Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
ToolBox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SCS
ToolBox
Commits
6d4e31e9
Commit
6d4e31e9
authored
6 years ago
by
Laurent Mercadier
Browse files
Options
Downloads
Plain Diff
Merge branch 'tim_calibration_table' into 'master'
Tim calibration table See merge request
!11
parents
5cffbe80
29d74c4d
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!11
Tim calibration table
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
xgm.py
+114
-35
114 additions, 35 deletions
xgm.py
with
114 additions
and
35 deletions
xgm.py
+
114
−
35
View file @
6d4e31e9
...
@@ -195,7 +195,7 @@ def selectSASEinXGM(data, sase='sase3', xgm='SCS_XGM'):
...
@@ -195,7 +195,7 @@ def selectSASEinXGM(data, sase='sase3', xgm='SCS_XGM'):
return
result
return
result
def
calc
Contrib
SASE
(
data
,
sase
=
'
sase1
'
,
xgm
=
'
SA3_XGM
'
):
def
sase
Contrib
ution
(
data
,
sase
=
'
sase1
'
,
xgm
=
'
SA3_XGM
'
):
'''
Calculate the relative contribution of SASE 1 or SASE 3 pulses
'''
Calculate the relative contribution of SASE 1 or SASE 3 pulses
for each train in the run. Supports fresh bunch, dedicated trains
for each train in the run. Supports fresh bunch, dedicated trains
and pulse on demand modes.
and pulse on demand modes.
...
@@ -211,13 +211,11 @@ def calcContribSASE(data, sase='sase1', xgm='SA3_XGM'):
...
@@ -211,13 +211,11 @@ def calcContribSASE(data, sase='sase1', xgm='SA3_XGM'):
'''
'''
xgm_sa1
=
selectSASEinXGM
(
data
,
'
sase1
'
,
xgm
=
xgm
)
xgm_sa1
=
selectSASEinXGM
(
data
,
'
sase1
'
,
xgm
=
xgm
)
xgm_sa3
=
selectSASEinXGM
(
data
,
'
sase3
'
,
xgm
=
xgm
)
xgm_sa3
=
selectSASEinXGM
(
data
,
'
sase3
'
,
xgm
=
xgm
)
if
np
.
all
(
xgm_sa1
.
trainId
.
isin
(
xgm_sa3
.
trainId
).
values
)
==
False
:
#Fill missing train ids with 0
print
(
'
Dedicated mode
'
)
r
=
xr
.
align
(
*
[
xgm_sa1
,
xgm_sa3
],
join
=
'
outer
'
,
exclude
=
[
'
XGMbunchId
'
])
r
=
xr
.
align
(
*
[
xgm_sa1
,
xgm_sa3
],
join
=
'
outer
'
,
exclude
=
[
'
SA3_XGM_dim
'
,
'
SA1_XGM_dim
'
])
xgm_sa1
=
r
[
0
].
fillna
(
0
)
xgm_sa1
=
r
[
0
]
xgm_sa3
=
r
[
1
].
fillna
(
0
)
xgm_sa1
.
fillna
(
0
)
xgm_sa3
=
r
[
1
]
xgm_sa3
.
fillna
(
0
)
contrib
=
xgm_sa1
.
sum
(
axis
=
1
)
/
(
xgm_sa1
.
sum
(
axis
=
1
)
+
xgm_sa3
.
sum
(
axis
=
1
))
contrib
=
xgm_sa1
.
sum
(
axis
=
1
)
/
(
xgm_sa1
.
sum
(
axis
=
1
)
+
xgm_sa3
.
sum
(
axis
=
1
))
if
sase
==
'
sase1
'
:
if
sase
==
'
sase1
'
:
return
contrib
return
contrib
...
@@ -300,7 +298,7 @@ def calibrateXGMs(data, rollingWindow=200, plot=False):
...
@@ -300,7 +298,7 @@ def calibrateXGMs(data, rollingWindow=200, plot=False):
print
(
'
calibration factor SA3 XGM: %f
'
%
sa3_calib_factor
)
print
(
'
calibration factor SA3 XGM: %f
'
%
sa3_calib_factor
)
# Calibrate SCS XGM with SASE3-only contribution
# Calibrate SCS XGM with SASE3-only contribution
sa3contrib
=
calc
Contrib
SASE
(
data
,
'
sase3
'
,
'
SA3_XGM
'
)
sa3contrib
=
sase
Contrib
ution
(
data
,
'
sase3
'
,
'
SA3_XGM
'
)
if
not
noSCS
:
if
not
noSCS
:
scs_sase3_fast
=
selectSASEinXGM
(
data
,
'
sase3
'
,
'
SCS_XGM
'
).
mean
(
axis
=
1
)
scs_sase3_fast
=
selectSASEinXGM
(
data
,
'
sase3
'
,
'
SCS_XGM
'
).
mean
(
axis
=
1
)
meanFast
=
scs_sase3_fast
.
rolling
(
trainId
=
rollingWindow
).
mean
()
meanFast
=
scs_sase3_fast
.
rolling
(
trainId
=
rollingWindow
).
mean
()
...
@@ -343,7 +341,7 @@ def calibrateXGMs(data, rollingWindow=200, plot=False):
...
@@ -343,7 +341,7 @@ def calibrateXGMs(data, rollingWindow=200, plot=False):
return
np
.
array
([
sa3_calib_factor
,
scs_calib_factor
])
return
np
.
array
([
sa3_calib_factor
,
scs_calib_factor
])
def
mcpPeaks
(
data
,
intstart
,
intstop
,
bkgstart
,
bkgstop
,
t_offset
=
1760
,
mcp
=
1
,
npulses
=
None
):
def
mcpPeaks
(
data
,
intstart
,
intstop
,
bkgstart
,
bkgstop
,
mcp
=
1
,
t_offset
=
None
,
npulses
=
None
):
'''
Computes peak integration from raw MCP traces.
'''
Computes peak integration from raw MCP traces.
Inputs:
Inputs:
...
@@ -352,21 +350,32 @@ def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, t_offset=1760, mcp=1, n
...
@@ -352,21 +350,32 @@ def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, t_offset=1760, mcp=1, n
intstop: trace index of integration stop
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstart: trace index of background start
bkgstop: trace index of background stop
bkgstop: trace index of background stop
t_offset: index separation between two pulses
mcp: MCP channel number
mcp: MCP channel number
npulses: number of pulses
t_offset: index separation between two pulses. If None, checks the
pulse pattern and determine the t_offset assuming mininum pulse
separation of 220 ns and digitizer resolution of 2 GHz.
npulses: number of pulses. If None, takes the maximum number of
pulses according to the bunch patter (field
'
npulses_sase3
'
)
Output:
Output:
results: DataArray with dims trainId x max(sase3 pulses)
*1MHz/intra-train rep.rate
results: DataArray with dims trainId x max(sase3 pulses)
'''
'''
keyraw
=
'
MCP{}raw
'
.
format
(
mcp
)
keyraw
=
'
MCP{}raw
'
.
format
(
mcp
)
if
keyraw
not
in
data
:
if
keyraw
not
in
data
:
raise
ValueError
(
"
Source not found: {}!
"
.
format
(
keyraw
))
raise
ValueError
(
"
Source not found: {}!
"
.
format
(
keyraw
))
if
npulses
is
None
:
if
npulses
is
None
:
npulses
=
int
((
data
[
'
sase3
'
].
max
().
values
+
1
)
/
4
)
npulses
=
int
(
data
[
'
npulses_sase3
'
].
max
().
values
)
sa3
=
data
[
'
sase3
'
].
where
(
data
[
'
sase3
'
]
>
1
)
/
4
sa3
=
data
[
'
sase3
'
].
where
(
data
[
'
sase3
'
]
>
1
)
sa3
-=
sa3
[:,
0
]
if
t_offset
is
None
:
if
npulses
>
1
:
#Calculate the number of pulses between two lasing pulses (step)
step
=
sa3
.
where
(
data
[
'
npulses_sase3
'
]
>
1
,
drop
=
True
)[
0
,:
2
].
values
step
=
int
(
step
[
1
]
-
step
[
0
])
#multiply by elementary samples length (220 ns @ 2 GHz = 440)
t_offset
=
440
*
step
else
:
t_offset
=
1
results
=
xr
.
DataArray
(
np
.
empty
((
sa3
.
shape
[
0
],
npulses
)),
coords
=
sa3
.
coords
,
results
=
xr
.
DataArray
(
np
.
empty
((
sa3
.
shape
[
0
],
npulses
)),
coords
=
sa3
.
coords
,
dims
=
[
'
trainId
'
,
'
MCP{}fromRaw
'
.
format
(
mcp
)])
dims
=
[
'
trainId
'
,
'
MCP{}fromRaw
'
.
format
(
mcp
)])
for
i
in
range
(
npulses
):
for
i
in
range
(
npulses
):
...
@@ -380,7 +389,7 @@ def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, t_offset=1760, mcp=1, n
...
@@ -380,7 +389,7 @@ def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, t_offset=1760, mcp=1, n
def
getTIMapd
(
data
,
mcp
=
1
,
use_apd
=
True
,
intstart
=
None
,
intstop
=
None
,
def
getTIMapd
(
data
,
mcp
=
1
,
use_apd
=
True
,
intstart
=
None
,
intstop
=
None
,
bkgstart
=
None
,
bkgstop
=
None
,
t_offset
=
1760
,
npulses
=
None
):
bkgstart
=
None
,
bkgstop
=
None
,
t_offset
=
None
,
npulses
=
None
):
'''
Extract peak-integrated data from TIM where pulses are from SASE3 only.
'''
Extract peak-integrated data from TIM where pulses are from SASE3 only.
If use_apd is False it calculates integration from raw traces.
If use_apd is False it calculates integration from raw traces.
The missing values, in case of change of number of pulses, are filled
The missing values, in case of change of number of pulses, are filled
...
@@ -399,19 +408,36 @@ def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None,
...
@@ -399,19 +408,36 @@ def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None,
tim: DataArray of shape trainId only for SASE3 pulses x N
tim: DataArray of shape trainId only for SASE3 pulses x N
with N=max(number of pulses per train)
with N=max(number of pulses per train)
'''
'''
key
=
'
MCP{}apd
'
.
format
(
mcp
)
sa3
=
data
[
'
sase3
'
].
where
(
data
[
'
sase3
'
]
>
1
,
drop
=
True
)
npulses_sa3
=
data
[
'
npulses_sase3
'
]
maxpulses
=
int
(
npulses_sa3
.
max
().
values
)
step
=
1
if
maxpulses
>
1
:
#Calculate the number of non-lasing pulses between two lasing pulses (step)
step
=
sa3
.
where
(
data
[
'
npulses_sase3
'
]
>
1
,
drop
=
True
)[
0
,:
2
].
values
step
=
int
(
step
[
1
]
-
step
[
0
])
if
use_apd
:
if
use_apd
:
apd
=
data
[
key
]
apd
=
data
[
'
MCP{}apd
'
.
format
(
mcp
)]
initialDelay
=
data
.
attrs
[
'
run
'
].
get_array
(
'
SCS_UTC1_ADQ/ADC/1
'
,
'
board1.apd.channel_0.initialDelay.value
'
)[
0
].
values
upperLimit
=
data
.
attrs
[
'
run
'
].
get_array
(
'
SCS_UTC1_ADQ/ADC/1
'
,
'
board1.apd.channel_0.upperLimit.value
'
)[
0
].
values
nsamples
=
upperLimit
-
initialDelay
npulses_per_apd
=
int
(
nsamples
/
440
)
sa3
/=
npulses_per_apd
else
:
else
:
apd
=
mcpPeaks
(
data
,
intstart
,
intstop
,
bkgstart
,
bkgstop
,
t_offset
,
mcp
,
npulses
)
apd
=
mcpPeaks
(
data
,
intstart
,
intstop
,
bkgstart
,
bkgstop
,
mcp
=
mcp
,
npulses_sa3
=
data
[
'
npulses_sase3
'
]
t_offset
=
t_offset
,
npulses
=
npulses
)
sa3
=
data
[
'
sase3
'
].
where
(
data
[
'
sase3
'
]
>
1
,
drop
=
True
)
/
4
sa3
/
=
step
sa3
-=
sa3
[:,
0
]
sa3
-=
sa3
[:,
0
]
sa3
=
sa3
.
astype
(
int
)
sa3
=
sa3
.
astype
(
int
)
if
np
.
all
(
npulses_sa3
==
npulses_sa3
[
0
]):
if
np
.
all
(
npulses_sa3
==
npulses_sa3
[
0
]):
tim
=
apd
[:,
sa3
[
0
].
values
]
tim
=
apd
[:,
sa3
[
0
].
values
]
return
tim
return
tim
maxpulses
=
int
(
npulses_sa3
.
max
().
values
)
stride
=
1
if
use_apd
:
stride
=
np
.
max
([
stride
,
int
(
step
/
npulses_per_apd
)])
diff
=
npulses_sa3
.
diff
(
dim
=
'
trainId
'
)
diff
=
npulses_sa3
.
diff
(
dim
=
'
trainId
'
)
#only keep trainIds where a change occured:
#only keep trainIds where a change occured:
diff
=
diff
.
where
(
diff
!=
0
,
drop
=
True
)
diff
=
diff
.
where
(
diff
!=
0
,
drop
=
True
)
...
@@ -429,7 +455,7 @@ def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None,
...
@@ -429,7 +455,7 @@ def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None,
else
:
else
:
l
=
idx_change
[
i
+
1
]
l
=
idx_change
[
i
+
1
]
b
=
npulses_sa3
[
idx
].
values
b
=
npulses_sa3
[
idx
].
values
temp
=
apd
[
idx
:
l
,:
maxpulses
].
copy
()
temp
=
apd
[
idx
:
l
,:
maxpulses
*
stride
:
stride
].
copy
()
temp
[:,
b
:]
=
np
.
NaN
temp
[:,
b
:]
=
np
.
NaN
if
tim
is
None
:
if
tim
is
None
:
tim
=
temp
tim
=
temp
...
@@ -438,8 +464,8 @@ def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None,
...
@@ -438,8 +464,8 @@ def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None,
return
tim
return
tim
def
calibrateTIM
(
data
,
rollingWindow
=
200
,
mcp
=
1
,
plot
=
False
,
use_apd
=
True
,
intstart
=
None
,
intstop
=
None
,
def
calibrateTIM
(
data
,
rollingWindow
=
200
,
mcp
=
1
,
plot
=
False
,
use_apd
=
True
,
intstart
=
None
,
bkgstart
=
None
,
bkgstop
=
None
,
t_offset
=
1760
,
npulses_apd
=
None
):
intstop
=
None
,
bkgstart
=
None
,
bkgstop
=
None
,
t_offset
=
None
,
npulses_apd
=
None
):
'''
Calibrate TIM signal (Peak-integrated signal) to the slow ion signal of SCS_XGM
'''
Calibrate TIM signal (Peak-integrated signal) to the slow ion signal of SCS_XGM
(photocurrent read by Keithley, channel
'
pulseEnergy.photonFlux.value
'
).
(photocurrent read by Keithley, channel
'
pulseEnergy.photonFlux.value
'
).
The aim is to find F so that E_tim_peak[uJ] = F x TIM_peak. For this, we want to
The aim is to find F so that E_tim_peak[uJ] = F x TIM_peak. For this, we want to
...
@@ -468,7 +494,6 @@ def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intst
...
@@ -468,7 +494,6 @@ def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intst
bkgstart: trace index of background start
bkgstart: trace index of background start
bkgstop: trace index of background stop
bkgstop: trace index of background stop
t_offset: index separation between two pulses
t_offset: index separation between two pulses
mcp: MCP channel number
npulses_apd: number of pulses
npulses_apd: number of pulses
Output:
Output:
...
@@ -486,9 +511,8 @@ def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intst
...
@@ -486,9 +511,8 @@ def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intst
print
(
'
not enough consecutive data points with the largest number of pulses per train
'
)
print
(
'
not enough consecutive data points with the largest number of pulses per train
'
)
start
+=
rollingWindow
start
+=
rollingWindow
stop
=
np
.
min
((
ntrains
,
stop
+
rollingWindow
))
stop
=
np
.
min
((
ntrains
,
stop
+
rollingWindow
))
#print(start, stop)
filteredTIM
=
getTIMapd
(
data
,
mcp
,
use_apd
,
intstart
,
intstop
,
bkgstart
,
bkgstop
,
t_offset
,
npulses_apd
)
filteredTIM
=
getTIMapd
(
data
,
mcp
,
use_apd
,
intstart
,
intstop
,
bkgstart
,
bkgstop
,
t_offset
,
npulses_apd
)
sa3contrib
=
calc
Contrib
SASE
(
data
,
'
sase3
'
,
'
SA3_XGM
'
)
sa3contrib
=
sase
Contrib
ution
(
data
,
'
sase3
'
,
'
SA3_XGM
'
)
avgFast
=
filteredTIM
.
mean
(
axis
=
1
).
rolling
(
trainId
=
rollingWindow
).
mean
()
avgFast
=
filteredTIM
.
mean
(
axis
=
1
).
rolling
(
trainId
=
rollingWindow
).
mean
()
ratio
=
((
data
[
'
npulses_sase3
'
]
+
data
[
'
npulses_sase1
'
])
*
ratio
=
((
data
[
'
npulses_sase3
'
]
+
data
[
'
npulses_sase1
'
])
*
data
[
'
SCS_XGM_SLOW
'
]
*
sa3contrib
)
/
(
avgFast
*
data
[
'
npulses_sase3
'
])
data
[
'
SCS_XGM_SLOW
'
]
*
sa3contrib
)
/
(
avgFast
*
data
[
'
npulses_sase3
'
])
...
@@ -505,9 +529,7 @@ def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intst
...
@@ -505,9 +529,7 @@ def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intst
ax
.
plot
(
avgFast
*
F
,
label
=
'
Calibrated TIM rolling avg
'
,
color
=
'
C2
'
)
ax
.
plot
(
avgFast
*
F
,
label
=
'
Calibrated TIM rolling avg
'
,
color
=
'
C2
'
)
ax
.
legend
(
loc
=
'
upper left
'
,
fontsize
=
8
)
ax
.
legend
(
loc
=
'
upper left
'
,
fontsize
=
8
)
ax
.
set_ylabel
(
'
Energy [$\mu$J]
'
,
size
=
10
)
ax
.
set_ylabel
(
'
Energy [$\mu$J]
'
,
size
=
10
)
#ax2=ax#.twinx()
ax
.
plot
(
filteredTIM
.
mean
(
axis
=
1
)
*
F
,
label
=
'
Calibrated TIM train avg
'
,
alpha
=
0.2
,
color
=
'
C9
'
)
ax
.
plot
(
filteredTIM
.
mean
(
axis
=
1
)
*
F
,
label
=
'
Calibrated TIM train avg
'
,
alpha
=
0.2
,
color
=
'
C9
'
)
#ax2.set_ylabel('Calibrated TIM (MCP{}) [uJ]'.format(mcp))
ax
.
legend
(
loc
=
'
best
'
,
fontsize
=
8
,
ncol
=
2
)
ax
.
legend
(
loc
=
'
best
'
,
fontsize
=
8
,
ncol
=
2
)
plt
.
xlabel
(
'
train in run
'
)
plt
.
xlabel
(
'
train in run
'
)
...
@@ -530,10 +552,6 @@ def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intst
...
@@ -530,10 +552,6 @@ def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intst
ax
.
hist
(
filteredTIM
.
values
.
flatten
()
*
F
,
bins
=
50
,
rwidth
=
0.8
)
ax
.
hist
(
filteredTIM
.
values
.
flatten
()
*
F
,
bins
=
50
,
rwidth
=
0.8
)
ax
.
set_ylabel
(
'
number of pulses
'
,
size
=
10
)
ax
.
set_ylabel
(
'
number of pulses
'
,
size
=
10
)
ax
.
set_xlabel
(
'
Pulse energy MCP{} [uJ]
'
.
format
(
mcp
),
size
=
10
)
ax
.
set_xlabel
(
'
Pulse energy MCP{} [uJ]
'
.
format
(
mcp
),
size
=
10
)
#ax2 = ax.twiny()
#ax2.set_xlabel('MCP 1 APD')
#toRaw = lambda x: x/F
#ax2.set_xlim((toRaw(ax.get_xlim()[0]),toRaw(ax.get_xlim()[1])))
ax
.
set_yscale
(
'
log
'
)
ax
.
set_yscale
(
'
log
'
)
ax
=
plt
.
subplot
(
236
)
ax
=
plt
.
subplot
(
236
)
...
@@ -565,3 +583,64 @@ def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intst
...
@@ -565,3 +583,64 @@ def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intst
plt
.
tight_layout
()
plt
.
tight_layout
()
return
F
return
F
'''
TIM calibration table
Dict with key= photon energy and value= array of polynomial coefficients for each MCP (1,2,3).
The polynomials correspond to a fit of the logarithm of the calibration factor as a function
of MCP voltage. If P is a polynomial and V the MCP voltage, the calibration factor (in microjoule
per APD signal) is given by -exp(P(V)).
This table was generated from the calibration of March 2019, proposal 900074, semester 201930,
runs 69 - 111 (Ni edge): https://in.xfel.eu/elog/SCS+Beamline/2323
runs 113 - 153 (Co edge): https://in.xfel.eu/elog/SCS+Beamline/2334
runs 163 - 208 (Fe edge): https://in.xfel.eu/elog/SCS+Beamline/2349
'''
tim_calibration_table
=
{
705.5
:
np
.
array
([
[
-
6.85344690e-12
,
5.00931986e-08
,
-
1.27206912e-04
,
1.15596821e-01
,
-
3.15215367e+01
],
[
1.25613942e-11
,
-
5.41566381e-08
,
8.28161004e-05
,
-
7.27230153e-02
,
3.10984925e+01
],
[
1.14094964e-12
,
7.72658935e-09
,
-
4.27504907e-05
,
4.07253378e-02
,
-
7.00773062e+00
]]),
779
:
np
.
array
([
[
4.57610777e-12
,
-
2.33282497e-08
,
4.65978738e-05
,
-
6.43305156e-02
,
3.73958623e+01
],
[
2.96325102e-11
,
-
1.61393276e-07
,
3.32600044e-04
,
-
3.28468195e-01
,
1.28328844e+02
],
[
1.14521506e-11
,
-
5.81980336e-08
,
1.12518434e-04
,
-
1.19072484e-01
,
5.37601559e+01
]]),
851
:
np
.
array
([
[
3.15774215e-11
,
-
1.71452934e-07
,
3.50316512e-04
,
-
3.40098861e-01
,
1.31064501e+02
],
[
5.36341958e-11
,
-
2.92533156e-07
,
6.00574534e-04
,
-
5.71083140e-01
,
2.10547161e+02
],
[
3.69445588e-11
,
-
1.97731342e-07
,
3.98203522e-04
,
-
3.78338599e-01
,
1.41894119e+02
]])
}
def
timFactorFromTable
(
voltage
,
photonEnergy
,
mcp
=
1
):
'''
Returns an energy calibration factor for TIM integrated peak signal (APD)
according to calibration from March 2019, proposal 900074, semester 201930,
runs 69 - 111 (Ni edge): https://in.xfel.eu/elog/SCS+Beamline/2323
runs 113 - 153 (Co edge): https://in.xfel.eu/elog/SCS+Beamline/2334
runs 163 - 208 (Fe edge): https://in.xfel.eu/elog/SCS+Beamline/2349
Uses the tim_calibration_table declared above.
Inputs:
voltage: MCP voltage in volts.
photonEnergy: FEL photon energy in eV. Calibration factor is linearly
interpolated between the known values from the calibration table.
mcp: MCP channel (1, 2, or 3).
Output:
f: calibration factor in microjoule per APD signal
'''
energies
=
np
.
sort
([
key
for
key
in
tim_calibration_table
])
if
photonEnergy
not
in
energies
:
if
photonEnergy
>
energies
.
max
():
photonEnergy
=
energies
.
max
()
elif
photonEnergy
<
energies
.
min
():
photonEnergy
=
energies
.
min
()
else
:
idx
=
np
.
searchsorted
(
energies
,
photonEnergy
)
-
1
polyA
=
np
.
poly1d
(
tim_calibration_table
[
energies
[
idx
]][
mcp
-
1
])
polyB
=
np
.
poly1d
(
tim_calibration_table
[
energies
[
idx
+
1
]][
mcp
-
1
])
fA
=
-
np
.
exp
(
polyA
(
voltage
))
fB
=
-
np
.
exp
(
polyB
(
voltage
))
f
=
fA
+
(
fB
-
fA
)
/
(
energies
[
idx
+
1
]
-
energies
[
idx
])
*
(
photonEnergy
-
energies
[
idx
])
return
f
poly
=
np
.
poly1d
(
tim_calibration_table
[
photonEnergy
][
mcp
-
1
])
f
=
-
np
.
exp
(
poly
(
voltage
))
return
f
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment