diff --git a/pes_to_spec/model.py b/pes_to_spec/model.py index e356146092fee3c0b3b4d56d7f071cf701ceb2ff..ee97b7e64ab2c9b13d462da543c6e228e7b3c936 100644 --- a/pes_to_spec/model.py +++ b/pes_to_spec/model.py @@ -8,11 +8,12 @@ from autograd import grad from scipy.signal import fftconvolve from scipy.signal import find_peaks_cwt from scipy.optimize import fmin_l_bfgs_b -from sklearn.decomposition import KernelPCA, PCA +from sklearn.decomposition import PCA from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.base import TransformerMixin, BaseEstimator from sklearn.base import RegressorMixin from sklearn.kernel_approximation import Nystroem +from sklearn.linear_model import Ridge from itertools import product from sklearn.model_selection import train_test_split @@ -264,8 +265,13 @@ class SelectRelevantLowResolution(TransformerMixin, BaseEstimator): class FitModel(RegressorMixin, BaseEstimator): """ Linear regression model with uncertainties. + + Args: + l: Regularization coefficient. """ - def __init__(self): + def __init__(self, l: float=1e-6): + self.l = l + # model parameter sizes self.Nx: int = 0 self.Ny: int = 0 @@ -305,10 +311,11 @@ class FitModel(RegressorMixin, BaseEstimator): # initial parameter values A0: np.ndarray = np.eye(self.Nx, self.Ny).reshape(self.Nx*self.Ny) - Aeps: np.ndarray = np.zeros(self.Nx) + #Aeps: np.ndarray = np.zeros(self.Nx) b0: np.ndarray = np.zeros(self.Ny) - u0: np.ndarray = np.zeros(self.Ny) - x0: np.ndarray = np.concatenate((A0, b0, u0, Aeps), axis=0) + u0: np.ndarray = -2*np.ones(self.Ny) + #x0: np.ndarray = np.concatenate((A0, b0, u0, Aeps), axis=0) + x0: np.ndarray = np.concatenate((A0, b0, u0), axis=0) # reset loss monitoring self.loss_train: List[float] = list() @@ -330,13 +337,20 @@ class FitModel(RegressorMixin, BaseEstimator): b = x[self.Nx*self.Ny:(self.Nx*self.Ny+self.Ny)].reshape((1, self.Ny)) b_eps = x[(self.Nx*self.Ny+self.Ny):(self.Nx*self.Ny+self.Ny+self.Ny)].reshape((1, self.Ny)) - A_eps = x[(self.Nx*self.Ny+self.Ny+self.Ny):].reshape((self.Nx, 1)) - log_unc = X @ A_eps + b_eps + #A_eps = x[(self.Nx*self.Ny+self.Ny+self.Ny):].reshape((self.Nx, 1)) + #log_unc = anp.matmul(X, A_eps) + b_eps + log_unc = b_eps #log_unc = anp.log(anp.exp(log_unc) + anp.exp(log_eps)) iunc2 = anp.exp(-2*log_unc) - return anp.mean( (0.5*((X@ A + b - Y)**2)*iunc2 + log_unc).sum(axis=1), axis=0 ) # Put RELU on (XX@x) and introduce new matrix W + L = anp.mean( (0.5*((anp.matmul(X, A) + b - Y)**2)*iunc2 + log_unc).sum(axis=1), axis=0 ) + weights2 = (anp.sum(anp.square(A.ravel())) + #+ anp.sum(anp.square(b.ravel())) + #+ anp.sum(anp.square(A_eps.ravel())) + #+ anp.sum(anp.square(b_eps.ravel())) + ) + return L + self.l/2 * weights2 def loss_history(x: np.ndarray) -> float: """ @@ -372,14 +386,14 @@ class FitModel(RegressorMixin, BaseEstimator): grad_loss, disp=True, factr=1e7, - maxiter=1000, + maxiter=100, iprint=0) # Inference self.A_inf = sc_op[0][:self.Nx*self.Ny].reshape(self.Nx, self.Ny) self.b_inf = sc_op[0][self.Nx*self.Ny:(self.Nx*self.Ny+self.Ny)].reshape(1, self.Ny) self.u_inf = sc_op[0][(self.Nx*self.Ny+self.Ny):(self.Nx*self.Ny+self.Ny+self.Ny)].reshape(1, self.Ny) # removed np.exp - self.A_eps = sc_op[0][(self.Nx*self.Ny+self.Ny+self.Ny):].reshape(self.Nx, 1) + #self.A_eps = sc_op[0][(self.Nx*self.Ny+self.Ny+self.Ny):].reshape(self.Nx, 1) def as_dict(self) -> Dict[str, Any]: """ @@ -393,7 +407,7 @@ class FitModel(RegressorMixin, BaseEstimator): A_inf=self.A_inf, b_inf=self.b_inf, u_inf=self.u_inf, - A_eps=self.A_eps, + #A_eps=self.A_eps, loss_train=self.loss_train, loss_test=self.loss_test, Nx=self.Nx, @@ -409,7 +423,7 @@ class FitModel(RegressorMixin, BaseEstimator): self.A_inf = in_dict["A_inf"] self.b_inf = in_dict["b_inf"] self.u_inf = in_dict["u_inf"] - self.A_eps = in_dict["A_eps"] + #self.A_eps = in_dict["A_eps"] self.loss_train = in_dict["loss_train"] self.loss_test = in_dict["loss_test"] self.Nx = in_dict["Nx"] @@ -432,7 +446,8 @@ class FitModel(RegressorMixin, BaseEstimator): # flat uncertainty result["Y_unc"] = self.u_inf[0,:] # input-dependent uncertainty - result["Y_eps"] = np.exp(X @ self.A_eps + result["Y_unc"]) + #result["Y_eps"] = np.exp(X @ self.A_eps + result["Y_unc"]) + result["Y_eps"] = np.exp(result["Y_unc"]) return result @@ -460,12 +475,12 @@ class Model(TransformerMixin, BaseEstimator): channels:List[str]=[f"channel_{j}_{k}" for j, k in product(range(1, 5), ["A", "B", "C", "D"])], n_pca_lr: int=600, - n_pca_hr: int=20, + n_pca_hr: int=100, high_res_sigma: float=0.2, tof_start: Optional[int]=None, delta_tof: Optional[int]=300, validation_size: float=0.05, - n_nonlinear_kernel: int=2000): + n_nonlinear_kernel: int=10000): # models self.x_model = Pipeline([ ('select', SelectRelevantLowResolution(channels, tof_start, delta_tof)), @@ -479,7 +494,8 @@ class Model(TransformerMixin, BaseEstimator): ]) fit_steps = list() if n_nonlinear_kernel > 0: - fit_steps += [('fex', Nystroem(n_components=n_nonlinear_kernel, kernel='laplacian', gamma=1.0, n_jobs=-1))] + fit_steps += [('fex', Nystroem(n_components=n_nonlinear_kernel, kernel='rbf', gamma=0.5, n_jobs=-1))] + #fit_steps += [('regression', (Ridge(alpha=0.1)))] fit_steps += [('regression', FitModel())] self.fit_model = Pipeline(fit_steps)