Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • SCS/ToolBox
  • kluyvert/ToolBox
2 results
Show changes
import unittest
import numpy as np
from numpy.testing import assert_array_equal
import xarray as xa
from .. import hRIXS
class TestHRIXS(unittest.TestCase):
def test_integration(self):
data = xa.Dataset()
img = np.arange(100 * 200 * 2)
img.shape = (2, 100, 200)
data['hRIXS_det'] = (('trainId', 'x', 'y'), img)
h = hRIXS()
h.CURVE_A = 0.1
h.CURVE_B = 0.01
h.Y_RANGE = slice(30, 170)
r = h.integrate(data)
self.assertIs(r, data)
self.assertEqual(data['spectrum'][1, 50].values[()],
28517.704705882363)
self.assertEqual(data['spectrum'][1, 50].coords['energy'], 90)
h.dark_image = xa.DataArray(np.ones((100, 200)), dims=('x', 'y'))
h.USE_DARK = True
h.integrate(data)
self.assertEqual(data['spectrum'][1, 50].values[()],
28516.704705882363)
def test_centroid(self):
data = xa.Dataset()
img = np.array([
[[0, 0, 0, 0, 0, 0, 0,],
[0, 0, 0, 0, 0, 0, 0,],
[0, 0, 1, 1, 0, 0, 0,],
[0, 0, 1, 1, 0, 0, 0,],
[0, 0, 0, 0, 0, 0, 0,],
[0, 0, 0, 0, 0, 0, 0,],
[0, 0, 0, 0, 0, 0, 0,],],
[[0, 0, 0, 0, 0, 0, 0,],
[0, 0, 0, 0, 0, 0, 0,],
[0, 0, 1, 1, 2, 0, 0,],
[0, 0, 1, 7, 2, 0, 0,],
[0, 0, 1, 1, 2, 0, 0,],
[0, 0, 0, 0, 0, 0, 0,],
[0, 0, 0, 0, 0, 0, 0,],],
])
data['hRIXS_det'] = (('trainId', 'x', 'y'), img)
h = hRIXS()
h.Y_RANGE = slice(0, 7)
h.THRESHOLD = 0.5
h.BINS = 10
data = h.centroid(data)
assert_array_equal(data['spectrum'], [
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
])
h.CURVE_A = 0.1
h.CURVE_B = 0.01
r = h.centroid(data)
self.assertIs(r, data)
assert_array_equal(data['spectrum'], [
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
])
def test_getparam(self):
# this is just a smoke test
h = hRIXS()
d = h.get_params()
self.assertEqual(d['bins'], 100)
if __name__ == "__main__":
unittest.main()
import unittest
import logging
import os
import sys
import argparse
import toolbox_scs as tb
import toolbox_scs.misc as tbm
from toolbox_scs.util.exceptions import ToolBoxPathError
# -----------------------------------------------------------------------------
# global test settings
# -----------------------------------------------------------------------------
proposalNB = 2511
runNB = 176
# -----------------------------------------------------------------------------
suites = {"bunch-pattern-decoding": (
"test_isppl",
"test_issase1",
"test_issase3",
"test_extractBunchPattern",
"test_pulsePatternInfo",
)
}
class TestDataAccess(unittest.TestCase):
@classmethod
def setUpClass(cls):
run = tb.load_run(proposalNB, runNB)
mnemonic = tb.mnemonics["bunchPatternTable"]
cls._bpt = run.get_array(*mnemonic.values())
@classmethod
def tearDownClass(cls):
pass
def setUp(self):
pass
def tearDown(self):
pass
def test_isppl(self):
cls = self.__class__
bpt_decoded = tbm.is_ppl(cls._bpt)
self.assertEqual(bpt_decoded.values[0][0],1)
def test_issase1(self):
cls = self.__class__
bpt_decoded = tbm.is_sase_3(cls._bpt)
self.assertEqual(bpt_decoded.values[0][0],0)
def test_issase3(self):
cls = self.__class__
bpt_decoded = tbm.is_sase_3(cls._bpt)
self.assertEqual(bpt_decoded.values[0][0],0)
def test_extractBunchPattern(self):
cls = self.__class__
bpt_decoded = tbm.extractBunchPattern(cls._bpt,
'scs_ppl')
self.assertIsNotNone(bpt_decoded)
self.assertEqual(bpt_decoded[0].values[0,1],80)
def test_pulsePatternInfo(self):
pass
def list_suites():
print("\nPossible test suites:\n" + "-" * 79)
for key in suites:
print(key)
print("-" * 79 + "\n")
def suite(*tests):
suite = unittest.TestSuite()
for test in tests:
suite.addTest(TestDataAccess(test))
return suite
def start_tests(*cliargs):
logging.basicConfig(level=logging.DEBUG)
log_root = logging.getLogger(__name__)
try:
for test_suite in cliargs:
if test_suite in suites:
runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite(*suites[test_suite]))
else:
log_root.warning(
"Unknown suite: '{}'".format(test_suite))
pass
except Exception as err:
log_root.error("Unecpected error: {}".format(err),
exc_info=True)
pass
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--list-suites',
action='store_true',
help='list possible test suites')
parser.add_argument('--run-suites', metavar='S',
nargs='+', action='store',
help='a list of valid test suites')
args = parser.parse_args()
if args.list_suites:
list_suites()
if args.run_suites:
start_tests(*args.run_suites)
import unittest
import logging
import os
import sys
import argparse
import toolbox_scs as tb
from toolbox_scs.util.exceptions import *
import extra_data as ed
logging.basicConfig(level=logging.DEBUG)
log_root = logging.getLogger(__name__)
suites = {"packaging": (
"test_constant",
),
"load": (
"test_load",
"test_openrun",
"test_openrunpath",
"test_loadbinnedarray",
)
}
class TestToolbox(unittest.TestCase):
@classmethod
def setUpClass(cls):
log_root.info("Start global setup")
cls._mnentry = 'SCS_RR_UTC/TSYS/TIMESERVER'
cls._ed_run = ed.open_run(2212, 235)
log_root.info("Finished global setup, start tests")
@classmethod
def tearDownClass(cls):
pass
def setUp(self):
pass
def tearDown(self):
pass
def test_constant(self):
cls = self.__class__
self.assertEqual(tb.mnemonics['bunchPatternTable']['source'],cls._mnentry)
def test_load(self):
fields = ["SCS_XGM"]
# normal behavior
run_tb = None
proposalNB = 2511
runNB = 176
run_tb, data = tb.load(proposalNB, runNB, fields)
self.assertEqual(data['bunchPatternTable'].values[0, 0], 2113321)
# exception raised
run_tb = None
proposalNB = 2511
runNB = 1766
with self.assertRaises(ToolBoxPathError) as cm:
run_tb, data = tb.load(proposalNB, runNB, fields)
tb_exception = cm.exception
constr_path = f'/gpfs/exfel/exp/SCS/202001/p002511/raw/r{runNB}'
exp_msg = f"Invalid path: {constr_path}. " + \
"The constructed path does not exist."
self.assertEqual(tb_exception.message, exp_msg)
def test_openrun(self):
run, _ = tb.load(2212, 235)
src = 'SCS_DET_DSSC1M-1/DET/0CH0:xtdf'
self.assertTrue(src in run.all_sources)
def test_openrunpath(self):
run = tb.run_by_path(
"/gpfs/exfel/exp/SCS/201901/p002212/raw/r0235")
src = 'SCS_DET_DSSC1M-1/DET/0CH0:xtdf'
self.assertTrue(src in run.all_sources)
def test_loadbinnedarray(self):
cls = self.__class__
# Normal use
mnemonic = 'PP800_PhaseShifter'
data = tb.get_array(cls._ed_run, mnemonic, 0.5)
self.assertTrue = (data)
# unknown mnemonic
mnemonic = 'blabla'
with self.assertRaises(ToolBoxValueError) as cm:
scan_variable = tb.get_array(cls._ed_run, mnemonic, 0.5)
excp = cm.exception
self.assertEqual(excp.value, mnemonic)
def list_suites():
print("\nPossible test suites:\n" + "-" * 79)
for key in suites:
print(key)
print("-" * 79 + "\n")
def suite(*tests):
suite = unittest.TestSuite()
for test in tests:
suite.addTest(TestToolbox(test))
return suite
def main(*cliargs):
try:
for test_suite in cliargs:
if test_suite in suites:
runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite(*suites[test_suite]))
else:
log_root.warning(
"Unknown suite: '{}'".format(test_suite))
pass
except Exception as err:
log_root.error("Unecpected error: {}".format(err),
exc_info=True)
pass
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--list-suites',
action='store_true',
help='list possible test suites')
parser.add_argument('--run-suites', metavar='S',
nargs='+', action='store',
help='a list of valid test suites')
args = parser.parse_args()
if args.list_suites:
list_suites()
if args.run_suites:
main(*args.run_suites)
import unittest
import logging
import os
import sys
import argparse
from toolbox_scs.util.data_access import (
find_run_dir,
)
from toolbox_scs.util.exceptions import ToolBoxPathError
suites = {"ed-extensions": (
"test_rundir1",
"test_rundir2",
"test_rundir3",
)
}
def list_suites():
print("""\nPossible test suites:\n-------------------------""")
for key in suites:
print(key)
print("-------------------------\n")
class TestDataAccess(unittest.TestCase):
@classmethod
def setUpClass(cls):
pass
@classmethod
def tearDownClass(cls):
pass
def setUp(self):
pass
def tearDown(self):
pass
def test_rundir1(self):
Proposal = 2212
Run = 235
Dir = find_run_dir(Proposal, Run)
self.assertEqual(Dir,
"/gpfs/exfel/exp/SCS/201901/p002212/raw/r0235")
def test_rundir2(self):
Proposal = 23678
Run = 235
with self.assertRaises(Exception) as cm:
find_run_dir(Proposal, Run)
exp = cm.exception
self.assertEqual(str(exp), "Couldn't find proposal dir for 'p023678'")
def test_rundir3(self):
Proposal = 2212
Run = 800
with self.assertRaises(ToolBoxPathError) as cm:
find_run_dir(Proposal, Run)
exp_msg = cm.exception.message
print(exp_msg)
path = f'/gpfs/exfel/exp/SCS/201901/p00{Proposal}/raw/r0{Run}'
err_msg = f"Invalid path: {path}. " \
"The constructed path does not exist."
self.assertEqual(exp_msg, err_msg)
def suite(*tests):
suite = unittest.TestSuite()
for test in tests:
suite.addTest(TestDataAccess(test))
return suite
def main(*cliargs):
logging.basicConfig(level=logging.DEBUG)
log_root = logging.getLogger(__name__)
try:
for test_suite in cliargs:
if test_suite in suites:
runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite(*suites[test_suite]))
else:
log_root.warning(
"Unknown suite: '{}'".format(test_suite))
pass
except Exception as err:
log_root.error("Unecpected error: {}".format(err),
exc_info=True)
pass
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--list-suites',
action='store_true',
help='list possible test suites')
parser.add_argument('--run-suites', metavar='S',
nargs='+', action='store',
help='a list of valid test suites')
args = parser.parse_args()
if args.list_suites:
list_suites()
if args.run_suites:
main(*args.run_suites)
class ToolBoxError(Exception):
"""
Parent Toolbox exception. (to be defined)
"""
pass
class ToolBoxPathError(ToolBoxError):
def __init__(self, message = "", path = ""):
self.path = path
self.message = f'Invalid path: {path}. ' + message
class ToolBoxTypeError(ToolBoxError):
def __init__(self, msg = "", dtype = ''):
self.dtype = dtype
self.message = "Unknown data type: " + dtype + " \n" + msg
class ToolBoxValueError(ToolBoxError):
def __init__(self, msg = "", val = None):
self.value = val
self.message = msg + " unknown value: " + str(val)
class ToolBoxFileError(ToolBoxError):
def __init__(self, msg = "", val = ''):
self.value = val
self.message = f"file: {val}, {msg}"
\ No newline at end of file
import os
def get_version():
release_tag = os.popen('git describe --tags').read()
return release_tag.strip("\n")
\ No newline at end of file
# -*- coding: utf-8 -*-
""" Toolbox for SCS.
Various utilities function to quickly process data measured at the SCS instruments.
Copyright (2019) SCS Team.
"""
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
# Machine
def pulsePatternInfo(data, plot=False):
''' display general information on the pulse patterns operated by SASE1 and SASE3.
This is useful to track changes of number of pulses or mode of operation of
SASE1 and SASE3. It also determines which SASE comes first in the train and
the minimum separation between the two SASE sub-trains.
Inputs:
data: xarray Dataset containing pulse pattern info from the bunch decoder MDL:
{'sase1, sase3', 'npulses_sase1', 'npulses_sase3'}
plot: bool enabling/disabling the plotting of the pulse patterns
Outputs:
print of pulse pattern info. If plot==True, plot of the pulse pattern.
'''
#Which SASE comes first?
npulses_sa3 = data['npulses_sase3']
npulses_sa1 = data['npulses_sase1']
dedicated = False
if np.all(npulses_sa1.where(npulses_sa3 !=0, drop=True) == 0):
dedicated = True
print('No SASE 1 pulses during SASE 3 operation')
if np.all(npulses_sa3.where(npulses_sa1 !=0, drop=True) == 0):
dedicated = True
print('No SASE 3 pulses during SASE 1 operation')
if dedicated==False:
pulseIdmin_sa1 = data['sase1'].where(npulses_sa1 != 0).where(data['sase1']>1).min().values
pulseIdmax_sa1 = data['sase1'].where(npulses_sa1 != 0).where(data['sase1']>1).max().values
pulseIdmin_sa3 = data['sase3'].where(npulses_sa3 != 0).where(data['sase3']>1).min().values
pulseIdmax_sa3 = data['sase3'].where(npulses_sa3 != 0).where(data['sase3']>1).max().values
#print(pulseIdmin_sa1, pulseIdmax_sa1, pulseIdmin_sa3, pulseIdmax_sa3)
if pulseIdmin_sa1 > pulseIdmax_sa3:
t = 0.220*(pulseIdmin_sa1 - pulseIdmax_sa3 + 1)
print('SASE 3 pulses come before SASE 1 pulses (minimum separation %.1f µs)'%t)
elif pulseIdmin_sa3 > pulseIdmax_sa1:
t = 0.220*(pulseIdmin_sa3 - pulseIdmax_sa1 + 1)
print('SASE 1 pulses come before SASE 3 pulses (minimum separation %.1f µs)'%t)
else:
print('Interleaved mode')
#What is the pulse pattern of each SASE?
for key in['sase3', 'sase1']:
print('\n*** %s pulse pattern: ***'%key.upper())
npulses = data['npulses_%s'%key]
sase = data[key]
if not np.all(npulses == npulses[0]):
print('Warning: number of pulses per train changed during the run!')
#take the derivative along the trainId to track changes in pulse number:
diff = npulses.diff(dim='trainId')
#only keep trainIds where a change occured:
diff = diff.where(diff !=0, drop=True)
#get a list of indices where a change occured:
idx_change = np.argwhere(np.isin(npulses.trainId.values,
diff.trainId.values, assume_unique=True))[:,0]
#add index 0 to get the initial pulse number per train:
idx_change = np.insert(idx_change, 0, 0)
print('npulses\tindex From\tindex To\ttrainId From\ttrainId To\trep. rate [kHz]')
for i,idx in enumerate(idx_change):
n = npulses[idx]
idxFrom = idx
trainIdFrom = npulses.trainId[idx]
if i < len(idx_change)-1:
idxTo = idx_change[i+1]-1
else:
idxTo = npulses.shape[0]-1
trainIdTo = npulses.trainId[idxTo]
if n <= 1:
print('%i\t%i\t\t%i\t\t%i\t%i'%(n, idxFrom, idxTo, trainIdFrom, trainIdTo))
else:
f = 1/((sase[idxFrom,1] - sase[idxFrom,0])*222e-6)
print('%i\t%i\t\t%i\t\t%i\t%i\t%.0f'%(n, idxFrom, idxTo, trainIdFrom, trainIdTo, f))
print('\n')
if plot:
plt.figure(figsize=(6,3))
plt.plot(data['npulses_sase3'].trainId, data['npulses_sase3'], 'o-',
ms=3, label='SASE 3')
plt.xlabel('trainId')
plt.ylabel('pulses per train')
plt.plot(data['npulses_sase1'].trainId, data['npulses_sase1'], '^-',
ms=3, color='C2', label='SASE 1')
plt.legend()
plt.tight_layout()
def repRate(data, sase='sase3'):
''' Calculates the pulse repetition rate in sase according
to the bunch pattern and assuming a minimum pulse
separation of 221.54e-9 seconds.
Inputs:
data: xarray Dataset containing pulse pattern
sase: sase in which the repetition rate is
calculated (1,2 or 3)
Output:
f: repetition rate in kHz
'''
assert sase in data, 'key "{}" not found in data!'.format(sase)
sase = data[sase].where(data['npulses_{}'.format(sase)]>1,
drop=True).values
if len(sase)==0:
print('Not enough pulses to extract repetition rate')
return 0
f = 1/((sase[0,1] - sase[0,0])*221.54e-6)
return f
# XGM
def cleanXGMdata(data, npulses=None, sase3First=True):
''' Cleans the XGM data arrays obtained from load() function.
The XGM "TD" data arrays have arbitrary size of 1000 and default value 1.0
when there is no pulse. This function sorts the SASE 1 and SASE 3 pulses.
For recent DAQ runs, sase-resolved arrays can be used. For older runs,
the function selectSASEinXGM can be used to extract sase-resolved pulses.
Inputs:
data: xarray Dataset containing XGM TD arrays.
npulses: number of pulses, needed if pulse pattern not available.
sase3First: bool, needed if pulse pattern not available.
Output:
xarray Dataset containing sase- and pulse-resolved XGM data, with
dimension names 'sa1_pId' and 'sa3_pId'
'''
dropList = []
mergeList = []
if ("XTD10_SA3" not in data and "XTD10_XGM" in data) or (
"SCS_SA3" not in data and "SCS_XGM" in data):
#no SASE-resolved arrays available
if 'SCS_XGM' in data:
sa3 = selectSASEinXGM(data, xgm='SCS_XGM', sase='sase3', npulses=npulses,
sase3First=sase3First).rename({'XGMbunchId':'sa3_pId'}).rename('SCS_SA3')
mergeList.append(sa3)
sa1 = selectSASEinXGM(data, xgm='SCS_XGM', sase='sase1', npulses=npulses,
sase3First=sase3First).rename({'XGMbunchId':'sa1_pId'}).rename('SCS_SA1')
mergeList.append(sa1)
dropList.append('SCS_XGM')
if 'XTD10_XGM' in data:
sa3 = selectSASEinXGM(data, xgm='XTD10_XGM', sase='sase3', npulses=npulses,
sase3First=sase3First).rename({'XGMbunchId':'sa3_pId'}).rename('XTD10_SA3')
mergeList.append(sa3)
sa1 = selectSASEinXGM(data, xgm='XTD10_XGM', sase='sase1', npulses=npulses,
sase3First=sase3First).rename({'XGMbunchId':'sa1_pId'}).rename('XTD10_SA1')
mergeList.append(sa1)
dropList.append('XTD10_XGM')
keys = []
else:
keys = ["XTD10_XGM", "XTD10_SA3", "XTD10_SA1",
"XTD10_XGM_sigma", "XTD10_SA3_sigma", "XTD10_SA1_sigma"]
keys += ["SCS_XGM", "SCS_SA3", "SCS_SA1",
"SCS_XGM_sigma", "SCS_SA3_sigma", "SCS_SA1_sigma"]
for key in keys:
if key not in data:
continue
if "sa3" in key.lower():
sase = 'sa3_'
elif "sa1" in key.lower():
sase = 'sa1_'
else:
dropList.append(key)
continue
res = data[key].where(data[key] != 1.0, drop=True).rename(
{'XGMbunchId':'{}pId'.format(sase)}).rename(key)
dropList.append(key)
mergeList.append(res)
mergeList.append(data.drop(dropList))
subset = xr.merge(mergeList, join='inner')
for k in data.attrs.keys():
subset.attrs[k] = data.attrs[k]
return subset
def selectSASEinXGM(data, sase='sase3', xgm='SCS_XGM', sase3First=True, npulses=None):
''' Extract SASE1- or SASE3-only XGM data.
There are various cases depending on i) the mode of operation (10 Hz
with fresh bunch, dedicated trains to one SASE, pulse on demand),
ii) the potential change of number of pulses per train in each SASE
and iii) the order (SASE1 first, SASE3 first, interleaved mode).
Inputs:
data: xarray Dataset containing xgm data
sase: key of sase to select: {'sase1', 'sase3'}
xgm: key of xgm to select: {'SA3_XGM', 'SCS_XGM'}
sase3First: bool, optional. Used in case no bunch pattern was recorded
npulses: int, optional. Required in case no bunch pattern was recorded.
Output:
DataArray that has all trainIds that contain a lasing
train in sase, with dimension equal to the maximum number of pulses of
that sase in the run. The missing values, in case of change of number of pulses,
are filled with NaNs.
'''
if sase not in data:
print('Missing bunch pattern info!')
if npulses is None:
raise TypeError('npulses argument is required when bunch pattern ' +
'info is missing.')
print('Retrieving {} SASE {} pulses assuming that '.format(npulses, sase[4])
+'SASE {} pulses come first.'.format('3' if sase3First else '1'))
#in older version of DAQ, non-data numbers were filled with 0.0.
xgmData = data[xgm].where(data[xgm]!=0.0, drop=True)
xgmData = xgmData.fillna(0.0).where(xgmData!=1.0, drop=True)
if (sase3First and sase=='sase3') or (not sase3First and sase=='sase1'):
return xgmData[:,:npulses]
else:
if xr.ufuncs.isnan(xgmData).any():
raise Exception('The number of pulses changed during the run. '
'This is not supported yet.')
else:
start=xgmData.shape[1]-npulses
return xgmData[:,start:start+npulses]
result = None
npulses_sa3 = data['npulses_sase3']
npulses_sa1 = data['npulses_sase1']
dedicated = 0
if np.all(npulses_sa1.where(npulses_sa3 !=0, drop=True) == 0):
dedicated += 1
print('No SASE 1 pulses during SASE 3 operation')
if np.all(npulses_sa3.where(npulses_sa1 !=0, drop=True) == 0):
dedicated += 1
print('No SASE 3 pulses during SASE 1 operation')
#Alternating pattern with dedicated pulses in SASE1 and SASE3:
if dedicated==2:
if sase=='sase1':
result = data[xgm].where(npulses_sa1>0, drop=True)[:,:npulses_sa1.max().values]
else:
result = data[xgm].where(npulses_sa3>0, drop=True)[:,:npulses_sa3.max().values]
result = result.where(result != 1.0)
return result
# SASE1 and SASE3 bunches in a same train: find minimum indices of first and
# maximum indices of last pulse per train
else:
pulseIdmin_sa1 = data['sase1'].where(npulses_sa1 != 0).where(data['sase1']>1).min().values
pulseIdmax_sa1 = data['sase1'].where(npulses_sa1 != 0).where(data['sase1']>1).max().values
pulseIdmin_sa3 = data['sase3'].where(npulses_sa3 != 0).where(data['sase3']>1).min().values
pulseIdmax_sa3 = data['sase3'].where(npulses_sa3 != 0).where(data['sase3']>1).max().values
if pulseIdmin_sa1 > pulseIdmax_sa3:
sa3First = True
elif pulseIdmin_sa3 > pulseIdmax_sa1:
sa3First = False
else:
print('Interleaved mode, but no sase-dedicated XGM data loaded.')
saseStr = 'SA{}'.format(sase[4])
xgmStr = xgm.split('_')[0]
print('Loading {}_{} data...'.format(xgmStr, saseStr))
try:
if npulses == None:
npulses = data['npulses_sase{}'.format(sase[4])].max().values
if xgmStr == 'XTD10':
source = 'SA3_XTD10_XGM/XGM/DOOCS:output'
if xgmStr == 'SCS':
source = 'SCS_BLU_XGM/XGM/DOOCS:output'
key = 'data.intensitySa{}TD'.format(sase[4])
result = data.attrs['run'].get_array(source, key, extra_dims=['XGMbunchId'])
result = result.isel(XGMbunchId=slice(0, npulses))
return result
except:
print('Could not load {}_{} data. '.format(xgmStr, saseStr) +
'Interleaved mode and no sase-dedicated data is not yet supported.')
#take the derivative along the trainId to track changes in pulse number:
diff = npulses_sa3.diff(dim='trainId')
#only keep trainIds where a change occured:
diff = diff.where(diff != 0, drop=True)
#get a list of indices where a change occured:
idx_change_sa3 = np.argwhere(np.isin(npulses_sa3.trainId.values,
diff.trainId.values, assume_unique=True))[:,0]
#Same for SASE 1:
diff = npulses_sa1.diff(dim='trainId')
diff = diff.where(diff !=0, drop=True)
idx_change_sa1 = np.argwhere(np.isin(npulses_sa1.trainId.values,
diff.trainId.values, assume_unique=True))[:,0]
#create index that locates all changes of pulse number in both SASE1 and 3:
#add index 0 to get the initial pulse number per train:
idx_change = np.unique(np.concatenate(([0], idx_change_sa3, idx_change_sa1))).astype(int)
if sase=='sase1':
npulses = npulses_sa1
maxpulses = int(npulses_sa1.max().values)
else:
npulses = npulses_sa3
maxpulses = int(npulses_sa3.max().values)
for i,k in enumerate(idx_change):
#skip if no pulses after the change:
if npulses[idx_change[i]]==0:
continue
#calculate indices
if sa3First:
a = 0
b = int(npulses_sa3[k].values)
c = b
d = int(c + npulses_sa1[k].values)
else:
a = int(npulses_sa1[k].values)
b = int(a + npulses_sa3[k].values)
c = 0
d = a
if sase=='sase1':
a = c
b = d
if i==len(idx_change)-1:
l = None
else:
l = idx_change[i+1]
temp = data[xgm][k:l,a:a+maxpulses].copy()
temp[:,b:] = np.NaN
if result is None:
result = temp
else:
result = xr.concat([result, temp], dim='trainId')
return result
def saseContribution(data, sase='sase1', xgm='XTD10_XGM'):
''' Calculate the relative contribution of SASE 1 or SASE 3 pulses
for each train in the run. Supports fresh bunch, dedicated trains
and pulse on demand modes.
Inputs:
data: xarray Dataset containing xgm data
sase: key of sase for which the contribution is computed: {'sase1', 'sase3'}
xgm: key of xgm to select: {'XTD10_XGM', 'SCS_XGM'}
Output:
1D DataArray equal to sum(sase)/sum(sase1+sase3)
'''
xgm_sa1 = selectSASEinXGM(data, 'sase1', xgm=xgm)
xgm_sa3 = selectSASEinXGM(data, 'sase3', xgm=xgm)
#Fill missing train ids with 0
r = xr.align(*[xgm_sa1, xgm_sa3], join='outer', exclude=['XGMbunchId'])
xgm_sa1 = r[0].fillna(0)
xgm_sa3 = r[1].fillna(0)
contrib = xgm_sa1.sum(axis=1)/(xgm_sa1.sum(axis=1) + xgm_sa3.sum(axis=1))
if sase=='sase1':
return contrib
else:
return 1 - contrib
def calibrateXGMs(data, rollingWindow=200, plot=False):
''' Calibrate the fast (pulse-resolved) signals of the XTD10 and SCS XGM
(read in intensityTD property) to the respective slow ion signal
(photocurrent read by Keithley, channel 'pulseEnergy.photonFlux.value').
If the sase-resolved signal (introduced in May 2019) are recorded, the
calibration is defined as the mean ratio between the photocurrent and
the low-pass slowTrain signal. Otherwise, calibrateXGMsFromAllPulses()
is called.
Inputs:
data: xarray Dataset
rollingWindow: length of running average to calculate E_fast_avg
plot: boolean, plot the calibration output
Output:
factors: numpy ndarray of shape 1 x 2 containing
[XTD10 calibration factor, SCS calibration factor]
'''
XTD10_factor = np.nan
SCS_factor = np.nan
if "XTD10_slowTrain" in data or "SCS_slowTrain" in data:
if "XTD10_slowTrain" in data:
XTD10_factor = np.mean(data.XTD10_photonFlux/data.XTD10_slowTrain)
else:
print('no XTD10 XGM data. Skipping calibration for XTD10 XGM')
if "SCS_slowTrain" in data:
#XTD10_SA3_contrib = data.XTD10_slowTrain_SA3 * data.npulses_sase3 / (
# data.XTD10_slowTrain * (data.npulses_sase3+data.npulses_sase1))
#SCS_SA3_SLOW = data.SCS_photonFlux*(data.npulses_sase3+
# data.npulses_sase1)*XTD10_SA3_contrib/data.npulses_sase3
#SCS_factor = np.mean(SCS_SA3_SLOW/data.SCS_slowTrain_SA3)
SCS_factor = np.mean(data.SCS_photonFlux/data.SCS_slowTrain)
else:
print('no SCS XGM data. Skipping calibration for SCS XGM')
#TODO: plot the results of calibration
return np.array([XTD10_factor, SCS_factor])
else:
return calibrateXGMsFromAllPulses(data, rollingWindow, plot)
def calibrateXGMsFromAllPulses(data, rollingWindow=200, plot=False):
''' Calibrate the fast (pulse-resolved) signals of the XTD10 and SCS XGM
(read in intensityTD property) to the respective slow ion signal
(photocurrent read by Keithley, channel 'pulseEnergy.photonFlux.value').
One has to take into account the possible signal created by SASE1 pulses. In the
tunnel, this signal is usually large enough to be read by the XGM and the relative
contribution C of SASE3 pulses to the overall signal is computed.
In the tunnel, the calibration F is defined as:
F = E_slow / E_fast_avg, where
E_fast_avg is the rolling average (with window rollingWindow) of the fast signal.
In SCS XGM, the signal from SASE1 is usually in the noise, so we calculate the
average over the pulse-resolved signal of SASE3 pulses only and calibrate it to the
slow signal modulated by the SASE3 contribution:
F = (N1+N3) * E_avg * C/(N3 * E_fast_avg_sase3), where N1 and N3 are the number
of pulses in SASE1 and SASE3, E_fast_avg_sase3 is the rolling average (with window
rollingWindow) of the SASE3-only fast signal.
Inputs:
data: xarray Dataset
rollingWindow: length of running average to calculate E_fast_avg
plot: boolean, plot the calibration output
Output:
factors: numpy ndarray of shape 1 x 2 containing
[XTD10 calibration factor, SCS calibration factor]
'''
XTD10_factor = np.nan
SCS_factor = np.nan
noSCS = noXTD10 = False
if 'SCS_XGM' not in data:
print('no SCS XGM data. Skipping calibration for SCS XGM')
noSCS = True
if 'XTD10_XGM' not in data:
print('no XTD10 XGM data. Skipping calibration for XTD10 XGM')
noXTD10 = True
if noSCS and noXTD10:
return np.array([XTD10_factor, SCS_factor])
if not noSCS and noXTD10:
print('XTD10 data is needed to calibrate SCS XGM.')
return np.array([XTD10_factor, SCS_factor])
start = 0
stop = None
npulses = data['npulses_sase3']
ntrains = npulses.shape[0]
# First, in case of change in number of pulses, locate a region where
# the number of pulses is maximum.
if not np.all(npulses == npulses[0]):
print('Warning: Number of pulses per train changed during the run!')
start = np.argmax(npulses.values)
stop = ntrains + np.argmax(npulses.values[::-1]) - 1
if stop - start < rollingWindow:
print('not enough consecutive data points with the largest number of pulses per train')
start += rollingWindow
stop = np.min((ntrains, stop+rollingWindow))
# Calculate SASE3 slow data
sa3contrib = saseContribution(data, 'sase3', 'XTD10_XGM')
SA3_SLOW = data['XTD10_photonFlux']*(data['npulses_sase3']+data['npulses_sase1'])*sa3contrib/data['npulses_sase3']
SA1_SLOW = data['XTD10_photonFlux']*(data['npulses_sase3']+data['npulses_sase1'])*(1-sa3contrib)/data['npulses_sase1']
# Calibrate XTD10 XGM with all signal from SASE1 and SASE3
if not noXTD10:
xgm_avg = selectSASEinXGM(data, 'sase3', 'XTD10_XGM').mean(axis=1)
rolling_sa3_xgm = xgm_avg.rolling(trainId=rollingWindow).mean()
ratio = SA3_SLOW/rolling_sa3_xgm
XTD10_factor = ratio[start:stop].mean().values
print('calibration factor XTD10 XGM: %f'%XTD10_factor)
# Calibrate SCS XGM with SASE3-only contribution
if not noSCS:
SCS_SLOW = data['SCS_photonFlux']*(data['npulses_sase3']+data['npulses_sase1'])*sa3contrib/data['npulses_sase3']
scs_sase3_fast = selectSASEinXGM(data, 'sase3', 'SCS_XGM').mean(axis=1)
meanFast = scs_sase3_fast.rolling(trainId=rollingWindow).mean()
ratio = SCS_SLOW/meanFast
SCS_factor = ratio[start:stop].median().values
print('calibration factor SCS XGM: %f'%SCS_factor)
if plot:
if noSCS ^ noXTD10:
plt.figure(figsize=(8,4))
else:
plt.figure(figsize=(8,8))
plt.subplot(211)
plt.title('E[uJ] = %.2f x IntensityTD' %(XTD10_factor))
plt.plot(SA3_SLOW, label='SA3 slow', color='C1')
plt.plot(rolling_sa3_xgm*XTD10_factor,
label='SA3 fast signal rolling avg', color='C4')
plt.plot(xgm_avg*XTD10_factor, label='SA3 fast signal train avg', alpha=0.2, color='C4')
plt.ylabel('Energy [uJ]')
plt.xlabel('train in run')
plt.legend(loc='upper left', fontsize=10)
plt.twinx()
plt.plot(SA1_SLOW, label='SA1 slow', alpha=0.2, color='C2')
plt.ylabel('SA1 slow signal [uJ]')
plt.legend(loc='lower right', fontsize=10)
plt.subplot(212)
plt.title('E[uJ] = %.2g x HAMP' %SCS_factor)
plt.plot(SCS_SLOW, label='SCS slow', color='C1')
plt.plot(meanFast*SCS_factor, label='SCS HAMP rolling avg', color='C2')
plt.ylabel('Energy [uJ]')
plt.xlabel('train in run')
plt.plot(scs_sase3_fast*SCS_factor, label='SCS HAMP train avg', alpha=0.2, color='C2')
plt.legend(loc='upper left', fontsize=10)
plt.tight_layout()
return np.array([XTD10_factor, SCS_factor])
# TIM
def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=1, t_offset=None, npulses=None):
''' Computes peak integration from raw MCP traces.
Inputs:
data: xarray Dataset containing MCP raw traces (e.g. 'MCP1raw')
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
mcp: MCP channel number
t_offset: index separation between two pulses. Needed if bunch
pattern info is not available. If None, checks the pulse
pattern and determine the t_offset assuming mininum pulse
separation of 220 ns and digitizer resolution of 2 GHz.
npulses: number of pulses. If None, takes the maximum number of
pulses according to the bunch patter (field 'npulses_sase3')
Output:
results: DataArray with dims trainId x max(sase3 pulses)
'''
keyraw = 'MCP{}raw'.format(mcp)
if keyraw not in data:
raise ValueError("Source not found: {}!".format(keyraw))
if npulses is None:
npulses = int(data['npulses_sase3'].max().values)
if t_offset is None:
sa3 = data['sase3'].where(data['sase3']>1)
if npulses > 1:
#Calculate the number of pulses between two lasing pulses (step)
step = sa3.where(data['npulses_sase3']>1, drop=True)[0,:2].values
step = int(step[1] - step[0])
#multiply by elementary samples length (220 ns @ 2 GHz = 440)
t_offset = 440 * step
else:
t_offset = 1
results = xr.DataArray(np.empty((data.trainId.shape[0], npulses)), coords=data[keyraw].coords,
dims=['trainId', 'MCP{}fromRaw'.format(mcp)])
for i in range(npulses):
a = intstart + t_offset*i
b = intstop + t_offset*i
bkga = bkgstart + t_offset*i
bkgb = bkgstop + t_offset*i
bg = np.outer(np.median(data[keyraw][:,bkga:bkgb], axis=1), np.ones(b-a))
results[:,i] = np.trapz(data[keyraw][:,a:b] - bg, axis=1)
return results
def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None,
bkgstart=None, bkgstop=None, t_offset=None, npulses=None,
stride=1):
''' Extract peak-integrated data from TIM where pulses are from SASE3 only.
If use_apd is False it calculates integration from raw traces.
The missing values, in case of change of number of pulses, are filled
with NaNs.
If no bunch pattern info is available, the function assumes that
SASE 3 comes first and that the number of pulses is fixed in both
SASE 1 and 3.
Inputs:
data: xarray Dataset containing MCP raw traces (e.g. 'MCP1raw')
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
t_offset: index separation between two pulses
mcp: MCP channel number
npulses: int, optional. Number of pulses to compute. Required if
no bunch pattern info is available.
stride: int, optional. Used to select pulses in the APD array if
no bunch pattern info is available.
Output:
tim: DataArray of shape trainId only for SASE3 pulses x N
with N=max(number of pulses per train)
'''
if 'sase3' not in data:
print('Missing bunch pattern info!\n')
if npulses is None:
raise TypeError('npulses argument is required when bunch pattern ' +
'info is missing.')
print('Retrieving {} SASE 3 pulses assuming that '.format(npulses) +
'SASE 3 pulses come first.')
if use_apd:
tim = data['MCP{}apd'.format(mcp)][:,:npulses:stride]
else:
tim = mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=mcp,
t_offset=t_offset, npulses=npulses)
return tim
sa3 = data['sase3'].where(data['sase3']>1, drop=True)
npulses_sa3 = data['npulses_sase3']
maxpulses = int(npulses_sa3.max().values)
if npulses is not None:
maxpulses = np.min([npulses, maxpulses])
step = 1
if maxpulses > 1:
#Calculate the number of non-lasing pulses between two lasing pulses (step)
step = sa3.where(data['npulses_sase3']>1, drop=True)[0,:2].values
step = int(step[1] - step[0])
if use_apd:
apd = data['MCP{}apd'.format(mcp)]
initialDelay = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.initialDelay.value')[0].values
upperLimit = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.upperLimit.value')[0].values
nsamples = upperLimit - initialDelay
npulses_per_apd = int(nsamples/440)
sa3 /= npulses_per_apd
else:
apd = mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=mcp,
t_offset=t_offset, npulses=npulses)
sa3 /= step
sa3 -= sa3[:,0]
sa3 = sa3.astype(int)
if np.all(npulses_sa3 == npulses_sa3[0]):
tim = apd[:, sa3[0].values[:maxpulses]]
return tim
stride = 1
if use_apd:
stride = np.max([stride,int(step/npulses_per_apd)])
diff = npulses_sa3.diff(dim='trainId')
#only keep trainIds where a change occured:
diff = diff.where(diff != 0, drop=True)
#get a list of indices where a change occured:
idx_change = np.argwhere(np.isin(npulses_sa3.trainId.values,
diff.trainId.values, assume_unique=True))[:,0]
#add index 0 to get the initial pulse number per train:
idx_change = np.insert(idx_change, 0, 0)
tim = None
for i,idx in enumerate(idx_change):
if npulses_sa3[idx]==0:
continue
if i==len(idx_change)-1:
l = None
else:
l = idx_change[i+1]
b = npulses_sa3[idx].values
temp = apd[idx:l,:maxpulses*stride:stride].copy()
temp[:,b:] = np.NaN
if tim is None:
tim = temp
else:
tim = xr.concat([tim, temp], dim='trainId')
return tim
def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intstart=None,
intstop=None, bkgstart=None, bkgstop=None, t_offset=None, npulses_apd=None):
''' Calibrate TIM signal (Peak-integrated signal) to the slow ion signal of SCS_XGM
(photocurrent read by Keithley, channel 'pulseEnergy.photonFlux.value').
The aim is to find F so that E_tim_peak[uJ] = F x TIM_peak. For this, we want to
match the SASE3-only average TIM pulse peak per train (TIM_avg) to the slow XGM
signal E_slow.
Since E_slow is the average energy per pulse over all SASE1 and SASE3
pulses (N1 and N3), we first extract the relative contribution C of the SASE3 pulses
by looking at the pulse-resolved signals of the SA3_XGM in the tunnel.
There, the signal of SASE1 is usually strong enough to be above noise level.
Let TIM_avg be the average of the TIM pulses (SASE3 only).
The calibration factor is then defined as: F = E_slow * C * (N1+N3) / ( N3 * TIM_avg ).
If N3 changes during the run, we locate the indices for which N3 is maximum and define
a window where to apply calibration (indices start/stop).
Warning: the calibration does not include the transmission by the KB mirrors!
Inputs:
data: xarray Dataset
rollingWindow: length of running average to calculate TIM_avg
mcp: MCP channel
plot: boolean. If True, plot calibration results.
use_apd: boolean. If False, the TIM pulse peaks are extract from raw traces using
getTIMapd
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
t_offset: index separation between two pulses
npulses_apd: number of pulses
Output:
F: float, TIM calibration factor.
'''
start = 0
stop = None
npulses = data['npulses_sase3']
ntrains = npulses.shape[0]
if not np.all(npulses == npulses[0]):
start = np.argmax(npulses.values)
stop = ntrains + np.argmax(npulses.values[::-1]) - 1
if stop - start < rollingWindow:
print('not enough consecutive data points with the largest number of pulses per train')
start += rollingWindow
stop = np.min((ntrains, stop+rollingWindow))
filteredTIM = getTIMapd(data, mcp, use_apd, intstart, intstop, bkgstart, bkgstop, t_offset, npulses_apd)
sa3contrib = saseContribution(data, 'sase3', 'XTD10_XGM')
avgFast = filteredTIM.mean(axis=1).rolling(trainId=rollingWindow).mean()
ratio = ((data['npulses_sase3']+data['npulses_sase1']) *
data['SCS_photonFlux'] * sa3contrib) / (avgFast*data['npulses_sase3'])
F = float(ratio[start:stop].median().values)
if plot:
fig = plt.figure(figsize=(8,5))
ax = plt.subplot(211)
ax.set_title('E[uJ] = {:2e} x TIM (MCP{})'.format(F, mcp))
ax.plot(data['SCS_photonflux'], label='SCS XGM slow (all SASE)', color='C0')
slow_avg_sase3 = data['SCS_photonflux']*(data['npulses_sase1']
+data['npulses_sase3'])*sa3contrib/data['npulses_sase3']
ax.plot(slow_avg_sase3, label='SCS XGM slow (SASE3 only)', color='C1')
ax.plot(avgFast*F, label='Calibrated TIM rolling avg', color='C2')
ax.legend(loc='upper left', fontsize=8)
ax.set_ylabel('Energy [$\mu$J]', size=10)
ax.plot(filteredTIM.mean(axis=1)*F, label='Calibrated TIM train avg', alpha=0.2, color='C9')
ax.legend(loc='best', fontsize=8, ncol=2)
plt.xlabel('train in run')
ax = plt.subplot(234)
xgm_fast = selectSASEinXGM(data)
ax.scatter(filteredTIM, xgm_fast, s=5, alpha=0.1, rasterized=True)
fit, cov = np.polyfit(filteredTIM.values.flatten(),xgm_fast.values.flatten(),1, cov=True)
y=np.poly1d(fit)
x=np.linspace(filteredTIM.min(), filteredTIM.max(), 10)
ax.plot(x, y(x), lw=2, color='r')
ax.set_ylabel('Raw HAMP [$\mu$J]', size=10)
ax.set_xlabel('TIM (MCP{}) signal'.format(mcp), size=10)
ax.annotate(s='y(x) = F x + A\n'+
'F = %.3e\n$\Delta$F/F = %.2e\n'%(fit[0],np.abs(np.sqrt(cov[0,0])/fit[0]))+
'A = %.3e'%fit[1],
xy=(0.5,0.6), xycoords='axes fraction', fontsize=10, color='r')
print('TIM calibration factor: %e'%(F))
ax = plt.subplot(235)
ax.hist(filteredTIM.values.flatten()*F, bins=50, rwidth=0.8)
ax.set_ylabel('number of pulses', size=10)
ax.set_xlabel('Pulse energy MCP{} [uJ]'.format(mcp), size=10)
ax.set_yscale('log')
ax = plt.subplot(236)
if not use_apd:
pulseStart = intstart
pulseStop = intstop
else:
pulseStart = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.pulseStart.value')[0].values
pulseStop = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.pulseStop.value')[0].values
if 'MCP{}raw'.format(mcp) not in data:
tid, data = data.attrs['run'].train_from_index(0)
trace = data['SCS_UTC1_ADQ/ADC/1:network']['digitizers.channel_1_D.raw.samples']
print('no raw data for MCP{}. Loading trace from MCP1'.format(mcp))
label_trace='MCP1 Voltage [V]'
else:
trace = data['MCP{}raw'.format(mcp)][0]
label_trace='MCP{} Voltage [V]'.format(mcp)
ax.plot(trace[:pulseStop+25], 'o-', ms=2, label='trace')
ax.axvspan(pulseStart, pulseStop, color='C2', alpha=0.2, label='APD region')
ax.axvline(pulseStart, color='gray', ls='--')
ax.axvline(pulseStop, color='gray', ls='--')
ax.set_xlim(pulseStart - 25, pulseStop + 25)
ax.set_ylabel(label_trace, size=10)
ax.set_xlabel('sample #', size=10)
ax.legend(fontsize=8)
plt.tight_layout()
return F
''' TIM calibration table
Dict with key= photon energy and value= array of polynomial coefficients for each MCP (1,2,3).
The polynomials correspond to a fit of the logarithm of the calibration factor as a function
of MCP voltage. If P is a polynomial and V the MCP voltage, the calibration factor (in microjoule
per APD signal) is given by -exp(P(V)).
This table was generated from the calibration of March 2019, proposal 900074, semester 201930,
runs 69 - 111 (Ni edge): https://in.xfel.eu/elog/SCS+Beamline/2323
runs 113 - 153 (Co edge): https://in.xfel.eu/elog/SCS+Beamline/2334
runs 163 - 208 (Fe edge): https://in.xfel.eu/elog/SCS+Beamline/2349
'''
tim_calibration_table = {
705.5: np.array([
[-6.85344690e-12, 5.00931986e-08, -1.27206912e-04, 1.15596821e-01, -3.15215367e+01],
[ 1.25613942e-11, -5.41566381e-08, 8.28161004e-05, -7.27230153e-02, 3.10984925e+01],
[ 1.14094964e-12, 7.72658935e-09, -4.27504907e-05, 4.07253378e-02, -7.00773062e+00]]),
779: np.array([
[ 4.57610777e-12, -2.33282497e-08, 4.65978738e-05, -6.43305156e-02, 3.73958623e+01],
[ 2.96325102e-11, -1.61393276e-07, 3.32600044e-04, -3.28468195e-01, 1.28328844e+02],
[ 1.14521506e-11, -5.81980336e-08, 1.12518434e-04, -1.19072484e-01, 5.37601559e+01]]),
851: np.array([
[ 3.15774215e-11, -1.71452934e-07, 3.50316512e-04, -3.40098861e-01, 1.31064501e+02],
[5.36341958e-11, -2.92533156e-07, 6.00574534e-04, -5.71083140e-01, 2.10547161e+02],
[ 3.69445588e-11, -1.97731342e-07, 3.98203522e-04, -3.78338599e-01, 1.41894119e+02]])
}
def timFactorFromTable(voltage, photonEnergy, mcp=1):
''' Returns an energy calibration factor for TIM integrated peak signal (APD)
according to calibration from March 2019, proposal 900074, semester 201930,
runs 69 - 111 (Ni edge): https://in.xfel.eu/elog/SCS+Beamline/2323
runs 113 - 153 (Co edge): https://in.xfel.eu/elog/SCS+Beamline/2334
runs 163 - 208 (Fe edge): https://in.xfel.eu/elog/SCS+Beamline/2349
Uses the tim_calibration_table declared above.
Inputs:
voltage: MCP voltage in volts.
photonEnergy: FEL photon energy in eV. Calibration factor is linearly
interpolated between the known values from the calibration table.
mcp: MCP channel (1, 2, or 3).
Output:
f: calibration factor in microjoule per APD signal
'''
energies = np.sort([key for key in tim_calibration_table])
if photonEnergy not in energies:
if photonEnergy > energies.max():
photonEnergy = energies.max()
elif photonEnergy < energies.min():
photonEnergy = energies.min()
else:
idx = np.searchsorted(energies, photonEnergy) - 1
polyA = np.poly1d(tim_calibration_table[energies[idx]][mcp-1])
polyB = np.poly1d(tim_calibration_table[energies[idx+1]][mcp-1])
fA = -np.exp(polyA(voltage))
fB = -np.exp(polyB(voltage))
f = fA + (fB-fA)/(energies[idx+1]-energies[idx])*(photonEnergy - energies[idx])
return f
poly = np.poly1d(tim_calibration_table[photonEnergy][mcp-1])
f = -np.exp(poly(voltage))
return f
def checkTimApdWindow(data, mcp=1, use_apd=True, intstart=None, intstop=None):
''' Plot the first and last pulses in MCP trace together with
the window of integration to check if the pulse integration
is properly calculated. If the number of pulses changed during
the run, it selects a train where the number of pulses was
maximum.
Inputs:
data: xarray Dataset
mcp: MCP channel (1, 2, 3 or 4)
use_apd: if True, gets the APD parameters from the digitizer
device. If False, uses intstart and intstop as boundaries
and uses the bunch pattern to determine the separation
between two pulses.
intstart: trace index of integration start of the first pulse
intstop: trace index of integration stop of the first pulse
Output:
Plot
'''
mcpToChannel={1:'D', 2:'C', 3:'B', 4:'A'}
apdChannels={1:3, 2:2, 3:1, 4:0}
npulses_max = data['npulses_sase3'].max().values
tid = data['npulses_sase3'].where(data['npulses_sase3'] == npulses_max,
drop=True).trainId.values
if 'MCP{}raw'.format(mcp) not in data:
print('no raw data for MCP{}. Loading average trace from MCP{}'.format(mcp, mcp))
trace = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1:network',
'digitizers.channel_1_{}.raw.samples'.format(mcpToChannel[mcp])
).sel({'trainId':tid}).mean(dim='trainId')
else:
trace = data['MCP{}raw'.format(mcp)].sel({'trainId':tid}).mean(dim='trainId')
if use_apd:
pulseStart = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.pulseStart.value'.format(apdChannels[mcp]))[0].values
pulseStop = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.pulseStop.value'.format(apdChannels[mcp]))[0].values
initialDelay = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.initialDelay.value'.format(apdChannels[mcp]))[0].values
upperLimit = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.upperLimit.value'.format(apdChannels[mcp]))[0].values
else:
pulseStart = intstart
pulseStop = intstop
if npulses_max > 1:
sa3 = data['sase3'].where(data['sase3']>1)
step = sa3.where(data['npulses_sase3']>1, drop=True)[0,:2].values
step = int(step[1] - step[0])
nsamples = 440 * step
else:
nsamples = 0
fig, ax = plt.subplots(figsize=(5,3))
ax.plot(trace[:pulseStop+25], color='C1', label='first pulse')
ax.axvspan(pulseStart, pulseStop, color='k', alpha=0.1, label='APD region')
ax.axvline(pulseStart, color='gray', ls='--')
ax.axvline(pulseStop, color='gray', ls='--')
ax.set_xlim(pulseStart-25, pulseStop+25)
ax.locator_params(axis='x', nbins=4)
ax.set_ylabel('MCP{} Voltage [V]'.format(mcp))
ax.set_xlabel('First pulse sample #')
if npulses_max > 1:
pulseStart = pulseStart + nsamples*(npulses_max-1)
pulseStop = pulseStop + nsamples*(npulses_max-1)
ax2 = ax.twiny()
ax2.plot(range(pulseStart-25,pulseStop+25), trace[pulseStart-25:pulseStop+25],
color='C4', label='last pulse')
ax2.locator_params(axis='x', nbins=4)
ax2.set_xlabel('Last pulse sample #')
lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2, loc=0)
else:
ax.legend(loc='lower left')
plt.tight_layout()
def matchXgmTimPulseId(data, use_apd=True, intstart=None, intstop=None,
bkgstart=None, bkgstop=None, t_offset=None,
npulses=None, sase3First=True, stride=1):
''' Function to match XGM pulse Id with TIM pulse Id.
Inputs:
data: xarray Dataset containing XGM and TIM data
use_apd: bool. If True, uses the digitizer APD ('MCP[1,2,3,4]apd').
If False, peak integration is performed from raw traces.
All following parameters are needed in this case.
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
t_offset: index separation between two pulses
npulses: number of pulses to compute. Required if no bunch
pattern info is available
sase3First: bool, needed if bunch pattern is missing.
stride: int, used to select pulses in the TIM APD array if
no bunch pattern info is available.
Output:
xr DataSet containing XGM and TIM signals with the share d
dimension 'sa3_pId'. Raw traces, raw XGM and raw APD are dropped.
'''
dropList = []
mergeList = []
ndata = cleanXGMdata(data, npulses, sase3First)
for mcp in range(1,5):
if 'MCP{}apd'.format(mcp) in data or 'MCP{}raw'.format(mcp) in data:
MCPapd = getTIMapd(ndata, mcp=mcp, use_apd=use_apd, intstart=intstart,
intstop=intstop,bkgstart=bkgstart, bkgstop=bkgstop,
t_offset=t_offset, npulses=npulses,
stride=stride).rename('MCP{}apd'.format(mcp))
if use_apd:
MCPapd = MCPapd.rename({'apdId':'sa3_pId'})
else:
MCPapd = MCPapd.rename({'MCP{}fromRaw'.format(mcp):'sa3_pId'})
mergeList.append(MCPapd)
if 'MCP{}raw'.format(mcp) in ndata:
dropList.append('MCP{}raw'.format(mcp))
if 'MCP{}apd'.format(mcp) in data:
dropList.append('MCP{}apd'.format(mcp))
mergeList.append(ndata.drop(dropList))
subset = xr.merge(mergeList, join='inner')
for k in ndata.attrs.keys():
subset.attrs[k] = ndata.attrs[k]
return subset
# Fast ADC
def fastAdcPeaks(data, channel, intstart, intstop, bkgstart, bkgstop, period=None, npulses=None):
''' Computes peak integration from raw FastADC traces.
Inputs:
data: xarray Dataset containing FastADC raw traces (e.g. 'FastADC1raw')
channel: FastADC channel number
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
period: number of samples between two pulses. Needed if bunch
pattern info is not available. If None, checks the pulse
pattern and determine the period assuming a resolution of
9.23 ns per sample which leads to 24 samples between
two bunches @ 4.5 MHz.
npulses: number of pulses. If None, takes the maximum number of
pulses according to the bunch patter (field 'npulses_sase3')
Output:
results: DataArray with dims trainId x max(sase3 pulses)
'''
keyraw = 'FastADC{}raw'.format(channel)
if keyraw not in data:
raise ValueError("Source not found: {}!".format(keyraw))
if npulses is None:
npulses = int(data['npulses_sase3'].max().values)
if period is None:
sa3 = data['sase3'].where(data['sase3']>1)
if npulses > 1:
#Calculate the number of pulses between two lasing pulses (step)
step = sa3.where(data['npulses_sase3']>1, drop=True)[0,:2].values
step = int(step[1] - step[0])
#multiply by elementary pulse length (221.5 ns / 9.23 ns = 24 samples)
period = 24 * step
else:
period = 1
results = xr.DataArray(np.empty((data.trainId.shape[0], npulses)), coords=data[keyraw].coords,
dims=['trainId', 'peakId'.format(channel)])
for i in range(npulses):
a = intstart + period*i
b = intstop + period*i
bkga = bkgstart + period*i
bkgb = bkgstop + period*i
bg = np.outer(np.median(data[keyraw][:,bkga:bkgb], axis=1), np.ones(b-a))
integ = np.trapz(data[keyraw][:,a:b] - bg, axis=1)
results[:,i] = integ
return results
def mergeFastAdcPeaks(data, channel, intstart, intstop, bkgstart, bkgstop,
period=None, npulses=None, dim='lasPulseId'):
''' Calculates the peaks from Fast ADC raw traces with fastAdcPeaks()
and merges the results in Dataset.
Inputs:
data: xr Dataset with 'FastADC[channel]raw' traces
channel: Fast ADC channel
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
period: Number of samples separation between two pulses. Needed
if bunch pattern info is not available. If None, checks the
pulse pattern and determine the period assuming a resolution
of 9.23 ns per sample which leads to 24 samples between
two bunches @ 4.5 MHz.
npulses: number of pulses. If None, takes the maximum number of
pulses according to the bunch patter (field 'npulses_sase3')
dim: name of the xr dataset dimension along the peaks
'''
peaks = fastAdcPeaks(data, channel=channel, intstart=intstart, intstop=intstop,
bkgstart=bkgstart, bkgstop=bkgstop, period=period,
npulses=npulses)
key = 'FastADC{}peaks'.format(channel)
if key in data:
s = data.drop(key)
else:
s = data
peaks = peaks.rename(key).rename({'peakId':dim})
subset = xr.merge([s, peaks], join='inner')
for k in data.attrs.keys():
subset.attrs[k] = data.attrs[k]
return subset