Skip to content
Snippets Groups Projects
Commit 1b0d618f authored by Laurent Mercadier's avatar Laurent Mercadier
Browse files

adds knife_edge function

parent 0b2c24b7
No related branches found
No related tags found
1 merge request!36Knife edge
from ToolBox.Load import * from ToolBox.Load import *
from ToolBox.xgm import * from ToolBox.xgm import *
from ToolBox.XAS import * from ToolBox.XAS import *
from ToolBox.knife_edge import *
""" Toolbox for SCS.
Various utilities function to quickly process data measured at the SCS instruments.
Copyright (2019) SCS Team.
"""
import matplotlib.pyplot as plt
import numpy as np
from scipy.special import erfc
from scipy.optimize import curve_fit
def knife_edge(nrun, axisKey='scannerX', signalKey='FastADC4peaks', p0=None, plot=False):
''' Calculates the beam radius at 1/e^2 from a knife-edge scan by fitting with erfc
function: f(a, u) = a*erfc(u) or f(a, u) = a*erfc(-u) where u = sqrt(2)*(x-x0)/w0
with w0 the beam radius at 1/e^2 and x0 the beam center.
Inputs:
nrun: xarray Dataset containing the detector signal and the motor position.
axisKey: string, key of the axis against which the knife-edge is performed.
signalKey: string, key of the detector signal.
p0: list, initial parameters used for the fit: x0, w0, a. If None, a beam
radius of 100 um is assumed.
plot: bool: If True, plots the data and the result of the fit.
Outputs:
ndarray with beam radius at 1/e^2 in mm and standard error from the fit
in mm.
'''
def integPowerUp(x, x0, w0, a):
return a*erfc(-np.sqrt(2)*(x-x0)/w0)
def integPowerDown(x, x0, w0, a):
return a*erfc(np.sqrt(2)*(x-x0)/w0)
#get the number of pulses per train from the signal source:
dim = nrun[signalKey].dims[1]
#duplicate motor position values to match signal shape
#this is much faster than using nrun.stack()
positions = np.repeat(nrun[axisKey].values,
len(nrun[dim])).astype(nrun[signalKey].dtype)
#sort the data to decide which fitting function to use
sortIdx = np.argsort(positions)
positions = positions[sortIdx]
intensities = nrun[signalKey].values.flatten()[sortIdx]
if intensities[0] > intensities[-1]:
func = integPowerDown
else:
func = integPowerUp
if p0 is None:
p0 = [np.mean(positions), 0.1, np.max(intensities)/2]
popt, pcov = curve_fit(func, positions, intensities, p0=p0)
print('w0 = (%.1f +/- %.1f) um'%(popt[1]*1e3, pcov[1,1]**0.5*1e3))
if plot:
xfit = np.linspace(positions.min(), positions.max(), 1000)
yfit = func(xfit, *popt)
plt.figure(figsize=(7,4))
plt.scatter(positions, intensities, color='C1', label='exp', s=2, alpha=0.01)
plt.plot(xfit, yfit, color='C4',
label=r'fit $\rightarrow$ $w_0=$(%.1f $\pm$ %.1f) $\mu$m'%(popt[1]*1e3, pcov[1,1]**0.5*1e3))
leg = plt.legend()
for lh in leg.legendHandles:
lh.set_alpha(1)
plt.ylabel(signalKey)
plt.xlabel(axisKey + '-position [mm]')
plt.tight_layout()
return np.array(popt[1], pcov[1,1]**0.5)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment