Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
ToolBox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SCS
ToolBox
Commits
d7b247dc
Commit
d7b247dc
authored
1 month ago
by
Laurent Mercadier
Browse files
Options
Downloads
Patches
Plain Diff
Update XAS function and remove printouts
parent
81338215
No related branches found
No related tags found
1 merge request
!326
Up8062
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/toolbox_scs/detectors/viking.py
+19
-18
19 additions, 18 deletions
src/toolbox_scs/detectors/viking.py
with
19 additions
and
18 deletions
src/toolbox_scs/detectors/viking.py
+
19
−
18
View file @
d7b247dc
...
@@ -290,7 +290,6 @@ class Viking:
...
@@ -290,7 +290,6 @@ class Viking:
"""
"""
if
key
not
in
data
:
if
key
not
in
data
:
return
return
print
(
'
hello
'
)
x
=
data
.
newt_x
x
=
data
.
newt_x
spectra
=
data
[
key
]
spectra
=
data
[
key
]
mask
=
xr
.
ones_like
(
x
,
dtype
=
bool
)
mask
=
xr
.
ones_like
(
x
,
dtype
=
bool
)
...
@@ -302,7 +301,6 @@ class Viking:
...
@@ -302,7 +301,6 @@ class Viking:
for
xrange
in
ranges
:
for
xrange
in
ranges
:
mask
=
mask
&
((
x
<
xrange
[
0
])
|
(
x
>
xrange
[
1
]))
mask
=
mask
&
((
x
<
xrange
[
0
])
|
(
x
>
xrange
[
1
]))
x_bl
=
x
.
where
(
mask
,
drop
=
True
).
astype
(
int
)
x_bl
=
x
.
where
(
mask
,
drop
=
True
).
astype
(
int
)
print
(
x_bl
)
bl
=
spectra
.
sel
(
newt_x
=
x_bl
)
bl
=
spectra
.
sel
(
newt_x
=
x_bl
)
fit
=
np
.
polyfit
(
x_bl
,
bl
.
T
,
self
.
BL_POLY_DEG
)
fit
=
np
.
polyfit
(
x_bl
,
bl
.
T
,
self
.
BL_POLY_DEG
)
if
len
(
spectra
.
shape
)
==
1
:
if
len
(
spectra
.
shape
)
==
1
:
...
@@ -312,8 +310,9 @@ class Viking:
...
@@ -312,8 +310,9 @@ class Viking:
final_bl
[
t
]
=
np
.
polyval
(
fit
[:,
t
],
x
)
final_bl
[
t
]
=
np
.
polyval
(
fit
[:,
t
],
x
)
data
[
key
+
'
_nobl
'
]
=
spectra
-
final_bl
data
[
key
+
'
_nobl
'
]
=
spectra
-
final_bl
return
data
return
data
def
xas
(
self
,
data
,
data_ref
,
thickness
=
1
,
plot
=
False
,
def
xas
(
self
,
sam
,
ref
,
thickness
=
1
,
dim
=
'
newt_x
'
,
plot
=
False
,
plot_errors
=
True
,
xas_ylim
=
(
-
1
,
3
)):
plot_errors
=
True
,
xas_ylim
=
(
-
1
,
3
)):
"""
"""
Given two independent datasets (one with sample and one reference),
Given two independent datasets (one with sample and one reference),
...
@@ -323,13 +322,15 @@ class Viking:
...
@@ -323,13 +322,15 @@ class Viking:
Parameters
Parameters
----------
----------
data
: xarray Data
set
sam
: xarray Data
Array
the data
set
containing the spectra with sample
the data
array
containing the spectra with sample
data_
ref: xarray Data
set
ref: xarray Data
Array
the data
set
containing the spectra without sample
the data
array
containing the spectra without sample
thickness: float
thickness: float
the thickness used for the calculation of the absorption
the thickness used for the calculation of the absorption
coefficient
coefficient
dim: string
the name of the dimension along the dispersion axis
plot: bool
plot: bool
If True, plot the resulting average spectra.
If True, plot the resulting average spectra.
plot_errors: bool
plot_errors: bool
...
@@ -344,15 +345,14 @@ class Viking:
...
@@ -344,15 +345,14 @@ class Viking:
I0, It, absorptionCoef and their associated errors.
I0, It, absorptionCoef and their associated errors.
"""
"""
key
=
'
spectrum_nobl
'
if
'
spectrum_nobl
'
in
data
else
'
spectrum
'
if
sam
[
dim
].
equals
(
ref
[
dim
])
is
False
:
if
data
[
'
newt_x
'
].
equals
(
data_ref
[
'
newt_x
'
])
is
False
:
return
return
spectrum
=
data
[
key
]
.
mean
(
dim
=
'
trainId
'
)
spectrum
=
sam
.
mean
(
dim
=
'
trainId
'
)
std
=
data
[
key
]
.
std
(
dim
=
'
trainId
'
)
std
=
sam
.
std
(
dim
=
'
trainId
'
)
std_err
=
std
/
np
.
sqrt
(
data
.
sizes
[
'
trainId
'
])
std_err
=
std
/
np
.
sqrt
(
sam
.
sizes
[
'
trainId
'
])
spectrum_ref
=
data_ref
[
key
]
.
mean
(
dim
=
'
trainId
'
)
spectrum_ref
=
ref
.
mean
(
dim
=
'
trainId
'
)
std_ref
=
data_ref
[
key
]
.
std
(
dim
=
'
trainId
'
)
std_ref
=
ref
.
std
(
dim
=
'
trainId
'
)
std_err_ref
=
std_ref
/
np
.
sqrt
(
data_
ref
.
sizes
[
'
trainId
'
])
std_err_ref
=
std_ref
/
np
.
sqrt
(
ref
.
sizes
[
'
trainId
'
])
ds
=
xr
.
Dataset
()
ds
=
xr
.
Dataset
()
ds
[
'
It
'
]
=
spectrum
ds
[
'
It
'
]
=
spectrum
...
@@ -372,13 +372,14 @@ class Viking:
...
@@ -372,13 +372,14 @@ class Viking:
np
.
abs
(
absorption
))
np
.
abs
(
absorption
))
ds
[
'
absorptionCoef_stderr
'
]
=
absorption_stderr
/
(
thickness
*
ds
[
'
absorptionCoef_stderr
'
]
=
absorption_stderr
/
(
thickness
*
np
.
abs
(
absorption
))
np
.
abs
(
absorption
))
ds
.
attrs
[
'
n_It
'
]
=
data
[
key
]
.
sizes
[
'
trainId
'
]
ds
.
attrs
[
'
n_It
'
]
=
sam
.
sizes
[
'
trainId
'
]
ds
.
attrs
[
'
n_I0
'
]
=
data_ref
[
key
]
.
sizes
[
'
trainId
'
]
ds
.
attrs
[
'
n_I0
'
]
=
ref
.
sizes
[
'
trainId
'
]
if
plot
:
if
plot
:
plot_viking_xas
(
ds
,
plot_errors
,
xas_ylim
)
plot_viking_xas
(
ds
,
plot_errors
,
xas_ylim
)
return
ds
return
ds
def
calibrate
(
self
,
runList
,
plot
=
True
):
def
calibrate
(
self
,
runList
,
plot
=
True
):
"""
"""
This routine determines the calibration coefficients to translate the
This routine determines the calibration coefficients to translate the
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment