Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
ToolBox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SCS
ToolBox
Commits
1b0d618f
Commit
1b0d618f
authored
5 years ago
by
Laurent Mercadier
Browse files
Options
Downloads
Patches
Plain Diff
adds knife_edge function
parent
0b2c24b7
No related branches found
No related tags found
1 merge request
!36
Knife edge
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
__init__.py
+1
-0
1 addition, 0 deletions
__init__.py
knife_edge.py
+66
-0
66 additions, 0 deletions
knife_edge.py
with
67 additions
and
0 deletions
__init__.py
+
1
−
0
View file @
1b0d618f
from
ToolBox.Load
import
*
from
ToolBox.Load
import
*
from
ToolBox.xgm
import
*
from
ToolBox.xgm
import
*
from
ToolBox.XAS
import
*
from
ToolBox.XAS
import
*
from
ToolBox.knife_edge
import
*
This diff is collapsed.
Click to expand it.
knife_edge.py
0 → 100644
+
66
−
0
View file @
1b0d618f
"""
Toolbox for SCS.
Various utilities function to quickly process data measured at the SCS instruments.
Copyright (2019) SCS Team.
"""
import
matplotlib.pyplot
as
plt
import
numpy
as
np
from
scipy.special
import
erfc
from
scipy.optimize
import
curve_fit
def
knife_edge
(
nrun
,
axisKey
=
'
scannerX
'
,
signalKey
=
'
FastADC4peaks
'
,
p0
=
None
,
plot
=
False
):
'''
Calculates the beam radius at 1/e^2 from a knife-edge scan by fitting with erfc
function: f(a, u) = a*erfc(u) or f(a, u) = a*erfc(-u) where u = sqrt(2)*(x-x0)/w0
with w0 the beam radius at 1/e^2 and x0 the beam center.
Inputs:
nrun: xarray Dataset containing the detector signal and the motor position.
axisKey: string, key of the axis against which the knife-edge is performed.
signalKey: string, key of the detector signal.
p0: list, initial parameters used for the fit: x0, w0, a. If None, a beam
radius of 100 um is assumed.
plot: bool: If True, plots the data and the result of the fit.
Outputs:
ndarray with beam radius at 1/e^2 in mm and standard error from the fit
in mm.
'''
def
integPowerUp
(
x
,
x0
,
w0
,
a
):
return
a
*
erfc
(
-
np
.
sqrt
(
2
)
*
(
x
-
x0
)
/
w0
)
def
integPowerDown
(
x
,
x0
,
w0
,
a
):
return
a
*
erfc
(
np
.
sqrt
(
2
)
*
(
x
-
x0
)
/
w0
)
#get the number of pulses per train from the signal source:
dim
=
nrun
[
signalKey
].
dims
[
1
]
#duplicate motor position values to match signal shape
#this is much faster than using nrun.stack()
positions
=
np
.
repeat
(
nrun
[
axisKey
].
values
,
len
(
nrun
[
dim
])).
astype
(
nrun
[
signalKey
].
dtype
)
#sort the data to decide which fitting function to use
sortIdx
=
np
.
argsort
(
positions
)
positions
=
positions
[
sortIdx
]
intensities
=
nrun
[
signalKey
].
values
.
flatten
()[
sortIdx
]
if
intensities
[
0
]
>
intensities
[
-
1
]:
func
=
integPowerDown
else
:
func
=
integPowerUp
if
p0
is
None
:
p0
=
[
np
.
mean
(
positions
),
0.1
,
np
.
max
(
intensities
)
/
2
]
popt
,
pcov
=
curve_fit
(
func
,
positions
,
intensities
,
p0
=
p0
)
print
(
'
w0 = (%.1f +/- %.1f) um
'
%
(
popt
[
1
]
*
1e3
,
pcov
[
1
,
1
]
**
0.5
*
1e3
))
if
plot
:
xfit
=
np
.
linspace
(
positions
.
min
(),
positions
.
max
(),
1000
)
yfit
=
func
(
xfit
,
*
popt
)
plt
.
figure
(
figsize
=
(
7
,
4
))
plt
.
scatter
(
positions
,
intensities
,
color
=
'
C1
'
,
label
=
'
exp
'
,
s
=
2
,
alpha
=
0.01
)
plt
.
plot
(
xfit
,
yfit
,
color
=
'
C4
'
,
label
=
r
'
fit $\rightarrow$ $w_0=$(%.1f $\pm$ %.1f) $\mu$m
'
%
(
popt
[
1
]
*
1e3
,
pcov
[
1
,
1
]
**
0.5
*
1e3
))
leg
=
plt
.
legend
()
for
lh
in
leg
.
legendHandles
:
lh
.
set_alpha
(
1
)
plt
.
ylabel
(
signalKey
)
plt
.
xlabel
(
axisKey
+
'
-position [mm]
'
)
plt
.
tight_layout
()
return
np
.
array
(
popt
[
1
],
pcov
[
1
,
1
]
**
0.5
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment