diff --git a/pes_to_spec/bnn.py b/pes_to_spec/bnn.py
index eefa81288ee7d23ed21c5acf89efb2a52ec514a9..aaf850988631569f696274aea52fd1fca3625f28 100644
--- a/pes_to_spec/bnn.py
+++ b/pes_to_spec/bnn.py
@@ -82,8 +82,8 @@ class BNN(nn.Module):
         # and the only regularization is to prevent the weights from becoming > 18 + 3 sqrt(var) ~= 50, making this a very loose regularization.
         # An alternative would be to set the (alpha, beta) both to very low values, whichmakes the hyper prior become closer to the non-informative Jeffrey's prior.
         # Using this alternative (ie: (0.1, 0.1) for the weights' hyper prior) leads to very large lambda and numerical issues with the fit.
-        self.alpha_lambda = 3.0
-        self.beta_lambda = 6.0
+        self.alpha_lambda = 0.1
+        self.beta_lambda = 0.1
 
         # Hyperprior choice on the likelihood noise level:
         # The likelihood noise level is controlled by sigma in the likelihood and it should be allowed to be very broad, but different
@@ -92,8 +92,8 @@ class BNN(nn.Module):
         # Making both alpha and beta small makes the gamma distribution closer to the Jeffey's prior, which makes it non-informative
         # This seems to lead to a larger training time, though.
         # Since, after standardization, we know to expect the variance to be of order (1), we can select also alpha and beta leading to high variance in this range
-        self.alpha_sigma = 2.0
-        self.beta_sigma = 0.15
+        self.alpha_sigma = 0.1
+        self.beta_sigma = 0.1
 
         self.model = nn.Sequential(
                                    bnn.BayesLinear(prior_mu=0.0,
@@ -201,7 +201,7 @@ class BNNModel(RegressorMixin, BaseEstimator):
         self.model = BNN(X.shape[1], y.shape[1])
 
         # prepare data loader
-        B = 5
+        B = 100
         loader = DataLoader(ds,
                             batch_size=B,
                             num_workers=5,
@@ -223,7 +223,7 @@ class BNNModel(RegressorMixin, BaseEstimator):
 
         # train
         self.model.train()
-        epochs = 200
+        epochs = 1000
         for epoch in range(epochs):
             meter = {k: AverageMeter(k, ':6.3f')
                     for k in ('loss', '-log(lkl)', '-log(prior)', '-log(hyper)', 'sigma', 'w.prec.')}
diff --git a/pes_to_spec/test/offline_analysis.py b/pes_to_spec/test/offline_analysis.py
index 5ede9532259921dd4033e2f67dfc5492073a7ac7..2da28ebe6d2c4cca4206b69e5ad7d67266a2d4de 100755
--- a/pes_to_spec/test/offline_analysis.py
+++ b/pes_to_spec/test/offline_analysis.py
@@ -144,7 +144,7 @@ def main():
     parser.add_argument('-o', '--offset', type=int, metavar='INT', default=0, help='Train ID offset')
     parser.add_argument('-c', '--xgm_cut', type=float, metavar='INTENSITY', default=500, help='XGM intensity threshold in uJ.')
     parser.add_argument('-e', '--bnn', action="store_true", default=False, help='Use BNN?')
-    parser.add_argument('-w', '--weight', action="store_true", default=False, help='Whether to reweight data as a function of the pulse energy to make it invariant to that.')
+    parser.add_argument('-w', '--weight', action="store_true", default=True, help='Whether to reweight data as a function of the pulse energy to make it invariant to that.')
 
     args = parser.parse_args()