Speed up prediction and outlier detection.
Compare changes
- Danilo Ferreira de Lima authored
Using threading for parallel processing speeds up prediction by a factor of 100: most of the time consumed was on passing data to the processes. Switched from the EllipticEnvelope to an IQR-based outlier detection method -- faster and does not assume Gaussianity. Since this happens after the PCA, the data is already decorrelated.
+ 56
− 25
@@ -14,10 +14,11 @@ from sklearn.pipeline import Pipeline
@@ -637,7 +638,7 @@ class MultiOutputWithStd(MetaEstimatorMixin, BaseEstimator):
@@ -650,31 +651,40 @@ class MultiOutputWithStd(MetaEstimatorMixin, BaseEstimator):
@@ -683,9 +693,9 @@ class UncorrelatedDeviation(OutlierMixin, BaseEstimator):
@@ -700,9 +710,8 @@ class UncorrelatedDeviation(OutlierMixin, BaseEstimator):
@@ -781,10 +790,10 @@ class Model(TransformerMixin, BaseEstimator):
@@ -928,13 +937,13 @@ class Model(TransformerMixin, BaseEstimator):
@@ -1080,23 +1089,45 @@ class Model(TransformerMixin, BaseEstimator):