Skip to content
Snippets Groups Projects
Commit 9291ad88 authored by Martin Teichmann's avatar Martin Teichmann
Browse files

include comments by Loic

parent 24683746
No related branches found
No related tags found
1 merge request!238add an HRIXS example notebook
Pipeline #94417 passed
%% Cell type:markdown id:92e37c86-808e-4e58-97ad-257bf3daa38e tags: %% Cell type:markdown id:92e37c86-808e-4e58-97ad-257bf3daa38e tags:
# Analyzing HRIXS data # Analyzing HRIXS data
HRIXS spectra are, at the base, one dimensional spectra. They are recorded on a 2 D camera. The complication is that due to abberations, the spectra do not show up as straight lines on the camera, but are curved. These abberations need to be corrected for data analyis. HRIXS spectra are, at the base, one dimensional spectra. They are recorded on a 2 D camera. The complication is that due to abberations, the spectra do not show up as straight lines on the camera, but are curved. These abberations need to be corrected for data analyis.
We start with importing all necessary: We start with importing all necessary:
%% Cell type:code id:a5e27108-36d6-46c4-81b1-52c49899bb12 tags: %% Cell type:code id:a5e27108-36d6-46c4-81b1-52c49899bb12 tags:
``` python ``` python
import numpy as np import numpy as np
import xarray as xa import xarray as xa
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
%matplotlib inline %matplotlib inline
%load_ext autoreload %load_ext autoreload
%autoreload 2 %autoreload 2
from toolbox_scs.detectors.hrixs import hRIXS from toolbox_scs.detectors.hrixs import hRIXS
``` ```
%% Cell type:markdown id:cdcc96dd-e5c2-414e-9fd0-dde9673fdced tags: %% Cell type:markdown id:cdcc96dd-e5c2-414e-9fd0-dde9673fdced tags:
## Setting the stage ## Setting the stage
we start by creating an hRIXS object. It contains all the gory details about the experiment, but no data. we start by creating an hRIXS object. It contains all the gory details about the experiment, but no data.
All those parameters need to be carefully calibrated whenever the spectrometer is moved, usually at the beginning of a beamtime. All those parameters need to be carefully calibrated whenever the spectrometer is moved, usually at the beginning of a beamtime.
%% Cell type:code id:7b1423ae-c5ed-4371-adb7-76e9599ea472 tags: %% Cell type:code id:7b1423ae-c5ed-4371-adb7-76e9599ea472 tags:
``` python ``` python
h = hRIXS() h = hRIXS()
h.PROPOSAL = 3154 # the current proposal number h.PROPOSAL = 3154 # the current proposal number
h.Y_RANGE = slice(700, 900) # the range of the camera the data is in. Y is the "energy" axis h.Y_RANGE = slice(700, 900) # the range of the camera the data is in. Y is the "energy" axis
h.CURVE_B = -3.695346575286939e-07 # the curvature as determined elsewhere (see later) h.CURVE_B = -3.695346575286939e-07 # the curvature as determined elsewhere (see later)
h.CURVE_A = 0.024084479232443695 h.CURVE_A = 0.024084479232443695
h.ENERGY_SLOPE = 0.018387 # the energy calibration h.ENERGY_SLOPE = 0.018387 # the energy calibration
h.ENERGY_INTERCEPT = 498.27 h.ENERGY_INTERCEPT = 498.27
h.STD_THRESHOLD = 3.5 # threshold above which a peak is considered a peak, in standard deviations above noise level h.STD_THRESHOLD = 3.5 # threshold above which a peak is considered a peak, in standard deviations above noise level
``` ```
%% Cell type:markdown id:40fcf3e2-45ee-4a15-82cc-ad3b6099a243 tags: %% Cell type:markdown id:40fcf3e2-45ee-4a15-82cc-ad3b6099a243 tags:
## reading the data ## reading the data
now we can read the data. There are two different ways to analyze the data: for low intensities, we can do single photon counting, for high intensities as simple integration is better. No matter which method, all data is read into an xarray DataSet, and further treated therein. now we can read the data. There are two different ways to analyze the data: for low intensities, we can do single photon counting, for high intensities as simple integration is better. No matter which method, all data is read into an xarray DataSet, and further treated therein.
### Centroiding ### Centroiding
The centroiding algorithm then finds single photons, creates as spectrum and adds that to the DataSet. The parameters for the centroiding only need to be set once. The centroiding algorithm then finds single photons, creates as spectrum and adds that to the DataSet. The parameters for the centroiding only need to be set once.
%% Cell type:code id:5980dc4c-0c23-4f3e-aa3b-9c7a09f6b397 tags: %% Cell type:code id:5980dc4c-0c23-4f3e-aa3b-9c7a09f6b397 tags:
``` python ``` python
data = h.from_run(2) # just load run No 2 data = h.from_run(2) # just load run No 2
h.BINS = 500 # number of bins to centroid into h.BINS = 500 # number of bins to centroid into
h.centroid(data) h.centroid(data)
``` ```
%% Output %% Output
<xarray.Dataset> <xarray.Dataset>
Dimensions: (energy: 500, trainId: 6, x: 2048, y: 2048) Dimensions: (energy: 500, trainId: 6, x: 2048, y: 2048)
Coordinates: Coordinates:
* trainId (trainId) uint64 1531618246 1531618389 ... 1531618962 * trainId (trainId) uint64 1531618246 1531618389 ... 1531618962
* energy (energy) float64 511.1 511.1 511.2 511.2 ... 514.8 514.8 514.8 * energy (energy) float64 511.1 511.1 511.2 511.2 ... 514.8 514.8 514.8
Dimensions without coordinates: x, y Dimensions without coordinates: x, y
Data variables: Data variables:
hRIXS_det (trainId, x, y) uint16 595 561 595 588 603 ... 625 645 630 635 hRIXS_det (trainId, x, y) uint16 595 561 595 588 603 ... 625 645 630 635
hRIXS_index (trainId) int32 6 6 6 6 6 6 hRIXS_index (trainId) int32 6 6 6 6 6 6
hRIXS_delay (trainId) float32 0.15 0.15 0.15 0.15 0.15 0.15 hRIXS_delay (trainId) float32 0.15 0.15 0.15 0.15 0.15 0.15
hRIXS_norm (trainId) float32 7.0124035 7.4794917 ... 5.220501 4.259891 hRIXS_norm (trainId) float32 7.0124035 7.4794917 ... 5.220501 4.259891
spectrum (trainId, energy) float64 0.0 0.0 0.0 1.0 ... 0.0 0.0 0.0 0.0 spectrum (trainId, energy) float64 0.0 0.0 0.0 1.0 ... 0.0 0.0 0.0 0.0
Attributes: Attributes:
runFolder: /gpfs/exfel/exp/SCS/202202/p003154/raw/r0002 runFolder: /gpfs/exfel/exp/SCS/202202/p003154/raw/r0002
%% Cell type:markdown id:61d1b3b1-0839-4b77-993c-0edcd9921810 tags: %% Cell type:markdown id:61d1b3b1-0839-4b77-993c-0edcd9921810 tags:
### Integration ### Integration
for higher intensities, when single photons are not visible anymore, we just integrate over pixels with the same energy. for higher intensities, when single photons are not visible anymore, we just integrate over pixels with the same energy.
%% Cell type:code id:4d12b045-4d1a-40a1-87b6-015aceaf741c tags: %% Cell type:code id:4d12b045-4d1a-40a1-87b6-015aceaf741c tags:
``` python ``` python
data = h.from_run(2) # just load run No 2 data = h.from_run(2) # just load run No 2
h.integrate(data) h.integrate(data)
``` ```
%% Output %% Output
<xarray.Dataset> <xarray.Dataset>
Dimensions: (energy: 180, trainId: 6, x: 2048, y: 2048) Dimensions: (energy: 180, trainId: 6, x: 2048, y: 2048)
Coordinates: Coordinates:
* trainId (trainId) uint64 1531618246 1531618389 ... 1531618962 * trainId (trainId) uint64 1531618246 1531618389 ... 1531618962
* energy (energy) float64 511.3 511.3 511.4 511.4 ... 514.6 514.6 514.6 * energy (energy) float64 511.3 511.3 511.4 511.4 ... 514.6 514.6 514.6
Dimensions without coordinates: x, y Dimensions without coordinates: x, y
Data variables: Data variables:
hRIXS_det (trainId, x, y) uint16 595 561 595 588 603 ... 625 645 630 635 hRIXS_det (trainId, x, y) uint16 595 561 595 588 603 ... 625 645 630 635
hRIXS_index (trainId) int32 6 6 6 6 6 6 hRIXS_index (trainId) int32 6 6 6 6 6 6
hRIXS_delay (trainId) float32 0.15 0.15 0.15 0.15 0.15 0.15 hRIXS_delay (trainId) float32 0.15 0.15 0.15 0.15 0.15 0.15
hRIXS_norm (trainId) float32 7.0124035 7.4794917 ... 5.220501 4.259891 hRIXS_norm (trainId) float32 7.0124035 7.4794917 ... 5.220501 4.259891
spectrum (trainId, energy) float64 637.9 638.8 638.6 ... 640.0 639.3 spectrum (trainId, energy) float64 637.9 638.8 638.6 ... 640.0 639.3
Attributes: Attributes:
runFolder: /gpfs/exfel/exp/SCS/202202/p003154/raw/r0002 runFolder: /gpfs/exfel/exp/SCS/202202/p003154/raw/r0002
%% Cell type:markdown id:6c06323e-2196-4464-8f33-0378df6534e1 tags: %% Cell type:markdown id:6c06323e-2196-4464-8f33-0378df6534e1 tags:
## Plotting ## Plotting
we employ xarray also for plotting. As a first example, we just integrate over all trains in a run, thus ignoring any possible delay or energy scan. we employ xarray also for plotting. As a first example, we just integrate over all trains in a run, thus ignoring any possible delay or energy scan.
%% Cell type:code id:d5950652-b445-4823-8dfa-31ae4b59206b tags: %% Cell type:code id:d5950652-b445-4823-8dfa-31ae4b59206b tags:
``` python ``` python
agg = h.aggregate(data) # sum spectra for all trains agg = h.aggregate(data) # sum spectra for all trains
agg.spectrum.plot() agg.spectrum.plot()
``` ```
%% Output %% Output
[<matplotlib.lines.Line2D at 0x2af499cc1390>] [<matplotlib.lines.Line2D at 0x2af499cc1390>]
%% Cell type:markdown id:942e2024-1986-4b06-9c85-f1c73e11719d tags: %% Cell type:markdown id:942e2024-1986-4b06-9c85-f1c73e11719d tags:
## Delay scans ## Delay scans
we make full use of xarray to select for parameters we scan over, in this example a pump-probe dela. "hRIXS_index" is an index into the table of delays, as it is an integer it makes it easier to group the data. Ideally, this index should also be used for all other types of scans, like energy scans, this is why the nameOne may then reduce the data, summing all corresponding images. we make full use of xarray to select for parameters we scan over, in this example a pump-probe dela. "hRIXS_index" is an index into the table of delays, as it is an integer it makes it easier to group the data. Ideally, this index should also be used for all other types of scans, like energy scans, this is why the nameOne may then reduce the data, summing all corresponding images.
%% Cell type:code id:06029941-feff-481b-8be7-90ff855274b8 tags: %% Cell type:code id:06029941-feff-481b-8be7-90ff855274b8 tags:
``` python ``` python
gr = data.groupby('hRIXS_index', squeeze=True) gr = data.groupby('hRIXS_index', squeeze=True)
delays = gr.map(h.aggregate) delays = gr.map(h.aggregate)
delays delays
``` ```
%% Output %% Output
<xarray.Dataset> <xarray.Dataset>
Dimensions: (energy: 180, hRIXS_index: 1, x: 2048, y: 2048) Dimensions: (energy: 180, hRIXS_index: 1, x: 2048, y: 2048)
Coordinates: Coordinates:
* energy (energy) float64 511.3 511.3 511.4 511.4 ... 514.6 514.6 514.6 * energy (energy) float64 511.3 511.3 511.4 511.4 ... 514.6 514.6 514.6
* hRIXS_index (hRIXS_index) int64 6 * hRIXS_index (hRIXS_index) int64 6
Dimensions without coordinates: x, y Dimensions without coordinates: x, y
Data variables: Data variables:
hRIXS_det (hRIXS_index, x, y) uint64 3623 3320 3557 ... 3844 3816 3800 hRIXS_det (hRIXS_index, x, y) uint64 3623 3320 3557 ... 3844 3816 3800
hRIXS_delay (hRIXS_index) float32 0.14999999 hRIXS_delay (hRIXS_index) float32 0.14999999
hRIXS_norm (hRIXS_index) float32 38.10606 hRIXS_norm (hRIXS_index) float32 38.10606
spectrum (hRIXS_index, energy) float64 3.832e+03 3.832e+03 ... 3.834e+03 spectrum (hRIXS_index, energy) float64 3.832e+03 3.832e+03 ... 3.834e+03
%% Cell type:markdown id:4af30a38-966a-40a0-9d5a-88b1c5a1ad1b tags: %% Cell type:markdown id:4af30a38-966a-40a0-9d5a-88b1c5a1ad1b tags:
Instead of reducing all data at once, one can also just look at one delay. The first axis (the 0 in the example) is the index in the delay scan table, so the 0 means: take the data for the 0th delay in the list of delays. Instead of reducing all data at once, one can also just look at one delay. The first axis (the 0 in the example) is the index in the delay scan table, so the 0 means: take the data for the 0th delay in the list of delays.
%% Cell type:code id:af0f63e0-9cd3-433e-83df-6217fde4641b tags: %% Cell type:code id:af0f63e0-9cd3-433e-83df-6217fde4641b tags:
``` python ``` python
delays.spectrum[0, :].plot() delays.spectrum[0, :].plot()
``` ```
%% Output %% Output
[<matplotlib.lines.Line2D at 0x2af49a02fc18>] [<matplotlib.lines.Line2D at 0x2af49a02fc18>]
%% Cell type:markdown id:c8f6e254-caeb-4d12-8dd1-d9faa74a14db tags: %% Cell type:markdown id:c8f6e254-caeb-4d12-8dd1-d9faa74a14db tags:
## adding up several runs ## adding up several runs
Data of different runs can be concatenated Data of different runs can be concatenated
%% Cell type:code id:1306b827-d7ea-472c-b99a-7da792b6a505 tags: %% Cell type:code id:1306b827-d7ea-472c-b99a-7da792b6a505 tags:
``` python ``` python
data2 = h.from_run(3) data2 = h.from_run(3)
data2 = h.centroid(data2) data2 = h.centroid(data2)
datas = xa.concat((data, data2), 'trainId') datas = xa.concat((data, data2), 'trainId')
``` ```
%% Cell type:markdown id:acdf38e8-ee15-42ef-a5b0-74d374658aa6 tags: %% Cell type:markdown id:acdf38e8-ee15-42ef-a5b0-74d374658aa6 tags:
## finding the curvature ## finding the curvature
there is an automatic procedure to find the curvature for an HRIXS operation point. there is an automatic procedure to find the curvature for an HRIXS operation point.
The method `find_curvature` takes a run, integrates the images and fits the curvature parameters to it. During the fit, it will use the current curvature as starting values. It outputs the new curvature parameters, together with a plot of the curvature overlayed on top of the data, where the starting values are shown in blue, while the fitted curve is in orange.
%% Cell type:code id:1c6a749f-a14e-44c2-8c17-ce0b2ef3aa77 tags: %% Cell type:code id:1c6a749f-a14e-44c2-8c17-ce0b2ef3aa77 tags:
``` python ``` python
h.Y_RANGE = slice(700, 900) # tell the algorithm where the data actually is h.Y_RANGE = slice(700, 900) # tell the algorithm where the data actually is
h.find_curvature(1, 3485) # use run 272 of proposal 2769 to fit the curvature h.find_curvature(1, 3485) # use run 1 of proposal 3485 to fit the curvature
``` ```
%% Output %% Output
(0.01934392725990066, -3.2404000959549933e-07) (0.01934392725990066, -3.2404000959549933e-07)
......
...@@ -18,6 +18,7 @@ unreleased ...@@ -18,6 +18,7 @@ unreleased
- Documentation on extracting digitizer peaks, clean up of digitizer functions :mr:`215` - Documentation on extracting digitizer peaks, clean up of digitizer functions :mr:`215`
- Improved peak-finding algorithm for digitizer traces :mr:`216`, :mr:`227` - Improved peak-finding algorithm for digitizer traces :mr:`216`, :mr:`227`
- Only load bunch pattern table when necessary :mr:`234` - Only load bunch pattern table when necessary :mr:`234`
- Document the HRIXS class :mr:`238`
- **New Features** - **New Features**
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment