diff --git a/pes_to_spec/model.py b/pes_to_spec/model.py index 5200c68185667faf3fb253515780c82c7829428f..be407b533520bfb55b93f626a2749fb7f1ff5e30 100644 --- a/pes_to_spec/model.py +++ b/pes_to_spec/model.py @@ -508,13 +508,13 @@ class Model(TransformerMixin, BaseEstimator): tof_start: Optional[int]=None, delta_tof: Optional[int]=300, validation_size: float=0.05, - n_nonlinear_kernel: int=5000): + n_nonlinear_kernel: int=10000): # models x_model_steps = list() x_model_steps += [('select', SelectRelevantLowResolution(channels, tof_start, delta_tof))] if n_nonlinear_kernel > 0: x_model_steps += [('fex', Pipeline([('prepca', PCA(n_pca_lr, whiten=True)), - ('nystroem', Nystroem(n_components=n_nonlinear_kernel, kernel='rbf', gamma=None, n_jobs=-1)), + ('nystroem', Nystroem(n_components=n_nonlinear_kernel, kernel='rbf', gamma=None, n_jobs=8)), ]))] x_model_steps += [ ('pca', PCA(n_pca_lr, whiten=True)), @@ -527,7 +527,7 @@ class Model(TransformerMixin, BaseEstimator): ('unc', UncertaintyHolder()), ]) #self.fit_model = FitModel() - self.fit_model = MultiOutputWithStd(ARDRegression(n_iter=30, verbose=True)) + self.fit_model = MultiOutputWithStd(ARDRegression(n_iter=30, tol=1e-4, verbose=True)) # size of the test subset self.validation_size = validation_size diff --git a/pes_to_spec/test/offline_analysis.py b/pes_to_spec/test/offline_analysis.py index 66cc7782a815e9f49a13465bd024ae8cadf2c896..37bdd6ce2ad4831615c239843409843f076ff9d0 100755 --- a/pes_to_spec/test/offline_analysis.py +++ b/pes_to_spec/test/offline_analysis.py @@ -1,6 +1,7 @@ #!/usr/bin/env python import sys +sys.path.append('.') sys.path.append('..') import numpy as np