From b5931e52566ea25ec8f424371dd12b581f6add5c Mon Sep 17 00:00:00 2001
From: Danilo Ferreira de Lima <danilo.enoque.ferreira.de.lima@xfel.de>
Date: Mon, 6 Mar 2023 16:01:56 +0100
Subject: [PATCH] Clean up

---
 pes_to_spec/__init__.py |  2 +-
 pes_to_spec/model.py    | 20 ++------------------
 2 files changed, 3 insertions(+), 19 deletions(-)

diff --git a/pes_to_spec/__init__.py b/pes_to_spec/__init__.py
index 5f570b9..1f1123e 100644
--- a/pes_to_spec/__init__.py
+++ b/pes_to_spec/__init__.py
@@ -2,4 +2,4 @@
 Estimate high-resolution photon spectrometer data from low-resolution non-invasive measurements.
 """
 
-VERSION = "0.2.2"
+VERSION = "0.2.3"
diff --git a/pes_to_spec/model.py b/pes_to_spec/model.py
index d04881b..695dc68 100644
--- a/pes_to_spec/model.py
+++ b/pes_to_spec/model.py
@@ -645,18 +645,6 @@ class MultiOutputWithStd(MetaEstimatorMixin, BaseEstimator):
         y_std = np.sqrt(sigmas_squared_data + self.fast_inv_alpha)
         return y, y_std
 
-        #n_jobs = self.n_jobs
-        #y = Parallel(n_jobs=n_jobs, prefer="threads")(
-        #    delayed(e.predict)(X, return_std) for e in self.estimators_
-        #    #delayed(e.predict)(X) for e in self.estimators_
-        #)
-        #if return_std:
-        #    y, unc = zip(*y)
-        #    return np.asarray(y).T, np.asarray(unc).T
-
-        #return np.asarray(y).T
-
-
 class UncorrelatedDeviation(OutlierMixin, BaseEstimator):
     """
     Detect outliers from uncorrelated inputs.
@@ -1055,12 +1043,8 @@ class Model(TransformerMixin, BaseEstimator):
         def is_inlier(in_data, ch: str) -> np.ndarray:
             data_pca = self.channel_pca[ch].transform(in_data)
             return self.ood[ch].predict(data_pca)
-
-        #result = Parallel(n_jobs=-1)(
-        #    delayed(is_inlier)(low_res_selected[ch], ch) for ch in channels
-        #)
-        #result = dict(result)
-        return {ch: is_inlier(low_res_selected[ch], ch) for ch in channels}
+        result = {ch: is_inlier(low_res_selected[ch], ch) for ch in channels}
+        return result
 
     def check_compatibility(self, low_res_data: Dict[str, np.ndarray]) -> np.ndarray:
         """
-- 
GitLab