Skip to content
Snippets Groups Projects
How to extract peaks from digitizer traces.ipynb 762 KiB
Newer Older
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"600\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "{'pulseStart': 22491,\n",
       " 'pulseStop': 22525,\n",
       " 'baseStart': 22480,\n",
       " 'baseStop': 22485,\n",
       " 'period': 96,\n",
       " 'npulses': 400}"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "params['period'] = 96\n",
    "params['npulses'] = 400\n",
    "params['pulseStart'] = 22491\n",
    "params['pulseStop'] = 22525\n",
    "params['baseStart'] = 22480\n",
    "params['baseStop'] = 22485\n",
    "\n",
    "params = tb.check_peak_params(run, 'FastADC0raw',\n",
    "                              bunchPattern='sase3', params=params, )\n",
    "params"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ff86780b",
   "metadata": {},
   "source": [
    "### Reload data with raw trace and extract peaks using the new integration parameters"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "4225c153",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt, dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2 {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:            (pulse_slot: 2700, sa3_pId: 400, trainId: 1817)\n",
       "Coordinates:\n",
       "  * trainId            (trainId) uint64 1471028273 1471028274 ... 1471028272\n",
       "  * sa3_pId            (sa3_pId) int64 1056 1060 1064 1068 ... 2644 2648 2652\n",
       "Dimensions without coordinates: pulse_slot\n",
       "Data variables:\n",
       "    bunchPatternTable  (trainId, pulse_slot) uint32 2146089 0 ... 16777216\n",
       "    chem_Y             (trainId) float32 224.2802 224.28229 ... 224.2802\n",
       "    FastADC0peaks      (trainId, sa3_pId) float64 239.0 9.5 ... -69.0 101.5\n",
       "Attributes:\n",
       "    runFolder:  /gpfs/exfel/exp/SCS/202202/p002953/raw/r0001</pre><div class='xr-wrap' hidden><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-7043deee-5aef-45da-854f-b40f215a1e5d' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-7043deee-5aef-45da-854f-b40f215a1e5d' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span>pulse_slot</span>: 2700</li><li><span class='xr-has-index'>sa3_pId</span>: 400</li><li><span class='xr-has-index'>trainId</span>: 1817</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-6946dfbb-b9b1-4c34-a41c-152823ce8335' class='xr-section-summary-in' type='checkbox'  checked><label for='section-6946dfbb-b9b1-4c34-a41c-152823ce8335' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>trainId</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>uint64</div><div class='xr-var-preview xr-preview'>1471028273 ... 1471028272</div><input id='attrs-089b892b-26da-440a-8129-9aa107dd06d6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-089b892b-26da-440a-8129-9aa107dd06d6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-97c15a34-3e19-45f5-873c-004b27af5348' class='xr-var-data-in' type='checkbox'><label for='data-97c15a34-3e19-45f5-873c-004b27af5348' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1471028273, 1471028274, 1471028275, ..., 1471028270, 1471028271,\n",
       "       1471028272], dtype=uint64)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>sa3_pId</span></div><div class='xr-var-dims'>(sa3_pId)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1056 1060 1064 ... 2644 2648 2652</div><input id='attrs-d7cf2147-06e5-4273-97a9-d611559007e6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d7cf2147-06e5-4273-97a9-d611559007e6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e28a03eb-8ca5-4583-8253-d249b35237ef' class='xr-var-data-in' type='checkbox'><label for='data-e28a03eb-8ca5-4583-8253-d249b35237ef' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1056, 1060, 1064, ..., 2644, 2648, 2652])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-2d9e7a87-b051-4aaf-8a17-8cd129970e59' class='xr-section-summary-in' type='checkbox'  checked><label for='section-2d9e7a87-b051-4aaf-8a17-8cd129970e59' class='xr-section-summary' >Data variables: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>bunchPatternTable</span></div><div class='xr-var-dims'>(trainId, pulse_slot)</div><div class='xr-var-dtype'>uint32</div><div class='xr-var-preview xr-preview'>2146089 0 ... 16777216 16777216</div><input id='attrs-dcd2e909-e64a-4705-af8b-df1850052314' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-dcd2e909-e64a-4705-af8b-df1850052314' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-51a128df-9baf-46ac-9aad-85ee9e968f28' class='xr-var-data-in' type='checkbox'><label for='data-51a128df-9baf-46ac-9aad-85ee9e968f28' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 2146089,        0,  2097193, ..., 16777216, 16777216, 16777216],\n",
       "       [ 2146089,        0,  2097193, ..., 16777216, 16777216, 16777216],\n",
       "       [ 2146089,        0,  2097193, ..., 16777216, 16777216, 16777216],\n",
       "       ...,\n",
       "       [ 2146089,        0,  2097193, ..., 16777216, 16777216, 16777216],\n",
       "       [ 2146089,        0,  2097193, ..., 16777216, 16777216, 16777216],\n",
       "       [ 2211625,        0,  2097193, ..., 16777216, 16777216, 16777216]],\n",
       "      dtype=uint32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>chem_Y</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>224.2802 224.28229 ... 224.2802</div><input id='attrs-d90379bd-f8fd-4c16-8a59-17f380df81bf' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d90379bd-f8fd-4c16-8a59-17f380df81bf' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0d46a78b-af53-4734-8116-257139ab8aff' class='xr-var-data-in' type='checkbox'><label for='data-0d46a78b-af53-4734-8116-257139ab8aff' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([224.2802 , 224.28229, 224.28229, ..., 224.2802 , 224.2802 ,\n",
       "       224.2802 ], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>FastADC0peaks</span></div><div class='xr-var-dims'>(trainId, sa3_pId)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>239.0 9.5 -169.0 ... -69.0 101.5</div><input id='attrs-c5b16cb2-b990-4a3d-8908-b9873de9d990' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c5b16cb2-b990-4a3d-8908-b9873de9d990' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1e948a55-3e65-463a-b5a1-b42fabcc297d' class='xr-var-data-in' type='checkbox'><label for='data-1e948a55-3e65-463a-b5a1-b42fabcc297d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 239. ,    9.5, -169. , ...,   53.5,   51.5,  113. ],\n",
       "       [-127.5,   47. ,  -22. , ...,  297.5,  115. ,  322. ],\n",
       "       [ 209.5, -281. , -221.5, ...,   33.5,  -19.5,   31.5],\n",
       "       ...,\n",
       "       [ 186. ,  117. ,  -55.5, ...,   -3. ,  -91. ,  -61. ],\n",
       "       [-284.5, -129. ,  -23.5, ...,   16. , -126. ,  120.5],\n",
       "       [-100.5, -339. ,   11. , ..., -126. ,  -69. ,  101.5]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-928505e0-a653-4fc4-94ba-fe76bdf2fe37' class='xr-section-summary-in' type='checkbox'  checked><label for='section-928505e0-a653-4fc4-94ba-fe76bdf2fe37' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>runFolder :</span></dt><dd>/gpfs/exfel/exp/SCS/202202/p002953/raw/r0001</dd></dl></div></li></ul></div></div>"
      ],
      "text/plain": [
       "<xarray.Dataset>\n",
       "Dimensions:            (pulse_slot: 2700, sa3_pId: 400, trainId: 1817)\n",
       "Coordinates:\n",
       "  * trainId            (trainId) uint64 1471028273 1471028274 ... 1471028272\n",
       "  * sa3_pId            (sa3_pId) int64 1056 1060 1064 1068 ... 2644 2648 2652\n",
       "Dimensions without coordinates: pulse_slot\n",
       "Data variables:\n",
       "    bunchPatternTable  (trainId, pulse_slot) uint32 2146089 0 ... 16777216\n",
       "    chem_Y             (trainId) float32 224.2802 224.28229 ... 224.2802\n",
       "    FastADC0peaks      (trainId, sa3_pId) float64 239.0 9.5 ... -69.0 101.5\n",
       "Attributes:\n",
       "    runFolder:  /gpfs/exfel/exp/SCS/202202/p002953/raw/r0001"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "run, ds = tb.load(proposal, runNB, fields, extract_fadc=False)\n",
    "ds = tb.get_digitizer_peaks(run, 'FastADC0raw', merge_with=ds,\n",
    "                            integParams=params, bunchPattern='sase3')\n",
    "ds"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3d0d64a0",
   "metadata": {},
   "source": [
    "Note that the `mnemonics` parameter in `get_digitizer_peaks` can take a list of mnemonics, so this peak extraction can be simultaneoulsy applied to various channels of a same digitizer (`mnemonics=['FastADC2_5raw', 'FastADC2_9raw']` for instance)."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "xfel (Python 3.7)",
   "language": "python",
   "name": "xfel"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}