Skip to content
Snippets Groups Projects
Commit 796f088f authored by Cammille Carinan's avatar Cammille Carinan
Browse files

Try adding more tests

parent eb35f355
No related branches found
No related tags found
No related merge requests found
This commit is part of merge request !107. Comments created here will be created in the context of that merge request.
import numpy as np
from scipy.special import erfc
from scipy import special
from scipy.optimize import curve_fit
......@@ -19,15 +19,13 @@ def knife_edge_base(positions, intensities, axisRange=None, p0=None):
# Prepare arrays
positions, intensities = prepare_arrays(positions, intensities, axisRange)
# Estimate a linear slope fitting the data to determine the erfc to use
slope = covariance(positions, intensities) / np.var(positions)
func = generate_erfc(sign=np.sign(slope) * -1)
# Estimate initial fitting params
if p0 is None:
p0 = [np.mean(positions), 0.1, np.max(intensities) / 2, 0]
# Fit
try:
popt, pcov = curve_fit(func, positions, intensities, p0=p0)
popt, pcov = curve_fit(erfc, positions, intensities, p0=p0)
except (TypeError, RuntimeError):
print("Fit did not converge.")
popt, pcov = (None, None)
......@@ -76,8 +74,5 @@ def covariance(a: np.ndarray, b: np.ndarray):
return np.cov(a, b)[0][1]
def generate_erfc(sign):
def func(x, x0, w0, a, b):
return a * erfc(sign * np.sqrt(2) * (x - x0) / w0) + b
return func
def erfc(x, x0, w0, a, b):
return a * special.erfc(np.sqrt(2) * (x - x0) / w0) + b
import numpy as np
import pytest
from ..knife_edge import prepare_arrays, range_mask
from ..knife_edge import erfc, knife_edge_base, prepare_arrays, range_mask
def test_range_mask():
......@@ -58,7 +58,7 @@ def test_prepare_arrays_nans():
assert intensities.shape == (size,)
# Test finite motors and signals with NaNs
signal_nan = with_values(signal, value=np.nan, num=20)
signal_nan = _with_values(signal, value=np.nan, num=20)
positions, intensities = prepare_arrays(motor, signal_nan)
assert positions.shape == (size-20,)
assert np.isfinite(positions).all()
......@@ -66,7 +66,7 @@ def test_prepare_arrays_nans():
assert np.isfinite(intensities).all()
# Test finite signals and motors with NaNs
motor_nan = with_values(motor, value=np.nan, num=3)
motor_nan = _with_values(motor, value=np.nan, num=3)
positions, intensities = prepare_arrays(motor_nan, signal)
assert positions.shape == ((trains-3) * pulses,)
assert np.isfinite(positions).all()
......@@ -91,7 +91,23 @@ def test_prepare_arrays_size():
assert intensities.shape == (size,)
def with_values(array, value, num=5):
def test_knife_edge_base():
p0 = [0, -1.5, 1, 0]
x = np.linspace(-3, 3)
y = erfc(x, *p0)
noise = y * np.random.normal(0, .02, y.shape) # 2% error
eff_y = (y + noise).reshape(1, -1)
# Test noisy data
popt, _ = knife_edge_base(x, eff_y)
np.testing.assert_allclose(p0, popt, atol=1e-1)
# Test flipped data
popt, _ = knife_edge_base(x, eff_y[::-1])
np.testing.assert_allclose(p0, popt, atol=1e-1)
def _with_values(array, value, num=5):
copy = array.astype(np.float)
copy.ravel()[np.random.choice(copy.size, num, replace=False)] = value
return copy
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment