Skip to content
Snippets Groups Projects

Revised CalCat API

Merged Thomas Kluyver requested to merge calcat-api-2 into master
Compare and Show latest version
2 files
+ 161
104
Compare changes
  • Side-by-side
  • Inline
Files
2
@@ -218,6 +218,31 @@ class SingleConstantVersion:
return self.dataset_obj(caldb_root)[:]
def prepare_selection(
module_details, module_nums=None, aggregator_names=None, qm_names=None
):
aggs = aggregator_names # Shorter name -> fewer multi-line statements
n_specified = sum([module_nums is not None, aggs is not None, qm_names is not None])
if n_specified > 1:
raise TypeError(
"select_modules() accepts only one of module_nums, aggregator_names & qm_names"
)
if module_nums is not None:
by_mod_no = {m["module_number"]: m for m in module_details}
return [by_mod_no[n]["karabo_da"] for n in module_nums]
elif qm_names is not None:
by_qm = {m["virtual_device_name"]: m for m in module_details}
return [by_qm[s]["karabo_da"] for s in qm_names]
elif aggs is not None:
miss = set(aggs) - {m["karabo_da"] for m in module_details}
if miss:
raise KeyError("Aggregators not found: " + ", ".join(sorted(miss)))
return aggs
else:
raise TypeError("select_modules() requires an argument")
@dataclass
class ModulesConstantVersions:
"""A group of similar CCVs for several modules of one detector"""
@@ -226,36 +251,19 @@ class ModulesConstantVersions:
module_details: List[Dict]
def select_modules(
self, module_nums=None, *, aggregators=None, qm_names=None
self, module_nums=None, *, aggregator_names=None, qm_names=None
) -> "ModulesConstantVersions":
n_specified = sum(
[module_nums is not None, aggregators is not None, qm_names is not None]
aggs = prepare_selection(
self.module_details, module_nums, aggregator_names, qm_names
)
if n_specified < 1:
raise TypeError("select_modules() requires an argument")
elif n_specified > 1:
raise TypeError(
"select_modules() accepts only one of module_nums, aggregators & qm_names"
)
if module_nums is not None:
by_mod_no = {m["module_number"]: m for m in self.module_details}
aggregators = [by_mod_no[n]["karabo_da"] for n in module_nums]
elif qm_names is not None:
by_qm = {m["virtual_device_name"]: m for m in self.module_details}
aggregators = [by_qm[s]["karabo_da"] for s in qm_names]
elif aggregators is not None:
miss = set(aggregators) - {m["karabo_da"] for m in self.module_details}
if miss:
raise KeyError("Aggregators not found: " + ", ".join(sorted(miss)))
d = {aggr: scv for (aggr, scv) in self.constants.items() if aggr in aggregators}
return ModulesConstantVersions(d, self.module_details)
d = {aggr: scv for (aggr, scv) in self.constants.items() if aggr in aggs}
mods = [m for m in self.module_details if m["karabo_da"] in d]
return ModulesConstantVersions(d, mods)
# These properties label only the modules we have constants for, which may
# be a subset of what's in module_details
@property
def aggregators(self):
def aggregator_names(self):
return sorted(self.constants)
@property
@@ -274,33 +282,44 @@ class ModulesConstantVersions:
if m["karabo_da"] in self.constants
]
def ndarray(self, caldb_root=None):
eg_dset = self.constants[self.aggregators[0]].dataset_obj(caldb_root)
def ndarray(self, caldb_root=None, *, parallel=0):
eg_dset = self.constants[self.aggregator_names[0]].dataset_obj(caldb_root)
shape = (len(self.constants),) + eg_dset.shape
arr = np.zeros(shape, eg_dset.dtype)
for i, agg in enumerate(self.aggregators):
dset = self.constants[agg].dataset_obj(caldb_root)
dset.read_direct(arr[i])
if parallel > 0:
load_ctx = psh.ProcessContext(num_workers=parallel)
else:
load_ctx = psh.SerialContext()
arr = psh.alloc(shape, eg_dset.dtype, fill=0)
def _load_constant_dataset(wid, index, mod):
dset = self.constants[mod].dataset_obj(caldb_root)
dset.read_direct(arr[index])
load_ctx.map(_load_constant_dataset, self.aggregator_names)
return arr
def xarray(self, module_naming="da", caldb_root=None):
def xarray(self, module_naming="modnum", caldb_root=None, *, parallel=0):
import xarray
if module_naming == "da":
modules = self.aggregators
elif module_naming == "modno":
if module_naming == "aggregator":
modules = self.aggregator_names
elif module_naming == "modnum":
modules = self.module_nums
elif module_naming == "qm":
modules = self.qm_names
else:
raise ValueError(f"{module_naming=} (must be 'da', 'modno' or 'qm'")
raise ValueError(
f"{module_naming=} (must be 'aggregator', 'modnum' or 'qm'"
)
ndarr = self.ndarray(caldb_root)
ndarr = self.ndarray(caldb_root, parallel=parallel)
# Dimension labels
dims = ["module"] + ["dim_%d" % i for i in range(ndarr.ndim - 1)]
coords = {"module": modules}
name = self.constants[self.aggregators[0]].constant_name
name = self.constants[self.aggregator_names[0]].constant_name
return xarray.DataArray(ndarr, dims=dims, coords=coords, name=name)
@@ -340,10 +359,7 @@ class CalibrationData(Mapping):
"""Collected constants for a given detector"""
def __init__(self, constant_groups, module_details):
self.constant_groups = {
const_type: ModulesConstantVersions(d, module_details)
for const_type, d in constant_groups.items()
}
self.constant_groups = constant_groups
self.module_details = module_details
@staticmethod
@@ -398,7 +414,7 @@ class CalibrationData(Mapping):
if mod.get("module_number", -1) < 0:
mod["module_number"] = int(re.findall(r"\d+", mod["karabo_da"])[-1])
d = {}
constant_groups = {}
for params, cal_types in cal_types_by_params_used.items():
condition_dict = condition.make_dict(params)
@@ -424,11 +440,14 @@ class CalibrationData(Mapping):
aggr = ccv["physical_detector_unit"]["karabo_da"]
cal_type = cal_id_map[ccv["calibration_constant"]["calibration_id"]]
d.setdefault(cal_type, {})[aggr] = SingleConstantVersion.from_response(
ccv
)
const_group = constant_groups.setdefault(cal_type, {})
const_group[aggr] = SingleConstantVersion.from_response(ccv)
return cls(d, module_details)
mcvs = {
const_type: ModulesConstantVersions(d, module_details)
for const_type, d in constant_groups.items()
}
return cls(mcvs, module_details)
@classmethod
def from_report(
@@ -447,16 +466,22 @@ class CalibrationData(Mapping):
res = client.get("calibration_constant_versions", params)
d = {}
constant_groups = {}
pdus = []
for ccv in res:
pdus.append(ccv["physical_detector_unit"])
cal_type = calibration_name(ccv["calibration_constant"]["calibration_id"])
aggr = ccv["physical_detector_unit"]["karabo_da"]
d.setdefault(cal_type, {})[aggr] = SingleConstantVersion.from_response(ccv)
const_group = constant_groups.setdefault(cal_type, {})
const_group[aggr] = SingleConstantVersion.from_response(ccv)
return cls(d, sorted(pdus, key=lambda d: d["karabo_da"]))
module_details = sorted(pdus, key=lambda d: d["karabo_da"])
mcvs = {
const_type: ModulesConstantVersions(d, module_details)
for const_type, d in constant_groups.items()
}
return cls(mcvs, module_details)
def __getitem__(self, key) -> ModulesConstantVersions:
return self.constant_groups[key]
@@ -494,39 +519,28 @@ class CalibrationData(Mapping):
def require_calibrations(self, calibrations):
"""Drop any modules missing the specified constant types"""
mods = set(self.aggregators)
mods = set(self.aggregator_names)
for cal_type in calibrations:
mods.intersection_update(self[cal_type].constants)
return self.select_modules(mods)
def select_calibrations(self, calibrations, require_all=True):
if require_all:
missing = set(calibrations) - set(self.constant_groups)
if missing:
raise KeyError(f"Missing calibrations: {', '.join(sorted(missing))}")
d = {
cal_type: mcv.constants
for (cal_type, mcv) in self.constant_groups.items()
if cal_type in calibrations
}
# TODO: missing for some modules?
return type(self)(d, self.aggregators)
return self.select_modules(aggregator_names=mods)
def select_modules(
self, module_nums=None, *, aggregators=None, qm_names=None
self, module_nums=None, *, aggregator_names=None, qm_names=None
) -> "CalibrationData":
return type(self)(
{
cal_type: mcv.select_modules(
module_nums=module_nums,
aggregators=aggregators,
qm_names=qm_names,
).constants
for (cal_type, mcv) in self.constant_groups.items()
},
sorted(aggregators),
# Validate the specified modules against those we know about.
# Each specific constant type may have only a subset of these modules.
aggs = prepare_selection(
self.module_details, module_nums, aggregator_names, qm_names
)
mcvs = {
cal_type: mcv.select_modules(
aggregator_names=set(aggs).intersection(mcv.aggregator_names)
)
for (cal_type, mcv) in self.constant_groups.items()
}
aggs = set().union(*[c.aggregator_names for c in mcvs.values()])
module_details = [m for m in self.module_details if m["karabo_da"] in aggs]
return type(self)(mcvs, module_details)
def merge(self, *others: "CalibrationData") -> "CalibrationData":
d = {}
@@ -536,34 +550,12 @@ class CalibrationData(Mapping):
if cal_type in other:
d[cal_type].update(other[cal_type].constants)
aggregators = set(self.aggregators)
aggregators = set(self.aggregator_names)
for other in others:
aggregators.update(other.aggregators)
aggregators.update(other.aggregator_names)
return type(self)(d, sorted(aggregators))
def load_all(self, caldb_root=None):
res = {}
const_load_mp = psh.ProcessContext(num_workers=24)
keys = []
for cal_type, mcv in self.constant_groups.items():
res[cal_type] = {}
for module in mcv.aggregators:
dset = mcv.constants[module].dataset_obj(caldb_root)
res[cal_type][module] = const_load_mp.alloc(
shape=dset.shape, dtype=dset.dtype
)
keys.append((cal_type, module))
def _load_constant_dataset(wid, index, key):
cal_type, mod = key
dset = self[cal_type].constants[mod].dataset_obj(caldb_root)
dset.read_direct(res[cal_type][mod])
const_load_mp.map(_load_constant_dataset, keys)
return res
class ConditionsBase:
calibration_types = {} # For subclasses: {calibration: [parameter names]}
Loading