Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
ToolBox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SCS
ToolBox
Commits
b4eb414f
Commit
b4eb414f
authored
2 years ago
by
Loïc Le Guyader
Browse files
Options
Downloads
Patches
Plain Diff
Auto rechunk for DSSC binning
parent
d4025d44
No related branches found
No related tags found
1 merge request
!186
Improved BOZ flat field
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
doc/Dask DSSC module binning.ipynb
+3
-2
3 additions, 2 deletions
doc/Dask DSSC module binning.ipynb
with
3 additions
and
2 deletions
doc/Dask DSSC module binning.ipynb
+
3
−
2
View file @
b4eb414f
...
@@ -22,6 +22,7 @@
...
@@ -22,6 +22,7 @@
"import dask\n",
"import dask\n",
"print(f'dask: {dask.__version__}')\n",
"print(f'dask: {dask.__version__}')\n",
"import dask.array as da\n",
"import dask.array as da\n",
"da.config.set({'array.chunk-size': '512MiB'})\n",
"\n",
"\n",
"import xarray as xr"
"import xarray as xr"
]
]
...
@@ -145,12 +146,12 @@
...
@@ -145,12 +146,12 @@
"def process(module):\n",
"def process(module):\n",
" # Load dark\n",
" # Load dark\n",
" arr_dark, tid_dark = load_dssc_module(proposalNB, dark_runNB, module, drop_intra_darks=False)\n",
" arr_dark, tid_dark = load_dssc_module(proposalNB, dark_runNB, module, drop_intra_darks=False)\n",
" arr_dark = arr_dark.rechunk((
100
, -1, -1, -1))\n",
" arr_dark = arr_dark.rechunk((
'auto'
, -1, -1, -1))\n",
" dark_img = arr_dark.mean(axis=0).compute()\n",
" dark_img = arr_dark.mean(axis=0).compute()\n",
" \n",
" \n",
" # Load module data\n",
" # Load module data\n",
" arr, tid = load_dssc_module(proposalNB, runNB, module, drop_intra_darks=False)\n",
" arr, tid = load_dssc_module(proposalNB, runNB, module, drop_intra_darks=False)\n",
" arr = arr.rechunk((
100
, -1, -1, -1))\n",
" arr = arr.rechunk((
'auto'
, -1, -1, -1))\n",
" \n",
" \n",
" # dark and intra dark correction\n",
" # dark and intra dark correction\n",
" arr = arr - dark_img\n",
" arr = arr - dark_img\n",
...
...
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
import
numpy
as
np
import
numpy
as
np
%
matplotlib
notebook
%
matplotlib
notebook
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
plt
.
rcParams
[
'
figure.constrained_layout.use
'
]
=
True
plt
.
rcParams
[
'
figure.constrained_layout.use
'
]
=
True
import
dask
import
dask
print
(
f
'
dask:
{
dask
.
__version__
}
'
)
print
(
f
'
dask:
{
dask
.
__version__
}
'
)
import
dask.array
as
da
import
dask.array
as
da
da
.
config
.
set
({
'
array.chunk-size
'
:
'
512MiB
'
})
import
xarray
as
xr
import
xarray
as
xr
```
```
%% Output
%% Output
dask: 2.11.0
dask: 2.11.0
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
import
sys
import
sys
print
(
sys
.
executable
)
print
(
sys
.
executable
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
from
psutil
import
virtual_memory
from
psutil
import
virtual_memory
import
gc
import
gc
# gc.collect() # run garbage collection to free possible memory
# gc.collect() # run garbage collection to free possible memory
mem
=
virtual_memory
()
mem
=
virtual_memory
()
print
(
f
'
Physical memory:
{
mem
.
total
/
1024
/
1024
/
1024
:
.
0
f
}
Gb
'
)
# total physical memory available
print
(
f
'
Physical memory:
{
mem
.
total
/
1024
/
1024
/
1024
:
.
0
f
}
Gb
'
)
# total physical memory available
```
```
%% Output
%% Output
Physical memory: 504 Gb
Physical memory: 504 Gb
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
import
logging
import
logging
logging
.
basicConfig
(
filename
=
'
example.log
'
,
level
=
logging
.
DEBUG
)
logging
.
basicConfig
(
filename
=
'
example.log
'
,
level
=
logging
.
DEBUG
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
%
load_ext
autoreload
%
load_ext
autoreload
%
autoreload
2
%
autoreload
2
import
toolbox_scs
as
tb
import
toolbox_scs
as
tb
print
(
tb
.
__file__
)
print
(
tb
.
__file__
)
from
toolbox_scs.routines.boz
import
load_dssc_module
from
toolbox_scs.routines.boz
import
load_dssc_module
from
extra_data
import
open_run
from
extra_data
import
open_run
```
```
%% Output
%% Output
/home/lleguy/notebooks/ToolBox/src/toolbox_scs/__init__.py
/home/lleguy/notebooks/ToolBox/src/toolbox_scs/__init__.py
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
# Parameters
# Parameters
%% Cell type:code id: tags:parameters
%% Cell type:code id: tags:parameters
```
python
```
python
proposalNB
=
2719
proposalNB
=
2719
dark_runNB
=
180
dark_runNB
=
180
runNB
=
179
runNB
=
179
module_group
=
0
module_group
=
0
pulse_pattern
=
[
'
pumped
'
,
'
unpumped
'
]
pulse_pattern
=
[
'
pumped
'
,
'
unpumped
'
]
xaxis
=
'
delay
'
# 'nrj'
xaxis
=
'
delay
'
# 'nrj'
bin_width
=
0.1
# [ps]
bin_width
=
0.1
# [ps]
path
=
f
'
/gpfs/exfel/exp/SCS/202002/p002719/scratch/tests/r
{
runNB
}
/
'
path
=
f
'
/gpfs/exfel/exp/SCS/202002/p002719/scratch/tests/r
{
runNB
}
/
'
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
moduleNB
=
list
(
range
(
module_group
*
4
,
(
module_group
+
1
)
*
4
))
moduleNB
=
list
(
range
(
module_group
*
4
,
(
module_group
+
1
)
*
4
))
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
# Processing function
# Processing function
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
def
process
(
module
):
def
process
(
module
):
# Load dark
# Load dark
arr_dark
,
tid_dark
=
load_dssc_module
(
proposalNB
,
dark_runNB
,
module
,
drop_intra_darks
=
False
)
arr_dark
,
tid_dark
=
load_dssc_module
(
proposalNB
,
dark_runNB
,
module
,
drop_intra_darks
=
False
)
arr_dark
=
arr_dark
.
rechunk
((
100
,
-
1
,
-
1
,
-
1
))
arr_dark
=
arr_dark
.
rechunk
((
'
auto
'
,
-
1
,
-
1
,
-
1
))
dark_img
=
arr_dark
.
mean
(
axis
=
0
).
compute
()
dark_img
=
arr_dark
.
mean
(
axis
=
0
).
compute
()
# Load module data
# Load module data
arr
,
tid
=
load_dssc_module
(
proposalNB
,
runNB
,
module
,
drop_intra_darks
=
False
)
arr
,
tid
=
load_dssc_module
(
proposalNB
,
runNB
,
module
,
drop_intra_darks
=
False
)
arr
=
arr
.
rechunk
((
100
,
-
1
,
-
1
,
-
1
))
arr
=
arr
.
rechunk
((
'
auto
'
,
-
1
,
-
1
,
-
1
))
# dark and intra dark correction
# dark and intra dark correction
arr
=
arr
-
dark_img
arr
=
arr
-
dark_img
arr
=
arr
[:,
::
2
,
:,
:]
-
arr
[:,
1
::
2
,
:,
:]
arr
=
arr
[:,
::
2
,
:,
:]
-
arr
[:,
1
::
2
,
:,
:]
# Load slow data against which to bin
# Load slow data against which to bin
if
xaxis
==
'
delay
'
:
if
xaxis
==
'
delay
'
:
run
,
v
=
tb
.
load
(
proposalNB
,
runNB
,
[
'
PP800_DelayLine
'
,
'
BAM1932M
'
,
'
SCS_XGM
'
])
run
,
v
=
tb
.
load
(
proposalNB
,
runNB
,
[
'
PP800_DelayLine
'
,
'
BAM1932M
'
,
'
SCS_XGM
'
])
else
:
else
:
run
,
v
=
tb
.
load
(
proposalNB
,
runNB
,
[
xaxis
,
'
SCS_XGM
'
])
run
,
v
=
tb
.
load
(
proposalNB
,
runNB
,
[
xaxis
,
'
SCS_XGM
'
])
# select part of the run
# select part of the run
# v = v.isel({'trainId':slice(0,3000)})
# v = v.isel({'trainId':slice(0,3000)})
# combine slow and DSSC module data
# combine slow and DSSC module data
xr_data
=
xr
.
DataArray
(
arr
,
xr_data
=
xr
.
DataArray
(
arr
,
coords
=
{
'
trainId
'
:
tid
,
coords
=
{
'
trainId
'
:
tid
,
'
sa3_pId
'
:
v
[
'
sa3_pId
'
].
values
},
'
sa3_pId
'
:
v
[
'
sa3_pId
'
].
values
},
dims
=
[
'
trainId
'
,
'
sa3_pId
'
,
'
y
'
,
'
x
'
])
dims
=
[
'
trainId
'
,
'
sa3_pId
'
,
'
y
'
,
'
x
'
])
xr_data
=
xr_data
.
expand_dims
(
module
=
[
module
],
axis
=
2
)
xr_data
=
xr_data
.
expand_dims
(
module
=
[
module
],
axis
=
2
)
r
=
xr
.
merge
([
xr_data
.
to_dataset
(
name
=
'
DSSC
'
),
v
],
join
=
'
inner
'
)
r
=
xr
.
merge
([
xr_data
.
to_dataset
(
name
=
'
DSSC
'
),
v
],
join
=
'
inner
'
)
# calculate bins
# calculate bins
if
xaxis
==
'
delay
'
:
if
xaxis
==
'
delay
'
:
r
[
'
delay
'
]
=
tb
.
misc
.
positionToDelay
(
r
[
'
PP800_DelayLine
'
])
r
[
'
delay
'
]
=
tb
.
misc
.
positionToDelay
(
r
[
'
PP800_DelayLine
'
])
bam
=
r
[
'
BAM1932M
'
]
-
r
[
'
BAM1932M
'
].
mean
()
bam
=
r
[
'
BAM1932M
'
]
-
r
[
'
BAM1932M
'
].
mean
()
r
[
'
bin_delay
'
]
=
((
r
[
'
delay
'
]
-
bam
)
/
bin_width
).
round
()
*
bin_width
r
[
'
bin_delay
'
]
=
((
r
[
'
delay
'
]
-
bam
)
/
bin_width
).
round
()
*
bin_width
else
:
else
:
r
[
'
bin_
'
+
xaxis
]
=
(
r
[
xaxis
]
/
bin_width
).
round
()
*
bin_width
r
[
'
bin_
'
+
xaxis
]
=
(
r
[
xaxis
]
/
bin_width
).
round
()
*
bin_width
# add the pulse pattern coordinates
# add the pulse pattern coordinates
Nrepeats
=
int
(
len
(
v
[
'
sa3_pId
'
].
values
)
/
len
(
pulse_pattern
))
Nrepeats
=
int
(
len
(
v
[
'
sa3_pId
'
].
values
)
/
len
(
pulse_pattern
))
pp
=
pulse_pattern
*
Nrepeats
pp
=
pulse_pattern
*
Nrepeats
pp
=
np
.
array
(
pp
)
pp
=
np
.
array
(
pp
)
r
=
r
.
assign_coords
(
pp
=
(
"
sa3_pId
"
,
pp
))
r
=
r
.
assign_coords
(
pp
=
(
"
sa3_pId
"
,
pp
))
# select pattern and bin data
# select pattern and bin data
bin_data
=
None
bin_data
=
None
for
p
in
np
.
unique
(
pp
):
for
p
in
np
.
unique
(
pp
):
# slice using non-index coordinates
# slice using non-index coordinates
# https://github.com/pydata/xarray/issues/2028
# https://github.com/pydata/xarray/issues/2028
sub_r
=
r
.
sel
(
sa3_pId
=
(
r
.
pp
==
p
))
sub_r
=
r
.
sel
(
sa3_pId
=
(
r
.
pp
==
p
))
# calculate mean on bin, then mean to remove the dimension
# calculate mean on bin, then mean to remove the dimension
res
=
sub_r
.
groupby
(
'
bin_
'
+
xaxis
).
mean
().
mean
([
'
sa3_pId
'
])
res
=
sub_r
.
groupby
(
'
bin_
'
+
xaxis
).
mean
().
mean
([
'
sa3_pId
'
])
if
bin_data
is
None
:
if
bin_data
is
None
:
bin_data
=
res
bin_data
=
res
bin_data
[
'
DSSC
'
]
=
res
[
'
DSSC
'
].
expand_dims
(
pp
=
[
p
])
bin_data
[
'
DSSC
'
]
=
res
[
'
DSSC
'
].
expand_dims
(
pp
=
[
p
])
bin_data
[
'
SCS_SA3
'
]
=
res
[
'
SCS_SA3
'
].
expand_dims
(
pp
=
[
p
])
bin_data
[
'
SCS_SA3
'
]
=
res
[
'
SCS_SA3
'
].
expand_dims
(
pp
=
[
p
])
else
:
else
:
bin_data
=
xr
.
merge
([
bin_data
,
bin_data
=
xr
.
merge
([
bin_data
,
res
[
'
DSSC
'
].
expand_dims
(
pp
=
[
p
]),
res
[
'
DSSC
'
].
expand_dims
(
pp
=
[
p
]),
res
[
'
SCS_SA3
'
].
expand_dims
(
pp
=
[
p
])])
res
[
'
SCS_SA3
'
].
expand_dims
(
pp
=
[
p
])])
# save the result
# save the result
fname
=
path
+
f
'
run
{
runNB
}
-darkrun
{
dark_runNB
}
-module
{
module
}
.h5
'
fname
=
path
+
f
'
run
{
runNB
}
-darkrun
{
dark_runNB
}
-module
{
module
}
.h5
'
print
(
fname
)
print
(
fname
)
bin_data
.
to_netcdf
(
fname
,
format
=
'
NETCDF4
'
,
engine
=
'
h5netcdf
'
)
bin_data
.
to_netcdf
(
fname
,
format
=
'
NETCDF4
'
,
engine
=
'
h5netcdf
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
# Processing
# Processing
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
for
m
in
moduleNB
:
for
m
in
moduleNB
:
process
(
m
)
process
(
m
)
```
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment