha=0.5, label="u_bfgs"
+            )
+        ax.fill_between(
+            spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_specpca,  Y_rec[i_bfgs,:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"cc worse rec", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/cc_worse_rec.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation best rec pes
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+
+        i_bfgs = np.argmax(cc)
+        
+        ax.plot(pes_test[i_bfgs,:], "r", label=f"PES test {i_bfgs}")
+        
+        ax.set_xlabel(' x comps ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"pes raw (cc best rec)", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pes_raw_best_rec.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save cross correlation worst rec pes
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+
+        i_bfgs = np.argmin(cc)
+        
+        ax.plot(pes_test[i_bfgs,:], "r", label=f"PES test {i_bfgs}")
+        
+        ax.set_xlabel(' x comps ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"pes raw (cc worst rec)", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/pes_raw_worst_rec.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save chi_2
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(chi_2)), chi_2, label=f"chi_2")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"chi_2", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/chi_2.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save rmse
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(np.arange(len(rmse)), rmse, label=f"rmse")
+
+        ax.set_xlabel('train IDs.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"rmse", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/rmse.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Save rmse vs eps_mean
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.scatter(eps_mean, rmse, label=f"rmse_vs_eps_mean")
+
+        ax.set_xlabel('eps mean', fontsize=22)
+        ax.set_ylabel('rmse', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        ax.set_title(f"rmse_vs_eps_mean", y=1.0, pad=-20, fontsize=22)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/rmse_vs_eps_mean.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # reconstruction with total unc
+    fig, axes_2 = plt.subplots(10, 2, figsize=(15, 35))
+    axes_2 = axes_2.flatten()
+    for i_bfgs in range(20):
+        
+        ax = axes_2[i_bfgs]
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc[0,:], color="pink", alpha=0.5, label="u_total"
+            )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.legend(fontsize=10)
+        ax.set_title(f"{exp_dir} eps={eps_mean[i_bfgs]}", y=1.0, pad=-10)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # reconstruction with total unc + eps
+    fig, axes_2 = plt.subplots(10, 2, figsize=(15, 35))
+    axes_2 = axes_2.flatten()
+    for i_bfgs in range(20):
+        
+        ax = axes_2[i_bfgs]
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+            spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_specpca,  Y_rec[i_bfgs,:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_eps[0,:],  Y_rec[i_bfgs,:] + Y_eps[0,:], color="blue", alpha=0.5, label="eps"
+            )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.legend(fontsize=10)
+        ax.set_title(f"{exp_dir} eps={eps_mean[i_bfgs]}", y=1.0, pad=-10)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_eps.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    print(Y_rec_unc_bfgs[0,:])
+    # Reconstruction with 2 uncs
+    fig, axes_2 = plt.subplots(10, 2, figsize=(15, 35))
+    axes_2 = axes_2.flatten()
+    for i_bfgs in range(20):
+        
+        ax = axes_2[i_bfgs]
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_bfgs[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc_bfgs[0,:], color="r", alpha=0.5, label="u_bfgs"
+            )
+        ax.fill_between(
+            spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_specpca,  Y_rec[i_bfgs,:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.legend(fontsize=10)
+        ax.set_title(f"{exp_dir}", y=1.0, pad=-10)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_2unc.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Single ID reconstruction with 2 unc
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_bfgs[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc_bfgs[0,:], color="r", alpha=0.5, label="u_bfgs"
+            )
+        ax.fill_between(
+            spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc_specpca,  Y_rec[i_bfgs,:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_2unc_id1.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Single ID reconstruction with TOTAL unc
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(spec_raw_pe, Y_rec[i_bfgs,:], "r", label=f"SPEC rec {i_bfgs}")
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+        ax.fill_between(
+                spec_raw_pe, Y_rec[i_bfgs,:] - Y_rec_unc[0,:],  Y_rec[i_bfgs,:] + Y_rec_unc[0,:], color="r", alpha=0.5, label="u_total"
+            )
+
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_unc_id1.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Example single spec
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(spec_raw_pe, spec_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/single_spec.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Example single Y
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(Y_test[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+
+        ax.set_xlabel('PCA comps.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/single_Y.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # Example single PES
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(pes_train[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+
+        ax.set_xlabel('Channel comps.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/single_pes.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    # # Example single X
+    fig, ax = plt.subplots(1, 1, figsize=(20, 10))
+    for i_bfgs in range(1):
+        
+        ax.plot(X_train[i_bfgs,:], label=f"SPEC gt {i_bfgs}")
+
+        ax.set_xlabel('PCA comps.', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.tick_params(axis="y", labelsize=20)
+        ax.legend(fontsize=20)
+        #ax.set_title(f"{exp_dir}", y=1.0, pad=-20)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/single_X.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    args_cor_mat_int = np.argsort(eps_mean)
+    args_cor_mat_int = args_cor_mat_int[230:]
+    # ORDERED reconstruction with total unc + eps
+    fig, axes_2 = plt.subplots(10, 2, figsize=(15, 35))
+    axes_2 = axes_2.flatten()
+    for i_bfgs in range(20):
+        i_bfgs = i_bfgs
+        ax = axes_2[i_bfgs]
+        ax.plot(spec_raw_pe, Y_rec[args_cor_mat_int[i_bfgs],:], "r", label=f"SPEC rec {i_bfgs, args_cor_mat_int[i_bfgs]}")
+        ax.plot(spec_raw_pe, spec_test[args_cor_mat_int[i_bfgs],:], label=f"SPEC gt {i_bfgs, args_cor_mat_int[i_bfgs]}")
+        ax.fill_between(
+            spec_raw_pe, Y_rec[args_cor_mat_int[i_bfgs],:] - Y_rec_unc_specpca,  Y_rec[args_cor_mat_int[i_bfgs],:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.fill_between(
+                spec_raw_pe, Y_rec[args_cor_mat_int[i_bfgs],:] - Y_eps[0,:],  Y_rec[args_cor_mat_int[i_bfgs],:] + Y_eps[0,:], color="blue", alpha=0.5, label="eps"
+            )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.legend(fontsize=10)
+        ax.set_title(f"eps={eps_mean[args_cor_mat_int[i_bfgs]]}", y=1.0, pad=-10)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_eps_SORTED.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+    args_eps = np.argsort(eps_mean)
+    # ORDERED reconstruction with total unc + eps
+    fig, axes_2 = plt.subplots(10, 2, figsize=(15, 35))
+    axes_2 = axes_2.flatten()
+    for i_bfgs in range(20):
+        
+        ax = axes_2[i_bfgs]
+        ax.plot(spec_raw_pe, Y_rec[args_eps[i_bfgs],:], "r", label=f"SPEC rec {i_bfgs, args_eps[i_bfgs]}")
+        ax.plot(spec_raw_pe, spec_test[args_eps[i_bfgs],:], label=f"SPEC gt {i_bfgs, args_eps[i_bfgs]}")
+        ax.fill_between(
+            spec_raw_pe, Y_rec[args_eps[i_bfgs],:] - Y_rec_unc_specpca,  Y_rec[args_eps[i_bfgs],:] + Y_rec_unc_specpca, color="g", alpha=0.5, label="u_specpca"
+        )
+        ax.fill_between(
+                spec_raw_pe, Y_rec[args_eps[i_bfgs],:] - Y_eps[0,:],  Y_rec[args_eps[i_bfgs],:] + Y_eps[0,:], color="blue", alpha=0.5, label="eps"
+            )
+        ax.set_xlabel('Energy (eV) ', fontsize=22)
+        ax.set_ylabel('int a.u.', fontsize=22)
+        ax.tick_params(axis="x", labelsize=20)
+        ax.legend(fontsize=10)
+        ax.set_title(f"eps={eps_mean[args_eps[i_bfgs]]}", y=1.0, pad=-10)
+
+    fig.savefig(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/summaries/reconstruction_eps_SORTED_descending.png", bbox_inches='tight')
+    plt.close(fig)
+
+
+
+
+
+    print("finished eval")
+
+
+
+
+
+#import joblib
+#spec_pca_model = joblib.load(f"/home/adavtyan/my_repos/invasive/experiments/{exp_dir}/checkpoints/spec_pca_model.joblib")
+
+
diff --git a/inv_inference.py b/inv_inference.py
new file mode 100644
index 0000000000000000000000000000000000000000..6ad195cc998fb118a656d059c59d85c56916b411
--- /dev/null
+++ b/inv_inference.py
@@ -0,0 +1,69 @@
+import sys
+sys.path.append("./")
+sys.path.append("..")
+
+import matplotlib
+matplotlib.use('Agg')
+import matplotlib.pyplot as plt
+
+from src.data.data import ReadPesSpec, PesChannelSelector
+from src.data.data_preproc import SpecPreprocessing
+
+from src.models.find_components.Find_Component import FindPCAcomps
+from src.models.fit_methods.Fit_Methods import FitBFGS, FitBFGSPCA
+from src.models.fit_methods.model import Model
+
+from src.utils.utils import load_train_test_h5, load_rec_data_h5, load_rec_data_h5_bfgs_pca, load_checkpoint
+from src.utils.utils import create_experiment_dirs
+
+from sklearn.model_selection import train_test_split
+import numpy as np
+
+
+# Load trained model in the path exp_dir
+exp_dir = "test3_pulseen_short_test_eps_r0015"
+Y_train_model, Y_test_model, spec_train_model, spec_test_model, spec_raw_pe, X_train_model, X_test_model, pes_train_model, pes_test_model, att_dict, xgm_pulseen_train, xgm_pulseen_test = load_train_test_h5(exp_dir)
+
+att_dict["pes_pca_preprocessing"] = False  # set pca non trainable
+att_dict["spec_pca_preprocessing"] = False # set pca non trainable
+
+
+# Change the exp_dir to new dir where inference data is located
+#att_dict["exp_dir"] = "test3_inference"
+att_dict["run_number"] = "r0014" 
+att_dict["spec_ofset"] = -2
+
+
+RPS = ReadPesSpec(att_dict)    # read data
+data_dict = RPS.get_data()
+
+
+model_instance = Model(model_type="bfgs_pca_eps", data_info=att_dict)
+pes_train, pes_test, spec_train, spec_test = model_instance.preprocess(data_dict, att_dict)              # Model Preprocess
+
+
+inference_model, pes_pca_model, spec_pca_model = model_instance.load_model()                                 # Move to incference sctipt  TODO!
+
+
+# Update the Train and Test data for inference model
+model_instance.X_train, model_instance.X_test = pes_pca_model.transform(pes_train), pes_pca_model.transform(pes_test)
+model_instance.Y_train, model_instance.Y_test = spec_pca_model.transform(spec_train), spec_pca_model.transform(spec_test)
+
+
+inf_dir = exp_dir + "_inference_TestDATA" + att_dict["run_number"]
+model_instance.data_info["exp_dir"] = inf_dir
+
+
+create_experiment_dirs(inf_dir)
+model_instance.save_preproc()
+
+
+result = model_instance.predict(input_value=model_instance.X_test,  
+                                target_value=model_instance.Y_test,
+                                spec_target=spec_test_model)
+
+
+model_instance.save_prediction()
+
+
+print("Finished Inference")
\ No newline at end of file
diff --git a/inv_train.py b/inv_train.py
new file mode 100644
index 0000000000000000000000000000000000000000..17c693d3bae3544b0edcf45dc60c189001dd5711
--- /dev/null
+++ b/inv_train.py
@@ -0,0 +1,103 @@
+import sys
+sys.path.append("./")
+sys.path.append("..")
+
+import matplotlib
+matplotlib.use('Agg')
+import matplotlib.pyplot as plt
+
+from src.data.data import ReadPesSpec, PesChannelSelector
+from src.data.data_preproc import SpecPreprocessing
+
+from src.models.find_components.Find_Component import FindPCAcomps
+
+from src.models.fit_methods.model import Model
+
+from src.utils.utils import create_experiment_dirs, save_train_test_h5, save_rec_data_h5, save_checkpoint, save_checkpoint_fft
+
+from sklearn.model_selection import train_test_split
+import numpy as np
+
+run_directory = "/gpfs/exfel/exp/SA3/202121/p002935/raw"
+run_number = "r0015" 
+spec_ofset = -2
+n_pca_comps_pes = 400
+n_pca_comps_spec = 20
+pes_pca_preprocessing = True
+spec_pca_preprocessing = True
+spec_gc = True
+spec_fft = False
+use_data_subset = True
+data_subset_start, data_subset_end = 1000, 6000     # Min Max 
+channel_names = "all_chs"                           # "default", "all_chs", or list with channel names ex  ["channel_1_D", "channel_2_B"]
+test_size = 0.05 
+model_type = "bfgs_pca_eps"                                 # "bfgs", "bfgs_pca", "bfgs_pca_eps"
+
+exp_dir = "test3_pulseen_short_test_eps_" + run_number
+general_comment = exp_dir
+
+data_info = {"run_directory": run_directory,
+            "run_number": run_number,
+            "spec_ofset": spec_ofset,
+            "exp_dir": exp_dir,
+            "n_pca_comps_pes": n_pca_comps_pes,
+            "n_pca_comps_spec": n_pca_comps_spec,
+            "pes_pca_preprocessing": pes_pca_preprocessing,
+            "spec_pca_preprocessing": spec_pca_preprocessing,
+            "spec_gc": spec_gc,
+            "spec_fft": spec_fft,
+            "use_data_subset": use_data_subset,
+            "data_subset_start": data_subset_start,
+            "data_subset_end": data_subset_end,
+            "channel_names": channel_names,
+            "test_size": test_size,
+            "model_type": model_type,
+            "general_comment": general_comment
+
+            }
+
+
+experiment_dir, summary_dir, checkpoint_dir, output_dir, test_dir = create_experiment_dirs(exp_dir)
+
+import datetime
+now = datetime.datetime.now()
+print ("Start Read Pes Spec Data : ")
+print (now.strftime("%Y-%m-%d %H:%M:%S"))
+
+# Read Pes Spec Data
+RPS = ReadPesSpec(data_info)
+data_dict = RPS.get_data()
+
+now = datetime.datetime.now()
+print ("End Read Pes Spec Data : ")
+print (now.strftime("%Y-%m-%d %H:%M:%S"))
+
+# Model
+model_instance = Model(model_type=model_type, data_info=data_info)
+X_train, X_test, Y_train, Y_test = model_instance.preprocess(data_dict, data_info)              # Model Preprocess
+
+now = datetime.datetime.now()
+print ("End Model Preprocessor : ")
+print (now.strftime("%Y-%m-%d %H:%M:%S"))
+
+model_instance.save_preproc()
+print("################")
+print(X_train.shape)
+print("################")
+model_instance.fit_eval(X_train, Y_train, X_test, Y_test)           # Model FIT
+
+now = datetime.datetime.now()
+print ("End Model Train : ")
+print (now.strftime("%Y-%m-%d %H:%M:%S"))
+
+model_instance.save_latest_ckp()
+
+result = model_instance.predict(input_value=X_test)
+
+model_instance.save_prediction()
+
+
+
+
+print("FINISHED ALL")
+
diff --git a/src/data/__init__.py b/src/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/data/data.py b/src/data/data.py
new file mode 100644
index 0000000000000000000000000000000000000000..cd9517e8a72369e574d2e767cdd3a2bb1e9db310
--- /dev/null
+++ b/src/data/data.py
@@ -0,0 +1,326 @@
+"""
+    Data loaders for SPEC and PES.
+"""
+
+from extra_data import open_run, RunDirectory
+import numpy as np
+
+from typing import Any, Union, List, Dict
+
+import os
+import h5py
+import numpy as np
+
+import itertools
+
+import scipy
+import scipy.interpolate
+from random import choices
+
+from skimage.feature import canny
+import torch
+import torchvision.transforms as transforms
+from collections import namedtuple
+import torch.nn.functional as F
+
+import cv2
+
+import sys
+sys.path.append("./")
+sys.path.append("..")
+
+
+from sklearn.datasets import fetch_olivetti_faces
+from numpy.random import RandomState
+
+
+class ReadPesSpec:
+    """
+    Read PES and SPEC data, select by unique IDs
+    """
+
+    def __init__(self, data_info):
+
+        self.data_info = data_info
+
+        self.rundir = self.data_info["run_directory"] 
+        self.runid = self.data_info["run_number"]
+        self.spec_ofset = self.data_info["spec_ofset"]
+
+        self.run = RunDirectory(f"{self.rundir}/{self.runid}") 
+
+        self.spec_inds = None
+        self.pes_inds = None
+        self.xgm_inds = None
+
+        self.spec_tid_all = None
+        self.spec_tid_all_offset = None
+        self.pes_tid_all = None
+        self.xgm_tid_all = None
+
+        self.spec_tids = None
+        self.pes_tids = None
+        self.xgm_tids = None
+
+        self.retvol_raw = None
+        self.retvol_raw_timestamp = None
+        self.min_ret_vol = None
+
+
+        self.spec_raw_pe = None 
+        self.spec_raw_int = None 
+        self.pes_raw_dict = None  
+        self.pes_data = None
+        self.xgm_pressureFiltered = None  
+        self.xgm_pulseen = None
+        self.retvol_raw = None  
+        self.raw_timestamp = None 
+        self.min_ret_vol = None 
+
+
+        # Output
+        self.data = {"spec_raw_pe":None,
+                    "spec_raw_int":None,
+                    "pes_raw_dict":None,
+                    "pes_data":None,
+                    "xgm_pressureFiltered":None,
+                    "xgm_pulseen":None,
+                    "retvol_raw":None,
+                    "retvol_raw_timestamp":None,
+                    "min_ret_vol":None}
+
+
+
+    def get_unq_inds(self, a, b, c):
+        uniq_vals = list(set(a).intersection(b).intersection(c))
+        return [a.index(x) for x in uniq_vals], [b.index(x) for x in uniq_vals], [c.index(x) for x in uniq_vals]
+
+    # create channel names
+    def gen_channel_names(self):
+        channels = []
+        for i in range(4):
+            channels.append(f"channel_{i+1}_A")
+            channels.append(f"channel_{i+1}_B")
+            channels.append(f"channel_{i+1}_C")
+            channels.append(f"channel_{i+1}_D")
+
+        chs_short_name = []
+        for i in range(4):
+            chs_short_name.append(f"ch_{i+1}_A")
+            chs_short_name.append(f"ch_{i+1}_B")
+            chs_short_name.append(f"ch_{i+1}_C")
+            chs_short_name.append(f"ch_{i+1}_D")
+
+        return channels, chs_short_name
+
+
+    def read_train_ids(self, debug=False):
+
+        # Read raw SPEC Data train IDs
+        self.spec_tid_all = self.run['SA3_XTD10_SPECT/MDL/FEL_BEAM_SPECTROMETER_SQS1:output', f"data.trainId"].ndarray()
+        self.spec_tid_all_offset = self.spec_tid_all + self.spec_ofset  ##### Offset correction  #####
+        #print(f" spec_tid_all_offset = {len(spec_tid_all_offset)}")
+
+        # Read raw PES Data train IDs
+        self.pes_tid_all = self.run['SA3_XTD10_PES/ADC/1:network', f"digitizers.trainId"].ndarray() 
+        #print(f" pes_tid_all = {len(pes_tid_all)}")
+
+
+        # Read raw XGM Data train IDs
+        self.xgm_tid_all = self.run['SA3_XTD10_XGM/XGM/DOOCS:output', f"data.trainId"].ndarray() 
+        #print(f" xgm_tid_all = {len(xgm_tid_all)}") 
+
+        print(f" Introduced SPEC_OFFSET = {self.spec_ofset} \n ")
+
+        if debug:
+            print(f"\n Len of train IDs:                           \n \
+                spec_tid_all_offset  {len(self.spec_tid_all_offset)}    \n \
+                pes_tid_all          {len(self.pes_tid_all)}            \n \
+                xgm_tid_all          {len(self.xgm_tid_all)}            \n \
+                    ")
+
+
+            print(f"\n First 5 train IDs from all sources:         \n \
+                spec_tid_all         {self.spec_tid_all[:5]}            \n \
+                spec_tid_all_offset  {self.spec_tid_all_offset[:5]}     \n \
+                pes_tid_all          {self.pes_tid_all[:5]}             \n \
+                xgm_tid_all          {self.xgm_tid_all[:5]}             \n \
+                ")
+
+
+    def merge_train_ids(self, debug=True):
+        # Merge Train IDs
+        self.spec_inds, self.pes_inds, self.xgm_inds = self.get_unq_inds(list(self.spec_tid_all_offset), list(self.pes_tid_all), list(self.xgm_tid_all))
+
+
+        print(" Len of indices for common elements in spec, pes, xgm :", len(self.spec_inds), len(self.pes_inds), len(self.xgm_inds))
+
+        # Find common train ids
+        self.spec_tids = self.spec_tid_all_offset[self.spec_inds]
+        self.pes_tids = self.pes_tid_all[self.pes_inds]
+        self.xgm_tids = self.xgm_tid_all[self.xgm_inds]
+
+        if debug:
+            print(f"\n First 5 indices from all sources:    \n \
+                spec_inds         {self.spec_inds[:5]}          \n \
+                pes_inds          {self.pes_inds[:5]}           \n \
+                xgm_inds          {self.xgm_inds[:5]}           \n \
+                    ")
+
+            print(f"\n First 5 train IDs from all sources:    \n \
+                spec_tids         {self.spec_tids[:5]}          \n \
+                pes_tids          {self.pes_tids[:5]}           \n \
+                xgm_tids          {self.xgm_tids[:5]}           \n \
+                ")
+        return  self.spec_inds, self.pes_inds, self.xgm_inds
+
+
+    def retVol(self):
+        # Read PES Data RetVol
+        self.retvol_raw = self.run["SA3_XTD10_PES/MDL/DAQ_MPOD", "u212.value"].ndarray()[list(self.pes_inds)]
+        self.min_ret_vol = np.abs(self.retvol_raw.min())
+        self.retvol_raw_timestamp = self.run["SA3_XTD10_PES/MDL/DAQ_MPOD", "u212.timestamp"].ndarray()[list(self.pes_inds)]
+
+
+    def read_data(self, debug=True):
+
+        # Read raw SPEC Data
+        self.spec_raw_pe= self.run['SA3_XTD10_SPECT/MDL/FEL_BEAM_SPECTROMETER_SQS1:output', f"data.photonEnergy"].ndarray().astype(float)[list(self.spec_inds),:]
+        #spec_raw_all = run_spec['SA3_XTD10_SPECT/MDL/FEL_BEAM_SPECTROMETER_SQS1:output', f"data.intensityDistribution"].ndarray()
+        self.spec_raw_int = self.run['SA3_XTD10_SPECT/MDL/FEL_BEAM_SPECTROMETER_SQS1:output', f"data.intensityDistribution"].ndarray().astype(float)[list(self.spec_inds),:]
+
+        # Read PES Data
+        channels, _ = self.gen_channel_names()                             # create channel names
+        self.pes_raw_dict = {}
+        pes_raw_dict_all = {}
+        for ch in channels:
+            #pes_raw = run['SA3_XTD10_PES/ADC/1:network', f"digitizers.{ch}.raw.samples"].ndarray()
+            #pes_raw_dict_all[ch] = run_pes['SA3_XTD10_PES/ADC/1:network', f"digitizers.{ch}.raw.samples"].ndarray()
+            self.pes_raw_dict[ch] = self.run['SA3_XTD10_PES/ADC/1:network', f"digitizers.{ch}.raw.samples"].ndarray().astype(float)[list(self.pes_inds),:]
+        
+        # Read XGM gas pressure
+        self.xgm_pressureFiltered= self.run['SA3_XTD10_XGM/XGM/DOOCS', f"pressure.pressureFiltered.value"].ndarray().astype(float)[list(self.xgm_inds)]
+
+        # Read PES Data RetVol
+        self.retVol()
+
+        # Read XGM Pusle Energy
+        self.xgm_pulseen =  self.run['SA3_XTD10_XGM/XGM/DOOCS:output', f"data.intensitySa3TD"].ndarray().astype(float)[list(self.xgm_inds)]
+
+        if debug:
+            #print(f"\n pes data channels :: \n {self.pes_raw_dict.keys()}")
+            print(f"spec_raw_pe.shape{self.spec_raw_pe.shape}, \n spec_raw_int.shape{self.spec_raw_int.shape}")
+            print(f"\n pes channel shape channel_1_A:: {self.pes_raw_dict['channel_1_A'].shape}")
+            print("\n shape of xgm_pressureFiltered", self.xgm_pressureFiltered.shape)
+            print(f"\n min_ret_vol = {self.min_ret_vol}")
+
+
+        assert self.spec_raw_pe.shape, self.spec_raw_int.shape 
+        assert self.pes_raw_dict['channel_1_A'].shape[0], self.spec_raw_int.shape[0]
+
+
+
+    def get_data(self):
+
+        # Read Train Ids
+        self.read_train_ids(self.run)
+
+        # Merge Train Ids
+        self.merge_train_ids()
+
+        # Read Data
+        self.read_data()
+        
+        self.data["spec_raw_pe"] = self.spec_raw_pe
+        self.data["spec_raw_int"] = self.spec_raw_int
+        self.data["pes_raw_dict"] = self.pes_raw_dict
+        self.data["xgm_pressureFiltered"] = self.xgm_pressureFiltered
+        self.data["xgm_pulseen"] = self.xgm_pulseen
+        self.data["retvol_raw"] = self.retvol_raw
+        self.data["retvol_raw_timestamp"] = self.retvol_raw_timestamp
+        self.data["min_ret_vol"] = self.min_ret_vol
+        
+        print("Data loaded in dataframe")
+
+        PCS = PesChannelSelector(pes_dict=self.data, ch_names=self.data_info["channel_names"])    # Select Pes Channels
+        self.pes_data = PCS.sel_pes_chs()  
+        self.data["pes_data"] = self.pes_data
+
+        print("pes_data.shape = ", self.pes_data.shape)      #  (14497, 1200)
+        print("spec_data.shape = ", self.spec_raw_int.shape)    #  (14497, 1900)
+
+
+        return self.data
+
+
+class PesChannelSelector:
+    """_Use this class to take all or part of PES channels for data preprocessing_
+    """
+    def __init__(self, pes_dict, ch_names="default"):
+
+        self.pes_dict = pes_dict
+        self.default_channels = ["channel_1_D", "channel_2_B", "channel_3_A", "channel_3_B", "channel_4_C", "channel_4_D"]
+
+
+        if ch_names is "default":
+            self.channels = self.default_channels
+        elif ch_names == "all_chs":
+            self.channels, _ = self.gen_channel_names()
+        else:
+            self.channels = ch_names   
+
+        # Output
+        self.pes_data =  np.array([])
+
+
+
+    # create channel names
+    def gen_channel_names(self):
+        """
+        Generate channel names for quick reference
+
+        Returns:
+            [channels], [chs_short_name]: raw channel names, channel short names
+        """
+        channels = []
+        for i in range(4):
+            channels.append(f"channel_{i+1}_A")
+            channels.append(f"channel_{i+1}_B")
+            channels.append(f"channel_{i+1}_C")
+            channels.append(f"channel_{i+1}_D")
+
+        chs_short_name = []
+        for i in range(4):
+            chs_short_name.append(f"ch_{i+1}_A")
+            chs_short_name.append(f"ch_{i+1}_B")
+            chs_short_name.append(f"ch_{i+1}_C")
+            chs_short_name.append(f"ch_{i+1}_D")
+
+        return channels, chs_short_name
+
+
+    def get_array_from_dict(self, ch_name):
+        """ Select ROI where TOF is present
+
+        Args:
+            ch_name (str): channel name
+
+        Returns:
+            Croped channel : crop channel around the TOF measurement
+        """
+        TOF_start = 31445 + 0
+        TOF_end = TOF_start + 200
+        return self.pes_dict["pes_raw_dict"][ch_name][:,TOF_start:TOF_end]
+
+
+    def sel_pes_chs(self):
+        """ Select PES channel
+
+        Returns:
+            pes_data: PES data concat together all channels
+        """
+
+        self.pes_data = np.concatenate([self.get_array_from_dict(ch_name) for ch_name in self.channels], axis=1) 
+        
+        return self.pes_data 
+                  
diff --git a/src/data/data_preproc.py b/src/data/data_preproc.py
new file mode 100644
index 0000000000000000000000000000000000000000..fba4bb0f6c6bac763618b392855f193bf3d9a705
--- /dev/null
+++ b/src/data/data_preproc.py
@@ -0,0 +1,99 @@
+"""
+    Data Preprocessing
+"""
+
+import scipy
+import scipy.signal
+import numpy as np
+from sklearn import preprocessing
+
+import sys
+sys.path.append("./")
+sys.path.append("..")
+
+from src.models.find_components.Find_Component import FindPCAcomps
+
+
+# GC Spec data
+class SpecPreprocessing():
+    def __init__(self, spec_data, spec_raw_pe, gauss_sigma=0.2):
+
+        self.gauss_sigma = gauss_sigma
+        self.spec_data = spec_data
+        self.spec_raw_pe = spec_raw_pe
+
+        # Output
+        self.gaussian = None
+        self.spec_data_gc = None
+        self.spec_data_gc_fft = None
+
+    def gaussian_convolve(self):
+        gx = self.spec_raw_pe[:,:]
+        mu = self.spec_raw_pe[0,gx.shape[1]//2]
+
+        self.gaussian = np.exp(-((gx-mu)/self.gauss_sigma)**2/2)/np.sqrt(2*np.pi*self.gauss_sigma**2)
+        print(self.spec_data.shape, self.spec_raw_pe.shape, self.gaussian.shape)
+        #result = np.convolve(spec_data[0,:], gaussian, mode="full")
+
+        self.spec_data_gc = scipy.signal.fftconvolve(self.spec_data, self.gaussian, mode="same",axes=1)/80
+        print(self.spec_data_gc.shape)
+
+        return self.spec_data_gc, self.gaussian
+
+    def make_fft(self):
+        
+        self.spec_data_gc_fft = np.fft.fft(self.spec_data_gc)
+
+        return self.spec_data_gc_fft
+        
+
+
+class PesPreprocessing():
+    def __init__(self, data_train, data_test, n_pca=50):
+
+        self.data_train = data_train
+        self.data_test = data_test
+        self.n_pca = n_pca
+
+        # Output
+        self.pca_model = None
+        self.scaler = None
+        self.new_train = None
+        self.new_test = None
+        
+
+
+    def find_pca(self):
+        pes_PCA = FindPCAcomps(
+                                data_train=self.data_train, 
+                                data_test=self.data_test,
+                                n_pca_comps=self.n_pca
+                            )
+
+        self.pca_model, self.new_train, self.new_test = pes_PCA.get_pca()
+        return self.pca_model, self.new_train, self.new_test
+
+    def stand_scaler(self):
+
+        self.scaler = preprocessing.StandardScaler().fit(self.data_train)
+        
+        self.new_train = self.scaler.transform(self.data_train)
+        self.new_test = self.scaler.transform( self.data_test)
+
+        return self.scaler, self.new_train, self.new_test
+
+
+    def get(self, data_info):
+
+        if data_info["pes_pca_preprocessing"]:
+            self.pca_model, self.new_train, self.new_test = self.find_pca()
+            return self.pca_model, self.new_train, self.new_test
+
+        if data_info["standard_scaler"]:
+            self.new_train, self.new_test = self.stand_scaler()
+            return self.scaler, self.new_train, self.new_test
+
+
+
+
+
diff --git a/src/models/find_components/Find_Component.py b/src/models/find_components/Find_Component.py
new file mode 100644
index 0000000000000000000000000000000000000000..54c93b0532bb7c3996cdb89f2da06b0e4c291f63
--- /dev/null
+++ b/src/models/find_components/Find_Component.py
@@ -0,0 +1,194 @@
+import sys
+sys.path.append("..")
+
+
+from sklearn.datasets import load_digits
+from sklearn.datasets import fetch_olivetti_faces
+from sklearn.decomposition import FastICA
+from sklearn import decomposition
+from sklearn.cluster import MiniBatchKMeans
+from sklearn import decomposition
+import matplotlib.pyplot as plt
+import skimage
+
+import numpy as np
+from numpy.random import RandomState
+
+import logging
+from time import time
+
+from sklearn import linear_model
+import torch
+
+from scipy import signal
+from scipy.signal import find_peaks
+from sklearn.decomposition import PCA 
+
+class FindComponents(object):
+    """This class find the components in data. Those components could be independent or principal. It also returns the transformer.
+
+    Args:
+        object (object): Object of components and transformer
+    """
+
+
+    def __init__(self):
+        """_summary_
+
+        Args:
+            train_data (np.array): _description_
+            val_data (np.array): _description_
+            image_shape (tuple, optional): _description_. Defaults to (64, 64).
+            is_image (bool, optional): _description_. Defaults to True.
+        """
+
+        super(FindComponents, self).__init__()
+
+        self.transformer = None
+        self.ica_comps = None
+        self.ica_comps_pix = None
+
+    def clear_input(self):
+        self.train_data = None
+        self.val_data = None
+        self.image_shape = None
+        self.is_image = None
+        
+
+    def get_transformer_ica(self, train_data, val_data, image_shape=(64, 64), is_image=True, N_COMP_ICA=5, ICA_Method='logcosh'):
+        """Takes number of data points and calculates the N Independent components based on sklearn.decomposition.FastICA. 
+        Returns the transformer and corresponding ICA components in 2 verions (N ICA Components, and N ICA components per pixel.
+
+        Args:
+            train_data (np.array): _description_
+            val_data (np.array): _description_
+            image_shape (tuple, optional): _description_. Defaults to (64, 64).
+            is_image (bool, optional): _description_. Defaults to True.
+            N_COMP_ICA (int, optional): _description_. Defaults to 5.
+
+        Returns:
+            [transformer (object)]: transformer object for FastICA
+            [ica_comps (list)]: FastICA N componenrs ordered for all pixels in single data
+            [ica_comps_pix (list)]: FastICA N components ordered per pixel for all components in single data
+        """
+
+        self.train_data = train_data
+        self.val_data = val_data
+        self.image_shape = image_shape
+        self.is_image = is_image
+
+        self.train_data_points =  self.train_data.shape[0]
+        if len(val_data.shape)==1:
+            self.val_data_points = 1
+        elif len(val_data.shape)!=1:
+            self.val_data_points =  self.val_data.shape[0]
+
+        assert(N_COMP_ICA<=self.train_data_points)
+
+        transformer = FastICA(n_components=N_COMP_ICA, max_iter=5000, random_state=0, whiten=True, fun=ICA_Method)
+        print("shape train data", self.train_data.shape)
+        print("ICA_Method", ICA_Method)
+        X_transformed = transformer.fit_transform(self.train_data)
+        print("X_transformed.shape=", X_transformed.shape)
+
+        n_img, l_img = transformer.mixing_.T.shape
+        print("transformer.mixing_.T.shape", n_img, l_img)
+        ica_comps = [transformer.mixing_[:, i] for i in range(N_COMP_ICA)]
+        #print("ica_comps", ica_comps)
+
+
+        # Get pixel wise N components by 
+        ica_comps_pix = [transformer.mixing_[i, :] for i in range(l_img)]
+        #print("ica_comps_pix", ica_comps_pix)
+
+        self.transformer = transformer
+        self.ica_comps = ica_comps
+        self.ica_comps_pix = ica_comps_pix
+
+        return self.transformer, self.ica_comps, self.ica_comps_pix, X_transformed
+
+
+class FindNumberOfComponents(object):
+
+    def __init__(self):
+        self.comps = None
+        self.PSDs = None
+        self.PSDs_means = None
+        self.user_n_components = None
+        self.X_centered, self.y_centered = None, None
+
+        self.n_good_comps = None
+        self.good_comps = None
+        
+    
+    def find_components(self):
+        # Find components
+        number_of_components = self.user_n_components
+        fit_method = "BayesianRidge"
+
+        FC = FindComponents()
+        transformer, comps, comps_pix, X_transformed = FC.get_transformer_ica(train_data=self.X_centered, val_data=self.y_centered, N_COMP_ICA=self.user_n_components) # finds components
+        self.comps = comps
+    
+    def find_PSDs(self):
+        #self.find_components()
+        self.PSDs = [signal.welch(ac)[1] for ac in self.comps]
+        return self.PSDs
+
+    def find_peaks_PSD(self):
+        self.PSDs_means = np.mean(self.PSDs, axis=1)
+        peaks, _ = find_peaks(self.PSDs_means, threshold=self.PSDs_means.min()*3)
+        self.n_good_comps = len(peaks)
+        self.good_comps =  peaks
+        print("DONE !!!!!!!!!!!!!!!!!!")
+        return self.n_good_comps, self.good_comps
+
+    def n_good_components(self,
+                         X_centered,
+                         y_centered, 
+                         number_of_components=20):
+        
+        self.user_n_components = number_of_components
+        self.X_centered, self.y_centered = X_centered, y_centered
+        
+        self.find_components()
+        self.find_PSDs()
+        self.find_peaks_PSD()
+
+        #plt.plot(self.PSDs_means)
+        #plt.plot(self.good_comps, self.PSDs_means[self.good_comps], "*")
+        #plt.plot(np.zeros_like(self.PSDs_means), "--", color="gray")
+        #plt.show()
+        #print(f"n_good_components = {self.n_good_comps}")
+        #print(f"Good components = {self.good_comps}")
+        
+
+        return self.n_good_comps, self.good_comps
+        
+
+class FindPCAcomps(object):
+    """_summary_
+
+    Args:
+        object (_type_): _description_
+    """
+
+    def __init__(self, data_train, data_test, n_pca_comps=50):
+        self.pca_model = None
+        self.data_train = data_train
+        self.data_test = data_test
+        self.n_pca_comps = n_pca_comps
+
+    def clear_output(self):
+        self.pca_model = None
+        self.pca_train = None
+        self.pca_test = None
+
+    
+    def get_pca(self):
+        self.clear_output()
+        self.pca_model = PCA(n_components=self.n_pca_comps, whiten=True)
+        self.pca_train = self.pca_model.fit_transform(self.data_train)
+        self.pca_test = self.pca_model.transform(self.data_test)
+
+        return self.pca_model, self.pca_train, self.pca_test
\ No newline at end of file
diff --git a/src/models/find_components/__init__.py b/src/models/find_components/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/models/fit_methods/Fit_Methods.py b/src/models/fit_methods/Fit_Methods.py
new file mode 100644
index 0000000000000000000000000000000000000000..e7baf726266148f62bc6cbcb75bed48760cd742e
--- /dev/null
+++ b/src/models/fit_methods/Fit_Methods.py
@@ -0,0 +1,302 @@
+from sklearn import linear_model
+import torch
+import scipy 
+import h5py
+import numpy as np
+from autograd import numpy as anp   # Thinly-wrapped version of Numpy
+from autograd import grad
+
+
+        
+
+class FitBFGSPCA_EPS(object):
+
+    def __init__(self):
+
+        self.X_train = None
+        self.Y_train = None
+
+        self.X_test = None
+        self.Y_test = None
+
+        self.Y_train_norm = None
+        self.Y_test_norm = None
+
+        self.spec_test = None
+
+        self.Nx = None
+        self.Ny = None
+        self.A0 = None
+        self.Aeps = None
+
+        self.b0 = None
+        self.u0 = None
+        self.x0 = None
+
+        self.sc_op = None
+        self.A_inf = None
+        self.b_inf = None
+        self.u_inf = None
+
+        self.model = {"A_inf":self.A_inf,
+                      "b_inf":self.b_inf,
+                      "u_inf":self.u_inf
+                    
+                      }
+        
+        self.pca_model_spec = None
+
+        self.res = None
+        self.res_unc = None
+        self.res_pca_unc = None
+        self.res_unc_specpca = None
+
+        self.result = {"res":self.res,
+                "res_unc":self.res_unc,
+                "res_pca_unc": self.res_pca_unc,
+                "res_unc_specpca": self.res_unc_specpca
+                }
+
+        self.input_data = None
+        self.loss_train = None
+        self.loss_test = None
+
+
+    def loss_mae(self, x):
+        # diag( (in @ x - out) @ (in @ x - out)^T )
+        A = x[:self.Nx*self.Ny].reshape((self.Nx, self.Ny))
+        b = x[self.Nx*self.Ny:(self.Nx*self.Ny+self.Ny)].reshape((1, self.Ny))
+        log_unc = anp.clip(x[(self.Nx*self.Ny+self.Ny):].reshape((1, self.Ny)), -3, 8)
+        #log_unc = x[(Nx*Ny+Ny):].reshape((1, Ny))
+        iunc = anp.exp(-log_unc)
+        #print("iunc2", iunc2)
+        #print("log_unc", log_unc)
+
+        return anp.mean((anp.fabs(self.X_train @ A + b - self.Y_train)*iunc + log_unc).sum(axis=1), axis=0 ) # Put RELU on (XX@x) and introduce new matrix W
+
+    def loss_regul(self, x):
+        # diag( (in @ x - out) @ (in @ x - out)^T )
+        A = x[:self.Nx*self.Ny].reshape((self.Nx, self.Ny))
+        b = x[self.Nx*self.Ny:(self.Nx*self.Ny+self.Ny)].reshape((1, self.Ny))
+        #log_unc = anp.clip(x[(Nx*Ny+Ny):].reshape((1, Ny)), -3, 8)
+        log_unc = x[(self.Nx*self.Ny+self.Ny):].reshape((1, self.Ny))
+        iunc2 = anp.exp(-2*log_unc)
+        unc2 = anp.exp(2*log_unc)
+        #print("iunc2", iunc2)
+        #print("log_unc", log_unc)
+        width = 100.0
+        w = 0.5/width**2
+        #prior = w*((A**2).reshape((1, -1)).mean(axis=1))
+    
+
+        # New from Danilo->  p(unc|a, b) = ba/gamma(a) * unc(a-1) * np.exp(-b * unc)
+        a = 3
+        b = 6
+        #  prior ->   - log p(unc|a, b) = - (a-1)*anp.log(unc) + b*unc
+        prior = - (a-1) * log_unc + b * anp.exp(log_unc)
+
+
+        return anp.mean( (0.5*((self.X_train @ A + b - self.Y_train_norm)**2)*iunc2 + log_unc).sum(axis=1) + prior.sum(axis=1), axis=0 ) # Put RELU on (XX@x) and introduce new matrix W
+
+    def fill_init(self):
+
+
+        self.Nx = self.X_train.shape[1]
+        self.Ny = self.Y_train.shape[1]
+        self.A0 = np.eye(self.Nx, self.Ny).reshape(self.Nx*self.Ny)
+        self.Aeps = np.zeros(self.Nx)
+
+        self.b0 = np.zeros(self.Ny)
+        self.u0 = np.zeros(self.Ny)
+        self.x0 = np.concatenate((self.A0,self.b0,self.u0,self.Aeps))
+
+        
+
+
+    def fit_eval(self, X_train, Y_train, X_test, Y_test):
+
+        self.X_train = X_train
+        self.Y_train = Y_train
+
+        self.X_test = X_test
+        self.Y_test = Y_test
+
+        self.fill_init()
+
+
+        def loss(x, X, Y):
+            # diag( (in @ x - out) @ (in @ x - out)^T )
+            A = x[:self.Nx*self.Ny].reshape((self.Nx, self.Ny))
+            b = x[self.Nx*self.Ny:(self.Nx*self.Ny+self.Ny)].reshape((1, self.Ny))
+
+            b_eps = x[(self.Nx*self.Ny+self.Ny):(self.Nx*self.Ny+self.Ny+self.Ny)].reshape((1, self.Ny))
+            
+            A_eps = x[(self.Nx*self.Ny+self.Ny+self.Ny):].reshape((self.Nx, 1))
+            log_unc = X @ A_eps + b_eps
+
+            #log_unc = anp.log(anp.exp(log_unc) + anp.exp(log_eps))
+            iunc2 = anp.exp(-2*log_unc)
+          
+            #print("iunc2", iunc2)
+            #print("log_unc", log_unc)
+
+            return anp.mean( (0.5*((X@ A + b - Y)**2)*iunc2 + log_unc).sum(axis=1), axis=0 ) # Put RELU on (XX@x) and introduce new matrix W
+
+        self.loss_train = []
+        self.loss_test = []
+
+        def loss_hist(x):
+            l_train = loss(x, X_train, self.Y_train)
+            l_test = loss(x, X_test, self.Y_test)
+
+            self.loss_train.append(l_train)
+            self.loss_test.append(l_test)
+            return l_train
+
+        def loss_hist_2(x):
+            l_train = loss(x, self.X_train, self.Y_train)
+            return l_train
+
+        grad_loss = grad(loss_hist_2)
+        #self.grad_loss_regul = grad(loss_regul)
+        self.sc_op = scipy.optimize.fmin_l_bfgs_b(loss_hist, self.x0, grad_loss, disp=True, factr=1e7, maxiter=100, iprint = 0)
+
+        # Inference
+        #print(sc_res.shape)
+        self.A_inf = self.sc_op[0][:self.Nx*self.Ny].reshape(self.Nx, self.Ny)
+        self.b_inf = self.sc_op[0][self.Nx*self.Ny:(self.Nx*self.Ny+self.Ny)].reshape(1, self.Ny)
+        self.u_inf = self.sc_op[0][(self.Nx*self.Ny+self.Ny):(self.Nx*self.Ny+self.Ny+self.Ny)].reshape(1, self.Ny) # removed np.exp
+        self.A_eps = self.sc_op[0][(self.Nx*self.Ny+self.Ny+self.Ny):].reshape(self.Nx, 1)
+
+        self.model = {"A_inf":self.A_inf,
+                      "b_inf":self.b_inf,
+                      "u_inf":self.u_inf,
+                      "A_eps":self.A_eps,
+                      "loss_train": self.loss_train,
+                      "loss_test": self.loss_test,
+                      }
+
+        return self.model
+
+    def save_preproc(self,
+                        pes_train, pes_test,
+                        spec_train, spec_test,
+                        X_train, X_test,
+                        Y_train, Y_test,
+                        spec_raw_pe,
+                        data_info,
+                        xgm_pulseen_train,
+                        xgm_pulseen_test
+                        ):
+
+        exp_dir = data_info["exp_dir"]
+
+        hf = h5py.File(f"experiments/{exp_dir}/output/data.h5", 'w')
+        hf.create_dataset('pes_train', data=pes_train)
+        hf.create_dataset('pes_test', data=pes_test)
+        hf.create_dataset('spec_train', data=spec_train)
+        hf.create_dataset('spec_test', data=spec_test)
+        hf.create_dataset('X_train', data=X_train)
+        hf.create_dataset('X_test', data=X_test)
+        hf.create_dataset('Y_train', data=Y_train)
+        hf.create_dataset('Y_test', data=Y_test)
+        hf.create_dataset('spec_raw_pe', data=spec_raw_pe[0,:])
+        hf.create_dataset('xgm_pulseen_train', data=xgm_pulseen_train)
+        hf.create_dataset('xgm_pulseen_test', data=xgm_pulseen_test)
+        
+        for key, val in data_info.items():
+            hf.attrs[key] = val
+
+    def save_latest_chp(self, exp_dir):
+            filemodel = f"experiments/{exp_dir}/checkpoints/chp.h5"
+            hf = h5py.File(filemodel, 'w')
+
+            for k, v in self.model.items():
+                print("saving:", k)
+                hf.create_dataset(k, data=v)
+            hf.close()
+            print(f"model saved in -> {filemodel}")
+
+    def load_model(self, exp_dir):
+
+        # Load Checkpoint Data
+        print("loading model", exp_dir)
+        filename = f"experiments/{exp_dir}/checkpoints/chp.h5"
+        file = h5py.File(filename, 'r')
+        A_inf = file["A_inf"][()]  # returns as a numpy array
+        b_inf = file["b_inf"][()]  # returns as a numpy array
+        u_inf = file["u_inf"][()]  # returns as a numpy array
+        A_eps = file["A_eps"][()]  # returns as a numpy array
+
+
+        import joblib
+        pes_pca_model=joblib.load(f"experiments/{exp_dir}/checkpoints/pes_pca_model.joblib")
+        spec_pca_model=joblib.load(f"experiments/{exp_dir}/checkpoints/spec_pca_model.joblib")
+
+        self.model = {"A_inf":A_inf,
+                "b_inf":b_inf,
+                "u_inf":u_inf,
+                "A_eps":A_eps,
+                "pes_pca_model":pes_pca_model,
+                "spec_pca_model":spec_pca_model
+
+                }
+        return self.model, pes_pca_model, spec_pca_model
+
+    def predict(self, input_data, input_target, spec_target):
+
+        if self.pca_model_spec is not None:
+            self.model["spec_pca_model"] = self.pca_model_spec # TODO! check for training
+
+        if input_target is None:
+            self.model["Y_test"] = self.Y_test
+        else:
+            self.model["Y_test"] = input_target
+
+        if spec_target is None:
+            self.model["spec_target"] = self.spec_test
+        else:
+            self.model["spec_target"] = spec_target
+
+
+
+
+
+        self.result["res_pca"] = (input_data @ self.model["A_inf"] + self.model["b_inf"])   # inference reconstruction in PCA space
+        self.result["res_pca_unc"] = self.model["u_inf"][0,:]             # unc in pca space
+        self.result["res_pca_eps"] = np.exp(input_data @ self.model["A_eps"] + self.result["res_pca_unc"])   # eps in pca space
+
+        self.result["res"] = self.model["spec_pca_model"].inverse_transform(self.result["res_pca"]) # transform PCA space to real space
+        
+        self.result["res_unc"] = self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] + self.model["u_inf"]) - self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] ) 
+        self.result["res_unc"] = np.fabs(self.result["res_unc"])
+
+        self.result["res_eps"] = self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] + self.result["res_pca_eps"]) - self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] ) 
+        self.result["res_eps"] = np.fabs(self.result["res_eps"])
+
+
+        self.Yhat_pca = self.model["spec_pca_model"].inverse_transform(self.model["Y_test"])
+        self.result["res_unc_specpca"] =  np.sqrt(((self.Yhat_pca - self.model["spec_target"])**2).mean(axis=0))
+
+        self.result["res_unc_total"] =  np.sqrt(self.result["res_eps"]**2 + self.result["res_unc_specpca"]**2)
+        return self.result
+
+
+    def save_prediction(self, exp_dir):
+    
+        fileprediction = f"experiments/{exp_dir}/output/pred_data.h5"
+        hf = h5py.File(fileprediction, 'w')
+        hf.create_dataset('res_pca', data=self.result["res_pca"])
+        hf.create_dataset('res_pca_unc', data=self.result["res_pca_unc"])
+        hf.create_dataset('res', data=self.result["res"])
+        hf.create_dataset('res_unc', data=self.result["res_unc"])
+        hf.create_dataset('res_unc_specpca', data=self.result["res_unc_specpca"])
+        hf.create_dataset('res_unc_total', data=self.result["res_unc_total"])
+        hf.create_dataset('res_pca_eps', data=self.result["res_pca_eps"])
+        hf.create_dataset('res_eps', data=self.result["res_eps"])
+
+        hf.close()
+
+        print(f"Prediction result saved in -> {fileprediction}")
+        
+
diff --git a/src/models/fit_methods/__init__.py b/src/models/fit_methods/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/models/fit_methods/model.py b/src/models/fit_methods/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..db101abb33db5950b6d36d73695422ffd1968d23
--- /dev/null
+++ b/src/models/fit_methods/model.py
@@ -0,0 +1,164 @@
+from sklearn.ensemble import RandomForestRegressor
+from sklearn.linear_model import LinearRegression
+from sklearn.model_selection import train_test_split
+import numpy as np
+
+import pandas as pd
+
+from src.models.fit_methods.Fit_Methods import FitBFGSPCA_EPS
+from src.data.data_preproc import SpecPreprocessing
+from src.models.find_components.Find_Component import FindPCAcomps
+
+from src.utils.utils import save_chp_bfgs
+
+
+class Model:
+    def __init__(self, model_type = None, data_info = None):
+
+
+        self.model_type = model_type
+        self.data_info = data_info
+
+        self.data_dict = None
+
+        self.pes_train = None 
+        self.pes_test = None
+        self.spec_train = None
+        self.spec_test = None
+
+        self.xgm_pulseen = None
+        self.xgm_pulseen_train = None
+        self.xgm_pulseen_test = None
+
+        self.X_train = None
+        self.X_test = None
+        self.y_train = None
+        self.y_test = None
+
+        self.pes_pca_model = None
+        self.spec_pca_model = None
+
+
+        if self.model_type == 'bfgs':
+                self.user_defined_model = FitBFGS()
+                #self.user_defined_preproc = SpecPreprocessing()
+        elif self.model_type == 'bfgs_pca':
+                self.user_defined_model = FitBFGSPCA()
+        elif self.model_type == 'bfgs_pca_eps':
+                self.user_defined_model = FitBFGSPCA_EPS()
+                
+            
+            
+    def split(self, test_size):
+        X = np.array(self.df[['Humidity', 'Pressure (millibars)']])
+        y = np.array(self.df['Temperature (C)'])
+        self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(X, y, test_size = test_size, random_state = 42)
+    
+    def preprocess(self, data_dict, data_info):
+        self.data_dict = data_dict
+        self.data_info = data_info
+
+        self.xgm_pulseen = data_dict["xgm_pulseen"]
+
+        self.spec_data = self.data_dict["spec_raw_int"].copy()   # Spec Data Intensity
+        self.spec_data_pe = self.data_dict["spec_raw_pe"].copy()        # Spec Data Photon energy       
+        self.pes_data = self.data_dict["pes_data"].copy()               # Pes Data Intensity
+
+
+        # Data Preprocessing
+        SP = SpecPreprocessing(self.spec_data, self.spec_data_pe)
+        self.spec_data_gc, _ = SP.gaussian_convolve()
+        self.spec_data = self.spec_data_gc #SP.make_fft()
+
+        # Split Data into TEST TRAIN
+        if self.data_info["use_data_subset"]:
+            self.pes_train, self.pes_test, self.spec_train, self.spec_test, self.xgm_pulseen_train, self.xgm_pulseen_test = train_test_split(self.pes_data[self.data_info["data_subset_start"]:self.data_info["data_subset_end"]], 
+                                                                            self.spec_data[self.data_info["data_subset_start"]:self.data_info["data_subset_end"]],
+                                                                            self.xgm_pulseen[self.data_info["data_subset_start"]:self.data_info["data_subset_end"]],
+                                                                            test_size=self.data_info["test_size"],
+                                                                            random_state=42
+                                                                            )
+        else:
+            self.pes_train, self.pes_test, self.spec_train, self.spec_test, self.xgm_pulseen_train, self.xgm_pulseen_test = train_test_split(self.pes_data, 
+                                                                            self.spec_data,
+                                                                            self.xgm_pulseen,
+                                                                            test_size=self.data_info["test_size"],
+                                                                            random_state=42
+                                                                            )
+
+
+        if self.data_info["pes_pca_preprocessing"]:    
+            pes_PCA = FindPCAcomps(data_train=self.pes_train, data_test=self.pes_test, n_pca_comps=self.data_info["n_pca_comps_pes"])
+            self.pes_pca_model, self.X_train, self.X_test = pes_PCA.get_pca()
+        else:
+            self.X_train, self.X_test = self.pes_train, self.pes_test
+
+        if self.data_info["spec_pca_preprocessing"]:
+            spec_PCA = FindPCAcomps(data_train=self.spec_train, data_test=self.spec_test, n_pca_comps=self.data_info["n_pca_comps_spec"])
+            self.spec_pca_model, self.Y_train, self.Y_test = spec_PCA.get_pca()
+            self.user_defined_model.pca_model_spec = self.spec_pca_model
+            self.user_defined_model.spec_test = self.spec_test
+            
+        else:
+            self.Y_train, self.Y_test = self.spec_train, self.spec_test
+
+        print("print Y shape train and test in preprocessing last step :::: ",self.Y_train.shape, self.Y_test.shape)
+        #save_train_test_h5(pes_train, pes_test, X_train, X_test, Y_train, Y_test, spec_data_pe, self.data_info, data_info["exp_dir"])
+        return self.X_train, self.X_test, self.Y_train, self.Y_test
+
+    def save_preproc(self):
+        if self.model_type == 'bfgs':
+
+            self.user_defined_model.save_preproc(self.pes_train, self.pes_test, 
+                                                self.spec_train, self.spec_test,
+                                                self.X_train, self.X_test, 
+                                                self.Y_train, self.Y_test, 
+                                                self.spec_data_pe, 
+                                                self.data_info,
+                                                )
+
+            import joblib
+            joblib.dump(self.pes_pca_model, f"experiments/{self.data_info['exp_dir']}/checkpoints/pes_pca_model.joblib")
+            joblib.dump(self.spec_pca_model,  f"experiments/{self.data_info['exp_dir']}/checkpoints/spec_pca_model.joblib")
+        elif self.model_type == 'bfgs_pca' or self.model_type == 'bfgs_pca_eps':
+                        self.user_defined_model.save_preproc(self.pes_train, self.pes_test, 
+                                                self.spec_train, self.spec_test,
+                                                self.X_train, self.X_test, 
+                                                self.Y_train, self.Y_test, 
+                                                self.spec_data_pe, 
+                                                self.data_info,
+                                                self.xgm_pulseen_train, self.xgm_pulseen_test
+                                                )
+
+                        import joblib
+                        joblib.dump(self.pes_pca_model, f"experiments/{self.data_info['exp_dir']}/checkpoints/pes_pca_model.joblib")
+                        joblib.dump(self.spec_pca_model,  f"experiments/{self.data_info['exp_dir']}/checkpoints/spec_pca_model.joblib")
+
+
+    def fit_eval(self, X_train, y_train, X_test, Y_test):
+        #A_inf, b_inf, u_inf, Y_norm = fig_bgfs.train_bgfs()
+        self.model = self.user_defined_model.fit_eval(X_train, y_train, X_test, Y_test)  # Change the name of self.model to something else ?
+
+
+    def save_latest_ckp(self):
+        self.user_defined_model.save_latest_chp(self.data_info["exp_dir"])
+
+    def load_model(self):
+        self.model, self.pes_pca_model, self.spec_pca_model = self.user_defined_model.load_model(self.data_info["exp_dir"])
+        return self.model, self.pes_pca_model, self.spec_pca_model
+    
+    def predict(self, input_value, target_value=None, spec_target=None):
+        result = self.user_defined_model.predict(input_value, target_value, spec_target)
+        return result
+
+    def save_prediction(self):
+        self.user_defined_model.save_prediction(self.data_info["exp_dir"])
+
+if __name__ == '__main__':
+    print("Creating Model Instance")
+    #model_instance = Model(model_type=None)
+    #model_instance.preprocess()
+    #model_instance.split(0.2)
+    #model_instance.fit()    
+    #print(model_instance.predict([.9, 1000]))
+    #print("Accuracy: ", model_instance.model.score(model_instance.X_test, model_instance.y_test))
\ No newline at end of file
diff --git a/src/utils/__init__.py b/src/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/src/utils/utils.py b/src/utils/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..0db96e6ddc397c7bfaf771da3aa97a6f3d4c20cf
--- /dev/null
+++ b/src/utils/utils.py
@@ -0,0 +1,238 @@
+import numpy as np
+import scipy
+import matplotlib.pyplot as plt
+from skimage import filters as skfilters
+import plotly
+import plotly.graph_objs as go
+
+import os
+
+
+
+# plot lines    
+def plot_gallery_line(title, data, n_col, n_row):
+    plt.figure(figsize=(2.0 * n_col, 2.26 * n_row))
+    plt.suptitle(title, size=16)
+    for i, comp in enumerate(data):
+        plt.subplot(n_row, n_col, i + 1)
+        vmax = max(comp.max(), -comp.min())
+        plt.plot(
+            comp
+        )
+        
+        if i + 1 not in [k*n_col+1 for k in range(n_row)]:
+            plt.xticks(())
+            plt.yticks(())
+            
+    plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.0)
+    
+
+
+def plot_unc_band(lp_hr, lp_rec, lp_rec_unc, fit_method):
+
+    x_pltly = np.arange(len(lp_hr))
+
+
+    fig = go.Figure([
+        go.Scatter(
+            name='HR (gt)',
+            x=x_pltly,
+            y=lp_hr,
+            mode='lines',
+            line=dict(color='rgb(0, 150, 255)'),
+        ),
+        go.Scatter(
+            name=f"{fit_method}",
+            x=x_pltly,
+            y=lp_rec,
+            mode='lines',
+            line=dict(color='rgb(255,99,71)'),
+        ),
+        go.Scatter(
+            name='Upper Bound',
+            x=x_pltly,
+            y=lp_rec + 2*lp_rec_unc,
+            mode='lines',
+            marker=dict(color="#DC143C"),
+            line=dict(width=0),
+            showlegend=False
+        ),
+        go.Scatter(
+            name='Lower Bound',
+            x=x_pltly,
+            y=lp_rec - 2*lp_rec_unc,
+            marker=dict(color="#DC143C"),
+            line=dict(width=0),
+            mode='lines',
+            fillcolor='rgba(255,99,71, 0.3)',
+            fill='tonexty',
+            showlegend=False
+        )
+    ])
+    fig.update_layout(
+        yaxis_title='log intensity (a.u.)',
+        xaxis_title='pixel/coord number (a.u.)',
+        title=f"{fit_method} reconstruction with 95% confidence on uncertainities",
+        hovermode="x"
+    )
+    fig.show()
+    
+
+
+def create_experiment_dirs(exp_dir):
+    """
+    Create Directories of a regular tensorflow experiment directory
+    :param exp_dir:
+    :return summary_dir, checkpoint_dir:
+    """
+    experiment_dir = "experiments/" + exp_dir + "/"
+    summary_dir = experiment_dir + 'summaries/'
+    checkpoint_dir = experiment_dir + 'checkpoints/'
+    output_dir = experiment_dir + 'output/'
+    test_dir = experiment_dir + 'test/'
+    dirs = [summary_dir, checkpoint_dir, output_dir, test_dir]
+    try:
+        for dir_ in dirs:
+            if not os.path.exists(dir_):
+                os.makedirs(dir_)
+        print("Experiment directories created")
+        return experiment_dir, summary_dir, checkpoint_dir, output_dir, test_dir
+    except Exception as err:
+        print("Creating directories error: {0}".format(err))
+        exit(-1) 
+
+
+def save_train_test_h5(pes_train, pes_test, X_train, X_test, Y_train, Y_test, spec_raw_pe, data_info, exp_dir):
+    import h5py
+
+    hf = h5py.File(f"experiments/{exp_dir}/output/data.h5", 'w')
+    hf.create_dataset('pes_train', data=pes_train)
+    hf.create_dataset('pes_test', data=pes_test)
+    hf.create_dataset('X_train', data=X_train)
+    hf.create_dataset('X_test', data=X_test)
+    hf.create_dataset('Y_train', data=Y_train)
+    hf.create_dataset('Y_test', data=Y_test)
+    hf.create_dataset('spec_raw_pe', data=spec_raw_pe[0,:])
+    for key, val in data_info.items():
+        hf.attrs[key] = val
+
+ 
+    hf.close()
+
+def save_rec_data_h5(sc_res, sc_res_unc, exp_dir):
+    import h5py
+    hf = h5py.File(f"experiments/{exp_dir}/output/rec_data.h5", 'w')
+    hf.create_dataset('sc_res', data=sc_res)
+    hf.create_dataset('sc_res_unc', data=sc_res_unc)
+    hf.close()
+
+
+def save_checkpoint(A_inf, b_inf, u_inf, Y_norm, exp_dir):
+
+    import h5py
+    hf = h5py.File(f"experiments/{exp_dir}/checkpoints/chp.h5", 'w')
+    hf.create_dataset('A_inf', data=A_inf)
+    hf.create_dataset('b_inf', data=b_inf)
+    hf.create_dataset('u_inf', data=u_inf)
+    hf.create_dataset('Y_norm', data=Y_norm)
+    hf.close()
+
+def save_chp_bfgs(model, exp_dir):
+    import h5py
+    hf = h5py.File(f"experiments/{exp_dir}/checkpoints/chp.h5", 'w')
+
+    for k, v in model.items():
+        hf.create_dataset(k, data=v)
+    hf.close()
+
+
+
+def save_checkpoint_fft(A_inf_1, b_inf_1,
+                        A_inf_2, b_inf_2, 
+                        u_inf_1, u_inf_2,
+                        Y_norm, exp_dir):
+
+    import h5py
+    hf = h5py.File(f"experiments/{exp_dir}/checkpoints/chp.h5", 'w')
+    hf.create_dataset('A_inf_1', data=A_inf_1)
+    hf.create_dataset('b_inf_1', data=b_inf_1)
+    hf.create_dataset('A_inf_2', data=A_inf_2)
+    hf.create_dataset('b_inf_2', data=b_inf_2)
+    hf.create_dataset('u_inf_1', data=u_inf_1)
+    hf.create_dataset('u_inf_2', data=u_inf_2)
+    hf.create_dataset('Y_norm', data=Y_norm)
+    hf.close()
+
+
+
+def load_train_test_h5(exp_dir):
+    import h5py
+    # Load Data
+    filename = f"experiments/{exp_dir}/output/data.h5"
+    file = h5py.File(filename, 'r')
+    pes_train = file["pes_train"][()]  # returns as a numpy array
+    pes_test = file["pes_test"][()]  # returns as a numpy array
+    spec_train = file["spec_train"][()]  # returns as a numpy array
+    spec_test = file["spec_test"][()]  # returns as a numpy array
+    X_train = file["X_train"][()]  # returns as a numpy array
+    X_test = file["X_test"][()]  # returns as a numpy array
+    Y_train = file["Y_train"][()]  # returns as a numpy array
+    Y_test = file["Y_test"][()]  # returns as a numpy array
+    spec_raw_pe = file["spec_raw_pe"][()]  # returns as a numpy 
+    xgm_pulseen_train = file["xgm_pulseen_train"][()]  
+    xgm_pulseen_test = file["xgm_pulseen_test"][()]  
+
+    att_names = file.attrs.keys()
+    att_dict = {}
+    for att_name in att_names:
+        att_dict[att_name] = file.attrs[att_name]
+
+    return Y_train, Y_test, spec_train, spec_test, spec_raw_pe, X_train, X_test, pes_train, pes_test,  att_dict, xgm_pulseen_train, xgm_pulseen_test
+
+
+def load_rec_data_h5(exp_dir):
+    import h5py
+    filename = f"experiments/{exp_dir}/output/pred_data.h5"
+    file = h5py.File(filename, 'r')
+    sc_res = file["res"][()]  # returns as a numpy array
+    sc_res_unc = file["res_unc"][()]  # returns as a numpy array
+
+    return sc_res, sc_res_unc
+
+def load_rec_data_h5_bfgs_pca(exp_dir):
+    import h5py
+    filename = f"experiments/{exp_dir}/output/pred_data.h5"
+    file = h5py.File(filename, 'r')
+    sc_res = file["res"][()]  # returns as a numpy array
+    sc_res_unc = file["res_unc"][()]  # returns as a numpy array
+    sc_res_unc_specpca = file["res_unc_specpca"][()]  # returns as a numpy array
+    sc_res_unc_total = file["res_unc_total"][()]  # returns as a numpy array
+   
+
+    return sc_res, sc_res_unc, sc_res_unc_specpca, sc_res_unc_total
+
+def load_rec_data_h5_bfgs_pca_eps(exp_dir):
+    import h5py
+    filename = f"experiments/{exp_dir}/output/pred_data.h5"
+    file = h5py.File(filename, 'r')
+    sc_res = file["res"][()]  # returns as a numpy array
+    sc_res_unc = file["res_unc"][()]  # returns as a numpy array
+    sc_res_unc_specpca = file["res_unc_specpca"][()]  # returns as a numpy array
+    sc_res_unc_total = file["res_unc_total"][()]  # returns as a numpy array
+    sc_res_eps = file["res_eps"][()]  # returns as a numpy array
+
+    return sc_res, sc_res_unc, sc_res_unc_specpca, sc_res_unc_total, sc_res_eps
+
+def load_checkpoint(exp_dir):
+    import h5py
+    # Load Checkpoint Data
+    filename = f"experiments/{exp_dir}/checkpoints/chp.h5"
+    file = h5py.File(filename, 'r')
+    A_inf = file["A_inf"][()]  # returns as a numpy array
+    b_inf = file["b_inf"][()]  # returns as a numpy array
+    u_inf = file["u_inf"][()]  # returns as a numpy array
+    Y_norm = file["Y_norm"][()]  # returns as a numpy array
+
+    return A_inf, b_inf, u_inf, Y_norm
+
+