Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
ToolBox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SCS
ToolBox
Commits
83ae4367
Commit
83ae4367
authored
5 years ago
by
Loïc Le Guyader
Browse files
Options
Downloads
Patches
Plain Diff
Biining by intra-train pulse id
parent
ae13343b
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
DSSC.py
+62
-16
62 additions, 16 deletions
DSSC.py
with
62 additions
and
16 deletions
DSSC.py
+
62
−
16
View file @
83ae4367
...
...
@@ -44,6 +44,7 @@ class DSSC:
self
.
geom
=
None
self
.
mask
=
None
self
.
max_fraction_memory
=
0.8
self
.
filter_mask
=
None
print
(
'
DSSC configuration
'
)
print
(
f
'
Topic:
{
self
.
topic
}
'
)
...
...
@@ -72,6 +73,7 @@ class DSSC:
print
(
'
Opening run data with karabo-data
'
)
self
.
run_nr
=
run_nr
self
.
xgm
=
None
self
.
filter_mask
=
None
self
.
scan_vname
=
None
self
.
run
=
kd
.
open_run
(
self
.
proposal
,
self
.
run_nr
)
...
...
@@ -214,7 +216,14 @@ class DSSC:
self
.
xgm_low
=
xgm_low
self
.
xgm_high
=
xgm_high
valid
=
((
self
.
xgm
>
self
.
xgm_low
)
*
(
self
.
xgm
<
self
.
xgm_high
)).
prod
(
'
dim_0
'
).
astype
(
bool
)
filter_mask
=
(
self
.
xgm
>
self
.
xgm_low
)
*
(
self
.
xgm
<
self
.
xgm_high
)
if
self
.
filter_mask
:
self
.
filter_mask
=
self
.
filter_mask
*
filter_mask
else
:
self
.
filter_mask
=
filter_mask
valid
=
filter_mask
.
prod
(
'
dim_0
'
).
astype
(
bool
)
xgm_valid
=
self
.
xgm
.
where
(
valid
)
xgm_valid
=
xgm_valid
.
dropna
(
'
trainId
'
)
self
.
scan
=
self
.
scan
.
sel
({
'
trainId
'
:
xgm_valid
.
trainId
})
...
...
@@ -271,7 +280,7 @@ class DSSC:
vds_list
.
append
([
vds_filename
,
module_vds
])
return
vds_list
def
binning
(
self
):
def
binning
(
self
,
do_pulse_mean
=
True
):
"""
Bin the DSSC data by the predifined scan type (DSSC.define()) using multiprocessing
"""
...
...
@@ -303,6 +312,7 @@ class DSSC:
vdf_scan
=
self
.
vds_scan
,
nbunches
=
self
.
nbunches
,
run_nr
=
self
.
run_nr
,
do_pulse_mean
=
do_pulse_mean
))
timestamp
=
strftime
(
'
%X
'
)
...
...
@@ -318,11 +328,15 @@ class DSSC:
self
.
module_data
[
'
run
'
]
=
self
.
run_nr
self
.
module_data
=
self
.
module_data
.
transpose
(
'
scan_variable
'
,
'
module
'
,
'
x
'
,
'
y
'
)
self
.
module_data
=
xr
.
merge
([
self
.
module_data
,
self
.
scan
.
groupby
(
'
scan_variable
'
).
mean
(
'
trainId
'
)])
if
do_pulse_mean
:
self
.
module_data
=
xr
.
merge
([
self
.
module_data
,
self
.
scan
.
groupby
(
'
scan_variable
'
).
mean
(
'
trainId
'
)])
self
.
module_data
=
self
.
module_data
.
squeeze
()
self
.
module_data
.
attrs
[
'
scan_variable
'
]
=
self
.
scan_vname
if
do_pulse_mean
:
self
.
module_data
.
attrs
[
'
scan_variable
'
]
=
self
.
scan_vname
else
:
self
.
module_data
.
attrs
[
'
scan_variable
'
]
=
'
pulse id
'
def
save
(
self
,
save_folder
=
None
,
overwrite
=
False
):
"""
Save the crunched data.
...
...
@@ -561,6 +575,7 @@ def process_one_module(job):
scan_vdf
=
job
[
'
vdf_scan
'
]
chunksize
=
job
[
'
chunksize
'
]
nbunches
=
job
[
'
nbunches
'
]
do_pulse_mean
=
job
[
'
do_pulse_mean
'
]
image_path
=
f
'
INSTRUMENT/SCS_DET_DSSC1M-1/DET/
{
module
}
CH0:xtdf/image/data
'
npulse_path
=
f
'
INDEX/SCS_DET_DSSC1M-1/DET/
{
module
}
CH0:xtdf/image/count
'
...
...
@@ -574,14 +589,25 @@ def process_one_module(job):
scan
.
name
=
'
scan
'
len_scan
=
len
(
scan
.
groupby
(
scan
))
# create empty dataset to add actual data to
module_data
=
xr
.
DataArray
(
np
.
empty
([
len_scan
,
128
,
512
],
dtype
=
np
.
float64
),
dims
=
[
'
scan_variable
'
,
'
x
'
,
'
y
'
],
coords
=
{
'
scan_variable
'
:
np
.
unique
(
scan
)})
module_data
=
module_data
.
to_dataset
(
name
=
'
pumped
'
)
module_data
[
'
unpumped
'
]
=
xr
.
full_like
(
module_data
[
'
pumped
'
],
0
)
module_data
[
'
sum_count
'
]
=
xr
.
DataArray
(
np
.
zeros_like
(
np
.
unique
(
scan
)),
dims
=
[
'
scan_variable
'
])
module_data
[
'
module
'
]
=
module
if
do_pulse_mean
:
# create empty dataset to add actual data to
module_data
=
xr
.
DataArray
(
np
.
empty
([
len_scan
,
128
,
512
],
dtype
=
np
.
float64
),
dims
=
[
'
scan_variable
'
,
'
x
'
,
'
y
'
],
coords
=
{
'
scan_variable
'
:
np
.
unique
(
scan
)})
module_data
=
module_data
.
to_dataset
(
name
=
'
pumped
'
)
module_data
[
'
unpumped
'
]
=
xr
.
full_like
(
module_data
[
'
pumped
'
],
0
)
module_data
[
'
sum_count
'
]
=
xr
.
DataArray
(
np
.
zeros_like
(
np
.
unique
(
scan
)),
dims
=
[
'
scan_variable
'
])
module_data
[
'
module
'
]
=
module
else
:
scan
=
xr
.
full_like
(
scan
,
1
)
len_scan
=
len
(
scan
.
groupby
(
scan
))
module_data
=
xr
.
DataArray
(
np
.
empty
([
len_scan
,
int
(
nbunches
/
2
),
128
,
512
],
dtype
=
np
.
float64
),
dims
=
[
'
scan_variable
'
,
'
pulse
'
,
'
x
'
,
'
y
'
],
coords
=
{
'
scan_variable
'
:
np
.
unique
(
scan
)})
module_data
=
module_data
.
to_dataset
(
name
=
'
pumped
'
)
module_data
[
'
unpumped
'
]
=
xr
.
full_like
(
module_data
[
'
pumped
'
],
0
)
module_data
[
'
sum_count
'
]
=
xr
.
full_like
(
module_data
[
'
pumped
'
][...,
0
,
0
],
0
)
module_data
[
'
module
'
]
=
module
# crunching
with
h5py
.
File
(
data_vdf
,
'
r
'
)
as
m
:
...
...
@@ -608,19 +634,39 @@ def process_one_module(job):
coords
=
{
'
trainId
'
:
trainIds_chunk
}
data
=
np
.
reshape
(
data
,
[
n_trains_actual
,
fpt
,
128
,
512
])[:,
:
int
(
2
*
nbunches
)]
data
=
xr
.
DataArray
(
data
,
dims
=
[
'
trainId
'
,
'
pulse
'
,
'
x
'
,
'
y
'
],
coords
=
coords
)
data_pumped
=
(
data
[:,
::
4
]).
mean
(
'
pulse
'
)
data_unpumped
=
(
data
[:,
2
::
4
]).
mean
(
'
pulse
'
)
if
do_pulse_mean
:
data_pumped
=
(
data
[:,
::
4
]).
mean
(
'
pulse
'
)
data_unpumped
=
(
data
[:,
2
::
4
]).
mean
(
'
pulse
'
)
else
:
data_pumped
=
(
data
[:,
::
4
])
data_unpumped
=
(
data
[:,
2
::
4
])
data
=
data_pumped
.
to_dataset
(
name
=
'
pumped
'
)
data
[
'
unpumped
'
]
=
data_unpumped
data
[
'
sum_count
'
]
=
xr
.
DataArray
(
np
.
ones
(
n_trains_actual
),
dims
=
[
'
trainId
'
],
coords
=
coords
)
data
[
'
sum_count
'
]
=
xr
.
full_like
(
data
[
'
unpumped
'
][...,
0
,
0
],
fill_value
=
1
)
# grouping and summing
data
[
'
scan_variable
'
]
=
scan
# this only adds scan data for matching trainIds
data
=
data
.
dropna
(
'
trainId
'
)
data
=
data
.
groupby
(
'
scan_variable
'
).
sum
(
'
trainId
'
)
where
=
{
'
scan_variable
'
:
data
.
scan_variable
}
for
var
in
[
'
pumped
'
,
'
unpumped
'
,
'
sum_count
'
]:
module_data
[
var
].
loc
[
where
]
=
module_data
[
var
].
loc
[
where
]
+
data
[
var
]
if
not
do_pulse_mean
:
break
for
var
in
[
'
pumped
'
,
'
unpumped
'
]:
module_data
[
var
]
=
module_data
[
var
]
/
module_data
.
sum_count
#module_data = module_data.drop('sum_count')
if
not
do_pulse_mean
:
#print(f'#{module}: {module_data}')
module_data
=
module_data
.
sum
(
'
scan_variable
'
)
#print(f'#{module}: {module_data}')
module_data
=
module_data
.
rename
({
'
pulse
'
:
'
scan_variable
'
})
#print(f'#{module}: {module_data}')
return
module_data
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment