Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
ToolBox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SCS
ToolBox
Commits
30f19660
Commit
30f19660
authored
5 years ago
by
Loïc Le Guyader
Browse files
Options
Downloads
Patches
Plain Diff
Dssc1module
parent
58ea0a39
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
DSSC1module.py
+399
-0
399 additions, 0 deletions
DSSC1module.py
XAS.py
+19
-4
19 additions, 4 deletions
XAS.py
__init__.py
+1
-0
1 addition, 0 deletions
__init__.py
with
419 additions
and
4 deletions
DSSC1module.py
0 → 100644
+
399
−
0
View file @
30f19660
import
multiprocessing
from
time
import
strftime
from
tqdm.auto
import
tqdm
import
os
import
warnings
import
psutil
import
karabo_data
as
kd
from
karabo_data.read_machinery
import
find_proposal
import
ToolBox
as
tb
import
matplotlib.pyplot
as
plt
from
mpl_toolkits.axes_grid1
import
ImageGrid
import
matplotlib.patches
as
patches
import
numpy
as
np
import
xarray
as
xr
import
h5py
from
glob
import
glob
from
imageio
import
imread
class
DSSC1module
:
def
__init__
(
self
,
module
,
proposal
):
"""
Create a DSSC object to process 1 module of DSSC data.
inputs:
module: module number to process
proposal: (int,str) proposal number string
"""
self
.
module
=
module
if
isinstance
(
proposal
,
int
):
proposal
=
'
p{:06d}
'
.
format
(
proposal
)
self
.
runFolder
=
find_proposal
(
proposal
)
self
.
semester
=
self
.
runFolder
.
split
(
'
/
'
)[
-
2
]
self
.
proposal
=
proposal
self
.
topic
=
self
.
runFolder
.
split
(
'
/
'
)[
-
3
]
self
.
save_folder
=
os
.
path
.
join
(
self
.
runFolder
,
'
usr/condensed_runs/
'
)
self
.
px_pitch_h
=
236
# horizontal pitch in microns
self
.
px_pitch_v
=
204
# vertical pitch in microns
self
.
aspect
=
self
.
px_pitch_v
/
self
.
px_pitch_h
# aspect ratio of the DSSC images
print
(
'
DSSC configuration
'
)
print
(
f
'
DSSC module:
{
self
.
module
}
'
)
print
(
f
'
Topic:
{
self
.
topic
}
'
)
print
(
f
'
Semester:
{
self
.
semester
}
'
)
print
(
f
'
Proposal:
{
self
.
proposal
}
'
)
print
(
f
'
Default save folder:
{
self
.
save_folder
}
'
)
if
not
os
.
path
.
exists
(
self
.
save_folder
):
warnings
.
warn
(
f
'
Default save folder does not exist:
{
self
.
save_folder
}
'
)
self
.
dark_data
=
0
self
.
max_fraction_memory
=
0.8
self
.
Nworker
=
10
self
.
rois
=
None
def
open_run
(
self
,
run_nr
,
t0
=
0.0
):
"""
Open a run with karabo-data and prepare the virtual dataset for multiprocessing
inputs:
run_nr: the run number
t0: optional t0 in mm
"""
print
(
'
Opening run data with karabo-data
'
)
self
.
run_nr
=
run_nr
self
.
xgm
=
None
self
.
run
=
kd
.
open_run
(
self
.
proposal
,
self
.
run_nr
)
self
.
plot_title
=
f
'
{
self
.
proposal
}
run:
{
self
.
run_nr
}
'
self
.
fpt
=
self
.
run
.
detector_info
(
f
'
SCS_DET_DSSC1M-1/DET/
{
self
.
module
}
CH0:xtdf
'
)[
'
frames_per_train
'
]
self
.
nbunches
=
self
.
run
.
get_array
(
'
SCS_RR_UTC/MDL/BUNCH_DECODER
'
,
'
sase3.nPulses.value
'
)
self
.
nbunches
=
np
.
unique
(
self
.
nbunches
)
if
len
(
self
.
nbunches
)
==
1
:
self
.
nbunches
=
self
.
nbunches
[
0
]
else
:
warnings
.
warn
(
'
not all trains have same length DSSC data
'
)
print
(
f
'
nbunches:
{
self
.
nbunches
}
'
)
self
.
nbunches
=
self
.
nbunches
[
-
1
]
print
(
f
'
DSSC frames per train:
{
self
.
fpt
}
'
)
print
(
f
'
SA3 bunches per train:
{
self
.
nbunches
}
'
)
print
(
'
Collecting DSSC module files
'
)
self
.
collect_dssc_module_file
()
print
(
f
'
Loading XGM data
'
)
self
.
xgm
=
self
.
run
.
get_array
(
tb
.
mnemonics
[
'
SCS_SA3
'
][
'
source
'
],
tb
.
mnemonics
[
'
SCS_SA3
'
][
'
key
'
],
roi
=
kd
.
by_index
[:
self
.
nbunches
])
self
.
xgm
=
self
.
xgm
.
rename
({
'
dim_0
'
:
'
pulseId
'
})
self
.
xgm
[
'
pulseId
'
]
=
np
.
arange
(
0
,
2
*
self
.
nbunches
,
2
)
print
(
f
'
Loading mono nrj data
'
)
self
.
nrj
=
self
.
run
.
get_array
(
tb
.
mnemonics
[
'
nrj
'
][
'
source
'
],
tb
.
mnemonics
[
'
nrj
'
][
'
key
'
])
print
(
f
'
Loading daly line data
'
)
try
:
self
.
delay_mm
=
self
.
run
.
get_array
(
tb
.
mnemonics
[
'
PP800_DelayLine
'
][
'
source
'
],
tb
.
mnemonics
[
'
PP800_DelayLine
'
][
'
key
'
])
except
:
self
.
delay_mm
=
0
*
self
.
nrj
self
.
t0
=
t0
self
.
delay_ps
=
tb
.
positionToDelay
(
self
.
delay_mm
,
origin
=
self
.
t0
)
def
collect_dssc_module_file
(
self
):
"""
Collect the raw DSSC module h5 files.
"""
pattern
=
self
.
runFolder
+
f
'
/raw/r
{
self
.
run_nr
:
04
d
}
/RAW-R
{
self
.
run_nr
:
04
d
}
-DSSC
{
self
.
module
:
02
d
}
-S*.h5
'
self
.
h5list
=
glob
(
pattern
)
def
process
(
self
,
dark_pass
=
None
):
"""
Process DSSC data from one module using multiprocessing
dark_pass: if None, process data, if
'
mean
'
, compute the mean, if
'
std
'
, compute the std
"""
# get available memory in GB, we will try to use 80 % of it
max_GB
=
psutil
.
virtual_memory
().
available
/
1024
**
3
print
(
f
'
max available memory:
{
max_GB
}
GB
'
)
# max_GB / (8byte * Nworker * 128px * 512px * N_pulses)
self
.
chunksize
=
int
(
self
.
max_fraction_memory
*
max_GB
*
1024
**
3
//
(
8
*
self
.
Nworker
*
128
*
512
*
self
.
fpt
))
print
(
'
processing
'
,
self
.
chunksize
,
'
trains per chunk
'
)
if
dark_pass
==
'
mean
'
:
rois
=
None
dark
=
0
mask
=
1
elif
dark_pass
==
'
std
'
:
dark
=
self
.
dark_data
[
'
dark_mean
'
]
rois
=
None
mask
=
1
elif
dark_pass
is
None
:
dark
=
self
.
dark_data
[
'
dark_mean
'
]
rois
=
self
.
rois
mask
=
self
.
dark_data
[
'
mask
'
]
else
:
raise
ValueError
(
f
"
dark_pass should be either None or
'
mean
'
or
'
std
'
but not
{
dark_pass
}
"
)
jobs
=
[]
for
m
,
h5fname
in
enumerate
(
self
.
h5list
):
jobs
.
append
(
dict
(
fpt
=
self
.
fpt
,
module
=
self
.
module
,
h5fname
=
h5fname
,
chunksize
=
self
.
chunksize
,
nbunches
=
self
.
nbunches
,
workerId
=
m
,
Nworker
=
self
.
Nworker
,
dark_data
=
dark
,
rois
=
rois
,
mask
=
mask
))
timestamp
=
strftime
(
'
%X
'
)
print
(
f
'
start time:
{
timestamp
}
'
)
with
multiprocessing
.
Pool
(
self
.
Nworker
)
as
pool
:
res
=
pool
.
map
(
process_one_module
,
jobs
)
print
(
'
finished:
'
,
strftime
(
'
%X
'
))
# rearange the multiprocessed data
# this is to get rid of the worker dimension, there is no sum over worker really involved
self
.
module_data
=
xr
.
concat
(
res
,
dim
=
'
worker
'
).
sum
(
dim
=
'
worker
'
)
# reorder the dimension
if
'
trainId
'
in
self
.
module_data
.
dims
:
self
.
module_data
=
self
.
module_data
.
transpose
(
'
trainId
'
,
'
pulseId
'
,
'
x
'
,
'
y
'
)
else
:
self
.
module_data
=
self
.
module_data
.
transpose
(
'
pulseId
'
,
'
x
'
,
'
y
'
)
# fix some computation now that we have everything
self
.
module_data
[
'
std_data
'
]
=
np
.
sqrt
(
self
.
module_data
[
'
std_data
'
]
/
(
self
.
module_data
[
'
counts
'
]
-
1
))
self
.
module_data
[
'
dark_corrected_data
'
]
=
self
.
module_data
[
'
dark_corrected_data
'
]
/
self
.
module_data
[
'
counts
'
]
self
.
module_data
[
'
run
'
]
=
self
.
run_nr
if
dark_pass
==
'
mean
'
:
self
.
dark_data
=
self
.
module_data
[
'
dark_corrected_data
'
].
to_dataset
(
'
dark_mean
'
)
self
.
dark_data
[
'
run
'
]
=
self
.
run_nr
elif
dark_pass
==
'
std
'
:
self
.
dark_data
[
'
dark_std
'
]
=
self
.
module_data
[
'
std_data
'
]
assert
self
.
dark_data
[
'
run
'
]
==
self
.
run_nr
,
"
noise map computed from different darks
"
else
:
self
.
module_data
[
'
xgm
'
]
=
self
.
xgm
self
.
module_data
[
'
nrj
'
]
=
self
.
nrj
self
.
module_data
[
'
delay_mm
'
]
=
self
.
delay_mm
self
.
module_data
[
'
delay_ps
'
]
=
self
.
delay_ps
self
.
module_data
[
'
t0
'
]
=
self
.
t0
self
.
plot_title
=
f
"
{
self
.
proposal
}
run:
{
self
.
module_data
[
'
run
'
].
values
}
dark:
{
self
.
dark_data
[
'
run
'
].
values
}
"
self
.
module_data
.
attrs
[
'
plot_title
'
]
=
self
.
plot_title
def
compute_mask
(
self
,
low
=
0.01
,
high
=
0.8
):
"""
Compute a DSSC module mask from the noise map of a dark run.
"""
if
self
.
dark_data
[
'
dark_std
'
]
is
None
:
raise
ValueError
(
'
Cannot compute from from a missing dark noise map
'
)
self
.
dark_data
[
'
mask_low
'
]
=
low
self
.
dark_data
[
'
mask_high
'
]
=
high
m_std
=
self
.
dark_data
[
'
dark_std
'
].
mean
(
'
pulseId
'
)
self
.
dark_data
[
'
mask
'
]
=
1
-
((
m_std
>
self
.
dark_data
[
'
mask_high
'
])
+
(
m_std
<
self
.
dark_data
[
'
mask_low
'
]))
def
plot_module
(
self
,
plot_dark
=
False
,
low
=
1
,
high
=
98
,
vmin
=
None
,
vmax
=
None
):
"""
Plot a module.
inputs:
plot_dark: if true, plot dark instead of run data.
low: low percentile fraction of the display scale
high: high percentile fraction of the display scale
vmin: low value of the display scale, overwrites vmin computed from low
vmax: max value of the display scale, overwrites vmax computed from high
"""
if
plot_dark
:
mean
=
self
.
dark_data
[
'
dark_mean
'
].
mean
(
'
pulseId
'
)
std
=
self
.
dark_data
[
'
dark_std
'
]
title
=
f
"
{
self
.
proposal
}
dark:
{
self
.
dark_data
[
'
run
'
].
values
}
"
else
:
mean
=
self
.
module_data
[
'
dark_corrected_data
'
].
mean
(
'
pulseId
'
)
std
=
self
.
module_data
[
'
std_data
'
]
title
=
self
.
plot_title
fig
,
(
ax1
,
ax2
,
ax3
,
ax4
)
=
plt
.
subplots
(
nrows
=
4
,
figsize
=
[
5
,
4
*
2.5
])
_vmin
,
_vmax
=
np
.
percentile
((
mean
.
values
[
~
self
.
dark_data
[
'
mask
'
]]).
flatten
(),
[
low
,
high
])
if
vmin
is
None
:
vmin
=
_vmin
if
vmax
is
None
:
vmax
=
_vmax
im
=
ax1
.
imshow
(
mean
,
vmin
=
vmin
,
vmax
=
vmax
)
fig
.
colorbar
(
im
,
ax
=
ax1
)
ax1
.
set_title
(
'
mean
'
)
fig
.
suptitle
(
title
)
im
=
ax2
.
imshow
(
std
.
mean
(
'
pulseId
'
),
vmin
=
0
,
vmax
=
2
)
fig
.
colorbar
(
im
,
ax
=
ax2
)
ax2
.
set_title
(
'
std
'
)
ax3
.
hist
(
std
.
values
.
flatten
(),
bins
=
200
,
range
=
[
0
,
2
],
density
=
True
)
ax3
.
axvline
(
self
.
dark_data
[
'
mask_low
'
],
ls
=
'
--
'
,
c
=
'
k
'
)
ax3
.
axvline
(
self
.
dark_data
[
'
mask_high
'
],
ls
=
'
--
'
,
c
=
'
k
'
)
ax3
.
set_yscale
(
'
log
'
)
ax3
.
set_ylabel
(
'
density
'
)
ax3
.
set_xlabel
(
'
std values
'
)
im
=
ax4
.
imshow
(
self
.
dark_data
[
'
mask
'
])
fig
.
colorbar
(
im
,
ax
=
ax4
)
def
save
(
self
,
save_folder
=
None
,
overwrite
=
False
,
isDark
=
False
):
"""
Save the crunched data.
inputs:
save_folder: string of the fodler where to save the data.
overwrite: boolean whether or not to overwrite existing files.
isDark: save the dark or the process data
"""
if
save_folder
is
None
:
save_folder
=
self
.
save_folder
if
isDark
:
fname
=
f
'
run
{
self
.
run_nr
}
_dark.h5
'
# no scan
data
=
self
.
dark_data
else
:
fname
=
f
'
run
{
self
.
run_nr
}
.h5
'
# run with delay scan (change for other scan types!)
data
=
self
.
module_data
save_path
=
os
.
path
.
join
(
save_folder
,
fname
)
file_exists
=
os
.
path
.
isfile
(
save_path
)
if
not
file_exists
or
(
file_exists
and
overwrite
):
if
file_exists
:
warnings
.
warn
(
f
'
Overwriting file:
{
save_path
}
'
)
os
.
remove
(
save_path
)
data
.
to_netcdf
(
save_path
,
group
=
'
data
'
)
os
.
chmod
(
save_path
,
0o664
)
print
(
'
saving:
'
,
save_path
)
else
:
print
(
'
file
'
,
save_path
,
'
exists and overwrite is False
'
)
def
load_dark
(
self
,
dark_runNB
,
save_folder
=
None
):
"""
Load dark data.
inputs:
save_folder: string of the folder where the data were saved.
"""
if
save_folder
is
None
:
save_folder
=
self
.
save_folder
self
.
run_nr
=
dark_runNB
self
.
dark_data
=
xr
.
open_dataset
(
os
.
path
.
join
(
save_folder
,
f
'
run
{
dark_runNB
}
_dark.h5
'
),
group
=
'
data
'
)
self
.
plot_title
=
f
"
{
self
.
proposal
}
dark:
{
self
.
dark_data
[
'
run
'
].
values
}
"
def
show_rois
(
self
):
fig
,
ax1
=
plt
.
subplots
(
nrows
=
1
,
figsize
=
[
5
,
2.5
])
try
:
ax1
.
imshow
(
self
.
module_data
[
'
dark_corrected_data
'
].
mean
(
'
pulseId
'
)
*
self
.
dark_data
[
'
mask
'
])
except
:
ax1
.
imshow
(
self
.
dark_data
[
'
dark_mean
'
].
mean
(
'
pulseId
'
)
*
self
.
dark_data
[
'
mask
'
])
for
r
,
v
in
self
.
rois
.
items
():
rect
=
patches
.
Rectangle
((
v
[
'
y
'
][
0
],
v
[
'
x
'
][
0
]),
v
[
'
y
'
][
1
]
-
v
[
'
y
'
][
0
],
v
[
'
x
'
][
1
]
-
v
[
'
x
'
][
0
],
linewidth
=
1
,
edgecolor
=
'
r
'
,
facecolor
=
'
none
'
)
ax1
.
add_patch
(
rect
)
fig
.
suptitle
(
self
.
plot_title
)
# since 'self' is not pickable, this function has to be outside the DSSC class so that it can be used
# by the multiprocessing pool.map function
def
process_one_module
(
job
):
chunksize
=
job
[
'
chunksize
'
]
Nworker
=
job
[
'
Nworker
'
]
workerId
=
job
[
'
workerId
'
]
dark_data
=
job
[
'
dark_data
'
]
fpt
=
job
[
'
fpt
'
]
module
=
job
[
'
module
'
]
rois
=
job
[
'
rois
'
]
mask
=
job
[
'
mask
'
]
h5fname
=
job
[
'
h5fname
'
]
image_path
=
f
"
INSTRUMENT/SCS_DET_DSSC1M-1/DET/
{
module
}
CH0:xtdf/image/data
"
npulse_path
=
f
"
INDEX/SCS_DET_DSSC1M-1/DET/
{
module
}
CH0:xtdf/image/count
"
with
h5py
.
File
(
h5fname
,
'
r
'
)
as
m
:
all_trainIds
=
m
[
'
INDEX/trainId
'
][()]
n_trains
=
len
(
all_trainIds
)
n_chunk
=
np
.
ceil
(
n_trains
/
chunksize
)
+
1
chunks
=
np
.
linspace
(
0
,
n_trains
,
n_chunk
,
endpoint
=
True
,
dtype
=
int
)
# create empty dataset to add actual data to
module_data
=
xr
.
DataArray
(
np
.
zeros
([
fpt
,
128
,
512
],
dtype
=
np
.
float64
),
dims
=
[
'
pulseId
'
,
'
x
'
,
'
y
'
],
coords
=
{
'
pulseId
'
:
np
.
arange
(
fpt
)}).
to_dataset
(
name
=
'
dark_corrected_data
'
)
module_data
[
'
std_data
'
]
=
xr
.
DataArray
(
np
.
zeros
([
fpt
,
128
,
512
],
dtype
=
np
.
float64
),
dims
=
[
'
pulseId
'
,
'
x
'
,
'
y
'
])
if
rois
is
not
None
:
for
k
in
rois
.
keys
():
module_data
[
k
]
=
xr
.
DataArray
(
np
.
empty
([
n_trains
],
dtype
=
np
.
float64
),
dims
=
[
'
trainId
'
],
coords
=
{
'
trainId
'
:
all_trainIds
})
module_data
[
'
counts
'
]
=
0
# crunching
with
h5py
.
File
(
h5fname
,
'
r
'
)
as
m
:
#chunk_start = np.arange(len(all_trainIds), step=job['chunksize'], dtype=int)
trains_start
=
0
# This line is the strange hack from https://github.com/tqdm/tqdm/issues/485
print
(
'
'
,
end
=
''
,
flush
=
True
)
for
k
,
v
in
enumerate
(
tqdm
(
chunks
[:
-
1
],
desc
=
f
"
pool.map#
{
workerId
:
02
d
}
"
)):
chunk_dssc
=
np
.
s_
[
int
(
chunks
[
k
]
*
fpt
):
int
(
chunks
[
k
+
1
]
*
fpt
)]
# for dssc data
data
=
m
[
image_path
][
chunk_dssc
].
squeeze
()
trains
=
m
[
'
INDEX/trainId
'
][
np
.
s_
[
int
(
chunks
[
k
]):
int
(
chunks
[
k
+
1
])]]
n_trains
=
len
(
trains
)
data
=
data
.
astype
(
np
.
float64
)
data
=
xr
.
DataArray
(
np
.
reshape
(
data
,
[
n_trains
,
fpt
,
128
,
512
]),
dims
=
[
'
trainId
'
,
'
pulseId
'
,
'
x
'
,
'
y
'
],
coords
=
{
'
trainId
'
:
trains
})
temp
=
data
-
dark_data
if
rois
is
not
None
:
temp2
=
temp
.
where
(
mask
)
for
k
,
v
in
rois
.
items
():
val
=
temp2
.
isel
({
'
x
'
:
slice
(
v
[
'
x
'
][
0
],
v
[
'
x
'
][
1
]),
'
y
'
:
slice
(
v
[
'
y
'
][
0
],
v
[
'
y
'
][
1
])}).
sum
(
dim
=
[
'
x
'
,
'
y
'
])
module_data
[
k
]
=
val
module_data
[
'
dark_corrected_data
'
]
+=
temp
.
sum
(
dim
=
'
trainId
'
)
module_data
[
'
std_data
'
]
+=
(
temp
**
2
).
sum
(
dim
=
'
trainId
'
)
module_data
[
'
counts
'
]
+=
n_trains
return
module_data
\ No newline at end of file
This diff is collapsed.
Click to expand it.
XAS.py
+
19
−
4
View file @
30f19660
...
...
@@ -135,10 +135,22 @@ def xas(nrun, bins=None, Iokey='SCS_SA3', Itkey='MCP3apd', nrjkey='nrj', Iooffse
def
whichIo
(
data
):
"""
Select which fields to use as I0 and which to use as I1
"""
if
'
mcp
'
in
Iokey
.
lower
():
Io_sign
=
-
1
else
:
Io_sign
=
1
if
'
mcp
'
in
Itkey
.
lower
():
It_sign
=
-
1
else
:
It_sign
=
1
if
len
(
data
)
==
0
:
return
absorption
([],
[])
else
:
return
absorption
(
-
data
[
'
It
'
],
data
[
'
Io
'
])
return
absorption
(
It_sign
*
data
[
'
It
'
],
Io_sign
*
data
[
'
Io
'
])
if
bins
is
None
:
num_bins
=
80
...
...
@@ -169,9 +181,12 @@ def xas(nrun, bins=None, Iokey='SCS_SA3', Itkey='MCP3apd', nrjkey='nrj', Iooffse
ax1_twin
.
bar
(
bins_c
,
nosample
[
'
muIo
'
],
width
=
0.80
*
(
bins_c
[
1
]
-
bins_c
[
0
]),
color
=
'
C1
'
,
alpha
=
0.2
)
ax1_twin
.
set_ylabel
(
'
Io
'
)
proposalNB
=
int
(
nrun
.
attrs
[
'
runFolder
'
].
split
(
'
/
'
)[
-
4
][
1
:])
runNB
=
int
(
nrun
.
attrs
[
'
runFolder
'
].
split
(
'
/
'
)[
-
2
][
1
:])
ax1
.
set_title
(
'
run {:d} p{:}
'
.
format
(
runNB
,
proposalNB
))
try
:
proposalNB
=
int
(
nrun
.
attrs
[
'
runFolder
'
].
split
(
'
/
'
)[
-
4
][
1
:])
runNB
=
int
(
nrun
.
attrs
[
'
runFolder
'
].
split
(
'
/
'
)[
-
2
][
1
:])
ax1
.
set_title
(
'
run {:d} p{:}
'
.
format
(
runNB
,
proposalNB
))
except
:
f
.
suptitle
(
nrun
.
attrs
[
'
plot_title
'
])
ax2
=
plt
.
subplot
(
gs
[
1
])
ax2
.
bar
(
bins_c
,
nosample
[
'
counts
'
],
width
=
0.80
*
(
bins_c
[
1
]
-
bins_c
[
0
]),
...
...
This diff is collapsed.
Click to expand it.
__init__.py
+
1
−
0
View file @
30f19660
...
...
@@ -5,3 +5,4 @@ from ToolBox.knife_edge import *
from
ToolBox.Laser_utils
import
*
from
ToolBox.DSSC
import
DSSC
from
ToolBox.azimuthal_integrator
import
*
from
ToolBox.DSSC1module
import
*
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment