Skip to content
Snippets Groups Projects
Commit b4eb414f authored by Loïc Le Guyader's avatar Loïc Le Guyader
Browse files

Auto rechunk for DSSC binning

parent d4025d44
No related branches found
No related tags found
1 merge request!186Improved BOZ flat field
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
import numpy as np import numpy as np
%matplotlib notebook %matplotlib notebook
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
plt.rcParams['figure.constrained_layout.use'] = True plt.rcParams['figure.constrained_layout.use'] = True
import dask import dask
print(f'dask: {dask.__version__}') print(f'dask: {dask.__version__}')
import dask.array as da import dask.array as da
da.config.set({'array.chunk-size': '512MiB'})
import xarray as xr import xarray as xr
``` ```
%% Output %% Output
dask: 2.11.0 dask: 2.11.0
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
import sys import sys
print(sys.executable) print(sys.executable)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
from psutil import virtual_memory from psutil import virtual_memory
import gc import gc
# gc.collect() # run garbage collection to free possible memory # gc.collect() # run garbage collection to free possible memory
mem = virtual_memory() mem = virtual_memory()
print(f'Physical memory: {mem.total/1024/1024/1024:.0f} Gb') # total physical memory available print(f'Physical memory: {mem.total/1024/1024/1024:.0f} Gb') # total physical memory available
``` ```
%% Output %% Output
Physical memory: 504 Gb Physical memory: 504 Gb
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
import logging import logging
logging.basicConfig(filename='example.log', level=logging.DEBUG) logging.basicConfig(filename='example.log', level=logging.DEBUG)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
%load_ext autoreload %load_ext autoreload
%autoreload 2 %autoreload 2
import toolbox_scs as tb import toolbox_scs as tb
print(tb.__file__) print(tb.__file__)
from toolbox_scs.routines.boz import load_dssc_module from toolbox_scs.routines.boz import load_dssc_module
from extra_data import open_run from extra_data import open_run
``` ```
%% Output %% Output
/home/lleguy/notebooks/ToolBox/src/toolbox_scs/__init__.py /home/lleguy/notebooks/ToolBox/src/toolbox_scs/__init__.py
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# Parameters # Parameters
%% Cell type:code id: tags:parameters %% Cell type:code id: tags:parameters
``` python ``` python
proposalNB = 2719 proposalNB = 2719
dark_runNB = 180 dark_runNB = 180
runNB = 179 runNB = 179
module_group = 0 module_group = 0
pulse_pattern = ['pumped', 'unpumped'] pulse_pattern = ['pumped', 'unpumped']
xaxis = 'delay' # 'nrj' xaxis = 'delay' # 'nrj'
bin_width = 0.1 # [ps] bin_width = 0.1 # [ps]
path = f'/gpfs/exfel/exp/SCS/202002/p002719/scratch/tests/r{runNB}/' path = f'/gpfs/exfel/exp/SCS/202002/p002719/scratch/tests/r{runNB}/'
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
moduleNB = list(range(module_group*4, (module_group+1)*4)) moduleNB = list(range(module_group*4, (module_group+1)*4))
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# Processing function # Processing function
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
def process(module): def process(module):
# Load dark # Load dark
arr_dark, tid_dark = load_dssc_module(proposalNB, dark_runNB, module, drop_intra_darks=False) arr_dark, tid_dark = load_dssc_module(proposalNB, dark_runNB, module, drop_intra_darks=False)
arr_dark = arr_dark.rechunk((100, -1, -1, -1)) arr_dark = arr_dark.rechunk(('auto', -1, -1, -1))
dark_img = arr_dark.mean(axis=0).compute() dark_img = arr_dark.mean(axis=0).compute()
# Load module data # Load module data
arr, tid = load_dssc_module(proposalNB, runNB, module, drop_intra_darks=False) arr, tid = load_dssc_module(proposalNB, runNB, module, drop_intra_darks=False)
arr = arr.rechunk((100, -1, -1, -1)) arr = arr.rechunk(('auto', -1, -1, -1))
# dark and intra dark correction # dark and intra dark correction
arr = arr - dark_img arr = arr - dark_img
arr = arr[:, ::2, :, :] - arr[:, 1::2, :, :] arr = arr[:, ::2, :, :] - arr[:, 1::2, :, :]
# Load slow data against which to bin # Load slow data against which to bin
if xaxis == 'delay': if xaxis == 'delay':
run, v = tb.load(proposalNB, runNB, ['PP800_DelayLine', 'BAM1932M', 'SCS_XGM']) run, v = tb.load(proposalNB, runNB, ['PP800_DelayLine', 'BAM1932M', 'SCS_XGM'])
else: else:
run, v = tb.load(proposalNB, runNB, [xaxis, 'SCS_XGM']) run, v = tb.load(proposalNB, runNB, [xaxis, 'SCS_XGM'])
# select part of the run # select part of the run
# v = v.isel({'trainId':slice(0,3000)}) # v = v.isel({'trainId':slice(0,3000)})
# combine slow and DSSC module data # combine slow and DSSC module data
xr_data = xr.DataArray(arr, xr_data = xr.DataArray(arr,
coords={'trainId': tid, coords={'trainId': tid,
'sa3_pId': v['sa3_pId'].values}, 'sa3_pId': v['sa3_pId'].values},
dims = ['trainId', 'sa3_pId', 'y', 'x']) dims = ['trainId', 'sa3_pId', 'y', 'x'])
xr_data = xr_data.expand_dims(module=[module], axis=2) xr_data = xr_data.expand_dims(module=[module], axis=2)
r = xr.merge([xr_data.to_dataset(name='DSSC'), v], join='inner') r = xr.merge([xr_data.to_dataset(name='DSSC'), v], join='inner')
# calculate bins # calculate bins
if xaxis == 'delay': if xaxis == 'delay':
r['delay'] = tb.misc.positionToDelay(r['PP800_DelayLine']) r['delay'] = tb.misc.positionToDelay(r['PP800_DelayLine'])
bam = r['BAM1932M'] - r['BAM1932M'].mean() bam = r['BAM1932M'] - r['BAM1932M'].mean()
r['bin_delay'] = ((r['delay'] - bam)/bin_width).round()*bin_width r['bin_delay'] = ((r['delay'] - bam)/bin_width).round()*bin_width
else: else:
r['bin_' + xaxis] = (r[xaxis]/bin_width).round()*bin_width r['bin_' + xaxis] = (r[xaxis]/bin_width).round()*bin_width
# add the pulse pattern coordinates # add the pulse pattern coordinates
Nrepeats = int(len(v['sa3_pId'].values)/len(pulse_pattern)) Nrepeats = int(len(v['sa3_pId'].values)/len(pulse_pattern))
pp = pulse_pattern*Nrepeats pp = pulse_pattern*Nrepeats
pp = np.array(pp) pp = np.array(pp)
r = r.assign_coords(pp=("sa3_pId", pp)) r = r.assign_coords(pp=("sa3_pId", pp))
# select pattern and bin data # select pattern and bin data
bin_data = None bin_data = None
for p in np.unique(pp): for p in np.unique(pp):
# slice using non-index coordinates # slice using non-index coordinates
# https://github.com/pydata/xarray/issues/2028 # https://github.com/pydata/xarray/issues/2028
sub_r = r.sel(sa3_pId=(r.pp == p)) sub_r = r.sel(sa3_pId=(r.pp == p))
# calculate mean on bin, then mean to remove the dimension # calculate mean on bin, then mean to remove the dimension
res = sub_r.groupby('bin_'+xaxis).mean().mean(['sa3_pId']) res = sub_r.groupby('bin_'+xaxis).mean().mean(['sa3_pId'])
if bin_data is None: if bin_data is None:
bin_data = res bin_data = res
bin_data['DSSC'] = res['DSSC'].expand_dims(pp=[p]) bin_data['DSSC'] = res['DSSC'].expand_dims(pp=[p])
bin_data['SCS_SA3'] = res['SCS_SA3'].expand_dims(pp=[p]) bin_data['SCS_SA3'] = res['SCS_SA3'].expand_dims(pp=[p])
else: else:
bin_data = xr.merge([bin_data, bin_data = xr.merge([bin_data,
res['DSSC'].expand_dims(pp=[p]), res['DSSC'].expand_dims(pp=[p]),
res['SCS_SA3'].expand_dims(pp=[p])]) res['SCS_SA3'].expand_dims(pp=[p])])
# save the result # save the result
fname = path + f'run{runNB}-darkrun{dark_runNB}-module{module}.h5' fname = path + f'run{runNB}-darkrun{dark_runNB}-module{module}.h5'
print(fname) print(fname)
bin_data.to_netcdf(fname, format='NETCDF4', engine='h5netcdf') bin_data.to_netcdf(fname, format='NETCDF4', engine='h5netcdf')
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# Processing # Processing
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
for m in moduleNB: for m in moduleNB:
process(m) process(m)
``` ```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment