From b5931e52566ea25ec8f424371dd12b581f6add5c Mon Sep 17 00:00:00 2001 From: Danilo Ferreira de Lima <danilo.enoque.ferreira.de.lima@xfel.de> Date: Mon, 6 Mar 2023 16:01:56 +0100 Subject: [PATCH] Clean up --- pes_to_spec/__init__.py | 2 +- pes_to_spec/model.py | 20 ++------------------ 2 files changed, 3 insertions(+), 19 deletions(-) diff --git a/pes_to_spec/__init__.py b/pes_to_spec/__init__.py index 5f570b9..1f1123e 100644 --- a/pes_to_spec/__init__.py +++ b/pes_to_spec/__init__.py @@ -2,4 +2,4 @@ Estimate high-resolution photon spectrometer data from low-resolution non-invasive measurements. """ -VERSION = "0.2.2" +VERSION = "0.2.3" diff --git a/pes_to_spec/model.py b/pes_to_spec/model.py index d04881b..695dc68 100644 --- a/pes_to_spec/model.py +++ b/pes_to_spec/model.py @@ -645,18 +645,6 @@ class MultiOutputWithStd(MetaEstimatorMixin, BaseEstimator): y_std = np.sqrt(sigmas_squared_data + self.fast_inv_alpha) return y, y_std - #n_jobs = self.n_jobs - #y = Parallel(n_jobs=n_jobs, prefer="threads")( - # delayed(e.predict)(X, return_std) for e in self.estimators_ - # #delayed(e.predict)(X) for e in self.estimators_ - #) - #if return_std: - # y, unc = zip(*y) - # return np.asarray(y).T, np.asarray(unc).T - - #return np.asarray(y).T - - class UncorrelatedDeviation(OutlierMixin, BaseEstimator): """ Detect outliers from uncorrelated inputs. @@ -1055,12 +1043,8 @@ class Model(TransformerMixin, BaseEstimator): def is_inlier(in_data, ch: str) -> np.ndarray: data_pca = self.channel_pca[ch].transform(in_data) return self.ood[ch].predict(data_pca) - - #result = Parallel(n_jobs=-1)( - # delayed(is_inlier)(low_res_selected[ch], ch) for ch in channels - #) - #result = dict(result) - return {ch: is_inlier(low_res_selected[ch], ch) for ch in channels} + result = {ch: is_inlier(low_res_selected[ch], ch) for ch in channels} + return result def check_compatibility(self, low_res_data: Dict[str, np.ndarray]) -> np.ndarray: """ -- GitLab