Skip to content
Snippets Groups Projects
Commit d7b247dc authored by Laurent Mercadier's avatar Laurent Mercadier
Browse files

Update XAS function and remove printouts

parent 81338215
No related branches found
No related tags found
1 merge request!326Up8062
...@@ -290,7 +290,6 @@ class Viking: ...@@ -290,7 +290,6 @@ class Viking:
""" """
if key not in data: if key not in data:
return return
print('hello')
x = data.newt_x x = data.newt_x
spectra = data[key] spectra = data[key]
mask = xr.ones_like(x, dtype=bool) mask = xr.ones_like(x, dtype=bool)
...@@ -302,7 +301,6 @@ class Viking: ...@@ -302,7 +301,6 @@ class Viking:
for xrange in ranges: for xrange in ranges:
mask = mask & ((x < xrange[0]) | (x > xrange[1])) mask = mask & ((x < xrange[0]) | (x > xrange[1]))
x_bl = x.where(mask, drop=True).astype(int) x_bl = x.where(mask, drop=True).astype(int)
print(x_bl)
bl = spectra.sel(newt_x=x_bl) bl = spectra.sel(newt_x=x_bl)
fit = np.polyfit(x_bl, bl.T, self.BL_POLY_DEG) fit = np.polyfit(x_bl, bl.T, self.BL_POLY_DEG)
if len(spectra.shape) == 1: if len(spectra.shape) == 1:
...@@ -312,8 +310,9 @@ class Viking: ...@@ -312,8 +310,9 @@ class Viking:
final_bl[t] = np.polyval(fit[:, t], x) final_bl[t] = np.polyval(fit[:, t], x)
data[key+'_nobl'] = spectra - final_bl data[key+'_nobl'] = spectra - final_bl
return data return data
def xas(self, data, data_ref, thickness=1, plot=False,
def xas(self, sam, ref, thickness=1, dim='newt_x', plot=False,
plot_errors=True, xas_ylim=(-1, 3)): plot_errors=True, xas_ylim=(-1, 3)):
""" """
Given two independent datasets (one with sample and one reference), Given two independent datasets (one with sample and one reference),
...@@ -323,13 +322,15 @@ class Viking: ...@@ -323,13 +322,15 @@ class Viking:
Parameters Parameters
---------- ----------
data: xarray Dataset sam: xarray DataArray
the dataset containing the spectra with sample the data array containing the spectra with sample
data_ref: xarray Dataset ref: xarray DataArray
the dataset containing the spectra without sample the data array containing the spectra without sample
thickness: float thickness: float
the thickness used for the calculation of the absorption the thickness used for the calculation of the absorption
coefficient coefficient
dim: string
the name of the dimension along the dispersion axis
plot: bool plot: bool
If True, plot the resulting average spectra. If True, plot the resulting average spectra.
plot_errors: bool plot_errors: bool
...@@ -344,15 +345,14 @@ class Viking: ...@@ -344,15 +345,14 @@ class Viking:
I0, It, absorptionCoef and their associated errors. I0, It, absorptionCoef and their associated errors.
""" """
key = 'spectrum_nobl' if 'spectrum_nobl' in data else 'spectrum' if sam[dim].equals(ref[dim]) is False:
if data['newt_x'].equals(data_ref['newt_x']) is False:
return return
spectrum = data[key].mean(dim='trainId') spectrum = sam.mean(dim='trainId')
std = data[key].std(dim='trainId') std = sam.std(dim='trainId')
std_err = std / np.sqrt(data.sizes['trainId']) std_err = std / np.sqrt(sam.sizes['trainId'])
spectrum_ref = data_ref[key].mean(dim='trainId') spectrum_ref = ref.mean(dim='trainId')
std_ref = data_ref[key].std(dim='trainId') std_ref = ref.std(dim='trainId')
std_err_ref = std_ref / np.sqrt(data_ref.sizes['trainId']) std_err_ref = std_ref / np.sqrt(ref.sizes['trainId'])
ds = xr.Dataset() ds = xr.Dataset()
ds['It'] = spectrum ds['It'] = spectrum
...@@ -372,13 +372,14 @@ class Viking: ...@@ -372,13 +372,14 @@ class Viking:
np.abs(absorption)) np.abs(absorption))
ds['absorptionCoef_stderr'] = absorption_stderr / (thickness * ds['absorptionCoef_stderr'] = absorption_stderr / (thickness *
np.abs(absorption)) np.abs(absorption))
ds.attrs['n_It'] = data[key].sizes['trainId'] ds.attrs['n_It'] = sam.sizes['trainId']
ds.attrs['n_I0'] = data_ref[key].sizes['trainId'] ds.attrs['n_I0'] = ref.sizes['trainId']
if plot: if plot:
plot_viking_xas(ds, plot_errors, xas_ylim) plot_viking_xas(ds, plot_errors, xas_ylim)
return ds return ds
def calibrate(self, runList, plot=True): def calibrate(self, runList, plot=True):
""" """
This routine determines the calibration coefficients to translate the This routine determines the calibration coefficients to translate the
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment