diff --git a/pes_to_spec/test/offline_analysis.py b/pes_to_spec/test/offline_analysis.py index 90ce3ce5eacc6733fa7343d9db891fc2513975ff..cdf54cba11fb59b2cbe71d9da32dfce86a3d467a 100755 --- a/pes_to_spec/test/offline_analysis.py +++ b/pes_to_spec/test/offline_analysis.py @@ -400,7 +400,7 @@ def main(): df = pd.DataFrame(dict(auto_corr_hr=model.auto_corr_hr, auto_corr_virt=model.auto_corr_virt, - energy=model.wiener_energy + energy=model.wiener_energy, fwhm_hr=model.fwhm_hr*np.ones_like(model.auto_corr_hr), fwhm_virt=model.fwhm_virt*np.ones_like(model.auto_corr_virt), ) diff --git a/pes_to_spec/test/prepare_plots.py b/pes_to_spec/test/prepare_plots.py index f103df5a1405045f8311682c203e48b4859bc63e..a0b4222316050bce3b3b9b48f0ca9fab9baaee58 100755 --- a/pes_to_spec/test/prepare_plots.py +++ b/pes_to_spec/test/prepare_plots.py @@ -56,15 +56,16 @@ def plot_autocov(df: pd.DataFrame, filename: str): ax = fig.add_subplot(gs[0, 0]) fwhm_hr = df.fwhm_hr[0] fwhm_virt = df.fwhm_virt[0] - ax.plot(df.energy, df.auto_corr_hr, c='b', lw=3, label="FEL + Grating spec. (FWHM={fwhm_hr:.2} eV)") - ax.plot(df.energy, df.auto_corr_virt, c='r', lw=3, label="FEL + Virtual spec. (FWHM={fwhm_cirt:.2} eV)") + ax.plot(df.energy, df.auto_corr_hr, c='b', lw=3, label=f"FEL + Grating spec. (FWHM={fwhm_hr:.2} eV)") + ax.plot(df.energy, df.auto_corr_virt, c='r', lw=3, label=f"FEL + Virtual spec. (FWHM={fwhm_virt:.2} eV)") ax.legend(frameon=False, borderaxespad=0, loc='upper left') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.set( xlabel="Photon energy [eV]", ylabel="Auto-covariance [a.u.]", - ylim=(0, 1.0)) + xlim=(-3.0, 3.0), + ylim=(None, 1.3)) plt.tight_layout() fig.savefig(filename) plt.close(fig)